Science.gov

Sample records for assess body temperature

  1. Assessment of body temperature measurement options.

    PubMed

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature.

  2. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats.

    PubMed

    Torrao, N A; Hetem, R S; Meyer, L C R; Fick, L G

    2011-03-26

    Body temperature was measured at five different body sites (retroperitoneum, groin, semimembranosus muscle, flank and shoulder) using temperature-sensitive microchips implanted in five female goats, and compared with the core body and rectal temperatures. Body temperature was measured while the goats were kept in different ambient temperatures, with and without radiant heat, as well as during a fever induced experimentally by injection of bacterial lipopolysaccharide. Bland-Altman limit of agreement analysis was used to compare the temperature measurements at the different body sites during the different interventions. Temperatures measured by the microchip implanted in the retroperitoneum showed the closest agreement (mean 0.2 °C lower) with core and rectal temperatures during all interventions, whereas temperatures measured by the microchips implanted in the groin, muscle, flank and shoulder differed from core body temperature by up to 3.5 °C during the various interventions.

  3. Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat

    PubMed Central

    Casa, Douglas J; Becker, Shannon M; Ganio, Matthew S; Brown, Christopher M; Yeargin, Susan W; Roti, Melissa W; Siegler, Jason; Blowers, Julie A; Glaviano, Neal R; Huggins, Robert A; Armstrong, Lawrence E; Maresh, Carl M

    2007-01-01

    Context: Rectal temperature is recommended by the National Athletic Trainers' Association as the criterion standard for recognizing exertional heat stroke, but other body sites commonly are used to measure temperature. Few authors have assessed the validity of the thermometers that measure body temperature at these sites in athletic settings. Objective: To assess the validity of commonly used temperature devices at various body sites during outdoor exercise in the heat. Design: Observational field study. Setting: Outdoor athletic facilities. Patients or Other Participants: Fifteen men and 10 women (age = 26.5 ± 5.3 years, height = 174.3 ± 11.1 cm, mass = 72.73 ± 15.95 kg, body fat = 16.2 ± 5.5%). Intervention(s): We simultaneously tested inexpensive and expensive devices orally and in the axillary region, along with measures of aural, gastrointestinal, forehead, temporal, and rectal temperatures. Temporal temperature was measured according to the instruction manual and a modified method observed in medical tents at local road races. We also measured forehead temperatures directly on the athletic field (other measures occurred in a covered pavilion) where solar radiation was greater. Rectal temperature was the criterion standard used to assess the validity of all other devices. Subjects' temperatures were measured before exercise, every 60 minutes during 180 minutes of exercise, and every 20 minutes for 60 minutes of postexercise recovery. Temperature devices were considered invalid if the mean bias (average difference between rectal temperature and device temperature) was greater than ±0.27°C (±0.5°F). Main Outcome Measure(s): Temperature from each device at each site and time point. Results: Mean bias for the following temperatures was greater than the allowed limit of ±0.27°C (±0.5°F): temperature obtained via expensive oral device (−1.20°C [−2.17°F]), inexpensive oral device (−1.67°C [−3.00°F]), expensive axillary device (−2.58°C [−4

  4. Portable Body Temperature Conditioner

    DTIC Science & Technology

    2013-10-18

    TITLE: Portable Body Temperature Conditioner PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0792 Portable Body Temperature ...also have decreased thermoregulation due to blood loss. Normal core body temperature is defined as 37oC and core body temperature below 35oC and above

  5. Validity and Reliability of Devices That Assess Body Temperature During Indoor Exercise in the Heat

    PubMed Central

    Ganio, Matthew S; Brown, Christopher M; Casa, Douglas J; Becker, Shannon M; Yeargin, Susan W; McDermott, Brendon P; Boots, Lindsay M; Boyd, Paul W; Armstrong, Lawrence E; Maresh, Carl M

    2009-01-01

    Context: When assessing exercise hyperthermia outdoors, the validity of certain commonly used body temperature measuring devices has been questioned. A controlled laboratory environment is generally less influenced by environmental factors (eg, ambient temperature, solar radiation, wind) than an outdoor setting. The validity of these temperature measuring devices in a controlled environment may be more acceptable. Objective: To assess the validity and reliability of commonly used temperature devices compared with rectal temperature in individuals exercising in a controlled, high environmental temperature indoor setting and then resting in a cool environment. Design: Time series study. Setting: Laboratory environmental chamber (temperature  =  36.4 ± 1.2°C [97.5 ± 2.16°F], relative humidity  =  52%) and cool laboratory (temperature  =  approximately 23.3°C [74.0°F], relative humidity  =  40%). Patients or Other Participants: Fifteen males and 10 females. Intervention(s): Rectal, gastrointestinal, forehead, oral, aural, temporal, and axillary temperatures were measured with commonly used temperature devices. Temperature was measured before and 20 minutes after entering the environmental chamber, every 30 minutes during a 90-minute treadmill walk in the heat, and every 20 minutes during a 60-minute rest in mild conditions. Device validity and reliability were assessed with various statistical measures to compare the measurements using each device with rectal temperature. A device was considered invalid if the mean bias (average difference between rectal and device temperatures) was more than ±0.27°C (±0.50°F). Main Outcome Measure(s): Measured temperature from each device (mean and across time). Results: The following devices provided invalid estimates of rectal temperature: forehead sticker (0.29°C [0.52°F]), oral temperature using an inexpensive device (−1.13°C [−2.03°F]), temporal temperature measured according to the instruction

  6. Disorders of body temperature.

    PubMed

    Gomez, Camilo R

    2014-01-01

    The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury.

  7. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode

    NASA Astrophysics Data System (ADS)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the `modular' body mapping sportswear was designed and subsequently assessed on a `Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  8. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    PubMed

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  9. Assessing the reliability of thermography to infer internal body temperatures of lizards.

    PubMed

    Barroso, Frederico M; Carretero, Miguel A; Silva, Francisco; Sannolo, Marco

    2016-12-01

    For many years lizard thermal ecology studies have relied on the use of contact thermometry to obtain internal body temperature (Tb) of the animals. However, with progressing technology, an interest grew in using new, less invasive methods, such as InfraRed (IR) pyrometry and thermography, to infer Tb of reptiles. Nonetheless few studies have tested the reliability of these new tools. The present study tested the use of IR cameras as a non-invasive tool to infer Tb of lizards, using three differently body-sized lacertid species (Podarcis virescens, Lacerta schreiberi and Timon lepidus). Given the occurrence of regional heterothermy, we pairwise compared thermography readings of six body parts (snout, eye, head, dorsal, hind limb, tail base) to cloacal temperature (measured by a thermometer-associated thermocouple probe) commonly employed to measure Tb in field and lab studies. The results showed moderate to strong correlations (R(2)=0.84-0.99) between all body parts and cloacal temperature. However, despite the readings on the tail base showed the strongest correlation in all three species, it was the eye where the absolute values and pattern of temperature change most consistently followed the cloacal measurements. Hence, we concluded that the eye would be the body location whose IR camera readings more closely approximate that of the animal's internal environment. Alternatively, other body parts can be used, provided that a careful calibration is carried out. We provide guidelines for future research using thermography to infer Tb of lizards.

  10. Portable Body Temperature Conditioner

    DTIC Science & Technology

    2013-12-01

    as 37oC and core body temperature below 35oC and above 40oC is defined as hypothermia and hyperthermia respectively. Studies have shown much better...outcomes for patients with either trauma or hypothermia compared to patients with both trauma and hypothermia . Additionally, studies have shown that...efficient portable body temperature conditioning device suitable for military applications. 15. SUBJECT TERMS Hypothermia , Circulating Water

  11. Portable Body Temperature Conditioner

    DTIC Science & Technology

    2012-10-01

    lowers the incidence of complications and the risk of death. Currently, the most effective treatments for dysthermic patients involve active...have shown that lowering the patient’s core body temperature rapidly to 38 o C improves complications and lowers the risk of death [7-8]. Currently...department of Surgery Research Laboratory and Rocky Research has begun to implement QSR Standard Operating Procedures (SOP’s) which will be ongoing

  12. Determination of regional brain temperature using proton magnetic resonance spectroscopy to assess brain-body temperature differences in healthy human subjects.

    PubMed

    Childs, Charmaine; Hiltunen, Yrjö; Vidyasagar, Rishma; Kauppinen, Risto A

    2007-01-01

    Proton magnetic resonance spectroscopy ((1)H MRS) was used to determine brain temperature in healthy volunteers. Partially water-suppressed (1)H MRS data sets were acquired at 3T from four different gray matter (GM)/white matter (WM) volumes. Brain temperatures were determined from the chemical-shift difference between the CH(3) of N-acetyl aspartate (NAA) at 2.01 ppm and water. Brain temperatures in (1)H MRS voxels of 2 x 2 x 2 cm(3) showed no substantial heterogeneity. The volume-averaged temperature from single-voxel spectroscopy was compared with body temperatures obtained from the oral cavity, tympanum, and temporal artery regions. The mean brain parenchyma temperature was 0.5 degrees C cooler than readings obtained from three extra-brain sites (P < 0.01). (1)H MRS imaging (MRSI) data were acquired from a slice encompassing the single-voxel volumes to assess the ability of spectroscopic imaging to determine regional brain temperature within the imaging slice. Brain temperature away from the center of the brain determined by MRSI differed from that obtained by single-voxel MRS in the same brain region, possibly due to a poor line width (LW) in MRSI. The data are discussed in the light of proposed brain-body temperature gradients and the use of (1)H MRSI to monitor brain temperature in pathologies, such as brain trauma.

  13. Central control of body temperature

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289

  14. Technical note: Assessment of milk temperature measured by automatic milking systems as an indicator of body temperature and fever in dairy cows.

    PubMed

    Pohl, A; Heuwieser, W; Burfeind, O

    2014-07-01

    The objective of this study was to evaluate whether milk temperature (MT) measured by automatic milking system (AMS) is a reliable indicator of body temperature of dairy cows and whether cows with fever could be detected. Data loggers (Minilog 8, Vemco Ltd., Halifax, NS, Canada) measuring body temperature were inserted for 7 ± 1 d into the vaginal cavity of 31 dairy cows and programmed to take 1 reading/min. Milk temperature was recorded at each milking event by the AMS, and values from the vaginal loggers were paired with the corresponding MT. The correlation (r) between vaginal temperature (VT) and MT was 0.52. Vaginal temperature was higher (39.1 ± 0.4°C) than MT (38.6 ± 0.7°C) with a mean difference of 0.5 ± 0.6°C. The ability of MT to identify cows with fever was assessed using 2 approaches. In the first approach, VT could indicate fever at any time of the day, whereas MT could display fever only during the milking events of a given day. Different definitions of fever based on thresholds of VT and duration exceeding these thresholds were constructed. Different thresholds of MT were tested to distinguish between cows with and without fever. The combination of 39.0°C as a threshold for MT and 39.5°C for at least 2h/d as a threshold for VT resulted in the highest combination of sensitivity (0.65) and specificity (0.65). In the second approach, we evaluated whether MT could identify cows with fever at a given milking event. A threshold of MT >38.7°C delivered the best combination of sensitivity (0.77) and specificity (0.66) when fever was defined as VT ≥39.5°C. Therefore, MT measured by AMS can be indicative of fever in dairy cows to a limited extent.

  15. Estimation Method of Body Temperature from Upper Arm Temperature

    NASA Astrophysics Data System (ADS)

    Suzuki, Arata; Ryu, Kazuteru; Kanai, Nobuyuki

    This paper proposes a method for estimation of a body temperature by using a relation between the upper arm temperature and the atmospheric temperature. Conventional method has measured by armpit or oral, because the body temperature from the body surface is influenced by the atmospheric temperature. However, there is a correlation between the body surface temperature and the atmospheric temperature. By using this correlation, the body temperature can estimated from the body surface temperature. Proposed method enables to measure body temperature by the temperature sensor that is embedded in the blood pressure monitor cuff. Therefore, simultaneous measurement of blood pressure and body temperature can be realized. The effectiveness of the proposed method is verified through the actual body temperature experiment. The proposed method might contribute to reduce the medical staff's workloads in the home medical care, and more.

  16. [Measurement and management of body temperature].

    PubMed

    Iwashita, Hironobu; Matsukawa, Takashi

    2012-01-01

    Body temperature regulation is at the basis of life maintenance and for humans to maintain the central body temperature within the range of 37 +/- 0.2 degrees Celsius. In the case of anesthesia, a patient would have a high possibility of lower body temperature and also could have more complications with low body temperature. In addition, it would generate more complications and extend a period of hospitalization. For that reason, anesthetists must pay full attention to body temperature management during surgery. Measurement for central body temperature is necessary as a monitor for body temperature measurement and the measurement for nasopharyngeal temperature, tympanic temperature, and lung artery temperature is effective for this purpose. Therapeutic hypothermia for brain injury is receiving attention recently as a preventive method for brain disorder and the method is utilized in hospital facilities. In future, it is expected to attain the most suitable treatment method by clinical studies on low body temperature.

  17. Body temperature and fever in a free-living bird.

    PubMed

    Møller, Anders Pape

    2010-05-01

    Fever is an adaptive physiological response that animals use to fight infections by microorganisms. Although used routinely by veterinary and medical doctors for assessment of health status, there are hardly any studies of fever in free-living animals. Body temperature in a sample of more than 500 adult barn swallows Hirundo rustica varied considerably, but was consistent among capture events. Body temperature increased during the day, and reached a minimum in the middle of the breeding season. A normal quantile plot revealed that 4.5% of adults constituted a separate population that had fever. There were only marginal effects of handling on body temperature. Body temperature increased by 2.6 standard deviations following injection with LPS, showing that body temperature indeed increased with an immune challenge. Body temperature was negatively related to abundance of feather mites, but was not related to abundance of other ectoparasites or size of the uropygial gland. Barn swallows with high body temperatures also had large body mass and showed weak stress responses as reflected by their tonic immobility. Barn swallows in large colonies had lower body temperatures than solitary or less colonial individuals. Body temperature was not related to arrival date, timing of breeding, annual fecundity or adult survival. However, individuals that were easier to catch had higher body temperatures. These findings suggest that body temperature is a consistent physiological parameter of individuals, a small fraction of individuals has fever, and that febrile individuals have specific parasite loads, body mass, social environment and ability to escape capture.

  18. Body temperature variability (Part 2): masking influences of body temperature variability and a review of body temperature variability in disease.

    PubMed

    Kelly, Gregory S

    2007-03-01

    This is the second of a two-part review on body temperature variability. Part 1 discussed historical and modern findings on average body temperatures. It also discussed endogenous sources of temperature variability, including variations caused by site of measurement; circadian, menstrual, and annual biological rhythms; fitness; and aging. Part 2 reviews the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can be a significant source of body temperature variability. Body temperature variability findings in disease states are also reviewed.

  19. Body temperature regulation in diabetes

    PubMed Central

    Kenny, Glen P.; Sigal, Ronald J.; McGinn, Ryan

    2016-01-01

    ABSTRACT The effects of type 1 and type 2 diabetes on the body's physiological response to thermal stress is a relatively new topic in research. Diabetes tends to place individuals at greater risk for heat-related illness during heat waves and physical activity due to an impaired capacity to dissipate heat. Specifically, individuals with diabetes have been reported to have lower skin blood flow and sweating responses during heat exposure and this can have important consequences on cardiovascular regulation and glycemic control. Those who are particularly vulnerable include individuals with poor glycemic control and who are affected by diabetes-related complications. On the other hand, good glycemic control and maintenance of aerobic fitness can often delay the diabetes-related complications and possibly the impairments in heat loss. Despite this, it is alarming to note the lack of information regarding diabetes and heat stress given the vulnerability of this population. In contrast, few studies have examined the effects of cold exposure on individuals with diabetes with the exception of its therapeutic potential, particularly for type 2 diabetes. This review summarizes the current state of knowledge regarding the impact of diabetes on heat and cold exposure with respect to the core temperature regulation, cardiovascular adjustments and glycemic control while also considering the beneficial effects of maintaining aerobic fitness. PMID:27227101

  20. Relationship between alertness, performance, and body temperature in humans

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  1. Body Temperature Regulation in Hot Environments.

    PubMed

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future.

  2. Body Temperature Regulation in Hot Environments

    PubMed Central

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758

  3. Astronaut James Lovell checks body temperature with oral temperature probe

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  4. How the body controls brain temperature

    PubMed Central

    Zhu, Mingming; Ackerman, Joseph J. H.; Sukstanskii, Alexander L.; Yablonskiy, Dmitriy A.

    2007-01-01

    Normal brain functioning largely depends on maintaining brain temperature. However, the mechanisms protecting brain against a cooler environment are poorly understood. Reported herein is the first detailed measurement of the brain-temperature profile. It is found to be exponential, defined by a characteristic temperature shielding length, with cooler peripheral areas and a warmer brain core approaching body temperature. Direct cerebral blood flow (CBF) measurements with microspheres show that the characteristic temperature shielding length is inversely proportional to the square root of CBF in excellent agreement with a theoretical model. This “temperature shielding effect” quantifies the means by which CBF prevents “extracranial cold” from penetrating deep brain structures. The effect is crucial for research and clinical applications; the relationship between brain, body, and extracranial temperatures can now be quantitatively predicted. PMID:16840581

  5. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    PubMed

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  6. Temperature alters food web body-size structure.

    PubMed

    Gibert, Jean P; DeLong, John P

    2014-08-01

    The increased temperature associated with climate change may have important effects on body size and predator-prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator-prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator-prey interactions to assess how temperature affects predator-prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator-prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator-prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability.

  7. An evaluation of body temperature measurement.

    PubMed

    Ilsley, A H; Rutten, A J; Runciman, W B

    1983-02-01

    The accuracy of routine body temperature measurements, the suitability of various sites for such measurements, and the performance and practicality of various temperature measuring devices were studied. Oral and axillary temperature measurements made by the nursing staff were within 1 degree C of a reference value (within 0.5 degree C in 67%). Both sites were suitable for routine ward temperature measurement. Mercury-in-glass thermometers are recommended for routine ward use. Electronic and disposable chemical thermometers cost more but the latter are suitable in uncooperative patients and children. Forehead skin temperature measurements using liquid crystal plastic discs were unreliable. Pulmonary artery and rectal temperature measurements were satisfactory in operating theatre and intensive care unit; however, electronic thermometers should be subjected to routine checks. The bladder temperature measuring device proved unsuitable for clinical use. When oesophagus, nasopharynx and tympanum sites are used careful placement is necessary to minimise trauma and obtain reliable measurements.

  8. Heat Capacity, Body Temperature, and Hypothermia

    NASA Astrophysics Data System (ADS)

    Kimbrough, Doris R.

    1998-01-01

    Even when air and water are at the same temperature, water will "feel" distinctly colder to us. This difference is due to the much higher heat capacity of water than of air. Offered here is an interesting life science application of water's high heat capacity and its serious implications for the maintenance of body temperature and the prevention of hypothermia in warm-blooded animals.

  9. [Body temperature measurement in daily practice].

    PubMed

    Sermet-Gaudelus, I; Chadelat, I; Lenoir, G

    2005-08-01

    The use of rectal mercury thermometer has long been the standard method for measurement of body temperature. The restriction of mercury use since 1996 has led to development of other devices. The liquid crystal strip thermometer held against the forehead has a low sensitivity. The single-use chemical thermometer measures oral temperature. Its accuracy must be evaluated. Infrared ear thermometers are routinely used because it is convenient and fast to use. However, numerous studies have shown that it does not show sufficient correlation with rectal temperature, leading to the risk to miss cases of true fever. Rectal temperature remains the gold standard in case of fever. Rectal temperature measurement with an electronic device is well correlated with the glass mercury standard. Galistan thermometer accuracy must be evaluated because of sterilization of the whole device, which is not the case for the electronic thermometer. A pediatric study is necessary to evaluate the performance of this device in comparison with the electronic thermometer.

  10. Structural transition temperature of hemoglobins correlates with species' body temperature.

    PubMed

    Zerlin, Kay Frank Thorsten; Kasischke, Nicole; Digel, Ilya; Maggakis-Kelemen, Christina; Temiz Artmann, Aysegül; Porst, Dariusz; Kayser, Peter; Linder, Peter; Artmann, Gerhard Michael

    2007-12-01

    Human red blood cells (RBCs) exhibit sudden changes in their biophysical properties at body temperature (T (B)). RBCs were seen to undergo a spontaneous transition from blockage to passage at T (C) = 36.4 +/- 0.3 degrees C, when the temperature dependency of RBC-passages through 1.3 mum narrow micropipettes was observed. Moreover, concentrated hemoglobin solutions (45 g/dl) showed a viscosity breakdown between 36 and 37 degrees C. With human hemoglobin, a structural transition was observed at T (B) as circular dichroism (CD) experiments revealed. This leads to the assumption that a species' body temperature occupies a unique position on the temperature scale and may even be imprinted in the structure of certain proteins. In this study, it was investigated whether hemoglobins of species with a T (B) different from those of human show temperature transitions and whether those were also linked to the species' T (B). The main conclusion was drawn from dynamic light scattering (DLS) and CD experiments. It was observed that such structural temperature transitions did occur in hemoglobins from all studied species and were correlated linearly (slope 0.81, r = 0.95) with the species' body temperature. We presumed that alpha-helices of hemoglobin were able to unfold more readily around T (B). alpha-helical unfolding would initiate molecular aggregation causing RBC passage and viscosity breakdown as mentioned above. Thus, structural molecular changes of hemoglobin could determine biophysical effects visible on a macroscopic scale. It is hypothesized that the species' body temperature was imprinted into the structure of hemoglobins.

  11. Low temperature alteration processes affecting ultramafic bodies

    USGS Publications Warehouse

    Nesbitt, H.W.; Bricker, O.P.

    1978-01-01

    At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step. Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry. Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction: 3H2O + 2Mg2SiO4 ??? Mg3Si2O5(OH)4 + Mg(OH)2 (Johannes, 1968, Contrib. Mineral. Petrol. 19, 309-315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions. ?? 1978.

  12. A thermosensory pathway that controls body temperature.

    PubMed

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  13. Body temperature in early postpartum dairy cows.

    PubMed

    Burfeind, O; Suthar, V S; Voigtsberger, R; Bonk, S; Heuwieser, W

    2014-07-01

    A strategy widely adopted in the modern dairy industry is the introduction of postpartum health monitoring programs by trained farm personnel. Within these fresh cow protocols, various parameters (e.g., rectal temperature, attitude, milk production, uterine discharge, ketones) are evaluated during the first 5 to 14 days in milk (DIMs) to diagnose relevant diseases. It is well documented that 14% to 66% of healthy cows exhibit at least one temperature of 39.5 °C or greater within the first 10 DIM. Although widely adopted, data on diagnostic performance of body temperature (BT) measurement to diagnose infectious diseases (e.g., metritis, mastitis) are lacking. Therefore, the objective of this study was to identify possible factors associated with BT in postpartum dairy cows. A study was conducted on a commercial dairy farm including 251 cows. In a total of 217 cows, a vaginal temperature logger was inserted from DIM 2 to 10, whereas 34 cows did not receive a temperature logger as control. Temperature loggers measured vaginal temperature every 10 minutes. Rectal temperature was measured twice daily in all cows. On DIM 2, 5, and 10, cows underwent a clinical examination. Body temperature was influenced by various parameters. Primiparous cows had 0.2 °C higher BT than multiparous cows. Multiparous cows that calved during June and July had higher BT than those that calved in May. In primiparous cows, this effect was only evident from DIM 7 to 10. Furthermore, abnormal calving conditions (i.e., assisted calving, dead calf, retained placenta, twins) affected BT in cows. This effect was more pronounced in multiparous cows. Abnormal vaginal discharge did increase BT in primiparous and multiparous cows. Primiparous cows suffering from hyperketonemia (beta-hydroxybutyrat ≥ 1.4 mmol/L) had higher BT than those not affected. In multiparous cows, there was no association between hyperketonemia and BT. The results of this study clearly demonstrate that BT is influenced

  14. [Physical methods used to control body temperature].

    PubMed

    Ezquerro Rodríguez, Esther; Montes García, Yolanda; Marín Fernández, Blanca

    2012-10-01

    The physical methods to control body temperature, either to induce hypothermia, or to increase body temperature, can be of two types: physical methods of external heating or cooling and invasive methods that require complex procedures and technology. There are many strategies for the induction of hypothermia, all based on three of the four basic mechanisms of heat transfer, evaporation, convection and conduction. In the hospital environment the external cooling methods or surface (blankets of cold air or water circulation, plates of hydrogel Artic Sun, methods of cooling helmet) are the most widely used for the induction of therapeutic hypothermia. The most non-invasive devices used are blades of hydrogel, which use water conduction high speed between the layers of pads. But there are quicker methods to induce hypothermia; i.e., invasive methods of internal cooling: infusion of intravenous crystalloid; endovascular catheters located in a central vein through which flows saline pumped by a closed circuit; By-pass cardio-pulmonary with extracorporeal circulation; and By-pass percutaneous venous system for continuous hemofiltration. The average physical external heating is based on the patient's ability to produce and retain heat or in the application of heat to the body surface of the patient (hot spring baths with hot water, air blankets, blankets of water). But when the answer to these methods are not sufficient or hypothermia is moderate or severe, other methods of internal heat are suggested: inhalation of oxygen or warm to 40-45 degrees C and wet by facial mask or endotracheal tube; intravenous (IV) infusion with hot solutions; Irrigation of body cavities with warm saline solution to 40-42 degrees C; peritoneal dialysis, haemodialysis and hemofiltration; Continuous reheating arterio-venous or venous-venous; extracorporeal circulation with cardiopulmonary bypass. In this article each of the methods listed above will be described for the induction of hypothermia

  15. Assessing body composition in infants and toddlers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare different body composition techniques in infants and toddlers. Anthropometric measures including mid-upper arm circumference (MAC), triceps skinfold thickness (TSF), and weight-for-height or -length Z-scores (WHZ), and measures of body fat mass assessed wit...

  16. Impact of nesting material on mouse body temperature and physiology.

    PubMed

    Gaskill, Brianna N; Gordon, Christopher J; Pajor, Edmond A; Lucas, Jeffrey R; Davis, Jerry K; Garner, Joseph P

    2013-02-17

    In laboratories, mice are housed at 20-24 °C, which is below their lower critical temperature (≈30 °C). Thus, mice are potentially cold stressed, which can alter metabolism, immune function, and reproduction. These physiological changes reflect impaired wellbeing, and affect scientific outcomes. We hypothesized that nesting material would allow mice to alleviate cold stress by controlling their thermal microenvironment, thus insulating them, reducing heat loss and thermogenic processes. Naïve C57BL/6, CD-1, and BALB/c mice (24 male and 24 female/strain in groups of 3) were housed in standard cages at 20 °C either with or without 8 g nesting material for 4 weeks. Core body temperature was followed using intraperitoneal radio telemetry. The thermal properties of the nests were assessed using a thermal imaging camera, and related to nest quality. Higher scoring nests were negatively correlated with the mean radiated temperature and were thus more insulating. No effects of nesting material on body temperature were found. CD-1 mice with nesting material had higher end body weights than controls. No effect was seen in the other two strains. Mice with the telemetry implant had larger spleens than controls, possibly indicating an immune response to the implant or low level infection from the surgery. BALB/c mice express less mRNA for the UCP1 protein than mice without nesting material. This indicates that BALB/c's with nesting material do not utilize their brown fat to create heat as readily as controls. Nests can alleviate thermal discomfort by decreasing the amount of radiated heat and reduce the need for non-shivering thermogenesis. However, different strains appear to use different behavioral (through different primary modes of behavioral thermoregulation) and physiological strategies (utilizing thermogenesis to different degrees) to maintain a constant body temperature under cool standard laboratory ambient temperatures.

  17. Cool running: locomotor performance at low body temperature in mammals

    PubMed Central

    Rojas, A. Daniella; Körtner, Gerhard; Geiser, Fritz

    2012-01-01

    Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8–17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance. PMID:22675136

  18. Cool running: locomotor performance at low body temperature in mammals.

    PubMed

    Rojas, A Daniella; Körtner, Gerhard; Geiser, Fritz

    2012-10-23

    Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.

  19. Nocturnal body temperature in wintering blue tits is affected by roost-site temperature and body reserves.

    PubMed

    Nord, Andreas; Nilsson, Johan F; Nilsson, J-Å

    2011-09-01

    Birds commonly use rest-phase hypothermia, a controlled reduction of body temperature (T(b)), to conserve energy during times of high metabolic demands. We assessed the flexibility of this heterothermic strategy by increasing roost-site temperature and recording the subsequent T(b) changes in wintering blue tits (Cyanistes caeruleus L.), assuming that blue tits would respond to treatment by increasing T(b). We found that birds increased T(b) when roost-site temperature was increased, but only at low ambient temperatures. Moreover, birds with larger fat reserves regulated T(b) at higher levels than birds carrying less fat. This result implies that a roosting blue tit maintains its T(b) at the highest affordable level, as determined by the interacting effect of ecophysiological costs associated with rest-phase hypothermia and energy reserves, in order to minimize potential fitness costs associated with a low T(b).

  20. Thermometry, calorimetry, and mean body temperature during heat stress.

    PubMed

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  1. Body temperatures of selected amphibian and reptile species.

    PubMed

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  2. The functional architecture of the human body: assessing body representation by sorting body parts and activities.

    PubMed

    Bläsing, Bettina; Schack, Thomas; Brugger, Peter

    2010-05-01

    We investigated mental representations of body parts and body-related activities in two subjects with congenitally absent limbs (one with, the other without phantom sensations), a wheelchair sports group of paraplegic participants, and two groups of participants with intact limbs. To analyse mental representation structures, we applied Structure Dimensional Analysis. Verbal labels indicating body parts and related activities were presented in randomized lists that had to be sorted according to a hierarchical splitting paradigm. Participants were required to group the items according to whether or not they were considered related, based on their own body perception. Results of the groups of physically intact and paraplegic participants revealed separate clusters for the lower body, upper body, fingers and head. The participant with congenital phantom limbs also showed a clear separation between upper and lower body (but not between fingers and hands). In the participant without phantom sensations of the absent arms, no such modularity emerged, but the specific practice of his right foot in communication and daily routines was reflected. Sorting verbal labels of body parts and activities appears a useful method to assess body representation in individuals with special body anatomy or function and leads to conclusions largely compatible with other assessment procedures.

  3. Thermographic analysis of body surface temperature of mammals.

    PubMed

    Mortola, Jacopo P

    2013-02-01

    Among mammals, the similarity in body temperature indicates that body size differences in heat loss must match the body size differences in heat production. This study tested the possibility that body surface temperature (Tbs), responsible for heat loss through radiation and convection, may vary systematically with the animal's body mass (M). Tbs was measured by whole body thermography in 53 specimens from 37 eutherian mammals ranging in M from a few grams to several tons. Numerous thermographs were taken from all angles, indoor, with the animals standing still in absence of air convection and of external radiant sources, at the ambient temperature of 20-22°C, 22-25°C, or 25-27°C. Data were analysed as whole body surface average, as average of the "effective" body surface area (those regions with temperatures exceeding ambient temperature by > 1.5°C or by > 5°C), as the peak histogram distribution and as average of the regions with the top 20% temperature values. For all modes of data analysis and at all ambient temperatures Tbs was independent of the animal's M. From these data, the heat loss by radiation and natural convection combined was estimated to vary to the 2/3 power of M. It is concluded that, for the same ambient conditions, the surface temperature responsible for radiation and convection is essentially body-size independent among mammals.

  4. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury.

    PubMed

    Childs, Charmaine; Lunn, Kueh Wern

    2013-04-22

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted.

  5. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  6. Miniature ingestible telemeter devices to measure deep-body temperature

    NASA Technical Reports Server (NTRS)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  7. [Improving recovery of body temperature after ablution in premature infants].

    PubMed

    Chiu, Shu-Yen; Huang, Hisu-Min; Tseng, Chi-Ying

    2007-06-01

    The purpose of this project was to improve the problem of decreased body temperature after ablution in premature infants, and increase the rate of recovery of body temperature. Before administration of this program, the rate of body temperature recovery was slow. The body temperatures of only 35% of premature infants' reached 36.5 degrees C at 30 minutes after bath, those of 43% did so at 60 minutes after bath, and those of 70 % did so at 120 minutes after bath. After a warmth maintenance nursing standard had been set, the bathing nursing standard corrected, standard interventions promoted and the system inspected, the percentage of body temperature recovery to 36.5 degrees C was raised from 35% to 74% at 30 minutes after bath and the body temperature became normal in all premature infants at 60 minutes after bath. This program not only solves the problem of low body temperature after ablution in premature infants, but also consolidates nursing staffs' knowledge and skills in maintaining body temperature in prematurity to promote the quality of premature care.

  8. Implanted telemeter for electrocardiogram and body temperature

    NASA Technical Reports Server (NTRS)

    Barrows, W. F.

    1972-01-01

    Measuring system requiring one blocking oscillator to generate modulated pulse repetition rate is implantable in the bodies of small animals. Device has life of two years and transmission range of about three feet. EKG sensing unit also is used to sense electromyogram or electrooculogram of laboratory animals.

  9. Body temperature stability achieved by the large body mass of sea turtles.

    PubMed

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses.

  10. Mapping the body surface temperature of cattle by infrared thermography.

    PubMed

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  11. Being cool: how body temperature influences ageing and longevity.

    PubMed

    Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro

    2015-08-01

    Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity.

  12. Body temperature regulation and thermoneutrality in rats.

    PubMed

    Poole, S; Stephenson, J D

    1977-04-01

    Various concepts of thermoneutrality were considered for a proposed study of the role of hypothalamic amines in temperature regulation of rats. The classic definition, the ambient temperature over which metabolic rate is minimum and constant, gave a range of approximately 28 to 32 degrees C. However, within this temperature range rats were inactive, the inactivity apparently representing a behavioural response to heat stress and itself responsible for the reduced metabolic rate; certain thermoregulatory effectors were also activated to increase heat loss. Therefore an alternative range, 18.0 +/- 1.9 (mean +/- S.D.) to 28.1 +/- 1.0 degrees C, was defined in which rats displayed normal activity, behavioural thermoregulations being absent.

  13. A comparison of noninvasive body temperature monitoring devices in the PACU.

    PubMed

    Darm, R M; Hecker, R B; Rubal, B J

    1994-06-01

    Critical measurement of patient body temperature in the PACU is an important parameter in patient management. Failure to achieve minimal acceptable body temperature standards has been associated with physiological derangement, the application of additional therapy, and prolonged PACU stays. Newer methods to monitor temperature have been introduced into the PACU that have been touted to be adequate for detecting clinically significant changes in temperature. This study compares skin core temperature-corrected liquid crystal thermography, axillary electronic, and oral electronic thermistor readings with temperatures obtained by infrared tympanic membrane thermometry in 215 PACU patients. Regression analysis suggests that when compared with tympanic temperature, the oral method is more accurate and has greater precision than either the liquid crystal or axillary methods. That the incidence of hypothermia depends on the method chosen to assess body temperature is a significant nursing implication.

  14. The evolution of mammalian body temperature: the Cenozoic supraendothermic pulses.

    PubMed

    Lovegrove, Barry G

    2012-05-01

    In this study, I investigated the source(s) of variation in the body temperatures of mammals. I also attempted to reconstruct ancestral normothermic rest-phase body temperature states using a maximum parsimony approach. Body temperature at the familial level is not correlated with body mass. For small mammals, except the Macroscelidae, previously identified correlates, such as climate adaptation and zoogeography explained some, but not all, T(b) apomorphies. At the species level in large cursorial mammals, there was a significant correlation between body temperature and the ratio between metatarsal length and femur length, the proxy for stride length and cursoriality. With the exception of two primate families, all supraendothermic (T(b) > 37.9°C) mammals are cursorial, including Artiodactyla, Lagomorpha, some large Rodentia, and Carnivora. The ruminant supraendothermic cursorial pulse is putatively associated with global cooling and vegetation changes following the Paleocene-Eocene Thermal Maximum. Reconstructed ancestral body temperatures were highly unrealistic deep within the mammalian phylogeny because of the lack of fossil T(b) data that effectively creates ghost lineages. However, it is anticipated that the method of estimating body temperature from the abundance of ¹³C-¹⁸O bonds in the carbonate component of tooth bioapatite in both extant and extinct animals may be a very promising tool for estimating the T(b) of extinct mammals. Fossil T(b) data are essential for discerning derived T(b) reversals from ancestral states, and verifying the dates of supraendothermic pulses.

  15. [Pharmacological approaches to control of body temperature].

    PubMed

    Soto Ruiz, M Nelia; Ezquerro Rodríguez, Esther; Marín Fernández, Blanca

    2012-05-01

    The main antipyretic drugs belong to two different therapeutic groups: non-steroidal anti-inflammatory and antirheumatic; and analgesic and antipyretic. In some cases, both groups are included in the NSAID group (analgesics antipyretics and NSAID). Most of the chemical compounds included in this group have three actions, but the relative performance of each of them can be different, as well as the incidence of adverse effects. For this reason its clinical use will depend on effectiveness and relative toxicity. When there is fever, NSAID normalizes the action of the thermoregulatory center in the hypothalamus, decreasing production of prostaglandins by inhibiting enzymes cyclooxygenase. But not all are capable of controlling the temperature which increases in adaptative physiological situations, as in heat stroke, intense exercise or by increasing the temperature. The classification is based on chemical characteristics and can be grouped into nine classes: 1) Salicylates, 2) Para-aminophenol derivatives, 3) Derivatives of pyrazolone, 4) Acetic acid derivatives, 5) Derivatives propionic acid, 6) Anthranilic derivatives, 7) Oxicam derivatives, 8) COX-2 inhibitors, 9) Other NSAID. This article describes the indications, mechanism of action, clinical presentation, routes of administration, adverse reactions, contraindications, precautions and drug interactions of the most commonly used (Derivatives of Salicylic Acid, Paracetamol, Metamizole, Ibuprofen, Drantoleno).

  16. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits.

  17. Universal temperature and body-mass scaling of feeding rates

    PubMed Central

    Rall, Björn C.; Brose, Ulrich; Hartvig, Martin; Kalinkat, Gregor; Schwarzmüller, Florian; Vucic-Pestic, Olivera; Petchey, Owen L.

    2012-01-01

    Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure. PMID:23007080

  18. Elevated body temperature enhances the laryngeal chemoreflex in decerebrate piglets.

    PubMed

    Curran, A K; Xia, L; Leiter, J C; Bartlett, D

    2005-03-01

    Hyperthermia and reflex apnea may both contribute to sudden infant death syndrome (SIDS). Therefore, we investigated the effect of increased body temperature on the inhibition of breathing produced by water injected into the larynx, which elicits the laryngeal chemoreflex (LCR). We studied decerebrated, vagotomized, neonatal piglets aged 3-15 days. Blood pressure, end-tidal CO(2), body temperature, and phrenic nerve activity were recorded. To elicit the LCR, we infused 0.1 ml of distilled water through a polyethylene tube passed through the nose and positioned just rostral to the larynx. Three to five LCR trials were performed with the piglet at normal body temperature. The animal's core body temperature was raised by approximately 2.5 degrees C, and three to five LCR trials were performed before the animal was cooled, and three to five LCR trials were repeated. The respiratory inhibition associated with the LCR was substantially prolonged when body temperature was elevated. Thus elevated body temperature may contribute to the pathogenesis of SIDS by increasing the inhibitory effects of the LCR.

  19. Body temperature control in sepsis-induced acute lung injury.

    PubMed

    Wang, Giueng-Chueng; Chi, Wei-Ming; Perng, Wan-Cherng; Huang, Kun-Lun

    2003-12-31

    Body temperature is precisely regulated to maintain homeostasis in homeothermic animals. Although it remains unproved whether change of body temperature constitutes a beneficial or a detrimental component of the septic response, temperature control should be an important entity in septic experiments. We investigated the effect of body temperature control on the lipopolysaccharide (LPS)-induced lung injury. Acute lung injury in rats was induced by intratracheal spray of LPS and body temperature was either clamped at 37 degrees C for 5 hours or not controlled. The severity of lung injury was evaluated at the end of the experiment. Intratracheal administration of aerosolized LPS caused a persistent decline in body temperature and a significant lung injury as indicated by an elevation of protein-concentration and LDH activity in the bronchoalveolar lavage (BAL) fluid and wet/dry weight (W/D) ratio of lungs. Administration of LPS also caused neutrophil sequestration and lipid peroxidation in the lung tissue as indicated by increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) production, respectively. Control of body temperature at 37 degrees C after LPS (LPS/BT37, n = 11) significantly reduced acute lung injury as evidenced by decreases in BAL fluid protein concentration (983 +/- 189 vs. 1403 +/- 155 mg/L) and LDH activity (56 +/- 10 vs. 123 +/- 17 deltamAbs/min) compared with the LPS group (n = 11). Although the W/D ratio of lung and MDA level were lower in the rats received temperature control compared with those received LPS only, the differences were not statistically significant. Our results demonstrated that intratracheal administration of aerosolized LPS induced a hypothermic response and acute lung injury in rats and controlling body temperature at a normal range may alleviate the LPS-induced lung injury.

  20. Brain and body temperature homeostasis during sodium pentobarbital anesthesia with and without body warming in rats.

    PubMed

    Kiyatkin, Eugene A; Brown, P Leon

    2005-03-31

    High-speed, multi-site thermorecording offers the ability to follow the dynamics of heat production and flow in an organism. This approach was used to study brain-body temperature homeostasis during the development of general anesthesia induced by sodium pentobarbital (50 mg/kg, ip) in rats. Animals were chronically implanted with thermocouple probes in two brain areas, the abdominal cavity, and subcutaneously, and temperatures were measured during anesthesia both with and without (control) body warming. In control conditions, temperature in all sites rapidly and strongly decreased (from 36-37 degrees C to 32-33 degrees C, or 3.5-4.5 degrees C below baselines). Relative to body core, brain hypothermia was greater (by 0.3-0.4 degrees C) and skin hypothermia was less (by approximately 0.7 degrees C). If the body was kept warm with a heating pad, brain hypothermia was three-fold weaker ( approximately 1.2 degrees C), but the brain-body difference was significantly augmented (-0.6 degrees C). These results suggest that pentobarbital-induced inhibition of brain metabolic activity is a major factor behind brain hypothermia and global body hypothermia during general anesthesia. These data also indicate that body warming is unable to fully compensate for anesthesia-induced brain hypothermia and enhances the negative brain-body temperature differentials typical of anesthesia. Since temperature strongly affects various underlying parameters of neuronal activity, these findings are important for electrophysiological studies performed in anesthetized animal preparations.

  1. Hemoglobin dynamics in red blood cells: correlation to body temperature.

    PubMed

    Stadler, A M; Digel, I; Artmann, G M; Embs, J P; Zaccai, G; Büldt, G

    2008-12-01

    A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.

  2. Effects of MDMA on body temperature in humans

    PubMed Central

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  3. 21 CFR 26.69 - Monitoring of conformity assessment bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Monitoring of conformity assessment bodies. 26.69... COMMUNITY âFrameworkâ Provisions § 26.69 Monitoring of conformity assessment bodies. The following shall apply with regard to the monitoring of conformity assessment bodies (CAB's) listed in subpart B of...

  4. [Problems in the measurement of human body temperature].

    PubMed

    Shakhov, E K; Mel'nikov, A A; Dolgova, I A

    2008-01-01

    The problems arising in the measurement of human body temperature are discussed. The results of the experimental research are described. The effect of the initial sensor temperature on the results of measurement is explained. It is shown that the thermal or cold irritation of skin when brought in contact with the sensor also has an effect on the measurement results. Recommendations for optimizing the temperature sensor size are given.

  5. Opposite effects of gentle handling on body temperature and body weight in rats.

    PubMed

    Michel, C; Cabanac, M

    1999-10-01

    Opposite effects of gentle handling on body temperature and body weight in rats. PHhe aim of this study was to measure the body weight set point when rats are being handled gently and thus experience emotional rise in body temperature. Wistar male rats were used in this experiment, and each rat was its own control. Body weight set point was estimated from the rat's food hoarding behavior. The set point is the intersection of the regression line for hoarding with the X axis. During hoarding sessions the experimenter handled the rat and took its colonic temperature six to eight times, an action sufficient to arouse emotional fever. On alternate days the rats were not handled. Thus, body weight set point was obtained for each rat without handling and with handling. In sessions with handling, rats raised their body temperature, ate less, and defecated more than in control sessions. When handled, the body weight set point declined from 388 +/- 44 g to 366 +/- 47 g (p = 0.048, t = 2,39). The decline in the set point induced by gentle handling is believed to result from an elevation of the hypothalamic CRH.

  6. Wall temperature control of low-speed body drag

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Ash, R. L.

    1986-01-01

    The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.

  7. Esophageal and rectal temperatures as estimates of core temperature during therapeutic whole-body hypothermia.

    PubMed

    Sarkar, Subrata; Donn, Steven M; Bhagat, Indira; Dechert, Ronald E; Barks, John D

    2013-01-01

    We monitored whole-body cooling concurrently by both esophageal and rectal probes. Esophageal temperature was significantly higher compared with simultaneous rectal temperature during cooling, with a temperature gradient ranging from 0.46 to 1.03°C (median, 0.8°C; IQR, 0.6-0.8°C). During rewarming, this temperature difference disappeared.

  8. The relationship between virtual body ownership and temperature sensitivity

    PubMed Central

    Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel

    2013-01-01

    In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537

  9. Effects of formula temperature on postprandial thermogenesis and body temperature of premature infants.

    PubMed

    Eckburg, J J; Bell, E F; Rios, G R; Wilmoth, P K

    1987-10-01

    To study the effect of formula temperature on the thermogenic response to gavage feeding, we fed formula at room temperature (mean 24.0 degrees C, SD 1.1) and at body temperature (mean 36.9 degrees C, SD 1.7) to premature infants in a crossover design while monitoring their metabolic heat production and gastric, rectal, and skin temperatures. After feeding with room temperature formula, stomach temperature fell by 6.9 degrees C, rectal temperature by 0.2 degree C, and mean skin temperature by 0.6 degree C, and metabolic rate increased by 16% in the first postprandial hour. After body temperature feedings, mean skin temperature fell by 0.2 degree C, but stomach and rectal temperatures did not change appreciably. The metabolic rate rose by 12% in the first hour, which was not significantly less than the rise after room temperature feeding. The heat required to warm the formula to body temperature did not result in a detectably greater rise in metabolic rate after cool feeding than after warm feeding. The effects of feed temperatures below room temperature were not studied, but it remains possible that cooler feedings might produce even greater body cooling and a greater thermogenic response.

  10. Prediction of human core body temperature using non-invasive measurement methods.

    PubMed

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  11. Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage

    PubMed Central

    Rossi, S; Zanier, E; Mauri, I; Columbo, A; Stocchetti, N

    2001-01-01

    OBJECTIVES—To assess the frequency of hyperthermia in a population of acute neurosurgical patients; to assess the relation between brain temperature (ICT) and core temperature (Tc); to investigate the effect of changes in brain temperature on intracranial pressure (ICP).
METHODS—The study involved 20 patients (10 severe head injury, eight subarachnoid haemorrhage, two neoplasms) with median Glasgow coma score (GCS) 6. ICP and ICT were monitored by an intraventricular catheter coupled with a thermistor. Internal Tc was measured in the pulmonary artery by a Swan-Ganz catheter.
RESULTS—Mean ICT was 38.4 (SD 0.8) and mean Tc 38.1 (SD 0.8)°C; 73% of ICT and 57.5% of Tc measurements were ⩾38°C. The mean difference between ICT and Tc was 0.3 (SD 0.3)°C (range −0.7 to 2.3°C) (p=0. 0001). Only in 12% of patients was Tc higher than ICT. The main reason for the differences between ICT and Tc was body core temperature: the difference between ICT and Tc increased significantly with body core temperature and fell significantly when this was lowered. The mean gradient between ICT and Tc was 0.16 (SD 0.31)°C before febrile episodes (ICT being higher than Tc), and 0.41 (SD 0.38)°C at the febrile peak (p<0.05). When changes in temperature were considered, ICT had a profound influence on ICP. Increases in ICT were associated with a significant rise in ICP, from 14.9(SD 7.9) to 22 (SD 10.4) mm Hg (p<0.05). As the fever ebbed there was a significant decrease in ICP, from 17.5 (SD 8.62) to 16 (SD 7.76) mm Hg (p=0.02).
CONCLUSIONS—Fever is extremely frequent during acute cerebral damage and ICT is significantly higher than Tc. Moreover, Tc may underestimate ICT during the phases when temperature has the most impact on the intracranial system because of the close association between increases in ICT and ICP.

 PMID:11561026

  12. Measurement of temperature and emissivity of specularly reflecting glowing bodies

    NASA Technical Reports Server (NTRS)

    Hansen, G. P.; Hauge, R. H.; Margrave, J. L.; Krishnan, S.

    1988-01-01

    A new method of measuring the thermodynamic temperature of an object as well as the surface emissivity based on laser reflectivity has been developed. By using rotator analyzer ellipsometry, the light reflected from the sample at a specific angle of incidence can be analyzed for its ellipticity. The normal incidence reflectivity and emissivity are then extracted using standard relations. The thermodynamic temperature of the body is obtained simultaneously by measuring the intensity of emitted light at the same angle of incidence. Room temperature measurements are carried out on selected metals to test the system. Elevated temperature measurements on platinum foils show that this technique is reliable and accurate for monitoring and measuring the temperature and emissivity of specularly reflecting, glowing bodies.

  13. Effects of color temperature of fluorescent lamps on body temperature regulation in a moderately cold environment.

    PubMed

    Yasukouchi, A; Yasukouchi, Y; Ishibashi, K

    2000-05-01

    A study on the effects of different color temperatures of fluorescent lamps on skin and rectal temperatures in a moderately cold environment involving (i) changes in skin temperature of 7 male subjects exposed to an ambient temperature ranging from 28 degrees C to 18 degrees C (experiment I) and (ii) changes in skin and rectal temperatures and metabolic heat production of 11 male subjects exposed to ambient temperature of 15 degrees C for 90 min (Experiment II) was conducted. In Experiment I, the reduction of mean skin temperature from the control value was significantly greater under 3000 K than under 5000 K or 7500 K lighting. In Experiment II, the reductions in mean skin temperature and rectal temperature were respectively greater and smaller under 3000 K than those under 5000 K or 7500 K lighting. However, metabolic heat production was not affected by color temperature conditions. The relationships between morphological and physiological parameters revealed that no significant relation of rectal temperature to body surface area per unit body weight was found only under 3000 K. Furthermore, while the mean skin temperature was independent on the mean skinfold thickness under 3000 K, a significant negative correlation between the rectal and mean skin temperatures was observed. Therefore, body heat loss might be suppressed effectively by increasing the vasoconstrictor tone under a color temperature of 3000 K, and the body shell was dependent only on morphological factors under 5000 K and 7500 K lighting.

  14. Regulation of body temperature by some Mesozoic marine reptiles.

    PubMed

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  15. [Body temperature and its importance as a vital constant].

    PubMed

    Ruiz, Ma Nelia Soto; García, José Ma; Fernández, Blanca Marín

    2009-09-01

    The authors carried out a theoretical review about body temperature as a decisive vital sign to maintain homeostasis. Emphasis needs be placed on the importance of maintaining a constant temperature within a range of 36.8 degrees C +/- 0.4 degrees C. After a brief review about thermoregulation mechanisms and thermal behavior in living organisms, the authors emphasize human beings' property as a homeo-thermal entity with characteristics which enable him to maintain a relatively constant body temperature in spite of physiological variations which make this temperature fluctuate. Upon evaluation this constant, we distinguish between relative values for superficial and central temperatures, detailing those mechanisms which influence the production or loss of heat that intervene to regulate body temperature by means of physioiogical responses to old and heat. Finally, the authors describe the necessity to maintain boy temperature following Virginia Henderson's fourteen necessities scale, once the factors which could modify it are kno wn in order to comprehend the meaning of measurements and their subsequent interpretation which leads to distinct Nursing diagnoses directed towards achieving independence in resolving this necessity.

  16. Endogenous and exogenous progesterone influence body temperature in dairy cows.

    PubMed

    Suthar, V S; Burfeind, O; Bonk, S; Dhami, A J; Heuwieser, W

    2012-05-01

    Three experiments were conducted to determine the effect of endogenous progesterone (P4) on body temperature comparing lactating, pregnant with lactating, nonpregnant cows, and to study the effect of exogenous P4 administered via a controlled internal drug release (CIDR) insert on body temperature in lactating dairy cows. Body temperature was measured vaginally and rectally using temperature loggers and a digital thermometer, respectively. In experiment 1, 10 cyclic lactating cows (3 primiparous, 7 multiparous) and 10 lactating, pregnant cows (3 primiparous, 7 multiparous) were included. Vaginal temperatures and serum P4 concentrations were greater in pregnant cows (vaginal: 0.3±0.01°C; P4: 5.5±0.4 ng/mL) compared with nonpregnant cows. In experiment 2, estrous cycles of 14 postpartum healthy, cyclic, lactating cows (10 primiparous, 4 multiparous) were synchronized, and cows were assigned randomly to 1 of 2 treatments (CIDR-P4 or CIDR-blank). A temperature logger was inserted 1 d after ovulation using a P4-free CIDR (CIDR-blank) and a CIDR containing 1.38g of P4 (CIDR-P4) in the control (n=7) and the P4-treated group (n=7), respectively. On d 3 after P4 treatment, vaginal temperature was 0.3±0.03°C greater compared with that on d 1 and d 5. In experiment 3, 9 cyclic multiparous lactating cows were enrolled 1±1 d after confirmed ovulation and a temperature logger inserted. Two days later, a CIDR-P4 was inserted on top of the CIDR-blank. On d 5±1 and d 7±1, respectively, the CIDR-P4 and CIDR-blank with the temperature logger were removed. During the CIDR-P4 treatment (48h), vaginal temperature was 0.2±0.05°C and 0.1±0.05°C greater than during the pre- and post-treatment periods (48h), respectively. Serum P4 concentration peaked during CIDR-P4 treatment (2.2±0.8 ng/mL) and was greater than during the pre-treatment period (0.2±0.2 ng/mL) for 48h. An increase in vaginal temperature could be due to endogenous and exogenous P4. However, a correlation between

  17. Atropine-Induced Cutaneous Vasodilation Decreases Body Temperature during Exercise,

    DTIC Science & Technology

    1987-07-01

    during exercise in a cool environment after atropine treatment decreased body temperature and resulted in further suppression of eccrine sweating , thereby...block nsumber) FIEL GRUP SB-GOUP cholinergic blockage, skin blood flow, sweating , temperature regulation, vasodilation * 19. ABSTRACT (Contine on...revese sf neceury and Ilentify by block number) Jil ystemic atropine enhances forearm cutaneous blood flow (FBF) but depresses forearm sweating (Ia5) in

  18. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    PubMed

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  19. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    PubMed

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-03-30

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes.

  20. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    PubMed

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  1. Environmental stressors during space flight: potential effects on body temperature

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  2. Noninvasive measurement system for human respiratory condition and body temperature

    NASA Astrophysics Data System (ADS)

    Toba, Eiji; Sekiguchi, Sadamu; Nishimatsu, Toyonori

    1995-06-01

    A special chromel (C) and alumel wire (A) thermopile has been developed which can measure the human respiratory condition and body temperature without directly contacting a sensor to the human body. The measurement system enables high speed, real time, noninvasive, and simultaneous measurement of respiratory rates and body temperature with the same sensor. The special CA thermopile, with each sensing junction of approximately 25 μm, was constructed by using spot welded thermopile junctions. The thermoelectric power of 17 pairs of special CA thermopile is 0.7 mV/ °C. The special CA thermopile provides high sensitivity and fine frequency characteristics, of which the gain is flat to approximately 10 Hz.

  3. [Core body temperature monitoring using the telemetric pill].

    PubMed

    Rav-Acha, M; Heled, Y; Slypher, N; Moran, D S

    2003-03-01

    Exposure to extreme weather or physical work conditions can lead to dangerous core temperature changes, and to the clinical syndromes accompanying them. Core temperature measurement is the main tool for diagnosing these syndromes. Recent technological advances particularly NASA's telemetry and miniaturizing technologies, have led to the development of a CorTemp Ingestible Temperature Sensor, or "pill". The pill is a small electronic device, which senses the body's temperature and transmits it through a radio wave signal to an external receiver. The advantage of the pill over other temperature measurement devices is that it is a simple device that enables core temperature measurement for many hours without the need of any wire connections or other cumbersome instruments. For this reason, the pill is an ideal tool for core temperature measurements in field locales or for continuous long duration temperature monitoring of ambulatory patients. The following study reviews available literature concerning the use of the pill and the validity of its measurements. A high correlation has been revealed between pill temperature measurements and rectal or esophageal measurements. Pill temperature values usually fall between the high rectal and the low esophageal measurements, considered the gold standard for core temperature measurement. A number of studies emphasizing the advantage of the pill are presented in this review.

  4. Nutritional assessment with body composition measurements

    SciTech Connect

    Shizgal, H.M.

    1987-09-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes.

  5. Warm body temperature facilitates energy efficient cortical action potentials.

    PubMed

    Yu, Yuguo; Hill, Adam P; McCormick, David A

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+) channel inactivation, resulting in a marked reduction in overlap of the inward Na(+), and outward K(+), currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+) entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  6. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    PubMed

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects.

  7. A Microwave Radiometer for Internal Body Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  8. Temperature control of thermal radiation from composite bodies

    NASA Astrophysics Data System (ADS)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  9. Body temperatures in dinosaurs: what can growth curves tell us?

    PubMed

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  10. Body Temperatures in Dinosaurs: What Can Growth Curves Tell Us?

    PubMed Central

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today’s crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal’s core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  11. How photoperiod influences body temperature selection in Lacerta viridis.

    PubMed

    Rismiller, P D; Heldmaier, G

    1988-02-01

    European green lizards, Lacerta viridis, show a distinct annual cycle in their day and nighttime selected body temperature (T b) levels when monitored under natural photoperiod. The amplitude between daily photophase and scotophase temperatures varies throughout the year. Highest body temperatures with smallest day/night variation are selected from May through July. Throughout fall, the difference between day and nighttime selected T b levels increases. Lizards inevitably enter a state of winter dormancy which terminates daily rhythmicity patterns. Under natural photoperiodic conditions, cessation of dormancy occurs spontaneously by mid-March, regardless whether high temperatures are available or not. Lacerta viridis respond to an artificial long photoperiod (16 h light, 8 h dark) at all times of the year with modifications in both diel patterns and levels of selected T b to summer-like conditions. When, however, the natural photoperiod at different phases in the annual cycle is held constant for six to eight weeks, T b selection of Lacerta viridis also remains stable at the level corresponding to the prevailing photoperiod. These results implicate that the photoperiod is a more prominent Zeitgeber for seasonal cueing of temperature selection than has been surmised in the past. Further, we suggest that the large variations recorded in daily T b cycles do not imply that this lizard is an "imprecise" thermoregulator, but rather indicates an important integral process necessary for seasonal acclimatization.

  12. Effect of post-delivery care on neonatal body temperature.

    PubMed

    Johanson, R B; Spencer, S A; Rolfe, P; Jones, P; Malla, D S

    1992-11-01

    A prospective observational study of post-delivery care and neonatal body temperature, carried out at Kathmandu Maternity Hospital, was followed by a randomized controlled intervention study using three simple methods for maintaining body temperature. There were 500 infants in the initial observation study and 300 in the intervention study. In the observation study, 85% (420/495) of infants had temperatures < 36 degrees C at 2 h and nearly 50% (198/405) had temperatures < 36 degrees C at 24 h (14% were < 35 degrees C). Most of the infants who were cold at 24 h had initially become cold at the time of delivery (only seven infants had been both well dried and wrapped). In the intervention study, all infants were dried and wrapped before random assignment to one of the three methods: the "kangaroo" method, the traditional "oil massage" or a "plastic swaddler". All three were found to be equally effective. Overall, 38% (114/298) of the infants had temperatures < 36 degrees C at 2 h and 18% (41/231) at 24 h (when none was < 35 degrees C).

  13. Diamond stabilization of ice multilayers at human body temperature.

    PubMed

    Wissner-Gross, Alexander D; Kaxiras, Efthimios

    2007-08-01

    Diamond is a promising material for wear-resistant medical coatings. Here we report a remarkable increase in the melting point of ice resting on a diamond (111) surface modified with a submonolayer of Na+. Our molecular dynamics simulations show that the interfacial ice bilayer melts at a temperature 130 K higher than in free ice, and relatively thick ice films (2.6 nm at 298 K and 2.2 nm at 310 K ) are stabilized by dipole interactions with the substrate. This unique physical effect may enable biocompatibility-enhancing ice overcoatings for diamond at human body temperature.

  14. 21 CFR 26.70 - Conformity assessment bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Conformity assessment bodies. 26.70 Section 26.70...Frameworkâ Provisions § 26.70 Conformity assessment bodies. Each party recognizes that the conformity... conformity in relation to its requirements as specified in subpart B of this part. The parties shall...

  15. Primate body temperature and sleep responses to lower body positive pressure

    NASA Technical Reports Server (NTRS)

    Edgar, D. M.; Fuller, C. A.

    1984-01-01

    Cephalic fluid shifts, induced by lower body positive pressure (LBPP) are known to influence various physiological systems (i.e., cardiovascular and renal). In earlier experiments, an apparent change in the arousal state of primates in such LBPP conditions was observed. This study was designed to examine the effects of LBPP on arousal state and body temperature level which is normally correlated with sleep. Chair-restrained male squirrel monkeys were exposed to 40 mmHg LBPP for 90-100 minutes between the daytime hours of 13:00-15:00. Each monkey was placed in a specially modified restraint chair to which they were highly trained. Deep body temperature (DBT) was collected from 10 animals. Sleep parameters were obtained from six animals chronically implanted for sleep recording. A video camera was used to observe each animal's apparent state of arousal. LBPP resulted in an approximate 0.9 C decrease in DBT. During video observation, some animals appeared drowsy during LBPP; however, sleep recording revealed no significant changes in the state of arousal. Thus, LBPP is capable of inducing a mild hyperthermia. Further, the mechanisms underlying the observed lowering of body temperature appear to be independent of arousal state.

  16. Prediction of Core Body Temperature from Multiple Variables.

    PubMed

    Richmond, Victoria L; Davey, Sarah; Griggs, Katy; Havenith, George

    2015-11-01

    This paper aims to improve the prediction of rectal temperature (T re) from insulated skin temperature (T is) and micro-climate temperature (T mc) previously reported (Richmond et al., Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing. Physiol Meas 2013; 34:1531-43.) using additional physiological and/or environmental variables, under several clothing and climatic conditions. Twelve male (25.8±5.1 years; 73.6±11.5kg; 178±6cm) and nine female (24.2±5.1 years; 62.4±11.5kg; 169±3cm) volunteers completed six trials, each consisting of two 40-min periods of treadmill walking separated by a 20-min rest, wearing permeable or impermeable clothing, under neutral (25°C, 50%), moderate (35°C, 35%), and hot (40°C, 25%) conditions, with and without solar radiation (600W m(-2)). Participants were measured for heart rate (HR) (Polar, Finland), skin temperature (T s) at 11 sites, T is (Grant, Cambridge, UK), and breathing rate (f) (Hidalgo, Cambridge, UK). T mc and relative humidity were measured within the clothing. T re was monitored as the 'gold standard' measure of T c for industrial or military applications using a 10cm flexible probe (Grant, Cambridge, UK). A stepwise multiple regression analysis was run to determine which of 30 variables (T is, T s at 11 sites, HR, f, T mc, temperature, and humidity inside the clothing front and back, body mass, age, body fat, sex, clothing, Thermal comfort, sensation and perception, and sweat rate) were the strongest on which to base the model. Using a bootstrap methodology to develop the equation, the best model in terms of practicality and validity included T is, T mc, HR, and 'work' (0 = rest; 1 = exercise), predicting T re with a standard error of the estimate of 0.27°C and adjusted r (2) of 0.86. The sensitivity and specificity for predicting individuals who reached 39°C was 97 and 85%, respectively. Insulated skin temperature was the most important individual

  17. Effects of body size and temperature on population growth.

    PubMed

    Savage, Van M; Gilloly, James F; Brown, James H; Charnov, Eric L

    2004-03-01

    For at least 200 years, since the time of Malthus, population growth has been recognized as providing a critical link between the performance of individual organisms and the ecology and evolution of species. We present a theory that shows how the intrinsic rate of exponential population growth, rmax, and the carrying capacity, K, depend on individual metabolic rate and resource supply rate. To do this, we construct equations for the metabolic rates of entire populations by summing over individuals, and then we combine these population-level equations with Malthusian growth. Thus, the theory makes explicit the relationship between rates of resource supply in the environment and rates of production of new biomass and individuals. These individual-level and population-level processes are inextricably linked because metabolism sets both the demand for environmental resources and the resource allocation to survival, growth, and reproduction. We use the theory to make explicit how and why rmax exhibits its characteristic dependence on body size and temperature. Data for aerobic eukaryotes, including algae, protists, insects, zooplankton, fishes, and mammals, support these predicted scalings for rmax. The metabolic flux of energy and materials also dictates that the carrying capacity or equilibrium density of populations should decrease with increasing body size and increasing temperature. Finally, we argue that body mass and body temperature, through their effects on metabolic rate, can explain most of the variation in fecundity and mortality rates. Data for marine fishes in the field support these predictions for instantaneous rates of mortality. This theory links the rates of metabolism and resource use of individuals to life-history attributes and population dynamics for a broad assortment of organisms, from unicellular organisms to mammals.

  18. Is obesity associated with lower body temperatures? Core temperature: a forgotten variable in energy balance.

    PubMed

    Landsberg, Lewis; Young, James B; Leonard, William R; Linsenmeier, Robert A; Turek, Fred W

    2009-06-01

    The global increase in obesity, along with the associated adverse health consequences, has heightened interest in the fundamental causes of excessive weight gain. Attributing obesity to "gluttony and sloth", blaming the obese for overeating and limiting physical activity, oversimplifies a complex problem, since substantial differences in metabolic efficiency between lean and obese have been decisively demonstrated. The underlying physiological basis for these differences have remained poorly understood. The energetic requirements of homeothermy, the maintenance of a constant core temperature in the face of widely divergent external temperatures, accounts for a major portion of daily energy expenditure. Changes in body temperature are associated with significant changes in metabolic rate. These facts raise the interesting possibility that differences in core temperature may play a role in the pathophysiology of obesity. This review explores the hypothesis that lower body temperatures contribute to the enhanced metabolic efficiency of the obese state.

  19. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  20. Temperature Regulation during Upper Body Exercise: Able Bodied and Spinal Cord Injured

    DTIC Science & Technology

    1989-04-01

    REFERENCES 1. Asmussen. E. and M . Nielsen. The regulation of the body temperature during work performed with the arms and with the legs. Acta Physiol. Scand...14:373-382. 1947. 2. Astrand. I. Aerobic work capacity in men and women. Acta Physiol. Scand. 49: (Suppl. 169)64-73, 1960. 3. Attia, M . and P. Engel...9:225-228. 1984. 10. Downey. J.A.. H.P. Chiodi and R.C. Darling. Central temperature regulation in the spinal man. J. AppI. Physiol. 22:91-94. 1967

  1. Evaluation of a rotary laser body scanner for body volume and fat assessment.

    PubMed

    Pepper, M Reese; Freeland-Graves, Jeanne H; Yu, Wurong; Stanforth, Philip R; Xu, Bugao

    2010-07-08

    This paper reports the evaluation tests on the reliability and validity of a 3-dimensional (3D) laser body scanner for estimation of body volume and % fat. Repeated measures of body imaging were performed for reproducibility analysis. Validity of the instrument was assessed by comparison of measures of body volume by imaging to hydrodensitometry, and body fat was compared to hydrodensitometry and dual energy X-ray absorptiometry. Reproducibility analysis showed little difference between within-subjects measurements of volume (ICC ≥ 0.99, p < 0.01). Body volume estimations by laser body scanner and hydrodensitometry were strongly related (r = 0.99, p < 0.01), and agreement was high (ICC = 0.99, p < 0.01). Measurements of % body fat also agreed strongly with each other between methods (ICC = 0.86, p < 0.01), and mean % fat estimates by body imaging did not differ from criterion methods (p > 0.05). These findings indicate that the 3D laser body scanner is a reliable and valid technique for the estimation of body volume. Furthermore, body imaging is an accurate measure of body fat, as compared to dual energy X-ray absorptiometry. This new instrument is promising as a quick, simple to use, and inexpensive method of body composition analysis.

  2. Deep-body temperature changes in rats exposed to chronic centrifugation.

    NASA Technical Reports Server (NTRS)

    Oyama, J.; Platt, W. T.; Holland, V. B.

    1971-01-01

    Deep-body temperature was monitored continuously by implant biotelemetry in unrestrained rats before, during, and after exposure to prolonged and almost continuous centrifugation. Rats subjected to centrifugation for the first time at various G loads ranging up to 2.5 G show a rapid and significant fall in temperature which is sustained below normal levels for periods as long as 3 days. The magnitude of the temperature fall and the recovery time were generally proportional to the G load imposed. The initial fall and recovery of body temperature closely parallels the decrease in food consumption and to a lesser degree the decrease in body mass experienced by centrifuged rats. After exposure to 2 weeks of centrifugation, rats show either no change or only a small transient increase in temperature when decelerated to a lower G level or when returned to normal gravity. Rats repeatedly exposed to centrifugation consistently showed a smaller temperature response compared to the initial exposure. Implant temperature biotelemetry has been found to be a sensitive, reliable, and extremely useful technique for assessing the initial stress of centrifugation and in monitoring the time course of recovery and acclimation of rats to increase as well as*decrease G.

  3. Women gaze behaviour in assessing female bodies: the effects of clothing, body size, own body composition and body satisfaction.

    PubMed

    Cundall, Amelia; Guo, Kun

    2017-01-01

    Often with minimally clothed figures depicting extreme body sizes, previous studies have shown women tend to gaze at evolutionary determinants of attractiveness when viewing female bodies, possibly for self-evaluation purposes, and their gaze distribution is modulated by own body dissatisfaction level. To explore to what extent women's body-viewing gaze behaviour is affected by clothing type, dress size, subjective measurements of regional body satisfaction and objective measurements of own body composition (e.g., chest size, body mass index, waist-to-hip ratio), in this self-paced body attractiveness and body size judgement experiment, we compared healthy, young women's gaze distributions when viewing female bodies in tight and loose clothing of different dress sizes. In contrast to tight clothing, loose clothing biased gaze away from the waist-hip to the leg region, and subsequently led to enhanced body attractiveness ratings and body size underestimation for larger female bodies, indicating the important role of clothing in mediating women's body perception. When viewing preferred female bodies, women's higher satisfaction of a specific body region was associated with an increased gaze towards neighbouring body areas, implying satisfaction might reduce the need for comparison of confident body parts; furthermore undesirable body composition measurements were correlated with a gaze avoidance process if the construct was less changeable (i.e. chest size) but a gaze comparison process if the region was more changeable (i.e. body mass index, dress size). Clearly, own body satisfaction and body composition measurements had an evident impact on women's body-viewing gaze allocation, possibly through different cognitive processes.

  4. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  5. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    PubMed

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV.

  6. Genetic variation of body temperature of Coturnix coturnix in two ambient temperatures.

    PubMed

    Becker, W A; Harrison, P

    1975-05-01

    Coturnix quail were placed in an environmental chamber maintained at 21 degree C. and rectal temperatures taken. The birds were subjected to an abrupt change to 36 degree C. and the temperatures taken hourly for eight hours and at 25, 38 and 72 hours. Females had higher temperatures than males. When birds were moved to 36 degrees C. their temperatures rose rapidly and then dropped to a level higher than when birds were in the 21 degrees C. chamber. The genetic and total variation estimated from the analysis of variance method decreased under this sudden thermal stress condition. Birds kept in 36 degrees C. for three weeks were shifted to 21 degrees C. Their body temperature dropped sharply and then increased to a level lower than that obtained in the 36 degrees C. environment. The genetic variation was essentially zero when shifted to a lower temperature while the total variation increased.

  7. Initial Findings Using an Alternative Assessment of Body Shape Preferences.

    ERIC Educational Resources Information Center

    Ryujin, Donald H.; And Others

    Due to concerns that body shape preferences contribute to eating disorders among women, a new method to assess observer preferences for female body shapes was devised. In prior studies women have preferred thin models, but men have preferred models of average weight. In Experiment 1, an underweight female model was photographed in a white top and…

  8. Computerized assessment of body image in anorexia nervosa and bulimia nervosa: comparison with standardized body image assessment tool.

    PubMed

    Caspi, Asaf; Amiaz, Revital; Davidson, Noa; Czerniak, Efrat; Gur, Eitan; Kiryati, Nahum; Harari, Daniel; Furst, Miriam; Stein, Daniel

    2017-02-01

    Body image disturbances are a prominent feature of eating disorders (EDs). Our aim was to test and evaluate a computerized assessment of body image (CABI), to compare the body image disturbances in different ED types, and to assess the factors affecting body image. The body image of 22 individuals undergoing inpatient treatment with restricting anorexia nervosa (AN-R), 22 with binge/purge AN (AN-B/P), 20 with bulimia nervosa (BN), and 41 healthy controls was assessed using the Contour Drawing Rating Scale (CDRS), the CABI, which simulated the participants' self-image in different levels of weight changes, and the Eating Disorder Inventory-2-Body Dissatisfaction (EDI-2-BD) scale. Severity of depression and anxiety was also assessed. Significant differences were found among the three scales assessing body image, although most of their dimensions differentiated between patients with EDs and controls. Our findings support the use of the CABI in the comparison of body image disturbances in patients with EDs vs.

  9. Effects of Eucommia leaf extracts on autonomic nerves, body temperature, lipolysis, food intake, and body weight.

    PubMed

    Horii, Yuko; Tanida, Mamoru; Shen, Jiao; Hirata, Tetsuya; Kawamura, Naomi; Wada, Atsunori; Nagai, Katsuya

    2010-08-02

    Eucommia ulmoides Oliver leaf extracts (ELE) have been shown to exert a hypolipidemic effect in hamsters. Therefore, it was hypothesized that ELE might affect lipid metabolism via changes in autonomic nerve activities and causes changes in thermogenesis and body weight. We examined this hypothesis, and found that intraduodenal (ID) injection of ELE elevated epididymal white adipose tissue sympathetic nerve activity (WAT-SNA) and interscapular brown adipose tissue sympathetic nerve activity (BAT-SNA) in urethane-anesthetized rats and elevated the plasma concentration of free fatty acids (FFA) (a marker of lipolysis) and body temperature (BT) (a marker of thermogenesis) in conscious rats. Furthermore, it was observed that ID administration of ELE decreased gastric vagal nerve activity (GVNA) in urethane-anesthetized rats, and that ELE given as food reduced food intake, body and abdominal adipose tissue weights and decreased plasma triglyceride level. These findings suggest that ELE stimulates lipolysis and thermogenesis through elevations in WAT-SNA and BAT-SNA, respectively, suppresses appetite by inhibiting the activities of the parasympathetic nerves innervating the gastrointestinal tract, including GVNA, and decreases the amount of abdominal fat and body weight via these changes.

  10. Changes in basal body temperature and simple reaction times during the menstrual cycle.

    PubMed

    Simić, Nataša; Ravlić, Arijana

    2013-01-01

    Previous studies have shown cyclic changes in the activation levels and performance of different tasks throughout the menstrual cycle. The aim of this study was to examine if changes in the reaction time to both light and sound stimuli may be associated with basal body temperature changes and subjective assessments of General and High Activation during the different phases of a menstrual cycle characterized by high (preovulatory and midluteal phase) and low (menstrual and early follicular phase) levels of oestrogen and progesterone. The study included measurements of basal body temperature, simple reaction times to light and sound and self-assessment of General and High Activation during the menstrual, early follicular, late follicular and luteal phase. The sample consisted of 19 female subjects with regular menstrual cycles. The results obtained in this study indicate lower basal body temperature values during phases with low sex hormone levels, while the activation assessments suggest stable levels of both General and High Activation throughout the menstrual cycle. Similar patterns of change have been shown for reaction times in visual and auditory sensory modalities. Reaction times were shorter during phases characterized by high sex hormone levels, while phases with low hormone levels were associated with longer reaction times. From the modified text on correlations in the data analysis section, it is evident that they were calculated from averaged data from all phases of the menstrual cycle. Therefore, they do not reflect intraindividual but rather interindividual variations between the observed variables, and are not related to the hypotheses of this paper.

  11. Energy content of the evening meal alters nocturnal body temperature but not sleep.

    PubMed

    Driver, H S; Shulman, I; Baker, F C; Buffenstein, R

    Meals of varying energy content and episodes of sleep influence body temperature. We compared the effect of an evening meal, varying from high-energy (11.91 +/- 0.86 MJ) to average (5.74 +/- 0.88 MJ) and a 10-h fast (no evening meal), on nocturnal body temperature and sleep. Seven healthy men (20-24 years, mean body mass index of 23.4 +/- 2.6 kg/m2) reported to the laboratory for an evening meal at 2000 h having consumed similar amounts of food before 1300 h. After completing the meal, subjective hunger ratings were assessed, and a venous blood sample taken. The subjects spent 4 nonconsecutive nights (an adaptation night, followed by either of the two meal conditions or the fast in random order) in the sleep laboratory when polysomnographic recordings were made from 2300 to 0700 h. Meal energy content and serum concentrations of insulin, triglyceride, and low-density lipoproteins (LDL) varied significantly. Lower rectal temperatures were measured during the fast than following the meals. Over the 8-h recording period, thermal response indices (TRI) varied with higher body temperatures following the higher energy meal. Similar rectal temperatures were attained by the end of the sleep periods. There were no significant differences in any of the subjective or objective sleep measures. The physiological responses associated with the transient dietary changes of an evening meal or a 10-h fast altered nocturnal body temperature but did not significantly affect sleep of good sleepers when sleep was initiated 2 to 3 h after finishing the meal.

  12. Beef cattle body temperature during climatic stress: a genome-wide association study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle are sold for use in multiple environments that differ greatly in multiple climactic parameters, making the ability to regulate body temperature across multiple environments essential. Collecting phenotypic body temperature measurements is difficult and expensive, thus a genomics approach is ...

  13. Quantitative Assessment of Temperature Sensitivity of the ...

    EPA Pesticide Factsheets

    The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads to achieve water temperature criteria established for the protection of cold water fisheries. The pollutant in this case is thermal load and allocations to reduce the load often involve restoration of stream shading, which reduces the solar input. While many temperature TMDLs have been established, the supporting analyses have generally assumed a stationary climate under which historical data on flow and air temperature can serve as an adequate guide to future conditions. Projected changes in climate over the 21st century contradict this assumption. Air temperature is expected to increase in most parts of the US, accompanied in many areas by seasonal shifts in the timing and amount of precipitation, which in turn will alter stream flow. This study evaluates the implications of climate change for the water temperature TMDL developed for the South Fork Nooksack River in northwest Washington by the Department of Ecology, where multiple water body segments exceed temperature criteria established for the protection of cold water salmonid populations (Ecology, 2016). The purpose of this report is to provide a “companion technical methods manual” as documentation for the draft SFNR tempera

  14. Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus.

    PubMed

    Wu, Mei-Xiu; Zhou, Li-Meng; Zhao, Li-Dan; Zhao, Zhi-Jun; Zheng, Wei-Hong; Liu, Jin-Song

    2015-01-01

    The basal thermogenesis of birds is beginning to be viewed as a highly flexible physiological trait influenced by environmental fluctuations, particularly changes in ambient temperature (Ta). Many birds living in regions with seasonal fluctuations in Ta typically respond to cold by increasing their insulation and adjusting their metabolic rate. To understand these metabolic adaptations, body temperature (Tb), metabolic rate (MR), thermal neutral zone (TNZ) and thermal conductance were measured within a range of temperatures from 5 to 40°C in free-living Hwamei, Garrulax canorus, in both winter and summer. Body mass was 61.2±0.3g in winter and 55.5±1.0g in summer, and mean Tb was 41.6±0.1°C in winter and 42.3±0.1°C in summer. TNZ was between 28.3 and 35.1°C in winter and between 28.7 and 33.2°C in summer. The mean basal metabolic rate (BMR) within TNZ was 203.32±11.81ml O2 h(-1) in winter and 168.99±6.45ml O2 h(-1) in summer. Minimum thermal conductance was 3.73±0.09joulesg(-1)h(-1)°C(-1) in winter and 3.26±0.06joulesg(-1)h(-1)°C(-1) in summer. Birds caught in winter had higher body mass, MR, and more variable TNZ than those in summer. The increased winter BMR indicates improved ability to cope with cold and maintenance of a high Tb. These results show that the Hwamei's metabolism is not constant, but exhibits pronounced seasonal phenotypic flexibility associated with maintenance of a high Tb.

  15. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    PubMed

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P < 0.01). In conclusion, sodium oxybate administration resulted in a partial normalisation of the skin temperature profile, by increasing daytime proximal skin temperature, and by strengthening the known relationship between skin temperature and daytime sleep propensity. These changes seem to be related to the clinical improvement induced by sodium oxybate treatment. A causal relationship is not proven.

  16. Thermal environment assessment reliability using temperature--humidity indices.

    PubMed

    d'Ambrosio Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe

    2011-01-01

    A reliable assessment of the thermal environment should take into account the whole of the six parameters affecting the thermal sensation (air temperature, air velocity, humidity, mean radiant temperature, metabolic rate and thermo-physical properties of clothing). Anyway, the need of a quick evaluation based on few measurements and calculations has leaded to like best temperature-humidity indices instead of rational methods based on the heat balance on the human body. Among these, Canadian Humidex, preliminarily used only for weather forecasts, is becoming more and more widespread for a generalized assessment of both outdoor and indoor thermal environments. This custom arouses great controversies since using an index validated in outdoor conditions does not assure its indoor reliability. Moreover is it really possible to carry out the thermal environment assessment ignoring some of variables involved in the physiological response of the human body? Aiming to give a clear answer to these questions, this paper deals with a comparison between the assessment carried out according to the rational methods suggested by International Standards in force and the Humidex index. This combined analysis under hot stress situations (indoor and outdoor) has been preliminarily carried out; in a second phase the study deals with the indoor comfort prediction. Obtained results show that Humidex index very often leads to the underestimation of the workplace dangerousness and a poor reliability of comfort prediction when it is used in indoor situations.

  17. Type I collagen is thermally unstable at body temperature.

    PubMed

    Leikina, E; Mertts, M V; Kuznetsova, N; Leikin, S

    2002-02-05

    Measured by ultra-slow scanning calorimetry and isothermal circular dichroism, human lung collagen monomers denature at 37 degrees C within a couple of days. Their unfolding rate decreases exponentially at lower temperature, but complete unfolding is observed even below 36 degrees C. Refolding of full-length, native collagen triple helices does occur, but only below 30 degrees C. Thus, contrary to the widely held belief, the energetically preferred conformation of the main protein of bone and skin in physiological solution is a random coil rather than a triple helix. These observations suggest that once secreted from cells collagen helices would begin to unfold. We argue that initial microunfolding of their least stable domains would trigger self-assembly of fibers where the helices are protected from complete unfolding. Our data support an earlier hypothesis that in fibers collagen helices may melt and refold locally when needed, giving fibers their strength and elasticity. Apparently, Nature adjusts collagen hydroxyproline content to ensure that the melting temperature of triple helical monomers is several degrees below rather than above body temperature.

  18. Sex, season, and time of day interact to affect body temperatures of the Giant Gartersnake

    USGS Publications Warehouse

    Wylie, G.D.; Casazza, M.L.; Halstead, B.J.; Gregory, C.J.

    2009-01-01

    1.We examined multiple hypotheses regarding differences in body temperatures of the Giant Gartersnake using temperature-sensitive radio telemetry and an information-theoretic analytical approach.2.Giant Gartersnakes selected body temperatures near 30 ??C, and males and females had similar body temperatures most of the year, except during the midsummer gestation period.3.Seasonal differences in the body temperatures of males and females may relate to both the costs associated with thermoregulatory behavior, such as predation, and the benefits associated with maintaining optimal body temperatures, such as successful incubation.

  19. Suitability of temperature-sensitive transponders to measure body temperature during animal experiments required for regulatory tests.

    PubMed

    Hartinger, Joachim; Külbs, Daniela; Volkers, Peter; Cussler, Klaus

    2003-01-01

    Body temperature is a clinical parameter in vaccine quality control to detect systemic side-effects or to monitor progression of infectious diseases. Moreover, changes in body temperature are used as clinical parameters to define humane endpoints in animal experiments. However, measuring body temperature via the rectal route can be troublesome and distressing to the animal. Non-invasive measurement methods were developed in recent years. The aim of this investigation was to study and to compare rectally measured body temperature with data obtained with implanted temperature-sensitive transponders (TST) in mice, guinea pigs, rabbits and pigs under the controlled conditions of regulatory testing.

  20. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines.

    PubMed

    White, Matthew D; Bosio, Catharine M; Duplantis, Barry N; Nano, Francis E

    2011-09-01

    Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines.

  1. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines

    PubMed Central

    White, Matthew D.; Bosio, Catharine M.; Duplantis, Barry N.

    2012-01-01

    Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines. PMID:21626408

  2. Development and Validation of the Body Size Scale for Assessing Body Weight Perception in African Populations

    PubMed Central

    Cohen, Emmanuel; Bernard, Jonathan Y.; Ponty, Amandine; Ndao, Amadou; Amougou, Norbert; Saïd-Mohamed, Rihlat; Pasquet, Patrick

    2015-01-01

    Background The social valorisation of overweight in African populations could promote high-risk eating behaviours and therefore become a risk factor of obesity. However, existing scales to assess body image are usually not accurate enough to allow comparative studies of body weight perception in different African populations. This study aimed to develop and validate the Body Size Scale (BSS) to estimate African body weight perception. Methods Anthropometric measures of 80 Cameroonians and 81 Senegalese were used to evaluate three criteria of adiposity: body mass index (BMI), overall percentage of fat, and endomorphy (fat component of the somatotype). To develop the BSS, the participants were photographed in full face and profile positions. Models were selected for their representativeness of the wide variability in adiposity with a progressive increase along the scale. Then, for the validation protocol, participants self-administered the BSS to assess self-perceived current body size (CBS), desired body size (DBS) and provide a “body self-satisfaction index.” This protocol included construct validity, test-retest reliability and convergent validity and was carried out with three independent samples of respectively 201, 103 and 1115 Cameroonians. Results The BSS comprises two sex-specific scales of photos of 9 models each, and ordered by increasing adiposity. Most participants were able to correctly order the BSS by increasing adiposity, using three different words to define body size. Test-retest reliability was consistent in estimating CBS, DBS and the “body self-satisfaction index.” The CBS was highly correlated to the objective BMI, and two different indexes assessed with the BSS were consistent with declarations obtained in interviews. Conclusion The BSS is the first scale with photos of real African models taken in both full face and profile and representing a wide and representative variability in adiposity. The validation protocol proved its

  3. Effect of body temperature on cold induced vasodilation.

    PubMed

    Flouris, Andreas D; Westwood, David A; Mekjavic, Igor B; Cheung, Stephen S

    2008-10-01

    Cold-induced vasodilation (CIVD) is an acute increase in peripheral blood flow observed during cold exposures. It is hypothesized to protect against cold injuries, yet despite continuous research it remains an unexplained phenomenon. Contrary to the traditionally held view, we propose that CIVD is a thermoregulatory reflex mechanism contributing to heat loss. Ten adults (4 females; 23.8 +/- 2.0 years) randomly underwent three 130-min exposures to -20 degrees C incorporating a 10-min moderate exercise period at the 65th min, while wearing a liquid conditioning garment (LCG) and military arctic clothing. In the pre-warming condition, rectal temperature was increased by 0.5 degrees C via the LCG before the cold exposure. In the warming condition, participants regulated the LCG throughout the cold exposure to subjective comfort. In the control condition, the LCG was worn but was not operated either before or during the cold exposure. Results demonstrated that the majority of CIVD occurred during the warming condition when the thermometrically-estimated mean body temperature (T (b)) was at its highest. A thermoregulatory pattern was identified whereby CIVD occurred soon after T (b) increased past a threshold (approximately 36.65 degrees C in warming and pre-warming; approximately 36.4 degrees C in control). When CIVD occurred, T (b) was reduced and CIVD ceased when T (b) fell below the threshold. These findings were independent of extremity temperature since CIVD episodes occurred at a large range of finger temperatures (7.2-33.5 degrees C). These observations were statistically confirmed by auto-regressive integrated moving average analysis (t = 9.602, P < 0.001). We conclude that CIVD is triggered by increased T (b) supporting the hypothesis that CIVD is a thermoregulatory mechanism contributing to heat loss.

  4. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature.

    PubMed

    Lee, C N; Gebremedhin, K G; Parkhurst, A; Hillman, P E

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  5. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature

    NASA Astrophysics Data System (ADS)

    Lee, C. N.; Gebremedhin, K. G.; Parkhurst, A.; Hillman, P. E.

    2015-09-01

    There has been increasing interest to measure core-body temperature in cattle using internal probes. This study examined the placement of HOBO water temperature probe with an anchor, referred to as the "sensor pack" (Hillman et al. Appl Eng Agric ASAE 25(2):291-296, 2009) in the vagina of multiparous Holstein cows under grazing conditions. Two types of anchors were used: (a) long "fingers" (4.5-6 cm), and (b) short "fingers" (3.5 cm). The long-finger anchors stayed in one position while the short-finger anchors were not stable in one position (rotate) within the vagina canal and in some cases came out. Vaginal temperatures were recorded every minute and the data collected were then analyzed using exponential mixed model regression for non-linear data. The results showed that the core-body temperatures for the short-finger anchors were lower than the long-finger anchors. This implied that the placement of the temperature sensor within the vagina cavity may affect the data collected.

  6. Body composition assessment in horses using bioimpedance spectroscopy.

    PubMed

    Ward, L C; White, K J; van der Aa Kuhle, K; Cawdell-Smith, J; Bryden, W L

    2016-02-01

    Assessment of equine body composition using objective measurements is difficult owing to the large size of the animals and the costs involved. Bioelectrical impedance spectroscopy (BIS), a technique widely used for the assessment of body composition in humans, was investigated for practicality of use in horses. BIS uses algorithms that require values for the apparent resistivities of body fluids and body proportion factors (Kb), currently not available for horses. Aims of the present study were to derive resistivity coefficients and body proportion factors and to validate their use for prediction of body composition horses. Validation of coefficients and predictive power using a split-sample agreement study design using correlation and limits of agreement analysis. Whole body impedance measurements were performed on 35 standardbred horses, yearlings to 14 yr, concurrently with determination of total body water volume (TBW) by deuterium dilution and extracellular water volume (ECW) by bromide dilution. Kb was determined in an independent group of 38 mixed-breed, age, and sex horses. Mean apparent resistivity coefficients were 511.4 and 1415.9 ohm.cm for intracellular water and TBW, respectively. Mean Kb was 1.52 ± 0.1. Using these coefficients, TBW and fat-free mass could be predicted with limits of agreement (2SD) of ± 11.6%; mean fat-free mass and fat mass were under- and overestimated by 3.1% and 14.1%, respectively, compared to measured reference values although these differences were not statistically significant. BIS is a practical technique for the assessment of body composition in equids, but the relatively wide limits of agreement, particularly for fat mass, may limit its usefulness for predicting body composition in individual horses.

  7. 17 degrees Celsius body temperature--resuscitation successful?

    PubMed

    Hungerer, Sven; Ebenhoch, Michael; Bühren, Volker

    2010-01-01

    The resuscitation of patients with accidental profound hypothermia is challenging. A 17-year-old man got lost on the first of January, after a New Year's Eve party in the foothills of the Alps. After a search of four hours, he was found unconscious with fixed pupils, a Glasgow Coma Scale of three points, and a body temperature below 20° Celsius. There were no signs for traumatic injuries. Initial electrocardiogram (ECG) showed no heart activity. Basic life support was begun by the mountain rescue service and continued by the medical helicopter team. The patient was transferred under continuous cardiac massage, airway management with intubation and intravenous line via external jugular vein by helicopter to the nearest hospital for analysis of serum potassium. Body temperature was 17°C measured by urinary bladder electronic thermometer. The serum potassium was 7.55 mmol/L, therefore the patient was transferred by helicopter to the next cardiovascular center for rewarming with extracorporal circulation (ECC). Under the rewarming process with ECC, the heart activity restarted at 25°C with external defibrillation. The patient was rewarmed to 37.2°C after four hours of ECC. Cerebral CT scans after 24 h and 48 h revealed no significant hypoxia and after extubation the early rehabilitation process started. After six weeks, the patient regained the ability to walk and started to communicate on a basic level. After 54 days the patient presented signs of septic shock. After initial stabilization and CT diagnostic, a laparotomy was performed. The intraoperative finding was a total necrosis of the small bowel and colon. The patient died on the same day. Post mortem examination showed a necrotizing enterocolitis with transmural necrosis of the bowel. Survivors of uncontrolled profound hypothermia below 20°C core temperature are rare. The epicrisis is often prolonged by complications of different causes. The present case reports a necrotizing enterocolitis with a non

  8. Effects of body temperature during exercise training on myocardial adaptations.

    PubMed

    Harris, M B; Starnes, J W

    2001-05-01

    This study determined the role of body temperature during chronic exercise on myocardial stress proteins and antioxidant enzymes as well as functional recovery after an ischemic insult. Male Sprague-Dawley rats were exercised for 3, 6, or 9 wk in a 23 degrees C room (3WK, 6WK, and 9WK, respectively) or in a 4-8 degrees C environment with wetted fur (3WKC, 6WKC, and 9WKC, respectively). The colder room prevented elevations in core temperature. During weeks 3-9 the animals ran 5 days/wk up a 6% grade at 20 m/min for 60 min. Myocardial heat shock protein 70 (HSP 70) increased 12.3-fold (P < 0.05) in 9WK versus sedentary (SED) rats but was unchanged in the cold-room runners. Compared with SED rats, alphaB-crystallin was 90% higher in 9WKC animals, HSP 90 was 50% higher in 3WKC and 6WKC animals, and catalase was 23% higher in 3WK animals (P < 0.05 for all). Cytosolic superoxide dismutase increased and mitochondrial SOD decreased (P < 0.05) in 3WK and 6WK rats compared with 3WKC and 6WKC rats. Antioxidant enzymes returned to SED values in all runners by 9 wk. No differences were observed among any of the groups for glucose-regulated protein 75, heme oxygenase-1, or glutathione peroxidase. Mechanical recovery of isolated working hearts after 22.5 min of global ischemia was enhanced in 9WK (P < 0.05) but not in 9WKC rats. We conclude that exercise training results in dynamic changes in cardioprotective proteins over time which are influenced by core temperature. In addition, cardioprotection resulting from chronic exercise appears to be due to increased HSP 70.

  9. [Measuring body temperature in dairy cows--applications and influencing factors].

    PubMed

    Burfeind, O; Suthar, V; Heuwieser, W

    2013-01-01

    Measuring body temperature plays an integral role in early puerperal cow monitoring programs. Furthermore, body temperature is part of the definition of puerperal metritis. Antibiotic treatment decisions are based on body temperature in several international publications on intervention strategies widely adopted in the modern dairy industry. The objective of this article is to provide a brief overview of the most recent publications on this important criterion. Several factors can influence the measurement of the body temperature (type of thermometer, insertion depth, skills of the investigator) as well as the cow's body temperature (days in milk, parity, time of the day, climate at calving). Furthermore, the occurrence of increased body temperature in healthy cows was demonstrated independently by several investigations. In ambiguous cases (e.g. raised body temperature as the only symptom) results should be interpreted with caution.

  10. [Measurement Error Analysis and Calibration Technique of NTC - Based Body Temperature Sensor].

    PubMed

    Deng, Chi; Hu, Wei; Diao, Shengxi; Lin, Fujiang; Qian, Dahong

    2015-11-01

    A NTC thermistor-based wearable body temperature sensor was designed. This paper described the design principles and realization method of the NTC-based body temperature sensor. In this paper the temperature measurement error sources of the body temperature sensor were analyzed in detail. The automatic measurement and calibration method of ADC error was given. The results showed that the measurement accuracy of calibrated body temperature sensor is better than ± 0.04 degrees C. The temperature sensor has high accuracy, small size and low power consumption advantages.

  11. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  12. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  13. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback.

    PubMed

    Ramler, D; Mitteroecker, P; Shama, L N S; Wegner, K M; Ahnelt, H

    2014-03-01

    Theoretical models predict that nonlinear environmental effects on the phenotype also affect developmental canalization, which in turn can influence the tempo and course of organismal evolution. Here, we used an oceanic population of threespine stickleback (Gasterosteus aculeatus) to investigate temperature-induced phenotypic plasticity of body size and shape using a paternal half-sibling, split-clutch experimental design and rearing offspring under three different temperature regimes (13, 17 and 21 °C). Body size and shape of 466 stickleback individuals were assessed by a set of 53 landmarks and analysed using geometric morphometric methods. At approximately 100 days, individuals differed significantly in both size and shape across the temperature groups. However, the temperature-induced differences between 13 and 17 °C (mainly comprising relative head and eye size) deviated considerably from those between 17 and 21 °C (involving the relative size of the ectocoracoid, the operculum and the ventral process of the pelvic girdle). Body size was largest at 17 °C. For both size and shape, phenotypic variance was significantly smaller at 17 °C than at 13 and 21 °C, indicating that development is most stable at the intermediate temperature matching the conditions encountered in the wild. Higher additive genetic variance at 13 and 21 °C indicates that the plastic response to temperature had a heritable basis. Understanding nonlinear effects of temperature on development and the underlying genetics are important for modelling evolution and for predicting outcomes of global warming, which can lead not only to shifts in average morphology but also to destabilization of development.

  14. Body temperature - a marker of infarct size in the era of early reperfusion.

    PubMed

    Ben-Dor, Itsik; Haim, Moti; Rechavia, Eldad; Murininkas, Daniel; Nahon, Merav; Harell, Daniella; Porter, Avital; Iakobishvili, Zaza; Scapa, Erez; Battler, Alexander; Hasdai, David

    2005-01-01

    We measured body temperature in 40 consecutive patients treated for a first ST elevation acute myocardial infarction (AMI) with primary percutaneous coronary interventions. Left ventricular function was assessed by echocardiography, and blood samples were drawn for highly sensitive C-reactive protein (hs-CRP), white blood cell (WBC) count, fibrinogen, creatine kinase (CK), and cardiac troponin I levels (cTnI). The median (25th, 75th quartiles) peak 24-hour temperature was 37.4 degrees C (36.9 degrees C, 37.6 degrees C). Variables significantly associated with peak 24-hour temperature were CK (p = 0.01, r = 0.42), wall motion index (p = 0.01, r = 0.41), hs-CRP (p = 0.01, r = 0.41), and cTnI (p = 0.03, r = 0.35). There was no significant correlation between peak 24-hour temperature and WBC count (p = 0.39, r = 0.14) and fibrinogen (p = 0.12, r = 0.21). Thus, peak 24-hour body temperature after ST elevation AMI probably reflects infarct size rather than a nonspecific inflammatory response.

  15. [The reaction of human surface and inside body temperature to extreme hypothermia].

    PubMed

    Panchenko, O A; Onishchenko, V O; Liakh, Iu Ie

    2011-01-01

    The dynamics of changes in the parameters of the surface and core body temperature under the systematic impact of ultra-low temperature is described in this article. As a source of ultra-low temperature was used (Cryo Therapy Chamber) Zimmer Medizin Systeme firm Zimmer Electromedizin (Germany) (-110 degrees C). Surface and internal body temperature was measured by infrared thermometer immediately before visiting cryochamber and immediately after exiting. In the study conducted 47,464 measurements of body temperature. It was established that the internal temperature of the human body under the influence of ultra-low temperatures in the proposed mode of exposure remains constant, and the surface temperature of the body reduces by an average of 11.57 degrees C. The time frame stabilization of adaptive processes of thermoregulation under the systematic impact of ultra-low temperature was defined in the study.

  16. Body temperature in captive long-beaked echidnas (Zaglossus bartoni).

    PubMed

    Grigg, Gordon C; Beard, Lyn A; Barnes, Julie A; Perry, Larry I; Fry, Gary J; Hawkins, Margaret

    2003-12-01

    The routine occurrence of both short-term (daily) and long-term torpor (hibernation) in short-beaked echidnas, but not platypus, raises questions about the third monotreme genus, New Guinea's Zaglossus. We measured body temperatures (T(b)) with implanted data loggers over three and a half years in two captive Zaglossus bartoni at Taronga Zoo, Sydney. The modal T(b) of both long-beaks was 31 degrees C, similar to non-hibernating short-beaked echidnas, Tachyglossus aculeatus, in the wild (30-32 degrees C) and to platypus (32 degrees C), suggesting that this is characteristic of normothermic monotremes. T(b) cycled daily, usually over 2-4 degrees C. There were some departures from this pattern to suggest periods of inactivity but nothing to indicate the occurrence of long-term torpor. In contrast, two short-beaked echidnas monitored concurrently in the same pen showed extended periods of low T(b) in the cooler months (hibernation) and short periods of torpor at any time of the year, as they do in the wild. Whether torpor or hibernation occurs in Zaglossus in the wild or in juveniles remains unknown. However, given that the environment in this study was conducive to hibernation in short-beaks, which do not easily enter torpor in captivity, and their large size, we think that torpor in wild adult Zaglossus is unlikely.

  17. [Central regulation of body temperature by RANKL/RANK pathway].

    PubMed

    Hanada, Reiko; Penninger, Josef M

    2011-08-01

    Receptor-activator of NF-κB ligand (RANKL) and its specific receptor RANK are key regulators of bone remodeling, lymph node formation, establishment of the thymic microenviroment, mammary gland development during pregnancy, bone metastasis in cancer and sex-hormone, progestin, -driven breast cancer. RANKL and RANK are also expressed in the central nervous systems (CNS) especially existed in the main region of thermoregulation. Central RANKL injection to the rodents induces fever via PGE(2)/EP3R pathway. This pathway is related with inflammation related fever. On the other hand, female mice with RANK gene deletion in neuron and astrocytes show increased their basal body temperature at the dark phase, which suggests RANKL/RANK system also regulates physiological thremoregulation in female. Not only in rodents but also in human, two children with a homozygous RANK mutation exhibit an abrogated fever response in pneumonia compare with the age-matched children with pneumonia. Thus, the central RANKL/RANK pathway has an important role for thermoregulation.

  18. Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus.

    PubMed

    Secor, Stephen M; Faulkner, Angela C

    2002-01-01

    Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.

  19. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    PubMed

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  20. Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes).

    PubMed

    Glanville, Elsa J; Seebacher, Frank

    2010-03-01

    Small mammals that remain active throughout the year at a constant body temperature have a much greater energy and food requirement in winter. Lower body temperatures in winter may offset the increased energetic cost of remaining active in the cold, if cellular metabolism is not constrained by a negative thermodynamic effect. We aimed to determine whether variable body temperatures can be advantageous for small endotherms by testing the hypothesis that body temperature fluctuates seasonally in a wild rat (Rattus fuscipes); conferring an energy saving and reducing food requirements during resource restricted winter. Additionally we tested whether changes in body temperature affected tissue specific metabolic capacity. Winter acclimatized rats had significantly lower body temperatures and thicker fur than summer acclimatized rats. Mitochondrial oxygen consumption and the activity of enzymes that control oxidative (citrate synthase, cytochrome c-oxidase) and anaerobic (lactate dehydrogenase) metabolism were elevated in winter and were not negatively affected by the lower body temperature. Energy transfer modeling showed that lower body temperatures in winter combined with increased fur thickness to confer a 25 kJ day(-1) energy saving, with up to 50% owing to reduced body temperature alone. We show that phenotypic plasticity at multiple levels of organization is an important component of the response of a small endotherm to winter. Mitochondrial function compensates for lower winter body temperatures, buffering metabolic heat production capacity.

  1. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales.

    PubMed

    Gilman, Sarah E; Wethey, David S; Helmuth, Brian

    2006-06-20

    Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.

  2. TRIAGE DOSE ASSESSMENT FOR PARTIAL-BODY EXPOSURE: DICENTRIC ANALYSIS

    PubMed Central

    Moroni, Maria; Pellmar, Terry C.

    2009-01-01

    Partial-body biodosimetry is likely to be required after a radiological or nuclear exposure. Clinical signs and symptoms, distribution of dicentrics in circulating blood cells, organ-specific biomarkers, physical signals in teeth and nails all can provide indications of non-homogeneous exposures. Organ specific biomarkers may provide early warning regarding physiological systems at risk after radiation injury. Use of a combination of markers and symptoms will be needed for clinical insights for therapeutic approaches. Analysis of dicentrics, a marker specific for radiation injury, is the “Gold standard” of biodosimetry and can reveal partial-body exposures. Automation of sample processing for dicentric analysis can increase throughput with customization of off-the-shelf technologies for cytogenetic sample processing and information management. Automated analysis of the metaphase spreads is currently limited but improvements are in development. Our efforts bridge the technological gaps to allow the use of dicentric chromosome assay (DCA) for risk-based stratification of mass casualties. This article summarizes current knowledge on partial-body cytogenetic dose assessment synthesizing information leading to the proposal of an approach to triage dose prediction in radiation mass casualties, based on equivalent whole-body doses under partial-body exposure conditions and assesses the validity of using this model. An initial screening using only 20 metaphase spreads per subject can confirm irradiation above 2-Gy. A subsequent increase to 50 metaphases improves dose determination to allow risk stratification for clinical triage. Metaphases evaluated for inhomogeneous distribution of dicentrics can reveal partial-body exposures. We tested the validity of this approach in an in vitro model that simulates partial-body irradiation by mixing irradiated and un-irradiated lymphocytes in various proportions. Our preliminary results support the notion that this approach will

  3. Validation of an interpretation bias assessment for body dissatisfaction.

    PubMed

    Martinelli, Mary K; Holzinger, Jayne B; Chasson, Gregory S

    2014-09-01

    Currently, research on interpretation bias and body dissatisfaction is limited. The few experimental paradigms that have been used to explore this phenomenon utilized a method that may not accurately capture the nature of interpretation bias as explained by cognitive theory. The present study investigated the reliability and validity of a novel computerized assessment of interpretation bias (WSAP) for body dissatisfaction, which may more accurately reflect the cognitive processing involved in such bias by implementing the Word Sentence Association Paradigm (WSAP), a previously established method of measuring interpretation bias in other clinical populations. Undergraduate females (n=214) completed the WSAP and other measures. Results indicate initial support for the WSAP as a valid, reliable measure of interpretation bias for body dissatisfaction. Although preliminary, this study contributes to the minimal research in this area and serves as the first psychometric investigation of the WSAP to measure such interpretation bias for body dissatisfaction.

  4. 21 CFR 26.69 - Monitoring of conformity assessment bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Monitoring of conformity assessment bodies. 26.69 Section 26.69 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN...

  5. 21 CFR 26.69 - Monitoring of conformity assessment bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Monitoring of conformity assessment bodies. 26.69 Section 26.69 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN...

  6. 21 CFR 26.70 - Conformity assessment bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Conformity assessment bodies. 26.70 Section 26.70 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT REPORTS, AND CERTAIN MEDICAL DEVICE...

  7. 21 CFR 26.70 - Conformity assessment bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Conformity assessment bodies. 26.70 Section 26.70 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT...

  8. 21 CFR 26.70 - Conformity assessment bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Conformity assessment bodies. 26.70 Section 26.70 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT...

  9. 21 CFR 26.69 - Monitoring of conformity assessment bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Monitoring of conformity assessment bodies. 26.69 Section 26.69 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY...

  10. 21 CFR 26.69 - Monitoring of conformity assessment bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Monitoring of conformity assessment bodies. 26.69 Section 26.69 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY...

  11. 21 CFR 26.70 - Conformity assessment bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Conformity assessment bodies. 26.70 Section 26.70 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL MUTUAL RECOGNITION OF PHARMACEUTICAL GOOD MANUFACTURING PRACTICE REPORTS, MEDICAL DEVICE QUALITY SYSTEM AUDIT...

  12. Effects of peripheral cold application on core body temperature and haemodynamic parameters in febrile patients.

    PubMed

    Asgar Pour, Hossein; Yavuz, Meryem

    2014-04-01

    This study designed to assess the effects of peripheral cold application (PCA) on core body temperature and haemodynamic parameters in febrile patients. This study was an experimental, repeated-measures performed in the neurosurgical intensive-care unit. The research sample included all patients with fever in postoperative period. PCA was performed for 20 min. During fever, systolic blood pressure, mean arterial blood pressure and arterial oxygen saturation (O2 Sat) decreased by 5.07 ± 7.89 mm Hg, 0.191 ± 6.00 mm Hg and 0.742% ± 0.97%, respectively, whereas the pulse rate and diastolic blood pressure increased by 8.528 ± 4.42 beats/ min and 1.842 ± 6.9 mmHg, respectively. Immediately after PCA, core body temperature and pulse rate decreased by 0.3°C, 3.3 beats/min, respectively, whereas systolic, diastolic, mean arterial blood pressure and O2 Sat increased by, 1.40 mm Hg, 1.87 mm Hg, 0.98 mmHg and 0.27%, respectively. Thirty minutes after the end of PCA, core body temperature, diastolic, mean arterial blood pressure and pulse rate decreased by 0.57°C, 0.34 mm Hg, 0.60 mm Hg and 4.5 beats/min, respectively, whereas systolic blood pressure and O2 Sat increased by 0.98 mm Hg and 0.04%, respectively. The present results showed that PCA increases systolic, diastolic, mean arterial blood pressure and O2 Sat, and decreases core body temperature and pulse rate.

  13. Limitations of forehead infrared body temperature detection for fever screening for severe acute respiratory syndrome.

    PubMed

    Liu, Chuan-Chuan; Chang, Ray-E; Chang, Wen-Cheng

    2004-12-01

    We investigated alternative measurement methodology for infrared body thermometry to increase accuracy for outdoor fever screening during the 2003 SARS epidemic. Our results indicate that the auditory meatus temperature is a superior alternative compared with the forehead body surface temperature due to its close approximation to the tympanic temperature.

  14. Procedure of rectal temperature measurement affects brain, muscle, skin, and body temperatures and modulates the effects of intravenous cocaine.

    PubMed

    Bae, David D; Brown, P Leon; Kiyatkin, Eugene A

    2007-06-18

    Rectal probe thermometry is commonly used to measure body core temperature in rodents because of its ease of use. Although previous studies suggest that rectal measurement is stressful and results in long-lasting elevations in body temperatures, we evaluated how this procedure affects brain, muscle, skin, and core temperatures measured with chronically implanted thermocouple electrodes in rats. Our data suggest that the procedure of rectal measurement results in powerful locomotor activation, rapid and strong increases in brain, muscle, and deep body temperatures, as well as a biphasic, down-up fluctuation in skin temperature, matching the response pattern observed during tail-pinch, a representative stressful procedure. This response, moreover, did not habituate after repeated day-to-day testing. Repeated rectal probe insertions also modified temperature responses induced by intravenous cocaine. Under quiet resting conditions, cocaine moderately increased brain, muscle, and deep body temperatures. However, during repeated rectal measurements, which increased temperatures, cocaine induced both hyperthermic and hypothermic responses. Direct comparisons revealed that body temperatures measured by a rectal probe are typically lower (approximately 0.6 degrees C) and more variable than body temperatures recorded by chronically implanted electrodes; the difference is smaller at low and greater at high basal temperatures. Because of this difference and temperature increases induced by the rectal probe per se, cocaine had no significant effect on rectal temperatures compared to control animals exposed to repeated rectal probes. Therefore, although rectal temperature measurements provide a decent correlation with directly measured deep body temperatures, the arousing influence of this procedure may drastically modulate the effects of other arousing stimuli and drugs.

  15. The effect of stress on core and peripheral body temperature in humans.

    PubMed

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  16. High-temperature flaw assessment procedure

    SciTech Connect

    Ruggles, M.B. ); Takahashi, Y. ); Ainsworth, R.A. )

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs.

  17. Article comprising a garment or other textile structure for use in controlling body temperature

    DOEpatents

    Butzer, Melissa J.

    2000-01-01

    There is disclosed an article for use in cooling body temperature which comprises a garment having a coat and pant, with each having a body section adapted to receive a portion of the torso of the wearer and extensions from the body section to receive the wearer's limbs. The garment includes a system for circulating temperature controlling fluid from a suitable source through patches removably received in pockets in each of body section and extensions.

  18. In utero heat stress increases postnatal core body temperature in pigs.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Seibert, J T; Ross, J W; Lucy, M C; Safranski, T J; Elsasser, T H; Kahl, S; Rhoads, R P; Baumgard, L H

    2015-09-01

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.

  19. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    PubMed Central

    Filipe, Laura N.S.

    2014-01-01

    Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate. PMID:25392761

  20. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.

    PubMed

    Borniger, Jeremy C; Maurya, Santosh K; Periasamy, Muthu; Nelson, Randy J

    2014-10-01

    The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the metabolic effects of short-term (<2 weeks) exposure to DLAN are unspecified. We hypothesized that metabolic alterations would arise in response to just 2 weeks of DLAN. Specifically, we predicted that mice exposed to dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to "internal desynchrony" between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.

  1. Influence of exposure to a prolonged hyperdynamic field on body temperature in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The effect of gravitational loading on the regulation of body temperature is examined. Five adult male squirrel monkeys were exposed to a 2-G environment twice for 48 hours, once beginning in the middle of their light cycle and the second time in the middle of their dark cycle. It is observed that a reduction in body temperature occurs during the light cycle phase and at night there is an insignificant change in body temperature. The rhythmic characteristics of the light and dark cycles are analyzed. The data reveal that the body temperature in animals at 2 G is influenced more during the active phase of the animals 24-hour cycle.

  2. [The temperature and temperature gradient distribution in the thermophysical model of the rabbit body subjected internal and external changes of temperature].

    PubMed

    Rumiantsev, G V

    2002-03-01

    In a laboratory heat-physical model of the rabbit reflecting basic heat-physical parameters of animal body (weight, heat absorption and heat production, size of a relative surface, capacity heat-production etc.), the changes of radial distribution of temperature and size of a cross superficial temperature gradient of the body were investigated with various parities (ratio) of environmental temperature and size of capacity heat production imitated by an electrical heater. Superficial layer of the body dependent from capacity heat production and environmental temperature can serve for definition of general heat content changes in the body for maintaining its thermal balance within the environment.

  3. Skin Temperature Measurements on Small Bodies of Water

    SciTech Connect

    Kurzeja, R.

    2002-11-26

    The temperature of the top millimeter of a water surface is generally a few tenths of a degree Celsius cooler than the 'bulk' temperature, i.e., the temperature approximately 1 meter deep, which is routinely measured by buoys and ships. This is because of a daytime temperature gradient between the bulk location and the surface, and because of the thin skin at the surface. This difference is important for climate and weather forecasting because of the atmospheric forcing by the oceans.

  4. Infralimbic cortex controls core body temperature in a histamine dependent manner.

    PubMed

    Riveros, M E; Perdomo, G; Torrealba, F

    2014-04-10

    An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine.

  5. Global warming and Bergmann's rule: do central European passerines adjust their body size to rising temperatures?

    PubMed

    Salewski, Volker; Hochachka, Wesley M; Fiedler, Wolfgang

    2010-01-01

    Recent climate change has caused diverse ecological responses in plants and animals. However, relatively little is known about homeothermic animals' ability to adapt to changing temperature regimes through changes in body size, in accordance with Bergmann's rule. We used fluctuations in mean annual temperatures in south-west Germany since 1972 in order to look for direct links between temperature and two aspects of body size: body mass and flight feather length. Data from regionally born juveniles of 12 passerine bird species were analysed. Body mass and feather length varied significantly among years in eight and nine species, respectively. Typically the inter-annual changes in morphology were complexly non-linear, as was inter-annual variation in temperature. For six (body mass) and seven species (feather length), these inter-annual fluctuations were significantly correlated with temperature fluctuations. However, negative correlations consistent with Bergmann's rule were only found for five species, either for body mass or feather length. In several of the species for which body mass and feather length was significantly associated with temperature, morphological responses were better predicted by temperature data that were smoothed across multiple years than by the actual mean breeding season temperatures of the year of birth. This was found in five species for body mass and three species for feather length. These results suggest that changes in body size may not merely be the result of phenotypic plasticity but may hint at genetically based microevolutionary adaptations.

  6. An assessment of skin temperature gradients in a tropical primate using infrared thermography and subcutaneous implants.

    PubMed

    Thompson, Cynthia L; Scheidel, Caleb; Glander, Kenneth E; Williams, Susan H; Vinyard, Christopher J

    2017-01-01

    Infrared thermography has become a useful tool to assess surface temperatures of animals for thermoregulatory research. However, surface temperatures are an endpoint along the body's core-shell temperature gradient. Skin and fur are the peripheral tissues most exposed to ambient thermal conditions and are known to serve as thermosensors that initiate thermoregulatory responses. Yet relatively little is known about how surface temperatures of wild mammals measured by infrared thermography relate to subcutaneous temperatures. Moreover, this relationship may differ with the degree that fur covers the body. To assess the relationship between temperatures and temperature gradients in peripheral tissues between furred and bare areas, we collected data from wild mantled howling monkeys (Alouatta palliata) in Costa Rica. We used infrared thermography to measure surface temperatures of the furred dorsum and bare facial areas of the body, recorded concurrent subcutaneous temperatures in the dorsum, and measured ambient thermal conditions via a weather station. Temperature gradients through cutaneous tissues (subcutaneous-surface temperature) and surface temperature gradients (surface-ambient temperature) were calculated. Our results indicate that there are differences in temperatures and temperature gradients in furred versus bare areas of mantled howlers. Under natural thermal conditions experienced by wild animals, the bare facial areas were warmer than temperatures in the furred dorsum, and cutaneous temperature gradients in the face were more variable than the dorsum, consistent with these bare areas acting as thermal windows. Cutaneous temperature gradients in the dorsum were more closely linked to subcutaneous temperatures, while facial temperature gradients were more heavily influenced by ambient conditions. These findings indicate that despite the insulative properties of fur, for mantled howling monkeys surface temperatures of furred areas still demonstrate a

  7. Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature.

    PubMed

    Merrick, Melissa J; Smith, Rosemary J

    2004-02-01

    This study compares the thermoregulatory ability of three species of burying beetle (Coleoptera: Silphidae: Nicrophorus hybridus, Nicrophorus guttula and Nicrophorus investigator) that vary significantly in body size. It also explores possible mechanisms for temperature regulation in burying beetles, including physiological and behavioral thermoregulatory strategies, and the influence of environmental temperatures on body temperature and activity times. We measured beetle thoracic and abdominal temperatures before and after short (<5 s) flights, and thoracic temperature during sustained, tethered flights and following flight in the field. We calculated two measures of thermoregulatory ability: the slope of post-flight thoracic temperature against ambient air temperature and the slope of post-flight thoracic temperature against operative flight temperature. Thoracic temperatures following flight were significantly higher than abdominal temperatures, and the largest species, N. hybridus, was determined to be the better thermoregulator, with regression slopes closer to zero (0.315-0.370) than N. guttula (0.636-0.771) or N. investigator (0.575-0.610). We also examined the roles that insulation, wing loading, physiological heat transfer, basking and perceived environmental temperature play on temperature regulation and activity times in Nicrophorus: This study shows that body size, morphological features, such as wing loading and insulation, and perceived environmental temperatures affect thermoregulation and activity times in burying beetles.

  8. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  9. Description of a Portable Wireless Device for High-Frequency Body Temperature Acquisition and Analysis

    PubMed Central

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473

  10. Low-temperature softening in body-centered cubic alloys

    NASA Technical Reports Server (NTRS)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  11. Temperature distribution in the human body under various conditions of induced hyperthermia

    NASA Technical Reports Server (NTRS)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  12. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3.

    PubMed

    Lateef, Dalya M; Abreu-Vieira, Gustavo; Xiao, Cuiying; Reitman, Marc L

    2014-03-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.

  13. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    PubMed Central

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-01-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role. PMID:27804981

  14. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    NASA Astrophysics Data System (ADS)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  15. Non-invasive, transient determination of the core temperature of a heat-generating solid body.

    PubMed

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-02

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  16. The effect of myostatin genotype on body temperature during extreme temperature events.

    PubMed

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P < 0.001) and 12 h (P < 0.02) for Model [C] indicate that a genotype × environment interaction exists for MG. For MG during summer stress events the additive estimate was 0.10°C (P < 0.01) and

  17. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  18. Limits to sustained energy intake. XVI. Body temperature and physical activity of female mice during pregnancy.

    PubMed

    Gamo, Yuko; Bernard, Amelie; Mitchell, Sharon E; Hambly, Catherine; Al Jothery, Aqeel; Vaanholt, Lobke M; Król, Elzbieta; Speakman, John R

    2013-06-15

    Lactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature. We explored the relationships between energy intake, body mass, body temperature and physical activity throughout pregnancy in the MF1 mouse. Food intake and body mass of 26 females were recorded daily throughout pregnancy. Body temperature and physical activity were monitored every minute for 23 h a day by implanted transmitters. Body temperature and physical activity declined as pregnancy advanced, while energy intake and body mass increased. Compared with a pre-mating baseline period, mice increased energy intake by 56% in late pregnancy. Although body temperature declined as pregnancy progressed, this served mostly to reverse an increase between baseline and early pregnancy. Reduced physical activity may compensate the energy budget of pregnant mice but body temperature changes do not. Over the last 3 days of pregnancy, food intake declined. Individual variation in energy intake in the last phase of pregnancy was positively related to litter size at birth. As there was no association between the increase in body mass and the decline in intake, we suggest the decline was not caused by competition for abdominal space. These data suggest overall reproductive performance is probably not constrained by events during pregnancy.

  19. Is there an association between body temperature and serum lactate levels in hip fracture patients?

    PubMed

    Murtuza, F; Farrier, A J; Venkatesan, M; Smith, R; Khan, A; Uzoigwe, C E; Chami, G

    2015-10-01

    Introduction Hyperlactataemia is associated with adverse outcomes in trauma cases. It is thought to be the result of anaerobic respiration during hypoperfusion. This produces much less energy than complete aerobic glycolysis. Low body temperature in the injured patient carries an equally poor prognosis. Significant amounts of energy are expended in maintaining euthermia. Consequently, there may be a link between lactate levels and dysthermia. Hyperlactataemia may be indicative of inefficient energy production and therefore insufficient energy to maintain euthermia. Alternatively, significant amounts of available oxygen may be sequestered in thermoregulation, resulting in anaerobic respiration and lactate production. Our study investigated whether there is an association between lactate levels and admission body temperature in hip fracture patients. Furthermore, it looked at whether there is a difference in the mean lactate levels between hip fracture patients with low (<36.5°C), normal (36.5-37.5°C) and high (>37.5°C) body temperature on admission, and for patients who have low body temperature, whether there is a progressive rise in serum lactate levels as body temperature falls. Methods The admission temperature and serum lactate of 1,162 patients presenting with hip fracture were recorded. Patients were divided into the euthermic (body temperature 36.5-37.5°C), the pyrexial (>37.5°C) and those with low body temperature (<36.5°C). Admission lactate and body temperature were compared. Results There was a significant difference in age between the three body temperature groups (p=0.007). The pyrexial cohort was younger than the low body temperature group (mean: 78 vs 82 years). Those with low body temperature had a higher mean lactate level than the euthermic (2.2mmol/l vs 2.0mmol/l, p=0.03). However, there was no progressive rise in serum lactate level as admission temperature fell. Conclusions The findings suggest that in hip fracture patients, the body

  20. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  1. Influence of the Environment on Body Temperature of Racing Greyhounds

    PubMed Central

    McNicholl, Jane; Howarth, Gordon S.; Hazel, Susan J.

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1–3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r2 = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38oC, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal temperatures

  2. Estimation of body temperature rhythm based on heart activity parameters in daily life.

    PubMed

    Sooyoung Sim; Heenam Yoon; Hosuk Ryou; Kwangsuk Park

    2014-01-01

    Body temperature contains valuable health related information such as circadian rhythm and menstruation cycle. Also, it was discovered from previous studies that body temperature rhythm in daily life is related with sleep disorders and cognitive performances. However, monitoring body temperature with existing devices during daily life is not easy because they are invasive, intrusive, or expensive. Therefore, the technology which can accurately and nonintrusively monitor body temperature is required. In this study, we developed body temperature estimation model based on heart rate and heart rate variability parameters. Although this work was inspired by previous research, we originally identified that the model can be applied to body temperature monitoring in daily life. Also, we could find out that normalized Mean heart rate (nMHR) and frequency domain parameters of heart rate variability showed better performance than other parameters. Although we should validate the model with more number of subjects and consider additional algorithms to decrease the accumulated estimation error, we could verify the usefulness of this approach. Through this study, we expect that we would be able to monitor core body temperature and circadian rhythm from simple heart rate monitor. Then, we can obtain various health related information derived from daily body temperature rhythm.

  3. Efficacy comparison of Korean ginseng and American ginseng on body temperature and metabolic parameters.

    PubMed

    Park, Eun-Young; Kim, Mi-Hwi; Kim, Eung-Hwi; Lee, Eun-Kyu; Park, In-Sun; Yang, Duck-Choon; Jun, Hee-Sook

    2014-01-01

    Ginseng has beneficial effects in cancer, diabetes and aging. There are two main varieties of ginseng: Panax ginseng (Korean ginseng) and Panax quinquefolius (American ginseng). There are anecdotal reports that American ginseng helps reduce body temperature, whereas Korean ginseng improves blood circulation and increases body temperature; however, their respective effects on body temperature and metabolic parameters have not been studied. We investigated body temperature and metabolic parameters in mice using a metabolic cage. After administering ginseng extracts acutely (single dose of 1000 mg/kg) or chronically (200 mg/kg/day for four weeks), core body temperature, food intake, oxygen consumption and activity were measured, as well as serum levels of pyrogen-related factors and mRNA expression of metabolic genes. Acute treatment with American ginseng reduced body temperature compared with PBS-treated mice during the night; however, there was no significant effect of ginseng treatment on body temperature after four weeks of treatment. VO 2, VCO 2, food intake, activity and energy expenditure were unchanged after both acute and chronic ginseng treatment compared with PBS treatment. In acutely treated mice, serum thyroxin levels were reduced by red and American ginseng, and the serum prostaglandin E2 level was reduced by American ginseng. In chronically treated mice, red and white ginseng reduced thyroxin levels. We conclude that Korean ginseng does not stimulate metabolism in mice, whereas a high dose of American ginseng may reduce night-time body temperature and pyrogen-related factors.

  4. Influence of body temperature on the evoked activity in mouse visual cortex.

    PubMed

    Tang, Bin; Kalatsky, Valery A

    2013-06-01

    Optical imaging of intrinsic signals and conventional electrophysiological methods were used to investigate the correlation between the evoked activity in mouse visual cortex and core body temperature. The results show that hypothermia (25-36 °C) decreases the intensity of optical imaging in the visual cortex and the imaging signal reversibly disappears at 25 °C. Hyperthermia (39-41 °C) increases the intensity but decreases the quality of cortical imaging when body temperature is above 40 °C. The change of optical imaging was in line with that of neuronal activities and local field potentials (LFPs) directly recorded from the visual cortex at 25-39 °C. Hypothermia decreases neuron firing rate and LFPs amplitude. Most of the recorded neurons ceased firing to visual stimulation at 25 °C. Hyperthermia increases neuronal firing rate and LFPs amplitude. Both are reduced when body temperature is above 40 °C, though neither change was statistically significant. These results suggest: (1) Body temperature has an important impact on the visual cortical evoked activities and optical imaging generally reflects these effects when body temperature is between 25 and 39 °C; (2) Optical imaging may not properly reflect the neuronal activity when body temperature is over 40 °C. It is important to maintain core body temperature within 3 °C of the normal body temperature to obtain verifiable results.

  5. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    PubMed

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  6. Assessment of high-temperature battery systems

    SciTech Connect

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  7. Temperature and body weight affect fouling of pig pens.

    PubMed

    Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T

    2006-08-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P < 0.05). Increasing temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P < 0.001). At increasing temperatures, pigs lay more on their sides and less against other pigs (P < 0.001). Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.

  8. Body composition assessment for the definition of cardiometabolic risk.

    PubMed

    Amato, M C; Guarnotta, V; Giordano, C

    2013-01-01

    Obesity is associated with a major prevalence of cardiovascular risk factors and high risk of cardiovascular events and contributes to the increase in cardiovascular morbidity and mortality worldwide. Beyond the fat mass per se, the pattern of fat distribution has a profound influence on cardiometabolic risk. The increase in abdominal adipose tissue confers an independent risk, while the amount of gluteofemoral body fat is thought to be protective. Changes in the capacity of different depots to store and release fatty acids and to produce adipocytokines are important determinants of fat distribution and its metabolic consequences. Because of the complexity of the assessment of body fat with imaging techniques, great attention has been paid to other measures of adiposity, such as waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR), which provide information on body fat distribution, although body mass index (BMI) is the established clinical measure to estimate the cardiovascular risk disease associated with excessive body weight. Abdominal obesity is a main predictive factor of the metabolic syndrome, so it is certain that it represents a better marker of cardiovascular risk than BMI. Visceral adiposity index (VAI) has recently proven to be a marker of visceral adipose distribution and function, associated with insulin sensitivity in patients at metabolic risk; however, the evidence needs to be further confirmed. In summary, BMI, WC, WHR, WHtR, and VAI are all useful tools for assessing adiposity/ obesity in clinical practice, and should be evaluated along with other cardiometabolic risk factors to define cardiovascular risk stratification.

  9. Mechanisms of temperature-dependent swimming: the importance of physics, physiology and body size in determining protist swimming speed.

    PubMed

    Beveridge, Oliver S; Petchey, Owen L; Humphries, Stuart

    2010-12-15

    Body temperatures and thus physiological rates of poikilothermic organisms are determined by environmental temperature. The power an organism has available for swimming is largely dependent on physiological rates and thus body temperature. However, retarding forces such as drag are contingent on the temperature-dependent physical properties of water and on an organism's size. Consequently, the swimming ability of poikilotherms is highly temperature dependent. The importance of the temperature-dependent physical properties of water (e.g. viscosity) in determining swimming speed is poorly understood. Here we propose a semi-mechanistic model to describe how biological rates, size and the physics of the environment contribute to the temperature dependency of microbial swimming speed. Data on the swimming speed and size of a predatory protist and its protist prey were collected and used to test our model. Data were collected by manipulating both the temperature and the viscosity (independently of temperature) of the organism's environment. Protists were either cultured in their test environment (for several generations) or rapidly exposed to their test environment to assess their ability to adapt or acclimate to treatments. Both biological rates and the physics of the environment were predicted to and observed to contribute to the swimming speed of protists. Body size was not temperature dependent, and protists expressed some ability to acclimate to changes in either temperature or viscosity. Overall, using our parameter estimates and novel model, we are able to suggest that 30 to 40% (depending on species) of the response in swimming speed associated with a reduction in temperature from 20 to 5°C is due to viscosity. Because encounter rates between protist predators and their prey are determined by swimming speed, temperature- and viscosity-dependent swimming speeds are likely to result in temperature- and viscosity-dependent trophic interactions.

  10. Effect of a Single Musical Cakra Activation Manoeuvre on Body Temperature: An Exploratory Study

    PubMed Central

    Sumathy, Sundar; Parmar, Parin N

    2016-01-01

    Cakra activation/balancing and music therapy are part of the traditional Indian healing system. Little is known about effect of musical (vocal) technique of cakra activation on body temperature. We conducted a single-session exploratory study to evaluate effects of a single musical (vocal) cakra activation manoeuvre on body temperature in controlled settings. Seven healthy adults performed a single musical (vocal) cakra activation manoeuvre for approximately 12 minutes in controlled environmental conditions. Pre- and post-manoeuvre body temperatures were recorded with a clinical mercury thermometer. After a single manoeuvre, increase in body temperature was recorded in all seven subjects. The range of increase in body temperature was from 0.2°F to 1.4°F; with mean temperature rise being 0.5°F and median temperature rise being 0.4°F. We conclude that a single session of musical (vocal) technique of cakra activation elevated body temperatures in all 7 subjects. Further research is required to study effects of various cakra activation techniques on body temperature and other physiological parameters. PMID:28182030

  11. Effect of a Single Musical Cakra Activation Manoeuvre on Body Temperature: An Exploratory Study.

    PubMed

    Sumathy, Sundar; Parmar, Parin N

    2016-01-01

    Cakra activation/balancing and music therapy are part of the traditional Indian healing system. Little is known about effect of musical (vocal) technique of cakra activation on body temperature. We conducted a single-session exploratory study to evaluate effects of a single musical (vocal) cakra activation manoeuvre on body temperature in controlled settings. Seven healthy adults performed a single musical (vocal) cakra activation manoeuvre for approximately 12 minutes in controlled environmental conditions. Pre- and post-manoeuvre body temperatures were recorded with a clinical mercury thermometer. After a single manoeuvre, increase in body temperature was recorded in all seven subjects. The range of increase in body temperature was from 0.2°F to 1.4°F; with mean temperature rise being 0.5°F and median temperature rise being 0.4°F. We conclude that a single session of musical (vocal) technique of cakra activation elevated body temperatures in all 7 subjects. Further research is required to study effects of various cakra activation techniques on body temperature and other physiological parameters.

  12. Body temperatures and behavior of American alligators during cold winter weather

    SciTech Connect

    Brisbin, I.L., Jr.; Standora, E.A.; Vargo, M.J.

    1982-04-01

    Data from two large (188 and 135 kg) male alligators (Alligator mississippiensis) indicated that 4-5 C seemed to be the lowest body temperatures that they could endure with subsequent recovery. Although one animal in shallow water managed to keep a breathing hole open for several days, in ice that was 1.5 cm thick, it later died following a decrease of its body temperature to 4.0 C. The second alligator which was located in a deeper portion of the reservoir used both terrestrial and aquatic basking behavior to raise its body temperature and level of activity. Except in the case of basking events, there was not clear evidence of significant evaluations of the body temperatures of either the live or dead alligators above those of their adjacent water. When located side-by-side, diurnal cycles of deep body temperatures exceeding adjacent water temperatures to a maximum extent near dawn and usually falling below water temperatures during the afternoon and early evening hours. The physical properties and thermal inertia of the bodies of such large alligators, when placed in appropriate microclimates, may be sufficient in themselves to explain the general patterns and levels of body temperature changes observed at these low temperatures.

  13. Effect of environmental temperature on body temperature and metabolic heat production in a heterothermic rodent, Spermophilus tereticaudus.

    PubMed

    Wooden, K Mark; Walsberg, Glenn E

    2002-07-01

    This study quantifies the thermoregulatory ability and energetics of a mammal, the round-tailed ground squirrel Spermophilus tereticaudus, that can relax thermoregulatory limits without becoming inactive. We measured body temperature and metabolic rate in animals exposed for short periods (1 h) to air temperatures ranging from 10 to 45 degrees C and for long periods (8 h) to air temperatures ranging from 10 to 30 degrees C. Within 45 min of exposure to air temperatures ranging from 10 to 45 degrees C, the mean body temperatures of alert and responsive animals ranged from 32.1 degrees C (T(air)=10 degrees C) to 40.4 degrees C (T(air)=45 degrees C). This thermolability provided significant energetic savings below the thermoneutral zone, ranging from 0.63 W (18 %) at 10 degrees C to 0.43 W (43 %) at 30 degrees C. When exposed for 8 h to air temperatures between 10 and 30 degrees C, animals varied their body temperature significantly over time. At all air temperatures, the lowest body temperature (maintained for at least 1 h) was 31.2 degrees C. The highest body temperatures (maintained for at least 1 h) were 33.6 degrees C at 10 degrees C, 35.3 degrees C at 20 degrees C and 36.3 degrees C at 30 degrees C. The energetic savings realized by maintaining the minimum rather than the maximum body temperature was 0.80 W (25 %) at 10 degrees C, 0.71 W (33 %) at 20 degrees C and 0.40 W (47 %) at 30 degrees C. This study demonstrates in several ways the ability of this species to adjust energy expenditure through heterothermy.

  14. ["In vivo" body composition assessment; part I: a historic overview].

    PubMed

    Carnero, Elvis A; Alvero-Cruz, José Ramón; Giráldez García, Manuel Avelino; Sardinha, Luis B

    2015-05-01

    The study of body composition (BC) has gained in relevance over the last decades, mainly because of its important health- and disease- related applications within both the clinical and the sports setting. It is not a new area, and its especial relevance as an area of biology dates from the second half of the nineteenth century. In this paper, we have reviewed the three historic periods of BC, with special reference to the most important advances in in vivo assessment. Even though the earliest findings about human BC date from antiquity, the first (or 'early') stage of discovery began in 1850. Said early stage was mainly characterized by data obtained from the dissection of cadavers and by the application of biochemical methods in vivo. Longitudinal changes in body composition were also a concern. The second (so called 'recent') stage, in the second half of the twentieth century, was marked by milestones such as the formulation of the first mathematical models for the estimation of body components, and technological advances. Within the third ('contemporary' or 'current') stage of research, several groups have focused on validating the classical BC models in specific populations, on analysis of the genetic determinants (i.e. phenotypes and, more recently genotypes) of body composition, and on re-instigating the study of dynamic BC.

  15. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard

    NASA Astrophysics Data System (ADS)

    Ortega, Zaida; Pérez-Mellado, Valentín

    2016-11-01

    In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also

  16. Extracellular hyperosmolality and body temperature during physical exercise in dogs

    NASA Technical Reports Server (NTRS)

    Kozlowski, S.; Greenleaf, J. E.; Turlejska, E.; Nazar, K.

    1980-01-01

    The purpose of this study was to test the hypothesis that thermoregulation during exercise can be affected by extracellular fluid hyperosmolality without changing the plasma Na(+) concentration. The effects of preexercise venous infusions of hypertonic mannitol and NaCl solutions on rectal temperature responses were compared in dogs running at moderate intensity for 60 min on a treadmill. Plasma Na(+) concentration was increased by 12 meq after NaCl infusion, and decreased by 9 meq after mannitol infusion. Both infusions increased plasma by 15 mosmol/kg. After both infusions, rectal temperature was essentially constant during 60 min rest. However, compared with the noninfusion exercise increase in osmolality of 1.3 C, rectal temperature increased by 1.9 C after both postinfusion exercise experiments. It was concluded that inducing extracellular hyperosmolality, without elevating plasma, can induce excessive increases in rectal temperature during exericse but not at rest.

  17. The effects of elevated body temperature on the complexity of the diaphragm EMG signals during maturation.

    PubMed

    Akkurt, David; Akay, Yasemin M; Akay, Metin

    2009-04-01

    In this paper, we examine the effect of elevated body temperature on the complexity of the diaphragm electromyography (EMGdia), the output of the respiratory neural network--using the approximate entropy method. The diaphragm EMG, EEG, EOG as well as other physiological signals (tracheal pressure, blood pressure and respiratory volume) in chronically instrumented rats were recorded at two postnatal ages: 25-35 days age (juvenile, n = 5) and 36-44 days age (early adult, n = 6) groups during control (36-37 degrees C), mild elevated body temperature (38 degrees C) and severe elevated body temperature (39-40 degrees C). Three to five trials of the recordings were performed at normal body temperature before raising the animal's core temperature by 1-4 degrees C with an electric heating pad. At the elevated temperature, another 3-5 trials were performed. Finally, the animal was cooled to the original temperature, and trials were again repeated. Complexity values of the diaphragm EMG signal were estimated and evaluated using the approximate entropy method (ApEn) over the ten consecutive breaths. Our results suggested that the mean approximate entropy values for the juvenile age group were 1.01 +/- 0.01 (standard error) during control, 0.91 +/- 0.02 during mild elevated body temperature and 0.81 +/- 0.02 during severe elevated body temperature. For the early adult age group, these values were 0.94 +/- 0.01 during control, 0.93 +/- 0.01 during mild elevated body temperature and 0.92 +/- 0.01 during severe elevated body temperature. Our results show that the complexity values and the durations of the diaphragm EMG (EMGdia) were significantly decreased when the elevated body temperature was shifted from control or mild to severe body temperature (p < 0.05) for the juvenile age group. However, for the early adult age group, an increase in body temperature slightly reduced the complexity measures and the duration of the EMGdia. But, these changes were not statistically

  18. Integration of body temperature into the analysis of energy expenditure in the mouse

    PubMed Central

    Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L.

    2015-01-01

    Objectives We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. Methods The effect of environmental temperature (4–33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3-/y, lipodystrophic) was measured using continuous monitoring. Results Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4–16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3-/y mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. Conclusions At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis. PMID:26042200

  19. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  20. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0

  1. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    PubMed

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period

  2. Body temperature and resistance to evaporative water loss in tropical Australian frogs.

    PubMed

    Tracy, Christopher R; Christian, Keith A; Betts, Gregory; Tracy, C Richard

    2008-06-01

    Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.

  3. Homeostatic and circadian control of body temperature in the fat-tailed gerbil.

    PubMed

    Refinetti, R

    1998-01-01

    The interplay of homeostasis and circadian rhythmicity in the control of body temperature was studied in the fat-tailed gerbil (Pachyuromys duprasi). In a first study, the body temperature rhythm of 8 gerbils maintained at 24 degrees C under a 14L:10D light-dark cycle was studied by telemetry. Data from 9 other species of small mammals were also obtained for comparison. The gerbils were found to exhibit a robust rhythm of body temperature (the most robust of the 10 species) with a high plateau during the dark phase of the light-dark cycle and a low plateau during the light phase. In a second experiment, 5 gerbils were allowed to select the temperature of their environment by moving along a thermal gradient. The animals consistently selected higher ambient temperatures during the light phase of the light-dark cycle (when their body temperature was at the low plateau). In a third experiment, the metabolic response of 8 gerbils to an acute cold exposure was determined by indirect calorimetry. Greater cold-induced thermogenesis was observed during the light phase. The fact that the animals selected higher ambient temperatures and displayed greater cold-induced thermogenesis when their body temperature was lower contradicts the hypothesis that the body temperature rhythm is caused by a rhythmic oscillation of the thermoregulatory set point.

  4. The elite athlete - assessing body shape, size, proportion and composition.

    PubMed

    Kerr, D A; Ackland, T R; Schreiner, A B

    1995-03-01

    In the quest to optimize performance of the elite athlete the sport scientist has sought to determine the ideal physique for a given sport or event. For some sports, specific structural characteristics offer definite performance advantages; for example in rowing, in addition to height, a large arm span has been identified as important. In other sports. such as long distance running, low levels of adiposity or 'fatness' appear to be linked with faster running times. There are four areas where appraisal of the athlete's physique can provide useful information: (1) identification of talented athletes; (2) to assess and monitor the growing athlete; (3) to monitor training and performance; and (4) to determine 'race weight' in weight-category sports. As a research tool a particular method must be reliable and valid. Other considerations include how expensive the method is, if it is suitable for a field situation and if large amounts of data on a number of subjects can be collected quickly. The method should be safe for both the athlete and the tester and provide useful feedback for the athlete or coach. Anthropometry, with training is able to fulfil most of these criteria and is the most widely used method of physique assessment in sports science. Large anthropometric data bases have been collected on elite athletes at Olympic games and world championships according to a standard protocol. Kinanthropometry, which has developed from anthropometry, is concerned with measurement and evaluation of different aspects of human movement and individual variation in body shape, size, proportion and composition. For the assessment of adiposity a sum of skinfolds, usually over six sites, is most commonly used rather than percentage body fat formulae. Muscle mass can be assessed indirectly through girth and corrected girth measurements. Limb lengths and breadths are used to assess skeletal structure and proportional differences in limb size. The anthropometric methods most commonly

  5. [Diurnal rhythm of body temperature during space flight].

    PubMed

    Lkhagva, L

    1984-01-01

    The axillary temperature of the Mongolian Salyut-6 crewmember was measured in the daytime before, during and after flight. The temperature was recorded immediately after awakening to going to sleep every 2 hours: a month prelaunch in the Cosmonauts' Training Center during 5 days, a week prelaunch at the Baikonur launch site during 3 days, inflight from the middle of mission day 2 to the middle of mission day 7 every day, and postflight at Baikonur during 4 days. It was found that inflight the axillary temperature decreased significantly by 0.44 degrees C as compared to the data obtained in the Cosmonauts' Training Center and by 0.22 degrees C as compared to the data obtained at the launch site. There were also some changes in the pattern of acrophases on the time scale. It is recommended to continue thermal regulation measurements in space flight.

  6. The validity of mass body temperature screening with ear thermometers in a warm thermal environment.

    PubMed

    Suzuki, Tatsuhiko; Wada, Koji; Wada, Yuko; Kagitani, Hideaki; Arioka, Tetsuya; Maeda, Koji; Kida, Kenichi

    2010-10-01

    Identification of people who have a fever in public places during the occurrence of emerging infectious diseases is essential for controlling disease spread. The measurement of body temperature could identify infected persons. The environment affects body temperature, but little is known about the validity of measurements under different thermal environments. Therefore, the aim of this study was to determine the validity of measuring body temperature in cold and warm environments. We recruited 50 participants aged 18-69 years (26 males, 24 females) to measure body temperature using an axillary thermometer and an ear thermometer and by infrared thermal imaging (thermography). The body temperature obtained with an axillary thermometer was used as a reference; receiver operating characteristic (ROC) analysis was conducted to determine the validity of temperatures obtained by measurement with an ear thermometer and thermography at 36.7°C (median of the axillary body temperature). The area under the ROC curve (AUC) indicates the validity of measurements. The AUC for ear thermometers in a warm environment (mean temperature: 20.0°C) showed a fair accuracy (AUC: 0.74 [95% CI: 0.64-0.83]), while that (AUC: 0.62 [95% CI: 0.51-0.72]) in a cold environment (mean temperature: 12.6°C) and measurements with thermography used in both environments (AUC: 0.57 [95% CI: 0.45-0.68] in a warm environment and AUC: 0.65 [95% CI: 0.54-0.76] in a cold environment) showed a low accuracy. In conclusion, in a warm environment, measurement of body temperature with an ear thermometer is a valid procedure and effective for mass body temperature screening.

  7. Comparison of Body Composition Assessment Methods in Pediatric Intestinal Failure

    PubMed Central

    Mehta, Nilesh M.; Raphael, Bram; Guteirrez, Ivan; Quinn, Nicolle; Mitchell, Paul D.; Litman, Heather J.; Jaksic, Tom; Duggan, Christopher P.

    2015-01-01

    Objectives To examine the agreement of multifrequency bioelectric impedance analysis (BIA) and anthropometry with reference methods for body composition assessment in children with intestinal failure (IF). Methods We conducted a prospective pilot study in children 14 years of age or younger with IF resulting from either short bowel syndrome (SBS) or motility disorders. Bland Altman analysis was used to examine the agreement between BIA and deuterium dilution in measuring total body water (TBW) and lean body mass (LBM); and between BIA and dual X-ray absorptiometry (DXA) techniques in measuring LBM and FM. Fat mass (FM) and percent body fat (%BF) measurements by BIA and anthropometry, were also compared in relation to those measured by deuterium dilution. Results Fifteen children with IF, median (IQR) age 7.2 (5.0, 10.0) years, 10 (67%) male, were studied. BIA and deuterium dilution were in good agreement with a mean bias (limits of agreement) of 0.9 (-3.2, 5.0) for TBW (L) and 0.1 (-5.4 to 5.6) for LBM (kg) measurements. The mean bias (limits) for FM (kg) and %BF measurements were 0.4 (-3.8, 4.6) kg and 1.7 (-16.9, 20.3)% respectively. The limits of agreement were within 1 SD of the mean bias in 12/14 (86%) subjects for TBW and LBM, and in 11/14 (79%) for FM and %BF measurements. Mean bias (limits) for LBM (kg) and FM (kg) between BIA and DXA were 1.6 (-3.0 to 6.3) kg and -0.1 (-3.2 to 3.1) kg, respectively. Mean bias (limits) for FM (kg) and %BF between anthropometry and deuterium dilution were 0.2 (-4.2, 4.6) and -0.2 (-19.5 to 19.1), respectively. The limits of agreement were within 1 SD of the mean bias in 10/14 (71%) subjects. Conclusions In children with intestinal failure, TBW and LBM measurements by multifrequency BIA method were in agreement with isotope dilution and DXA methods, with small mean bias. In comparison to deuterium dilution, BIA was comparable to anthropometry for FM and %BF assessments with small mean bias. However, the limits of agreement

  8. Radiation exposure and risk assessment for critical female body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Hardy, Alva C.

    1991-01-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed.

  9. Selection does not favor larger body size at lower temperature in a seed-feeding beetle.

    PubMed

    Stillwell, R Craig; Moya-Laraño, Jordi; Fox, Charles W

    2008-10-01

    Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,"Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.

  10. A biphasic basal body temperature record during pregnancy.

    PubMed

    Urman, B C; McComb, P F

    1989-01-01

    A case of biphasic temperature record is reported during the course of an ectopic pregnancy. Possible implications of this phenomenon may improve our understanding of the role of ovum transmigration and the endocrinological interaction of pregnancy with hormonal control of ovulation.

  11. No Relation between Body Temperature and Arterial Recanalization at Three Days in Patients with Acute Ischaemic Stroke

    PubMed Central

    Geurts, Marjolein; van der Worp, H. Bart; Horsch, Alexander D.; Kappelle, L. Jaap; Biessels, Geert J.; Velthuis, Birgitta K.

    2015-01-01

    Background Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods We included 278 patients with acute ischaemic stroke within nine hours after symptom onset, who had an intracranial arterial occlusion on admission CT angiography, in 13 participating centres. We calculated the relation per every 0.1°Celsius increase in admission body temperature and recanalization at three days. Results Recanalization occurred in 80% of occluded arteries. There was no relation between body temperature and recanalization at three days after adjustments for age, NIHSS score on admission and treatment with alteplase (adjusted odds ratio per 0.1°Celsius, 0.99; 95% confidence interval, 0.94–1.05; p = 0.70). Results for patients treated or not treated with alteplase were essentially the same. Conclusions Our findings suggest that in patients with acute ischaemic stroke there is no relation between body temperature on admission and recanalization of an occluded intracranial artery three days later, irrespective of treatment with alteplase. PMID:26473959

  12. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    PubMed

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  13. New reusable elastomer electrodes for assessing body composition

    NASA Astrophysics Data System (ADS)

    Moreno, M.-V.; Chaset, L.; Bittner, P. A.; Barthod, C.; Passard, M.

    2013-04-01

    The development of telemedicine requires finding solutions of reusable electrodes for use in patients' homes. The objective of this study is to evaluate the relevance of reusable elastomer electrodes for measuring body composition. We measured a population of healthy Caucasian (n = 17). A measurement was made with a reference device, the Xitron®, associated with AgCl Gel electrodes (Gel) and another measurement with a multifrequency impedancemeter Z-Metrix® associated with reusable elastomer electrodes (Elast). We obtained a low variability with an average error of repeatability of 0.39% for Re and 0.32% for Rinf. There is a non significantly difference (P T-test > 0.1) about 200 ml between extracellular water Ve measured with Gel and Elast in supine and in standing position. For total body water Vt, we note a non significantly difference (P T-test > 0.1) about 100 ml and 2.2 1 respectively in supine and standing position. The results give low dispersion, with R2 superior to 0.90, with a 1.5% maximal error between Gel and Elast on Ve in standing position. It looks possible, taking a few precautions, using elastomer electrodes for assessing body composition.

  14. Effects of developmental change in body size on ectotherm body temperature and behavioral thermoregulation: caterpillars in a heat-stressed environment.

    PubMed

    Nielsen, Matthew E; Papaj, Daniel R

    2015-01-01

    Ectotherms increase in size dramatically during development, and this growth should have substantial effects on their body temperature and ability to thermoregulate. To better understand how this change in size affects temperature, we examined the direct effects of body size on body temperature in Battus philenor caterpillars, and also how body size affects both the expression and effectiveness of thermal refuge-seeking, a thermoregulatory behavior. Field studies of both live caterpillars and physical operative temperature models indicated that caterpillar body temperature increases with body size. The operative temperature models also showed that thermal refuges have a greater cooling effect for larger caterpillars, while a laboratory study found that larger caterpillars seek refuges at a lower temperature. Although the details may vary, similar connections between developmental growth, temperature, and thermoregulation should be common among ectotherms and greatly affect both their development and thermal ecology.

  15. Quantitative assessment of human body shape using Fourier analysis

    NASA Astrophysics Data System (ADS)

    Friess, Martin; Rohlf, F. J.; Hsiao, Hongwei

    2004-04-01

    Fall protection harnesses are commonly used to reduce the number and severity of injuries. Increasing the efficiency of harness design requires the size and shape variation of the user population to be assessed as detailed and as accurately as possible. In light of the unsatisfactory performance of traditional anthropometry with respect to such assessments, we propose the use of 3D laser surface scans of whole bodies and the statistical analysis of elliptic Fourier coefficients. Ninety-eight male and female adults were scanned. Key features of each torso were extracted as a 3D curve along front, back and the thighs. A 3D extension of Elliptic Fourier analysis4 was used to quantify their shape through multivariate statistics. Shape change as a function of size (allometry) was predicted by regressing the coefficients onto stature, weight and hip circumference. Upper and lower limits of torso shape variation were determined and can be used to redefine the design of the harness that will fit most individual body shapes. Observed allometric changes are used for adjustments to the harness shape in each size. Finally, the estimated outline data were used as templates for a free-form deformation of the complete torso surface using NURBS models (non-uniform rational B-splines).

  16. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures.

  17. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    PubMed

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature.

  18. Emperor penguin body surfaces cool below air temperature

    PubMed Central

    McCafferty, D. J.; Gilbert, C.; Thierry, A.-M.; Currie, J.; Le Maho, Y.; Ancel, A.

    2013-01-01

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40′ S 140° 01′ E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate. PMID:23466479

  19. Assessment methods for eating disorders and body image disorders.

    PubMed

    Túry, Ferenc; Güleç, Hayriye; Kohls, Elisabeth

    2010-12-01

    The growing interest in the treatment and research of eating disorders has stimulated the development of assessment methods, and there are now many questionnaires for evaluating behavioral and attitudinal characteristics of eating pathology. The present article sets out to review the assessment tools that are widely used in clinical practice and research. In particular, it covers self-report measures with summaries of their psychometric properties. It also presents diagnostic questionnaires based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, diagnostic criteria. The instruments described include screening questionnaires, measurement tools for specific eating disorder symptoms, measurement of quality of life in eating disorders, and some tools for the measurement of body image disorder, a common feature of eating disorders. There is also a discussion of distorting factors that decrease the authenticity of assessment tools. These problems arise from the definition of some constructs and from the phenomena of denial and concealment, which are frequent among eating-disordered individuals. The frequent co-occurrence of other psychopathological features (e.g., multiimpulsive symptoms) shows that other psychological phenomena should also be evaluated in line with the assessment of eating disorders.

  20. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    PubMed

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark.

  1. 21 CFR 26.67 - Suspension of listed conformity assessment bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Suspension of listed conformity assessment bodies... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.67 Suspension of listed conformity assessment bodies. The following procedures shall apply with regard to the suspension of a conformity assessment body (CAB)...

  2. Hibernation in black bears: independence of metabolic suppression from body temperature.

    PubMed

    Tøien, Øivind; Blake, John; Edgar, Dale M; Grahn, Dennis A; Heller, H Craig; Barnes, Brian M

    2011-02-18

    Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.

  3. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    PubMed

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-07

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.

  4. Low-cost compact thermal imaging sensors for body temperature measurement

    NASA Astrophysics Data System (ADS)

    Han, Myung-Soo; Han, Seok Man; Kim, Hyo Jin; Shin, Jae Chul; Ahn, Mi Sook; Kim, Hyung Won; Han, Yong Hee

    2013-06-01

    This paper presents a 32x32 microbolometer thermal imaging sensor for human body temperature measurement. Waferlevel vacuum packaging technology allows us to get a low cost and compact imaging sensor chip. The microbolometer uses V-W-O film as sensing material and ROIC has been designed 0.35-um CMOS process in UMC. A thermal image of a human face and a hand using f/1 lens convinces that it has a potential of human body temperature for commercial use.

  5. The Effect of Antipyretic Drugs on the Circadian Rhythm in Body Temperature of Rats. Revision 1,

    DTIC Science & Technology

    1986-01-01

    sodium salicylate, acetylsalicylic acid and indomethacin at 5:OOpm and at 9:OOam. Administration of these drugs had little effect on body temperature... acetylsalicylic acid , indomethacin, prostaglandins, body temperature -ori S___ f 1_____’_ 6 J;Dis Ms. No. R301-6 Rev. 1 3 INTRODUCTION A circadian...We administered the prostaglandin synthesis inhibitors sodium salicylate, acetylsalicylic acid and indomethacin at 5:00pm (during the rising phase

  6. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating.

    PubMed

    Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia

    2012-05-21

    Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

  7. Effects of room temperature on physiological and subjective responses during whole-body bathing, half-body bathing and showering.

    PubMed

    Hashiguchi, Nobuko; Ni, Furong; Tochihara, Yutaka

    2002-11-01

    The effects of bathroom thermal conditions on physiological and subjective responses were evaluated before, during, and after whole-body bath (W-bath), half-body bath (H-bath) and showering. The air temperature of the dressing room and bathroom was controlled at 10 degrees C, 17.5 degrees C, and 25 degrees C. Eight healthy males bathed for 10 min under nine conditions on separate days. The water temperature of the bathtub and shower was controlled at 40 degrees C and 41 degrees C, respectively. Rectal temperature (Tre), mean skin temperature (Tsk), blood pressure (BP), heart rate (HR), body weight loss and blood characteristics (hematocrit: Hct, hemoglobin: Hb) were evaluated. Also, thermal sensation (TS), thermal comfort (TC) and thermal acceptability (TA) were recorded. BP decreased rapidly during W-bath and H-bath compared to showering. HR during W-bath was significantly higher than for H-bath and showering (p < 0.01). The double products due to W-bath during bathing were also greater than for H-bath and showering (p < 0.05). There were no distinct differences in Hct and Hb among the nine conditions. However, significant differences in body weight loss were observed among the bathing methods: W-bath > H-bath > showering (p < 0.001). W-bath showed the largest increase in Tre and Tsk, followed by H-bath, and showering. Significant differences in Tre after bathing among the room temperatures were found only at H-bath. The changes in Tre after bathing for H-bath at 25 degrees C were similar to those for W-bath at 17.5 degrees C and 10 degrees C. TS and TC after bathing significantly differed for the three bathing methods at 17.5 degrees C and 10 degrees C (TS: p < 0.01 TC: p < 0.001). Especially, for showering, the largest number of subjects felt "cold" and "uncomfortable". Even though all of the subjects could accept the 10 degrees C condition after W-bath, such conditions were intolerable to half of them after showering. These results suggested that the

  8. Comparison of heating devices for maintaining body temperature in anesthetized laboratory rabbits (Oryctolagus cuniculus).

    PubMed

    Sikoski, Paul; Young, Richard W; Lockard, Mandy

    2007-05-01

    The purpose of this study was to compare the efficacy of various external heating devices in maintaining body temperature in anesthetized rabbits (Oryctolagus cuniculus). Rabbits were divided into 3 groups and placed on either no heating device, a circulating warm-water blanket, or a forced-air warming device. The animals underwent identical surgical procedures unrelated to the scope of the study, and body temperatures were monitored at 5-min intervals for a 45-min period. Results showed that rabbits had a statistically significant loss of body temperature during the procedure when no heating device was used, no significant loss in body temperature with the use of the forced air-warming device, and a minor increase in body temperature with the use of the circulating warm-water blanket. This study shows that external heating devices are necessary for maintenance of normal body temperature in rabbits under general anesthesia, and forced-air warming devices and circulating warm-water blankets are effective heating devices.

  9. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa.

    PubMed

    Chudecka, Monika; Lubkowska, Anna

    2016-01-01

    The drastic reduction in body weight observed in anorexia nervosa (AN) leads to various endocrine changes and consequently to disturbance in thermoregulation mechanisms and body temperature. Thermography allows for a noninvasive diagnosis of the distribution of skin surface temperatures, which is especially important for difficult patients such as women with AN, who are often very sensitive and difficult to treat. The main aim of this study was to measure the mean temperatures (Tmean ) of selected body areas in young women diagnosed with AN and identify those areas where the temperature differences were particularly significant between healthy women and them. Additionally, we determined the relationships between body mass index, body composition (especially subcutaneous and VFM) and the value of mean surface temperature (Tmean ) in AN woman. In the subjects with AN, Tmean of the abdomen, lower back and thighs were significantly higher than in the reference group, while Tmean of the hands were significantly lower. Among other things, analysis showed a significant negative correlation between Tmean of the abdomen, lower back and thighs, and the mass of subcutaneous and visceral fat. The lower Tmean of the hand was directly proportional to the reduced anthropomorphic parameters. The direct evaluation of body surface temperature distribution could provide clinical implications for the treatment of anorexic patients, including the potential use of thermotherapy in stimulating the circulatory system, especially in hypothermia, bradycardia and hypotension.

  10. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.

    PubMed

    Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus

    2003-04-01

    Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.

  11. The influence of metabolic heat production on body temperature of a small lizard, Anolis carolinensis.

    PubMed

    Brown, Richard P; Au, Timothy

    2009-06-01

    Little is known about the impact of increased metabolism on body temperatures of small ectotherms. We found that postprandial metabolic rates of 5 g Anolis carolinensis lizards were elevated by factorial increases of 2.3+/-1.0 (mean+/-S.E.) at 26 degrees C and 3.8+/-2.1 at 30 degrees C over their fasting rates. Cloacal body temperatures exceeded environmental temperatures by a small amount in fasted individuals (26 degrees C: 0.3+/-0.02 degrees C, 30 degrees C: 0.3+/-0.02 degrees C), and by a significantly larger amount in fed individuals (26 degrees C: 1.0+/-0.06 degrees C, 30 degrees C: 0.8+/-0.08 degrees C). We conclude that an increased metabolic rate due to specific dynamic action leads to a small but significant elevation of body temperature in this species. Comparisons with thermal increments reported for a large (750 g) varanid lizard suggest that body size has only a minor influence on body-air temperature differentials of ectotherms. This is consistent with theoretical predictions. Finally, endogenous heat production could help elevate body temperatures in the wild and therefore play a minor role in thermoregulation.

  12. Use of infrared thermography to assess the influence of high environmental temperature on rabbits.

    PubMed

    de Lima, V; Piles, M; Rafel, O; López-Béjar, M; Ramón, J; Velarde, A; Dalmau, A

    2013-10-01

    The aim of this work was to ascertain if infrared thermography (IRT) can be used on rabbits to assess differences in surface body temperature when they are subjected to two different environmental temperatures outside the comfort zone. Rabbits housed in room A were maintained at a temperature of below 30°C and rabbits in room B at a temperature of above 32°C for a year. Faeces were collected six times during the year to assess stress by means of faecal cortisol metabolites (FCM). The assessment of IRT was carried out to assess maximum and minimum temperatures on the eyes, nose and ears. FCM concentration was higher in room B than A, to confirm that stress conditions were higher in room B. Significant differences in IRT were found between the animals housed in both rooms. It was observed that it was more difficult for animals from room B to maintain a regular heat loss. Although all the body zones used to assess temperature with IRT gave statistical differences, the correlations found between the eyes, nose and ears were moderate, suggesting that they were giving different information. In addition, differences up to 3.36°C were found in the eye temperature of rabbits housed in the same room, with a clear effect of their position in relation to extractors and heating equipments. Therefore, IRT could be a good tool to assess heat stress in animals housed on typical rabbit farm buildings, giving a measure of how the animal is perceiving a combination of humidity, temperature and ventilation. Some face areas were better for analysing images. Minimum temperature on eyes and temperatures on nose are suggested to assess heat losses and critical areas of the farm for heat stress in rabbits.

  13. Seeing the body produces limb-specific modulation of skin temperature.

    PubMed

    Sadibolova, Renata; Longo, Matthew R

    2014-01-01

    Vision of the body, even when non-informative about stimulation, affects somatosensory processing. We investigated whether seeing the body also modulates autonomic control in the periphery by measuring skin temperature while manipulating vision. Using a mirror box, the skin temperature was measured from left hand dorsum while participants: (i) had the illusion of seeing their left hand, (ii) had the illusion of seeing an object at the same location or (iii) looked directly at their contralateral right hand. Skin temperature of the left hand increased when participants had the illusion of directly seeing that hand but not in the other two view conditions. In experiment 2, participants viewed directly their left or right hand, or the box while we recorded both hand dorsum temperatures. Temperature increased in the viewed hand but not the contralateral hand. These results show that seeing the body produces limb-specific modulation of thermal regulation.

  14. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers.

    PubMed

    Lee, Y; Bok, J D; Lee, H J; Lee, H G; Kim, D; Lee, I; Kang, S K; Choi, Y J

    2016-02-01

    Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean±standard deviation [SD], 37.1°C to 37.36°C±0.91°C to 1.02°C). STs are 1.39°C to 1.65°C lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below 36.5°C or 37°C, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below 36.5°C or 37°C resulting in a much improved mean±SD of 37.6°C±0.64°C or 37.8°C±0.55°C, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.

  15. Body temperature-related structural transitions of monotremal and human hemoglobin.

    PubMed

    Digel, I; Maggakis-Kelemen, Ch; Zerlin, K F; Linder, Pt; Kasischke, N; Kayser, P; Porst, D; Temiz Artmann, A; Artmann, G M

    2006-10-15

    In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature T(b) = 31-33 degrees C), and echidna (Tachyglossus aculeatus, body temperature T(b) = 32-33 degrees C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (R(h)) and fractional (normalized) change in the ellipticity (F(obs)) at 222 +/- 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25 degrees C to 45 degrees C. The existence of a structural transition of human hemoglobin at the critical temperature T(c) between 36-37 degrees C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at T(c). In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32-33 degrees C, which are close to the species' body temperature T(b). The data suggest that the correlation of the structural transition's critical temperature T(c) and the species' body temperature T(b) is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins.

  16. Radiation exposure and risk assessment for critical female body organs

    SciTech Connect

    Atwell, W.; Weyland, M.D.; Hardy, A.C. NASA, Johnson Space Center, Houston, TX )

    1991-07-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed. 13 refs.

  17. Assessing stream temperature response to environmental change

    NASA Astrophysics Data System (ADS)

    MacDonald, R. J.; Boon, S.; Byrne, J. M.

    2010-12-01

    Stream temperature controls aquatic ecosystem function by directly influencing water quality, ecosystem productivity, and the physiological functioning of aquatic organisms. To date, there are limited studies of the impacts of environmental disturbance on stream temperature, particularly on the eastern slopes of the Rocky Mountains. This region provides key habitat for native salmonid species such as westslope cutthroat trout (Oncorhynchus clarkii lewisi) and bull trout (Salvelinus confluentus), which are listed as ‘threatened’ and ‘species of special concern’, respectively. Increases in stream temperature could limit habitat availability, reduce competitive advantage, and potentially increase mortality rates for these native species. This study uses field data collected at high spatiotemporal resolution to develop a spatial stream temperature model that simulates the mass and energy balance of the stream system. Preliminary field results demonstrate the high spatial and temporal variability in processes governing stream temperature in three study stream reaches. Groundwater/surface water interactions, topographic setting, and local meteorological conditions all contribute in determining stream thermal regimes. This work discusses how these primary drivers of stream temperature can be incorporated into a physically based spatial model, and demonstrates how depending on the scale of interest, the temperature of a stream can be governed by very different contributing factors.

  18. Assessing temperature pattern projections made in 1989

    NASA Astrophysics Data System (ADS)

    Stouffer, Ronald J.; Manabe, Syukuro

    2017-03-01

    Successful projection of the distribution of surface temperature change increases our confidence in climate models. Here we evaluate projections of global warming from almost 30 years ago using the observations made during the past half century.

  19. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans.

    PubMed

    Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O; Fontana, Luigi

    2011-04-01

    Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7 ± 9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769 ± 348 kcal/d) than in the WD (2302 ± 668 kcal/d) and EX (2798 ± 760 kcal/d) groups (P < 0.0001). Mean 24-hour, day-time and night-time core body temperatures were all significantly lower in the CR group than in the WD and EX groups (P ≤ 0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging.

  20. Improvements in X-band transmitter phase stability through klystron body temperature regulation

    NASA Technical Reports Server (NTRS)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of waveguide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  1. Improvements in X-band transmitter phase stability through Klystron body temperature regulation

    NASA Technical Reports Server (NTRS)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of wave guide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  2. In utero heat stress increases postnatal core body temperature in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well-understood. Objectives were to characterize future temperature indices and bioenergetic markers in pigs originating from differing in utero...

  3. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.

    PubMed

    Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki

    2008-02-01

    We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.

  4. On Noise Assessment for Blended Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.

    2014-01-01

    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  5. Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis

    PubMed Central

    Qualls-Creekmore, Emily; Rezai-Zadeh, Kavon; Jiang, Yanyan; Berthoud, Hans-Rudolf; Morrison, Christopher D.; Derbenev, Andrei V.; Zsombok, Andrea

    2016-01-01

    The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRbPOA neurons) and modulate reproductive function. However, LepRbPOA neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRbPOA neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRbPOA neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRbPOA neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRbPOA neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRbPOA neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRbPOA neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study

  6. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    PubMed

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.

  7. Preference versus performance: body temperature of the intertidal snail Chlorostoma funebralis.

    PubMed

    Tepler, Sarah; Mach, Katharine; Denny, Mark

    2011-04-01

    Evolutionary theory predicts that, in variable environments, it is advantageous for ectothermic organisms to prefer a body temperature slightly below the physiological optimum. This theory works well for many terrestrial organisms but has not been tested for animals inhabiting the hypervariable physical environment of intertidal shores. In laboratory experiments, we allowed the intertidal snail Chlorostoma funebralis to position itself on a temperature gradient, then measured its thermal preference and determined an index of how its performance varied with temperature. Snails performed a biased random walk along the temperature gradient, which, contrary to expectations, caused them to aggregate where body temperature was 15 to 17 °C below their temperature of optimum performance and near the species' lower thermal limit. This "cold-biased" behavioral response may guide snails to refuges in shaded cracks and crevices, but potentially precludes C. funebralis from taking full advantage of its physiological capabilities.

  8. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    PubMed Central

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  9. Body Temperature and Mortality in Patients with Acute Respiratory Distress Syndrome

    PubMed Central

    Schell-Chaple, Hildy M.; Puntillo, Kathleen A.; Matthay, Michael A.; Liu, Kathleen D.

    2015-01-01

    Background Little is known about the relationship between body temperature and outcomes in patients with acute respiratory distress syndrome (ARDS). A better understanding of this relationship may provide evidence for fever suppression or warming interventions, which are commonly applied in practice. Objective To examine the relationship between body temperature and mortality in patients with ARDS. Methods Secondary analysis of body temperature and mortality using data from the ARDS Network Fluid and Catheter Treatment Trial (n =969). Body temperature at baseline and on study day 2, primary cause of ARDS, severity of illness, and 90-day mortality were analyzed by using multiple logistic regression. Results Mean baseline temperature was 37.5°C (SD, 1.1°C; range, 27.2°C-40.7°C). At baseline, fever (≥ 38.3°C) was present in 23% and hypothermia (< 36°C) in 5% of the patients. Body temperature was a significant predictor of 90-day mortality after primary cause of ARDS and score on the Acute Physiology and Chronic Health Evaluation III were adjusted for. Higher temperature was associated with decreased mortality: for every 1°C increase in baseline temperature, the odds of death decreased by 15% (odds ratio, 0.85; 95% CI, 0.73-0.98, P = .03). When patients were divided into 5 temperature groups, mortality was lower with higher temperature (P for trend=.02). Conclusions Early in ARDS, fever is associated with improved survival rates. Fever in the acute phase response to lung injury and its relationship to recovery may be an important factor in determining patients' outcome and warrants further study. PMID:25554550

  10. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.

    PubMed

    Dayananda, Buddhi; Ibargüengoytía, Nora; Whiting, Martin J; Webb, Jonathan K

    2017-04-01

    Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs ('selfish mother' hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness ('maternal manipulation hypothesis'), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35°C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0°C, Tset =27.8-30.5°C) than when they were non-pregnant (mean =26.2°C, Tset =23.7-28.7°C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant

  11. Assessing the Impact of Temperature on Grape Phenolic Metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study assessed the impact of fruit temperature on the phenolic metabolism of grape berries (Vitis vinifera L. cv. Merlot) grown under field conditions with controlled exposure to sunlight. Individual cluster temperatures were manipulated in situ. Diurnal temperature fluctuation was damped by da...

  12. Thermogenic alterations in the woman. II. Basal body, afternoon, and bedtime temperatures.

    PubMed

    Zuspan, K J; Zuspan, F P

    1974-10-15

    19 female college students aged 17-20 years volunteered to participate in an experiment whereby they took their temperatures on 1st rising, at 5 p.m., and at bedtime for a minimum of 1 complete ovulation cycle. 3 parallel curves were found with the afternoon temperature being .7 degrees Farenheit higher than the basal and .3 degrees higher than the bedtime temperature. Several graphs illustrate the curve patterns. It is concluded that either the afternoon or the evening temperature can be used instead of the rising (or basal body) temperature, with an adjustment of the correct amount.

  13. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    PubMed

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-10-13

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  14. Theoretical study on the inverse modeling of deep body temperature measurement.

    PubMed

    Huang, Ming; Chen, Wenxi

    2012-03-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation.

  15. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.

    PubMed

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-03-15

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.

  16. Body temperature of the parasitic wasp Pimpla turionellae (Hymenoptera) during host location by vibrational sounding.

    PubMed

    Kroder, Stefan; Samietz, Jörg; Stabentheiner, Anton; Dorn, Silvia

    2008-03-01

    The pupal parasitoid Pimpla turionellae (L.) uses self-produced vibrations transmitted on the plant substrate, so-called vibrational sounding, to locate immobile concealed pupal hosts. The wasps are able to use vibrational sounding reliably over a broad range of ambient temperatures and even show an increased signal frequency and intensity at low temperatures. The present study investigates how control of body temperature in the wasps by endothermic mechanisms may facilitate host location under changing thermal environments. Insect body temperature is measured with real-time IR thermography on plant-stem models at temperature treatments of 10, 18, 26 and 30 °C, whereas behaviour is recorded with respect to vibrational host location. The results reveal a low-level endothermy that likely interferes with vibrational sound production because it occurs only in nonsearching females. At the lowest temperature of 10 °C, the thoracic temperature is 1.15 °C warmer than the ambient surface temperature whereas, at the high temperatures of 26 and 30 ° C, the wasps cool down their thorax by 0.29 and 0.47 °C, respectively, and their head by 0.45 and 0.61 °C below ambient surface temperature. By contrast, regardless of ambient temperature, searching females always have a slightly elevated body temperature of at most 0.30 °C above the ambient surface temperature. Behavioural observations indicate that searching females interrupt host location more frequently at suboptimal temperatures, presumably due to the requirements of thermoregulation. It is assumed that both mechanisms, producing vibrations for host location and low-level endothermy, are located in the thorax. Endothermy by thoracic muscle work probably disturbs signal structure of vibrational sounding, so the processes cannot be used at the same time.

  17. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    PubMed

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers.

  18. Baclofen prevents MDMA-induced rise in core body temperature in rats.

    PubMed

    Bexis, Sotiria; Phillis, Benjamin D; Ong, Jennifer; White, Jason M; Irvine, Rodney J

    2004-04-09

    A number of deaths have been attributed to severe hyperthermia resulting from the ingestion of 3,4-methylenedioxymethamphetamine (MDMA). The mechanisms underlying these events are unclear. In an attempt to further advance our understanding of these mechanism the present study investigated the effects of the selective GABA(A) agonist muscimol and the GABA(B) agonist baclofen on MDMA-induced responses in the rat. Baclofen at 1 and 3 mg/kg and muscimol at 0.3 and 1 mg/kg administered alone had no effect on heart rate, core body temperature or spontaneous locomotor activity as measured by radiotelemetry. MDMA at 15 mg/kg produced a significant increase in heart rate, body temperature and locomotor activity (P < 0.005) which were unaffected by prior treatment with muscimol. In contrast, prior treatment with baclofen (3 mg/kg) resulted in MDMA causing a sustained lowering of body temperature (P < 0.05), with no effect on heart rate and a small transient delay in the increase in locomotor activity. Baclofen pretreatment (3 mg/kg) not only prolonged the time taken for animals to reach a core body temperature of 40 degrees C (P < 0.001), but also reduced the percentage of rats attaining a core body temperature of 40 degrees C. These data suggest that stimulation of GABA(B) receptors may provide a mechanism for the treatment of MDMA-induced hyperthermia.

  19. Nicotine-induced perturbations on heart rate, body temperature and locomotor activity daily rhythms in rats.

    PubMed

    Pelissier, A L; Gantenbein, M; Bruguerolle, B

    1998-08-01

    The aim of this study was to evaluate the influence of nicotine on the daily rhythms of heart rate, body temperature and locomotor activity in unrestrained rats by use of implanted radiotelemetry transmitters. The study was divided into three seven-day periods: a control period, a treatment period and a recovery period. The control period was used for baseline measurement of heart rate, body temperature and locomotor activity. During the treatment period three rats received nicotine (1 mg kg(-1), s.c.) at 0900 h. Three rats received saline under the same experimental conditions. Heart rate, body temperature and locomotor activity were continuously monitored and plotted every 10 min. During the three periods a power spectrum analysis was used to determine the dominant period of rhythmicity. If daily rhythms of heart rate, body temperature and locomotor activity were detected, the characteristics of these rhythms, i.e. the mesors, amplitudes and acrophases, were determined by cosinor analysis, expressed as means +/- s.e.m. and compared by analysis of variance. Nicotine did not suppress daily rhythmicity but induced decreases of amplitudes and phase-advances of acrophases for heart rate, body temperature and locomotor activity. These perturbations might result from the effects of nicotine on the suprachiasmatic nucleus, the hypothalamic clock that co-ordinates biological rhythms.

  20. Synergistic interaction between ketamine and magnesium in lowering body temperature in rats.

    PubMed

    Vučković, Sonja M; Savić Vujović, Katarina R; Srebro, Dragana P; Medić, Branislava M; Vučetić, Cedomir S; Prostran, Milan Š; Prostran, Milica Š

    2014-03-29

    A large body of evidence supports the existence of an endogenous glutamate system that tonically modulates body temperature via N-methyl-d-aspartate (NMDA) receptors. Ketamine and magnesium, both NMDA receptor antagonists, are known for their anesthetic, analgesic and anti-shivering properties. This study is aimed at evaluating the effects of ketamine and magnesium sulfate on body temperature in rats, and to determine the type of interaction between them. The body temperature was measured by insertion of a thermometer probe 5cm into the colon of unrestrained male Wistar rats (200-250g). Magnesium sulfate (5 and 60mg/kg, sc) showed influence neither on baseline, nor on morphine-evoked hyperthermic response. Subanesthetic doses of ketamine (5-30mg/kg, ip) given alone, produced significant dose-dependent reduction in both baseline colonic temperature and morphine-induced hyperthermia. Analysis of the log dose-response curves for the effects of ketamine and ketamine-magnesium sulfate combination on the baseline body temperature revealed synergistic interaction, and about 5.3 fold reduction in dosage of ketamine when the drugs were applied in fixed ratio (1:1) combinations. In addition, fixed low dose of magnesium sulfate (5mg/kg, sc) enhanced the temperature lowering effect of ketamine (1.25-10mg/kg, ip) on baseline body temperature and morphine-induced hyperthermia by factors of about 2.5 and 5.3, respectively. This study is the first to demonstrate the synergistic interaction between magnesium sulfate and ketamine in a whole animal study and its statistical confirmation. It is possible that the synergy between ketamine and magnesium may have clinical relevance.

  1. Trained vs untrained evaluator assessment of body condition score as a predictor of percent body fat in adult cats.

    PubMed

    Shoveller, Anna K; DiGennaro, Joe; Lanman, Cynthia; Spangler, Dawn

    2014-12-01

    Body condition scoring (BCS) provides a readily available technique that can be used by both veterinary professionals and owners to assess the body condition of cats, and diagnose overweight or underweight conditions. The objective of this study was to evaluate a five-point BCS system with half-point delineations using dual-energy x-ray absorptiometry (DXA). Four evaluators (a veterinarian, veterinary technician, trained scorer and untrained scorer) assessed 133 neutered adult cats. For all scorers, BCS score was more strongly correlated with percent body fat than with body weight. Percent body fat increased by approximately 7% within each step increase in BCS. The veterinarian had the strongest correlation coefficient between BCS and percent fat (r = 0.80). Mean body fat in cats classified as being in ideal body condition was 12 and 19%, for 3.0 and 3.5 BCS, respectively. Within BCS category, male cats were significantly heavier in body weight than females within the same assigned BCS category. However, DXA-measured percent body fat did not differ significantly between male and female cats within BCS category, as assigned by the veterinarian (P >0.13). Conversely, when assessed by others, mean percent body fat within BCS category was lower in males than females for cats classified as being overweight (BCS >4.0). The results of this study show that using a BCS system that has been validated within a range of normal weight to moderately overweight cats can help to differentiate between lean cats and cats that may not be excessively overweight, but that still carry a higher proportion of body fat.

  2. The temperature of unheated bodies in a high-speed gas stream

    NASA Technical Reports Server (NTRS)

    Eckert, E; Weise, W

    1941-01-01

    The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.

  3. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    PubMed

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  4. Effects of an electric blanket on sleep stages and body temperature in young men.

    PubMed

    Okamoto-Mizuno, Kazue; Tsuzuki, Kazuyo; Ohshiro, Yasushi; Mizuno, Koh

    2005-06-10

    The aim of this study was to investigate any effects of electric blanket on sleep stages and body temperature. Nine male subjects slept under two conditions: using the electric blanket (HB); and not using the electric blanket (C). The ambient condition was controlled at 3 degrees C relative humidity 50-80%. Electroencephalography, electrooculography (EOG) and electromyography, rectal temperature, skin temperature and microclimate temperature and humidity were recorded continuously through the night. Body weight was measured before and after sleep. The amount of stage 1 and number of stage 1 and rapid eye movement sleep decreased in HB compared to C. No significant difference was observed in other sleep stages. Rectal temperature was higher in HB compared to C. The thigh, leg and foot skin temperature was higher in HB than C. The microclimate temperature of the foot area was higher in HB compared to C. No significant difference was observed in whole body sweat loss between the conditions. These results suggest that use of an electric blanket under low ambient temperature may decrease cold stress to support sleep stability and thermoregulation during sleep.

  5. What do foraging wasps optimize in a variable environment, energy investment or body temperature?

    PubMed

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2015-11-01

    Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.

  6. Locatable-Body Temperature Monitoring Based on Semi-Active UHF RFID Tags

    PubMed Central

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-01-01

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program. PMID:24675759

  7. Importance of behavior and morphological traits for controlling body temperature in littorinid snails.

    PubMed

    Miller, Luke P; Denny, Mark W

    2011-06-01

    For organisms living in the intertidal zone, temperature is an important selective agent that can shape species distributions and drive phenotypic variation among populations. Littorinid snails, which occupy the upper limits of rocky shores and estuaries worldwide, often experience extreme high temperatures and prolonged aerial emersion during low tides, yet their robust physiology--coupled with morphological and behavioral traits--permits these gastropods to persist and exert strong grazing control over algal communities. We use a mechanistic heat-budget model to compare the effects of behavioral and morphological traits on the body temperatures of five species of littorinid snails under natural weather conditions. Model predictions and field experiments indicate that, for all five species, the relative contribution of shell color or sculpturing to temperature regulation is small, on the order of 0.2-2 °C, while behavioral choices such as removing the foot from the substratum or reorienting the shell can lower body temperatures by 2-4 °C on average. Temperatures in central California rarely exceeded the thermal tolerance limits of the local littorinid species during the study period, but at sites where snails are regularly exposed to extreme high temperatures, the functional significance of the tested traits may be important. The mechanistic approach used here provides the ability to gauge the importance of behavioral and morphological traits for controlling body temperature as species approach their physiological thresholds.

  8. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain.

    PubMed

    Granger, Jill I; Ratti, Pietro-Luca; Datta, Subhash C; Raymond, Richard M; Opp, Mark R

    2013-07-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24-48 h. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6h to 72 h post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for

  9. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain

    PubMed Central

    Granger, Jill I.; Ratti, Pietro-Luca; Datta, Subhash C.; Raymond, Richard M.; Opp, Mark R.

    2012-01-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24 – 48 hours. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6–72 hour post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are

  10. Changes in cutaneous and body temperature during and after conditioned fear to context in the rat.

    PubMed

    Vianna, Daniel M L; Carrive, Pascal

    2005-05-01

    Infrared thermography was used to image changes in cutaneous temperature during a conditioned fear response to context. Changes in heart rate, arterial pressure, activity and body (i.p.) temperature were recorded at the same time by radio-telemetry, in addition to freezing immobility. A marked drop in tail and paws temperature (-5.3 and -7.5 degrees C, respectively, down to room temperature), which lasted for the entire duration of the response (30 min), was observed in fear-conditioned rats. In sham-conditioned rats, the drop was on average half the magnitude and duration. In contrast, temperature of the eye, head and back increased (between + 0.8 and + 1.5 degrees C), with no difference between the two groups of rats. There was a similar increase in body temperature although it was slightly higher and delayed in the fear-conditioned animals. Finally, ending of the fear response was associated with a gradual decrease in body temperature and a rebound increase in the temperature of the tail (+ 3.3 degrees C above baseline). This study shows that fear, and to some extent arousal, evokes a strong cutaneous vasoconstriction that is restricted to the tail and paws. This regionally specific reduction in blood flow may be part of a preparatory response to a possible fight and flight to reduce blood loss in the most exposed parts of the rat's body in case of injury. The data also show that the tail is the main part of the body used for dissipating internal heat accumulated during fear once the animal has returned to a safe environment.

  11. Mean body temperature does not modulate eccrine sweat rate during upright tilt.

    PubMed

    Wilson, Thad E; Cui, Jian; Crandall, Craig G

    2005-04-01

    Conflicting reports exist about the role of baroreflexes in efferent control of eccrine sweat rate. These conflicting reports may be due to differing mean body temperatures between studies. The purpose of this project was to test the hypothesis that mean body temperature modulates the effect of head-up tilt on sweat rate and skin sympathetic nerve activity (SSNA). To address this question, mean body temperature (0.9.internal temperature + 0.1.mean skin temperature), SSNA (microneurography of peroneal nerve, n = 8), and sweat rate (from an area innervated by the peroneal nerve and from two forearm sites, one perfused with neostigmine to augment sweating at lower mean body temperatures and the second with the vehicle, n = 12) were measured in 13 subjects during multiple 30 degrees head-up tilts during whole body heating. At the end of the heat stress, mean body temperature (36.8 +/- 0.1 to 38.0 +/- 0.1 degrees C) and sweat rate at all sites were significantly elevated. No significant correlations were observed between mean body temperature and the change in SSNA during head-up tilt (r = 0.07; P = 0.62), sweating within the innervated area (r = 0.06; P = 0.56), sweating at the neostigmine treated site (r = 0.04; P = 0.69), or sweating at the control site (r = 0.01; P = 0.94). Also, for each tilt throughout the heat stress, there were no significant differences in sweat rate (final tilt sweat rates were 0.69 +/- 0.11 and 0.68 +/- 0.11 mg.cm(-2).min(-1) within the innervated area; 1.04 +/- 0.16 and 1.06 +/- 0.16 mg.cm(-2).min(-1) at the neostigmine-treated site; and 0.85 +/- 0.15 and 0.85 +/- 0.15 mg.cm(-2).min(-1) at the control site, for supine and tilt, respectively). Hence, these data indicate that mean body temperature does not modulate eccrine sweat rate during baroreceptor unloading induced via 30 degrees head-up tilt.

  12. Independent Orbiter Assessment (IOA): Analysis of the body flap subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Body Flap (BF) subsystem hardware are documented. The BF is a large aerosurface located at the trailing edge of the lower aft fuselage of the Orbiter. The proper function of the BF is essential during the dynamic flight phases of ascent and entry. During the ascent phase of flight, the BF trails in a fixed position. For entry, the BF provides elevon load relief, trim control, and acts as a heat shield for the main engines. Specifically, the BF hardware comprises the following components: Power Drive Unit (PDU), rotary actuators, and torque tubes. The IOA analysis process utilized available BF hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 35 failure modes analyzed, 19 were determined to be PCIs.

  13. Effect of age on body sway assessed by computerized posturography.

    PubMed

    Fujita, Takuo; Nakamura, Shoji; Ohue, Mutsumi; Fujii, Yoshio; Miyauchi, Akimitsu; Takagi, Yasuyuki; Tsugeno, Hirofumi

    2005-01-01

    The swaying and postural instability frequently seen in elderly subjects had not been analyzed quantitatively in detail until the introduction of computerized posturography. In order to assess the changes of body sway with aging, we performed computerized posturography in 144 subjects (51 men and 93 women, between the ages of 22 and 88 years) without specific neurological or metabolic disorders. The total and timed track length of the center of gravity, reflecting the distance of sway, increased with advancing age, with a highly significant positive correlation, without marked sex differences. The total area covered by the track of the center of gravity (expressing the extent of sway) also showed a similar tendency. Track density per unit area, expressing the efficiency of postural control, in contrast, decreased with age, showing a significant negative correlation with age, but only when the subjects had their eyes open; this decrease did not occur when they had their eyes closed. The Romberg ratio, an index of exacerbation of sway on eye closure, showed little change with a tendency for slight alleviation of sway and improvement in the efficiency of its control. Computerized posturography appears to be a useful tool with which to analyze the mechanism of swaying associated with old age.

  14. Analysis of the cold-water restraint procedure in gastric ulceration and body temperature.

    PubMed

    Landeira-Fernandez, J

    2004-10-15

    Gastric mucosal injury induced by body restraint can be enhanced when combined with cold-water immersion. Based on this fact, the present study had two main purposes: (i) to examine the contribution of each of these two forms of stress on the development of gastric ulceration and regulation of body temperature and (ii) to investigate the importance of the animal's consciousness on gastric ulceration induced by the cold-water restraint. Independent groups of animals were exposed for 3 h to one of the following stressful treatments: body restraint plus cold-water (20+1 degrees C) immersion, body restraint alone or cold-water immersion alone. Control animals were not exposed to any form of stress. Half of the animals submitted to each of the four treatments were anesthetized with thionembutal (35 mg/kg), whereas the other half was injected with saline. Results indicated that body restraint alone was not sufficient to induce gastric ulceration or changes in body temperature. On the other hand, cold-water exposure, either alone or in conjunction with body restraint, induced the same amount of stomach erosions and hypothermia. Therefore, it appears that body restraint does not play an important role on gastric ulceration induced by the cold-water restraint procedure. Present results also indicated that conscious and anesthetized animals immersed in cold water presented robust gastric ulceration and a marked drop in body temperature. However, conscious animals developed more severe gastric damage in comparison to anesthetized animals although both groups presented the same degree of hypothermia. These findings suggest that hypothermia resulting from cold-water exposure has a deleterious effect on gastric ulceration but the animal's conscious activity during the cold-water immersion increases the severity of gastric mucosal damage. It is concluded that cold-water restraint is a useful procedure for the study of the underlying mechanisms involved in stress

  15. Elevation of body temperature is an essential factor for exercise-increased extracellular heat shock protein 72 level in rat plasma.

    PubMed

    Ogura, Yuji; Naito, Hisashi; Akin, Senay; Ichinoseki-Sekine, Noriko; Kurosaka, Mitsutoshi; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Katamoto, Shizuo; Demirel, Haydar A

    2008-05-01

    This study examined whether the exercise-increased extracellular heat shock protein 72 (eHsp72) levels in rats was associated with body temperature elevation during exercise. In all, 26 female Sprague-Dawley rats (3 mo old) were assigned randomly to control (CON; n = 8), exercise under warm temperature (WEx; n = 9), or exercise under cold temperature (CEx; n = 9). The WEx and CEx were trained at 25 degrees C or 4 degrees C, respectively, for nine days using a treadmill. Before and immediately after the final exercise bout, the colonic temperatures were measured as an index of body temperature. The animals were subsequently anesthetized, and blood samples were collected and centrifuged. Plasma samples were obtained to assess their eHsp72 levels. Only the colonic temperature in WEx was increased significantly (P < 0.05) by exercise. The eHsp72 level in WEx was significantly higher (P < 0.05) than that of either the CON or CEx. However, no significant difference was found between CON and CEx. Regression analyses revealed that the eHsp72 level increased as a function of the body temperature. In another experiment, the eHsp72 level of animals with body temperature that was passively elevated through similar kinetics to those of the exercise was studied. Results of this experiment showed that mere body temperature elevation was insufficient to induce eHsp72 responses. Collectively, our results suggest that body temperature elevation during exercise is important for induction of exercise-increased eHsp72. In addition, the possible role of body temperature elevation is displayed when the exercise stressor is combined with it.

  16. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    PubMed

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  17. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    PubMed Central

    Miller, Gabriel A.; Clissold, Fiona J.; Mayntz, David; Simpson, Stephen J.

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization. PMID:19625322

  18. Energy intake and the circadian rhythm of core body temperature in sheep

    PubMed Central

    Maloney, Shane K; Meyer, Leith C R; Blache, D; Fuller, A

    2013-01-01

    We tested the hypothesis that different levels of energy intake would alter the circadian rhythm of core body temperature (Tc) in ovariectomized sheep. We measured arterial blood temperature every 5 min while ten sheep were offered a maintenance diet, 70% of maintenance requirements, or 150% of maintenance requirements, for 12 days, and later fasted for 2 days. The rhythmicity of Tc was analyzed for its dominant period and then a least-squares cosine wave was fitted to the data that generated a mesor, amplitude, and acrophase for the rhythm. When energy intake was less than maintenance requirements we observed a significant decrease in the mesor and minimum, and a significant increase in the amplitude and goodness of fit, of the body temperature rhythm. Fasting also resulted in a decrease in the maximum of the body temperature rhythm. Feeding the sheep to excess did not affect the mesor or maximum of the rhythm, but did result in a decrease in the goodness of fit of the rhythm in those sheep that consumed more energy than when they were on the maintenance diet, indicating that circadian rhythmicity was decreased when energy intake increased. Our data indicate that modulation of the circadian rhythm of body temperature, characterized by inactive-phase hypothermia, occurs when energy intake is reduced. The response may be an adaptation to energy imbalance in large mammals. PMID:24303185

  19. A Pilot Study to Examine Maturation of Body Temperature Control in Preterm Infants

    PubMed Central

    Knobel, Robin B.; Levy, Janet; Katz, Laurence; Guenther, Bob; Holditch-Davis, Diane

    2013-01-01

    Objective To test instrumentation and develop analytic models to use in a larger study to examine developmental trajectories of body temperature and peripheral perfusion from birth in extremely low birth weight (EBLW) infants. Design A case study design. Setting The study took place in a level four neonatal intensive care unit (NICU) in North Carolina. Participants Four ELBW infants, less than 29 weeks gestational age at birth. Methods Physiologic data were measured every minute for the first 5 days of life: peripheral perfusion using perfusion index by Masimo and body temperature using thermistors. Body temperature was also measured using infrared thermal imaging. Stimulation and care events were recorded over the first 5 days using video which was coded with Noldus Observer software. Novel analytical models using the state space approach to time series analysis were developed to explore maturation of neural control over central and peripheral body temperature. Results/Conclusion Results from this pilot study confirmed the feasibility of using multiple instruments to measure temperature and perfusion in ELBW infants. This approach added rich data to our case study design and set a clinical context with which to interpret longitudinal physiological data. PMID:24004312

  20. MORPHOLOGICAL ASSESSMENT OF NATIVE MALE SUBJECTS' THYROID BODY IN THE REPUBLIC SAKHA (YAKUTIA) IN DIFFERENT SEASONS.

    PubMed

    Egorova, A; Garmayeva, D

    2015-01-01

    Morphological analysis of macro-, microstructures of native male subjects' thyroid gland in the Republic Sakha (Yakutia) in different seasons has been conducted. Macromorphometric indicators of native male subjects' thyroid gland (specific weight, total capacity, linear indicators were specified in summer and winter seasons. Micromorphometric characteristics of structural components of native male subjects' thyroid gland tissue was given in relation to different seasons. In this case native male subjects' thyroid gland was as curtained as normoplastic mixed type of structure, indicators of outer and inner thyroid gland follicles diameter in winter period were slightly bigger than in summer period. The same tendency was observed when thyroid gland follicular-colloidal index was calculated. On the data obtained the attempt to assess season temperature factor impact on the thyroid gland structural indicators were made. This assessment might be used as morphological equivalent of the body adaptation processes in northern regions.

  1. Margins in high temperature leak-before-break assessments

    SciTech Connect

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  2. Changes in body surface temperature during speed endurance work-out in highly-trained male sprinters

    NASA Astrophysics Data System (ADS)

    Korman, Paweł; Straburzyńska-Lupa, Anna; Kusy, Krzysztof; Kantanista, Adam; Zieliński, Jacek

    2016-09-01

    The mechanism of thermoregulatory adaptation to exercise cannot yet be fully explained, however, infrared thermography (IRT) seems to have potential for monitoring physiological changes during exercise and training. It is a non-contact and easy to use technology to measure heat radiation from the body surface. The objective of the study was to examine the temperature changes over time on lower limbs in sprinters during speed endurance training session. Eight sprinters, specialized in distances 100 m and 200 m, aged 21-29 years, members of the Polish national team, were evaluated during an outdoor speed endurance work-out. Their track session comprised of warm-up, specific drills for sprinting technique, and speed endurance exercise. The surface temperature of lower limbs was measured and thermal images were taken using infrared camera after each part of the session. The speed endurance training session brought about specific time course of body surface (legs) temperature. The warm-up induced a significant decline in surface temperature by ∼2.5 °C, measured both on the front and back of lower limbs (p < 0.001), followed by a temperature stabilization until the end of the session. No significant asymmetry between the front and back sides of legs was observed. Body surface temperature may help identify an individual optimal time to terminate warm up and start the main part of the training session. It may also be useful for the assessment of muscle activity symmetry in cyclical activities, such as sprint running. This is of particular relevance when a training session is performed outdoors in changeable weather conditions.

  3. Risperidone alters food intake, core body temperature, and locomotor activity in mice.

    PubMed

    Cope, Mark B; Li, Xingsheng; Jumbo-Lucioni, Patricia; DiCostanzo, Catherine A; Jamison, Wendi G; Kesterson, Robert A; Allison, David B; Nagy, Tim R

    2009-03-02

    Risperidone induces significant weight gain in female mice; however, the underlying mechanisms related to this effect are unknown. We investigated the effects of risperidone on locomotor activity, core body temperature, and uncoupling protein (UCP) and hypothalamic orexin mRNA expression. Female C57BL/6J mice were acclimated to individual housing and randomly assigned to either risperidone (4 mg/kg BW day) or placebo (PLA). Activity and body temperature were measured over 48-hour periods twice a week for 3 weeks. Food intake and body weights were measured weekly. UCP1 (BAT), UCP3 (gastrocnemius), and orexin (hypothalamus) mRNA expressions were measured using RT-PCR. Risperidone-treated mice consumed more food (p=0.050) and gained more weight (p=0.0001) than PLA-treated mice after 3 weeks. During the initial 2 days of treatment, there was an acute effect of treatment on activity (p=0.046), but not body temperature (p=0.290). During 3 weeks of treatment, average core body temperatures were higher in risperidone-treated mice compared to controls during the light phase (p=0.0001), and tended to be higher during the dark phase (p=0.057). Risperidone-treated mice exhibited lower activity levels than controls during the dark phase (p=0.006); there were no differences in activity during the light phase (p=0.47). UCP1 (p<0.01) and UCP3 (p<0.05) mRNA expressions were greater in risperidone-treated mice compared to controls, whereas, orexin mRNA expression was lower in risperidone-treated mice (p<0.01). These results suggest that risperidone-induced weight gain in mice is a consequence of increased energy intake and reduced activity, while the elevation in body temperature may be a result of thermogenic effect of food intake and elevated UCP1, UCP3, and a reduced hypothalamic orexin expression.

  4. Internal Body Temperatures of an Overwintering Adult Terrapene carolina (Eastern Box Turtle)

    DOE PAGES

    Burke, Russell L.; Calle, Paul P.; Figueras, Miranda P.; ...

    2016-09-01

    Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 °C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium’s substrate may have protected this turtle from the very cold conditions.

  5. Internal Body Temperatures of an Overwintering Adult Terrapene carolina (Eastern Box Turtle)

    SciTech Connect

    Burke, Russell L.; Calle, Paul P.; Figueras, Miranda P.; Green, Timothy M.

    2016-09-01

    Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 °C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium’s substrate may have protected this turtle from the very cold conditions.

  6. Thermal regime and temperature stresses in bodies during thermoradiational heating. [application of perturbation method

    NASA Technical Reports Server (NTRS)

    Chistopyanova, N. V.; Chumakov, V. L.

    1974-01-01

    An approach is developed to the application of the perturbation method for the solution of problems with essential external nonlinearities, based on identification in the boundary condition of a small nonlinear complex which is considered a perturbing function. The solutions obtained in the first approximation with error of 1 to 2% in calculating the unsteady temperature fields are then used to determine the temperature stresses and deformations in solid bodies of classical form.

  7. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    PubMed

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  8. Biophysical Assessment and Predicted Thermophysiologic Effects of Body Armor

    PubMed Central

    Potter, Adam W.; Gonzalez, Julio A.; Karis, Anthony J.; Xu, Xiaojiang

    2015-01-01

    Introduction Military personnel are often required to wear ballistic protection in order to defend against enemies. However, this added protection increases mass carried and imposes additional thermal burden on the individual. Body armor (BA) is known to reduce combat casualties, but the effects of BA mass and insulation on the physical performance of soldiers are less well documented. Until recently, the emphasis has been increasing personal protection, with little consideration of the adverse impacts on human performance. Objective The purpose of this work was to use sweating thermal manikin and mathematical modeling techniques to quantify the tradeoff between increased BA protection, the accompanying mass, and thermal effects on human performance. Methods Using a sweating thermal manikin, total insulation (IT, clo) and vapor permeability indexes (im) were measured for a baseline clothing ensemble with and without one of seven increasingly protective U.S. Army BA configurations. Using mathematical modeling, predictions were made of thermal impact on humans wearing each configuration while working in hot/dry (desert), hot/humid (jungle), and temperate environmental conditions. Results In nearly still air (0.4 m/s), IT ranged from 1.57 to 1.63 clo and im from 0.35 to 0.42 for the seven BA conditions, compared to IT and im values of 1.37 clo and 0.45 respectively, for the baseline condition (no BA). Conclusion Biophysical assessments and predictive modeling show a quantifiable relationship exists among increased protection and increased thermal burden and decreased work capacity. This approach enables quantitative analysis of the tradeoffs between ballistic protection, thermal-work strain, and physical work performance. PMID:26200906

  9. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment

    NASA Astrophysics Data System (ADS)

    Höppe, P.

    With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.

  10. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater.

    PubMed

    Dowd, W Wesley; Somero, George N

    2013-02-01

    Coping with environmental stress may involve combinations of behavioral and physiological responses. We examined potential interactions between adult mussels' simple behavioral repertoire - opening/closing of the shell valves - and thermal stress physiology in common-gardened individuals of three Mytilus congeners found on the West Coast of North America: two native species (M. californianus and M. trossulus) and one invasive species from the Mediterranean (M. galloprovincialis). We first continuously monitored valve behavior over three consecutive days on which body temperatures were gradually increased, either in air or in seawater. A temperature threshold effect was evident between 25 and 33°C in several behavioral measures. Mussels tended to spend much less time with the valves in a sealed position following exposure to 33°C body temperature, especially when exposed in air. This behavior could not be explained by decreases in adductor muscle glycogen (stores of this metabolic fuel actually increased in some scenarios), impacts of forced valve sealing on long-term survival (none observed in a second experiment), or loss of contractile function in the adductor muscles (individuals exhibited as many or more valve adduction movements following elevated body temperature compared with controls). We hypothesize that this reduced propensity to seal the valves following thermal extremes represents avoidance of hypoxia-reoxygenation cycles and concomitant oxidative stress. We further conjecture that prolonged valve gaping following episodes of elevated body temperature may have important ecological consequences by affecting species interactions. We then examined survival over a 90 day period following exposure to elevated body temperature and/or emersion, observing ongoing mortality throughout this monitoring period. Survival varied significantly among species (M. trossulus had the lowest survival) and among experimental contexts (survival was lowest after experiencing

  11. The circadian rhythm of body core temperature (CRT) is normal in patient with congenital generalized anhidrosis.

    PubMed

    Cevoli, Sabina; Pierangeli, Giulia; Magnifico, Fabiola; Bonavina, Giuseppe; Barletta, Giorgio; Candela, Carmen; Montagna, Pasquale; Cortelli, Pietro

    2002-06-01

    The temperature of the human body is not constant during the day, and is related to a double modulation of both homeostatic and circadian processes. The circadian rhythm of body core temperature (CRT) is known to depend on the central mechanism involved in thermoregulatory variations. The role of sweating in the nocturnal fall of body core temperature (BcT) is not clear. We evaluated the CRT in a 45-year-old female with a lack of sweating since birth because of congenital generalized anhidrosis. She referred episodes of heat intolerance when ambient temperature was around 35 degrees C. Skin biopsies of both forearms and left axilla revealed atrophy and morphologic changes of eccrine glands. Neurological examination, nerve conduction studies, sympathetic skin response and cardiovascular reflex tests were normal. The study of CRT was performed by monitoring rectal temperature continuously in controlled conditions (ambient temperature 24 +/- 1 degrees C and humidity 40-50% in a light-dark schedule). The rhythmometric analysis showed normal 24-hour fluctuations. This case represents an "experiment of nature"demonstrating that the physiological nocturnal fall of BcT is independent of sweating.

  12. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  13. Relations between the development of patterns of sleeping heart rate and body temperature in infants.

    PubMed

    Petersen, S A; Pratt, C; Wailoo, M P

    2001-09-01

    Overnight patterns of rectal temperature and heart rate were recorded from 119 normal infants at weekly intervals from 7 to about 16 weeks of age. All data were collected in the infants' own homes. As previously reported, different infants developed an adult-like night time rectal temperature pattern abruptly at different ages. When heart rate data were collated by age, there was an apparently gradual fall in sleeping heart rate from 7 to about 14 weeks of age. This was, however, an artefact of data collation. Individual infants showed abrupt falls in heart rate at the time that the adult-like body temperature pattern appeared, but this occurred at different ages in different babies, so when data were collated cross sectionally, an apparently gradual fall resulted. The relation between the developmental changes in sleeping heart rate and rectal temperature was different in boys and girls, with girls showing a more abrupt and greater change in heart rate at the time of development of the adult-like body temperature pattern. Infants whose parents smoked had significantly lower heart rates once the adult-like body temperature pattern had appeared.

  14. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    PubMed

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  15. Kangen-karyu raises surface body temperature through oxidative stress modification

    PubMed Central

    Hirayama, Aki; Okamoto, Takuya; Kimura, Satomi; Nagano, Yumiko; Matsui, Hirofumi; Tomita, Tsutomu; Oowada, Shigeru; Aoyagi, Kazumasa

    2016-01-01

    Kangen-karyu, a prescription containing six herbs, has been shown to achieve its pharmacological effect through oxidative stress-dependent pathways in animal models. The aim of this study is to investigate the relationship between the antioxidative effect and pharmacological mechanisms of Kangen-karyu, specifically its body temperature elevating effect in humans. Healthy human volunteers, age 35 ± 15 years old, were enrolled in this study. Surface body temperature, serum nitrite, reactive oxygen species (ROS) scavenging activities, and inflammatory cytokines were investigated before and 120 min after Kangen-karyu oral intake. Kangen-karyu significantly increased the surface-body temperature of the entire body; this effect was more remarkable in the upper body and continued for more than 120 min. Accompanying this therapeutic effect, serum nitrite levels were increased 120 min after oral administration. Serum ROS scavenging activities were enhanced against singlet oxygen and were concomitantly decreased against the alkoxyl radical. Serum nitrite levels and superoxide scavenging activities were positively correlated, suggesting that Kangen-karyu affects the O2•−-NO balance in vivo. Kangen-karyu had no effect on IL-6, TNF-α and adiponectin levels. These results indicate that the therapeutic effect of Kangen-karyu is achieved through NO- and ROS-dependent mechanisms. Further, this mechanism is not limited to ROS production, but includes ROS-ROS or ROS-NO interactions. PMID:27257340

  16. Assessment of the clumped isotope composition of fossil bone carbonate as a recorder of subsurface temperatures

    NASA Astrophysics Data System (ADS)

    Suarez, Marina B.; Passey, Benjamin H.

    2014-09-01

    Bone is susceptible to early diagenesis, and its carbon and oxygen isotopic compositions have been suggested to reflect conditions in the soil environment and shallow subsurface during fossilization. This implies open-system recrystallization involving mass exchange of carbon and oxygen among bioapatite, soil water, and DIC. Such recrystallization would also redistribute isotopic clumping (including 13C-18O bonds), leading to the possibility that the carbonate clumped isotope compositions of fossil bone record ground temperature during early diagenesis. We assess this possibility by studying Quaternary mammalian fossil bone from subtropical to polar latitudes: if recrystallization is early and pervasive, clumped isotope derived temperatures, T(Δ47), should closely mirror latitudinal gradients in ground temperature. Excluding results from a mummified specimen yielding T(Δ47) = 38 °C (that is, indistinguishable from mammalian body temperature), we find that T(Δ47) values are intermediate between mammalian body temperature and ground temperature, suggesting partial recrystallization of bone carbonate. XRD analyses show that the nature and extent of diagenesis varies among the samples and does not relate in a straightforward manner to T(Δ47). No clear correlation exists between T(Δ47) and mean annual temperature or mean warm season temperature. Furthermore, bone tends to retain the 18O-enriched signature of body water, suggesting incomplete oxygen isotope exchange with meteoric waters. Incomplete carbon and oxygen isotope exchange between bone carbonate and soil waters is also indicated for a set of late Miocene bone-enamel pairs from a sequence of stacked paleosols in northern China. Analysis of bone as old as Early Cretaceous shows that bone carbonate is susceptible to later diagenesis at elevated burial temperatures, although T(Δ47) does not closely conform to maximum burial temperature, again suggesting partial recrystallization, or recrystallization during

  17. Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis

    PubMed Central

    WU, Yu-Nan; Lin, Lin; XIAO, Yu-Chao; Zhou, Li-Meng; WU, Meng-Si; Zhang, Hui-Ying; LIU, Jin-Song

    2014-01-01

    Chinese bulbuls (Pycnonotus sinensis) are small passerine birds that inhabit areas of central, southern and eastern China. Previous observations suggest that free-living individuals of this species may change their food intake in response to seasonal changes in ambient temperature. In the present study, we randomly assigned Chinese bulbuls to either a 30 ℃ or 10 ℃ group, and measured their body mass (BM), body temperature, gross energy intake (GEI), digestible energy intake (DEI), and the length and mass of their digestive tracts over 28 days of acclimation at these temperatures. As predicted, birds in the 30 ℃ group had lower body mass, GEI and DEI relative to those in the 10 ℃ group. The length and mass of the digestive tract was also lower in the 30 ℃ group and trends in these parameters were positively correlated with BM, GEI and DEI. These results suggest that Chinese bulbuls reduced their absolute energy demands at relatively high temperatures by decreasing their body mass, GEI and DEI, and digestive tract size. PMID:24470452

  18. Software tools for data modelling and processing of human body temperature circadian dynamics.

    PubMed

    Petrova, Elena S; Afanasova, Anastasia I

    2015-01-01

    This paper is presenting a software development for simulating and processing thermometry data. The motivation of this research is the miniaturization of actuators attached to human body which allow frequent temperature measurements and improve the medical diagnosis procedures related to circadian dynamics.

  19. Development of a new method for the noninvasive measurement of deep body temperature without a heater.

    PubMed

    Kitamura, Kei-Ichiro; Zhu, Xin; Chen, Wenxi; Nemoto, Tetsu

    2010-01-01

    The conventional zero-heat-flow thermometer, which measures the deep body temperature from the skin surface, is widely used at present. However, this thermometer requires considerable electricity to power the electric heater that compensates for heat loss from the probe; thus, AC power is indispensable for its use. Therefore, this conventional thermometer is inconvenient for unconstrained monitoring. We have developed a new dual-heat-flux method that can measure the deep body temperature from the skin surface without a heater. Our method is convenient for unconstrained and long-term measurement because the instrument is driven by a battery and its design promotes energy conservation. Its probe consists of dual-heat-flow channels with different thermal resistances, and each heat-flow-channel has a pair of IC sensors attached on its top and bottom. The average deep body temperature measurements taken using both the dual-heat-flux and then the zero-heat-flow thermometers from the foreheads of 17 healthy subjects were 37.08 degrees C and 37.02 degrees C, respectively. In addition, the correlation coefficient between the values obtained by the 2 methods was 0.970 (p<0.001). These results show that our method can be used for monitoring the deep body temperature as accurately as the conventional method, and it overcomes the disadvantage of the necessity of AC power supply.

  20. Self sterilization of bodies during outer planet entry. [atmospheric temperature effects

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Jaworski, W.; Taylor, D. M.

    1975-01-01

    As a body encounters the atmosphere of an outer planet, whether accidentally or by plan, it will be subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body non-viable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon-insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter.

  1. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    PubMed

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  2. Effect of magnetic resonance imaging on core body temperature in anaesthetised children.

    PubMed

    Lo, C; Ormond, G; McDougall, R; Sheppard, S J; Davidson, A J

    2014-05-01

    Children undergoing magnetic resonance imaging (MRI) often require general anaesthesia (GA). Children under GA are at risk of decreases in body temperature. This risk may be greater during MRI due to MRI scanners requiring cool ambient temperatures. Conversely, radiofrequency radiation emitted by MRI scanners is absorbed by the patient as heat energy, creating a risk of an increase in body temperature. The aim of this study was to determine the proportion of anaesthetised children undergoing an MRI scan who develop hyperthermia or hypothermia, and the risk factors associated with temperature changes in these children. Pre-scan and post-scan tympanic temperatures were obtained from 193 children (aged three months to six years) undergoing an MRI procedure under GA. No active warming or cooling devices were used during the MRI scans. The median duration for anaesthesia was 42 minutes (35 to 57 minutes). Fifty-two percent of children were hypothermic after their scan, while no subjects were hyperthermic after their scan. The mean (± standard deviation) pre-scan temperature was 36.2°C±0.5°C, and the mean (± standard deviation) post-scan temperature was 35.9°C±0.6°C (an overall mean temperature decrease of 0.28°C was observed [95% confidence interval, -0.36°C to -0.19°C], P <0.001). In conclusion, core body temperature was found to decrease slightly during an MRI scan under GA. These results suggest that more focus is needed regarding the cooling effects of GA agents during MRI, as opposed to the heating effects of the MRI scanner.

  3. Locomotor activity and body temperature in selected mouse lines differing greatly in feed intake.

    PubMed

    Sojka, P A; Griess, R S; Nielsen, M K

    2013-08-01

    Locomotor activity, body temperature, feed intake, and BW were measured on 382 mature male mice sampled from lines previously selected (25 generations) for either high (MH) or low (ML) heat loss and an unselected control (MC). Animals were from all 3 independent replicates of the 3 lines and across 4 generations (68 through 71). Locomotor activity and body temperatures were obtained using implanted transmitters with data collection over 4 d following a 3-d postsurgery recovery period. Data were collected every minute and then averaged into 30-min periods, thus providing 192 data points for each mouse. Least-squares means for feed intake adjusted for BW (Feed/BW, feed·BW(-1)·d(-1), g/g) were 0.1586, 0.1234, and 0.1125 (±0.0022) for MH, MC, and ML, respectively, with line being a highly significant source of variation (P < 0.0003). Line effects for locomotor activity counts, transformed to the 0.25 power for analysis, were significantly different, with MH mice being 2.1 times more active than ML mice (P < 0.003); MC mice were intermediate. Differences in body temperature were significant for both line (P < 0.03) and day effects (P < 0.001), with a 0.32°C difference between the MH and ML lines. Fourier series analysis used the combined significant periodicities of 24, 18, 12, 9, 6, and 3 h to describe circadian cycles for activity and body temperature. All 3 lines expressed daily peaks in body temperature and locomotor activity ∼3 h into darkness and ∼2 h after lights were turned on. There was a stronger relationship between locomotor activity and Feed/BW (P < 0.0001) than between body temperature and Feed/BW (P < 0.01); differences between lines in locomotor activity and body temperature explained 17% and 3%, respectively, of differences between lines in Feed/BW. Thus, line differences in locomotor activity contribute to line differences in maintenance, but approximately 80% of the differences between the MH and ML selection lines in Feed/BW remains

  4. Pharmacological properties of traditional medicines. XXV. Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid.

    PubMed

    Yuan, D; Komatsu, K; Cui, Z; Kano, Y

    1999-02-01

    Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid were studied in rats using the method developed in our previous reports. Ephedrine significantly increased respiratory evaporative water loss and heat loss in response to a marked elevation of body temperature. There was a small but significant increase in body temperature when amygdalin was orally given rats at a dose of 46.32 mg/kg. Glycyrrhizin and gypsum were unable to affect body temperature. However, gypsum was able to prevent the increased action of ephedrine on body temperature, amygdalin exhibited a preventive tendency to it, and glycyrrhizin did not affect it. The results are in good agreement with classical claims of Makyo-kanseki-to and the related crude drugs in traditional medicine. Moreover, a combination of the four components reproduced the effects of Makyo-kanseki-to on body temperature and body fluid. This report suggests that the co-administration of ephedrine and gypsum is physiologically more desirable than ephedrine alone for dry-type asthmatic patients with a fever. Also, it experimentally supports the clinical efficacy of Makyo-kanseki-to.

  5. Body temperature as a conditional response measure for pavlovian fear conditioning.

    PubMed

    Godsil, B P; Quinn, J J; Fanselow, M S

    2000-01-01

    On six days rats were exposed to each of two contexts. They received an electric shock in one context and nothing in the other. Rats were tested later in each environment without shock. The rats froze and defecated more often in the shock-paired environment; they also exhibited a significantly larger elevation in rectal temperature in that environment. The rats discriminated between each context, and we suggest that the elevation in temperature is the consequence of associative learning. Thus, body temperature can be used as a conditional response measure in Pavlovian fear conditioning experiments that use footshock as the unconditional stimulus.

  6. Effects of Heat Wave on Body Temperature and Blood Pressure in the Poor and Elderly

    PubMed Central

    Kim, Soyeon; Cheong, Hae-Kwan; Ahn, Byungok; Choi, Kyusik

    2012-01-01

    Objectives We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Methods Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Results Average indoor and outdoor temperatures were 31.47℃ (standard deviation [SD], 0.97℃) and 28.15℃ (SD, 2.03℃), respectively. Body temperature increased by 0.21℃ (95% confidence interval [CI], 0.16 to 0.26℃) and 0.07℃ (95% CI, 0.04 to 0.10℃) with an increase in the indoor and outdoor temperature of 1℃. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by 1℃, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by 1℃. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by 1℃, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. Conclusions The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary. PMID:22888472

  7. Quantum three-body calculation of nonresonant triple-{alpha} reaction rate at low temperatures

    SciTech Connect

    Ogata, Kazuyuki; Kan, Masataka; Kamimura, Masayasu

    2010-08-12

    Triple-{alpha} reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. An accurate description of the {alpha}-{alpha} nonresonant states significantly quenches the Coulomb barrier between the first two {alpha}-particles and the third {alpha}-particle. Consequently, the{alpha}-{alpha} nonresonant continuum states give a markedly larger contribution at low temperatures than that reported in previous studies. We show that Nomoto's method for three-body nonresonant capture processes, which is adopted in the NACRE compilation and many other studies, is a crude approximation of the accurate quantum three-body model calculation. We find an increase in triple-{alpha} reaction rate by about 20 orders of magnitude around 10{sup 7} K compared with the rate of NACRE.

  8. Quantum three-body calculation of nonresonant triple-alpha reaction rate at low temperatures

    SciTech Connect

    Ogata, Kazuyuki; Kan, Masataka; Kamimura, Masayasu

    2010-06-01

    Triple-alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. An accurate description of the alpha-alpha nonresonant states significantly quenches the Coulomb barrier between the first two alpha-particles and the third alpha-particle. Consequently, the alpha-alpha nonresonant continuum states give a markedly larger contribution at low temperatures than that reported in previous studies. We show that Nomoto's method for three-body nonresonant capture processes, which is adopted in the NACRE compilation and many other studies, is a crude approximation of the accurate quantum three-body model calculation. We find an increase in triple-alpha reaction rate by 26 orders of magnitude around 10{sup 7} K compared with the rate of NACRE.

  9. Neither Good nor Useful: Looking Ad Vivum in Children's Assessments of Fat and Healthy Bodies

    ERIC Educational Resources Information Center

    Harwood, Valerie

    2012-01-01

    Fat bodies are not, fait accompli, bad. Yet in our international research, we found overwhelmingly that fat functioned as a marker to indicate health or lack of health. A body with fat was simply and conclusively unhealthy. This article reports on how this unbalanced view of fat was tied to assessments of healthy bodies that were achieved by…

  10. From powder to solution: hydration dependence of human hemoglobin dynamics correlated to body temperature.

    PubMed

    Stadler, A M; Digel, I; Embs, J P; Unruh, T; Tehei, M; Zaccai, G; Büldt, G; Artmann, G M

    2009-06-17

    A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.

  11. Influences of activity wheel access on the body temperature response to MDMA and methamphetamine.

    PubMed

    Gilpin, N W; Wright, M J; Dickinson, G; Vandewater, S A; Price, J U; Taffe, M A

    2011-09-01

    Recreational ingestion of the drug 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") can result in pathologically elevated body temperature and even death in humans. Such incidents are relatively rare which makes it difficult to identify the relative contributions of specific environmental and situational factors. Although animal models have been used to explore several aspects of MDMA-induced hyperthermia and it is regularly hypothesized that prolonged physical activity (e.g., dancing) in the nightclub environment increases risk, this has never been tested directly. In this study the rectal temperature of male Wistar rats was monitored after challenge with doses of MDMA and methamphetamine (MA), another drug frequently ingested in the rave/nightclub environment, either with or without access to an activity wheel. Results showed that wheel activity did not modify the hyperthermia produced by 10.0mg/kg MDMA. However, individual correlations were observed in which wheel activity levels after a locomotor stimulant dose of MDMA were positively related to body temperature change and lethal outcome. A modest increase in the maximum body temperature observed after 5.6mg/kg MA was caused by wheel access but this was mostly attributable to a drop in temperature relative to vehicle treatment in the absence of wheel activity. These results suggest that nightclub dancing in the human Ecstasy consumer may not be a significant factor in medical emergencies.

  12. Experimental Measurements of Temperature and Heat Flux in a High Temperature Black Body Cavity

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1998-01-01

    During hypersonic flight, high temperatures and high heat fluxes are generated. The Flight Loads Laboratory (FLL) at Dryden Flight Research Center (DFRC) is equipped to calibrate high heat fluxes up to 1100 kW/sq m. There are numerous uncertainties associated with these heat flux calibrations, as the process is transient, there are expected to be interactions between transient conduction, natural and forced convection, radiation, and possibly an insignificant degree of oxidation of the graphite cavity. Better understanding, of these mechanisms during the calibration process, will provide more reliable heat transfer data during either ground testing or flight testing of hypersonic vehicles.

  13. Comparison of body temperature readings between an implantable microchip and a cloacal probe in lorikeets (Trichoglossus haematodus sp.).

    PubMed

    Hoskinson, Christine; McCain, Stephanie; Allender, Matthew C

    2014-01-01

    Body temperature readings can be a useful diagnostic tool for identifying the presence of subclinical disease. Traditionally, rectal or cloacal thermometry has been used to obtain body temperatures. The use of implantable microchips to obtain these temperatures has been studied in a variety of animals, but not yet in avian species. Initially, timepoint one (T₁), nine lorikeets were anesthetized via facemask induction with 5% isoflurane and maintained at 2-3% for microchip placement and body temperature data collection. Body temperature was measured at 0 and 2 min post-anesthetic induction both cloacally, using a Cardell veterinary monitor and also via implantable microchip, utilizing a universal scanner. On two more occasions, timepoints two and three (T₂, T₃), the same nine lorikeets were manually restrained to obtain body temperature readings both cloacally and via microchip, again at minutes 0 and 2. There was no statistical difference between body temperatures, for both methods, at T₁. Microchip temperatures were statistically different than cloacal temperatures at T₂ and T₃. Body temperatures at T₁, were statistically different from those obtained at T₂ and T₃ for both methods. Additional studies are warranted to verify the accuracy of microchip core body temperature readings in avian species.

  14. Whole-Body Vibration Assessment of the Palletized Load System

    DTIC Science & Technology

    1994-07-01

    iderrtlfy by block number) An evaluation of all new tactical vehicles and aircraft is required to a.sosas potential whole-body vibration ( WBV ) health...tolerances for WBV exposure were on course 2. The results also show that both driver and passenger were exposed to a Hazard Severity-Category III (marginal...to be evaluated for potential whole-body vibration ( WBV ) health hazards to their crevmembers. This - *3uirement is contained in AR 40-10, "Health

  15. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.

  16. 21 CFR 26.68 - Withdrawal of listed conformity assessment bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Withdrawal of listed conformity assessment bodies. 26.68 Section 26.68 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.68 Withdrawal of listed conformity assessment bodies....

  17. 21 CFR 26.67 - Suspension of listed conformity assessment bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Suspension of listed conformity assessment bodies. 26.67 Section 26.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.67 Suspension of listed conformity assessment bodies....

  18. 21 CFR 26.67 - Suspension of listed conformity assessment bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Suspension of listed conformity assessment bodies. 26.67 Section 26.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.67 Suspension of listed conformity assessment bodies....

  19. 21 CFR 26.67 - Suspension of listed conformity assessment bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Suspension of listed conformity assessment bodies. 26.67 Section 26.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.67 Suspension of listed conformity assessment bodies....

  20. 21 CFR 26.68 - Withdrawal of listed conformity assessment bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Withdrawal of listed conformity assessment bodies. 26.68 Section 26.68 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.68 Withdrawal of listed conformity assessment bodies....

  1. 21 CFR 26.68 - Withdrawal of listed conformity assessment bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Withdrawal of listed conformity assessment bodies. 26.68 Section 26.68 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.68 Withdrawal of listed conformity assessment bodies....

  2. 21 CFR 26.67 - Suspension of listed conformity assessment bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Suspension of listed conformity assessment bodies. 26.67 Section 26.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.67 Suspension of listed conformity assessment bodies....

  3. 21 CFR 26.68 - Withdrawal of listed conformity assessment bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Withdrawal of listed conformity assessment bodies. 26.68 Section 26.68 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.68 Withdrawal of listed conformity assessment bodies....

  4. 21 CFR 26.68 - Withdrawal of listed conformity assessment bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Withdrawal of listed conformity assessment bodies... EUROPEAN COMMUNITY âFrameworkâ Provisions § 26.68 Withdrawal of listed conformity assessment bodies. The following procedures shall apply with regard to the withdrawal from subpart B of this part of a...

  5. The relationship of normal body temperature, end-expired breath temperature, and BAC/BrAC ratio in 98 physically fit human test subjects.

    PubMed

    Cowan, J Mack; Burris, James M; Hughes, James R; Cunningham, Margaret P

    2010-06-01

    The relationship between normal body temperature, end-expired breath temperature, and blood alcohol concentration (BAC)/breath alcohol concentration (BrAC) ratio was studied in 98 subjects (84 men, 14 women). Subjects consumed alcohol sufficient to produce a BrAC of at least 0.06 g/210 L 45-75 min after drinking. Breath samples were analyzed using an Intoxilyzer 8000 specially equipped to measure breath temperature. Venous blood samples and body temperatures were then taken. The mean body temperature of the men (36.6 degrees C) was lower than the women (37.0 degrees C); however, their mean breath temperatures were virtually identical (men: 34.5 degrees C; women: 34.6 degrees C). The BAC exceeded the BrAC for every subject. BAC/BrAC ratios were calculated from the BAC and BrAC analytical results. There was no difference in the BAC/BrAC ratios for men (1:2379) and women (1:2385). The correlation between BAC and BrAC was high (r = 0.938, p < 0.0001), whereas the correlations between body temperature and end-expired breath temperature, body temperature and BAC/BrAC ratio, and breath temperature and BAC/BrAC ratio were much lower. Neither normal body temperature nor end-expired breath temperature was strongly associated with BAC/BrAC ratio.

  6. The circadian body temperature rhythm of Djungarian Hamsters (Phodopus sungorus) revealing different circadian phenotypes.

    PubMed

    Schöttner, Konrad; Waterhouse, Jim; Weinert, Dietmar

    2011-06-01

    Djungarian hamsters (Phodopus sungorus) of our breeding stock show three rhythmic phenotypes: wild type (WT) animals which start their activity shortly after "lights-off" and are active until "lights-on"; delayed activity onset (DAO) hamsters whose activity onset is delayed after "lights-off" but activity offset coincides with "lights-on"; and arrhythmic hamsters (AR) that are episodically active throughout the 24-h day. The main aim of the present study was to investigate whether the observed phenotypic differences are caused by an altered output from the suprachiasmatic nuclei (SCN). As a marker of the circadian clock, the body temperature rhythm purified from masking effects due to motor activity was used. Hamsters were kept singly under standardized laboratory conditions (L:D=14:10h, T: 22°C±2°C, food and water ad libitum). Body temperature and motor activity were monitored by means of implanted G2-E-Mitters and the VitalView(®) System (MiniMitter). Each phenotype showed distinctive rhythms of overt activity and body temperature, these two rhythms being very similar for each phenotype. Correcting body temperatures for the effects of activity produced purified temperature rhythms which retained profiles that were distinctive for the phenotype. These results show that the body temperature rhythm is not simply a consequence of the activity pattern but is caused by the endogenous circadian system. The purification method also allowed estimation of thermoregulatory efficiency using the gradients as a measure for the sensitivity of body temperature to activity changes. In WT and DAO hamsters, the gradients were low during activity period and showed two peaks. The first one occurred after "lights-on", the second one preceded the activity onset. In AR hamsters, the gradients did not reveal circadian changes. The results provide good evidence that the different phenotypes result from differences in the circadian clock. In AR hamsters, the SCN do not produce an

  7. Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan.

    PubMed

    Nabenishi, Hisashi; Ohta, Hiroshi; Nishimoto, Toshihumi; Morita, Tetsuo; Ashizawa, Koji; Tsuzuki, Yasuhiro

    2011-09-01

    In the present study, we investigated the relationship between the temperature-humidity index (THI) and the conception rate of lactating dairy cows in southwestern Japan, one of the hottest areas of the country. We also investigated the relationship between measurement of the vaginal temperature of lactating dairy cows as their core body temperature at one-hour intervals for 25 consecutive days in hot (August-September, n=6) and cool (January-February, n=5) periods and their THI. Furthermore, we discussed the above relationship using these vaginal temperatures, the conception rates and the THI. As a result, when the conception rates from day 2 to 0 before AI were classified into day 2, 1 and 0 groups by the six maximum THI values in each group (mTHI; <61, 61-65, 66-70, 71-75, 76-80, >80), only the conception rate for the mTHI over 80 at 1 day before AI group was significantly lower (P<0.05) than the other groups. The conception rate for days 15 to 17, but not days 19 to 22 and 30 to 35, after AI in the cows that experienced average mTHI over 80 (amTHI>80) was significantly lower (P<0.05) than that of the cows that did not experience amTHI>80. There was a significant positive correlation (P<0.01) between the mTHI and the mean daily vaginal temperature, but not during the cool period. When the mTHI reached 69, the vaginal temperature started to increase. As for the relationship between the conception rates and vaginal temperatures for all mTHI classes, in the mTHI>80 at 1 day before AI group, the vaginal temperature increased by 0.6 C from 38.7 C, resulting in a reduction of 11.6% in the conception rate from 40.5%. In conclusion, these results suggest that one of the causes of the fall in conception rate of lactating dairy cows during the summer season in southwestern Japan may be an increase in their core body temperature with a higher mTHI than the critical mTHI of 69 at 1 day before AI.

  8. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz.

    PubMed

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-21

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg(-1), the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  9. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-01

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg-1, the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  10. OVA-induced airway hyperresponsiveness alters murine heart rate variability and body temperature.

    PubMed

    Domnik, N J; Seaborn, G; Vincent, S G; Akl, S G; Redfearn, D P; Fisher, J T

    2012-01-01

    Altered autonomic (ANS) tone in chronic respiratory disease is implicated as a factor in cardiovascular co-morbidities, yet no studies address its impact on cardiovascular function in the presence of murine allergic airway (AW) hyperresponsiveness (AHR). Since antigen (Ag)-induced AHR is used to model allergic asthma (in which ANS alterations have been reported), we performed a pilot study to assess measurement feasibility of, as well as the impact of allergic sensitization to ovalbumin (OVA) on, heart rate variability (HRV) in a murine model. Heart rate (HR), body temperature (T(B)), and time- and frequency-domain HRV analyses, a reflection of ANS control, were obtained in chronically instrumented mice (telemetry) before, during and for 22 h after OVA or saline aerosolization in sensitized (OVA) or Alum adjuvant control exposed animals. OVA mice diverged significantly from Alum mice with respect to change in HR during aerosol challenge (P < 0.001, Two-Way ANOVA; HR max change Ctrl = +80 ± 10 bpm vs. OVA = +1 ± 23 bpm, mean ± SEM), and displayed elevated HR during the subsequent dark cycle (P = 0.006). Sensitization decreased the T(B) during aerosol challenge (P < 0.001). Sensitized mice had decreased HRV prior to challenge (SDNN: P = 0.038; Low frequency (LF) power: P = 0.021; Low/high Frequency (HF) power: P = 0.042), and increased HRV during Ag challenge (RMSSD: P = 0.047; pNN6: P = 0.039). Sensitized mice displayed decreased HRV subsequent to OVA challenge, primarily in the dark cycle (RMSSD: P = 0.018; pNN6: P ≤ 0.001; LF: P ≤ 0.001; HF: P = 0.040; LF/HF: P ≤ 0.001). We conclude that implanted telemetry technology is an effective method to assess the ANS impact of allergic sensitization. Preliminary results show mild sensitization is associated with reduced HRV and a suppression of the acute T(B)-response to OVA challenge. This approach to assess altered ANS control in the acute OVA model may also be beneficial in chronic AHR models.

  11. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    PubMed Central

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  12. Effect of posture on body temperature of young men in cold air.

    PubMed

    Donaldson, G C; Scarborough, M; Mridha, K; Whelan, L; Caunce, M; Keatinge, W R

    1996-01-01

    We studied eight young adult men to see whether a supine posture caused a fall in body core temperature in the cold, as it does in thermoneutral conditions. In air at 31 degrees C (thermoneutral), a supine posture for 3 h reduced mean aural, gastric, oesophageal and rectal temperatures by 0.2-0.4 degree C, compared to upright and increased femoral artery blood flow from 278 (SEM 42)ml.min-1 whilst upright to 437 (SEM 42) ml.min-1 whilst supine. In cold air (8 degrees C) the supine posture failed to reduce these temperatures [corrected] significantly, or to increase femoral blood flow: it reduced heart rate, and increased arterial systolic and pulse pressures adjusted to carotid sinus level, less than in thermoneutral conditions. However, the behaviour of core temperature at the four sites was significantly nonuniform between the two postures in the cold, mainly because the supine posture tended to reduce rectal temperature. It may have done so by reducing heat production in the muscles of the pelvis, since it reduced overall metabolic rate from 105 (SEM 8) to 87 (SEM 4) W.m-2 in the cold. In other respects the results indicated that posture ceased to have an important effect on body core temperatures during cold stress.

  13. Unifying the Thermodynamic and Colour Temperature Scales with Gall's Black Body Radiation Law

    NASA Astrophysics Data System (ADS)

    Gall, Clarence A.

    2008-05-01

    The determination of high temperatures (colour temperature) when it is not possible to apply Charles' Law (thermodynamic temperature) is a fundamental problem in scientific measurement. Wien's displacement law ( 1λm=Tb) has long suggested that the reciprocal wavelength at maximum emitted intensity is directly proportional to and hence is a measure of temperature. However Planck's and all previous distribution laws do not make direct use of the empirical constants ( σ,b) in their formulation. It has not thus been possible to directly relate the wavelength at maximum emitted intensity and the given temperature with the proportionality constant b. Gall's distribution law ( IG=σT^6b^2 λe^-Tbλ) (BAPS, March Meeting 2007, X21.4, Denver, CO) which treats emission as a decay process, employs these empirical constants directly in its formulation. It satisfies exactly the three empirical laws of black body radiation. It establishes a direct relationship between the wavelength at maximum emitted intensity and the given temperature with Wien's constant b. The distribution law can then be reformulated as ( IG=σGG^6 λe^-Gλ) where ( G=Tb =1λm) and ( σG=b^4 σ) . If the colour temperature is defined as 1λm, it becomes identical to the thermodynamic temperature over the entire temperature range.

  14. Three-body recombination in heteronuclear systems at finite temperature with a large positive scattering length

    NASA Astrophysics Data System (ADS)

    Emmons, Samuel; Acharya, Bijaya; Platter, Lucas

    2017-01-01

    For an ultracold heteronuclear mixture with a large positive interspecies scattering length and negligible intraspecies scattering length, we determine the three-body recombination rate as a function of collision energy using universal functions of a single scaling variable. We use the zero-range approximation and the Skorniakov -Ter-Martirosian equation to calculate these scaling functions for a range of collision energies. Further, we explore the effects that a nonzero temperature has on three-body recombination, as well as the effects of the formation of deep dimers, for experimentally relevant heteronuclear gases such as the 6Li-133Cs mixture. NSF Grant Nos. PHY-1516077 and PHY-1555030.

  15. Extreme negative temperatures and body mass loss in the Siberian salamander (Salamandrella keyserlingii, amphibia, hynobiidae).

    PubMed

    Berman, D I; Meshcheryakova, E N; Bulakhova, N A

    2016-05-01

    Frozen Siberian salamander safely tolerates long (45 days) stay at-35°C. Short-term (3 days) cooling down to-50°C was tolerable for 40% of adult individuals; down to-55°C, for 80% of the underyearlings. Generally, the salamanders lose about 28% of the body mass during the pre-hibernating period (before winter, at temperatures as low as 0°C) and during the process of freezing (as low as-5°C). The body weight remained constant upon further cooling (to-35°C). The frozen salamanders have no physiological mechanisms protecting from sublimation.

  16. Brain magnetic resonance imaging increases core body temperature in sedated children.

    PubMed

    Bryan, Yvon F; Templeton, Thomas W; Nick, Todd G; Szafran, Martin; Tung, Avery

    2006-06-01

    An increasing number of children now undergo magnetic resonance imaging (MRI) under sedation. MRI requires a cool environment. Because children have a larger surface area to body weight ratio than adults and because active warming devices are not MRI compatible, hypothermia as a result of passive heat loss is a risk. Absorption of radiofrequency radiation generated by the scanning process, however, may partially offset this heat loss. To determine the effect of absorbed radiofrequency radiation on body temperature during MRI, we measured pre-MRI and post-MRI tympanic temperatures in 30 children who underwent brain MRI while sedated with chloral hydrate and covered with a hospital gown and blanket. The mean (+/- sd) age was 14.9 +/- 8.6 mo, and weight was 9.8 +/- 2.8 kg. During an average scan duration of 42 +/- 13 min, mean tympanic temperatures increased 0.5 degrees C from 36.9 degrees C +/- 0.4 degrees C to 37.4 degrees C +/- 0.3 degrees C; (95% CI difference, 0.3 degrees C to 0.7 degrees C; P < 0.001). Our findings suggest that children sedated with chloral hydrate for brain MRI did not become hypothermic but rather had increased body temperature despite minimal barriers to heat loss and no active warming. These results imply that aggressive measures to prevent passive heat loss during MRI studies may not be needed in all patients.

  17. Biphasic changes in body temperature produced by intracerebroventricular injections of histamine in the cat.

    PubMed

    Clark, W G; Cumby, H R

    1976-09-01

    1. Intracerebroventricular administration of histamine to cats caused hypothermia followed by a rise in body temperature. 2-Methylhistamine caused a similar biphasic response, while 3-methylhistamine had no effect on body temperature and 4-methylhistamine produced a delayed hyperthermia. Some tolerance to the hypothermic activity developed when a series of closely spaced injections of histamine was given. 2. Doses of histamine and 2-methylhistamine which altered body temperature when given centrally were ineffective when infused or injected I.V. 3. Pyrilamine, an H1-receptor antagonist, prevented the hypothermic response to histamine. 4. Hypothermic responses to histamine at an environmental temperature of 22 degrees C were comparable to responses in a cold room at 4 degrees C in both resting animals and animals acting to depress a lever to escape an external heat load. A change in error signal from the thermostat could account for these results. However, lesser degrees of hypothermia developed when histamine was given to animals in a hot environment. In some, but not all animals, this smaller response could be attributed to inadequate heat loss in spite of maximal activation of heat-loss mechanisms. 5. The hyperthermic response to histamine was antagonized by central, but not peripheral, injection of metiamide, an H2-receptor antagonist. 6. The results indicate that histamine and related agents can act centrally to cause both hypothermia, mediated by H1-receptors, and hyperthermia, mediated by H2-receptors.

  18. Body temperature null distributions in reptiles with nonzero heat capacity: seasonal thermoregulation in the American alligator (Alligator mississippiensis).

    PubMed

    Seebacher, Frank; Elsey, Ruth M; Trosclair, Phillip L

    2003-01-01

    Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally

  19. From Space to the Rocky Intertidal: Measuring the Body Temperature of the Intertidal Mussel Species, Mytilus californianus using NASA MODIS Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Price, J.; Lakshmi, V.; Menge, B. A.

    2014-12-01

    The California mussel, Mytilus californianus, is an ecologically important species in the rocky intertidal ecosystems of the U.S. Pacific coast. During low tides, times of emersion, Mytilus californianus is exposed to aerial conditions and its body temperature can vary drastically depending on the amount of solar radiation they experience. Thermal stress from high temperatures during emersion sometimes can lead to mortality of individuals. Conversely, during high tides, times of submersion, body temperatures depend on the temperature of the water that surrounds them. This study used remotely sensed surface temperature observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observing System (EOS) Aqua and Terra to predict the body temperatures of Mytilus californianus. Mussel body temperatures were provided by the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) and de-tided. This technique divided the mussel body temperatures into times of emersion and times of submersion. During times of emersion, mussel body temperatures were compared to remotely sensed land surface temperatures (LST) and in-situ air temperatures. During times of submersion, mussel body temperatures were compared to remotely sensed sea surface temperatures (SST) and in-situ water temperatures. To identify spatial variation in temperatures, eight different study sites ranging in latitude along the coast of Oregon were analyzed. Additionally, to better understand the temporal variation in temperatures, fourteen years (2000-2013) were analyzed for each study site. Sea surface temperature collected during the Aqua overpass and Terra overpass were strongly correlated with mussel body temperatures but varied by study site. Our results show that remotely sensed temperature could predict average daily mussel temperature within 1°C on average during times of submersion. Being able to use remotely sensed surface temperatures to predict the body

  20. Assessment and Interpretation of Body Composition in Physical Education

    ERIC Educational Resources Information Center

    Vehrs, Pat; Hager, Ron

    2006-01-01

    The physical educator's role is evolving into that of a teacher who is well educated in the areas of teaching, skill acquisition and development, motor learning, exercise physiology, physical conditioning, weight management, health, and lifestyle management. In an era when childhood obesity is at an all-time high, body composition can be one…

  1. Interacting effects of water temperature and swimming activity on body composition and mortality of fasted juvenile rainbow trout

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Martinez Del Rio, C.; Rule, D.C.

    2003-01-01

    Abstract: We assessed changes in proximate body composition, wet mass, and the occurrence of mortality among sedentary and actively swimming (15 cm/s) juvenile rainbow trout (Oncorhynchus mykiss) (120-142 mm total length) that were held at 4.0, 7.5, or 15.0 ??C and fasted for 140 days. Warmer water temperatures and swimming activity accentuated declines in lipid mass, but they did not similarly affect lean mass and wet mass. Swimming fish conserved lean mass independent of water temperature. Because lean mass exceeded lipid mass, wet mass was not affected substantially by decreases in lipid mass. Consequently, wet mass did not accurately reflect the effects that water temperature and swimming activity had on mortality of fasted rainbow trout. Rather, lipid mass was more accurate in predicting death from starvation. Juvenile rainbow trout survived long periods without food, and fish that died of starvation appeared to have similar body composition. It appears that the ability of fish to endure periods without food depends on the degree to which lipid mass and lean mass can be utilized as energy sources.

  2. Assessment of body volume using three-dimensional photonic scanning.

    PubMed

    Wells, J C; Douros, I; Fuller, N J; Elia, M; Dekker, L

    2000-05-01

    Measurement of body volume (BV) can be used to estimate body composition using two- or multicomponent models. The traditional approach, underwater weighing (UWW), is awkward and unsuitable for many subjects. A newer alternative, whole body air displacement plethysmography (ADP), is less demanding but still unsuitable for young children, who may not remain still during the measurement. We have, therefore, considered whether a novel approach, three-dimensional photonic scanning, is a viable alternative. Duplicate measurements of body volume were obtained in 22 adults (11 of each sex; mean [SD] BMI, 21.8 [2.5] kg/m2) by UWW, ADP, and a Hamamatsu Bodyline Scanner (HBS) (Hamamatsu, Japan). Subjects wore a tight-fitting swimming costume for all three measurements, which were performed within one day of each other. Scans lasted 10 seconds, with the subject standing in a predefined position. The body surface skin was reconstructed using a B-spline-fitting model. In UWW, lung volume (LV) was measured simultaneously with underwater weight. In ADP and HBS, LV was predicted from weight and height. Results were compared using correlation and Bland and Altman analysis. Correlation analysis indicated that the scanner successfully ranked subjects in terms of BV. However, Bland and Altman analysis demonstrated that, relative to both UWW and ADP, HBS measured BV without bias but with limits of agreement between individuals of > 2 liters, equivalent to approximately 20% fat. Scan precision was 0.57 liter, or 4.1% fat. Although HBS cannot yet measure BV with sufficient accuracy to predict fatness, much of the error is probably due to difficulties in standardizing LV during the scan. Simultaneous measurement of LV with volume by HBS is expected to improve limits of agreement substantially. Occlusion is also an important source of error. The method offers many advantages over alternative techniques, because the measurement is brief, noninvasive, and suitable for repeat measurements.

  3. Artificial quantum thermal bath: Engineering temperature for a many-body quantum system

    NASA Astrophysics Data System (ADS)

    Shabani, Alireza; Neven, Hartmut

    2016-11-01

    Temperature determines the relative probability of observing a physical system in an energy state when that system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the temperature of a quantum system different from its ambient temperature. We define criteria for an engineered quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium state e/-H/TTr (e-H /T) with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.

  4. Intraspecific scaling in frog calls: the interplay of temperature, body size and metabolic condition.

    PubMed

    Ziegler, Lucia; Arim, Matías; Bozinovic, Francisco

    2016-07-01

    Understanding physiological and environmental determinants of strategies of reproductive allocation is a pivotal aim in biology. Because of their high metabolic cost, properties of sexual acoustic signals may correlate with body size, temperature, and an individual's energetic state. A quantitative theory of acoustic communication, based on the metabolic scaling with temperature and mass, was recently proposed, adding to the well-reported empirical patterns. It provides quantitative predictions for frequencies, call rate, and durations. Here, we analysed the mass, temperature, and body condition scaling of spectral and temporal attributes of the advertisement call of the treefrog Hypsiboas pulchellus. Mass dependence of call frequency followed metabolic expectations (f~M (-0.25), where f is frequency and M is mass) although non-metabolic allometry could also account for the observed pattern. Temporal variables scaled inversely with mass contradicting metabolic expectations (d~M (0.25), where d is duration), supporting instead empirical patterns reported to date. Temperature was positively associated with call rate and negatively with temporal variables, which is congruent with metabolic predictions. We found no significant association between temperature and frequencies, adding to the bulk of empirical evidence. Finally, a result of particular relevance was that body condition consistently determined call characteristics, in interaction with temperature or mass. Our intraspecific study highlights that even if proximate determinants of call variability are rather well understood, the mechanisms through which they operate are proving to be more complex than previously thought. The determinants of call characteristics emerge as a key topic of research in behavioural and physiological biology, with several clear points under debate which need to be analysed on theoretical and empirical grounds.

  5. Assessment of nutritional status in cancer--the relationship between body composition and pharmacokinetics.

    PubMed

    Prado, Carla M M; Maia, Yara L M; Ormsbee, Michael; Sawyer, Michael B; Baracos, Vickie E

    2013-10-01

    Several nutritional assessment tools have been used in oncology settings to monitor nutritional status and its associated prognostic significance. Body composition is fundamental for the assessment of nutritional status. Recently, the use of accurate and precise body composition tools has significantly added to the value of nutritional assessment in this clinical setting. Computerized tomography (CT) is an example of a technique which provides state-of-the-art assessment of body composition. With use of CT images, a great variability in body composition of cancer patients has been identified even in people with identical body weight or body mass index. Severe muscle depletion (sarcopenia) has emerged as a prevalent body composition phenotype which is predictive of poor functional status, shorter time to tumor progression, shorter survival, and higher incidence of dose-limiting toxicity. Variability in body composition of cancer patients may be a source of disparities in the metabolism of cytotoxic agents. Future clinical trials investigating dose reductions in patients with sarcopenia and dose-escalating studies based on pre-treatment body composition assessment have the potential to alter cancer treatment paradigms.

  6. The Effects of Increased Body Temperature on Motor Control during Golf Putting.

    PubMed

    Mathers, John F; Grealy, Madeleine A

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed.

  7. The Effects of Increased Body Temperature on Motor Control during Golf Putting

    PubMed Central

    Mathers, John F.; Grealy, Madeleine A.

    2016-01-01

    This study investigated the effect of increased core temperature on the performance outcome and movement kinematics of elite golfers during a golf putting task. The study aimed to examine individual differences in the extent to which increased temperature influenced the rate of putting success, whether increased temperature speeded up the timing of the putting downswing and whether elite golfers changed their movement kinematics during times of thermal stress. Six participants performed 20 putts to each of four putt distances (1, 2, 3, and 4 m) under normal temperature conditions and when core body temperature was increased. There was no significant difference in the number of successful putts between the two temperature conditions, but there was an increase in putterhead velocity at ball impact on successful putts to distances of 1 and 4 m when temperature was elevated. This reflected an increase in swing amplitude rather than a reduction in swing duration as hypothesized. There were individual differences in the motor control response to thermal stress as three of the golfers changed the kinematic parameters used to scale their putting movements to achieve putts of different distances at elevated temperatures. Theoretical implications for these findings and the practical implications for elite golfers and future research are discussed. PMID:27630588

  8. Summer declines in activity and body temperature offer polar bears limited energy savings

    USGS Publications Warehouse

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  9. Changes in body temperature influence the scaling of VO2max and aerobic scope in mammals.

    PubMed

    Gillooly, James F; Allen, Andrew P

    2007-02-22

    Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate (VO2max ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as VO2max/BMR, systematically increases with body size. These observations have led some to suggest that VO2max, and BMR are controlled by fundamentally different processes, and to discount the generality of models that predict a single power-law scaling exponent for the size dependence of the metabolic rate. We present a model that predicts a steeper size dependence for VO2max than BMR based on the observation that changes in muscle temperature from rest to maximal activity are greater in larger mammals. Empirical data support the model's prediction. This model thus provides a potential theoretical and mechanistic link between BMR and VO2 max.

  10. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    PubMed

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  11. [Body temperature, Aldrete-Kroulik index, and patient discharge from the post-anesthetic recovery unit].

    PubMed

    de Castro, Fernanda Salim Ferreira; Peniche, Aparecida de Cássia Giani; Mendoza, Isabel Yovana Quispe; Couto, Andréa Tamancoldi

    2012-08-01

    Patient discharge from post-anesthetic recovery (PAR) depends, among other factors, on normothermia and the patient's score on the Aldrete-Kroulik index. The objective of this study was to verify the relationship between the Aldrete-Kroulik index and body temperature in patients. This study was performed at the University of São Paulo University Hospital. Convenience sampling was used, and the sample consisted of 60 patients of ages between 18 and 60 years who underwent general anesthesia. The patients' body temperature was obtained by tympanic measurement, and the Aldrete-Kroulik index was measured on admission and at discharge from post-anesthetic recovery. The data were processed using SPSS, considering a significance level of 5%, and the Spearman and Wilcoxon tests were applied. In conclusion, no significant correlation was found between the two parameters for discharge.

  12. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  13. Neurotensin and bombesin, a relationship between their effects on body temperature and locomotor activity?

    PubMed

    van Wimersma Greidanus, T B; Schijff, J A; Noteboom, J L; Spit, M C; Bruins, L; van Zummeren, B M; Rinkel, G J

    1984-08-01

    Neurotensin and bombesin have been tested for their effects on body temperature and locomotor activity in an open field. Both peptides induce hypothermia and suppress ambulation and rearing. The time curves of the hypothermic effects of both peptides appear to be rather similar, although bombesin is a more potent hypothermic agent than neurotensin. The time curves of the effects on locomotor activity appear to be quite different. The suppressive effect of neurotensin on locomotor activity is relatively short lasting and reaches its maximum at approximately 32 minutes. The effect of bombesin follows a different time curve and shows two peaks, suggesting that two different mechanisms are involved in the suppressive action of bombesin on locomotor activity. Calculation of the correlation coefficients between the effects of neurotensin and of bombesin on body temperature and on locomotor activity (ambulation) suggest that a causal relationship between these two effects is not likely, in particular for neurotensin.

  14. Analysis of Long-Term Temperature Variations in the Human Body.

    PubMed

    Dakappa, Pradeepa Hoskeri; Mahabala, Chakrapani

    2015-01-01

    Body temperature is a continuous physiological variable. In normal healthy adults, oral temperature is estimated to vary between 36.1°C and 37.2°C. Fever is a complex host response to many external and internal agents and is a potential contributor to many clinical conditions. Despite being one of the foremost vital signs, temperature and its analysis and variations during many pathological conditions has yet to be examined in detail using mathematical techniques. Classical fever patterns based on recordings obtained every 8-12 h have been developed. However, such patterns do not provide meaningful information in diagnosing diseases. Because fever is a host response, it is likely that there could be a unique response to specific etiologies. Continuous long-term temperature monitoring and pattern analysis using specific analytical methods developed in engineering and physics could aid in revealing unique fever responses of hosts and in different clinical conditions. Furthermore, such analysis can potentially be used as a novel diagnostic tool and to study the effect of pharmaceutical agents and other therapeutic protocols. Thus, the goal of our article is to present a comprehensive review of the recent relevant literature and analyze the current state of research regarding temperature variations in the human body.

  15. The effect of cushion properties on skin temperature and humidity at the body-support interface.

    PubMed

    Hsu, Tzu-Wen; Yang, Shu-Yu; Liu, Jung-Tai; Pan, Cheng-Tang; Yang, Yu-Sheng

    2016-09-29

    The purpose of this study is to explore the effects of various cushions on skin temperature and moisture at the body-seat interface during a 2-hour period of continuous sitting. Seventy-eight participants were randomly assigned to sit on one of the three types of wheelchair cushions for unrelieved sitting for over 2 hours. Skin temperature and relative humidity (RH) were measured under the subjects' ischial tuberosities and thighs bilaterally with digital temperature and humidity sensors. Data were collected before sitting and at 15-minute intervals thereafter. Participants sitting on foam-fluid hybrid cushions showed significantly lower skin temperatures than those sitting on air-filled and foam cushions (p < 0.05), but RH did not differ significantly among the cushions (p = 0.97). The three cushions produced a similar increasing trend in RH over time and RH reached a plateau during the 2-hour sitting period. To select the appropriate wheelchair cushion, the microclimate (heat and moisture control) between the body-seat interface should be considered as well as pressure distribution. In comparison with foam-fluid hybrid cushions, the air-filled rubber and foam cushions tended to increase skin temperature by several degrees after prolonged sitting. However, cushion materials did not have significant differences in moisture accumulations.

  16. Body temperature and rate of O2 consumption in Chinese pangolins.

    PubMed

    Heath, M E; Hammel, H T

    1986-03-01

    Body temperatures and rates of O2 consumption and CO2 production were measured in four Chinese pangolins (Manis pentadactyla) during short-term exposures (2-4 h) to ambient temperatures (Ta) of 10-34 degrees C. At Ta less than 27 degrees C the pangolins curled into a sphere. At Ta greater than 28 degrees C the animals laid on their backs with their soft abdominal skin exposed. Rectal temperatures between 33.4 and 35.5 degrees C were recorded from animals exposed to Ta of 10-32 degrees C. At Ta greater than or equal to 32 degrees C the animals appeared to be markedly heat stressed, rate of breathing was elevated, and core temperature rose somewhat. Resting metabolic rates averaged 3.06 ml O2 X kg-1 X min-1. This is significantly lower than would be predicted from the relationship between body mass and metabolic rate established by Kleiber (The Fire of Life: an Introduction to Animal Energetics. New York: Wiley, 1975) for other eutherian mammals. The magnitude of the metabolic response to Ta below the lower critical temperature was inversely correlated to the mass of the pangolin, the slope being greatest for the smallest animals. Respiratory quotients of 0.85-1.0 were observed.

  17. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    PubMed

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  18. Effect of programmed diurnal temperature cycles on plasma thyroxine level, body temperature, and feed intake of holstein dairy cows

    NASA Astrophysics Data System (ADS)

    Scott, I. M.; Johnson, H. D.; Hahn, G. L.

    1983-03-01

    Holstein cows exposed to simulated summer diurnal ambient temperature cycles of Phoenix, Arizona and Atlanta, Georgia and diurnal modifications of these climates displayed daily cycles fluctuations in plasma thyroxine (T4) and rectal temperatures (Tre). There were daily diurnal changes in T4 and Tre under all simulated climate conditions. Maximal values generally occurred in the evening hours and minimum values in the morning. Although the diurnal rhythm was influenced by the various simulated climates (diurnal modifications) a diurnal rhythm was very evident even under constant conditions at thermoneutral (Tnc) and at cyclic thermoneutral conditions (TN). The major significance of the study is that the initiation of night cooling of the animals at a time when their Tre was highest was most beneficial to maintenance of a TN plasma T4 level. There was a highly significant negative relationship of average T4 and average Tre. There was also a significant negative relationship of feed consumption and average temperature-humidity index (THI). These data suggest that night cooling may be a most effective method to alleviate thermoregulatory limitations of a hot climate on optimal animal performance. Decreasing the night time air temperature (Ta) or THI or increasing the diurnal range allows the cows to more easily dissipate excess body heat accumulated during the day and minimize the thermal inhibition on feed intake, and alterations in plasma T4 and Tre.

  19. Body temperature and thermal environment in a generalized arboreal anthropoid, wild mantled howling monkeys (Alouatta palliata).

    PubMed

    Thompson, Cynthia L; Williams, Susan H; Glander, Kenneth E; Teaford, Mark F; Vinyard, Christopher J

    2014-05-01

    Free-ranging primates are confronted with the challenge of maintaining an optimal range of body temperatures within a thermally dynamic environment that changes daily, seasonally, and annually. While many laboratory studies have been conducted on primate thermoregulation, we know comparatively little about the thermal pressures primates face in their natural, evolutionarily relevant environment. Such knowledge is critical to understanding the evolution of thermal adaptations in primates and for comparative evaluation of humans' unique thermal adaptations. We examined temperature and thermal environment in free-ranging, mantled howling monkeys (Alouatta palliata) in a tropical dry forest in Guanacaste, Costa Rica. We recorded subcutaneous (Tsc ) and near-animal ambient temperatures (Ta ) from 11 animals over 1586.5 sample hours during wet and dry seasons. Howlers displayed considerable variation in Tsc , which was largely attributable to circadian effects. Despite significant seasonal changes in the ambient thermal environment, howlers showed relatively little evidence for seasonal changes in Tsc . Howlers experienced warm thermal conditions which led to body cooling relative to the environment, and plateaus in Tsc at increasingly warm Ta . They also frequently faced cool thermal conditions (Ta  < Tsc ) in which Tsc was markedly elevated compared with Ta . These data add to a growing body of evidence that non-human primates have more labile body temperatures than humans. Our data additionally support a hypothesis that, despite inhabiting a dry tropical environment, howling monkeys experience both warm and cool thermal pressures. This suggests that thermal challenges may be more prevalent for primates than previously thought, even for species living in nonextreme thermal environments.

  20. Body temperature changes during simulated bacterial infection in a songbird: fever at night and hypothermia during the day.

    PubMed

    Sköld-Chiriac, Sandra; Nord, Andreas; Tobler, Michael; Nilsson, Jan-Åke; Hasselquist, Dennis

    2015-09-01

    Although fever (a closely regulated increase in body temperature in response to infection) typically is beneficial, it is energetically costly and may induce detrimentally high body temperatures. This can increase the susceptibility to energetic bottlenecks and risks of overheating in some organisms. Accordingly, it could be particularly interesting to study fever in small birds, which have comparatively high metabolic rates and high, variable body temperatures. We therefore investigated two aspects of fever and other sickness behaviours (circadian variation, dose dependence) in a small songbird, the zebra finch. We injected lipopolysaccharide (LPS) at the beginning of either the day or the night, and subsequently monitored body temperature, body mass change and food intake for the duration of the response. We found pronounced circadian variation in the body temperature response to LPS injection, manifested by (dose-dependent) hypothermia during the day but fever at night. This resulted in body temperature during the peak response being relatively similar during the day and night. Day-to-night differences might be explained in the context of circadian variation in body temperature: songbirds have a high daytime body temperature that is augmented by substantial heat production peaks during activity. This might require a trade-off between the benefit of fever and the risk of overheating. In contrast, at night, when body temperature is typically lower and less variable, fever can be used to mitigate infection. We suggest that the change in body temperature during infection in small songbirds is context dependent and regulated to promote survival according to individual demands at the time of infection.

  1. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    PubMed

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  2. Critical roles of nardilysin in the maintenance of body temperature homoeostasis.

    PubMed

    Hiraoka, Yoshinori; Matsuoka, Tatsuhiko; Ohno, Mikiko; Nakamura, Kazuhiro; Saijo, Sayaka; Matsumura, Shigenobu; Nishi, Kiyoto; Sakamoto, Jiro; Chen, Po-Min; Inoue, Kazuo; Fushiki, Tohru; Kita, Toru; Kimura, Takeshi; Nishi, Eiichiro

    2014-01-01

    Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1(-/-) mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1(-/-) mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation.

  3. Critical roles of nardilysin in the maintenance of body temperature homoeostasis

    PubMed Central

    Hiraoka, Yoshinori; Matsuoka, Tatsuhiko; Ohno, Mikiko; Nakamura, Kazuhiro; Saijo, Sayaka; Matsumura, Shigenobu; Nishi, Kiyoto; Sakamoto, Jiro; Chen, Po-Min; Inoue, Kazuo; Fushiki, Tohru; Kita, Toru; Kimura, Takeshi; Nishi, Eiichiro

    2014-01-01

    Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1−/− mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1−/− mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation. PMID:24492630

  4. Physiological changes in caged layers during a forced molt. 1. Body temperature and selected blood constituents.

    PubMed

    Brake, J; Thaxton, P

    1979-05-01

    The effects of forced molting on body temperature and selected blood constituents were studied. Caged layers, reared under commercial conditions, were force molted successively at 72 and 104 weeks of age. This was accomplished by removing feed for up to 12 days and water for up to 3 days while simultaneously reducing the day length to 10 hr or less. This procedure resulted in a cessation of egg production within one week of the initiation of feed removal. There was a significant increase in body temperature during feather loss and renewal. Packed cell volume and hemoglobin increased significantly immediately upon removal of feed and water and remained elevated above control levels for the duration of the pause in egg production, while plasma total calcium, and inorganic phosphate decreased significantly during the corresponding period. Plasma total protein and plasma glucose did not exhibit consistent trends. Body temperature and the levels of the measured plasma consituents returned to normal levels upon the resumption of egg production.

  5. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    USGS Publications Warehouse

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2016-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  6. Ischemia/reperfusion injury resistance in hibernators is more than an effect of reduced body temperature or winter season.

    PubMed

    Bogren, Lori K; Drew, Kelly L

    2014-01-01

    Hibernating mammals are resistant to injury following cardiac arrest. The basis of this protection has been proposed to be due to their ability to lower body temperature or metabolic rate in a seasonally-dependent manner. However, recent studies have shown that neither reduced body temperature nor hibernation season are components this protection.

  7. Evaluating pen-day interactions in body temperature bilogistic mixed model for handling of feedlot heifers during heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Daily activities consume the energy of heifers, subsequently causing an elevation of body temperature, depending on the ambient conditions. A better understanding of the dynamics of body temperature (Tb) would be helpful when deciding how to process and handle heifers. It would also lead to specific...

  8. Morphological and ecological determinants of body temperature of Geukensia demissa, the Atlantic ribbed mussel, and their effects on mussel mortality.

    PubMed

    Jost, Jennifer; Helmuth, Brian

    2007-10-01

    Measurements of body temperatures in the field have shown that spatial and temporal patterns are often far more complex than previously anticipated, particularly in intertidal regions, where temperatures are driven by both marine and terrestrial climates. We examined the effects of body size, body position within the sediment, and microhabitat (presence or absence of Spartina alterniflora) on the body temperature of the mussel Geukensia demissa. We then used these data to develop a laboratory study exposing mussels to an artificial "stressful" day, mimicking field conditions as closely as possible. Results suggested that G. demissa mortality increases greatly at average daily peak temperatures of 45 degrees C and higher. When these temperatures were compared to field data collected in South Carolina in the summer of 2004, our data indicated that mussels likely experienced mortality due to high-temperature stress at this site during this period. Our results also showed that body position in the mud is the most important environmental modifier of body temperature. This experiment suggested that the presence of marsh grass leads to increases in body temperature by reducing convection, overwhelming the effects of shading. These data add to a growing body of evidence showing that small-scale thermal variability can surpass large-scale gradients.

  9. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    PubMed

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods.

  10. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.

    PubMed

    Darwent, David; Ferguson, Sally A; Sargent, Charli; Paech, Gemma M; Williams, Louise; Zhou, Xuan; Matthews, Raymond W; Dawson, Drew; Kennaway, David J; Roach, Greg D

    2010-07-01

    Shiftworkers are often required to sleep at inappropriate phases of their circadian timekeeping system, with implications for the dynamics of ultradian sleep stages. The independent effects of these changes on cognitive throughput performance are not well understood. This is because the effects of sleep on performance are usually confounded with circadian factors that cannot be controlled under normal day/night conditions. The aim of this study was to assess the contribution of prior wake, core body temperature, and sleep stages to cognitive throughput performance under conditions of forced desynchrony (FD). A total of 11 healthy young adult males resided in a sleep laboratory in which day/night zeitgebers were eliminated and ambient room temperature, lighting levels, and behavior were controlled. The protocol included 2 training days, a baseline day, and 7 x 28-h FD periods. Each FD period consisted of an 18.7-h wake period followed by a 9.3-h rest period. Sleep was assessed using standard polysomnography. Core body temperature and physical activity were assessed continuously in 1-min epochs. Cognitive throughput was measured by a 5-min serial addition and subtraction (SAS) task and a 90-s digit symbol substitution (DSS) task. These were administered in test sessions scheduled every 2.5 h across the wake periods of each FD period. On average, sleep periods had a mean (+/- standard deviation) duration of 8.5 (+/-1.2) h in which participants obtained 7.6 (+/-1.4) h of total sleep time. This included 4.2 (+/-1.2) h of stage 1 and stage 2 sleep (S1-S2 sleep), 1.6 (+/-0.6) h of slow-wave sleep (SWS), and 1.8 (+/-0.6) h of rapid eye movement (REM) sleep. A mixed-model analysis with five covariates indicated significant fixed effects on cognitive throughput for circadian phase, prior wake time, and amount of REM sleep. Significant effects for S1-S2 sleep and SWS were not found. The results demonstrate that variations in core body temperature, time awake, and amount of

  11. Effect of 3,4-methylenedioxymethamphetamine ("ecstasy") on body temperature and liver antioxidant status in mice: influence of ambient temperature.

    PubMed

    Carvalho, Márcia; Carvalho, Félix; Remião, Fernando; de Lourdes Pereira, Maria; Pires-das-Neves, Ricardo; de Lourdes Bastos, Maria

    2002-04-01

    The consumption of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is known to cause severe hyperthermia and liver damage in humans. The thermogenic response induced by MDMA is complex and partially determined by the prevailing ambient temperature (AT). This is of extreme importance since ecstasy is often consumed at "rave" parties, where dancing takes place in a warm environment, which may exacerbate the effect of MDMA on thermoregulation. In view of the fact that hyperthermia is a well-known pro-oxidant aggressive condition, its potential role in ecstasy-induced hepatocellular toxicity should be further studied. Thus, the present study was performed in order to evaluate the influence of AT on the effects of single administration of MDMA on body temperature and liver toxicity in Charles River mice. Animals were given an acute intraperitoneal dose of MDMA (5, 10 or 20 mg/kg) and placed in AT of 20+/-2 degrees C or 30+/-2 degrees C for 24 h. Body temperature was measured during the study using implanted transponders and a temperature probe reading device. Plasma and liver samples were used for biochemical analysis. Liver sections were also taken for histological examination. The parameters evaluated were (1) plasma levels of transaminases and alkaline phosphatase, (2) hepatic glutathione (GSH), (3) hepatic lipid peroxidation, (4) activity of hepatic antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, glutathione- S-transferase, copper/zinc superoxide dismutase and manganese superoxide dismutase), and (5) liver histology. The hyperthermic response elicited by MDMA was clearly dose-related and potentiated by high AT. Administration of MDMA produced some evidence of oxidative stress, expressed as GSH depletion at both ATs studied, as well as by lipid peroxidation and decreased catalase activity at high AT. High AT, by itself, decreased glutathione peroxidase activity. Histological examination of the liver revealed abnormalities of a dose

  12. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  13. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    PubMed Central

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  14. Northern squawfish Ptychochelius oregonensis, O2 consumption rate: Effects of temperature and body size

    USGS Publications Warehouse

    Cech, Joseph J.; Castleberry, Daniel T.; Hopkins, Todd E.; Petersen, James H.

    1994-01-01

    Northern squawfish, Ptychocheilus oregonensis (live weight range 0.361–1.973 kg), O2consumption was measured with temperature-controlled, flow-through respirometers for >24 h. Mean standard O2 consumption rate of northern squawfish increased with acclimation temperature: 24.3, 49.1, 75.0, and 89.4 mg∙kg−0.67∙h−1 at 9, 15, 18, and 21 °C, respectively. Q10analysis showed that O2 consumption rate temperature sensitivity was greatest at the intermediate acclimation temperatures (15–18 °C, Q10 = 4.10), moderate at the lower acclimation temperatures (9–15 °C, Q10 = 3.23), and lowest at the higher acclimation temperatures (18–21 °C, Q10 = 1.80). Overall Q10 was 2.96 (9–21 °C). Body size (W, grams) and temperature (T, degrees Celcius) were related to O2 consumption (, grams per gram per day) by W−0.285∙e0.105T. Northern squawfish red to white muscle ratios significantly exceeded those of rainbow trout, Oncorhynchus mykiss, in cross sections at 50 and 75% of standard length. High metabolic rates and red to white muscle ratios argue for comparability of northern squawfish with active predators such as sympatric rainbow trout.

  15. Historic Variations in Winter Indoor Domestic Temperatures and Potential Implications for Body Weight Gain.

    PubMed

    Mavrogianni, A; Johnson, F; Ucci, M; Marmot, A; Wardle, J; Oreszczyn, T; Summerfield, A

    2013-04-01

    It has been argued that the amount of time spent by humans in thermoneutral environments has increased in recent decades. This paper examines evidence of historic changes in winter domestic temperatures in industrialised countries. Future trajectories for indoor thermal comfort are also explored. Whilst methodological differences across studies make it difficult to compare data and accurately estimate the absolute size of historic changes in indoor domestic temperatures, data analysis does suggest an upward trend, particularly in bedrooms. The variations in indoor winter residential temperatures might have been further exacerbated in some countries by a temporary drop in demand temperatures due to the 1970s energy crisis, as well as by recent changes in the building stock. In the United Kingdom, for example, spot measurement data indicate that an increase of up to 1.3°C per decade in mean dwelling winter indoor temperatures may have occurred from 1978 to 1996. The findings of this review paper are also discussed in the context of their significance for human health and well-being. In particular, historic indoor domestic temperature trends are discussed in conjunction with evidence on the links between low ambient temperatures, body energy expenditure and weight gain.

  16. Historic Variations in Winter Indoor Domestic Temperatures and Potential Implications for Body Weight Gain

    PubMed Central

    Johnson, F.; Ucci, M.; Marmot, A.; Wardle, J.; Oreszczyn, T.; Summerfield, A.

    2013-01-01

    It has been argued that the amount of time spent by humans in thermoneutral environments has increased in recent decades. This paper examines evidence of historic changes in winter domestic temperatures in industrialised countries. Future trajectories for indoor thermal comfort are also explored. Whilst methodological differences across studies make it difficult to compare data and accurately estimate the absolute size of historic changes in indoor domestic temperatures, data analysis does suggest an upward trend, particularly in bedrooms. The variations in indoor winter residential temperatures might have been further exacerbated in some countries by a temporary drop in demand temperatures due to the 1970s energy crisis, as well as by recent changes in the building stock. In the United Kingdom, for example, spot measurement data indicate that an increase of up to 1.3°C per decade in mean dwelling winter indoor temperatures may have occurred from 1978 to 1996. The findings of this review paper are also discussed in the context of their significance for human health and well-being. In particular, historic indoor domestic temperature trends are discussed in conjunction with evidence on the links between low ambient temperatures, body energy expenditure and weight gain. PMID:26321874

  17. Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures?

    PubMed

    Shine, Richard

    2004-08-01

    Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution.

  18. Roles of subcutaneous fat and thermoregulatory reflexes in determining ability to stabilize body temperature in water.

    PubMed Central

    Hayward, M G; Keatinge, W R

    1981-01-01

    1. The lowest water temperature in which different young adults could stabilize body temperature was found to vary from 32 degrees C to less than 12 degrees C, because of large differences in both total body insulation and metabolic heat production. 2. Total body insulation per unit surface area, in the coldest water allowing stability, was quite closely determined by mean subcutaneous fat thickness measured ultrasonically (r = 0.92), regardless of differences in distribution of this fat between men and women. 3. Reactive individuals developed high metabolic rates, and often rather high insulations in relation to fat thickness, which enabled them to stabilize their body temperatures in water more than 10 degrees C colder than was possible for less reactive individuals of similar fat thickness. 4. Measurements of heat flux, after stabilization in the coldest water possible, showed that the trunk was the main site of heat loss and that over half of the internal insulation there could be accounted for by subcutaneous fat; by contrast, fat could account for less than a third of higher insulations found in muscular parts of the limbs, and for less than 3% of very high insulations in the hands and feet. 5. After stabilization of body temperature at rest in the coldest possible water, exercise reduced internal insulation only in muscular parts of the limbs. Exercise also increased heat loss elsewhere by exposing skin of protected regions such as flexural surfaces of joints. During exercise total heat production increased rather more than heat loss in unreactive subjects, but less than loss in subjects whose heat production had already risen to a high level when they were at rest in cold water. 6. In warm (37 degrees C) water, tissue insulations were lower and much more uniform between subjects and between different body regions than in the cold. Even in the warm, however, insulations remained rather higher in fat than thin subjects, higher at rest than during exercise

  19. Measurements of body fat distribution: assessment of collinearity with body mass, adiposity and height in female adolescents

    PubMed Central

    Pereira, Patrícia Feliciano; Serrano, Hiara Miguel Stanciola; Carvalho, Gisele Queiroz; Ribeiro, Sônia Machado Rocha; Peluzio, Maria do Carmo Gouveia; Franceschini, Sylvia do Carmo Castro; Priore, Silvia Eloiza

    2015-01-01

    OBJECTIVE : To verify the correlation between body fat location measurements with the body mass index (BMI), body fat percentage (BF%) and height, according to the nutritional status in female adolescents. METHODS : A controlled cross-sectional study was carried out with 113 adolescents (G1: 38 with normal weight, but with high body fat level, G2: 40 with normal weight and G3: 35 overweight) from public schools in Viçosa-MG, Brazil. The following measures were assessed: weight, height, waist circumference (WC), umbilical circumference (UC), hip circumference (HC), thigh circumference, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), waist-to-thigh ratio (WTR), conicity index (CI), sagittal abdominal diameter (SAD), coronal diameter (CD), central (CS) and peripheral skinfolds (PS). The BF% was assessed by tetrapolar electric bioimpedance. RESULTS : The increase in central fat, represented by WC, UC, WHtR, SAD, CD and CS, and the increase in peripheral fat indicated by HC and thigh circumference were proportional to the increase in BMI and BF%. WC and especially the UC showed the strongest correlations with adiposity. Weak correlation between WHR, WTR, CI and CS/PS with adiposity were observed. The height showed correlation with almost all the fat location measures, being fair or weak with waist measurements. CONCLUSIONS : The results indicate colinearity between body mass and total adiposity with central and peripheral adipose tissue. We recommend the use of UC for assessing nutritional status of adolescents, as it showed the highest capacity to predict adiposity in each group, and also showed fair or weak correlation with height. PMID:25623729

  20. Genetically determined differences in ethanol sensitivity influenced by body temperature during intoxication

    SciTech Connect

    Alkana, R.L.; Finn, D.A.; Bejanian, M.; Crabbe, J.C.

    1988-01-01

    The present study investigated the importance of body temperature during intoxication in mediating differences between five inbred strains of mice (C57BL/6J; BALB/cJ; DBA/2J; A/HeJ; 129/J) in their acute sensitivity to the hypnotic effects of ethanol. Mice exposed to 22/degrees/C after ethanol injection became hypothermic and exhibited statistically significant differences between strains in rectal temperatures at the return of the righting reflex (RORR), duration of loss of the righting reflex (LORR), and blood and brain ethanol concentrations at RORR. Exposure to 34/degrees/C after injection offset ethanol-hypothermia and markedly reduced strain-related differences in rectal temperatures and blood and brain ethanol concentrations at RORR. Brain ethanol concentrations at RORR were significantly lower in C57, BALB, DBA and A/He mice exposed to 34/degrees/C compared to mice exposed to 22/degrees/C during intoxication suggesting that offsetting hypothermia increased ethanol sensitivity in these strains. Taken with previous in vitro studies, these results suggest that genetically determined differences in acute sensitivity to the behavioral effects of ethanol reflect differences in body temperature during intoxication as well as differences in sensitivity to the initial actions of ethanol at the cellular level.

  1. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    PubMed

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-07

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability.

  2. Color of hot soup modulates postprandial satiety, thermal sensation, and body temperature in young women.

    PubMed

    Suzuki, Maki; Kimura, Rie; Kido, Yasue; Inoue, Tomoko; Moritani, Toshio; Nagai, Narumi

    2017-04-01

    The color of food is known to modulate not only consumers' motivation to eat, but also thermal perception. Here we investigated whether the colors of hot soup can influence thermal sensations and body temperature, in addition to the food acceptability and appetite. Twelve young female participants consumed commercial white potage soup, modified to yellow or blue by adding food dyes, at 9 a.m. on 3 separated days. During the test, visual impression (willingness to eat, palatability, comfort, warmth, and anxiety) and thermal sensations were self-reported using visual analog scales. Core (intra-aural) and peripheral (toe) temperatures were continuously recorded 10 min before and 60 min after ingestion. Blue soup significantly decreased willingness to eat, palatability, comfort, and warmth ratings, and significantly increased anxiety feelings compared to the white and yellow soups. After ingestion, the blue soup showed significantly smaller satiety ratings and the tendency of lower thermal sensation scores of the whole body compared to the white and yellow soups. Moreover, a significantly greater increase in toe temperature was found with the yellow soup than the white or blue soup. In conclusion, this study provides new evidence that the colors of hot food may modulate postprandial satiety, thermal sensations and peripheral temperature. Such effects of color may be useful for dietary strategies for individuals who need to control their appetite.

  3. Effect of temperature, ration, body size and age on sulphur isotope fractionation in fish.

    PubMed

    Barnes, Carolyn; Jennings, Simon

    2007-01-01

    Sulphur isotope analysis (delta(34)S) is increasingly identified as a valuable tool for source differentiation and the determination of trophic level in food webs, but there are still many uncertainties associated with the interpretation of delta(34)S data. To investigate the effects of temperature, ration, body size and age on sulphur trophic fractionation (Deltadelta(34)S) in fish, we reared European sea bass (Dicentrarchus labrax) on identical diets at 11 and 16 degrees C at three ration levels for over 600 days. Deltadelta(34)S was between 0 and -1 per thousand. The effect of temperature on Deltadelta(34)S was small and inconsistent, varying over the course of the experiment and depending on ration. This contrasts with temperature effects on bass Deltadelta(13)C and Deltadelta(15)N, where Deltadelta(13)C increases at warm temperatures while Deltadelta(15)N falls. Body size and age had a positive relationship with Deltadelta(34)S but the relationship with size was not significant for bass that weighed >20 g. As Deltadelta(34)S is small and the range in delta(34)S of potential diet items can be much greater than the range in delta(13)C or delta(15)N, our results show that sulphur stable isotopes are particularly useful for source differentiation in fish.

  4. Wet Belly in Reindeer (Rangifer tarandus tarandus) in Relation to Body Condition, Body Temperature and Blood Constituents

    PubMed Central

    Åhman, B; Nilsson, A; Eloranta, E; Olsson, K

    2002-01-01

    Wet belly, when the reindeer becomes wet over the lower parts of the thorax and abdomen, sometimes occurs in reindeer during feeding. In a feeding experiment, 11 out of 69 reindeer were affected by wet belly. The problem was first observed in 7 animals during a period of restricted feed intake. When the animals were then fed standard rations, 3 additional animals fed only silage, and 1 fed pellets and silage, became wet. Four animals died and 1 had to be euthanised. To investigate why reindeer developed wet belly, we compared data from healthy reindeer and reindeer affected by wet belly. Urea, plasma protein, glucose, insulin and cortisol were affected by restricted feed intake or by diet but did not generally differ between healthy reindeer and those with wet belly. The wet animals had low body temperature and the deaths occurred during a period of especially cold weather. Animals that died were emaciated and showed different signs of infections and stress. In a second experiment, with 20 reindeer, the feeding procedure of the most affected group in the first experiment was repeated, but none of the reindeer showed any signs of wet belly. The study shows that wet belly is not induced by any specific diet and may affect also lichen-fed reindeer. The fluid making the fur wet was proven to be of internal origin. Mortality was caused by emaciation, probably secondary to reduced energy intake caused by diseases and/or unsuitable feed. PMID:12173506

  5. Assessment of body fatness in childhood obesity: evaluation of laboratory and anthropometric techniques

    SciTech Connect

    Bandini, L.G.; Dietz, W.H. Jr.

    1987-10-01

    The identification of obesity as a pathological diagnosis depends on an accurate assessment of body fatness and a correlation of fatness with pathological consequences. Because total body fat varies with body weight, the proportion of body weight that is fat is probably a more reliable indicator of risk. Among obese children and adolescents, several problems have hindered the development of accurate clinical measures of percent body fat and total body fat. First, the use of direct methods to measure body composition is limited by expense and labor. Second, the relationship between anthropometric indexes and body composition in obese children and adolescents has not been intensively studied. Third, sample sizes of normal weight children have been too small to permit the development of diagnostic criteria. Fourth, the triceps skinfold is less reproducible in overweight subjects. Increases in lean body mass in obese adolescents may confound the use of the body mass index as a measure of adiposity. Current laboratory methods for the measurement of body composition include: (1) underwater weighing, (2) 40K counting, (3) isotopic dilution measures, (4) neutron activation, and (5) electrical impedance. This article examines relationships between those methods and anthropometry in the measurement of fatness in children and adolescents, as well as the difficulties in measuring body fatness and the importance of body fat distribution and its relationship to morbidity in children. Current evidence suggests an association of morbidity and upper segment obesity in adults. Corresponding studies in children and adolescents are yet to be carried out.

  6. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    PubMed

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases.

  7. Difference method for analysing infrared images in pigs with elevated body temperatures.

    PubMed

    Siewert, Carsten; Dänicke, Sven; Kersten, Susanne; Brosig, Bianca; Rohweder, Dirk; Beyerbach, Martin; Seifert, Hermann

    2014-03-01

    Infrared imaging proves to be a quick and simple method for measuring temperature distribution on the pig's head. The study showed that infrared imaging and analysis with a difference ROI (region of interest) method may be used for early detection of elevated body temperature in pigs (> 39.5°C). A high specificity of approx. 85% and a high sensitivity of 86% existed. The only prerequisite is that there are at least 2 anatomical regions which can be recognised as reproducible in the IR image. Noise suppression is guaranteed by averaging the temperature value within both of these ROI. The subsequent difference imaging extensively reduces the off-set error which varies in every thermal IR-image.

  8. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron

    NASA Astrophysics Data System (ADS)

    Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels

    2016-06-01

    The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.

  9. Effects of wearing two different types of clothing on body temperatures during and after exercise

    NASA Astrophysics Data System (ADS)

    Jeong, Woon Seon; Tokura, Hiromi

    1989-06-01

    The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery at T a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.

  10. Changes in body temperature during growth and in response to fasting in growing modern meat type chickens.

    PubMed

    Christensen, K; Thaxton, Y Vizzier; Thaxton, J P; Scanes, C G

    2012-01-01

    1. Rectal or core body temperature was determined in a study to examine the effects of fasting in modern meat type broilers at three stages of growth, namely d 19, 33 and 47. 2. There were two treatment groups: fed with feed available ad libitum and fasted. Rectal temperatures were determined at noon (1200 h). At that time, feed was removed from the fasted group. The body temperatures were then determined again after 6, 12, 18 and 24 h. 3. Core body temperatures decreased with fasting. The decrease was evident after as little as 6 h of fasting with a further decline evident by 12 h. 4. Accompanying the decrease in body temperature with fasting there were decreases in the venous concentrations of carbon dioxide in the blood and sodium in the plasma. 5. The decrease in both body temperature and carbon dioxide presumably reflects depressed metabolic rate. 6. Unexpectedly, the core body temperature increased progressively with age in the control fed group (d 19 = 41·04 ± 0·02°C, d 33 = 41·65 ± 0·05°C, d 47 = 42·21 ± 0·12°C). 7. In the fed control group, core body temperatures were reduced at night, when feeding activity would be anticipated to be greatly reduced.

  11. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    NASA Astrophysics Data System (ADS)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  12. Thermo-Sensitive Receptor Protein: Role of TRPVs in Control of Body Temperature under Heat Radiation

    NASA Astrophysics Data System (ADS)

    Mochizuki-Oda, Noriko; Kusuno, Tomoyuki; Hanada, Tsunehisa; Tominaga, Makoto; Tominaga, Tomoko; Suzuki, Makoto; Yamada, Hisao; Yamada, Hironari

    2007-03-01

    In vertebrate peripheral nervous system, skin heating and cooling are detected by thermo-sensitive neurons tuned to respond over distinct temperature ranges. TRP-family is thermo-sensitive receptor protein which is Ca2+-permeable ion channels expressing in cellular membrane. TRPV1 is activated by noxious heat above 42 °C, whereas TRPV3 and TRPV4 are sensitive to moderate temperatures (<34 °C). Although the amino acid sequence and the channel properties have been characterized, the molecular mechanism of temperature sensation remains poorly understood. In environment, mid and far infrared radiation act as physical stimuli. Here we examined the role of TRPV1 and TRPV4 in regulation of body temperature (BT) by using infrared laser as mild heat stimuli. In wild type mouse, the laser irradiation which caused the increase in skin temperature up to 55 °C did not induce the change in BT without any treatment of TRPVs. However, desensitization of TRPV1 with capsaicin resulted in the increase in BT by laser irradiation. On the other hand, in TRPV4-knockout mouse, moderate thermal stimulus (skin surface temperature <43 °C) caused the increase in the BT. These results suggest that the processing of noxious and moderate thermal radiation stimuli may depend on the TRPV1 and TRPV4, respectively.

  13. Effects of sulpiride and SCH 23390 on methamphetamine-induced changes in body temperature and lethality.

    PubMed

    Bronstein, D M; Hong, J S

    1995-08-01

    Data from human and animal studies suggest that hyperpyrexia contributes to both the neurotoxic and the lethal effects of stimulant drugs such as methamphetamine (METH). Because many of the effects of METH involve the release of dopamine from CNS neurons, we examined the effects of D1 and D2 dopamine receptor antagonists on METH-induced lethality and determined whether these effects correlated with changes in body temperature. In the first set of experiments, we found that the D2 antagonist sulpiride (SUL; 20, 40 or 80 mg/kg) potentiated the lethality caused by a single injection of METH (10 mg/kg). Pretreatment with the D1 antagonist SCH 23390 (SCH; 0.5 mg/kg) reduced the lethality induced by METH alone or by SUL/METH. Other D2 or 5-hydroxytryptamine antagonists prevented, rather than potentiated, METH-induced lethality. In a second set of experiments, rectal temperatures were recorded in METH-injected animals pretreated with SCH or SUL. METH caused a significant increase (i.e., above vehicle-injected levels) in body temperature at 2.5 hr after injection. The effects of SCH or SUL pretreatment on METH-induced changes in body temperature suggest that the lethality-potentiating and -protective effects of SUL and SCH, respectively, were not due to altered thermoregulatory responses. These data support the idea that D1 receptor activation is an important event in the lethality caused by METH and that SUL may potentiate D1 receptor activation by augmenting METH-induced DA release.

  14. Intracellular pH in lizard Dipsosaurus dorsalis in relation to changing body temperatures.

    PubMed

    Bickler, P E

    1982-12-01

    Mean whole-body and tissue-specific intracellular pH values (pHi) were measured in Dipsosaurus dorsalis by the dimethyloxazolidinedione technique. pHi was measured in lizards at constant body temperatures (Tb) (18, 25, 35, and 42 degrees C) and in lizards undergoing changes in Tb between 18 and 42 degrees C. Constant Tb between 18 and 42 degrees C maintained for 24 h or more produced a delta pH/delta Tb of -0.015 for the mean whole-body, -0.012 for venous blood, -0.0104 for cardiac muscle, and -0.0098 for skeletal muscle. Within the preferred range of Tb values (35-42 degrees C), the delta pH/delta Tb patterns were closer to that expected to achieve constant dissociation of protein imidazole (approximately -0.017): mean whole-body -0.020, cardiac muscle -0.016, and skeletal muscle -0.018. Tissue water contents were independent of Tb. Whole-body pHi during gradual warming and cooling (approximately 2 h elapsed time for each direction) closely corresponded to steady-state values. Upon cooling to 18 degrees C, tissue-specific and whole-body pHi often fell 0.1-0.2 unit below that expected; in each case this was correlated with an extracellular acidosis. A gradual recovery of pHi occurred with the recovery of the extracellular acidosis. Over the normally experienced Tb range, adjustments in pHi apparently rapidly achieve steady-state values and are in accord with the imidazole alphastat hypothesis. These patterns are discussed in terms of the thermal ecology of Dipsosaurus.

  15. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.

    PubMed

    Blad, B; Persson, B; Lindström, K

    1992-01-01

    The objective of this study is a non-invasive assessment of the thermal dose in hyperthermia. Electrical impedance tomography (EIT) has previously been given a first trial as a temperature monitoring method together with microwave-induced hyperthermia treatment, but it has not been thoroughly investigated. In the present work we have examined this method in order to investigate the correlation in vitro between the true spatial temperature distribution and the corresponding measured relative resistivity changes. Different hyperthermia techniques, such as interstitial water tubings, microwave-induced, laser-induced and ferromagnetic seeds have been used. The results show that it is possible to find a correlation between the measured temperature values and the tomographically measured relative resistivity changes in tissue-equivalent phantoms. But the uncertainty of the temperature coefficients, which has been observed, shows that the method has to be improved before it can be applied to clinical in vivo applications.

  16. 16 CFR 1112.25 - What are a third party conformity assessment body's recordkeeping responsibilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... assessment body internal documents describing testing protocols and procedures (such as instructions..., such as through an Internet Web site. If the records are not in the English language, the third...

  17. Contribution of a membrane estrogen receptor to the estrogenic regulation of body temperature and energy homeostasis.

    PubMed

    Roepke, Troy A; Bosch, Martha A; Rick, Elizabeth A; Lee, Benjamin; Wagner, Edward J; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S; Rønnekleiv, Oline K; Kelly, Martin J

    2010-10-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7-8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms.

  18. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    PubMed Central

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms. PMID:20685867

  19. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  20. The predicting value of postoperative body temperature on long-term survival in patients with rectal cancer.

    PubMed

    Yu, Huichuan; Luo, Yanxin; Peng, Hui; Kang, Liang; Huang, Meijin; Luo, Shuangling; Chen, Wenhao; Yang, Zihuan; Wang, Jianping

    2015-09-01

    This study aimed to assess the association between postoperative body temperature and prognosis in patients with rectal cancer. Five hundred and seven patients with stage I to III rectal cancers were enrolled in the current study. Basal body temperature (BBT, measured at 6 am) and maximal body temperature (MBT) on each day after surgery were analyzed retrospectively. Patients were divided into two equal groups according to the median of BBT and MBT at each day. The primary end points were disease-free survival (DFS) and overall survival (OS). The univariate and multivariate analyses showed that patients with low D0-MBT (<37.4 °C) had lower 3-year DFS [adjusted hazard ratio (HR) 1.56 (95 % CI 1.08-2.24, P = 0.017)] as well as OS [adjusted HR 1.72 (95 % CI 1.05-2.82, P = 0.032)] rate as compared to those with high D0-MBT (>37.4 °C). In the subset of 318 patients with T3 stage tumor and the subgroup of 458 patients without blood transfusion as well, low D0-MBT continues to be an independent predictor of DFS/OS with an adjusted HR equal to 1.48 (95 % CI 1.02-2.24, P = 0.046)/1.68 (95 % CI 1.04-2.99, P = 0.048) and 1.45 (95 % CI 1.02-2.13, P = 0.048)/1.59 (95 % CI 1.01-2.74, P = 0.049), respectively. In addition, we found that patients have higher risk of 1-year recurrence if those were exhibiting low preoperative BBT (<36.6 °C) (17 vs. 10 %, P = 0.034). Low body temperature (D0-MBT < 37.4 °C) after surgery was an independent predictor of poor survival outcomes in patients with rectal cancer.

  1. Effect of CO₂ on the ventilatory sensitivity to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Honda, Yasushi; Miyakawa, Natsuki; Fujii, Naoto; Ichinose, Masashi; Koga, Shunsaku; Kondo, Narihiko; Nishiyasu, Takeshi

    2011-05-01

    We examined the degree to which ventilatory sensitivity to rising body temperature (the slope of the regression line relating ventilation and body temperature) is altered by restoration of arterial PCO(2) to the eucapnic level during prolonged exercise in the heat. Thirteen subjects exercised for ~60 min on a cycle ergometer at 50% of peak O(2) uptake with and without inhalation of CO(2)-enriched air. Subjects began breathing CO(2)-enriched air at the point that end-tidal Pco(2) started to decline. Esophageal temperature (T(es)), minute ventilation (V(E)), tidal volume (V(T)), respiratory frequency (f(R)), respiratory gases, middle cerebral artery blood velocity, and arterial blood pressure were recorded continuously. When V(E), V(T), f(R), and ventilatory equivalents for O(2) uptake (V(E)/VO(2)) and CO(2) output (V(E)/VCO(2)) were plotted against changes in T(es) from the start of the CO(2)-enriched air inhalation (ΔT(es)), the slopes of the regression lines relating V(E), V(T), V(E)/VO(2), and V(E)/VCO(2) to ΔT(es) (ventilatory sensitivity to rising body temperature) were significantly greater when subjects breathed CO(2)-enriched air than when they breathed room air (V(E): 19.8 ± 10.3 vs. 8.9 ± 6.7 l·min(-1)·°C(-1), V(T): 18 ± 120 vs. -81 ± 92 ml/°C; V(E)/VO(2): 7.4 ± 5.5 vs. 2.6 ± 2.3 units/°C, and V(E)/VCO(2): 7.6 ± 6.6 vs. 3.4 ± 2.8 units/°C). The increase in Ve was accompanied by increases in V(T) and f(R). These results suggest that restoration of arterial PCO(2) to nearly eucapnic levels increases ventilatory sensitivity to rising body temperature by around threefold.

  2. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography.

    PubMed

    Wallage, A L; Gaughan, J B; Lisle, A T; Beard, L; Collins, C W; Johnston, S D

    2017-03-23

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT (r > 0.94, P < 0.001) and ST (r > 0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  3. Association between Body Temperature Patterns and Neurological Outcomes after Extracorporeal Cardiopulmonary Resuscitation.

    PubMed

    Ryu, Jeong-Am; Park, Taek Kyu; Chung, Chi Ryang; Cho, Yang Hyun; Sung, Kiick; Suh, Gee Young; Lee, Tae Rim; Sim, Min Seob; Yang, Jeong Hoon

    2017-01-01

    We evaluated the association of body temperature patterns with neurological outcomes after extracorporeal cardiopulmonary resuscitation (ECPR). Between December 2013 and December 2015, we enrolled 48 patients with cardiac arrest who survived for at least 24 hours after ECPR. Based on their body temperature patterns and the intention to control fever, we divided the patients into those in whom fever was actively controlled (N = 25), those with normothermia (N = 17), and those with unintended hypothermia (N = 6). The primary outcome was the Cerebral Performance Categories (CPC) scale at discharge. Of the 48 ECPR patients, 23 patients (47.9%) had good neurological outcomes (CPC 1 and 2) and 27 patients (56.3%) survived to discharge. The normothermia group showed a pattern of higher temperatures compared with the other groups during 48 hours after ECPR. Not only poor neurological outcomes but also intensive care unit (ICU) mortality occurred more often in the unintended hypothermia group than in the other two groups, regardless of the fever control strategy (p = 0.023 and p = 0.002, respectively). There were no differences in neurological outcomes and ICU mortality between the actively controlled fever group and the normothermia group (p = 0.845 and p = 0.616, respectively). Unintentionally sustained hypothermia may be associated with poor neurological outcomes after ECPR. These findings suggest that patients who are unable to generate a fever following ECPR may incur severe hypoxic brain injury.

  4. Transient temperature distributions in simple conducting bodies steadily heated through a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Parker, Hermon M

    1953-01-01

    An analysis is made of the transient heat-conduction effects in three simple semi-infinite bodies: the flat insulated plate, the conical shell, and the slender solid cone. The bodies are assumed to have constant initial temperatures and, at zero time, to begin to move at a constant speed and zero angle of attack through a homogeneous atmosphere. The heat input is taken as that through a laminar boundary layer. Radiation heat transfer and transverse temperature gradients are assumed to be zero. The appropriate heat-conduction equations are solved by an iteration method, the zeroeth-order terms describing the situation in the limit of small time. The method is presented and the solutions are calculated to three orders which are sufficient to give reasonably accurate results when the forward edge has attained one-half the total temperature rise (nose half-rise time). Flight Mach number and air properties occur as parameters in the result. Approximate expressions for the extent of the conduction region and nose half-rise times as functions of the parameters of the problem are presented. (author)

  5. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures

    PubMed Central

    Priya, Kumutha; Chang, Chien-Yi; Abdul Rahman, Ahmad Yamin; Tee, Kok Keng; Yin, Wai-Fong

    2016-01-01

    Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products. PMID:27547539

  6. Simple and effective method to lower body core temperatures of hyperthermic patients.

    PubMed

    O'Connor, John P

    2017-01-30

    Hyperthermia is a potentially life threatening scenario that may occur in patients due to accompanying morbidities, exertion, or exposure to dry and arid environmental conditions. In particular, heat stroke may result from environmental exposure combined with a lack of thermoregulation. Key clinical findings in the diagnosis of heatstroke are (1) a history of heat stress or exposure, (2) a rectal temperature greater than 40 °C, and (3) central nervous system dysfunction (altered mental state, disorientation, stupor, seizures, or coma) (Prendergast and Erickson, 2014 [1]). In these patients, it is important to bring the body's core temperature down to acceptable levels in a short period of time to avoid tissue/organ injury or death (Yoder, 2001; Casa et al., 2007 [2,3]). A number of potential approaches, both non-invasive and invasive, may be used to lower the temperature of these individuals. Non-invasive techniques generally include: evaporative cooling, ice water immersion, whole-body ice packing, strategic ice packing, and convective cooling. Invasive approaches may include gastric lavage or peritoneal lavage (Schraga and Kates [4]). The efficacy of these methods vary and select treatment approaches may be unsuitable for specific individuals (Schraga and Kates [4]). In this work, the effectiveness of radiation cooling of individuals as a stand-alone treatment and comparisons with existing noninvasive techniques are presented.

  7. Central effects of 6-hydroxydopamine on the body temperature of the rat

    PubMed Central

    Simmonds, M. A.; Uretsky, N. J.

    1970-01-01

    1. Rats which had been pretreated with intraventricular injections of 6-hydroxydopamine (6-OHDA) to cause a selective depletion of brain noradrenaline (NA) to 20·7% of control brain NA and brain dopamine (DA) to 34·6% of control brain DA retained an unimpaired ability to regulate their body temperatures on exposure to heat or cold. This is discussed in relation to the possible role of brain NA in the central control of body temperature. 2. Intraventricular injections of 6-OHDA in normal rats at room temperature caused an acute, dose dependent hypothermia of up to 4·5° C which lasted for 4-5 hours. Depletion of brain NA and DA by prior treatment with 6-OHDA markedly reduced the hypothermic response to a subsequent dose of 6-OHDA. Selective depletion of brain NA without affecting brain DA did not reduce the response to 6-OHDA. The acute hypothermic response to 6-OHDA, may therefore, be related to a release of DA in the brain. PMID:5495172

  8. Association between Body Temperature Patterns and Neurological Outcomes after Extracorporeal Cardiopulmonary Resuscitation

    PubMed Central

    Ryu, Jeong-Am; Park, Taek Kyu; Chung, Chi Ryang; Cho, Yang Hyun; Sung, Kiick; Suh, Gee Young; Lee, Tae Rim; Sim, Min Seob; Yang, Jeong Hoon

    2017-01-01

    We evaluated the association of body temperature patterns with neurological outcomes after extracorporeal cardiopulmonary resuscitation (ECPR). Between December 2013 and December 2015, we enrolled 48 patients with cardiac arrest who survived for at least 24 hours after ECPR. Based on their body temperature patterns and the intention to control fever, we divided the patients into those in whom fever was actively controlled (N = 25), those with normothermia (N = 17), and those with unintended hypothermia (N = 6). The primary outcome was the Cerebral Performance Categories (CPC) scale at discharge. Of the 48 ECPR patients, 23 patients (47.9%) had good neurological outcomes (CPC 1 and 2) and 27 patients (56.3%) survived to discharge. The normothermia group showed a pattern of higher temperatures compared with the other groups during 48 hours after ECPR. Not only poor neurological outcomes but also intensive care unit (ICU) mortality occurred more often in the unintended hypothermia group than in the other two groups, regardless of the fever control strategy (p = 0.023 and p = 0.002, respectively). There were no differences in neurological outcomes and ICU mortality between the actively controlled fever group and the normothermia group (p = 0.845 and p = 0.616, respectively). Unintentionally sustained hypothermia may be associated with poor neurological outcomes after ECPR. These findings suggest that patients who are unable to generate a fever following ECPR may incur severe hypoxic brain injury. PMID:28114337

  9. CH-19 sweet, nonpungent cultivar of red pepper, increased body temperature in mice with vanilloid receptors stimulation by capsiate.

    PubMed

    Ohnluki, K; Haramizu, S; Watanabe, T; Yazawa, S; Fushiki, T

    2001-08-01

    We investigated the effect of CH-19 Sweet, a nonpungent cultivar of red pepper, and capsiate, a nonpungent capsaicin analog found in CH-19 Sweet on body temperature in mice. The body temperature was recorded from conscious and unrestrained mice by use of a telemetry system. The body temperature in the mice administered CH-19 Sweet was higher than in the mice administered California-Wandar, which contains no capsiate or capsaicin. The body temperature in the mice administered capsiate was higher than in the mice administered the vehicle. Furthermore, we injected capsazepine, a specific antagonist of vanilloid receptors, into the peritoneal cavity and orally administered capsiate via a stomach tube to mice. The body temperature in the mice pretreated with capsazepine was lower than in the mice injected with the vehicle. This result suggested that capsazepine suppressed the rise in body temperature induced by capsiate administration. In conclusion, CH-19 Sweet increased body temperature, and this effect may be induced by the vanilloid receptors' stimulation of capsiate.

  10. Body temperature modulates the antioxidant and acute immune responses to exercise.

    PubMed

    Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni

    2012-06-01

    The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.

  11. Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans.

    PubMed

    Tester, Nicole J; Plaas, Anna H; Howland, Dena R

    2007-04-01

    Chondroitinase ABC (Ch'ase ABC) is a bacterial lyase that degrades chondroitin sulfate (CS), dermatan sulfate, and hyaluronan glycosaminoglycans (GAGs). This enzyme has received significant attention as a potential therapy for promoting central nervous system and peripheral nervous system repair based on its degradation of CS GAGs. Determination of the stability of Ch'ase ABC activity at temperatures equivalent to normal (37 degrees C) and elevated (39 degrees C) body temperatures is important for optimizing its clinical usage. We report here data obtained from examining enzymatic activity at these temperatures across nine lots of commercially available protease-free Ch'ase ABC. CS GAG degrading activity was assayed by using 1) immunohistochemical detection of unsaturated disaccharide stubs generated by digestion of proteoglycans in tissue sections and 2) fluorophore-assisted carbohydrate electrophoresis (FACE) and/or high-performance liquid chromatography (HPLC) to separate and quantify unsaturated disaccharide digestion products. Our results indicate that there is a significant effect of lot and time on enzymatic thermostability. Average enzymatic activity is significantly decreased at 1 and 3 days at 39 degrees C and 37 degrees C, respectively. Furthermore, the average activity seen after 1 day was significantly different between the two temperatures. Addition of bovine serum albumin as a stabilizer significantly preserved enzymatic activity at 1 day, but not 3 days, at 39 degrees C. These results show that the CS GAG degrading activity of Ch'ase ABC is significantly decreased with incubation at body temperature over time and that all lots do not show equal thermostability. These findings are important for the design and interpretation of experimental and potential clinical studies involving Ch'ase ABC.

  12. Specific dynamic action of ambystomatid salamanders and the effects of meal size, meal type, and body temperature.

    PubMed

    Secor, Stephen M; Boehm, Matthew

    2006-01-01

    The past decade has witnessed a dramatic increase in studies of amphibian and reptile specific dynamic action (SDA). These studies have demonstrated that SDA, the summed energy expended on meal digestion and assimilation, is affected significantly by meal size, meal type, and body size and to some extent by body temperature. While much of this attention has been directed at anuran and reptile SDA, we investigated the effects of meal size, meal type, and body temperature on the postprandial metabolic responses and the SDA of the tiger salamander (Ambystoma tigrinum tigrinum). We also compared the SDA responses among six species of Ambystoma salamanders representing the breadth of Ambystoma phylogeny. Postprandial peaks in VO(2) and VO(2), duration of elevated metabolism, and SDA of tiger salamanders increased with the size of cricket meals (2.5%-12.5% of body mass). For A. tigrinum, as for other ectotherms, a doubling of meal size results in an approximate doubling of SDA, a function of equal increases in peak VO(2) and duration. For nine meal types of equivalent size (5% of body mass), the digestion of hard-bodied prey (crickets, superworms, mealworms, beetles) generated larger SDA responses than the digestion of soft-bodied prey (redworms, beetle larvae). Body temperature affected the profile of postprandial metabolism, increasing the peak and shortening the duration of the profile as body temperature increased. SDA was equivalent among three body temperatures (20 degrees, 25 degrees, and 30 degrees C) but decreased significantly at 15 degrees C. Comparatively, the postprandial metabolic responses and SDA of Ambystoma jeffersonianum, Ambystoma maculatum, Ambystoma opacum, Ambystoma talpoideum, Ambystoma texanum, and the conspecific Ambystoma tigrinum mavortium digesting cricket meals that were 5% of their body mass were similar (independent of body mass) to those of A. t. tigrinum. Among the six species, standard metabolic rate, peak postprandial VO(2), and SDA

  13. Optimization of a pain model: effects of body temperature and anesthesia on bladder nociception in mice.

    PubMed

    Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  14. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts.

    PubMed

    Hadamová, Markéta; Gvoždík, Lumír

    2011-01-01

    Seasonal acclimation and thermoregulation represent major components of complex thermal strategies by which ectotherms cope with the heterogeneity of their thermal environment. Some ectotherms possess the acclimatory capacity to shift seasonally their thermoregulatory behavior, but the frequent use of constant acclimation temperatures during experiments and the lack of information about thermal heterogeneity in the field obscures the ecological relevance of this plastic response. We examined the experimentally induced seasonal acclimation of preferred body temperatures (T(p)) in alpine newts Ichthyosaura (formerly Triturus) alpestris subjected to a gradual increase in acclimation temperature from 5°C during the winter to a constant 15°C or diel fluctuations between 10° and 20°C during the spring/summer. Both the mean and range of T(p) followed the increase in mean acclimation temperature without the influence of diel temperature fluctuations. The direction and magnitude of this acclimatory capacity has the potential to increase the time window available for thermoregulation. Although thermoregulation and thermal acclimation are often considered as separate but coadapted adjustments to thermal heterogeneity, their combined response is employed by newts to tackle seasonal variation in a thermoregulatory-challenging aquatic environment.

  15. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity

    PubMed Central

    Hu, Heng; Doll, Danielle N.; Sun, Jiahong; Lewis, Sara E.; Wimsatt, Jeffrey H.; Kessler, Matthew J.; Simpkins, James W.; Ren, Xuefang

    2016-01-01

    Stroke is the second leading cause of death worldwide. The prognostic influence of body temperature on acute stroke in patients has been recently reported; however, hypothermia has confounded experimental results in animal stroke models. This work aimed to investigate how body temperature could prognose stroke severity as well as reveal a possible mitochondrial mechanism in the association of body temperature and stroke severity. Lipopolysaccharide (LPS) compromises mitochondrial oxidative phosphorylation in cerebrovascular endothelial cells (CVECs) and worsens murine experimental stroke. In this study, we report that LPS (0.1 mg/kg) exacerbates stroke infarction and neurological deficits, in the mean time LPS causes temporary hypothermia in the hyperacute stage during 6 hours post-stroke. Lower body temperature is associated with worse infarction and higher neurological deficit score in the LPS-stroke study. However, warming of the LPS-stroke mice compromises animal survival. Furthermore, a high dose of LPS (2 mg/kg) worsens neurological deficits, but causes persistent severe hypothermia that conceals the LPS exacerbation of stroke infarction. Mitochondrial respiratory chain complex I inhibitor, rotenone, replicates the data profile of the LPS-stroke study. Moreover, we have confirmed that rotenone compromises mitochondrial oxidative phosphorylation in CVECs. Lastly, the pooled data analyses of a large sample size (n=353) demonstrate that stroke mice have lower body temperature compared to sham mice within 6 hours post-surgery; the body temperature is significantly correlated with stroke outcomes; linear regression shows that lower body temperature is significantly associated with higher neurological scores and larger infarct volume. We conclude that post-stroke body temperature predicts stroke severity and mitochondrial impairment in CVECs plays a pivotal role in this hypothermic response. These novel findings suggest that body temperature is prognostic for

  16. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity.

    PubMed

    Hu, Heng; Doll, Danielle N; Sun, Jiahong; Lewis, Sara E; Wimsatt, Jeffrey H; Kessler, Matthew J; Simpkins, James W; Ren, Xuefang

    2016-01-01

    Stroke is the second leading cause of death worldwide. The prognostic influence of body temperature on acute stroke in patients has been recently reported; however, hypothermia has confounded experimental results in animal stroke models. This work aimed to investigate how body temperature could prognose stroke severity as well as reveal a possible mitochondrial mechanism in the association of body temperature and stroke severity. Lipopolysaccharide (LPS) compromises mitochondrial oxidative phosphorylation in cerebrovascular endothelial cells (CVECs) and worsens murine experimental stroke. In this study, we report that LPS (0.1 mg/kg) exacerbates stroke infarction and neurological deficits, in the mean time LPS causes temporary hypothermia in the hyperacute stage during 6 hours post-stroke. Lower body temperature is associated with worse infarction and higher neurological deficit score in the LPS-stroke study. However, warming of the LPS-stroke mice compromises animal survival. Furthermore, a high dose of LPS (2 mg/kg) worsens neurological deficits, but causes persistent severe hypothermia that conceals the LPS exacerbation of stroke infarction. Mitochondrial respiratory chain complex I inhibitor, rotenone, replicates the data profile of the LPS-stroke study. Moreover, we have confirmed that rotenone compromises mitochondrial oxidative phosphorylation in CVECs. Lastly, the pooled data analyses of a large sample size (n=353) demonstrate that stroke mice have lower body temperature compared to sham mice within 6 hours post-surgery; the body temperature is significantly correlated with stroke outcomes; linear regression shows that lower body temperature is significantly associated with higher neurological scores and larger infarct volume. We conclude that post-stroke body temperature predicts stroke severity and mitochondrial impairment in CVECs plays a pivotal role in this hypothermic response. These novel findings suggest that body temperature is prognostic for

  17. The temporal dynamics of the effects of monoacylglycerol lipase blockade on locomotion, anxiety, and body temperature.

    PubMed

    Aliczki, Mano; Balogh, Zoltan; Tulogdi, Aron; Haller, Jozsef

    2012-08-01

    Studies with the monoacylglycerol lipase blocker JZL184 have suggested that enhanced 2-arachidonoylglycerol signaling suppresses locomotion, lowers body temperature, and decreases anxiety. Although the neurochemical effects of JZL184 develop within 30 min, its behavioral and autonomic effects have been studied much later. To clarify temporal dynamics, we studied the effects of intraperitoneal injections of JZL184 in mice on home-cage locomotion and body temperature for 120 min using in-vivo biotelemetry. We also studied the effects of 4, 8, and 16 mg/kg JZL184 in the open field and elevated plus maze at various time points. In the home cage, JZL184 blunted injection-induced body temperature increases but exerted no long-term effects. Vehicle injections increased the duration of rapid movements whereas the duration of motionless periods was decreased, a pattern also abolished by JZL184. Although the highest dose exerted a mild long-term effect on the relative duration of motionless periods, JZL184 seemed to have phasic rather than tonic effects in the home cage. By contrast, open field and plus maze behavior was affected 80 and 120 min but not 40 min after treatments, which may indicate tonic rather than phasic effects in these tests. Our findings confirm earlier reports of a mild anxiolytic effect of JZL184, but surprisingly, the compound markedly and dose dependently increased locomotion in the open field in both CD1 and C57BL/6J mice. These findings are difficult to reconcile at present, but suggest that the effects of monoacylglycerol lipase inhibition are more complex than previously believed and may depend strongly on as yet unidentified factors such as environmental conditions, the time of testing, species/strains, etc.

  18. Elevational variation in body-temperature response to immune challenge in a lizard

    PubMed Central

    Reguera, Senda; Moreno-Rueda, Gregorio

    2016-01-01

    Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1) hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2) fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain), by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment. PMID:27168981

  19. 78 FR 40442 - Submission for OMB Review; Comment Request-Third Party Conformity Assessment Body Registration Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... COMMISSION Submission for OMB Review; Comment Request--Third Party Conformity Assessment Body Registration... used to evaluate whether third party conformity assessment bodies meet the requirements to test for... (CPSIA) requires third party testing to be conducted by a third party conformity assessment body for...

  20. Exercise modality modulates body temperature regulation during exercise in uncompensable heat stress.

    PubMed

    Schlader, Zachary J; Raman, Aaron; Morton, R Hugh; Stannard, Stephen R; Mündel, Toby

    2011-05-01

    This study evaluated exercise modality [i.e. self-paced (SP) or fixed-intensity (FI) exercise] as a modulator of body temperature regulation under uncompensable heat stress. Eight well-trained male cyclists completed (work-matched) FI and SP cycling exercise bouts in a hot (40.6 ± 0.2°C) and dry (relative humidity 23 ± 3%) environment estimated to elicit 70% of [Formula: see text]O(2)max. Exercise intensity (i.e. power output) decreased over time in SP, which resulted in longer exercise duration (FI 20.3 ± 3.4 min, SP 23.2 ± 4.1 min). According to the heat strain index, the modification of exercise intensity in SP improved the compensability of the thermal environment which, relative to FI, was likely a result of the reductions in metabolic heat production (i.e. [Formula: see text]O(2)). Consequently, the rate of rise in core body temperature was higher in FI (0.108 ± 0.020°C/min) than in SP (0.082 ± 0.016°C/min). Interestingly, cardiac output, stroke volume, and heart rate during exercise were independent of exercise modality. However, core body temperature (FI 39.4 ± 0.3°C, SP 39.1 ± 0.4°C), blood lactate (FI 2.9 ± 0.8 mmol/L, SP 2.3 ± 0.7 mmol/L), perceived exertion (FI 18 ± 2, SP 16 ± 2), and physiological strain (FI 9.1 ± 0.9, SP 8.3 ± 1.1) were all higher in FI compared to SP at exhaustion/completion. These findings indicate that, when exercise is SP, behavioral modification of metabolic heat production improves the compensability of the thermal environment and reduces thermoregulatory strain. Therefore, under uncompensable heat stress, exercise modality modulates body temperature regulation.

  1. Influence of changes in glutathione concentration on body temperature and tolerance to cerebral ischemia.

    PubMed

    Kolesnichenko, L S; Kulinsky, V I; Sotnikova, G V; Kovtun, V Yu

    2003-05-01

    Two compounds that deplete glutathione (buthionine sulfoximine and diethyl maleate) with different mechanisms of action decrease body temperature and increase tolerance to complete global cerebral ischemia, both correlating closely with the glutathione concentration decrease. Glutathione apparently participates in the regulations of these functional parameters. GSH diethyl ester does not influence the latter, though it increases moderately the GSH concentration. Injection of GSH ester into the cerebral ventricles or subcutaneously selectively increases the GSH level in the brain and liver. An influence of the brain on the glutathione system in the liver was revealed. Diethyl maleate and GSH ester increase the activity of glutathione metabolizing enzymes under certain conditions.

  2. Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Lackner, J. R.

    1980-01-01

    This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.

  3. The effect of direct heating and cooling of heat regulation centers on body temperature

    NASA Technical Reports Server (NTRS)

    Barbour, H. G.

    1978-01-01

    Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.

  4. Inland Water Temperature: An Ideal Indicator for the National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Hook, S. J.; Lenters, J. D.; O'Reilly, C.; Healey, N. C.

    2014-12-01

    NASA is a significant contributor to the U.S. National Climate Assessment (NCA), which is a central component of the 2012-2022 U.S. Global Change Research Program Strategic Plan. The NCA has identified the need for indicators that provide a clear, concise way of communicating to NCA audiences about not only the status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America for potential use as an indicator for the NCA. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 100 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes

  5. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    SciTech Connect

    Dmitriev, Alexander L.

    2008-01-21

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10{sup -6} at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10{sup -4} K{sup -1} at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  6. Independent Orbiter Assessment (IOA): Assessment of the body flap subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Body Flap (BF) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BF hardware. The IOA product for the BF analysis consisted of 43 failure mode worksheets that resulted in 19 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 34 FMEAs and 15 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  7. Effects of reproductive status and high ambient temperatures on the body temperature of a free-ranging basoendotherm.

    PubMed

    Levesque, Danielle L; Lobban, Kerileigh D; Lovegrove, Barry G

    2014-12-01

    Tenrecs (Order Afrosoricida) exhibit some of the lowest body temperatures (T b) of any eutherian mammal. They also have a high level of variability in both active and resting T bs and, at least in cool temperatures in captivity, frequently employ both short- and long-term torpor. The use of heterothermy by captive animals is, however, generally reduced during gestation and lactation. We present data long-term T b recordings collected from free-ranging S. setosus over the course of two reproductive seasons. In general, reproductive females had slightly higher (~32 °C) and less variable T b, whereas non-reproductive females and males showed both a higher propensity for torpor as well as lower (~30.5 °C) and more variable rest-phase T bs. Torpor expression defined using traditional means (using a threshold or cut-off T b) was much lower than predicted based on the high degree of heterothermy in captive tenrecs. However, torpor defined in this manner is likely to be underestimated in habitats where ambient temperature is close to T b. Our results caution against inferring metabolic states from T b alone and lend support to the recent call to define torpor in free-ranging animals based on mechanistic and not descriptive variables. In addition, lower variability in T b observed during gestation and lactation confirms that homeothermy is essential for reproduction in this species and probably for basoendothermic mammals in general. The relatively low costs of maintaining homeothermy in a sub-tropical environment might help shed light on how homeothermy could have evolved incrementally from an ancestral heterothermic condition.

  8. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature.

    PubMed

    Killen, Shaun S; Atkinson, David; Glazier, Douglas S

    2010-02-01

    Metabolic energy fuels all biological processes, and therefore theories that explain the scaling of metabolic rate with body mass potentially have great predictive power in ecology. A new model, that could improve this predictive power, postulates that the metabolic scaling exponent (b) varies between 2/3 and 1, and is inversely related to the elevation of the intraspecific scaling relationship (metabolic level, L), which in turn varies systematically among species in response to various ecological factors. We test these predictions by examining the effects of lifestyle, swimming mode and temperature on intraspecific scaling of resting metabolic rate among 89 species of teleost fish. As predicted, b decreased as L increased with temperature, and with shifts in lifestyle from bathyal and benthic to benthopelagic to pelagic. This effect of lifestyle on b may be related to varying amounts of energetically expensive tissues associated with different capacities for swimming during predator-prey interactions.

  9. Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data.

    PubMed

    Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J Antonio; Economos, Eugenia; Flocks, Joan; McCauley, Linda

    2016-10-18

    Affordable measurement of core body temperature (Tc) in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining Tc data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared with describing Tc at a single time point or summaries of the time course into an indicator function (e.g., did Tc ever exceed 38 °C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher Tc at some point during the workday compared with those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring.

  10. Loss of circadian rhythmicity in body temperature and locomotor activity following suprachiasmatic lesions in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Haro, P. J.; Winget, C. M.

    1977-01-01

    In experiments on male and female ambulatory rats, the effect of bilateral suprachiasmatic lesions on deep body temperature and locomotor activity circadian rhythms was investigated. A L/D:12/12 cycle and 23 C ambient temperature were maintained. One-half of the rats received radiofrequency lesions in the suprachiasmic nucleus (SCN) while the second group were sham operated by lowering the radiofrequency electrode to the SCN without producing electrolytic lesions. Four weeks were allowed for recuperation. Autopsies were conducted to make sure that the lesions were restricted to SCN. The results show the complete disappearance of circadian rhythm in the SCN lesioned rats and only a slight diminution for the sham operated rats.

  11. New standards for devices used for the measurement of human body temperature.

    PubMed

    Ring, E F J; McEvoy, H; Jung, A; Zuber, J; Machin, G

    2010-05-01

    Significant changes in recording of human body temperature have been taking place worldwide in recent years. The clinical thermometer introduced in the mid-19th century by Wunderlich has been replaced by digital thermometers or radiometer devices for recording tympanic membrane temperature. More recently the use of infrared thermal imaging for fever screening has become more widespread following the SARS infection, and particularly during the pandemic H1N1 outbreak. Important new standards that have now reached international acceptance will affect clinical and fever screening applications. This paper draws attention to these new standard documents. They are designed to improve the standardization of both performance and practical use of these key techniques in clinical medicine, especially necessary in a pandemic influenza situation.

  12. 1992--1993 low-temperature geothermal assessment program, Colorada

    SciTech Connect

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  13. Body temperature effect on methylenedioxymethamphetamine-induced acute decrease in tryptophan hydroxylase activity.

    PubMed

    Che, S; Johnson, M; Hanson, G R; Gibb, J W

    1995-12-07

    Brain tryptophan hydroxylase activity decreases within 15 min after a single administration of 3,4-methylenedioxymethamphetamine. In the present study, the effect of body temperature on this acute decrease of tryptophan hydroxylase activity was examined. 2 h after a single dose of 3,4-methylenedioxymethamphetamine (20 mg/kg, s.c.), rats exhibited hyperthermia (38.7 degrees C) or hypothermia (35.8 degrees C) when maintained at 25 degrees C or 6 degrees C, respectively. The rectal temperature of control animals maintained at 6 degrees C was not altered. Tryptophan hydroxylase activity measured in the hippocampus, striatum and frontal cortex of hyperthermic rats treated with 3,4-methylenedioxymethamphetamine was decreased to 61%, 65%, and 71% of control levels, respectively, 2 h after drug treatment. However, in hypothermic rats, 3,4-methylenedioxymethamphetamine had no effect on tryptophan hydroxylase activity in the hippocampus, striatum or frontal cortex. Non-drug-induced hyperthermia or hypothermia did not affect tryptophan hydroxylase activity. Since hypothermia may prevent the 3,4-methylenedioxymethamphetamine-induced decrease in tryptophan hydroxylase activity by reducing the formation of free radicals, the effect of a free radical scavenging agent, N-tert-butyl-alpha-phenylnitrone, was examined. N-tert-butyl-alpha-phenylnitrone (200 mg/kg, i.p.) alone caused hypothermia but had no direct effect on tryptophan hydroxylase activity. Preadministration of N-tert-butyl-alpha-phenylnitrone prevented 3,4-methylenedioxymethamphetamine from raising the temperature above normal and attenuated the drug-induced decrease in tryptophan hydroxylase activity in hippocampus, striatum and frontal cortex. However, when the rats treated with a combination of N-tert-butyl-alpha-phenylnitrone and 3,4-methylenedioxymethamphetamine were maintained at hyperthermic conditions, N-tert-butyl-alpha-phenylnitrone had no protective effect. These results suggest that body temperature plays a

  14. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  15. Low-temperature resource assessment program. Final report

    SciTech Connect

    Lienau, P.J.; Ross, H.

    1996-02-01

    The US Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation`s low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20{degrees}C to 150{degrees}C has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50{degrees}C located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy cost evaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  16. Elevated body temperature is linked to fatigue in an Italian sample of relapsing-remitting multiple sclerosis patients.

    PubMed

    Leavitt, V M; De Meo, E; Riccitelli, G; Rocca, M A; Comi, G; Filippi, M; Sumowski, J F

    2015-11-01

    Elevated body temperature was recently reported for the first time in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy controls. In addition, warmer body temperature was associated with worse fatigue. These findings are highly novel, may indicate a novel pathophysiology for MS fatigue, and therefore warrant replication in a geographically separate sample. Here, we investigated body temperature and its association to fatigue in an Italian sample of 44 RRMS patients and 44 age- and sex-matched healthy controls. Consistent with our original report, we found elevated body temperature in the RRMS sample compared to healthy controls. Warmer body temperature was associated with worse fatigue, thereby supporting the notion of endogenous temperature elevations in patients with RRMS as a novel pathophysiological factor underlying fatigue. Our findings highlight a paradigm shift in our understanding of the effect of heat in RRMS, from exogenous (i.e., Uhthoff's phenomenon) to endogenous. Although randomized controlled trials of cooling treatments (i.e., aspirin, cooling garments) to reduce fatigue in RRMS have been successful, consideration of endogenously elevated body temperature as the underlying target will enhance our development of novel treatments.

  17. Effects of body temperature on righting performance of native and invasive freshwater turtles: consequences for competition.

    PubMed

    Polo-Cavia, Nuria; López, Pilar; Martín, José

    2012-12-25

    Righting behavior of aquatic turtles might be subject to coadaptation pressures between preferred basking temperature and locomotion, given that it is mainly performed on land and may critically determine the survival of turtles. We analyzed the effect of body temperature (T(b)) on righting performance of two species of freshwater turtles, the endangered native Spanish terrapin (Mauremys leprosa), and the red-eared slider (Trachemys scripta elegans), an introduced invasive species that is displacing native turtles in the Iberian Peninsula. Interspecific differences in morphology, basking requirements and behavioral responses have been found between Spanish terrapins and introduced sliders. Therefore, we hypothesized that T(b) might differentially affect righting behavior of these two turtle species. We found a clear effect of T(b) on righting response of both M. leprosa and T. scripta, with the performance enhanced at the preferred basking temperature of each turtle species. These results suggest that righting might be coadapted to preferred basking temperature in freshwater turtles. Also, M. leprosa required longer times to right on average than T. scripta, which denotes a higher efficiency of introduced sliders at righting performance. These interspecific behavioral asymmetries in righting performance between native and exotic turtles might contribute to the greater competitive ability of introduced T. scripta, favoring the expansion of exotic sliders in the new environments in which they are introduced, in detriment to native Spanish terrapins.

  18. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    PubMed

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  19. Too hot to sleep? Sleep behaviour and surface body temperature of Wahlberg's Epauletted Fruit Bat.

    PubMed

    Downs, Colleen T; Awuah, Adwoa; Jordaan, Maryna; Magagula, Londiwe; Mkhize, Truth; Paine, Christine; Raymond-Bourret, Esmaella; Hart, Lorinda A

    2015-01-01

    The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg's epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios.

  20. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications

    PubMed Central

    Byrne, Christopher; Lim, Chin Leong

    2007-01-01

    An ingestible telemetric temperature sensor for measuring body core temperature (Tc) was first described 45 years ago, although the method has only recently gained widespread use for exercise applications. This review aims to (1) use Bland and Altman's limits of agreement (LoA) method as a basis for quantitatively reviewing the agreement between intestinal sensor temperature (Tintestinal), oesophageal temperature (Toesophageal) and rectal temperature (Trectal) across numerous previously published validation studies; (2) review factors that may affect agreement; and (3) review the application of this technology in field‐based exercise studies. The agreement between Tintestinal and Toesophageal is suggested to meet our delimitation for an acceptable level of agreement (ie, systematic bias <0.1°C and 95% LoA within ±0.4°C). The agreement between Tintestinal and Trectal shows a significant systematic bias >0.1°C, although the 95% LoA is acceptable. Tintestinal responds less rapidly than Toesophageal at the start or cessation of exercise or to a change in exercise intensity, but more rapidly than Trectal. When using this technology, care should be taken to ensure adequate control over sensor calibration and data correction, timing of ingestion and electromagnetic interference. The ingestible sensor has been applied successfully in numerous sport and occupational applications such as the continuous measurement of Tc in deep sea saturation divers, distance runners and soldiers undertaking sustained military training exercises. It is concluded that the ingestible telemetric temperature sensor represents a valid index of Tc and shows excellent utility for ambulatory field‐based applications. PMID:17178778

  1. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications.

    PubMed

    Byrne, Christopher; Lim, Chin Leong

    2007-03-01

    An ingestible telemetric temperature sensor for measuring body core temperature (Tc) was first described 45 years ago, although the method has only recently gained widespread use for exercise applications. This review aims to (1) use Bland and Altman's limits of agreement (LoA) method as a basis for quantitatively reviewing the agreement between intestinal sensor temperature (Tintestinal), oesophageal temperature (Toesophageal) and rectal temperature (Trectal) across numerous previously published validation studies; (2) review factors that may affect agreement; and (3) review the application of this technology in field-based exercise studies. The agreement between Tintestinal and Toesophageal is suggested to meet our delimitation for an acceptable level of agreement (ie, systematic bias <0.1 degrees C and 95% LoA within +/-0.4 degrees C). The agreement between Tintestinal and Trectal shows a significant systematic bias >0.1 degrees C, although the 95% LoA is acceptable. Tintestinal responds less rapidly than Toesophageal at the start or cessation of exercise or to a change in exercise intensity, but more rapidly than Trectal. When using this technology, care should be taken to ensure adequate control over sensor calibration and data correction, timing of ingestion and electromagnetic interference. The ingestible sensor has been applied successfully in numerous sport and occupational applications such as the continuous measurement of Tc in deep sea saturation divers, distance runners and soldiers undertaking sustained military training exercises. It is concluded that the ingestible telemetric temperature sensor represents a valid index of Tc and shows excellent utility for ambulatory field-based applications.

  2. Differences in body temperature, cell viability, and HSP-70 concentrations between Pelibuey and Suffolk sheep under heat stress.

    PubMed

    Romero, Rosita Denny; Montero Pardo, Arnulfo; Montaldo, Hugo Horacio; Rodríguez, Ana Delia; Hernández Cerón, Joel

    2013-11-01

    Pelibuey and Suffolk sheep were compared as to their capacity to regulate body temperature under environmental hyperthermia by measuring their differences in cellular response to heat stress (HS). In a first experiment, seven Pelibuey and seven Suffolk ewes were kept in a climatic chamber for 6 h daily during 10 days (temperatures within the 18 to 39.5 °C range). As chamber temperature rose, sheep rectal temperature increased in both groups, but to a lesser extent in Pelibuey (0.3 °C) than in Suffolk sheep (0.7 °C) (P < 0.05). In a second experiment, cellular viability was assessed using cultured blood mononuclear cells from 15 Pelibuey and 15 Suffolk sheep. They were incubated at 37 °C for 24 h (control) or 43 °C for 6 h followed by 18 h at 37 °C (HS). In a third experiment, another blood mononuclear cells culture from eight Pelibuey and eight Suffolk sheep was kept at 37 °C for 15 h; these were subsequently cultured for 6 h at 37 °C (controls) or 43 °C (HS). Next, HSP-70 concentration was determined. HS reduced the percentage of viable cells to a greater extent in Suffolk [37 °C (73.7 %) vs. 43 °C (61.9 %); P < 0.05] than in Pelibuey sheep [37 °C (74.9 %) vs. 43 °C (66.7 %); P > 0.05]. HS significantly increased HSP-70 average concentrations for both breeds at 43 °C. A significant effect was observed for the breed by temperature interaction (P < 0.05) caused by a greater difference between Pelibuey and Suffolk at 43 °C (2.85 vs. 0.53 ng/mL, respectively; P < 0.05) than at 37 °C (0.05 vs. 0.03 ng/mL, respectively; P > 0.05). In conclusion, Pelibuey sheep show more effective body temperature regulation under conditions of environmental hyperthermia. Also, cell viability after HS was higher in Pelibuey than in Suffolk, an effect that could be mediated by an HSP-70-related mechanism.

  3. Low-temperature triple-alpha rate in a full three-body nuclear model.

    PubMed

    Nguyen, N B; Nunes, F M; Thompson, I J; Brown, E F

    2012-10-05

    A new three-body method is used to compute the rate of the triple-alpha capture reaction, which is the primary source of 12C in stars. In this Letter, we combine the Faddeev hyperspherical harmonics and the R-matrix method to obtain a full solution to the three-body α+α+α continuum. Particular attention is paid to the long-range effects caused by the pairwise Coulomb interactions. The new rate agrees with the Nuclear Astrophysics Compilation of Reaction rates for temperatures greater than 0.07 GK, but a large enhancement at lower temperature is found (≈10(12) at 0.02 GK). Our results are compared to previous calculations where additional approximations were made. We show that the new rate does not significantly change the evolution of stars around one solar mass. In particular, such stars still undergo a red-giant phase consistent with observations, and no significant differences are found in the final white dwarfs.

  4. Laryngeal apnea in rat pups: effects of age and body temperature.

    PubMed

    Xia, Luxi; Leiter, James C; Bartlett, Donald

    2008-01-01

    In neonatal mammals of many species, including human infants, apnea and other reflex responses frequently arise from stimulation of laryngeal receptors by ingested or regurgitated liquids. These reflexes, mediated by afferents in the superior laryngeal nerves (SLNs), are collectively known as the laryngeal chemoreflex (LCR) and are suspected to be responsible for some cases of the sudden infant death syndrome (SIDS). The LCR is strongly enhanced by mild increases in body temperature in decerebrate piglets, a finding that is of interest because SIDS victims are often found in overheated environments. Because of the experimental advantages of studying reflex development and mechanisms in neonatal rodents, we have developed methods for eliciting laryngeal apnea in anesthetized rat pups and have examined the influence of mild hyperthermia in animals ranging in age from 3 to 21 days. We found that apnea and respiratory disruption, elicited either by intralaryngeal water or by electrical stimulation of the SLN, occurred at all ages studied. Raising body temperature by 2-3 degrees C prolonged the respiratory disturbance in response to either stimulus. This effect of hyperthermia was prominent in the youngest animals and diminished with age. We conclude that many studies of the LCR restricted to larger neonatal animals in the past can be performed in infant rodents using appropriate methods. Moreover, the developmental changes in the LCR and in the thermal modulation of the LCR seem to follow different temporal profiles, implying that distinct neurophysiological processes may mediate the LCR and thermal prolongation of the LCR.

  5. Laryngeal water receptors are insensitive to body temperature in neonatal piglets.

    PubMed

    Xia, L; Leiter, J C; Bartlett, D

    2006-01-25

    Heat stress and the laryngeal chemoreflex (LCR) have both been implicated as possible contributors to the sudden infant death syndrome (SIDS). We recently reported that moderate hyperthermia, induced in decerebrate piglets by external heating, substantially prolonged the LCR elicited by injecting 0.1 ml of water into the larynx through a prepositioned transnasal catheter. To examine the question of whether hyperthermia influences the responses of laryngeal water receptors, we recorded single fiber action potentials in fine strands of the superior laryngeal nerve (SLN) in decerebrate piglets while the larynx was filled with water or isotonic saline. Water receptors, identified by their much brisker response to water than to saline, were studied with body temperature at 37.9+/-0.2 degrees C, after warming the animal to 40.6+/-0.2 degrees C and after cooling back to 37.7+/-0.3 degrees C. The results show no effect of body temperature change, in this range, on the responses of the laryngeal water receptors and thus suggest that the potentiation of the LCR by hyperthermia is mediated by a central action.

  6. Low-Temperature Triple-Alpha Rate in a Full Three-Body Nuclear Model

    NASA Astrophysics Data System (ADS)

    Nguyen, N. B.; Nunes, F. M.; Thompson, I. J.; Brown, E. F.

    2012-10-01

    A new three-body method is used to compute the rate of the triple-alpha capture reaction, which is the primary source of C12 in stars. In this Letter, we combine the Faddeev hyperspherical harmonics and the R-matrix method to obtain a full solution to the three-body α+α+α continuum. Particular attention is paid to the long-range effects caused by the pairwise Coulomb interactions. The new rate agrees with the Nuclear Astrophysics Compilation of Reaction rates for temperatures greater than 0.07 GK, but a large enhancement at lower temperature is found (≈1012 at 0.02 GK). Our results are compared to previous calculations where additional approximations were made. We show that the new rate does not significantly change the evolution of stars around one solar mass. In particular, such stars still undergo a red-giant phase consistent with observations, and no significant differences are found in the final white dwarfs.

  7. Scaling of basal metabolic rate with body mass and temperature in mammals.

    PubMed

    Clarke, Andrew; Rothery, Peter; Isaac, Nick J B

    2010-05-01

    1. We present a statistical analysis of the scaling of resting (basal) metabolic rate, BMR, with body mass, B(m) and body temperature, T(b), in mammals. 2. Whilst the majority of the variance in ln BMR is explained by ln B(m), the T(b) term is statistically significant. The best fit model was quadratic, indicating that the scaling of ln BMR with ln B(m) varies with body size; the value of any scaling exponent estimated for a sample of mammals will therefore depend on the size distribution of species in the study. This effect can account for much of the variation in scaling exponents reported in the literature for mammals. 3. In all models, inclusion of T(b) reduced the strength of scaling with ln B(m). The model including T(b) suggests that birds and mammals have a similar underlying thermal dependence of BMR, equivalent to a Q(10) of 2.9 across the range of T(b) values 32-42 degrees C. 4. There was significant heterogeneity in both the mass scaling exponent and mean BMR across mammalian orders, with a tendency for orders dominated by larger taxa to have steeper scaling exponents. This heterogeneity was particularly marked across orders with smaller mean B(m) and the taxonomic composition of the sample will thus also affect the observed scaling exponent. After correcting for the effects of ln B(m) and T(b), Soricomorpha, Didelphimorphia and Artiodactyla had the highest BMR of those orders represented by more than 10 species in the data set. 5. Inclusion of T(b) in the model removed the effect of diet category evident from a model in ln B(m) alone and widely reported in the literature; this was caused by a strong interaction between diet category and T(b) in mammals. 6. Inclusion of mean ambient temperature, T(a), in the model indicated a significant inverse relationship between ln BMR and T(a), complicated by an interaction between T(a) and T(b). All other things being equal, a polar mammal living at -10 degrees C has a body temperature approximately 2.7 degrees C

  8. Effects of airflow on body temperatures and sleep stages in a warm humid climate

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kazuyo; Okamoto-Mizuno, Kazue; Mizuno, Koh; Iwaki, Tatsuya

    2008-03-01

    Airflow is an effective way to increase heat loss—an ongoing process during sleep and wakefulness in daily life. However, it is unclear whether airflow stimulates cutaneous sensation and disturbs sleep or reduces the heat load and facilitates sleep. In this study, 17 male subjects wearing short pyjamas slept on a bed with a cotton blanket under two of the following conditions: (1) air temperature (Ta) 26°C, relative humidity (RH) 50%, and air velocity (V) 0.2 m s-1; (2) Ta 32°C, RH 80%, V 1.7 m s-1; (3) Ta 32°C; RH 80%, V 0.2 m s-1 (hereafter referred to as 26/50, 32/80 with airflow, and 32/80 with still air, respectively). Electroencephalograms, electrooculograms, and mental electromyograms were obtained for all subjects. Rectal (Tre) and skin (Ts) temperatures were recorded continuously during the sleep session, and body-mass was measured before and after the sleep session. No significant differences were observed in the duration of sleep stages between subjects under the 26/50 and 32/80 with airflow conditions; however, the total duration of wakefulness decreased significantly in subjects under the 32/80 with airflow condition compared to that in subjects under the 32/80 with still air condition ( P < 0.05). Tre, Tsk, Ts, and body-mass loss under the 32/80 with airflow condition were significantly higher compared to those under the 26/50 condition, and significantly lower than those under the 32/80 with still air condition ( P < 0.05). An alleviated heat load due to increased airflow was considered to exist between the 32/80 with still air and the 26/50 conditions. Airflow reduces the duration of wakefulness by decreasing Tre, Tsk, Ts, and body-mass loss in a warm humid condition.

  9. A comparison of sweating responses during exercise and recovery in terms of sweating rate and body temperature

    NASA Astrophysics Data System (ADS)

    Yamazaki, Fumio; Sone, Ryoko; Fujii, Nobuharu; Ikegami, Haruo

    1993-12-01

    Based on the hypothesis that the relation between sweating rate and body temperature should be different during exercise and rest after exercise, we compared the sweating response during exercise and recovery at a similar body temperature. Healthy male subjects performed submaximal exercise (Experiment 1) and maximal exercise (Experiment 2) in a room at 27° C and 35% relative humidity. During exercise and recovery of 20 min after exercise, esophageal temperature ( Tes), mean skin temperature, mean body temperature (bar T), chest sweating rate (dot m_{sw} ), and the frequency of sweat expulsion ( F SW) were measured. In both experiments,dot m_{sw} and F SW were clearly higher during exercise than recovery at a similar body temperature (Tes,bar T).dot m_{sw} was similar during exercise and recovery, or a little less during the former, at a similar F SW. It is concluded that the sweating rate during exercise is greater than that during recovery at the same body temperature, due to greater central sudomotor activity during exercise. The difference between the two values is thought to be related to non-thermal factors and the rate of change in mean skin temperature.

  10. An Evaluation of the Pea Pod System for Assessing Body Composition of Moderately Premature Infants

    PubMed Central

    Forsum, Elisabet; Olhager, Elisabeth; Törnqvist, Caroline

    2016-01-01

    (1) Background: Assessing the quality of growth in premature infants is important in order to be able to provide them with optimal nutrition. The Pea Pod device, based on air displacement plethysmography, is able to assess body composition of infants. However, this method has not been sufficiently evaluated in premature infants; (2) Methods: In 14 infants in an age range of 3–7 days, born after 32–35 completed weeks of gestation, body weight, body volume, fat-free mass density (predicted by the Pea Pod software), and total body water (isotope dilution) were assessed. Reference estimates of fat-free mass density and body composition were obtained using a three-component model; (3) Results: Fat-free mass density values, predicted using Pea Pod, were biased but not significantly (p > 0.05) different from reference estimates. Body fat (%), assessed using Pea Pod, was not significantly different from reference estimates. The biological variability of fat-free mass density was 0.55% of the average value (1.0627 g/mL); (4) Conclusion: The results indicate that the Pea Pod system is accurate for groups of newborn, moderately premature infants. However, more studies where this system is used for premature infants are needed, and we provide suggestions regarding how to develop this area. PMID:27110820

  11. Salinity and temperature variations reflecting on cellular PCNA, IGF-I and II expressions, body growth and muscle cellularity of a freshwater fish larvae.

    PubMed

    Martins, Y S; Melo, R M C; Campos-Junior, P H A; Santos, J C E; Luz, R K; Rizzo, E; Bazzoli, N

    2014-06-01

    The present study assessed the influence of salinity and temperature on body growth and on muscle cellularity of Lophiosilurus alexaxdri vitelinic larvae. Slightly salted environments negatively influenced body growth of freshwater fish larvae and we observed that those conditions notably act as an environmental influencer on muscle growth and on local expression of hypertrophia and hypeplasia markers (IGFs and PCNA). Furthermore, we could see that salinity tolerance for NaCl 4gl(-)(1) diminishes with increasing temperature, evidenced by variation in body and muscle growth, and by irregular morphology of the lateral skeletal muscle of larvae. We saw that an increase of both PCNA and autocrine IGF-II are correlated to an increase in fibre numbers and fibre diameter as the temperature increases and salinity diminishes. On the other hand, autocrine IGF-I follows the opposite way to the other biological parameters assessed, increasing as salinity increases and temperature diminishes, showing that this protein did not participate in muscle cellularity, but participating in molecular/cellular repair. Therefore, slightly salted environments may provide adverse conditions that cause some obstacles to somatic growth of this species, suggesting some osmotic expenditure with a salinity increment.

  12. Short communication: calf body temperature following chemical disbudding with sedation: effects of milk allowance and supplemental heat.

    PubMed

    Vasseur, E; Rushen, J; de Passillé, A M

    2014-01-01

    The use of caustic paste combined with a sedative is one of the least painful methods for disbudding. It is recommended to disbud at as early as 5d of age. However, the sedative xylazine reportedly causes a decrease in core temperature. Furthermore, young calves do not thermoregulate efficiently. We investigated the effects of disbudding calves at 5d of age using caustic paste and xylazine sedation on body temperature, activity, and milk intake of 46 individually housed 5-d-old calves in a 2×2 factorial design, with milk fed at 4.5L/d (low-fed calves) versus 9L/d (high-fed calves),