Science.gov

Sample records for assess energy consumption

  1. Assessing the Energy Consumption of Smartphone Applications

    NASA Astrophysics Data System (ADS)

    Abousaleh, Mustafa M.

    Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.

  2. Energy Consumption Series: Assessment of energy use in multibuilding facilities

    SciTech Connect

    Not Available

    1993-08-01

    This study originally had two primary objectives: (1) to improve EIA`s estimates of district heat consumption for commercial buildings in the CBECS sample that lacked individual metering and (2) to provide a basis for estimating primary fuel consumption by central plants serving commercial buildings. These objectives were expanded to include additional questions relating to these central plants. Background information is provided on the CBECS and on district heating and cooling, which is the most important type of energy-related service provided by multibuilding facilities with central physical plants. Chapters 2 and 3 present data results on multibuilding facilities from the 1989 CBECS and the pilot Facility Survey. Chapter 2 presents the characteristics of multibuilding facilities and the individual buildings located on these facilities. Chapter 3 provides estimates of energy inputs and outputs of multibuilding facilities with central physical plants. Chapter 4 assesses the quality of the pilot Facility Survey and includes recommendations for future work in this area. The appendices provide more detailed information on the Facility Survey itself, in particular the limitations on the use of these results. Appendix B, ``Data Quality``, provides detailed information relating to the limitations of the data and the conclusions presented in this report. As a pilot study, the 1989 Facility Survey has some serious flaws and limitations which are recognized in this report.

  3. Embodied exergy-based assessment of energy and resource consumption of buildings

    NASA Astrophysics Data System (ADS)

    Meng, Jing; Li, Zhi; Li, Jiashuo; Shao, Ling; Han, Mengyao; Guo, Shan

    2014-03-01

    As an effective approach to achieve a more unified and scientific assessment, embodied exergy-based analysis is devised to assess the energy and resource consumption of buildings. A systematic accounting of the landmark buildings in E-town, Beijing is performed, on the basis of raw project data in the Bill of Quantities (BOQ) and the most recent embodied exergy intensities for the Chinese economy in 2007 with 135 industrial sectors. The embodied exergy of the engineering structure of the case buildings is quantified as 4.95E + 14 J, corresponding to an intensity of 8.25E + 09 J/m2 floor area. Total exergy of 51.9% and 28.8% are embodied in the steel and concrete inputs, respectively, due to the fact that the case buildings are structured of reinforced-concrete. The fossil fuel source (coal, crude oil, and natural gas) is predominant among four categories of natural resources (fossil fuel, biological, mineral, and environmental), accounting for 89.9% of the embodied exergy, with coal as the dominant energy resource (75.5%). The material accounts for 89.5% of the embodied exergy, in contrast to 9.0%, 1.4%, and 0.1% for manpower, energy, and equipment respectively. This result indicates that great attention should be given to the use of various materials vs. their value of their contribution.

  4. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  5. Plant Wide Assessment of Energy Usage Utilizing SitEModelling as a Tool for Optimizing Energy Consumption

    SciTech Connect

    Ralf Janowsky, Ph.D.; Tracey Mole, Ph.D.

    2007-12-31

    The Evonik Degussa Corporation is the global market leader in the specialty chemicals industry. Innovative products and system solutions make an indispensable contribution to our customers' success. We refer to this as "creating essentials". In fiscal 2004, Degussa's 45,000 employees worldwide generated sales of 11.2 billion euros and operating profits (EBIT) of 965 million euros. Evonik Degussa Corporation has performed a plant wide energy usage assessment at the Mapleton, Illinois facility, which consumed 1,182,330 MMBTU in 2003. The purpose of this study was to identify opportunities for improvement regarding the plant’s utility requirements specific to their operation. The production is based mainly on natural gas usage for steam, process heating and hydrogen production. The current high price for natural gas in the US is not very competitive compared to other countries. Therefore, all efforts must be taken to minimize the utility consumption in order to maximize market position and minimize fixed cost increases due to the rising costs of energy. The main objective of this plant wide assessment was to use a methodology called Site Energy Modelling (SitE Modelling) to identify areas of potential improvement for energy savings, either in implementing a single process change or in changing the way different processes interact with each other. The overall goal was to achieve energy savings of more than 10% compared to the 2003 energy figures of the Mapleton site. The final savings breakdown is provided below: - 4.1% savings for steam generation and delivery These savings were accomplished through better control schemes, more constant and optimized loading of the boilers and increased boiler efficiency through an advanced control schemes. - 1.6% savings for plant chemical processing These saving were accomplished through optimized processing heating efficiency and batch recipes, as well as an optimized production schedule to help equalize the boiler load (e

  6. Energy and resource consumption

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present and projected energy requirements for the United States are discussed. The energy consumption and demand sectors are divided into the categories: residential and commercial, transportation, and industrial and electrical generation (utilities). All sectors except electrical generation use varying amounts of fossile fuel resources for non-energy purposes. The highest percentage of non-energy use by sector is industrial with 71.3 percent. The household and commercial sector uses 28.4 percent, and transportation about 0.3 percent. Graphs are developed to project fossil fuel demands for non-energy purposes and the perdentage of the total fossil fuel used for non-energy needs.

  7. Assessment of pattern for consumption and awareness regarding energy drinks among medical students

    PubMed Central

    2013-01-01

    Background Energy drink is a type of beverage which contains stimulant drugs chiefly caffeine and marketed as mental and physical stimulator. Coffee, tea, soft drinks and other caffeinated beverages are not considered as energy drinks. Purpose of our study was to evaluate the awareness of medical students regarding energy drinks and their pattern and reason of energy drinks consumption. Methods This was a cross sectional and observational study conducted during the period of January – December 2012 at four Medical Colleges (Dow Medical College, Sindh Medical College, Jinnah Medical College and Liaquat National Medical College) of Karachi, Pakistan. Over all 900 M.B.B.S students were invited to participate after taking written consent but viable questionnaire was submitted by 866 students, estimated response rate of 96%. All data was entered and analyzed through SPSS version 19. Result Out of 866 participants, majority were females 614 (70.9%) and only 252 (28.5%) were males, with a mean age of 21.43 ± 1.51 years. Energy drinks users were 350 (42.89%) and non users were 516 (59.58%). Only 102 (29.3%) users and 159 (30.7%) non users know the correct definition of Energy drinks. Regarding awareness, mostly user and non users thought that usage of energy drinks had been on rise due to its usefulness in reducing sleep hours [users193 (43.9%), nonusers 247 (56.1%) (p < 0.05)], for studying or completing major projects [users184 (45.0%), nonusers 225 (55.0%) (p < 0.05)] and for refreshment purposes [users179 (44.9%), nonusers 220 (55.1%) (p < 0.05)]. Two main reasons of not using energy drinks by non-users were “awareness from its side effects” 247 (47.8%) and “have no specific reason” 265 (51.3%). Most common side effects reported by users were fatigue 111 (31.7%) and weight gain 102 (29.4%). Conclusion In sum, the fact that despite serious side effects of weight gaining and fatigue, practice of consuming energy drinks is highly prevalent among medical

  8. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    SciTech Connect

    Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj; Rousseau, Aymeric

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  9. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran.

    PubMed

    Yousefi, Mohammad; Damghani, Abdolmajid Mahdavi; Khoramivafa, Mahmud

    2014-09-15

    The objectives of this study were to assess the energy flow, greenhouse gas (GHG) emission, global warming potential (GWP) and sustainability of corn production systems in Kermanshah province, western Iran. The data were collected from 70 corn agroecosystems which were selected based on randomly sampled method in the summer of 2011. The results indicated that total input and output energy were 50,485 and 134,946 MJ ha(-1), respectively. The highest share of total input energy in corn production systems was recorded for N fertilizer, electricity power and diesel fuel with 35, 25 and 20%, respectively. Energy use efficiency and energy productivity were 2.67 and 0.18 kg MJ(-1), respectively. Also agrochemical energy ratio was estimated as 40%. Applying chemical inputs produced the following emissions of greenhouse gases: 2994.66 kg CO2, 31.58 kg N2O and 3.82 kg CH4 per hectare. Hence, total GWP was 12,864.84 kg Co2eq ha(-1) in corn production systems. In terms of CO2 equivalents 23% of the GWPs came from CO2, 76% from N2O, and 1% from CH4. In this study input and output C equivalents per total GHG and Biomass production were 3508.59 and 10,696.34 kg Cha(-1). Net carbon and sustainability indexes in corn production systems were 7187.75 kg Cha(-1) and 2.05. Accordingly, efficient use of energy is essential to reduce the greenhouse gas emissions and environmental impact in corn agroecosystems.

  10. Manufacturing consumption of energy 1991

    SciTech Connect

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  11. On the developmenet of multi-linear regression analysis to assess energy consumption in the early stages of building design

    NASA Astrophysics Data System (ADS)

    Shams Amiri, Shideh

    Modeling of energy consumption in buildings is essential for different applications such as building energy management and establishing baselines. This makes building energy consumption estimation as a key tool to achieve the goals on energy consumption and emissions reduction. Energy performance of building is complex, since it depends on several parameters related to the building characteristics, equipment and systems, weather, occupants, and sociological influences. This paper presents a new model to predict and quantify energy consumption in commercial buildings in the early stages of the design. eQUEST and DOE-2 building simulation software was used to build and simulate individual building configuration that were generated using Monte Carlo simulation technique. Ten thousands simulations for seven building shapes were performed to create a comprehensive dataset covering the full ranges of design parameters. The present study considered building materials, their thickness, building shape, and occupant schedule as design variables since building energy performance is sensitive to these variables. Then, the results of the energy simulations were implemented into a set of regression equation to predict the energy consumption in each design scenario. The difference between regression-predicted and DOE-simulated annual building energy consumption are largely within 5%. It is envisioned that the developed regression models can be utilized to estimate the energy savings in the early stages of the design when different building schemes and design concepts are being considered. Keywords: eQUEST simulation, DOE-2 simulation, Monte Carlo simulation, Regression equations, Building energy performance

  12. Building Energy Consumption Analysis

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  13. Building Energy Consumption Analysis

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  14. Community Energy Consumption Analysis

    1992-02-21

    The TDIST3 program performs an analysis of large integrated community total energy systems (TES) supplying thermal and electrical energy from one or more power stations. The program models the time-dependent energy demands of a group of representative building types, distributes the thermal demands within a thermal utility system (TUS), simulates the dynamic response of a group of power stations in meeting the TUS demands, and designs an optimal base-loaded (electrically) power plant and thermal energymore » storage reservoir combination. The capital cost of the TES is evaluated. The program was developed primarily to analyze thermal utility systems supplied with high temperature water (HTW) from more than one power plant. The TUS consists of a transmission loop and secondary loops with a heat exchanger linking each secondary loop to the transmission loop. The power stations electrical output supplies all community buildings and the HTW supplies the thermal demand of the buildings connected through the TUS, a piping network. Basic components of the TES model are one or more power stations connected to the transmission loop. These may be dual-purpose, producing electricity and HTW, or just heating plants producing HTW. A thermal storage reservoir is located at one power station. The secondary loops may have heating plants connected to them. The transmission loop delivers HTW to local districts; the secondary loops deliver the energy to the individual buildings in a district.« less

  15. Manufacturing consumption of energy 1994

    SciTech Connect

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  16. Household vehicles energy consumption 1994

    SciTech Connect

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  17. Energy consumption in thermomechanical pulping

    SciTech Connect

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  18. State energy data report 1992: Consumption estimates

    SciTech Connect

    Not Available

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  19. A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools.

    PubMed

    Dorizas, Paraskevi Vivian; Assimakopoulos, Margarita-Niki; Santamouris, Mattheos

    2015-05-01

    The perception of the indoor environmental quality (IEQ) through questionnaires in conjunction with in-field measurements related to the indoor air quality (IAQ), the thermal comfort and the lighting environment were studied in nine naturally ventilated schools of Athens, Greece. Cluster analysis was carried out in order to determine the ranges of indoor air pollutants, temperature (T), relative humidity (RH), and ventilation rates at which the students were satisfied with the indoor environment. It was found that increased levels of particulate matter did not have a negative effect on students' perception while students seemed to link the degradation of IAQ with temperature variations. Statistically significant correlations were further found between measurement results and students' perception of the IEQ. Students' sick building syndrome (SBS) symptoms and performance of schoolwork were also investigated as a function of the levels of indoor air pollutants and ventilation, and there were found significant positive correlations between particulate matter (PM) and certain health symptoms. Students' learning performance seemed to be affected by the ventilation rates and carbon dioxide (CO₂) concentrations while certain health effects positively correlated to the levels of PM and CO₂. The energy consumption of schools was rather low compared to other national findings, and both the electricity and oil consumption for heating positively correlated to the levels of indoor air pollutants.

  20. Minority energy assessment report

    SciTech Connect

    Teotia, A.P.S.; Poyer, D.A.; Lampley, L.; Anderson, J.L.

    1992-12-01

    The purpose of this research is to project household energy consumption, energy expenditure, and energy expenditure as share of income for five population groups from 1991 to 2009. The approach uses the Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory for the US Department of Energy's Office of Minority Economic Impact. The MEAM provides a framework that can be used to forecast regional energy consumption and energy expenditure for majority, black, Hispanic, poor, and nonpoor households. The forecasts of key macroeconomic and energy variables used as exogenous variables in the MEAM were obtained from the Data Resources, Inc., Macromodel and Energy Model. Generally, the projections of household energy consumption, expenditure, and energy expenditure as share of income vary across population groups and census regions.

  1. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  2. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  3. Household energy consumption and expenditures 1993

    SciTech Connect

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  4. MEGASTAR: The meaning of growth. An assessment of systems, technologies, and requirements. [methodology for display and analysis of energy production and consumption

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach methodology including the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption from the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario.

  5. Household vehicles energy consumption 1991

    SciTech Connect

    Not Available

    1993-12-09

    The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

  6. An Assessment of the Consumption of Energy and Selected Minerals and Their Content in the Hair of Children Aged 1-4 Years.

    PubMed

    Marcinek, Katarzyna; Wójciak, Rafał Wojciech; Krejpcio, Zbigniew; Stanisławska-Kubiak, Maia

    2016-04-01

    The aim of this study was to assess the consumption of energy and selected minerals (Ca, Mg, Fe, Zn, Cu) and their content in the hair of children aged 1-4 years. Seventy-five children were divided into three age subgroups: 12-24-month-olds, 25-36-month-olds and 37-48-month-olds. The data on energy intake and consumption of nutrients were obtained by means of a nutritional interview. The content of elements in the hair was measured by means of flame atomic absorption spectrometry (AAS) with an AAS-3 spectrophotometer (Zeiss). The daily food rations of children aged 12-36 months were characterised by adequate energy value, but the values of Ca and K were too low, whereas the content of Mg, Zn and Cu was high. On the other hand, the daily food rations of children aged 37-48 months provided sufficient amounts of Mg and Zn, but the value of Cu was too high, whereas energy, Ca, K and Fe were too low. About 42.7% of the children under study were characterised by an abnormal state of nutrition. An inadequately balanced diet needs to be corrected by educating parents or guardians in appropriate nutrition. There are significant correlations (r > 0.9) between the supply of Ca in the diet of children aged 1-4 years and the content of this element in their hair.

  7. State energy data report 1993: Consumption estimates

    SciTech Connect

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  8. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect

    Not Available

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  9. State energy data report 1994: Consumption estimates

    SciTech Connect

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  10. State energy data report 1996: Consumption estimates

    SciTech Connect

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  11. Global energy consumption for direct water use

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hejazi, M. I.; Kim, S. H.; Kyle, P.; Davies, E. G.; Miralles, D. G.; Teuling, R.; He, Y.; Niyogi, D.

    2015-12-01

    Despite significant efforts to quantify the mutual inter-dependence of the water and energy sectors, global energy for water (EFW) remains poorly understood, resulting in biases in energy accounting that directly affect water and energy management and policy. We firstly evaluate the global energy consumption for direct water use from 1973 to 2012 with sectoral, regional and process-level details. Over the 40-year period, we detected multiple shifts in EFW by county and region. For example, we find that India, the Middle East and China have surpassed the United States as the three largest consumers of EFW since 2003, mostly because of rapid growth in groundwater-based irrigation, desalination, and industrial and municipal water use, respectively. Globally, EFW accounts for 1-3% of total primary energy consumption in 2010, of which 52% is surface water, 36% is groundwater, and 12% is non-fresh water. The sectoral allocation of EFW includes municipal (45%), industrial (29%), and agricultural use (26%), and process-level contributions are from source/conveyance (41%), water purification (19%), water distribution (13%) and wastewater treatment (22%). Our evaluation suggests that the EFW may increase in importance in the future due to growth in population and income, and depletion of surface and shallow aquifer water resources in water-scarce regions. We are incorporating this element into an integrated assessment model (IAM) and linking it back to energy balance within that IAM. By doing this, we will then explore the impacts of EFW on the global energy market (e.g., changes in the share of groundwater use and desalination), and the uncertainty of future EFW under different shared social pathway (SSP) and representative concentration pathway (RCP) scenarios, and consequences on the emission of greenhouse gases as well. We expect these EFW induced impacts will be considerable, and will then have significant implications for adaptive management and policy making.

  12. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  13. Adolescent energy drink consumption: An Australian perspective.

    PubMed

    Costa, Beth M; Hayley, Alexa; Miller, Peter

    2016-10-01

    Caffeinated Energy Drinks (EDs) are not recommended for consumption by children, yet there is a lack of age-specific recommendations and restrictions on the marketing and sale of EDs. EDs are increasingly popular among adolescents despite growing evidence of their negative health effects. In the current study we examined ED consumption patterns among 399 Australian adolescents aged 12-18 years. Participants completed a self-report survey of consumption patterns, physiological symptoms, and awareness of current ED consumption guidelines. Results indicated that ED consumption was common among the sample; 56% reported lifetime ED consumption, with initial consumption at mean age 10 (SD = 2.97). Twenty-eight percent of the sample consumed EDs at least monthly, 36% had exceeded the recommended two standard EDs/day, and 56% of consumers had experienced negative physiological health effects following ED consumption. The maximum number of EDs/day considered appropriate for children, adolescents, and adults varied, indicating a lack of awareness of current consumption recommendations. These findings add to the growing body of international evidence of adolescent ED consumption, and the detrimental impact of EDs to adolescent health. Enforced regulation and restriction of EDs for children's and adolescents' consumption is urgently needed in addition to greater visibility of ED consumption recommendations. PMID:27389033

  14. Estimates of US biomass energy consumption 1992

    SciTech Connect

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  15. State energy data report 1995 - consumption estimates

    SciTech Connect

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  16. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  17. Energy: Production, Consumption, and Consequences.

    ERIC Educational Resources Information Center

    Helm, John L., Ed.

    Energy policy in the United States and much of the analysis behind those policies is largely incomplete according to many. Systems for energy production, distribution, and use have traditionally been analyzed by supply sector, yet such analyses cannot capture the complex interplay of technology, economics, public policy, and environmental concerns…

  18. Revising China's energy consumption and carbon emissions

    NASA Astrophysics Data System (ADS)

    Liu, Z.

    2015-12-01

    China is the world's largest carbon emitter and takes the lion's share of new increased emission since 2000, China's carbon emissions and mitigation efforts have received global attentions (Liu et al., Nature 500, 143-145)1. Yet China's emission estimates have been approved to be greatly uncertain (Guan et al., Nature Climate Change 2, 672-675)2. Accurate estimation becomes even crucial as China has recently pledged to reach a carbon emission peak by 2030, but no quantitative target has been given, nor is it even possible to assess without a reasonable baseline. Here we produced new estimates of Chinese carbon emissions for 1950-2012 based on a new investigation in energy consumption activities and emission factors using extensively surveyed and experimental data from 4243 mines and 602 coal samples. We reported that the total energy consumption is 10% higher than the nationally published value. The investigated emission factors used in China are significantly (40%) different from the IPCC default values which were used in drawing up several previous emission inventories. The final calculated total carbon emissions from China are 10% different than the amount reported by international data sets. The new estimate provides a revision of 4% of global emissions, which could have important implications for global carbon budgets and burden-sharing of climate change mitigation. 1 Liu, Z. et al. A low-carbon road map for China. Nature 500, 143-145 (2013). 2 Guan, D., Liu, Z., Geng, Y., Lindner, S. & Hubacek, K. The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change, 672-675 (2012).

  19. Energy Consumption Monitoring System for Large Complexes

    NASA Astrophysics Data System (ADS)

    Jorge, André; Guerreiro, João; Pereira, Pedro; Martins, João; Gomes, Luís

    This paper describes the development of an open source system for monitoring and data acquisition of several energy analyzers. The developed system is based on a computer with Internet/Intranet connection by means of RS485 using Modbus RTU as communication protocol. The monitoring/metering system was developed for large building complexes and was validated in the Faculdade de Ciências e Tecnologia University campus. The system considers two distinct applications. The first one allows the user to verify, in real time, the energy consumption of any department in the complex, produce load diagrams, tables and print, email or save all available data. The second application keeps records of active/reactive energy consumption in order to verify the existence of some anomalous situation, and also monthly charge energy consumption to each corresponding department.

  20. Commercial Buildings Energy Consumption Survey - Office Buildings

    EIA Publications

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  1. Socio-Demographic Differences in Energy Drink Consumption and Reasons for Consumption among US College Students

    ERIC Educational Resources Information Center

    Poulos, Natalie S.; Pasch, Keryn E.

    2016-01-01

    Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…

  2. Analysis and Optimization of Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  3. Projecting household energy consumption within a conditional demand framework

    SciTech Connect

    Teotia, A.; Poyer, D.

    1991-01-01

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  4. Projecting household energy consumption within a conditional demand framework

    SciTech Connect

    Teotia, A.; Poyer, D.

    1991-12-31

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  5. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  6. Understanding energy consumption: Beyond technology and economics

    SciTech Connect

    Wilhite, H.; Shove, E.

    1998-07-01

    This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

  7. Computer Profile of School Facilities Energy Consumption.

    ERIC Educational Resources Information Center

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  8. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  9. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    EIA Publications

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administration’s second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  10. Global energy consumption and production in 2000

    NASA Astrophysics Data System (ADS)

    Allen, E. L.; Davison, C.; Dougher, R.; Edmonds, J. A.; Reilly, J.

    1981-02-01

    This study anticipates that global energy demand will continue to expand through 2000, although at a slower pace than in 1965 to 1978. Growth of supply is expected to be largely in conventional, nonrenewable fuels - coal, oil, uranium, and natural gas. Energy growth is also expected to slow down in terms of energy consumption per unit of output as a consequence of continuing efficiency improvements, which, in turn, result from higher energy prices. Slower rates of economic growth are expected in all groups of countries, developed and underdeveloped.

  11. Machining strategies exploring reduction in energy consumption

    NASA Astrophysics Data System (ADS)

    Mamun, Abdullah Al

    The main aim of this thesis is to explore machining strategies, analyzing energy consumption using Design of Experiments (DOE) at the material removal rate (MRR), compare to cutting geometrical trajectories according to CNC parameters such as spindle RPM, feed rate, depth of cut per pass and total depth of cut. Spindle RPM, depth of cut per pass, and feed rate are selected as the main three factors and each factor has two levels: low-level (-) and high-level (+). These experiments have been performed at an end-milling machine by using a concept of a constant volume of material removal processes in the circular and linear geometrical slots in pine wood blocks. Standard energy logger equipment has used to measure energy consumption during end-milling operation. Different statistical analysis, such as ANOVA, regression line, and cause & effect diagram have used to show different energy consumption results in the material removal process. At the end the of data analysis, it is found that a significant amount of electricity demand is associated with machining pre-cutting & post-cutting stage and this significant amount of electricity demand is defined as peripheral energy. This peripheral energy is not involved in the actual performance of material removal process in the end-milling process. In the [Figure 11] end-milling process has been involved with pine wood blocks at constant volume of material removal (2.8 cubic inch) process. Results can be varied using of hard material removal process, such as steel & aluminum metals.

  12. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption.

    PubMed

    Ahmadi, Mehdi; Ghanbari, Farshid

    2016-10-01

    Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.

  13. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOEpatents

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  14. A survey of energy drink consumption patterns among college students

    PubMed Central

    Malinauskas, Brenda M; Aeby, Victor G; Overton, Reginald F; Carpenter-Aeby, Tracy; Barber-Heidal, Kimberly

    2007-01-01

    Background Energy drink consumption has continued to gain in popularity since the 1997 debut of Red Bull, the current leader in the energy drink market. Although energy drinks are targeted to young adult consumers, there has been little research regarding energy drink consumption patterns among college students in the United States. The purpose of this study was to determine energy drink consumption patterns among college students, prevalence and frequency of energy drink use for six situations, namely for insufficient sleep, to increase energy (in general), while studying, driving long periods of time, drinking with alcohol while partying, and to treat a hangover, and prevalence of adverse side effects and energy drink use dose effects among college energy drink users. Methods Based on the responses from a 32 member college student focus group and a field test, a 19 item survey was used to assess energy drink consumption patterns of 496 randomly surveyed college students attending a state university in the Central Atlantic region of the United States. Results Fifty one percent of participants (n = 253) reported consuming greater than one energy drink each month in an average month for the current semester (defined as energy drink user). The majority of users consumed energy drinks for insufficient sleep (67%), to increase energy (65%), and to drink with alcohol while partying (54%). The majority of users consumed one energy drink to treat most situations although using three or more was a common practice to drink with alcohol while partying (49%). Weekly jolt and crash episodes were experienced by 29% of users, 22% reported ever having headaches, and 19% heart palpitations from consuming energy drinks. There was a significant dose effect only for jolt and crash episodes. Conclusion Using energy drinks is a popular practice among college students for a variety of situations. Although for the majority of situations assessed, users consumed one energy drink with a

  15. Rat splanchnic net oxygen consumption, energy implications.

    PubMed Central

    Casado, J; Fernández-López, J A; Esteve, M; Rafecas, I; Argilés, J M; Alemany, M

    1990-01-01

    1. The blood flow, PO2, pH and PCO2 have been estimated in portal and suprahepatic veins as well as in hepatic artery of fed and overnight starved rats given an oral glucose load. From these data the net intestinal, hepatic and splanchnic balances for oxygen and bicarbonate were calculated. The oxygen consumption of the intact animal has also been measured under comparable conditions. 2. The direct utilization of oxygen balances as energy equivalents when establishing the contribution of energy metabolism of liver and intestine to the overall energy expenses of the rat, has been found to be incorrect, since it incorporates the intrinsic error of interorgan proton transfer through bicarbonate. Liver and intestine produced high net bicarbonate balances in all situations tested, implying the elimination (by means of oxidative pathways, i.e. consuming additional oxygen) of high amounts of H+ generated with bicarbonate. The equivalence in energy output of the oxygen balances was then corrected for bicarbonate production to 11-54% lower values. 3. Intestine and liver consume a high proportion of available oxygen, about one-half in basal (fed or starved) conditions and about one-third after gavage, the intestine consumption being about 15% in all situations tested and the liver decreasing its oxygen consumption with gavage. PMID:2129230

  16. Using LEDs to reduce energy consumption

    NASA Astrophysics Data System (ADS)

    Eweni, Chukwuebuka E.

    The most popularly used light bulb in homes is the incandescent. It is also the least energy efficient. The filament in the bulb is so thin that it causes resistance in the electricity, which in turn causes the electricity's energy to form heat. This causes the incandescent to waste a lot of energy forming heat rather than forming the light. It uses 15 lumens per watt of input power. A recorded MATLAB demonstration showcased LED versatility and how it can be used by an Arduino UNO board. The objective of this thesis is to showcase how LEDs can reduce energy consumption through the use of an Arduino UNO board and MATLAB and to discuss the applications of LED. LED will be the future of lighting homes and will eventually completely incandescent bulbs when companies begin to make the necessary improvements to the LED.

  17. Lighting energy consumption trends and R&D opportunities

    NASA Astrophysics Data System (ADS)

    Brodrick, James R.; Petrow, Edward D.; Scholand, Michael J.

    2002-11-01

    Electric lighting of buildings in the United States consumes over 20% of the nation's primary electricity and is second only in magnitude to heating, ventilation and air conditioning systems. This installed lighting base is generally inefficient and is characterized by relatively low performance especially when compared to other building systems. While substantial opportunities for improving overall lighting system efficiency exist, the pathway to achievement of this goal is less clear. Lighting research and development conducted by the US Department of Energy's (DOE), Office of Energy Efficiency and Renewable Energy's (EERE), Building Technologies Program (BT) addresses this national issue and aggressively pursues a number of broad research areas that promise to yield significant increases in overall lighting system efficiency. Implementation of a successful program in lighting energy conservation depends upon a detailed assessment of energy consumption trends by lighting technology. The results of several years of research are presented that describe electricity consumption by market sector, application and lamp type. Following this lighting market assessment, an overview of the DOE's ongoing lighting research and development (LR&D) program portfolio linked to the market assessments is provided. Individual program contributions toward achieving ambitious lighting energy conservation goals are described. The BTS portfolio includes research in three broad areas: (1) light source and electronics, (2) fixtures, controls and distribution systems, and (3) human factors. An overview of each technical objective is provided, as well as a timeline for achieving specific energy conservation goals.

  18. Household energy and consumption and expenditures, 1990. Supplement, Regional

    SciTech Connect

    Not Available

    1993-03-02

    The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

  19. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This... consumption, but instead calculate the energy use rate (kWh/100 lbs Ice) by dividing the energy...

  20. Public perceptions of energy consumption and savings

    PubMed Central

    Attari, Shahzeen Z.; DeKay, Michael L.; Davidson, Cliff I.; Bruine de Bruin, Wändi

    2010-01-01

    In a national online survey, 505 participants reported their perceptions of energy consumption and savings for a variety of household, transportation, and recycling activities. When asked for the most effective strategy they could implement to conserve energy, most participants mentioned curtailment (e.g., turning off lights, driving less) rather than efficiency improvements (e.g., installing more efficient light bulbs and appliances), in contrast to experts’ recommendations. For a sample of 15 activities, participants underestimated energy use and savings by a factor of 2.8 on average, with small overestimates for low-energy activities and large underestimates for high-energy activities. Additional estimation and ranking tasks also yielded relatively flat functions for perceived energy use and savings. Across several tasks, participants with higher numeracy scores and stronger proenvironmental attitudes had more accurate perceptions. The serious deficiencies highlighted by these results suggest that well-designed efforts to improve the public's understanding of energy use and savings could pay large dividends. PMID:20713724

  1. Solar Adoption and Energy Consumption in the Residential Sector

    NASA Astrophysics Data System (ADS)

    McAllister, Joseph Andrew

    the extent increases are present for some solar adopters, the analysis seeks to determine whether there is a "solar rebound" effect analogous to the "rebound" or "take-back" effect that has been observed and studied within the energy efficiency literature. Similarly, to the extent that electric users may decrease overall consumption after installation of a solar system, the study seeks to explore the possibility that solar adoption is part of a continued effort towards clean energy practices more generally, such as energy efficiency and conservation. In this way, the study seeks to determine whether there is a synergistic effect between solar and decreased consumption, for solar adopters generally or for some subsets therein. The assembled data allowed testing of various hypotheses that could help explain observed changes in consumption in different households. One variable that was carefully examined was the sizing of the solar system. As part of the study, analysis of 4,355 systems was conducted to determine how each residential solar system was sized with respect to pre-installation energy consumption. Other potentially interesting or explanatory variables for which information was available include total and net costs of the solar system; age of the home; the climate zone (inland or coastal) where the home is located; the home's pre-installation energy consumption; home characteristics such as assessed value and square footage; and the identity of the solar installation contractor. Aside from extending the literature on the rebound effect to the context of home-based energy generation, this study links to the innovation diffusion literature by focusing on solar "innovators" to understand more about the characteristics that may drive behavior, or conditions under which they also adopt clean energy technologies and practices. The results have clear policy relevance with regard to the development and coordination of policies to promote integration of solar and energy

  2. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect

    Marique, Anne-Francoise Reiter, Sigrid

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  3. Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey

    EIA Publications

    2015-01-01

    As part of an effort to make EIA’s energy consumption surveys as accurate and efficient as possible, EIA invited the National Research Council (NRC) to review the Commercial Buildings Energy Consumption Survey (CBECS) data-gathering process and make recommendations for improvements. The NRC suggested sending professional energy assessors to some sites and comparing the data obtained from the survey to the data collected by the assessors. Results from the energy assessment data collection have largely confirmed the quality of data gathered by CBECS interviewers.

  4. Energy consumption of personal computer workstations

    SciTech Connect

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-08-01

    A field study directly measured the electric demand of 189 personal computer workstations for 1-week intervals, and a survey recorded the connected equipment at 1,846 workstations in six buildings. Each separate workstation component (e.g., computer, monitor, printer, modem, and other peripheral) was individually monitored to obtain detailed electric demand profiles. Other analyses included comparison of nameplate power rating with measured power consumption and the energy savings potential and cost-effectiveness of a controller that automatically turns off computer workstation equipment during inactivity. An important outcome of the work is the development of a standard workstation demand profile and a technique for estimating a whole-building demand profile. Together, these provide a method for transferring this information to utility energy analysts, design engineers, building energy modelers, and others. A life-cycle cost analysis was used to determine the cost-effectiveness of three energy conservation measures: (1) energy awareness education, (2) retrofit power controller installation, and (3) purchase of energy-efficient PCs.

  5. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: risk-cost, risk-energy consumption and risk-CO2 emission.

    PubMed

    Inoue, Yasushi; Katayama, Arata

    2011-09-15

    A two-scale evaluation concept of remediation technologies for a contaminated site was expanded by introducing life cycle costing (LCC) and economic input-output life cycle assessment (EIO-LCA). The expanded evaluation index, the rescue number for soil (RN(SOIL)) with LCC and EIO-LCA, comprises two scales, such as risk-cost, risk-energy consumption or risk-CO(2) emission of a remediation. The effectiveness of RN(SOIL) with LCC and EIO-LCA was examined in a typical contamination and remediation scenario in which dieldrin contaminated an agricultural field. Remediation was simulated using four technologies: disposal, high temperature thermal desorption, biopile and landfarming. Energy consumption and CO(2) emission were determined from a life cycle inventory analysis using monetary-based intensity based on an input-output table. The values of RN(SOIL) based on risk-cost, risk-energy consumption and risk-CO(2) emission were calculated, and then rankings of the candidates were compiled according to RN(SOIL) values. A comparison between three rankings showed the different ranking orders. The existence of differences in ranking order indicates that the scales would not have reciprocal compatibility for two-scale evaluation and that each scale should be used independently. The RN(SOIL) with LCA will be helpful in selecting a technology, provided an appropriate scale is determined.

  6. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect

    Wright, Anthony L; Martin, Michaela A; Gemmer, Bob; Scheihing, Paul; Quinn, James

    2007-09-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants

  7. Low energy consumption spintronics using multiferroic heterostructures.

    PubMed

    Trassin, Morgan

    2016-01-27

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  8. Energy Consumption of Actively Beating Flagella

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Nicastro, Daniela; Dogic, Zvonimir

    2012-02-01

    Motile cilia and flagella are important for propelling cells or driving fluid over tissues. The microtubule-based core in these organelles, the axoneme, has a nearly universal ``9+2'' arrangement of 9 outer doublet microtubules assembled around two singlet microtubules in the center. Thousands of molecular motor proteins are attached to the doublets and walk on neighboring outer doublets. The motors convert the chemical energy of ATP hydrolysis into sliding motion between adjacent doublet microtubules, resulting in precisely regulated oscillatory beating. Using demembranated sea urchin sperm flagella as an experimental platform, we simultaneously monitor the axoneme's consumption of ATP and its beating dynamics while key parameters, such as solution viscosity and ATP concentration, are varied. Insights into motor cooperativity during beating and energetic consequences of hydrodynamic interactions will be presented.

  9. Changes in cotton gin energy consumption apportioned by ten functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  10. Energy consumption of personal computer workstations

    SciTech Connect

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-02-01

    The explosive growth of the information age has had a profound effect on the appearance of today`s office. Although the telephone still remains an important part of the information exchange and processing system within an office, other electronic devices are now considered required equipment within this environment. This office automation equipment includes facsimile machines, photocopiers, personal computers, printers, modems, and other peripherals. A recent estimate of the installed base indicated that 42 million personal computers and 7.3 million printers are in place, consuming 18.2 billion kWh/yr-and this installed base is growing (Luhn 1992). From a productivity standpoint, it can be argued that this equipment greatly improves the efficiency of those working in the office. But of primary concern to energy system designers, building managers, and electric utilities is the fact that this equipment requires electric energy. Although the impact of each incremental piece of equipment is small, installation of thousands of devices per building has resulted in office automation equipment becoming the major contributor to electric consumption and demand growth in commercial buildings. Personal computers and associated equipment are the dominant part of office automation equipment. In some cases, this electric demand growth has caused office buildings electric and cooling systems to overload.

  11. Assessing summertime urban air conditioning consumption in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M.; Svoma, B. M.

    2013-09-01

    Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ˜53% of diurnally averaged total electric demand, ranging from ˜35% during early morning to ˜65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

  12. Fundamental principles of energy consumption for gene expression.

    PubMed

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  13. Analysis of Final Energy Consumption Patterns in 10 Arab Countries

    NASA Astrophysics Data System (ADS)

    Al-Hinti, I.; Al-Ghandoor, A.

    2009-08-01

    This study presents an analysis of the energy consumption patterns in 10 Arab countries: Saudi Arabia, Kuwait, United Arab Emirates (UAE), Syria, Lebanon, Jordan, Egypt, Libya, Tunisia, and Algeria. Commonalities and variations between these countries are discussed and explained through key economic and energy indicators, and the relationship between the overall final energy consumption per capita and the GDP per capita is examined. The distribution of the final energy consumption across different sectors is also analysed, and the patterns of consumption in the industrial, transportation, and residential sectors are discussed with focus on the types of energy consumed, and the main drivers of this consumption. The findings and the conclusions of this study are believed to be beneficial to the national energy policy planners in identifying possible strengths, weaknesses, and areas of emphasis and improvement in their strategic energy plans.

  14. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    NASA Astrophysics Data System (ADS)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  15. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment.

    PubMed

    Krzeminski, Pawel; van der Graaf, Jaap H J M; van Lier, Jules B

    2012-01-01

    This paper provides an overview of current electric energy consumption of full-scale municipal MBR installations based on literature review and case studies. Energy requirements of several MBRs were linked to operational parameters and reactor performance. Total and specific energy consumption data were analysed on a long-term basis with special attention given to treated flow, design capacity, membrane area and effluent quality. The specific energy consumption of an MBR system is dependent on many factors, such as system design and layout, volume of treated flow, membrane utilization and operational strategy. Operation at optimal flow conditions results in a low specific energy consumption and energy efficient process. Energy consumption of membrane related modules was in the range of 0.5-0.7 kWh/m(3) and specific energy consumption for membrane aeration in flat sheet (FS) was 33-37% higher than in a hollow fibre (HF) system. Aeration is a major energy consumer, often exceeding 50% share of total energy consumption. In consequence, coarse bubble aeration applied for continuous membrane cleaning remains the main target for energy saving actions. Also, a certain potential for energy optimization without immediate danger of affecting the quality of the produced effluent was observed.

  16. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  17. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2012-01-01 2012-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  18. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  19. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1 The Design... 10 Energy 3 2014-01-01 2014-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  20. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2011-01-01 2011-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  1. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design... 10 Energy 3 2013-01-01 2013-01-01 false Determination of the design energy consumption and design energy cost. 434.508 Section 434.508 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR...

  2. Minority energy assessment report. Fall 1992

    SciTech Connect

    Teotia, A.P.S.; Poyer, D.A.; Lampley, L.; Anderson, J.L.

    1992-12-01

    The purpose of this research is to project household energy consumption, energy expenditure, and energy expenditure as share of income for five population groups from 1991 to 2009. The approach uses the Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory for the US Department of Energy`s Office of Minority Economic Impact. The MEAM provides a framework that can be used to forecast regional energy consumption and energy expenditure for majority, black, Hispanic, poor, and nonpoor households. The forecasts of key macroeconomic and energy variables used as exogenous variables in the MEAM were obtained from the Data Resources, Inc., Macromodel and Energy Model. Generally, the projections of household energy consumption, expenditure, and energy expenditure as share of income vary across population groups and census regions.

  3. Estimates of U.S. Biomass Energy Consumption 1992

    EIA Publications

    1994-01-01

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass derived primary energy used by the U.S. economy. It presents estimates of 1991 and 1992 consumption.

  4. Solar Adoption and Energy Consumption in the Residential Sector

    NASA Astrophysics Data System (ADS)

    McAllister, Joseph Andrew

    the extent increases are present for some solar adopters, the analysis seeks to determine whether there is a "solar rebound" effect analogous to the "rebound" or "take-back" effect that has been observed and studied within the energy efficiency literature. Similarly, to the extent that electric users may decrease overall consumption after installation of a solar system, the study seeks to explore the possibility that solar adoption is part of a continued effort towards clean energy practices more generally, such as energy efficiency and conservation. In this way, the study seeks to determine whether there is a synergistic effect between solar and decreased consumption, for solar adopters generally or for some subsets therein. The assembled data allowed testing of various hypotheses that could help explain observed changes in consumption in different households. One variable that was carefully examined was the sizing of the solar system. As part of the study, analysis of 4,355 systems was conducted to determine how each residential solar system was sized with respect to pre-installation energy consumption. Other potentially interesting or explanatory variables for which information was available include total and net costs of the solar system; age of the home; the climate zone (inland or coastal) where the home is located; the home's pre-installation energy consumption; home characteristics such as assessed value and square footage; and the identity of the solar installation contractor. Aside from extending the literature on the rebound effect to the context of home-based energy generation, this study links to the innovation diffusion literature by focusing on solar "innovators" to understand more about the characteristics that may drive behavior, or conditions under which they also adopt clean energy technologies and practices. The results have clear policy relevance with regard to the development and coordination of policies to promote integration of solar and energy

  5. Predictors of changes in adolescents' consumption of fruits, vegetables and energy-dense snacks.

    PubMed

    Pearson, Natalie; Ball, Kylie; Crawford, David

    2011-03-01

    Understanding the predictors of developmental changes in adolescent eating behaviours is important for the design of nutrition interventions. The present study examined associations between individual, social and physical environmental factors and changes in adolescent eating behaviours over 2 years. Consumption of fruits, vegetables and energy-dense snacks was assessed using a Web-based survey completed by 1850 adolescents from years 7 and 9 of secondary schools in Victoria, Australia, at baseline and 2 years later. Perceived value of healthy eating, self-efficacy for healthy eating, social modelling and support, and home availability and accessibility of foods were assessed at baseline. Self-efficacy for increasing fruit consumption was positively associated with the change in fruit and vegetable consumption, while self-efficacy for decreasing junk food consumption was inversely associated with the change in energy-dense snack consumption. Home availability of energy-dense foods was inversely associated with the change in fruit consumption and positively associated with the change in energy-dense snack consumption, while home availability of fruits and vegetables was positively associated with the change in vegetable consumption. Perceived value of healthy eating and modelling of healthy eating by mothers were positively associated with the change in fruit consumption. Support of best friends for healthy eating was positively associated with the change in vegetable consumption. Self-efficacy and home availability of foods appear to be consistent predictors of change in fruit, vegetable and energy-dense snack consumption. Future study should assess the effectiveness of methods to increase self-efficacy for healthy eating and to improve home availability of healthy food options in programmes promoting healthy eating among adolescents.

  6. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  7. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. (a) Scope....

  8. Baseline projections of transportation energy consumption by mode: 1981 update

    SciTech Connect

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  9. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    PubMed Central

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  10. Optimal energy consumption analysis of natural gas pipeline.

    PubMed

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent.

  11. Simulation of energy consumption for quadruped walking vehicle

    NASA Astrophysics Data System (ADS)

    Lei, Jingtao; Gao, Feng; Xu, Guoyan

    2006-11-01

    Simulation of energy consumption for walking vehicle is one of the basic way to preliminarily estimate the energy that will be consumed before constructing the real vehicle, providing basis for the design of vehicle to minish energy consumption. One of the most influential factors of the accuracy dynamic simulation is the appropriate contact model between leg and ground. In this paper, we adopt virtual prototyping technique to develop the dynamic modeling of a quadruped walking vehicle considering contact force between legs and ground during walking, finish simulation of dynamics and obtain dynamics characteristics, investigate the effects of different contact condition and the energy consumption. The purpose is to analyze the relationship between energy consumption and relevant influence factors, and the energy efficiency during walking is discussed with different walking velocity, strokes, duty factors and different contact material. Moreover contact force is obtained from simulations. Commercial ADAMS package is used.

  12. Home Energy Assessments

    ScienceCinema

    Dispenza, Jason

    2016-07-12

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Find out more at: http://www.energysavers.gov/your_home/energy_audits/index.cfm/mytopic=11160

  13. Home Energy Assessments

    SciTech Connect

    Dispenza, Jason

    2010-01-01

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Find out more at: http://www.energysavers.gov/your_home/energy_audits/index.cfm/mytopic=11160

  14. [Relationships between settlement morphology transition and residents commuting energy consumption].

    PubMed

    Zhou, Jian; Xiao, Rong-Bo; Sun, Xiang

    2013-07-01

    Settlement morphology transition is triggered by rapid urbanization and urban expansion, but its relationships with residents commuting energy consumption remains ambiguous. It is of significance to understand the controlling mechanisms of sustainable public management policies on the energy consumption and greenhouse gases emission during the process of urban settlement morphology transition. Taking the Xiamen City of East China as a case, and by using the integrated land use and transportation modeling system TRANUS, a scenario analysis was made to study the effects of urban settlement morphology transition on the urban spatial distribution of population, jobs, and land use, and on the residents commuting energy consumption and greenhouse gasses emission under different scenarios. The results showed that under the Business As Usual (BAU) scenario, the energy consumption of the residents at the morning peak travel time was 54.35 tce, and the CO2 emission was 119.12 t. As compared with those under BAU scenario, both the energy consumption and the CO2 emission under the Transition of Settlement Morphology (TSM) scenario increased by 12%, and, with the implementation of the appropriate policies such as land use, transportation, and economy, the energy consumption and CO2 emission under the Transition of Settlement Morphology with Policies (TSMP) scenario reduced by 7%, indicating that urban public management policies could effectively control the growth of residents commuting energy consumption and greenhouse gases emission during the period of urban settlement morphology transition.

  15. Energy consumption analysis for the Mars deep space station

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  16. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers...

  17. Comparison of Real World Energy Consumption to Models and Department of Energy Test Procedures

    SciTech Connect

    Goetzler, William; Sutherland, Timothy; Kar, Rahul; Foley, Kevin

    2011-09-01

    This study investigated the real-world energy performance of appliances and equipment as it compared with models and test procedures. The study looked to determine whether the U.S. Department of Energy and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether installation patterns and procedures differ from the ideal procedures. The study first identified and prioritized appliances to be evaluated. Then, the study determined whether real world energy consumption differed substantially from predictions and also assessed whether performance degrades over time. Finally, the study recommended test procedure modifications and areas for future research.

  18. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.

  19. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced. PMID:23567705

  20. Investigating energy consumption of coastal vacation rental homes

    NASA Astrophysics Data System (ADS)

    Myers, Sam

    In 2007, vacation rental properties in the United States accounted for more than 22% of the domestic lodging market. These properties are a unique segment of the lodging industry due to their residential design and commercial use. Coastal vacation rental properties represent the largest supply, demand and value of the nation's vacation rental supply. In the case of North Carolina's Outer Banks, tourism is the area's largest source of income, with vacation real estate agencies being the largest accommodation provider. This study uses a multiple regression analysis to investigate the energy consumption of 30 vacation rental homes on Hatteras Island. Hatteras Island's abundant supply of vacation rental homes provided a diverse sample to study energy consumption with a wide range of houses regarding size, age, and location. Since very little research has been conducted on the energy consumption of vacation rental homes, this study aims to contribute detailed information regarding the energy consumption of unique accommodation sector.

  1. Industrial energy systems and assessment opportunities

    NASA Astrophysics Data System (ADS)

    Barringer, Frank Leonard, III

    Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in

  2. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  3. Wireless network interface energy consumption implications of popular streaming formats

    NASA Astrophysics Data System (ADS)

    Chandra, Surendar

    2001-12-01

    With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.

  4. Energy drinks consumption in male construction workers, Chonburi province.

    PubMed

    Pichainarong, Natchaporn; Chaveepojnkamjorn, Wisit; Khobjit, Pattama; Veerachai, Viroj; Sujirarat, Dusit

    2004-12-01

    This unmatched case-control study aimed to determine the relationship among caffeine drinks consumption known as "energy drinks consumption", drug dependence and related factors in male construction workers in Chonburi Province. It was conducted during December 15, 2001 and February 15, 2002. Data were collected using interview questionnaires. The logistic regression was used to control possible confounding factors. The subjects consisted of 186 cases who had consumed energy drinks for more than 3 months and 186 controls who had given up for more than 3 months. They were frequency/group matched by age group. There was statistically significant association among energy drinks consumption and overtime work, motivation from advertisements, positive attitude of energy drinks consumption, alcohol drinks, smoking and ex-taking Kratom behavior. Multivariate analyses revealed that only 5 factors were related to energy drinks consumption: marital status (OR = 1.88, 95%CI: 1.14, 3.11), overtime work (OR = 2.84, 95%CI: 1.73, 4.64), motivation from advertisements (OR = 2.72, 95%CI: 1.67, 4.42), positive attitude of energy drinks consumption (OR = 4.06, 95%CI: 1.65, 10.01) and ex-taking Kratom behavior (OR = 2.77, 95%CI: 1.19, 6.44). As a result, construction workers should be provided with the knowledge of energy drinks consumption, the effect of drug dependence behavior, and the advantages of safe and healthy food that is cheap, readily available, and rich in nutrients. PMID:15822540

  5. Mapping water consumption for energy production around the Pacific Rim

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  6. Energy Consumption Information Services for Smart Home Inhabitants

    NASA Astrophysics Data System (ADS)

    Schwanzer, Michael; Fensel, Anna

    We investigate services giving users an adequate insight on his or her energy consumption habits in order to optimize it in the long run. The explored energy awareness services are addressed to inhabitants of smart homes, equipped with smart meters, advanced communication facilities, sensors and actuators. To analyze the potential of such services, a game at a social network Facebook has been designed and implemented, and the information about players' responses and interactions within the game environment has been collected and analyzed. The players have had their virtual home energy usage visualized in different ways, and had to optimize the energy consumption basing on their own perceptions of the consumption information. Evaluations reveal, in particular, that users are specifically responsive to information shown as a real-time graph and as costs in Euro, and are able to produce and share with each other policies for managing their smart home environments.

  7. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    ERIC Educational Resources Information Center

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  8. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  9. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  10. Systems accounting for energy consumption and carbon emission by building

    NASA Astrophysics Data System (ADS)

    Shao, Ling; Chen, G. Q.; Chen, Z. M.; Guo, Shan; Han, M. Y.; Zhang, Bo; Hayat, T.; Alsaedi, A.; Ahmad, B.

    2014-06-01

    The method of systems accounting for overall energy consumption and carbon emission induced by a building is illustrated in terms of a combination of process and input-output analyses with a concrete procedure to cover various material, equipment, energy and manpower inputs. A detailed case study based on raw project data in the Bill of Quantities (BOQ) is performed for the structure engineering of the landmark buildings in E-town, Beijing (Beijing Economic-Technological Development Area). Based on the embodied energy and carbon emission intensity database for the Chinese economy in 2007, the energy consumption and the carbon emission of the structure engineering of the case buildings are quantified as 4.15E+14 J and 4.83E+04 t CO2 Eq., corresponding to intensities of 6.91E+09 J/m2 and 0.81 t CO2 Eq./m2 floor area. Steel and concrete contribute respectively about 50% and 30% of the energy consumption and the carbon emission, as a result of the reinforced-concrete structure of the case buildings. Materials contribute up to about 90% of the total energy consumption and carbon emission, in contrast to manpower, energy and equipment around 8%, 1% and 0.1%, respectively.

  11. National Weatherization Assistance Program Evaluation: Assessment of Refrigerator Energy Use

    SciTech Connect

    Tonn, Bruce Edward; Goeltz, Rick

    2015-03-01

    This report assesses the energy consumption characteristics and performance of refrigerators that were monintored as a component of the Indoor Air Quality Study that itself was a component of the retrospective evaluation of the Department of Energy's Weatherization Assistance Program.

  12. Understanding energy consumption of sensor enabled applications on mobile phones.

    PubMed

    Crk, Igor; Albinali, Fahd; Gniady, Chris; Hartman, John

    2009-01-01

    Recent research in ubiquitous and mobile computing uses mobile phones and wearable accelerometers to monitor individuals' physical activities for personalized and proactive health care. The goal of this project is to measure and reduce the energy demand placed on mobile phones that monitor individuals' physical activities for extended periods of time with limited access to battery recharging and mobile phone reception. Many issues must be addressed before mobile phones become a viable platform for remote health monitoring, including: security, reliability, privacy, and, most importantly, energy. Mobile phones are battery-operated, making energy a critical resource that must be carefully managed to ensure the longest running time before the battery is depleted. In a sense, all other issues are secondary, since the mobile phone will simply not function without energy. In this project, we therefore focus on understanding the energy consumption of a mobile phone that runs MIT wockets, physical activity monitoring applications, and consider ways to reduce its energy consumption.

  13. Research on the optimal energy consumption of oil pipeline.

    PubMed

    Liu, Enbin; Li, Changjun; Yang, Liuting; Liu, Song; Wu, Mingchang; Wang, Di

    2015-07-01

    Most of the Chinese crude oil is easy to curdle and has high viscosity, so heating transportation is usually selected. Energy consumption by this method mainly comes from furnaces and pumps. Currently, operating parameters of these pipelines were determined according to experience of dispatch. It cause high energy consumption and high cost of pipeline running, so it could not adapt to energy conservation policy. The present study focused on consuming lowest energy to operate oil transportation line. To begin with, several optimization variables were set which included pump combinations, suction pressure, discharge pressure, and station temperature. Then constraint conditions were set to establish an optimal mathematical model of running transportation line. Furthermore, genetic algorithm was used to solve the model, in meantime, selection operation, cross operation and mutation operation in the genetic algorithm were improved. Finally, a crude oil pipeline running optimization software was developed. Through optimal analyzing, S-L transportation line and contrasting with the actual working conditions, it was found that optimal operation scheme could reduce energy consumption by 5% - 9%. In addition, optimal operation scheme also considered the effect of seasons and flow on energy consumption of S-L transportation line.

  14. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2002-10-12

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant investigated for similar concepts in the past. This document reports on the progress made in the program during the past quarter. It reports on projectile development and the development of the electric launch system design.

  15. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2002-01-09

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant considered for similar concepts in the past. This document reports on the progress made in the program during the past quarter. It reports on projectile development experiments and the development of the electric launch system design.

  16. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

    NASA Astrophysics Data System (ADS)

    Khanali, Majid; Banisharif, Alireza; Rafiee, Shahin

    2016-01-01

    The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10-11 to 1.364 × 10-10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59-44.31 kJ/mol and 4.71 × 10-5-7.15 × 10-4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

  17. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

    NASA Astrophysics Data System (ADS)

    Khanali, Majid; Banisharif, Alireza; Rafiee, Shahin

    2016-11-01

    The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10-11 to 1.364 × 10-10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59-44.31 kJ/mol and 4.71 × 10-5-7.15 × 10-4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

  18. Optimal Energy Consumption Model for Smart Grid Households With Energy Storage

    NASA Astrophysics Data System (ADS)

    Rajasekharan, Jayaprakash; Koivunen, Visa

    2014-12-01

    In this paper, we propose to model the energy consumption of smart grid households with energy storage systems as an intertemporal trading economy. Intertemporal trade refers to transaction of goods across time when an agent, at any time, is faced with the option of consuming or saving with the aim of using the savings in the future or spending the savings from the past. Smart homes define optimal consumption as either balancing/leveling consumption such that the utility company is presented with a uniform demand or as minimizing consumption costs by storing energy during off-peak time periods when prices are lower and use the stored energy during peak time periods when prices are higher. Due to the varying nature of energy requirements of household and market energy prices over different time periods in a day, households face a trade-off between consuming to meet their current energy requirements and/or storing energy for future consumption and/or spending energy stored in the past. These trade-offs or consumption preferences of the household are modeled as utility functions using consumer theory. We introduce two different utility functions, one for cost minimization and another for consumption balancing/leveling, that are maximized subject to respective budget, consumption, storage and savings constraints to solve for the optimum consumption profile. The optimization problem of a household with energy storage is formulated as a geometric program for consumption balancing/leveling, while cost minimization is formulated as a linear programming problem. Simulation results show that the proposed model achieves extremely low peak to average ratio in the consumption balancing/leveling scheme with about 8% reduction in consumption costs and the least possible amount for electricity bill with about 12% reduction in consumption costs in the cost minimization scheme.

  19. REDUCED ENERGY CONSUMPTION THROUGH PROJECTILE BASED EXCAVATION

    SciTech Connect

    Mark Machina

    2003-06-06

    The Projectile Based Excavation (ProjEX) program has as its goal, the reduction of energy required for production mining and secondary breakage through the use of a projectile based excavation system. It depends on the development of a low cost family of projectiles that will penetrate and break up different types of ore/rock and a low cost electric launch system. The electric launch system will eliminate the need for high cost propellant considered for similar concepts in the past. This document reports on the program findings through the first two phases. It presents projectile design and experiment data and the preliminary design for electric launch system. Advanced Power Technologies, Inc., now BAE SYSTEMS Advanced Technologies, Inc., was forced to withdraw from the program with the loss of one of our principal mining partners, however, the experiments conducted suggest that the approach is feasible and can be made cost effective.

  20. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  1. Legitimacy of concerns about caffeine and energy drink consumption.

    PubMed

    Wesensten, Nancy J

    2014-10-01

    Whether caffeine and energy drink consumption presents a critical emerging health problem is not currently known. Available evidence suggests that energy drink consumption represents a change in the ways in which individuals in the United States consume caffeine but that the amount of caffeine consumed daily has not appreciably increased. In the present review, the question of whether Americans are sleep deprived (a potential reason for using caffeine) is briefly explored. Reported rates of daily caffeine consumption (based on beverage formulation) and data obtained from both civilian and military populations in the United States are examined, the efficacy of ingredients other than caffeine in energy drinks is discussed, and the safety and side effects of caffeine are addressed, including whether evidence supports the contention that excessive caffeine/energy drink consumption induces risky behavior. The available evidence suggests that the main legitimate concern regarding caffeine and energy drink use is the potential negative impact on sleep but that, otherwise, there is no cause for concern regarding caffeine use in the general population.

  2. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  3. Data-driven forecasting algorithms for building energy consumption

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram

    2013-04-01

    This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.

  4. Developing an Analytical Framework for Argumentation on Energy Consumption Issues

    ERIC Educational Resources Information Center

    Jin, Hui; Mehl, Cathy E.; Lan, Deborah H.

    2015-01-01

    In this study, we aimed to develop a framework for analyzing the argumentation practice of high school students and high school graduates. We developed the framework in a specific context--how energy consumption activities such as changing diet, converting forests into farmlands, and choosing transportation modes affect the carbon cycle. The…

  5. Energy Cost and Consumption Audit Program. 1975-76 Report.

    ERIC Educational Resources Information Center

    Energy Task Force, Washington, DC.

    Results reported in this document were obtained from a questionnaire distributed to higher education business officers and physical plant directors requesting information on total campus and individual building energy cost and consumption for the fiscal year July 1, 1975, through June 30, 1976. Usable reports were received from 330 (22 percent) of…

  6. Correlates of University Students' Soft and Energy Drink Consumption According to Gender and Residency.

    PubMed

    Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2015-08-01

    This study assessed personal and environmental correlates of Belgian university students' soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students' beverage choices. PMID:26258790

  7. Correlates of University Students’ Soft and Energy Drink Consumption According to Gender and Residency

    PubMed Central

    Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2015-01-01

    This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790

  8. Venetie, Alaska energy assessment.

    SciTech Connect

    Jensen, Richard Pearson; Baca, Michael J.; Schenkman, Benjamin L.; Brainard, James Robert

    2013-07-01

    This report summarizes the Energy Assessment performed for Venetie, Alaska using the principals of an Energy Surety Microgrid (ESM) The report covers a brief overview of the principals of ESM, a site characterization of Venetie, a review of the consequence modeling, some preliminary recommendations, and a basic cost analysis.

  9. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  10. Impact of electric cars on national energy consumption

    NASA Astrophysics Data System (ADS)

    Agarwal, P. D.

    1980-02-01

    Energy utilization of electric vehicles is discussed in terms of energy efficiency in comparison to internal combustion engine automobiles, starting from oil or coal as the prime energy source. It is found that although an electric car does not save primary energy resources, it can transfer some of the transportation fuel needs from petroleum to coal, nuclear, or hydropower. With reference to the impact of electric vehicles on reduction of petroleum consumption, it is shown that the dependence of the United States on foreign oil can be reduced much more quickly and at much lower cost by converting electric utility boilers from oil to coal.

  11. Building and occupant characteristics as determinants of residential energy consumption

    SciTech Connect

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  12. Effects of climate change on building energy consumption in cities

    NASA Astrophysics Data System (ADS)

    Matsuura, K.

    1995-03-01

    Sensitivity of building-energy consumption to changing urban environments is examined by simulating building energy loads in hypothetical urban settings. A modified version of an algorithm developed by the U.S. Army Construction Engineering Research Laboratory is used to evaluate energy requirements. Energy loads for two buildings of interest are estimated for changing climatic conditions (air temperature) as well as changing environments around the building. An isolated building and a building surrounded by several other buildings are considered. Results indicate that climate warming may lead to energy savings in a wide range of climates while savings also depend on the nature of the building and its use. In cool climates, climate warming forces net energy-load decreases through reductions of the winter heating loads. For example, a one-degree increase in annual air temperature in Duluth led to a 10 kWh decrease in net energy loads for a small office building. In warm climates, urbanization tends to accelerate energy consumption although shadowing may contribute significantly to decreases in summer cooling loads. In Phoenix, annual mean daily net energy loads decreased by about 10 kWh due to shadowing for the same office building. Even in relatively cool regions, summer cooling-load reductions caused by shadowing are effective.

  13. Factors affecting the energy consumption of two refrigerator-freezers

    SciTech Connect

    Kao, J.Y.; Kelley, G.E.

    1996-12-31

    Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect on energy of different temperature settings was studied. Test results are presented and discussed.

  14. Energy consumption in buildings and female thermal demand

    NASA Astrophysics Data System (ADS)

    Kingma, Boris; van Marken Lichtenbelt, Wouter

    2015-12-01

    Energy consumption of residential buildings and offices adds up to about 30% of total carbon dioxide emissions; and occupant behaviour contributes to 80% of the variation in energy consumption. Indoor climate regulations are based on an empirical thermal comfort model that was developed in the 1960s (ref. ). Standard values for one of its primary variables--metabolic rate--are based on an average male, and may overestimate female metabolic rate by up to 35% (ref. ). This may cause buildings to be intrinsically non-energy-efficient in providing comfort to females. Therefore, we make a case to use actual metabolic rates. Moreover, with a biophysical analysis we illustrate the effect of miscalculating metabolic rate on female thermal demand. The approach is fundamentally different from current empirical thermal comfort models and builds up predictions from the physical and physiological constraints, rather than statistical association to thermal comfort. It provides a substantiation of the thermal comfort standard on the population level and adds flexibility to predict thermal demand of subpopulations and individuals. Ultimately, an accurate representation of thermal demand of all occupants leads to actual energy consumption predictions and real energy savings of buildings that are designed and operated by the buildings services community.

  15. Recent trends of energy consumption and air pollution in China

    SciTech Connect

    Tian, H.Z.; Hao, J.M.; Hu, M.Y.; Nie, Y.F.

    2007-03-15

    The relationship between air pollution and energy consumption is a hot topic that is receiving increased attention by industry, regulatory agencies, as well as the public. China is currently undergoing a profound economic and social transition. Since the late 1990s, China's energy production and consumption have undergone an unexpectedly precipitous up-and-down fluctuation, and the related air pollution has changed dramatically. In this study, energy use and the related air pollution during the past years are analyzed and discussed in detail. Further, suggestions on sustainable energy use, air pollution control, as well as CO{sub 2}, abatement are proposed. By 2003, the total primary energy consumption of China had reached 1678.00 million tons (MT) of standard coal equivalent. As a result, emissions of SO{sub 2}, and NOx increased to 21.58 and 16.13 MT in 2003, respectively. Acid rain pollution worsened nationwide after 2000, with the areas of acid rain remaining stable while some seriously acid rain polluted areas worsened. This implies that more rigorous regulations, standards, and effective economic policies are needed.

  16. Characteristics of sunflower seed drying and microwave energy consumption

    NASA Astrophysics Data System (ADS)

    Darvishi, H.; Hadi Khoshtaghaza, M.; Najafi, G.; Zarein, M.

    2013-03-01

    The effect of the microwave-convective drying technique on the moisture ratio, drying rate, drying time, effective moisture diffusivity, microwave specific energy consumption, and energy efficiency of sunflower seedswere investigated.Drying took place in the falling rate period. Increasing the microwave power caused a significant decrease in the drying time. The drying data were fitted to four thin-layer drying models. The performance of these models was compared using the coefficient of determination, reduced chi-square and root mean square error between the observed and predicted moisture ratios. The results showed that the Page model was found to satisfactorily describe themicrowave-convective drying curves of sunflower seeds. The effective moisture diffusivity values were estimated from Fick diffusion model and varied from 1.73 10-7 to 4.76 10-7m2s-1. Increasing the microwave power resulted in a considerable increase in drying efficiency and a significant decrease in microwave specific energy consumption. The highest energy efficiency and the lowestmicrowave specific energy consumption were obtained at the microwave power of 300 W.

  17. DuPont cuts energy consumption 8% -- for starters

    SciTech Connect

    Wiseman, K.

    1998-07-01

    DuPont`s Corporate Energy Leadership Team (CELT) faced a difficult challenge at its inception in 1991--reducing the industry giant`s $900 million annual domestic energy bill. Seven years later, DuPont`s annual energy costs are down to $800 million, and energy consumption has shrunk by more than 8%. The team is on track toward future reduction goals. Key to persuading the company was the team`s 1992 Jump Start commitment to reduce out-of-pocket energy expenditures immediately. Over a four-month period, the goal was to save $6 million out-of-pocket on energy costs. The company actually ended up doubling that, saving over $12 million. The greatest savings--26% of the total--came from shutting down spare or unneeded equipment. Equipment tune-ups to improve performance and renegotiation of fuel contracts also lowered energy costs. The paper discusses how it was done.

  18. Energy Drink Consumption: Beneficial and Adverse Health Effects

    PubMed Central

    Alsunni, Ahmed Abdulrahman

    2015-01-01

    Consumption of energy drinks has been increasing dramatically in the last two decades, particularly amongst adolescents and young adults. Energy drinks are aggressively marketed with the claim that these products give an energy boost to improve physical and cognitive performance. However, studies supporting these claims are limited. In fact, several adverse health effects have been related to energy drink; this has raised the question of whether these beverages are safe. This review was carried out to identify and discuss the published articles that examined the beneficial and adverse health effects related to energy drink. It is concluded that although energy drink may have beneficial effects on physical performance, these products also have possible detrimental health consequences. Marketing of energy drinks should be limited or forbidden until independent research confirms their safety, particularly among adolescents. PMID:26715927

  19. Energy Drink Consumption: Beneficial and Adverse Health Effects.

    PubMed

    Alsunni, Ahmed Abdulrahman

    2015-10-01

    Consumption of energy drinks has been increasing dramatically in the last two decades, particularly amongst adolescents and young adults. Energy drinks are aggressively marketed with the claim that these products give an energy boost to improve physical and cognitive performance. However, studies supporting these claims are limited. In fact, several adverse health effects have been related to energy drink; this has raised the question of whether these beverages are safe. This review was carried out to identify and discuss the published articles that examined the beneficial and adverse health effects related to energy drink. It is concluded that although energy drink may have beneficial effects on physical performance, these products also have possible detrimental health consequences. Marketing of energy drinks should be limited or forbidden until independent research confirms their safety, particularly among adolescents. PMID:26715927

  20. Consumption-weighted life cycle assessment of a consumer electronic product community.

    PubMed

    Ryen, Erinn G; Babbitt, Callie W; Williams, Eric

    2015-02-17

    A new approach for quantifying the net environmental impact of a "community" of interrelated products is demonstrated for consumer electronics owned by an average U.S. household over a 15-year period (1992-2007). This consumption-weighted life cycle assessment (LCA) methodology accounts for both product consumption (number of products per household) and impact (cumulative energy demand (MJ) and greenhouse gas emissions (MT CO2 eq) per product), analyzed using a hybrid LCA framework. Despite efficiency improvements in individual devices from 1992 to 2007, the net impact of the entire product community increased, due primarily to increasing ownership and usage. The net energy impact for the product community is significant, nearly 30% of the average gasoline use in a U.S. passenger vehicle in 2007. The analysis points to a large contribution by legacy products (cathode ray tube televisions and desktop computers), due to historically high consumption rates, although impacts are beginning to shift to smaller mobile devices. This method is also applied to evaluate prospective intervention strategies, indicating that environmental impact can be reduced by strategies such as lifespan extension or energy efficiency, but only when applied to all products owned, or by transforming consumption trends toward fewer, highly multifunctional products.

  1. Socioeconomic Factors Affecting Household Energy Consumption in Qom, Iran

    NASA Astrophysics Data System (ADS)

    Mehrzad, Ebrahimi; Masoud, Alizadeh; Mansour, Ebrahimi

    Petrol is heavily subsidized in Iran which has led both to very high consumption levels and a big smuggling problem as petrol is transported out of Iran's border areas for re-sale in neighboring countries, where petrol prices are much higher. Also, a shortage of refineries combined with wasteful consumption means that Iran regularly imports petrol despite being one of the world's biggest oil producers. To look at the different variables contributing to wasteful consumption of fuel in Iran and the effect of governmental gradual increase of fuel prices, this study questioned 600 family warden views in Qom, Iran. The results showed that more than two third of samples have heard or read at least one news about energy saving and quoted TV as main source of their information while 55% mentioned all fossils resources would be finish in near future and urged optimum energy consumption as the best way to tackle energy crisis (82%), with 85% asked for more media propagation to change wrong cultural behaviors in Qom. Nearly half of the people said that governmental plan to increase domestic price of high octane and regular gasoline annually had little or no effect on fuel consumption and majority of them mentioned cultural changes as the best tools and nearly the same rate were worried about air pollution as the immediate result of uncontrolled fuel consumption in Qom. The results also showed that with increase in each year education of family warden, decreases fuel expenses 11.2% in hot seasons and 1240000 Iranian Rials (IR-R) in cold seasons while increase in family members' size adds 288660 (IR-R) per member to base family size (2) and for each member of family which works outside the house, family energy expenses increase 234470 IR-R. And finally the results showed fuel (or energy) expenses in cold months in Qom is higher than other months and family warden education showed more effect to reduce those expenses during mild months but less during hot months. Therefore it is

  2. An analysis of residential energy consumption in a temperate climate

    SciTech Connect

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  3. Cardiovascular complications from consumption of high energy drinks: recent evidence.

    PubMed

    Chrysant, S G; Chrysant, G S

    2015-02-01

    The energy drinks (ED) are caffeinated beverages that are popular among teenagers and young adults. They are aggressively marketed as providing alertness, energy and sex prowess. The EDs in addition to caffeine contain several plant stimulants and simple sugars, which increase their caloric content. The caffeine concentration in these drinks is high and their overconsumption could lead to insomnia, agitation, tremors and cardiovascular complications including sudden death. Alcohol is often mixed with EDs (AMEDs) in the wrong perception that the caffeine in the EDs will prevent the drowsiness and sleepiness from alcohol and allow the person to consume more alcohol. This false perception, could lead to alcohol intoxication and the taking of risky decisions, like driving under the influence of alcohol and the risk of serious physical harm to themselves and others. To prevent the problem of consumption of EDs and AMEDs, the caring physician could help by advising the parents and his young patients about the serious health risks from the consumption of these drinks. In order to grasp the extend of the problem of ED and AMED consumption, we did a Medline search of the English language literature from January 2010 to December 2013, using the terms EDs and alcohol-mixed EDs. All the findings from the recent studies regarding the cardiovascular complications from the consumption of EDs and AMEDs together with collateral literature will be discussed in this review.

  4. The Consumption of Energy Drinks Among a Sample of College Students and College Student Athletes.

    PubMed

    Gallucci, Andrew R; Martin, Ryan J; Morgan, Grant B

    2016-02-01

    To assess energy drink (ED) consumption, potential ED correlates, and ED-related motivations among a sample of college students to determine differences based on athlete status (student athlete vs. non-athlete). Six hundred and ninety-two college students completed surveys at a large private university in the United States. Participants completed a paper based questionnaire assessing ED and ED-related variables. Over thirty-six percent (197 non-athletes, 58 student athletes) of participants reported ED consumption in the preceding 30 days. Multivariately, there was no difference in ED consumption based on athlete status. Heavy episodic drinking and prescription stimulant misuse were both correlated with increased ED consumption. ED motivations differed based on the frequency of ED consumption. ED use was common among student athletes and non-athletes in our sample. It is important to be aware of the correlation between heavy episodic drinking, prescription stimulant misuse, and ED consumption among college student populations because of the adverse consequences associated with these behaviors. PMID:26255272

  5. Question 7: Optimized Energy Consumption for Protein Synthesis

    NASA Astrophysics Data System (ADS)

    Szaflarski, Witold; Nierhaus, Knud H.

    2007-10-01

    In our previous contribution (Nierhaus, Orig Life Evol Biosph, this volume, 2007) we mentioned that life had solved the problem of energy supply in three major steps, and that these steps also mark major stages during the development of life. We further outlined a possible scenario concerning a minimal translational apparatus focusing on the essential components necessary for protein synthesis. Here we continue that consideration by addressing on one of the main problems of early life, namely avoiding wasteful energy loss. With regard to the limiting energy supply of early living systems, i.e. those of say more than 3,000 Ma, a carefully controlled and product oriented energy consumption was in demand. In recent years we learned how a bacterial cell avoids energy drain, thus being able to pump most of the energy into protein synthesis. These lessons must be followed by the design of a minimal living system, which is surveyed in this short article.

  6. [Alcohol consumption in patients with psychiatric disorders: assessment and treatment].

    PubMed

    Lang, J-P; Bonnewitz, M-L; Kusterer, M; Lalanne-Tongio, L

    2014-09-01

    Alcohol consumption in France exceeds the European average (12.7L of pure alcohol/habitant/year in 2009 for an average of 12.5 L). This consumption has a major professional, social and health impact on the individuals and their families. The cost of such, estimated in Europe to be of 155.8 billion Euros in 2010, is the highest among the central nervous system diseases in Europe, far higher than that of depression or dementia. Patients suffering from psychiatric disorders are more frequently affected by problems related to alcohol use than the general population. They are also more vulnerable to the immediate and subsequent consequences of their consumption. The alcohol related disorders that are often accompanied by risk taking and other addictive behaviour require a global assessment of the addiction, with and without substance, and of the complications. These have a strong impact on risk taking, compliance with care, and the morbidity of somatic and psychiatric disorders, as well as access to optimal care and the life span of patients suffering from psychiatric disorders. The development of addictology care, with integrative treatment programs, is recommended in response to these public health issues. Nevertheless, specific addictology practices and partners with addictology care structures are still scarcely developed in psychiatry. Firstly, it would be necessary to set up such integrated treatments through the systematisation of an "addictology" checkup on admission, a global assessment of addictive behaviour and cognitive disorders, using pragmatic tools that are user-friendly for the care teams, maintain the reduction in risk taking, and apply prescriptions for addiction to psychotropic treatments, in liaison with the referring general practitioner. As early as possible, accompanied by specific training in addictology for the psychiatrists and the mental health nursing teams, such care could be enhanced by the development of liaison and advanced psychiatric

  7. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1976-01-01

    Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.

  8. Model of US Army Materiel Command (AMC) energy consumption. Volume 1. Development of monthly energy-consumption equations. Final report

    SciTech Connect

    Sliwinski, B.J.

    1986-03-01

    This report describes the development of equations to relate monthly energy consumption at U.S. Army Materiel Command (AMC) installations to weather and process parameters. Equations were developed using multiple linear regression analysis for the Armament Munitions and Chemical Command (AMCCOM) and Depot Systems Command (DESCOM) major subcommands of AMC. Multiple regression analysis is the process of fitting a curve to a set of data points. This technique, commonly known as least-squares curve fitting, is based on minimizing the sum of the squares of the errors between the data and the fitted equation. Once the regression analysis is performed, it is possible to generate confidence limits about the fitted equation. For example, the 95% confidence limits determine the range of data values that will fall within the limits 95% of the time. The confidence limits are useful in making statistically valid statements about the meaning of future observations. Accuracies of both the individual and the command-level equations are described, and examples for calculating confidence limits of the equations are given. Results in using the equations to predict AMCCOM and DESCOM total energy consumption indicate they provide a useful tool for managing AMC energy use. Lumped data regression was used to analyze energy-consumption data for AMCCOM, and the efforts are now under way to apply it to DESCOM data.

  9. Energy consumption quota management of Wanda commercial buildings in China

    NASA Astrophysics Data System (ADS)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  10. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    NASA Technical Reports Server (NTRS)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  11. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Test procedures for measuring energy consumption of distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  12. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Test procedures for measuring energy consumption of distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY... § 431.193 Test procedures for measuring energy consumption of distribution transformers. The...

  13. Three essays in energy consumption: Time series analyses

    NASA Astrophysics Data System (ADS)

    Ahn, Hee Bai

    1997-10-01

    Firstly, this dissertation investigates that which demand specification is an appropriate model for long-run energy demand between the conventional demand specification and the limited demand specification. In order to determine the components of a stable long-run demand for different sectors of the energy industry, I perform cointegration tests by using the Johansen test procedure. First, I test the conventional demand specification including prices and income as components. Second, I test a limited demand specification only income as a component. The reason for performing these tests is that we can determine that which demand specification is a good long-run predictor of energy consumption between the two demand specifications by using the cointegration tests. Secondly, for the purpose of planning and forecasting energy demand in case of cointegrated system, long-run elasticities are of particular interest. To retrieve the optimal level of energy demand in case of price shock, we need long-run elasticities rather than short-run elasticities. The energy demand study provides valuable information to the energy policy makers who are concerned about the long-run impact of taxes and tariffs. A long-run price elasticity is a primary barometer of the substitution effect between energy and non-energy inputs and long-run income elasticity is an important factor since we can measure the energy demand growing slowly or fast than in the past depending on the magnitude of long-run elasticity. The one other problem in estimating the total energy demand is that there exists an aggregation bias stemming from the process of summation in four different energy types for the total aggregation prices and total aggregation energy consumption. In order to measure the aggregation bias between the Btu aggregation method and the Divisia Index method, i.e., which methodology has less aggregation bias in the long-run, I compare the two estimation results with calculated results estimated on

  14. A thirst for power: A global analysis of water consumption for energy production

    NASA Astrophysics Data System (ADS)

    Spang, Edward

    Producing energy resources requires significant quantities of freshwater. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on regional water resources. A number of reports exist that specify water consumption by discrete energy production technologies. This research synthesizes and expands this previous work by examining the global distribution of water consumption intensity of national-level energy portfolios. By defining and calculating indicators to quantify the relative water use intensity of national energy systems, it was possible to highlight potentially problematic areas of high water use intensity while also providing examples of water-efficient energy production. The results of the research show a high variability in the national water consumption of energy production (WCEP) for the 158 countries that were assessed. However, looking across the indicators for WCEP internationally, the countries that were heavily producing fossil fuel or biofuels demonstrated the greatest intensity of energy-based water consumption. The economic imperative to develop fossil fuels drives high water consumption in countries that already lack sufficient water supplies. Meanwhile, biofuels require so much water over their lifecycle per unit of produced energy that any modest commitment to producing biofuels has significant water consumption ramifications for the country. While these results are based on a comprehensive review of available data, future research in this area could be significantly enhanced through better data and widespread adoption of consistent reporting mechanisms. Additional opportunities to expand the field include increasing the resolution of the study regions, tracking these indicators over time, and exploring innovative policy approaches to managing national WCEP effectively. For nations facing the greatest limitations in the availability of local water and energy

  15. Controlled cooling of an electronic system for reduced energy consumption

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  16. Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps

    SciTech Connect

    Not Available

    1993-03-02

    The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

  17. The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households

    SciTech Connect

    Poyer, D.A.

    1991-09-01

    This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

  18. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  19. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  20. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    NASA Astrophysics Data System (ADS)

    Carlson, Derrick R.

    consumption, which suggests significant diminishing returns for parties interested in monitoring appliance level electricity consumption. Another way to improve understanding of residential energy consumption is through the development of residential use phase energy vectors for use in the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. The EIO-LCA model is a valuable scoping tool to predict the environmental impacts of economic activity. This tool has a gap in its capabilities as residential use phase energy is outside the scope of the model. Adding use phase energy vectors to the EIO-LCA model will improve the modeling, provide a more complete estimation of energy impacts and allow for embedded energy to be compared to use phase energy for the purchase of goods and services in the residential sector. This work adds 21 quads of energy to the residential energy sector for the model and 15 quads of energy for personal transportation. These additions represent one third of the total energy consumption of the United States and a third of the total energy in the EIO-LCA model. This work also demonstrates that for many products such as electronics and household appliances use phase energy demands are much greater than manufacturing energy demands and dominate the life cycles for these products. A final way in which this thesis improves upon the understanding of how use phase energy is consumed in a home is through the exploration of potential energy reductions in a home. This analysis selects products that are used or consumed in a home, and explores the potential for reductions in the embedded manufacturing and use phase energy of that product using EIO-LCA and the energy vectors created in Chapter 3. The results give consumers an understanding of where energy is consumed in the lifecycle of products that they purchase and provide policy makers with valuable information on how to focus or refocus policies that are aimed and reducing energy in the residential sector

  1. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect

    Liu, Bing

    2003-12-18

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  2. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  3. Sample design for the residential energy consumption survey

    SciTech Connect

    Not Available

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  4. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  5. Energy in rural Ethiopia: Consumption patterns, associated problems, and prospects for a sustainable energy strategy

    SciTech Connect

    Mulugetta, Y.

    1999-07-01

    This paper provides a picture of energy resources and their current use in rural Ethiopia and presents an analysis of energy supply patterns and consumption trends. This exercise aims to build an empirical knowledge of real energy systems in the country and also to synthesize and analyze the general and specific problems that exist within the current energy system. Based on these lines of analysis, a series of technical and policy-oriented recommendations for rural energy development are discussed.

  6. Analyzing Residential End-Use Energy Consumption Data to Inform Residential Consumer Decisions and Enable Energy Efficiency Improvements

    NASA Astrophysics Data System (ADS)

    Carlson, Derrick R.

    consumption, which suggests significant diminishing returns for parties interested in monitoring appliance level electricity consumption. Another way to improve understanding of residential energy consumption is through the development of residential use phase energy vectors for use in the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. The EIO-LCA model is a valuable scoping tool to predict the environmental impacts of economic activity. This tool has a gap in its capabilities as residential use phase energy is outside the scope of the model. Adding use phase energy vectors to the EIO-LCA model will improve the modeling, provide a more complete estimation of energy impacts and allow for embedded energy to be compared to use phase energy for the purchase of goods and services in the residential sector. This work adds 21 quads of energy to the residential energy sector for the model and 15 quads of energy for personal transportation. These additions represent one third of the total energy consumption of the United States and a third of the total energy in the EIO-LCA model. This work also demonstrates that for many products such as electronics and household appliances use phase energy demands are much greater than manufacturing energy demands and dominate the life cycles for these products. A final way in which this thesis improves upon the understanding of how use phase energy is consumed in a home is through the exploration of potential energy reductions in a home. This analysis selects products that are used or consumed in a home, and explores the potential for reductions in the embedded manufacturing and use phase energy of that product using EIO-LCA and the energy vectors created in Chapter 3. The results give consumers an understanding of where energy is consumed in the lifecycle of products that they purchase and provide policy makers with valuable information on how to focus or refocus policies that are aimed and reducing energy in the residential sector

  7. USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS

    SciTech Connect

    Makhmalbaf, Atefe; Augenbroe , Godfried

    2015-12-09

    Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the power performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate the

  8. Energy 101: Home Energy Assessment

    SciTech Connect

    2010-01-01

    A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician - often called an energy auditor - can give your home a checkup. You can also do some of the steps yourself. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera.

  9. Energy 101: Home Energy Assessment

    ScienceCinema

    None

    2016-07-12

    A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician - often called an energy auditor - can give your home a checkup. You can also do some of the steps yourself. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera.

  10. Energy Drink Consumption and Cardiac Complications: A Case for Caution.

    PubMed

    Sattari, Maryam; Sattari, Anahita; Kazory, Amir

    2016-01-01

    We present a case of atrial fibrillation with rapid ventricular response in a 28-year-old previously healthy man in the context of daily consumption of 2 Monster energy drinks and 2 to 3 beers. We have obtained consent from this patient to present his case. Our observation adds to the developing literature describing an association between highly caffeinated drinks and adverse cardiovascular events. The previous cases in the literature and the proposed underlying mechanisms of this association are briefly discussed in this article. With the rising popularity of energy drinks, clinicians should be aware of their arrhythmogenic potential and consider screening for these products in patients who present with otherwise unexplained arrhythmias. PMID:27471919

  11. Drivers of U.S. Household Energy Consumption, 1980-2009

    EIA Publications

    2015-01-01

    In 2012, the residential sector accounted for 21% of total primary energy consumption and about 20% of carbon dioxide emissions in the United States (computed from EIA 2013). Because of the impacts of residential sector energy use on the environment and the economy, this study was undertaken to help provide a better understanding of the factors affecting energy consumption in this sector. The analysis is based on the U.S. Energy Information Administration's (EIA) residential energy consumption surveys (RECS) 1980-2009.

  12. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption.

    PubMed

    Bilad, M R; Discart, V; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, Ivo F J

    2013-06-01

    This study was performed to investigate the effectiveness of submerged microfiltration to harvest both a marine diatom Phaeodactylum tricornutum and a Chlorella vulgaris in a recently developed magnetically induced membrane vibrating (MMV) system. We assess the filtration performance by conducting the improved flux step method (IFM), fed-batch concentration filtrations and membrane fouling autopsy using two lab-made membranes with different porosity. The full-scale energy consumption was also estimated. Overall results suggest that the MMV offers a good fouling control and the process was proven to be economically attractive. By combining the membrane filtration (15× concentration) with centrifugation to reach a final concentration of 25% w/v, the energy consumption to harvest P. tricornutum and C. vulgaris was, respectively, as low as 0.84 and 0.77kWh/m(3), corresponding to 1.46 and 1.39 kWh/kg of the harvested biomass.

  13. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  14. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  15. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    EIA Publications

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  16. A Local Energy Consumption Prediction-Based Clustering Protocol for Wireless Sensor Networks

    PubMed Central

    Yu, Jiguo; Feng, Li; Jia, Lili; Gu, Xin; Yu, Dongxiao

    2014-01-01

    Clustering is a fundamental and effective technique for utilizing sensor nodes' energy and extending the network lifetime for wireless sensor networks. In this paper, we propose a novel clustering protocol, LECP-CP (local energy consumption prediction-based clustering protocol), the core of which includes a novel cluster head election algorithm and an inter-cluster communication routing tree construction algorithm, both based on the predicted local energy consumption ratio of nodes. We also provide a more accurate and realistic cluster radius to minimize the energy consumption of the entire network. The global energy consumption can be optimized by the optimization of the local energy consumption, and the energy consumption among nodes can be balanced well. Simulation results validate our theoretical analysis and show that LECP-CP has high efficiency of energy utilization, good scalability and significant improvement in the network lifetime. PMID:25479330

  17. Evaluation of the impact of the surrounding urban morphology on building energy consumption

    SciTech Connect

    Wong, Nyuk Hien; Chen, Yixing; Hajadi, Norwin; Sathyanarayanan, Haripriya; Manickavasagam, Yamini Vidya; Jusuf, Steve Kardinal; Syafii, Nedyomukti Imam

    2011-01-15

    Empirical models of minimum (T{sub min}), average (T{sub avg}) and maximum (T{sub max}) air temperature for Singapore estate have been developed and validated based on a long-tem field measurement. There are three major urban elements, which influence the urban temperature at the local scale. Essentially, they are buildings, greenery and pavement. Other related parameters identified for the study, such as green plot ratio (GnPR), sky view factor (SVF), surrounding building density, the wall surface area, pavement area, albedo are also evaluated to give a better understanding on the likely impact of the modified urban morphology on energy consumption. The objective of this research is to assess and to compare how the air temperature variation of urban condition can affect the building energy consumption in tropical climate of Singapore. In order to achieve this goal, a series of numerical calculation and building simulation are utilized. A total of 32 cases, considering different urban morphologies, are identified and evaluated to give better a understanding on the implication of urban forms, with the reference to the effect of varying density, height and greenery density. The results show that GnPR, which related to the present of greenery, have the most significant impact on the energy consumption by reducing the temperature by up to 2 C. The results also strongly indicate an energy saving of 4.5% if the urban elements are addressed effectively. (author)

  18. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect

    Engelmann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  19. Biodiesel Supply and Consumption in the Short-Term Energy Outlook

    EIA Publications

    2009-01-01

    The historical biodiesel consumption data published in the Energy Information Administration's Monthly Energy Review March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the April 2009 edition of the Short-Term Energy Outlook (STEO).

  20. Study of unconventional aircraft engines designed for low energy consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    A study of unconventional engine cycle concepts, which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative, geared, and variable-boost turbofans, and combinations thereof, were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional, direct-drive turofan reference engine. Consideration is given to the unconventional concepts, and their state of readiness for application. Areas of needed technology advancement are identified.

  1. Household Energy Consumption: Community Context and the Fuelwood Transition*

    PubMed Central

    Link, Cynthia F.; Axinn, William G.; Ghimire, Dirgha J.

    2012-01-01

    We examine the influence of community context on change over time in households’ use of non-wood fuels. Our theoretical framework builds on sociological concepts in order to study energy consumption at the micro-level. The framework emphasizes the importance of nonfamily organizations and services in the local community as determinants of the transition from use of fuelwood to use of alternative fuels. We use multilevel longitudinal data on household fuel choice and community context from rural Nepal to provide empirical tests of our theoretical model. Results reveal that increased exposure to nonfamily organizations in the local community increases the use of alternative fuels. The findings illustrate key features of human impacts on the local environment and motivate greater incorporation of social organization into research on environmental change. PMID:23017795

  2. The determinants and trends in household energy consumption in United States during 2001-2009

    NASA Astrophysics Data System (ADS)

    Karuppusamy, Sadasivan

    Objective: The focus of this study is a broad examination of household energy consumption for appliance use, space heating, space cooling, and water heating in United States over the period 2001-2009 using Residential Energy Consumption Survey (RECS) from the years 2001 and 2009. Methods: Linear Regression Analysis is used to identfy determinants of household energy consumption for each of the end uses. Regression based decomposition analysis is used to identify trends in residential energy consumption for each of the end uses. Results: The study identified current determinants of household energy consumption for each of the end uses. These determinants are employed in the study to predict trends in household energy consumption for each of the end uses. Based on the results policy interventions at local and federal level for energy conservation are suggested.

  3. Guide to Home Energy Assessments

    SciTech Connect

    2011-02-01

    A proper home energy assessment (also called a home energy audit) will tell you how much energy you use in your house, the most cost-effective measures you can take to improve the energy efficiency of your home, and how to save money on energy bills.

  4. End use energy consumption data base: transportation sector

    SciTech Connect

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  5. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  6. An Integrated Geovisual Analytics Framework for Analysis of Energy Consumption Data and Renewable Energy Potentials

    SciTech Connect

    Omitaomu, Olufemi A; Kramer, Ian S; Kodysh, Jeffrey B; Bhaduri, Budhendra L; Steed, Chad A; Karthik, Rajasekar; Nugent, Philip J; Myers, Aaron T

    2012-01-01

    We present an integrated geovisual analytics framework for utility consumers to interactively analyze and benchmark their energy consumption. The framework uses energy and property data already available with the utility companies and county governments respectively. The motivation for the developed framework is the need for citizens to go beyond the conventional utility bills in understanding the patterns in their energy consumption. There is also a need for citizens to go beyond one-time improvements that are often not monitored and measured over time. Some of the features of the framework include the ability for citizens to visualize their historical energy consumption data along with weather data in their location. The quantity of historical energy data available is significantly more than what is available from utility bills. An overlay of the weather data provides users with a visual correlation between weather patterns and their energy consumption patterns. Another feature of the framework is the ability for citizens to compare their consumption on an aggregated basis to that of their peers other citizens living in houses of similar size and age and within the same or different geographical boundaries, such as subdivision, zip code, or county. The users could also compare their consumption to others based on the size of their family and other attributes. This feature could help citizens determine if they are among the best in class . The framework can also be used by the utility companies to better understand their customers and to plan their services. To make the framework easily accessible, it is developed to be compatible with mobile consumer electronics devices.

  7. Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2013-12-17

    Lightweighting is a key strategy used to improve vehicle fuel economy. Replacing conventional materials (e.g., steel) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use, but often increases energy consumption and GHG emissions during materials and vehicle production. Assessing the life-cycle benefits of mass reduction requires a quantitative description of the mass-induced fuel consumption during vehicle use. A new physics-based method for estimating mass-induced fuel consumption (MIF) is proposed. We illustrate the utility of this method by using publicly available data to calculate MIF values in the range of 0.2-0.5 L/(100 km 100 kg) based on 106 records of fuel economy tests by the U.S. Environmental Protection Agency for 2013 model year vehicles. Lightweighting is shown to have the most benefit when applied to vehicles with high fuel consumption and high power. Use of the physics-based model presented here would place future life cycle assessment studies of vehicle lightweighting on a firmer scientific foundation.

  8. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  9. Modeling energy consumption in the Defense Logistics Agency. Final report, November 1986-December 1987

    SciTech Connect

    Hobson, J.J.

    1988-05-01

    The Defense Logistics Agency (DLA) Office of Installation Services and Environmental Protection was tasked with developing goals for energy consumption at each of the DLA-managed facilities. These goals could be based on factors that beyond the control of the organization and can vary from month to month, such as weather conditions and workload. This report presents the results of an analysis that mathematically modeled energy consumption and then attempted to use these models to assist in setting consumption goals for the agency. The DLA facilities identified the factors they considered to be predictors of energy consumption. Three years of monthly data were submitted for each factor. The data were screened to identify possible problems and to determine which factors had some relationship with energy consumption. Regression models were developed to predict total consumption, electric consumption, and non-electric consumption at each location. These models showed a definite relationship between weather and workload factors and energy consumption. However, the models were not accurate enough to be used to set consumption goals in DLA due to the impact of extraneous factors that were not quantifiable. Goals for energy consumption should be flexible to allow changes when unusual weather or workload conditions exist. However, these goals cannot be derived through a precise mathematical formula given the existing detail of available data.

  10. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating. PMID:26360762

  11. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  12. Assessing Carbon Dioxide Emissions from Energy Use at a University

    ERIC Educational Resources Information Center

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  13. Assessment of water consumptions in small mediterranean islands' primary schools by means of a long-term online monitoring

    NASA Astrophysics Data System (ADS)

    Ferraris, Marco; De Gisi, Sabino; Farina, Roberto

    2016-09-01

    A key challenge of our society is improving schools through the sustainable use of resources especially in countries at risk of desertification. The estimation of water consumption is the starting point for the correct dimensioning of water recovery systems. To date, unlike the energy sector, there is a lack of scientific information regarding water consumption in school buildings. Available data refer roughly to indirect estimates by means of utility bills and therefore no information on the role of water leakage in the internal network of the school is provided. In this context, the aim of the work was to define and implement an on-line monitoring system for the assessment of water consumptions in a small Mediterranean island primary school to achieve the following sub-goals: (1) definition of water consumption profile considering teaching activities and secretarial work; (2) direct assessment of water consumptions and leakages and, (3) quantification of the behaviour parameters. The installed monitoring system consisted of 33 water metres (3.24 persons per water metre) equipped with sensors set on 1-L impulse signal and connected to a data logging system. Results showed consumptions in the range 13.6-14.2 L/student/day and leakage equal to 54.8 % of the total water consumptions. Considering the behavioural parameters, the consumptions related to toilet flushing, personal, and building cleaning were, respectively, 54, 43 and 3 % of the total water ones. Finally, the obtained results could be used for dimensioning the most suitable water recovery strategies at school level such as grey water or rainwater recovery systems.

  14. Low Calorie Beverage Consumption Is Associated with Energy and Nutrient Intakes and Diet Quality in British Adults

    PubMed Central

    Gibson, Sigrid A.; Horgan, Graham W.; Francis, Lucy E.; Gibson, Amelia A.; Stephen, Alison M.

    2016-01-01

    It is unclear whether consumption of low-calorie beverages (LCB) leads to compensatory consumption of sweet foods, thus reducing benefits for weight control or diet quality. This analysis investigated associations between beverage consumption and energy intake and diet quality of adults in the UK National Diet and Nutrition Survey (NDNS) (2008–2011; n = 1590), classified into: (a) non-consumers of soft drinks (NC); (b) LCB consumers; (c) sugar-sweetened beverage (SSB) consumers; or (d) consumers of both beverages (BB), based on 4-day dietary records. Within-person data on beverage consumption on different days assessed the impact on energy intake. LCB consumers and NC consumed less energy and non-milk extrinsic sugars than other groups. Micronutrient intakes and food choices suggested higher dietary quality in NC/LCB consumers compared with SSB/BB consumers. Within individuals on different days, consumption of SSB, milk, juice, and alcohol were all associated with increased energy intake, while LCB and tea, coffee or water were associated with no change; or reduced energy intake when substituted for caloric beverages. Results indicate that NC and LCB consumers tend to have higher quality diets compared with SSB or BB consumers and do not compensate for sugar or energy deficits by consuming more sugary foods. PMID:26729159

  15. Low Calorie Beverage Consumption Is Associated with Energy and Nutrient Intakes and Diet Quality in British Adults.

    PubMed

    Gibson, Sigrid A; Horgan, Graham W; Francis, Lucy E; Gibson, Amelia A; Stephen, Alison M

    2016-01-01

    It is unclear whether consumption of low-calorie beverages (LCB) leads to compensatory consumption of sweet foods, thus reducing benefits for weight control or diet quality. This analysis investigated associations between beverage consumption and energy intake and diet quality of adults in the UK National Diet and Nutrition Survey (NDNS) (2008-2011; n = 1590), classified into: (a) non-consumers of soft drinks (NC); (b) LCB consumers; (c) sugar-sweetened beverage (SSB) consumers; or (d) consumers of both beverages (BB), based on 4-day dietary records. Within-person data on beverage consumption on different days assessed the impact on energy intake. LCB consumers and NC consumed less energy and non-milk extrinsic sugars than other groups. Micronutrient intakes and food choices suggested higher dietary quality in NC/LCB consumers compared with SSB/BB consumers. Within individuals on different days, consumption of SSB, milk, juice, and alcohol were all associated with increased energy intake, while LCB and tea, coffee or water were associated with no change; or reduced energy intake when substituted for caloric beverages. Results indicate that NC and LCB consumers tend to have higher quality diets compared with SSB or BB consumers and do not compensate for sugar or energy deficits by consuming more sugary foods. PMID:26729159

  16. Low Calorie Beverage Consumption Is Associated with Energy and Nutrient Intakes and Diet Quality in British Adults.

    PubMed

    Gibson, Sigrid A; Horgan, Graham W; Francis, Lucy E; Gibson, Amelia A; Stephen, Alison M

    2016-01-02

    It is unclear whether consumption of low-calorie beverages (LCB) leads to compensatory consumption of sweet foods, thus reducing benefits for weight control or diet quality. This analysis investigated associations between beverage consumption and energy intake and diet quality of adults in the UK National Diet and Nutrition Survey (NDNS) (2008-2011; n = 1590), classified into: (a) non-consumers of soft drinks (NC); (b) LCB consumers; (c) sugar-sweetened beverage (SSB) consumers; or (d) consumers of both beverages (BB), based on 4-day dietary records. Within-person data on beverage consumption on different days assessed the impact on energy intake. LCB consumers and NC consumed less energy and non-milk extrinsic sugars than other groups. Micronutrient intakes and food choices suggested higher dietary quality in NC/LCB consumers compared with SSB/BB consumers. Within individuals on different days, consumption of SSB, milk, juice, and alcohol were all associated with increased energy intake, while LCB and tea, coffee or water were associated with no change; or reduced energy intake when substituted for caloric beverages. Results indicate that NC and LCB consumers tend to have higher quality diets compared with SSB or BB consumers and do not compensate for sugar or energy deficits by consuming more sugary foods.

  17. Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Moustris, K. P.; Nastos, P. T.; Bartzokas, A.; Larissi, I. K.; Zacharia, P. T.; Paliatsos, A. G.

    2015-11-01

    The degree-day method is considered to be a fundamental and a rather simple method to estimate heating and cooling energy demand. This study aims in a detailed and accurate assessment of cooling and heating degree days in different locations within the Greater Athens area (GAA), Greece. To achieve this goal, hourly values of air temperature from eight different locations within the GAA, covering the period 2001-2005, were used. Thus, the monthly and the annual number of cooling and heating degree days for each one of the examined locations could be estimated separately. Furthermore, an effort is made to evaluate the energy consumption for a specific building, based on the degree-day method, to indicate the impact of the canopy layer urban heat island on neighboring regions within the GAA. Results reveal that there is great spatial variability of energy demand and energy consumption along with significant differences in expenses for heating and cooling among neighboring regions within the GAA. Finally, regarding the energy demands of buildings, it is important to take into account intra-urban variability of canopy layer climates against an ensemble mean throughout the city, because the latter can result in inaccurate estimations and conclusions.

  18. A human PBPK/PD model to assess arsenic exposure risk through farmed tilapia consumption.

    PubMed

    Ling, M-P; Liao, C-M

    2009-07-01

    The purpose of this study was to develop a biologically based risk assessment model for human health through consumption of arsenic (As) contaminated farmed tilapia (Oreochromis mossambicus) from blackfoot disease (BFD)-endemic area in Taiwan for estimating the consumption advice. We linked a physiologically based pharmacokinetic (PBPK) and a pharmacodynamic (PD) model to account for the exposure and dose-response profiles of As in human. Risk analysis indicates that consumption of farmed tilapia poses no significant threat from As-induced lung and bladder cancers. The predicted risk-based median consumption advice was no more than 5-17 meals month(-1) (or 2-6 g day(-1)).

  19. Analysis of changes in residential energy consumption, 1973-1980

    SciTech Connect

    King, M.J.; Belzer, D.B.; Callaway, J.M.; Adams, R.C.

    1982-09-01

    The progress of energy conservation in the residential sector since the 1973 to 1974 Arab oil embargo is assessed. To accomplish this goal, the reduction in residential energy use per household since 1973 is disaggregated into six possible factors. The factors considered were: (1) building shell efficiencies, (2) geographic distribution of households, (3) appliance efficiency, (4) size of dwelling units, (5) fuel switching, and (6) consumer attitudes. The most important factor identified was improved building shell efficiency, although the impact of appliance efficiency is growing rapidly. Due to data limitations, PNL was not able to quantify the effects of two factors (size of dwelling units and fuel switching) within the framework of this study. The total amount of the energy reduction explained ranged from 18 to 46% over the years 1974 to 1980.

  20. Analysis of electric energy consumption of automatic milking systems in different configurations and operative conditions.

    PubMed

    Calcante, Aldo; Tangorra, Francesco M; Oberti, Roberto

    2016-05-01

    Automatic milking systems (AMS) have been a revolutionary innovation in dairy cow farming. Currently, more than 10,000 dairy cow farms worldwide use AMS to milk their cows. Electric consumption is one of the most relevant and uncontrollable operational cost of AMS, ranging between 35 and 40% of their total annual operational costs. The aim of the present study was to measure and analyze the electric energy consumption of 4 AMS with different configurations: single box, central unit featuring a central vacuum system for 1 cow unit and for 2 cow units. The electrical consumption (daily consumption, daily consumption per cow milked, consumption per milking, and consumption per 100L of milk) of each AMS (milking unit + air compressor) was measured using 2 energy analyzers. The measurement period lasted 24h with a sampling frequency of 0.2Hz. The daily total energy consumption (milking unit + air compressor) ranged between 45.4 and 81.3 kWh; the consumption per cow milked ranged between 0.59 and 0.99 kWh; the consumption per milking ranged between 0.21 and 0.33 kWh; and the consumption per 100L of milk ranged between 1.80 to 2.44 kWh according to the different configurations and operational contexts considered. Results showed that AMS electric consumption was mainly conditioned by farm management rather than machine characteristics/architectures.

  1. Energy consumption program: A computer model simulating energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  2. A survey of energy drinks consumption practices among student -athletes in Ghana: lessons for developing health education intervention programmes

    PubMed Central

    2012-01-01

    Background Globally, young adults and college athletes are primary targets of the marketing campaigns of energy drink companies. Consequently, it is reported that young adults and college athletes consume energy drinks frequently. The purpose of this study was to determine the prevalence of energy drink consumption among student-athletes selected from seven public universities in Ghana. The study assessed the energy drink consumption patterns, types usually consumed, frequency of consumption and reasons why athletes consumed energy drinks. Methods A total number of 180 student-athletes gave their consent to participate in the study and completed a questionnaire which was administered during an inter-university sports competition. Results Most of the participants (62.2%) reported consuming at least one can of energy drink in a week. A high proportion (53.6%) of the respondents who drink energy drinks indicated that they did so to replenish lost energy after training or a competition. Other reasons given as to why energy drinks were consumed by the study participants included to provide energy and fluids to the body (25.9%), to improve performance (9.8%) and to reduce fatigue (5.4%). Conclusion These results suggest the need to plan health education programmes to particularly correct some wrong perceptions that athletes have regarding the benefits of energy drinks and also create awareness among student-athletes about the side effects of excessive intake of energy drinks. PMID:22444601

  3. The Campus Demotechnic Index: A comparison of technological energy consumption at U.S. colleges and universities

    NASA Astrophysics Data System (ADS)

    Vance, Leisha Ann

    The Campus Demotechnic Index (CDI) is a normalized metric developed to provide universities with a method for tracking progress toward or retreat from sustainability in their energy consumption. The CDI is modified after the Demotechnic Index of Mata et al. (1994). CDI values assess the total campus energy consumed against the total energy required to meet the campus population's basal metabolism. Like the D-Index, the CDI is thus a measure of the scalar quantity of energy consumed in excess of the quantity of energy required for simple survival on a per capita basis. For this research, data were collected from an on-line survey designed for U.S. colleges and universities, which requested information related to campus demographics and campus built and mobile environmental energy consumption. Data were requested for the years of 2000 to 2005. Wilcoxon signed rank test analyses were conducted to determine if CDI values significantly increased over time. ANOVAs, GLMs, correlations and regressions were conducted to determine if climate and campus size significantly influenced CDI. ANOVAs, correlations and regressions were conducted to determine the effect of acreage on mobile fuel consumption and to ascertain whether differing proportions between the built and mobile environments significantly influenced CDI values. Correlations and regressions were carried out to which variables best predicted CDI, and cluster analyses were conducted to find out if any significant groups existed based on CDI values, fossil fuel consumption and population per square foot. The knowledge gained from results of these analyses not only provides a depiction of campus energy consumption, but also puts campus energy consumption into context in that CDI scores allow peer institutional comparisons. Awareness of factors that contribute to campus energy use (and CDI ranks) could also facilitate prioritization of sustainability-related issues, as well as the design and establishment of sustainable

  4. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency and standby mode energy consumption of metal halide lamp ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  5. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency and standby mode energy consumption of metal halide lamp ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  6. Energy consumption and usage characteristics from field measurements of residential dishwashers, clothes washers and clothes dryers

    SciTech Connect

    Chang, Y.L.; Grot, R.A.

    1980-10-01

    The measured energy consumption and usage characteristics for household dishwashers, clothes washers, and clothes dryers for ten townhouses at Twin Rivers, N.J., are presented. Whenever the dishwashers and/or clothes washers were in use, the energy consumption, water consumption, frequency of usage, and water temperature were measured by a data acquisition system. The electrical energy of electric clothes dryers and the gas consumption of gas clothes dryers were measured, as well as their frequency and duration of use, and exhaust temperature. Typical household usage patterns of these major appliances are included.

  7. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... per cycle for water softener regeneration, in kilowatt-hours and determined according to section 5.1.3... paragraph (c)(1)(i) of this section, W = the water energy consumption per cycle for the normal cycle as... defined in section 1.12 of appendix C1 to this subpart, and the water energy consumption per cycle...

  8. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... paragraph (c)(1)(i) of this section, and W = the total water energy consumption per cycle for the normal..., and Wg = the total water energy consumption per cycle for the normal cycle as defined in section 1.6... or oil-heated water is used, the product of: the representative average-use of 392 cycles per...

  9. A US-China Interview Study: Biology Students' Argumentation and Explanation about Energy Consumption Issues

    ERIC Educational Resources Information Center

    Jin, Hui; Hokayem, Hayat; Wang, Sasha; Wei, Xin

    2016-01-01

    As China and the United States become the top two carbon emitters in the world, it is crucial for citizens in both countries to construct a sophisticated understanding of energy consumption issues. This interview study examines how U.S. and Chinese students compare in explaining and arguing about two critical energy consumption issues: burning…

  10. A US-China Interview Study: Biology Students' Argumentation and Explanation about Energy Consumption Issues

    ERIC Educational Resources Information Center

    Jin, Hui; Hokayem, Hayat; Wang, Sasha; Wei, Xin

    2015-01-01

    As China and the United States become the top two carbon emitters in the world, it is crucial for citizens in both countries to construct a sophisticated understanding of energy consumption issues. This interview study examines how U.S. and Chinese students compare in explaining and arguing about two critical energy consumption issues: burning…

  11. Consumption of Energy in New York State: 1972 (with Estimates for 1973).

    ERIC Educational Resources Information Center

    Hausgaard, Olaf

    This report contains tabular data on energy consumption for the calendar year 1972 and a forecast of natural gas requirements for the period 1973 to 1976. Broad sector categories used in the tables are electric utilities, residential commercial, industrial, and transportation. Tables show energy consumption by primary source and major sector for…

  12. State Energy Data Needs Assessment

    EIA Publications

    2009-01-01

    This report responds to Section 805(d) of the Energy Independence and Security Act of 2007 (EISA), Public Law 110-140, requiring the Energy Information Administration to assess State-level energy data needs and submit to Congress a plan to address those needs.

  13. Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison

    PubMed Central

    Zhang, Lixiao; Hu, Qiuhong; Zhang, Fan

    2014-01-01

    Input-output analysis has been proven to be a powerful instrument for estimating embodied (direct plus indirect) energy usage through economic sectors. Using 9 economic input-output tables of years 1987, 1990, 1992, 1995, 1997, 2000, 2002, 2005, and 2007, this paper analyzes energy flows for the entire city of Beijing and its 30 economic sectors, respectively. Results show that the embodied energy consumption of Beijing increased from 38.85 million tonnes of coal equivalent (Mtce) to 206.2 Mtce over the past twenty years of rapid urbanization; the share of indirect energy consumption in total energy consumption increased from 48% to 76%, suggesting the transition of Beijing from a production-based and manufacturing-dominated economy to a consumption-based and service-dominated economy. Real estate development has shown to be a major driving factor of the growth in indirect energy consumption. The boom and bust of construction activities have been strongly correlated with the increase and decrease of system-side indirect energy consumption. Traditional heavy industries remain the most energy-intensive sectors in the economy. However, the transportation and service sectors have contributed most to the rapid increase in overall energy consumption. The analyses in this paper demonstrate that a system-wide approach such as that based on input-output model can be a useful tool for robust energy policy making. PMID:24595199

  14. Historical overview of diet assessment and food consumption surveys in Spain: assessment methods and applications.

    PubMed

    Morán Fagúndez, Luis Juan; Rivera Torres, Alejandra; González Sánchez, María Eugenia; de Torres Aured, Mari Lourdes; López-Pardo Martínez, Mercedes; Irles Rocamora, José Antonio

    2015-02-26

    The food consumption assessment methods are used in nutrition and health population surveys and are the basis for the development of guidelines, nutritional recommendations and health plans, The study of these issues is one of the major tasks of the research and health policy in developed countries. Major advances nationally in this area have been made since 1940, both in the reliability of the data and in the standardization of studies, which is a necessary condition to compare changes over time. In this article the history and application of different dietary surveys, dietary history and food frequency records are analyzed. Besides information from surveys conducted at a national level, the main data currently available for public health planning in nutrition comes from nutritional analysis of household budget surveys and food balance sheets, based on data provided by the Ministry of Agriculture.

  15. Lower energy intake following consumption of Hi-oleic and regular peanuts compared with iso-energetic consumption of potato crisps.

    PubMed

    Barbour, Jayne A; Howe, Peter R C; Buckley, Jonathan D; Wright, Graeme C; Bryan, Janet; Coates, Alison M

    2014-11-01

    Snack foods can contribute a high proportion of energy intake to the diet. Peanuts are a snack food rich in unsaturated fatty acids, protein and fibre which have demonstrated satiety effects and may reduce total energy intake, despite their high energy density. This study examined the effects of consuming Hi-oleic (oleic acid ~75% of total fatty acids) peanuts and regular peanuts (oleic acid ~50% and higher in polyunsaturated fatty acids) compared with a high carbohydrate snack (potato crisps) on satiety and subsequent energy intake. Using a triple crossover study design, 24 participants (61 ± 1 years) consumed iso-energetic amounts (56-84 g) of Hi-oleic or regular peanuts or (60-90 g) potato crisps after an overnight fast. Hunger and satiety were assessed at baseline, 30, 60, 120 and 180 minutes following snack consumption using visual analogue scales, after which a cold buffet meal was freely consumed and energy intake measured. The same snack was consumed on 3 subsequent days with energy intake assessed from dietary records. This protocol was repeated weekly with each snack food. Total energy intake was lower following consumption of Hi-oleic and regular peanuts compared with crisps, both acutely during the buffet meal (-21%; p<.001 and -17%; p< .01) and over the 4 days (-11%; p< .001 and -9%; p< .01). Despite these reductions in energy intake, no differences in perceived satiety were observed. The findings suggest peanuts may be a preferred snack food to include in the diet for maintaining a healthy weight.

  16. [Energy Consumption Comparison and Energy Saving Approaches for Different Wastewater Treatment Processes in a Large-scale Reclaimed Water Plant].

    PubMed

    Yang, Min; Li, Ya-ming; Wei, Yuan-song; Lü, Jian; Yu, Da-wei; Liu, Ji-bao; Fan, Yao-bo

    2015-06-01

    Energy consumption is the main performance indicator of reclaimed water plant (RWP) operation. Methods of specific energy consumption analysis, unit energy consumption analysis and redundancy analysis were applied to investigate the composition and spatio-temporal distribution of energy consumption in Qinghe RWP with inverted A2/O, A2/O and A2/O-MBR processes. And the A2/ O-MBR process was mainly analyzed to identify the main nodes and causes for high energy consumption, approaches for energy saving were explored, and the energy consumption before and after upgrading for energy saving was compared. The results showed that aeration was the key factor affecting energy consumption in both conventional and A2/O-MBR processes, accounting for 42.97% and 50.65% of total energy consumption, respectively. A pulsating aeration allowed an increasing membrane flux and remarkably reduced the energy consumption of the A2/O-MBR process while still meeting the effluent standard, e.g., the membrane flux was increased by 20%, and the energy consumptions per kiloton wastewater and kilogram COD(removed) were decreased by 42.39% to 0.53 kW-h-kg-3 and by 54.74% to 1.29 kW x h x kg(-1), respectively. The decrease of backflow ratio in the A2/O-MBR process within a certain range would not deteriorate the effluent quality due to its insignificant correlation with the effluent quality, and therefore may be considered as one of the ways for further energy saving. PMID:26387326

  17. Understanding Teenagers' Personal Contexts to Design Technology That Supports Learning about Energy Consumption

    ERIC Educational Resources Information Center

    Avramides, Katerina; Craft, Brock; Luckin, Rosemary

    2016-01-01

    Energy sustainability is prevalent in political and popular rhetoric and yet energy consumption is rising. Teenagers are an important category of future energy consumers, but little is known of their conceptions about energy and energy saving. We report on empirical research with two groups of teenagers. This is part of ongoing work to design…

  18. Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments.

    PubMed

    Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Hendriks, A Jan

    2011-01-15

    To perform life-cycle assessment studies, data on the production and use of the products is required. However, often only few data or measurements are available. Estimation of properties can be performed by applying scaling relationships. In many disciplines, they are used to either predict data or to search for underlying patterns, but they have not been considered in the context of product assessments hitherto. The goal of this study was to explore size scaling for commonly used energy conversion equipment, that is, boilers, engines, and generators. The variables mass M, fuel consumption Q, and costs C were related to power P. The established power-law relationships were M = 10(0.73.. 1.89)P(0.64.. 1.23) (R(2) ≥ 0.94), Q = 10(0.06.. 0.68)P(0.82.. 1.02) (R(2) ≥ 0.98) and C = 10(2.46.. 2.86)P(0.83.. 0.85) (R(2) ≥ 0.83). Mass versus power and costs versus power showed that none of the equipment types scaled isometrically, that is, with a slope of 1. Fuel consumption versus power scaled approximately isometrically for steam boilers, the other equipments scaled significantly lower than 1. This nonlinear scaling behavior induces a significant size effect. The power laws we established can be applied to scale the mass, fuel consumption and costs of energy conversion equipments up or down. Our findings suggest that empirical scaling laws can be used to estimate properties, particularly relevant in studies focusing on early product development for which generally only little information is available. PMID:21133374

  19. Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments.

    PubMed

    Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Hendriks, A Jan

    2011-01-15

    To perform life-cycle assessment studies, data on the production and use of the products is required. However, often only few data or measurements are available. Estimation of properties can be performed by applying scaling relationships. In many disciplines, they are used to either predict data or to search for underlying patterns, but they have not been considered in the context of product assessments hitherto. The goal of this study was to explore size scaling for commonly used energy conversion equipment, that is, boilers, engines, and generators. The variables mass M, fuel consumption Q, and costs C were related to power P. The established power-law relationships were M = 10(0.73.. 1.89)P(0.64.. 1.23) (R(2) ≥ 0.94), Q = 10(0.06.. 0.68)P(0.82.. 1.02) (R(2) ≥ 0.98) and C = 10(2.46.. 2.86)P(0.83.. 0.85) (R(2) ≥ 0.83). Mass versus power and costs versus power showed that none of the equipment types scaled isometrically, that is, with a slope of 1. Fuel consumption versus power scaled approximately isometrically for steam boilers, the other equipments scaled significantly lower than 1. This nonlinear scaling behavior induces a significant size effect. The power laws we established can be applied to scale the mass, fuel consumption and costs of energy conversion equipments up or down. Our findings suggest that empirical scaling laws can be used to estimate properties, particularly relevant in studies focusing on early product development for which generally only little information is available.

  20. Assessment of the U.S. Department of Energy's Home Energy Scoring Tool

    SciTech Connect

    Roberts, David; Merket, Noel; Polly, Ben; Heaney, Mike; Casey, Sean; Robertson, Joseph

    2012-07-01

    The National Renewable Energy Laboratory (NREL) conducted a series of assessments of the U.S. Department of Energy's (DOE) proposed Home Energy Scoring Tool (HEST). This report is an assessment of the 4/27/2012 release of HEST. Predictions of electric and natural gas consumption were compared with weather-normalized utility billing data for a mixture of newer and older homes located in Oregon, Wisconsin, Minnesota, North Carolina and Texas.

  1. Energy consumption in personal computer attached laser printers: Past, present, future

    SciTech Connect

    Green, T.

    1995-12-01

    Personal computer (PC) printers have been criticized in recent years for their energy consumption, with criticism especially targeted at laser printers. The popular view, largely correct, has been that inkjet printers were energy-efficient, while lasers were power {open_quotes}hogs.{close_quotes} it will be shown, however, that laser printer energy consumption has dramatically improved in the last few years, thanks largely to prompting by the U.S. Environmental Protection Agency`s (EPA`s) Energy Star program. Two years ago laser printers idled drawing 70 to 100 W; most now idle drawing 5 to 30 W. The inkjet printer`s energy efficiency has been widely publicized, so it will be used as a benchmark throughout this paper. When idle, an inkjet printer draws 5 to 10 W. Some laser printers` total energy consumption has now dropped to a level such that their energy consumption, for similar performance machines, now approaches that of inkjet printers.

  2. [Characteristics and influence factors of the energy consumption and pollutant discharge of municipal solid waste transfer stations in Beijing].

    PubMed

    Wang, Zhao; Li, Zhen-Shan; Feng, Ya-Bin; Jiao, An-Ying; Xue, An

    2013-06-01

    In this study, we investigated characteristics and influence factors of energy consumption and pollutant discharge (ECPD) of municipal solid waste transfer stations (MSW TSs) in Beijing by assessing four parameters including the amount of waste recycled, leachate production, water consumption and electricity consumption, based on three years' average data of MSW TSs in Beijing obtained through field investigations from 2009 to 2011. Meanwhile, integral performances of the stations with and without garbage sorting capacities (Sorting TS and Compressing TS) were also analyzed. Results showed that MSW TSs in Beijing differ greatly. For each ton of MSW, masses of waste recycled, leachate productions, water consumptions and electricity consumptions generally fall in the ranges of 12.9 kg x t(-1), 5.8-49.0 kg x t(-1), 40. 3-156.7 kg x t(-1) and 1.75-5.60 kWh x t(-1), respectively. Despite overall the higher energy consumption and more pollutant discharge than Compressing TS, Sorting TS could achieve waste reduction and reuse by recycling part of the municipal solid wastes, as well as the optimization of process by sorting wastes into different ingredients for corresponding waste disposal plants, which could reduce heavy burdens of landfills and extend their lifespans.

  3. [Characteristics and influence factors of the energy consumption and pollutant discharge of municipal solid waste transfer stations in Beijing].

    PubMed

    Wang, Zhao; Li, Zhen-Shan; Feng, Ya-Bin; Jiao, An-Ying; Xue, An

    2013-06-01

    In this study, we investigated characteristics and influence factors of energy consumption and pollutant discharge (ECPD) of municipal solid waste transfer stations (MSW TSs) in Beijing by assessing four parameters including the amount of waste recycled, leachate production, water consumption and electricity consumption, based on three years' average data of MSW TSs in Beijing obtained through field investigations from 2009 to 2011. Meanwhile, integral performances of the stations with and without garbage sorting capacities (Sorting TS and Compressing TS) were also analyzed. Results showed that MSW TSs in Beijing differ greatly. For each ton of MSW, masses of waste recycled, leachate productions, water consumptions and electricity consumptions generally fall in the ranges of 12.9 kg x t(-1), 5.8-49.0 kg x t(-1), 40. 3-156.7 kg x t(-1) and 1.75-5.60 kWh x t(-1), respectively. Despite overall the higher energy consumption and more pollutant discharge than Compressing TS, Sorting TS could achieve waste reduction and reuse by recycling part of the municipal solid wastes, as well as the optimization of process by sorting wastes into different ingredients for corresponding waste disposal plants, which could reduce heavy burdens of landfills and extend their lifespans. PMID:23947070

  4. Energy consumption analysis of the Venus Deep Space Station (DSS-13)

    NASA Technical Reports Server (NTRS)

    Hayes, N. V.

    1983-01-01

    This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.

  5. A quantitative epigenetic approach for the assessment of cigarette consumption

    PubMed Central

    Philibert, Robert; Hollenbeck, Nancy; Andersen, Eleanor; Osborn, Terry; Gerrard, Meg; Gibbons, Frederick X.; Wang, Kai

    2015-01-01

    Smoking is the largest preventable cause of morbidity and mortality in the world. Despite the development of numerous preventive and treatment interventions, the rate of daily smoking in the United States is still approximately 22%. Effective psychosocial interventions and pharmacologic agents exist for the prevention and treatment of smoking. Unfortunately, both approaches are hindered by our inability to accurately quantify amount of cigarette consumption from the point of initial experimentation to the point of total dependency. Recently, we and others have demonstrated that smoking is associated with genome-wide changes in DNA methylation. However, whether this advance in basic science can be employed as a reliable assay that is useful for clinical diagnosis and treatment has not been shown. In this communication, we determine the sensitivity and specificity of five of the most consistently replicated CpG loci with respect to smoking status using data from a publically available dataset. We show that methylation status at a CpG locus in the aryl hydrocarbon receptor repressor, cg05575921, is both sensitive and specific for smoking status in adults with a receiver operated curve characteristic area under the curve of 0.99. Given recent demonstrations that methylation at this locus reflects both intensity of smoking and the degree of smoking cessation, we conclude that a methylation-based diagnostic at this locus could have a prominent role in understanding the impact of new products, such as e-cigarettes on initiation of cigarette smoking among adolescents, while improving the prevention and treatment of smoking, and smoking related disorders. PMID:26082730

  6. Is the Consumption of Energy Drinks Associated With Academic Achievement Among College Students?

    PubMed

    Champlin, Sara E; Pasch, Keryn E; Perry, Cheryl L

    2016-08-01

    Despite widely reported side effects, use of energy drinks has increased among college students, who report that they consume energy drinks to help them complete schoolwork. However, little is known about the association between energy drink use and academic performance. We explored the relationship between energy drink consumption and current academic grade point average (GPA) among first-year undergraduate students. Participants included 844 first-year undergraduates (58.1 % female; 50.7 % White). Students reported their health behaviors via an online survey. We measured energy drink consumption with two measures: past month consumption by number of drinks usually consumed in 1 month and number consumed during the last occasion of consumption. We used multiple linear regression modeling with energy drink consumption and current GPA, controlling for gender, race, weekend and weekday sleep duration, perceived stress, perceived stress management, media use, and past month alcohol use. We found that past month energy drink consumption quantity by frequency (p < 0.001), and energy drinks consumed during the last occasion (p < 0.001), were associated with a lower GPA. Energy drinks consumed during the last occasion of consumption (p = 0.01) remained significantly associated with a lower GPA when controlling for alcohol use. While students report using energy drinks for school-related reasons, our findings suggest that greater energy drink consumption is associated with a lower GPA, even after controlling for potential confounding variables. Longitudinal research is needed that addresses whether GPA declines after continued use of energy drinks or if students struggling academically turn to energy drinks to manage their schoolwork.

  7. Is the Consumption of Energy Drinks Associated With Academic Achievement Among College Students?

    PubMed

    Champlin, Sara E; Pasch, Keryn E; Perry, Cheryl L

    2016-08-01

    Despite widely reported side effects, use of energy drinks has increased among college students, who report that they consume energy drinks to help them complete schoolwork. However, little is known about the association between energy drink use and academic performance. We explored the relationship between energy drink consumption and current academic grade point average (GPA) among first-year undergraduate students. Participants included 844 first-year undergraduates (58.1 % female; 50.7 % White). Students reported their health behaviors via an online survey. We measured energy drink consumption with two measures: past month consumption by number of drinks usually consumed in 1 month and number consumed during the last occasion of consumption. We used multiple linear regression modeling with energy drink consumption and current GPA, controlling for gender, race, weekend and weekday sleep duration, perceived stress, perceived stress management, media use, and past month alcohol use. We found that past month energy drink consumption quantity by frequency (p < 0.001), and energy drinks consumed during the last occasion (p < 0.001), were associated with a lower GPA. Energy drinks consumed during the last occasion of consumption (p = 0.01) remained significantly associated with a lower GPA when controlling for alcohol use. While students report using energy drinks for school-related reasons, our findings suggest that greater energy drink consumption is associated with a lower GPA, even after controlling for potential confounding variables. Longitudinal research is needed that addresses whether GPA declines after continued use of energy drinks or if students struggling academically turn to energy drinks to manage their schoolwork. PMID:27236788

  8. 10 CFR Appendix B1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Freezers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Freezers 1... temperature, then these test results shall be used to determine energy consumption. If the...

  9. An assessment of community capacity to prevent adolescent alcohol consumption.

    PubMed

    Williams, Rebecca J; Kittinger, Daniela Spoto; Ta, Van M; Nihoa, Wendy K; Payne, Christine; Nigg, Claudio R

    2012-09-01

    To effectively address the issue of youth alcohol use, communities need to have sufficient infrastructure and capacity in place to operate effective prevention programs. This study evaluates community capacity in the state of Hawai'i, using the Capacity Assessment Survey administered to stakeholders in the youth alcohol prevention system. Capacity is quantified with gap scores, which measure the discrepancy between an agency's performance of an attribute and the attribute's relative importance. Six assessment areas, termed capacity domains, are defined. Results are given for each county and the state overall. Based on these results, communities need to prioritize capacity-building efforts specifically in the domains of effectiveness, funding/resource availability, and sustainability. Organization, workforce skills/knowledge, and cultural competency were categorized as relative strengths in comparison, but gap scores are nevertheless significantly greater than 0 ("ideal"; p < .001), indicating these areas need improvement as well. Suggestions for improvement in each capacity domain are given. This assessment is the first step in a five-step planning process to implement youth alcohol prevention programs in communities in Hawai'i. PMID:22467663

  10. [Analysis of China's energy consumption and its impact on the environment in the future].

    PubMed

    Zheng, Bo-fu; Deng, Hong-bing; Yan, Yan; Zhao, Jing-zhu

    2005-05-01

    With the development of economy and urbanization, energy consumption and its impact on the environment in the future have become a focal point in China. Based on briefly reviewing energy consumption during 1980-2000 and analyzing its impact, three scenarios are assumed to forecast energy consumption status and analyze its impact on the environment in the future. The results indicate that the emissions of SO2, NOx, CO2 and soot dust caused by energy consumption would keep a high level in the future, and there are significant differences among the three scenarios' estimates. Improving energy efficiency and strengthening the exploitation and utilization of clean and renewable energy are suggested to mitigate the environmental pollution.

  11. [Method for grading industrial sectors in energy consumption and its application].

    PubMed

    Mao, Jian-Su; Ma, Lan

    2013-04-01

    Energy is mainly consumed by the urban industry system, thus grading industrial sectors for their energy consumption may help to identify the concerned industrial sectors and provide necessary information for industrial energy management in China's industrialization and urbanization. In present article, based on a review of the fundamental relationships between energy consumption and industrial sectors, the contribution rates and energy efficiency of industrial sectors are chosen as typical parameters for energy consumption. The concept of distance index of industrial sectors for energy consumption is defined through China's average level as a reference base. The grade of industrial sectors in energy consumption is classed into 9 types from extreme advantage to extreme disadvantage according to the scope of distance index values, and the types of industrial sectors that need to be more concerned are pointed out. Taking Chongqing as a case study, the application for grading industrial sectors for their energy consumption was exhibited, by which, the main industrial sectors are grated and the industrial sectors that should be special concerned in energy management are determined.

  12. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  13. The associations between emotional eating and consumption of energy-dense snack foods are modified by sex and depressive symptomatology.

    PubMed

    Camilleri, Géraldine M; Méjean, Caroline; Kesse-Guyot, Emmanuelle; Andreeva, Valentina A; Bellisle, France; Hercberg, Serge; Péneau, Sandrine

    2014-08-01

    In recent years, emotional eating (EmE) has incited substantial research interest as an important psychologic determinant of food intake and overweight. However, little is known about factors that might modulate its relations with dietary habits. The objective of this study was to examine the association between EmE and consumption of energy-dense snack food and assess the 2-way interaction of EmE with sex and depressive symptoms. A total of 7378 men and 22,862 women from the NutriNet-Santé cohort (France, 2009-2013) who completed ≥6 self-reported 24-h food records were included in this cross-sectional analysis. EmE was evaluated via the revised 21-item Three-Factor Eating Questionnaire. Depressive symptoms were assessed by the Center for Epidemiologic Studies Depression Scale. The associations between EmE and energy-dense food consumption were assessed by multivariable logistic and linear regression models adjusted for sociodemographic and lifestyle factors. Higher EmE was associated with higher consumption of energy-dense snacks and, in particular, with consumption of sweet-and-fatty foods across most categories studied. However, these associations were stronger in women with depressive symptoms (e.g., high consumption of chocolate, OR: 1.77, 95% CI: 1.43, 2.20; cakes/biscuits/pastries, OR: 1.81, 95% CI: 1.45, 2.26) compared with those without depressive symptoms (e.g., high consumption of chocolate, OR: 1.52, 95% CI: 1.36, 1.69; cakes/biscuits/pastries, OR: 1.44, 95% CI: 1.29, 1.61). In contrast, the significant positive associations observed in men without depressive symptoms (e.g., high consumption of chocolate, OR: 1.33, 95% CI: 1.16, 1.52; cakes/biscuits/pastries, OR: 1.28, 95% CI: 1.11, 1.48) were not found in men with depressive symptoms. In conclusion, in women, EmE was positively associated with consumption of energy-dense snack food, particularly in those with depressive symptoms. For men, the relation between EmE and energy-dense snack foods was

  14. The associations between emotional eating and consumption of energy-dense snack foods are modified by sex and depressive symptomatology.

    PubMed

    Camilleri, Géraldine M; Méjean, Caroline; Kesse-Guyot, Emmanuelle; Andreeva, Valentina A; Bellisle, France; Hercberg, Serge; Péneau, Sandrine

    2014-08-01

    In recent years, emotional eating (EmE) has incited substantial research interest as an important psychologic determinant of food intake and overweight. However, little is known about factors that might modulate its relations with dietary habits. The objective of this study was to examine the association between EmE and consumption of energy-dense snack food and assess the 2-way interaction of EmE with sex and depressive symptoms. A total of 7378 men and 22,862 women from the NutriNet-Santé cohort (France, 2009-2013) who completed ≥6 self-reported 24-h food records were included in this cross-sectional analysis. EmE was evaluated via the revised 21-item Three-Factor Eating Questionnaire. Depressive symptoms were assessed by the Center for Epidemiologic Studies Depression Scale. The associations between EmE and energy-dense food consumption were assessed by multivariable logistic and linear regression models adjusted for sociodemographic and lifestyle factors. Higher EmE was associated with higher consumption of energy-dense snacks and, in particular, with consumption of sweet-and-fatty foods across most categories studied. However, these associations were stronger in women with depressive symptoms (e.g., high consumption of chocolate, OR: 1.77, 95% CI: 1.43, 2.20; cakes/biscuits/pastries, OR: 1.81, 95% CI: 1.45, 2.26) compared with those without depressive symptoms (e.g., high consumption of chocolate, OR: 1.52, 95% CI: 1.36, 1.69; cakes/biscuits/pastries, OR: 1.44, 95% CI: 1.29, 1.61). In contrast, the significant positive associations observed in men without depressive symptoms (e.g., high consumption of chocolate, OR: 1.33, 95% CI: 1.16, 1.52; cakes/biscuits/pastries, OR: 1.28, 95% CI: 1.11, 1.48) were not found in men with depressive symptoms. In conclusion, in women, EmE was positively associated with consumption of energy-dense snack food, particularly in those with depressive symptoms. For men, the relation between EmE and energy-dense snack foods was

  15. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of italian citrus-based products.

    PubMed

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance. PMID:19184189

  16. Resource Consumption and Environmental Impacts of the Agrofood Sector: Life Cycle Assessment of Italian Citrus-Based Products

    NASA Astrophysics Data System (ADS)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  17. Reduction in Energy Consumption & Variability in Steel Foundry Operations

    SciTech Connect

    Frank Peters

    2005-05-04

    large process variation. This indicates the need for ongoing monitoring of the process and system to quantify the effort being expended. A system to measure the grinding effort was investigated but did not prove to be successful. A weld wire counting system was shown to be very successful in tracking casting quality by monitoring the quantity of weld wire being expended on a per casting basis. Further use of such systems is highly recommended. The field studies showed that the visual inspection process for the casting surface was a potentially large source of process variation. Measurement system analysis studies were conducted at three steel casting producers. The tests measured the consistency of the inspectors in identifying the same surface anomalies. The repeatability (variation of the same operator inspecting the same casting) was found to be relatively consistent across the companies at about 60-70%. However, this is still are very large amount of variation. Reproducibility (variation of different operators inspecting the same casting) was worse, ranging between 20 to 80% at the three locations. This large amount of variation shows that there is a great opportunity for improvement. Falsely identifying anomalies for reworking will cause increased expense and energy consumption. This is particularly true if a weld repair and repeated heat treatment is required. However, not identifying an anomaly could also result in future rework processing, a customer return, or scrap. To help alleviate this problem, casting surface comparator plates were developed and distributed to the industry. These plates are very inexpensive which enables them to be provided to all those involved with casting surface quality, such as operators, inspectors, sales, and management.

  18. Short-Term Energy Outlook Model Documentation: Natural Gas Consumption and Prices

    EIA Publications

    2015-01-01

    The natural gas consumption and price modules of the Short-Term Energy Outlook (STEO) model are designed to provide consumption and end-use retail price forecasts for the residential, commercial, and industrial sectors in the nine Census districts and natural gas working inventories in three regions. Natural gas consumption shares and prices in each Census district are used to calculate an average U.S. retail price for each end-use sector.

  19. Motives for mixing alcohol with energy drinks and other nonalcoholic beverages, and consequences for overall alcohol consumption

    PubMed Central

    Verster, Joris C; Benson, Sarah; Scholey, Andrew

    2014-01-01

    Introduction The aim of this survey was to assess the motives for energy drink consumption, both alone and mixed with alcohol, and to determine whether negative or neutral motives for consuming alcohol mixed with energy drinks (AMED) have a differential effect on overall alcohol consumption. Methods Demographics, alcohol and energy drink consumption-related questions, and motives for the consumption of energy drinks (alone or mixed with alcohol) were assessed. The motives to mix alcohol with energy drinks were compared with those for mixing alcohol with other nonalcoholic beverages. Results A total of 2,329 students who completed the study consumed energy drinks. The motives for consuming energy drinks (without alcohol) included “I like the taste” (58.6%), “To keep me awake” (54.3%), “It gives me energy” (44.3%), “It helps concentrating when studying” (33.9%), “It increases alertness” (28.8%), “It helps me concentrate better” (20.6%), and “It makes me less sleepy when driving” (14.2%). A total of 1,239 students reported occasionally consuming AMED (AMED group). The most frequent motives included “I like the taste” (81.1%), “I wanted to drink something else” (35.3%), and “To celebrate a special occasion” (14.6%). No relevant differences in motives were observed for using an energy drink or another nonalcoholic beverage as a mixer. A minority of students (21.6%) reported at least one negative motive to consume AMED. Despite these negative motives, students reported consuming significantly less alcohol on occasions when they consumed AMED compared to alcohol-only occasions. Conclusion The majority of students who consume energy drinks (without alcohol) do so because they like the taste, or they consume these drinks to keep them awake and give them energy. AMED consumption is more frequently motivated by neutral as opposed to negative motives. No relevant differences in drinking motives and overall alcohol consumption were

  20. Dairy consumption and insulin resistance: the role of body fat, physical activity, and energy intake.

    PubMed

    Tucker, Larry A; Erickson, Andrea; LeCheminant, James D; Bailey, Bruce W

    2015-01-01

    The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA). The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53) than those in the middle-two quartiles (0.22 ± 0.55) or the lowest quartile (0.19 ± 0.58) (F = 6.90, P = 0.0091). The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women.

  1. Dairy Consumption and Insulin Resistance: The Role of Body Fat, Physical Activity, and Energy Intake

    PubMed Central

    Tucker, Larry A.; Erickson, Andrea; LeCheminant, James D.; Bailey, Bruce W.

    2015-01-01

    The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA). The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53) than those in the middle-two quartiles (0.22 ± 0.55) or the lowest quartile (0.19 ± 0.58) (F = 6.90, P = 0.0091). The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women. PMID:25710041

  2. 76 FR 72872 - Rule Concerning Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... CFR Part 305 Rule Concerning Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other Products Required Under the Energy Policy and Conservation Act (``Appliance Labeling... Rule, issued pursuant to the Energy Policy and Conservation Act (EPCA),\\1\\ requires energy labeling...

  3. Power to the Plug: An Introduction to Energy, Electricity, Consumption and Efficiency

    SciTech Connect

    DOE / EERE / NEED Project

    2011-06-07

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  4. Energy Consumption in Schools and Homes. Technical Report No. 2 of a Study of School Calendars.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Research.

    In this, the second in a series of reports, a study of school and home energy consumption in New York was undertaken to determine if schools would save energy by closing for an extended period during cold weather; if more energy is used in homes when schools are closed than when schools are in session; and, if energy savings by schools during a…

  5. The impact of state energy programs and other contextual factors on U.S. buildings energy consumption

    NASA Astrophysics Data System (ADS)

    Ofori-Boadu, Andrea N. Y. A.

    High energy consumption in the United States has been influenced by populations, climates, income and other contextual factors. In the past decades, U.S. energy policies have pursued energy efficiency as a national strategy for reducing U.S. environmental degradation and dependence on foreign oils. The quest for improved energy efficiency has led to the development of energy efficient technologies and programs. The implementation of energy programs in the complex U.S. socio-technical environment is believed to promote the diffusion of energy efficiency technologies. However, opponents doubt the fact that these programs have the capacity to significantly reduce U.S. energy consumption. In order to contribute to the ongoing discussion, this quantitative study investigated the relationships existing among electricity consumption/ intensity, energy programs and contextual factors in the U.S. buildings sector. Specifically, this study sought to identify the significant predictors of electricity consumption and intensity, as well as estimate the overall impact of selected energy programs on electricity consumption and intensity. Using state-level secondary data for 51 U.S. states from 2006 to 2009, seven random effects panel data regression models confirmed the existence of significant relationships among some energy programs, contextual factors, and electricity consumption/intensity. The most significant predictors of improved electricity efficiency included the price of electricity, public benefits funds program, building energy codes program, financial and informational incentives program and the Leadership in Energy and Environmental Design (LEED) program. Consistently, the Southern region of the U.S. was associated with high electricity consumption and intensity; while the U.S. commercial sector was the greater benefactor from energy programs. On the average, energy programs were responsible for approximately 7% of the variation observed in electricity consumption

  6. A new procedure to analyze the effect of air changes in building energy consumption

    PubMed Central

    2014-01-01

    Background Today, the International Energy Agency is working under good practice guides that integrate appropriate and cost effective technologies. In this paper a new procedure to define building energy consumption in accordance with the ISO 13790 standard was performed and tested based on real data from a Spanish region. Results Results showed that the effect of air changes on building energy consumption can be defined using the Weibull peak function model. Furthermore, the effect of climate change on building energy consumption under several different air changes was nearly nil during the summer season. Conclusions The procedure obtained could be the much sought-after solution to the problem stated by researchers in the past and future research works relating to this new methodology could help us define the optimal improvement in real buildings to reduce energy consumption, and its related carbon dioxide emissions, at minimal economical cost. PMID:24456655

  7. Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model

    EIA Publications

    2011-01-01

    The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

  8. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    NASA Astrophysics Data System (ADS)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  9. Territorial approach to increased energy consumption of water extraction from depletion of a highlands Mexican aquifer.

    PubMed

    Fonseca, Carlos Roberto; Esteller, María Vicenta; Díaz-Delgado, Carlos

    2013-10-15

    This work proposes a method to estimate increased energy consumption of pumping caused by a drawdown of groundwater level and the equivalent energy consumption of the motor-pump system in an aquifer under intensive exploitation. This method has been applied to the Valley of Toluca aquifer, located in the Mexican highlands, whose intensive exploitation is reflected in a decline in the groundwater level of between 0.10 and 1.6 m/year. Results provide a summary of energy consumption and a map of energy consumption isopleths showing the areas that are most susceptible to increases in energy consumption due to pumping. The proposed method can be used to estimate the effect of the intensive exploitation of the Valley of Toluca aquifer on the energy consumption of groundwater extraction. Finding reveals that, for the year 2006, groundwater extraction in the urban zone required 2.39 times more energy than the conditions observed 38 years earlier. In monetary terms, this reflects an increase of USD$ 3 million annually, according to 2005 energy production costs.

  10. Is more always better? The nonlinear relationship between energy consumption and wellbeing

    NASA Astrophysics Data System (ADS)

    Vaughan Winfrey, Elise Marie

    Policymakers today face rapidly expanding world populations, increasing evidence of environmental degradation and climate change, and mounting economic crises. In this context, they are grappling with the challenge of balancing environmental concerns, economic viability, and the wellbeing of their citizens. Because energy consumption has both positive and negative wellbeing implications, it is unclear whether societal goals to raise standards of living through energy-intensive lifestyles conflict with the social, economic, environmental, and health dimensions of broader wellbeing aspirations. Though there has been a significant amount of research on the long-run environmental consequences of increasing aggregate world energy demand, there is a lack of direct evidence on the relationship between energy consumption and wellbeing. This paper attempts to improve our understanding of the net wellbeing consequences of energy consumption. Specifically, it examines whether there is a nonlinear relationship between per capita energy consumption, as measured alternatively by CO2 emissions (metric tons per capita), electricity consumption (kWh per capita), and total energy consumption (kg of oil equivalent per capita), and wellbeing, as measured by individual life satisfaction aggregated at the country level. Panel and cross-sectional regression analyses are conducted using data from the Gallup World Poll (GWP), integrated European and World Values Surveys (WVS-EVS), and the World Bank DataBank (WBDB). Despite the classic economic assumption that more is always better, this analysis indicates that increasing energy consumption is not always associated with wellbeing improvements. The empirical results provide some suggestive evidence that life satisfaction gains associated with energy consumption may eventually be counterbalanced by the related human and environmental costs. This is valuable information for policymakers trying to balance environmental, energy-security, and

  11. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    PubMed

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system. PMID:27398277

  12. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    PubMed

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system.

  13. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    SciTech Connect

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  14. Compilation and application of Japanese inventories for energy consumption and air pollutant emissions using input-output tables.

    PubMed

    Nansai, Keisuke; Moriguchi, Yuichi; Tohno, Susumu

    2003-05-01

    Preparing emission inventories is essential to the assessment and management of our environment. In this study, Japanese air pollutant emissions, energy consumption, and CO2 emissions categorized by approximately 400 sectors (as classified by Japanese input-output tables in 1995) were estimated, and the contributions of each sector to the total amounts were analyzed. The air pollutants examined were nitrogen oxides (NOx), sulfur oxides (SOx), and suspended particulate matter (SPM). Consumptions of about 20 fossil fuels and five other fuels were estimated according to sector. Air pollutant emission factors for stationary sources were calculated from the results of a survey on air pollution prevention in Japan. Pollutant emissions from mobile sources were estimated taking into consideration vehicle types, traveling speeds, and distances. This work also counted energy supply and emissions from seven nonfossil fuel sources, including nonthermal electric power, and CO2 emissions from limestone (for example, during cement production). The total energy consumption in 1995 was concluded to be 18.3 EJ, and the annual total emissions of CO2, NOx, SOx, and SPM were, respectively, 343 Mt-C, 3.51 Mt, 1.87 Mt, and 0.32 Mt. An input-output analysis of the emission inventories was used to calculate the amounts of energy consumption and emissions induced in each sector by the economic final demand. PMID:12775078

  15. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    PubMed Central

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Physical performance emerges from complex interactions among many physiological systems that are largely driven by the metabolic energy demanded. Quantifying metabolic demand is an essential step for revealing the many mechanisms of physical performance decrement, but accurate predictive models do not exist. The goal of this study was to investigate if a recently developed model of muscle energetics and force could be extended to reproduce the kinematics, kinetics, and metabolic demand of submaximal effort movement. Upright dynamic knee extension against various levels of ergometer load was simulated. Task energetics were estimated by combining the model of muscle contraction with validated models of lower limb musculotendon paths and segment dynamics. A genetic algorithm was used to compute the muscle excitations that reproduced the movement with the lowest energetic cost, which was determined to be an appropriate criterion for this task. Model predictions of oxygen uptake rate (VO2) were well within experimental variability for the range over which the model parameters were confidently known. The model's accurate estimates of metabolic demand make it useful for assessing the likelihood and severity of physical performance decrement for a given task as well as investigating underlying physiologic mechanisms. PMID:27248429

  16. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption... Appendix Y to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Battery... consumption. 2. Definitions: The following definitions are for the purposes of understanding...

  17. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption of commercial refrigerators, freezers, and refrigerator-freezers. 431.64 Section 431.64 Energy... method for the measurement of energy consumption of commercial refrigerators, freezers, and refrigerator... energy consumption in kilowatt hours per day (kWh/day) for a given product category and volume or...

  18. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumption of commercial refrigerators, freezers, and refrigerator-freezers. 431.64 Section 431.64 Energy... method for the measurement of energy consumption of commercial refrigerators, freezers, and refrigerator... energy consumption in kilowatt hours per day (kWh/day) for a given product category and volume or...

  19. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption...

  20. 10 CFR 431.204 - Uniform test method for the measurement of energy consumption of illuminated exit signs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy consumption of illuminated exit signs. 431.204 Section 431.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Procedures § 431.204 Uniform test method for the measurement of energy consumption of illuminated exit...

  1. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room...

  2. 10 CFR 431.204 - Uniform test method for the measurement of energy consumption of illuminated exit signs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy consumption of illuminated exit signs. 431.204 Section 431.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION... Procedures § 431.204 Uniform test method for the measurement of energy consumption of illuminated exit...

  3. Embodied energy consumption and carbon emissions evaluation for urban industrial structure optimization

    NASA Astrophysics Data System (ADS)

    Ji, Xi; Chen, Zhanming; Li, Jinkai

    2014-03-01

    Cities are the main material processors associated with industrialization. The development of urban production based on fossil fuels is the major contributor to the rise of greenhouse gas density, and to global warming. The concept of urban industrial structure optimization is considered to be a solution to urban sustainable development and global climate issues. Enforcing energy conservation and reducing carbon emissions are playing key roles in addressing these issues. As such, quantitative accounting and the evaluation of energy consumption and corresponding carbon emissions, which are by-products of urban production, are critical, in order to discover potential opportunities to save energy and to reduce emissions. Conventional evaluation indicators, such as "energy consumption per unit output value" and "emissions per unit output value", are concerned with immediate consumptions and emissions; while the indirect consumptions and emissions that occur throughout the supply chain are ignored. This does not support the optimization of the overall urban industrial system. To present a systematic evaluation framework for cities, this study constructs new evaluation indicators, based on the concepts of "embodied energy" and "embodied carbon emissions", which take both the immediate and indirect effects of energy consumption and emissions into account. Taking Beijing as a case, conventional evaluation indicators are compared with the newly constructed ones. Results show that the energy consumption and emissions of urban industries are represented better by the new indicators than by conventional indicators, and provide useful information for urban industrial structure optimization.

  4. An analysis of household energy use by racial/ethnic composition: Consumption, efficiency, and lifestyles

    NASA Astrophysics Data System (ADS)

    Valenzuela, Carlos

    The goal of this dissertation is to provide the most recent household energy consumption analysis by racial/ethnic household composition. This dissertation found that significant differences in behavior, energy consumption, and energy efficiency exist by racial/ethnic household composition. The models suggest that behavioral energy intensity is lower among households led by racial/ethnic minorities. Energy consumption and efficiency models suggest that Hispanic households consume less energy and are more efficient, while Black households consume more energy and are less efficient, than White households. However, when stratifying the models by housing vintage, the differences between Hispanic and White households are not consistent. Differences between Black and White households are evident only among those in housing units built before 1980, indicating that Black households in older vintages live in less efficient housing units and could be at a disadvantage that could result in having to pay a higher share of household income on energy use. Results also point towards evidence that energy efficiency standards since the late 1970s could have actually mitigated potential inequality associated with excess energy use by race/ethnicity. Improving energy efficiency of housing units may be beneficial not only to reduce total energy consumption levels, but also have the potential to lessen the burden of energy costs that lower income households (irrespective of race/ethnicity) might experience otherwise.

  5. [Trend of "zero energy consumption and wastewater" in fuel ethanol production].

    PubMed

    Mao, Zhonggui; Zhang, Jianhua

    2008-06-01

    The energy consumption in a Chinese ethanol manufacturer with cassava as the feedstock, has been reduced to a zero-closed level. If the R & D on technical integration of high ethanol concentration fermentation, methane fermentation technique, steam and electricity co-generation system, new distillation technology, and the wastewater reutilization, is carried out continuously, the proposed "zero energy consumption and wastewater" technique could be realized in fuel ethanol production process.

  6. Energy performance assessment with empirical methods: application of energy signature

    NASA Astrophysics Data System (ADS)

    Belussi, L.; Danza, L.; Meroni, I.; Salamone, F.

    2015-03-01

    Energy efficiency and reduction of building consumption are deeply felt issues both at Italian and international level. The recent regulatory framework sets stringent limits on energy performance of buildings. Awaiting the adoption of these principles, several methods have been developed to solve the problem of energy consumption of buildings, among which the simplified energy audit is intended to identify any anomalies in the building system, to provide helpful tips for energy refurbishments and to raise end users' awareness. The Energy Signature is an operational tool of these methodologies, an evaluation method in which energy consumption is correlated with climatic variables, representing the actual energy behaviour of the building. In addition to that purpose, the Energy Signature can be used as an empirical tool to determine the real performances of the technical elements. The latter aspect is illustrated in this article.

  7. Measuring the Efficacy of an Energy and Environmental Awareness Campaign to Effectively Reduce Water Consumption

    ERIC Educational Resources Information Center

    Miller, Laura Little

    2010-01-01

    Increased energy costs and a move toward environmental stewardship are driving many organizations, including universities, to engage in awareness efforts to reduce both energy consumption and their carbon footprint. The purpose of this paper is to determine whether organizational programs aimed at energy and environmental awareness have a…

  8. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedures for measuring the energy efficiency of distribution transformers for purposes of EPCA are... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures... 10 Energy 3 2013-01-01 2013-01-01 false Test procedures for measuring energy consumption...

  9. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures for measuring the energy efficiency of distribution transformers for purposes of EPCA are... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures... 10 Energy 3 2012-01-01 2012-01-01 false Test procedures for measuring energy consumption...

  10. 10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures for measuring the energy efficiency of distribution transformers for purposes of EPCA are... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures... 10 Energy 3 2014-01-01 2014-01-01 false Test procedures for measuring energy consumption...

  11. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    SciTech Connect

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  12. Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.

    PubMed

    Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami

    2014-03-01

    Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.

  13. Relevant shellfish consumption data for dietary exposure assessment among high shellfish consumers, Western Brittany, France.

    PubMed

    Picot, Cyndie; Nguyen, Thuan Anh; Carpentier, François-Gilles; Roudot, Alain-Claude; Parent-Massin, Dominique

    2011-04-01

    Shellfish consumption can be a major pathway of exposure to pollutants for humans. It is fundamental to know if people eat enough shellfish to cause health problems, firstly in high consumers as recreational shellfish harvesters. The objectives of this study were to investigate the types of shellfish eaten, number of meals, portion size, sources of shellfish and shellfish consumption rates among French recreational shellfish harvesters; to determine factors affecting consumption patterns and to examine the reliability of the two methods used: a Food Frequency Questionnaire and a one-month food diary. The mean consumption rates were 11.63 and 26.21 g/person/day for shellfish derived from a self-harvested source only and from all sources, respectively. Harvester consumption rates were between 6- and 15-fold higher than the general French population. The comparison between the FFQ and the food diary showed that results were reliable. Thereby, our results are relevant to assess risk due to shellfish consumption.

  14. Risk assessment of methyl-mercury intake through cephalopods consumption in Portugal.

    PubMed

    Cardoso, C; Lourenço, H; Afonso, C; Nunes, M L

    2012-01-01

    The intake of methyl-mercury (methyl-Hg) through the consumption of three common cephalopod species, cuttlefish (Sepia officinalis), squid (Loligo vulgaris) and octopus (Octopus vulgaris), in Portugal as well as the associated probability of exceeding the provisional tolerable weekly intake (PTWI) were estimated by combining methyl-Hg contamination levels in these three cephalopods with constructed consumption scenarios and with a hypothesised consumption distribution for the general Portuguese population. It was found that squid presents no serious health concern with respect to methyl-Hg, but cuttlefish and octopus consumption should not exceed two 150 g meals per week. Moreover, the methyl-Hg risk assessment for Portuguese consumers showed no risk concerning the observed cephalopods consumption levels. However, besides methyl-Hg, other toxic metals present in cephalopods, such as cadmium, may be a serious health concern and the methyl-Hg risk can be compounded by the risk of other foods containing significant methyl-Hg levels, especially long-lived sea predators. Accordingly, a cautionary note must be attached to advised maximum consumptions, which may be revised by future studies. Tail estimation (TE) estimator was more accurate for lower probabilities, rendering accurate risk estimations different from zero. However, for higher probabilities, the much simpler plug-in (PI) estimator could be applied. Additionally, limitations of a deterministic approach were identified.

  15. A Model for Education: Energy-Water Consumption Decision Making.

    ERIC Educational Resources Information Center

    Bontrager, Ralph L.; Hubbard, Charles W.

    Public schools are in a position to convince society-at-large of the national energy problem. There is a direct relationship between energy costs to the schools and the type of educational programs they can provide. While waiting for a national energy policy with a section devoted to schools, districts can calculate the amount and cost of energy…

  16. Video game console usage and US national energy consumption: Results from a field-metering study

    SciTech Connect

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; Ganeshalingam, Mohan

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates. We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.

  17. Video game console usage and US national energy consumption: Results from a field-metering study

    DOE PAGESBeta

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; et al

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less

  18. Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors.

    PubMed

    Viret, H; Pringault, O; Duran, R

    2006-08-15

    In this study, the effect of zinc and nickel on oxygen consumption in sediments was determined using oxygen microsensors. Sediments from the southwest lagoon of New Caledonia, in the vicinity of the city of Nouméa, were incubated nearby in situ conditions and exposed to Zn and Ni concentrations of 20 and 60 mg l(-1). The depth distribution of oxygen consumption was estimated from the steady-state oxygen microprofiles, and the effects of metal were compared on the distributions before and after spiking. In most cases, metal had a strong effect on oxygen consumption at the surface. After 6 h exposure, oxygen consumption was only 10-40% of the initial value. However, the strong decrease in oxygen consumption observed at the sediment surface was counterbalanced by an increase of oxygen consumption deeper in the sediment. This is probably due to (i) a downward migration of aerobic microbial microorganisms living at the surface in order to escape the toxic effect of metal or/and (ii) a switch of the facultative aerobes from the low efficiency fermentation mode to the high-energy aerobic respiration mode.

  19. Electricity Generation, Electricity Consumption, and Energy Efficiency in the United States: A Dual Climatic-Behavioral Approach

    NASA Astrophysics Data System (ADS)

    Craig, Christopher Alan

    Much of the United States (US) has seen an increase in warm days, decrease in cool days, and increase in extreme weather events. These trends are projected to continue across much of the US and in turn increase the demand for electricity and subsequent greenhouse gas emissions. Ambitious energy efficiency (EE) programs are used across the US by energy utility organizations to reduce electricity demand and emissions. This study examined the impact of climatic variability on electricity consumption, as well as how pro-conservation interventions such as EE programs and experiential learning can be utilized to mitigate residential electricity consumption and emissions. Chapter 2 of this study examined the impact of EE programs on residential electricity consumption taking into account climatic indicators across the contiguous US. A state-by-state analysis suggested that climatic indicators were more explanatory of residential consumption than energy utility organization EE efforts at the state-level. Chapter 3 examined residential electricity consumption for heating and cooling applications explained by energy utility organization EE efforts and climatic indicators in the Southeast US. Indirect spending on EE programs was significantly related to heating and cooling applications and heating degree days, a climatic indicator for number of days over a certain temperature, were significantly related to cooling equipment applications. A survey of 2,450 residential electricity consumers was analyzed. Residents who were aware of EE programs and participated in EE programs were significantly more likely than those who were not to support energy utility organization use of clean energy and government subsidies for EE programs. Chapter 4 provided case study in a Southeast US state where a pro-conservation behavioral intervention was deployed in an elementary school. This chapter utilized a longitudinal design and mixed methodology to assess the effect of curriculum

  20. Numerical prediction of energy consumption in buildings with controlled interior temperature

    SciTech Connect

    Jarošová, P.; Št’astník, S.

    2015-03-10

    New European directives bring strong requirement to the energy consumption of building objects, supporting the renewable energy sources. Whereas in the case of family and similar houses this can lead up to absurd consequences, for building objects with controlled interior temperature the optimization of energy demand is really needed. The paper demonstrates the system approach to the modelling of thermal insulation and accumulation abilities of such objetcs, incorporating the significant influence of additional physical processes, as surface heat radiation and moisture-driven deterioration of insulation layers. An illustrative example shows the numerical prediction of energy consumption of a freezing plant in one Central European climatic year.

  1. Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast

    SciTech Connect

    Poyer, D.A.; Allison, T.

    1998-03-01

    This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

  2. Beverage consumption, appetite, and energy intake: what did you expect?123

    PubMed Central

    Cassady, Bridget A; Considine, Robert V

    2012-01-01

    Background: Beverage consumption is implicated in the overweight/obesity epidemic through the weaker energy compensation response it elicits compared with solid food forms. However, plausible mechanisms are not documented. Objective: This study assessed the cognitive and sensory contributions of differential postingestive responses to energy- and macronutrient-matched liquid (in beverage form) and solid food forms and identifies physiologic processes that may account for them. Design: Fifty-two healthy adults [mean ± SD age: 24.7 ± 5.5 y; BMI (in kg/m2): 26.3 ± 6.3] completed this randomized, 4-arm crossover study. Participants consumed oral liquid and solid preloads that they perceived, through cognitive manipulation, to be liquid or solid in their stomach (ie, oral liquid/perceived gastric liquid, oral liquid/perceived gastric solid, oral solid/perceived gastric liquid, or oral solid/perceived gastric solid). However, all preloads were designed to present a liquid gastric challenge. Appetite, gastric-emptying and orocecal transit times, and selected endocrine responses were monitored for the following 4 h; total energy intake was also recorded. Results: Oral-liquid and perceived gastric-liquid preloads elicited greater postprandial hunger and lower fullness sensations, more rapid gastric-emptying and orocecal transit times, attenuated insulin and glucagon-like peptide 1 release, and lower ghrelin suppression than did responses after oral-solid and perceived gastric-solid treatments (all P < 0.05). Faster gastric-emptying times were significantly associated with greater energy intake after consumption of perceived gastric-liquid preloads (P < 0.05). Energy intake was greater on days when perceived gastric-liquid preloads were consumed than when perceived gastric solids were consumed (2311 ± 95 compared with 1897 ± 72 kcal, P = 0.007). Conclusions: These data document sensory and cognitive effects of food form on ingestive behavior and identify physical and

  3. Prey consumption and energy transfer by marine birds in the Gulf of Alaska

    USGS Publications Warehouse

    Hunt, G.L.; Drew, G.S.; Jahncke, J.; Piatt, J.F.

    2005-01-01

    We investigated prey consumption by marine birds and their contribution to cross-shelf fluxes in the northern Gulf of Alaska. We utilized data from the North Pacific Pelagic Seabird Database for modeling energy demand and prey consumption. We found that prey consumption by marine birds was much greater over the continental shelf than it was over the basin. Over the shelf, subsurface-foraging marine birds dominated food consumption, whereas over the basin, surface-foraging birds took the most prey biomass. Daily consumption by marine birds during the non-breeding season ("winter") from September through April was greater than daily consumption during the breeding season, between May and August. Over the shelf, shearwaters, murres and, in winter, sea ducks, were the most important consumers. Over the basin, northern fulmars, gulls and kittiwakes predominated in winter and storm-petrels dominated in May to August. Our results suggest that marine birds contribute little to cross-shelf fluxes of energy or matter, but they do remove energy from the marine system through consumption, respiration and migration. ?? 2005 Elsevier Ltd. All rights reserved.

  4. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  5. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    SciTech Connect

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  6. A novel cost based model for energy consumption in cloud computing.

    PubMed

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  7. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    PubMed Central

    Horri, A.; Dastghaibyfard, Gh.

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  8. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  9. Alcoa Teams with DOE to Reduce Energy Consumption

    SciTech Connect

    2004-05-01

    This is the first in a series of DOE Industrial Technologies Program case studies on corporate energy management. The case study highlights Alcoa Aluminum's successful results and activities through its corporate energy management approach and collaboration with DOE. Case studies in this series will be used to encourage other energy-intensive industrial plants to adopt a corporate strategy, and to promote the concept of replicating results with a company or industry.

  10. Food Store Choice Among Urban Slum Women Is Associated With Consumption of Energy-Dense Food.

    PubMed

    Anggraini, Roselynne; Februhartanty, Judhiastuty; Bardosono, Saptawati; Khusun, Helda; Worsley, Anthony

    2016-07-01

    The aim of this study was to examine the associations of food store choice with food consumption among urban slum women. A cross-sectional survey was carried out among 188 urban slum women (19-50 years old) in Jakarta, Indonesia. A semiquantitative food frequency questionnaire was used to assess food consumption. Associations between food consumption and food store choice were tested by linear regression. This study found that frequencies of buying food from small shops (warung), street food vendors, and modern food stores were significantly associated with consumption of snacks, mixed dishes, and fruit respectively. In addition, buying food from traditional markets and small cafes (warung makan) was not significantly associated with particular types of food consumption. As modern food stores are rarely utilized by these women, small shops (warung) and street food vendors are likely to be important channels to improve slum dwellers' diet. PMID:27208014

  11. Safe Upper-Bounds Inference of Energy Consumption for Java Bytecode Applications

    NASA Technical Reports Server (NTRS)

    Navas, Jorge; Mendez-Lojo, Mario; Hermenegildo, Manuel V.

    2008-01-01

    Many space applications such as sensor networks, on-board satellite-based platforms, on-board vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often critical for the scientific mission. Transmitting such large amounts of data to the remote control station for analysis is usually too expensive for time-critical applications. Instead, modern space applications are increasingly relying on autonomous on-board data analysis. All these applications face many resource constraints. A key requirement is to minimize energy consumption. Several approaches have been developed for estimating the energy consumption of such applications (e.g. [3, 1]) based on measuring actual consumption at run-time for large sets of random inputs. However, this approach has the limitation that it is in general not possible to cover all possible inputs. Using formal techniques offers the potential for inferring safe energy consumption bounds, thus being specially interesting for space exploration and safety-critical systems. We have proposed and implemented a general frame- work for resource usage analysis of Java bytecode [2]. The user defines a set of resource(s) of interest to be tracked and some annotations that describe the cost of some elementary elements of the program for those resources. These values can be constants or, more generally, functions of the input data sizes. The analysis then statically derives an upper bound on the amount of those resources that the program as a whole will consume or provide, also as functions of the input data sizes. This article develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy consumption of Java bytecode applications. We first use a resource model that describes the cost of each bytecode instruction in terms of the joules it consumes. With this resource model, we then generate energy consumption cost relations, which are then used to infer safe upper bounds. How

  12. The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China.

    PubMed

    Wang, Shaojian; Li, Qiuying; Fang, Chuanglin; Zhou, Chunshan

    2016-01-15

    Following several decades of rapid economic growth, China has become the largest energy consumer and the greatest emitter of CO2 in the world. Given the complex development situation faced by contemporary China, Chinese policymakers now confront the dual challenge of reducing energy use while continuing to foster economic growth. This study posits that a better understanding of the relationship between economic growth, energy consumption, and CO2 emissions is necessary, in order for the Chinese government to develop the energy saving and emission reduction strategies for addressing the impacts of climate change. This paper investigates the cointegrating, temporally dynamic, and casual relationships that exist between economic growth, energy consumption, and CO2 emissions in China, using data for the period 1990-2012. The study develops a comprehensive conceptual framework in order to perform this analysis. The results of cointegration tests suggest the existence of long-run cointegrating relationship among the variables, albeit with short dynamic adjustment mechanisms, indicating that the proportion of disequilibrium errors that can be adjusted in the next period will account for only a fraction of the changes. Further, impulse response analysis (which describes the reaction of any variable as a function of time in response to external shocks) found that the impact of a shock in CO2 emissions on economic growth or energy consumption was only marginally significant. Finally, Granger casual relationships were found to exist between economic growth, energy consumption, and CO2 emissions; specifically, a bi-directional causal relationship between economic growth and energy consumption was identified, and a unidirectional causal relationship was found to exist from energy consumption to CO2 emissions. The findings have significant implications for both academics and practitioners, warning of the need to develop and implement long-term energy and economic policies in

  13. Study of the cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Hopkins, J. P.

    1976-01-01

    Practical means were assessed for achieving reduced fuel consumption in commercial air transportation. Five areas were investigated: current aircraft types, revised operational procedures, modifications to current aircraft, derivatives of current aircraft and new near-term fuel conservative aircraft. As part of a multiparticipant coordinated effort, detailed performance and operating cost data in each of these areas were supplied to the contractor responsible for the overall analysis of the cost/benefit tradeoffs for reducing the energy consumption of the domestic commercial air transportation system. A follow-on study was performed to assess the potential of an advanced turboprop transport aircraft concept. To provide a valid basis for comparison, an equivalent turbofan transport aircraft concept incorporating equal technology levels was also derived. The aircraft as compared on the basis of weight, size, fuel utilization, operational characteristics and costs.

  14. Household energy consumption in the United States, 1987 to 2009: Socioeconomic status, demographic composition, and energy services profiles

    NASA Astrophysics Data System (ADS)

    Kemp, Robert J.

    This dissertation examines household energy consumption in the United States over the period of 1987 to 2009, specifically focusing on the role of socioeconomic status, demographic composition, and energy services profiles. The dissertation makes use of four cross-sections from the Residential Energy Consumption Survey data series to examine how household characteristics influence annual energy consumption overall, and by fuel type. Chapter 4 shows that household income is positively related to energy consumption, but more so for combustible fuel consumption than for electricity consumption. Additionally, results for educational attainment suggest a less cross-sectional association and more longitudinal importance as related to income. Demographic composition matters, as predicted by the literature; household size and householder age show predicted effects, but when considered together, income explains any interaction between age and household size. Combustible fuels showed a far greater relationship to housing unit size and income, whereas electricity consumption was more strongly related to educational attainment, showing important differences in the associations by fuel type. Taken together, these results suggest a life course-based model for understanding energy consumption that may be strongly linked to lifestyles. Chapter 5 extends the findings in Chapter 4 by examining the patterning of physical characteristics and behaviors within households. The chapter uses Latent Class Analysis to examine a broad set of energy significant behaviors and characteristics to discover five unique energy services profiles. These profiles are uniquely patterned across demographic and socioeconomic compositions of households and have important effects on energy consumption. These profiles are likely byproducts of the lifestyles in which the household takes part, due to factors such as their socioeconomic status and household demographic composition. Overall, the dissertation

  15. Alcohol mixed with energy drinks: consumption patterns and motivations for use in U.S. college students.

    PubMed

    Marczinski, Cecile A

    2011-08-01

    Binge drinking in college students is widespread and known to cause significant harms and health hazards for the drinker. One factor that may be exacerbating hazardous drinking in young people is the new popular trend of consuming alcohol mixed with energy drinks (AmED). However, rates of AmED use and motivations for AmED consumption in college students have not been well established. In this study, 706 undergraduate college students from a university in the United States participated in a web-based survey that queried self-reported alcohol, energy drink, and AmED use. In addition, motivations for using AmEDs were assessed. The results indicated that for all participants, 81% reported that they have tried at least one energy drink in the past and 36% reported consumption of at least one energy drink in the past 2 weeks. Alcohol consumption patterns were similar to findings from U.S. national surveys of college drinking, as 37% of respondents were classified as binge drinkers and 23% abstained from drinking. In the whole sample (including the alcohol abstainers), 44% reported trying AmED at least once and 9% reported AmED consumption at least once in the past 2 weeks. 78% of respondents agreed with the statement that AmEDs appeal to underage drinkers. When AmED users were asked about various motivations for consuming AmEDs, users reported that they consumed these beverages to get drunk and reduce sedation compared to alcohol alone. In conclusion, the consumption of AmEDs is common in U.S. college students. Motivations for using AmEDs include the reduction of the sedative effects of alcohol, an important interoceptive cue that one should stop drinking.

  16. Using fuel cells or anode depolarization to reduce electrowinning energy consumption

    SciTech Connect

    Cook, G.M.

    1985-01-01

    Some existing and proposed metal electrowinning plant sites have hydrogen available to reduce the need for purchased energy. Hydrogen can reduce the energy consumption of electrowinning processes by depolarizing the anode; alternatively, it can be used in a fuel cell to generate dc electricity and heat at high efficiency. The use of H/sub 2/ to depolarize an anode in zinc electrowinning has been shown to reduce overall cell voltage by nearly 2 volts at 450 A/m/sup 2/. In a fuel cell, electricity can be produced with an efficiency of about 45 to 50% compared to about 30 to 32% for conventional generating equipment and the heat produced is available at temperatures which vary from about 150/sup 0/C for phosphoric acid fuel cells to 550 to 800/sup 0/C for advanced high temperature fuel cell systems. This paper examines the increased complexity that the depolarized anode and molten carbonate fuel cell technologies impose upon the electrowinning process, assesses the extent of energy savings that are available, and provides insight into the impact on capital and operating costs. 7 references.

  17. Causality between energy consumption, emissions of CO{sub 2} and surface air temperature

    SciTech Connect

    Mariam, Y.K.G.; Barre, M.

    1998-12-31

    Climate research has been one of the focal points of the scientific community for the past few decades. However, most of the studies tended to examine the scientific basis to understand the mechanisms that resulted in changes in global climate. There was less emphasis on issues of mitigating the causes of climate change. Due to the fact that climate change is primarily the result of emission of green houses gases, especially carbon dioxide, and due to the fact that most these emissions are anthropogenic, social scientists have to address strategies in which emissions are reduced. Of particular significance is that global climate is a common good. Private companies and individuals, in an effort to maximize income or welfare, dump increased emission to the atmosphere. As a typical example of the classic work of the tragedy of the commons, there is a desperate need for all disciplines of the social and natural sciences to develop ways of mitigating the dangers of changes in the global common climate. Energy consumption, particularly fossil fuels, has been attributed as the driving force for the increased emission of CO{sub 2} and rise in global surface air temperature. While many studies have been carried out regarding the relationship between global energy consumption, emissions of CO{sub 2} and indicators of climate change such as temperature, there are only a few studies that have examined linkages between these factors at the level of individual countries. Increased consumption of carbon-intensive sources of energy will continue to exacerbate existing climate change problems. On the other hand, not only will energy consumption influence climate change but also changes in climate change may influence the patterns of energy consumption. The objectives of this research are to examine trends in energy consumption and emissions of CO{sub 2}, and causal linkages between energy consumption, emission of CO{sub 2} and mean annual surface temperature for 21 OECD countries.

  18. Food Consumption and Handling Survey for Quantitative Microbiological Consumer Phase Risk Assessments.

    PubMed

    Chardon, Jurgen; Swart, Arno

    2016-07-01

    In the consumer phase of a typical quantitative microbiological risk assessment (QMRA), mathematical equations identify data gaps. To acquire useful data we designed a food consumption and food handling survey (2,226 respondents) for QMRA applications that is especially aimed at obtaining quantitative data. For a broad spectrum of food products, the survey covered the following topics: processing status at retail, consumer storage, preparation, and consumption. Questions were designed to facilitate distribution fitting. In the statistical analysis, special attention was given to the selection of the most adequate distribution to describe the data. Bootstrap procedures were used to describe uncertainty. The final result was a coherent quantitative consumer phase food survey and parameter estimates for food handling and consumption practices in The Netherlands, including variation over individuals and uncertainty estimates.

  19. Effect of irrigation scheduling on energy consumption. Final report

    SciTech Connect

    Not Available

    1981-04-01

    The objective of this study was to determine the potential for a reduction in water use and, therefore, energy use through computerized irrigation scheduling. Water and energy were used interchangeably in this study through the use of energy multipliers, 605 kWh/ac-ft for surface and 857 kWh/ac-ft for sprinkler irrigation systems. These energy figures were used as the energy in the water at the edge of the field where the use of scheduling could have an impact on the quantities used. The study was based on agricultural conditions as they exist in the San Joaquin Valley of California. Study sites were selected in this area for monitoring and analysis. These study sites were monitored for various production factors, gross applied amounts of water and crop yields. These data were collected for the 1978/79 and 1979/80 growing seasons. Scheduled and non-scheduled fields were paired based on factors other than gross applied water and yield. This permitted the identification of the effect of computerized irrigation scheduling on water and energy use. For the energy use analysis in the study an energy per unit yield (EUY) value was developed. Data collected in the course of this study showed a reduction in EUY between scheduled and non-scheduled fields on sprinkler irrigated grain, sprinkler irrigated cotton and furrow irrigated tomatoes of 32%, 7% and 25% respectively, in the study area. Results of the data analysis showed that computerized scheduling affected water and energy use most where irrigation systems with a high degree of water control are used. Percent change in EUY values were used to extrapolate these data to the seventeen (17) major agricultural energy using states. This analysis showed the potential to save, through irrigation scheduling, 0.031 QUAD Btu on systems as they currently exist and are currently managed. 15 figures, 21 tables.

  20. Analysis and clustering of natural gas consumption data for thermal energy use forecasting

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro; Fantozzi, Fabio

    2015-11-01

    In this paper, after a brief analysis of the connections between the uses of natural gas and thermal energy use, the natural gas consumption data related to Italian market are analyzed and opportunely clustered in order to compute the typical consumption profile in different days of the week in different seasons and for the different class of users: residential, tertiary and industrial. The analysis of the data shows that natural gas consumption profile is mainly related to seasonality pattern and to the weather conditions (outside temperature, humidity and wind chiller). There is also an important daily pattern related to industrial and civil sector that, at a lower degree than the previous one, does affect the consumption profile and have to be taken into account for defining an effective short and mid term thermal energy forecasting method. A possible mathematical structure of the natural gas consumption profile is provided. Due to the strong link between thermal energy use and natural gas consumption, this analysis could be considered the first step for the development of a model for thermal energy forecasting.

  1. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  2. Balancing Energy Consumption with Hybrid Clustering and Routing Strategy in Wireless Sensor Networks †

    PubMed Central

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-01-01

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k=1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in gradient k=1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime. PMID:26492248

  3. Balancing energy consumption with hybrid clustering and routing strategy in wireless sensor networks.

    PubMed

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-01-01

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.

  4. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  5. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction

    PubMed Central

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  6. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    SciTech Connect

    Metzger, I.; Van Geet, O.

    2014-06-01

    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  7. Preliminary Analysis of Energy Consumption for Cool Roofing Measures

    SciTech Connect

    Mellot, Joe; Sanyal, Jibonananda; New, Joshua Ryan

    2013-01-01

    The spread of cool roofing has been more than prolific over the last decade. Driven by public demand and by government initiatives cool roofing has been a recognized low cost method to reduce energy demand by reflecting sunlight away from structures and back in to the atmosphere. While much of the country can benefit from the use of cool coatings it remains to be seen whether the energy savings described are appropriate in cooler climates. By use of commonly available calculators one can analyze the potential energy savings based on environmental conditions and construction practices.

  8. Characteristics of US Health Care Providers Who Counsel Adolescents on Sports and Energy Drink Consumption

    PubMed Central

    Xiang, Nan; Wethington, Holly; Onufrak, Stephen; Belay, Brook

    2014-01-01

    Objective. To examine the proportion of health care providers who counsel adolescent patients on sports and energy drink (SED) consumption and the association with provider characteristics. Methods. This is a cross-sectional analysis of a survey of providers who see patients ≤17 years old. The proportion providing regular counseling on sports drinks (SDs), energy drinks (EDs), or both was assessed. Chi-square analyses examined differences in counseling based on provider characteristics. Multivariate logistic regression calculated adjusted odds ratios (aOR) for characteristics independently associated with SED counseling. Results. Overall, 34% of health care providers regularly counseled on both SEDs, with 41% regularly counseling on SDs and 55% regularly counseling on EDs. On adjusted modeling regular SED counseling was associated with the female sex (aOR: 1.44 [95% CI: 1.07–1.93]), high fruit/vegetable intake (aOR: 2.05 [95% CI: 1.54–2.73]), family/general practitioners (aOR: 0.58 [95% CI: 0.41–0.82]) and internists (aOR: 0.37 [95% CI: 0.20–0.70]) versus pediatricians, and group versus individual practices (aOR: 0.59 [95% CI: 0.42–0.84]). Modeling for SD- and ED-specific counseling found similar associations with provider characteristics. Conclusion. The prevalence of regular SED counseling is low overall and varies. Provider education on the significance of SED counseling and consumption is important. PMID:24790611

  9. Energy drinks consumption practices among medical students of a Private sector University of Karachi, Pakistan.

    PubMed

    Usman, Asma; Bhombal, Swaleha Tariq; Jawaid, Ambreen; Zaki, Samar

    2015-09-01

    Consumption of energy drinks has become popular among students and athletes over the past few years. To explore the phenomenon, a cross-sectional survey was conducted through a self-administered pilot-tested questionnaire. Frequency of energy drinks consumption was found to be 121(52%) in a sample of 233 medical students. Red bull was the most common brand consumed 101(43%). The major reasons reported for its usage were to gain/replenish energy by 36(15.4%), and studying for examination by 34(14.6%). Television was reported as the major source of information 153(66%) followed by friends 113(48%). There was a high frequency of energy drinks' consumption among medical students of a private university. There is a strong need to create awareness regarding these drinks, especially among adolescents and teenagers. PMID:26338750

  10. Energy drinks consumption practices among medical students of a Private sector University of Karachi, Pakistan.

    PubMed

    Usman, Asma; Bhombal, Swaleha Tariq; Jawaid, Ambreen; Zaki, Samar

    2015-09-01

    Consumption of energy drinks has become popular among students and athletes over the past few years. To explore the phenomenon, a cross-sectional survey was conducted through a self-administered pilot-tested questionnaire. Frequency of energy drinks consumption was found to be 121(52%) in a sample of 233 medical students. Red bull was the most common brand consumed 101(43%). The major reasons reported for its usage were to gain/replenish energy by 36(15.4%), and studying for examination by 34(14.6%). Television was reported as the major source of information 153(66%) followed by friends 113(48%). There was a high frequency of energy drinks' consumption among medical students of a private university. There is a strong need to create awareness regarding these drinks, especially among adolescents and teenagers.

  11. Energy consumption and economic development in West Africa

    SciTech Connect

    Chima, C.M.

    1987-01-01

    This study evaluates the commercial energy sector of the Economic Community of West African States (ECOWAS). Presently, an economic union exists between the 16 countries of West Africa that are members of ECOWAS. Although the ECOWAS region has plentiful resources of commercial energy, it faces problems in this sector for two reasons. First is the problem resulting from the diminishing traditional energy resources such as wood fuel and charcoal. Second, most ECOWAS members, except Nigeria, are net importers of commercial energy, and hence face a high import burden for oil. Liquid petroleum is the dominant form of commercial energy used in the ECOWAS despite the availability of other resources. This author basically argues that the best policy and strategy solution for dealing with energy problems is through a combination of regional cooperative effort, and a more-intensive country level. The intensity-of-use hypothesis is tested with case studies of Ghana, the Ivory Coast, and Nigeria. The results indicate that newly developing countries can deviate from the expectations of the hypothesis.

  12. Caffeine consumption around an exercise bout: effects on energy expenditure, energy intake, and exercise enjoyment.

    PubMed

    Schubert, Matthew M; Hall, Susan; Leveritt, Michael; Grant, Gary; Sabapathy, Surendran; Desbrow, Ben

    2014-10-01

    Combining an exercise and nutritional intervention is arguably the optimal method of creating energy imbalance for weight loss. This study sought to determine whether combining exercise and caffeine supplementation was more effective for promoting acute energy deficits and manipulations to substrate metabolism than exercise alone. Fourteen recreationally active participants (mean ± SD body mass index: 22.7 ± 2.6 kg/m2) completed a resting control trial (CON), a placebo exercise trial (EX), and a caffeine exercise trial (EX+CAF, 2 × 3 mg/kg of caffeine 90 min before and 30 min after exercise) in a randomized, double-blinded design. Trials were 4 h in duration with 1 h of rest, 1 h of cycling at ∼65% power at maximum O2 consumption or rest, and a 2-h recovery. Gas exchange, appetite perceptions, and blood samples were obtained periodically. Two hours after exercise, participants were offered an ad libitum test meal where energy and macronutrient intake were recorded. EX+CAF resulted in significantly greater energy expenditure and fat oxidation compared with EX (+250 kJ; +10.4 g) and CON (+3,126 kJ; +29.7 g) (P < 0.05). A trend for reduced energy and fat intake compared with CON (-718 kJ; -8 g) (P = 0.055) was observed. Consequently, EX+CAF created a greater energy deficit (P < 0.05). Caffeine also led to exercise being perceived as less difficult and more enjoyable (P < 0.05). Combining caffeine with exercise creates a greater acute energy deficit, and the implications of this protocol for weight loss or maintenance over longer periods of time in overweight/obese populations should be further investigated. PMID:25123196

  13. Using acceleration characteristics in air quality and energy consumption analyses. Technical report

    SciTech Connect

    Eisele, W.L.; Turner, S.M.; Benz, R.J.

    1996-08-01

    This research investigated the effects of detailed speed and acceleration characteristics on energy consumption utilizing several fuel consumption models. The relationships between speed and acceleration characteristics, geometric characteristics (e.g., number of lanes, signal density, driveway density), and traffic flow variability for various roadways were also investigated. Finally, distributions were produced that summarize the operating characteristics of freeway and arterial streets in Houston, Texas using an electronic distance-measuring instrument (DMI) and the floating car technique.

  14. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A

    2015-08-18

    Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models. PMID:26168234

  15. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A

    2015-08-18

    Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.

  16. Risk assessment of excessive CO2 emission on diatom heavy metal consumption.

    PubMed

    Liu, Fengjiao; Li, Shunxing; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO2 in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r=0.989, total intracellular concentration) and between Zn and Cd (r=0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidificationassessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. PMID:27265731

  17. Risk assessment of excessive CO2 emission on diatom heavy metal consumption.

    PubMed

    Liu, Fengjiao; Li, Shunxing; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO2 in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r=0.989, total intracellular concentration) and between Zn and Cd (r=0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidificationassessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans.

  18. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  19. Changes in Natural Gas Monthly Consumption Data Collection and the Short-Term Energy Outlook

    EIA Publications

    2010-01-01

    Beginning with the December 2010 issue of the Short-Term Energy Outlook (STEO), the Energy Information Administration (EIA) will present natural gas consumption forecasts for the residential and commercial sectors that are consistent with recent changes to the Form EIA-857 monthly natural gas survey.

  20. Application of advanced methods for the prognosis of production energy consumption

    NASA Astrophysics Data System (ADS)

    Stetter, R.; Witczak, P.; Staiger, B.; Spindler, C.; Hertel, J.

    2014-12-01

    This paper, based on a current research project, describes the application of advanced methods that are frequently used in fault-tolerance control and addresses the issue of the prognosis of energy efficiency. Today, the energy a product requires during its operation is the subject of many activities in research and development. However, the energy necessary for the production of goods is very often not analysed in comparable depth. In the field of electronics, studies come to the conclusion that about 80% of the total energy used by a product is from its production [1]. The energy consumption in production is determined very early in the product development process by designers and engineers, for example through selection of raw materials, explicit and implicit requirements concerning the manufacturing and assembly processes, or through decisions concerning the product architecture. Today, developers and engineers have at their disposal manifold design and simulation tools which can help to predict the energy consumption during operation relatively accurately. In contrast, tools with the objective to predict the energy consumption in production and disposal are not available. This paper aims to present an explorative study of the use of methods such as Fuzzy Logic to predict the production energy consumption early in the product development process.

  1. Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II

    EPA Science Inventory

    The long-term dynamic changes in the triad, energy consumption, economic development, and Greenhouse gas (GHG) emissions, in Japan after World War II were quantified, and the interactions among them were analyzed based on an integrated suite of energy, emergy and economic indices...

  2. 78 FR 1779 - Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... proposes to include a new range for instantaneous electric water heaters (Appendix D6). \\7\\ 77 FR 29940... CFR Part 305 Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances and Other Products Required Under the Energy Policy and Conservation Act (``Appliance Labeling...

  3. Energy consumption and the unexplained winter warming over northern Asia and North America

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Cai, Ming; Hu, Aixue

    2013-05-01

    The worldwide energy consumption in 2006 was close to 498 exajoules. This is equivalent to an energy convergence of 15.8TW into the populated regions, where energy is consumed and dissipated into the atmosphere as heat. Although energy consumption is sparsely distributed over the vast Earth surface and is only about 0.3% of the total energy transport to the extratropics by atmospheric and oceanic circulations, this anthropogenic heating could disrupt the normal atmospheric circulation pattern and produce a far-reaching effect on surface air temperature. We identify the plausible climate impacts of energy consumption using a global climate model. The results show that the inclusion of energy use at 86 model grid points where it exceeds 0.4Wm-2 can lead to remote surface temperature changes by as much as 1K in mid- and high latitudes in winter and autumn over North America and Eurasia. These regions correspond well to areas with large differences in surface temperature trends between observations and global warming simulations forced by all natural and anthropogenic forcings. We conclude that energy consumption is probably a missing forcing for the additional winter warming trends in observations.

  4. Impact of climatic factors on energy consumption during the heating season

    NASA Astrophysics Data System (ADS)

    Ginzburg, A. S.; Reshetar, O. A.; Belova, I. N.

    2016-09-01

    Global and regional climate changes produce a significant effect on energy production and consumption, especially on heating and air conditioning in residential, industrial, commercial, and office rooms. In Russia, with its contracting climate conditions, energy consumption varies a lot in different regions. Thus, we have to review the dynamics of energy consumption during the cold season individually for each region of the country. We analyzed the dynamics of duration and temperature of the heating season in Moscow region and completed a comparative study of heat energy consumption, actual and calculated based on the 'degreedays' concept, in the municipal economy of Moscow during the last decade. Based on the actual data analysis, we proved that conservation of energy resources in a large city relies not so much on a shortening of the heating period as on the growth of atmospheric air temperature in winter. The projected climate warming in the Moscow region in the nearest decades, along with measures of energy conservation, will promote a significant reduction in energy consumption of the municipal economy in winter. The results shown in this article were obtained in the process of preparing and implementing project no. 16-17-00114 by the Russian Science Foundation "Analysis of an impact of the regional climate change on the residential and commercial energy consumption of Russian megacities," within the main area of focus of the Russian Science Foundation, which is "Fundamental Research and Exploration in Main Topical Areas of Focus." The project was implemented within the framework of the scientific area of focus, which is "Reduction of the Risk and Mitigation of Consequences of Natural and Man-made Disasters" ("Studying Economical, Political, and Social Consequences of Global Climate Changes" problem).

  5. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    PubMed

    Williams, Daniel R; Tang, Yinshan

    2013-05-01

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  6. Energy consumption and conservation psychology: A review and conceptual analysis

    NASA Astrophysics Data System (ADS)

    Shippee, Glenn

    1980-07-01

    The burgeoning literature devoted to “the psychology of energy consumption” is categorized by specific methodological approach, is critically reviewed, and is conceptually analyzed. Three main categories of energy research are discerned, these categories corresponding to the traditional methodological typology of the survey study, the field experiment, and the laboratory investigation. For each of these major approaches, several subcategories and special topic areas are noted and discussed. The intention of these conceptual analyses is to stimulate research interest and to provide directions for future research activities. The review concludes with the encouraging observation that several directions can be generalized from the literature. More importantly, these generalizations are corroborated across experiments conducted within each major methodological approach. The importance of behavioral approaches to energy issues and the necessity for additional governmental support for these activities is also emphasized.

  7. Sleep Quality, Sleep Patterns and Consumption of Energy Drinks and Other Caffeinated Beverages among Peruvian College Students

    PubMed Central

    Sanchez, Sixto E.; Martinez, Claudia; Oriol, Raphaelle A.; Yanez, David; Castañeda, Benjamín; Sanchez, Elena; Gelaye, Bizu; Williams, Michelle A.

    2014-01-01

    Objectives To evaluate sleep quality in relation to lifestyle characteristics including consumption of energy drinks and other caffeinated beverages among Peruvian college students. Methods A total of 2,458 college students were invited to complete a self-administered questionnaire that collected information about a variety of behaviors including consumption of energy drinks, caffeinated and alcoholic beverages. The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality. Logistic regression procedures were used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for poor sleep quality in relation to lifestyle characteristics. Results A total of 965 males and 1,493 female students were enrolled in the study. 52.0% of males and 58.4% of females experienced poor sleep quality (p=0.002). Females (OR=1.28; 95% CI 1.08–1.51) and those who reported consuming ≥ 3 stimulant beverages per week (OR=1.88; 95% CI 1.42–2.50) had higher odds of poor sleep quality. Students who consumed 1–19 alcoholic beverages monthly (OR=1.90; 95% CI 1.46–2.49) had a higher odds of long sleep latency. Consumption of ≥ 3 stimulant beverages per week was associated with daytime dysfunction due to sleep loss (OR=1.45; 95% CI 1.10–1.90), short sleep duration (OR= 1.49; 95% CI 1.14–1.94), and use of sleep medication (OR= 2.10; 95% CI 1.35–3.28). Conclusions Consumption of energy drinks, other caffeinated beverages and alcoholic beverages are risk factors of poor sleep quality. Increased awareness of these associations should promote interventions to improve students’ lifestyle habits, including consumption of alcoholic and caffeinated beverages, and overall health. PMID:25243056

  8. Effectiveness of In-Home Feedback Devices in Conjunction with Energy Use Information on Residential Energy Consumption

    NASA Astrophysics Data System (ADS)

    Rungta, Shaily

    Residential energy consumption accounts for 22% of the total energy use in the United States. The consumer's perception of energy usage and conservation are very inaccurate which is leading to growing number of individuals who try to seek out ways to use energy more wisely. Hence behavioral change in consumers with respect to energy use, by providing energy use feedback may be important in reducing home energy consumption. Real-time energy information feedback delivered via technology along with feedback interventions has been reported to produce up to 20 percent declines in residential energy consumption through past research and pilot studies. There are, however, large differences in the estimates of the effect of these different types of feedback on energy use. As part of the Energize Phoenix Program, (a U.S. Department of Energy funded program), a Dashboard Study was conducted by the Arizona State University to estimate the impact of real-time, home-energy displays in conjunction with other feedback interventions on the residential rate of energy consumption in Phoenix, while also creating awareness and encouragement to households to reduce energy consumption. The research evaluates the effectiveness of these feedback initiatives. In the following six months of field experiment, a selected number of low-income multi-family apartments in Phoenix, were divided in three groups of feedback interventions, where one group received residential energy use related education and information, the second group received the same education as well as was equipped with the in-home feedback device and the third was given the same education, the feedback device and added budgeting information. Results of the experiment at the end of the six months did not lend a consistent support to the results from literature and past pilot studies. The data revealed a statistically insignificant reduction in energy consumption for the experiment group overall and inconsistent results for

  9. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.

    PubMed

    Inouye, Joshua M; Valero-Cuevas, Francisco J

    2016-02-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms

  10. [Alcohol and energy drink--can combined consumption of both beverages modify automobile driving fitness?].

    PubMed

    Riesselmann, B; Rosenbaum, F; Schneider, V

    1996-07-01

    Various fitness drinks under the designation of "energy or power drinks" or "brain or athletic food" are very popular among young people. For those entrusted with rendering expert opinions that poses the question of whether consumption of these beverages is of any importance when a person's ability to drive or mental capacity has to be assessed, especially in combination with alcoholic beverages imbibed at the same time. In the case discussed here-both the 20-year-old car driver and his passenger suffered not inconsiderable injuries-an alcohol concentration of 1.2 per mille was found at the time a blood sample was taken. Furthermore, a caffeine content of 1.5 micrograms/ml was noted. A value also reached after drinking a cup of filter coffee. In contrast, values of 2 to 10 micrograms/ml are reached when caffeine is used for therapeutic purposes. Values of more than 15 micrograms/ml are considered toxic. The measured caffeine content was thus fully insignificant. The same also applies to the "active ingredients" (taurine, glucuronolactone) contained in the beverage "Red Bull". Another assumption that, namely, the effect of alcohol can be offset by such beverages could lead to a situation in which young people incorrectly assess their ability to drive after imbibing alcohol and fitness drinks. That is naturally given support by corresponding tributes by the manufacturers ("improves performance", "invigorates the mind and body"). PMID:8924273

  11. Environment degradation, economic growth and energy consumption nexus: A wavelet-windowed cross correlation approach

    NASA Astrophysics Data System (ADS)

    Jammazi, Rania; Aloui, Chaker

    2015-10-01

    This paper analyzes the interactive linkages between carbon dioxide (CO2) emissions, energy consumption (EC) and economic growth (EG) using a novel approach namely wavelet windowed cross correlation (WWCC) for six oil-exporting countries from the GCC (Gulf Cooperation Council) region over the period 1980-2012. Our empirical results show that there exists a bidirectional causal relationship between EC and EG. However, the results support the occurrence of unidirectional causality from EC to CO2 emissions without any feedback effects, and there exists a bidirectional causal relationship between EG and CO2 emissions for the region as a whole. The study suggests that environmental and energy policies should recognize the differences in the nexus between EC and EG in order to maintain sustainable EG in the GCC region. Our findings will be useful for GCC countries to better evaluate its situation in the future climate negotiations. The overall findings will help GCC countries assess its position better in future climate change negotiations.

  12. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.

    PubMed

    Alanya, Sevda; Dewulf, Jo; Duran, Metin

    2015-08-18

    This study focused on the evaluation of biosolids management systems (BMS) from a natural resource consumption point of view. Additionally, the environmental impact of the facilities was benchmarked using Life Cycle Assessment (LCA) to provide a comprehensive assessment. This is the first study to apply a Cumulative Exergy Extraction from the Natural Environment (CEENE) method for an in-depth resource use assessment of BMS where two full-scale BMS and seven system variations were analyzed. CEENE allows better system evaluation and understanding of how much benefit is achievable from the products generated by BMS, which have valorization potential. LCA results showed that environmental burden is mostly from the intense electricity consumption. The CEENE analysis further revealed that the environmental burden is due to the high consumption of fossil and nuclear-based natural resources. Using Cumulative Degree of Perfection, higher resource-use efficiency, 53%, was observed in the PTA-2 where alkaline stabilization rather than anaerobic digestion is employed. However, an anaerobic digestion process is favorable over alkaline stabilization, with 35% lower overall natural resource use. The most significant reduction of the resource footprint occurred when the output biogas was valorized in a combined heat and power system. PMID:26218291

  13. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.

    PubMed

    Alanya, Sevda; Dewulf, Jo; Duran, Metin

    2015-08-18

    This study focused on the evaluation of biosolids management systems (BMS) from a natural resource consumption point of view. Additionally, the environmental impact of the facilities was benchmarked using Life Cycle Assessment (LCA) to provide a comprehensive assessment. This is the first study to apply a Cumulative Exergy Extraction from the Natural Environment (CEENE) method for an in-depth resource use assessment of BMS where two full-scale BMS and seven system variations were analyzed. CEENE allows better system evaluation and understanding of how much benefit is achievable from the products generated by BMS, which have valorization potential. LCA results showed that environmental burden is mostly from the intense electricity consumption. The CEENE analysis further revealed that the environmental burden is due to the high consumption of fossil and nuclear-based natural resources. Using Cumulative Degree of Perfection, higher resource-use efficiency, 53%, was observed in the PTA-2 where alkaline stabilization rather than anaerobic digestion is employed. However, an anaerobic digestion process is favorable over alkaline stabilization, with 35% lower overall natural resource use. The most significant reduction of the resource footprint occurred when the output biogas was valorized in a combined heat and power system.

  14. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  15. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.

    PubMed

    Cao, Liang; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihua; Jiang, Longbo; Huang, Binbin; Xiao, Zhihong; Chen, Xiaohong; Wang, Hou; Zeng, Guangming

    2015-06-01

    In this study, complementary of torrefaction and co-pelletization for biomass pellets production was investigated. Two kinds of biomass materials were torrefied and mixed with oil cake for co-pelletization. The energy consumption during pelletization and pellet characteristics including moisture absorption, pellet density, pellet strength and combustion characteristic, were evaluated. It was shown that torrefaction improved the characteristics of pellets with high heating values, low moisture absorption and well combustion characteristic. Furthermore, co-pelletization between torrefied biomass and cater bean cake can reduce several negative effects of torrefaction such as high energy consumption, low pellet density and strength. The optimal conditions for energy consumption and pellet strength were torrefied at 270°C and a blending with 15% castor bean cake for both biomass materials. The present study indicated that compelmentary performances of the torrefaction and co-pelletization with castor bean cake provide a promising alternative for fuel production from biomass and oil cake.

  16. User-needs study for the 1993 residential energy consumption survey

    SciTech Connect

    Not Available

    1993-09-24

    During 1992, the Energy Information Administration (EIA) conducted a user-needs study for the 1993 Residential Energy Consumption Survey (RECS). Every 3 years, the RECS collects information on energy consumption and expenditures for various classes of households and residential buildings. The RECS is the only source of such information within EIA, and one of only a few sources of such information anywhere. EIA sent letters to more than 750 persons, received responses from 56, and held 15 meetings with users. Written responses were also solicited by notices published in the April 14, 1992 Federal Register and in several energy-related publications. To ensure that the 1993 RECS meets current information needs, EIA made a specific effort to get input from policy makers and persons needing data for forecasting efforts. These particular needs relate mainly to development of the National Energy Modeling System and new energy legislation being considered at the time of the user needs survey.

  17. Energy consumption in the manufacture of reformulated fuels

    SciTech Connect

    Brown, R.

    1996-03-01

    California`s RFG program, now underway, places new processing demands on the state`s refiners,particularly in sulfur and aromatics reduction in gasoline, diesel and benzene; olefins; vapor pressure and distillation T{sub 50}/T{sub 90} control in gasoline. The study provides a unique look at the energy-use impact of the new rules and gives detailed insight into the process decisions refiners must make.

  18. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    PubMed

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA.

  19. The influence of biomass energy consumption on CO2 emissions: a wavelet coherence approach.

    PubMed

    Bilgili, Faik; Öztürk, İlhan; Koçak, Emrah; Bulut, Ümit; Pamuk, Yalçın; Muğaloğlu, Erhan; Bağlıtaş, Hayriye H

    2016-10-01

    In terms of today, one may argue, throughout observations from energy literature papers, that (i) one of the main contributors of the global warming is carbon dioxide emissions, (ii) the fossil fuel energy usage greatly contributes to the carbon dioxide emissions, and (iii) the simulations from energy models attract the attention of policy makers to renewable energy as alternative energy source to mitigate the carbon dioxide emissions. Although there appears to be intensive renewable energy works in the related literature regarding renewables' efficiency/impact on environmental quality, a researcher might still need to follow further studies to review the significance of renewables in the environment since (i) the existing seminal papers employ time series models and/or panel data models or some other statistical observation to detect the role of renewables in the environment and (ii) existing papers consider mostly aggregated renewable energy source rather than examining the major component(s) of aggregated renewables. This paper attempted to examine clearly the impact of biomass on carbon dioxide emissions in detail through time series and frequency analyses. Hence, the paper follows wavelet coherence analyses. The data covers the US monthly observations ranging from 1984:1 to 2015 for the variables of total energy carbon dioxide emissions, biomass energy consumption, coal consumption, petroleum consumption, and natural gas consumption. The paper thus, throughout wavelet coherence and wavelet partial coherence analyses, observes frequency properties as well as time series properties of relevant variables to reveal the possible significant influence of biomass usage on the emissions in the USA in both the short-term and the long-term cycles. The paper also reveals, finally, that the biomass consumption mitigates CO2 emissions in the long run cycles after the year 2005 in the USA. PMID:27335019

  20. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    NASA Astrophysics Data System (ADS)

    Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.

    1980-07-01

    The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.

  1. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    NASA Astrophysics Data System (ADS)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  2. Constraining Energy Consumption of China's Largest IndustrialEnterprises Through the Top-1000 Energy-Consuming EnterpriseProgram

    SciTech Connect

    Price, Lynn; Wang, Xuejun

    2007-06-01

    Between 1980 and 2000, China's energy efficiency policiesresulted in a decoupling of the traditionally linked relationship betweenenergy use and gross domestic product (GDP) growth, realizing a four-foldincrease in GDP with only a doubling of energy use. However, during Chinas transition to a market-based economy in the 1990s, many of thecountry's energy efficiency programs were dismantled and between 2001 and2005 China's energy use increased significantly, growing at about thesame rate as GDP. Continuation of this one-to-one ratio of energyconsumption to GDP given China's stated goal of again quadrupling GDPbetween 2000 and 2020 will lead to significant demand for energy, most ofwhich is coal-based. The resulting local, national, and globalenvironmental impacts could be substantial.In 2005, realizing thesignificance of this situation, the Chinese government announced anambitious goal of reducing energy consumption per unit of GDP by 20percent between 2005 and 2010. One of the key initiatives for realizingthis goal is the Top-1000 Energy-Consuming Enterprises program. Thecomprehensive energy consumption of these 1000 enterprises accounted for33 percent of national and 47 percent of industrial energy usage in 2004.Under the Top-1000 program, 2010 energy consumption targets wereannounced for each enterprise. Activities to be undertaken includebenchmarking, energy audits, development of energy saving action plans,information and training workshops, and annual reporting of energyconsumption. This paper will describe the program in detail, includingthe types of enterprises included and the program activities, and willprovide an analysis of the progress and lessons learned todate.

  3. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Test Procedures § 431.324 Uniform test method for the... fixtures at this time. The above statement will be removed as part of the rulemaking to amend the energy conservation standards for metal halide lamp fixtures to account for standby mode energy consumption, and...

  4. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency and standby mode energy consumption...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Test Procedures § 431.324 Uniform test method for the... fixtures at this time. The above statement will be removed as part of the rulemaking to amend the energy conservation standards for metal halide lamp fixtures to account for standby mode energy consumption, and...

  5. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  6. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    PubMed Central

    Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163

  7. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    PubMed

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost. PMID:25054163

  8. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    PubMed

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  9. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  10. Association of fast food consumption with energy intake, diet quality, body mass index and the risk of obesity in a representative Mediterranean population.

    PubMed

    Schröder, Helmut; Fïto, Montserrat; Covas, Maria Isabel

    2007-12-01

    The aim of the present study was to describe the association of fast food consumption with BMI, energy intake and diet quality in a Mediterranean population. The subjects were Spanish men (n 1491) and women (n 1563) aged 25-74 years who were examined in 1999-2000, in a population-based cross-sectional survey in northeast Spain (Girona). Dietary intake was assessed using a FFQ that included four typical fast food items. Two dietary-quality indices, the Mediterranean diet score and the healthy eating index, were created. Height and weight were measured. Within the population studied, 10.1 % reported eating fast food at least once per month. Dietary energy intake and energy density were directly associated with frequency of fast food consumption. Multivariate logistic regression analysis adjusted for lifestyle and educational level showed an inverse association of frequency of fast food consumption with meeting the dietary reference intake (DRI) for energy (P = 0.001). The consumption of fast food more than once per week increased the risk of overall low diet quality (P < 0.001). BMI was directly associated with fast food consumption expressed in g/d (P = 0.025) and in kJ/d (P = 0.017). The risk of being obese increased with the frequency of fast food consumption (P = 0.046). Fast food consumption was associated with higher energy intakes, poor diet quality and higher BMI. The likelihood of not meeting the DRI for energy, and of being obese, increased with the frequency of fast food consumption.

  11. Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1

    SciTech Connect

    Wu, K.

    1994-07-01

    The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8 million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.

  12. Formal Model for the Reduction of the Dynamic Energy Consumption in Multi-Layer Memory Subsystems

    NASA Astrophysics Data System (ADS)

    Zhu, Hongwei; Luican, Ilie I.; Balasa, Florin; Pradhan, Dhiraj K.

    In real-time data-dominated communication and multimedia processing applications, a multi-layer memory hierarchy is typically used to enhance the system performance and also to reduce the energy consumption. Savings of dynamic energy can be obtained by accessing frequently used data from smaller on-chip memories rather than from large background memories. This paper focuses on the reduction of the dynamic energy consumption in the memory subsystem of multidimensional signal processing systems, starting from the high-level algorithmic specification of the application. The paper presents a formal model which identifies those parts of arrays more intensely accessed, taking also into account the relative lifetimes of the signals. Tested on a two-layer memory hierarchy, this model led to savings of dynamic energy from 40% to over 70% relative to the energy used in the case of flat memory designs.

  13. Sociodemographic Correlates of Energy Drink Consumption With and Without Alcohol: Results of a Community Survey

    PubMed Central

    Berger, Lisa K.; Fendrich, Michael; Chen, Han-Yang; Arria, Amelia M.; Cisler, Ron A.

    2010-01-01

    Objective We examined the sociodemographic correlates of energy drink use and the differences between those who use them with and without alcohol in a representative community sample. Methods A random-digit-dial landline telephone survey of adults in the Milwaukee, Wisconsin area responded to questions about energy drink and alcohol plus energy drink use. Results Almost one-third of respondents consumed at least one energy drink in their lifetime, while slightly over 25% used energy drinks in the past year and 6% were past-year alcohol plus energy drink users. There were important racial/ethnic differences in consumption patterns. Compared to non-users, past-year energy drink users were more likely to be non-Black minorities; and past-year alcohol plus energy drink users when compared to energy drink users only were more likely to be White and younger. Alcohol plus energy drink users also were more likely to be hazardous drinkers. Conclusions Our results which are among the first from a community sample suggest a bifurcated pattern of energy drink use highlighting important population consumption differences between users of energy drinks only and those who use alcohol and energy drinks together. PMID:21276661

  14. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... employed, in Btu/h. 4.3Average annual auxiliary electrical energy consumption for pool heaters. The average annual auxiliary electrical energy consumption for pool heaters, EAE, is expressed in Btu and defined as... (converted to equivalent unit of Btu), including the electrical energy to the recirculating pump if...

  15. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... employed, in Btu/h. 4.3Average annual auxiliary electrical energy consumption for pool heaters. The average annual auxiliary electrical energy consumption for pool heaters, EAE, is expressed in Btu and defined as... (converted to equivalent unit of Btu), including the electrical energy to the recirculating pump if...

  16. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall be in Btu. 4.2Average annual fossil fuel energy for pool heaters. The average annual fuel energy... reference; see § 430.3) and the fossil fuel energy consumption during the standby test, Qp, in Btu. Ambient... switch, the average electric power consumption during the off mode, PW,OFF = 0, and the fossil...

  17. An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage

    SciTech Connect

    Poyer, D.A.

    1992-01-01

    In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

  18. An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage

    SciTech Connect

    Poyer, D.A.

    1992-06-01

    In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

  19. Potential impact of doubling atmospheric carbon dioxide on energy consumption in the US

    SciTech Connect

    Munoz, J.R.; Sailor, D.J.

    1997-11-01

    This paper uses models of monthly electricity and natural gas per capita demand to forecast the effects of a global warming scenario. An extensive study of energy consumption sensitivity to climate in eight of the most energy intensive states of the US is briefly summarized. Models of statewide monthly per capita electricity consumption as a function of cooling degree days, heating degree days, enthalpy latent days and wind speed were developed. Similar models were developed for natural gas using temperature as the only independent variable. Population weighted statewide monthly cooling and heating degree days were calculated using the base climatic year and the general circulation model (GCM) predictions for California, Texas, New York, and Illinois. The expected changes were clearly dependent on the model chosen for the global warming forecast. The effects of the predicted changes in cooling degree days and heating degree days generated the typical saddle shape of the estimated changes in per capita electricity use. This is attributed to shifts from predominant heating requirements to predominant cooling requirements in certain months. The shape of the climatically induced decrease in natural gas consumption was expected and also highly dependent on the GCM chosen. It appears that per capita energy consumption could be affected significantly under global warming. Since heating and cooling are provided by different energy sources, there could be significant consequences for energy delivery systems. 8 refs., 2 figs.

  20. Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption

    PubMed Central

    Inouye, Joshua M.; Valero-Cuevas, Francisco J.

    2016-01-01

    Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies—correlated muscle activations—to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption—when available—can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the

  1. Transportation vehicle energy intensities. A joint DOT/NASA reference paper. [energy consumption of air and ground vehicles

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Paullin, R. L.

    1974-01-01

    A compilation of data on the energy consumption of air and ground vehicles is presented. The ratio BTU/ASM, British Thermal Units/Available Seat Mile, is used to express vehicle energy intensiveness, and related to the energy consumed directly in producing seat-mile or ton-mile productivity. Data is presented on passenger and freight vehicles which are in current use or which are about to enter service, and advanced vehicles which may be operational in the 1980's and beyond. For the advanced vehicles, an estimate is given of the date of initial operational service, and the performance characteristics. Other key considerations in interpreting energy intensiveness for a given mode are discussed, such as: load factors, operations, overhead energy consumption, and energy investments in new structure and equipment.

  2. The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns

    SciTech Connect

    Henderson, L.; Poyer, D.; Teotia, A.

    1994-09-01

    The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

  3. Methodologies for assessing the use-phase power consumption and greenhouse gas emissions of telecommunications network services.

    PubMed

    Chan, Chien A; Gygax, André F; Wong, Elaine; Leckie, Christopher A; Nirmalathas, Ampalavanapillai; Kilper, Daniel C

    2013-01-01

    Internet traffic has grown rapidly in recent years and is expected to continue to expand significantly over the next decade. Consequently, the resulting greenhouse gas (GHG) emissions of telecommunications service-supporting infrastructures have become an important issue. In this study, we develop a set of models for assessing the use-phase power consumption and carbon dioxide emissions of telecom network services to help telecom providers gain a better understanding of the GHG emissions associated with the energy required for their networks and services. Due to the fact that measuring the power consumption and traffic in a telecom network is a challenging task, these models utilize different granularities of available network information. As the granularity of the network measurement information decreases, the corresponding models have the potential to produce larger estimation errors. Therefore, we examine the accuracy of these models under various network scenarios using two approaches: (i) a sensitivity analysis through simulations and (ii) a case study of a deployed network. Both approaches show that the accuracy of the models depends on the network size, the total amount of network service traffic (i.e., for the service under assessment), and the number of network nodes used to process the service.

  4. Impact of Energy Policy Act of 2005 Section 206 Rebates on Consumers and Renewable Energy Consumption, With Projections to 2010

    EIA Publications

    2006-01-01

    The Energy Information Administration (EIA), with the agreement of the Department, interpreted section 206(d) as calling for a listing of the types of renewable fuels available today, and a listing of those that will be available in the future based on the incentives provided in section 206(d). This report provides that information, and also provides information concerning renewable energy equipment and renewable energy consumption.

  5. Energy consumption behavior in the commercial sector: An ethnographic analysis of utility bill information and customer comprehension in the workplace

    NASA Astrophysics Data System (ADS)

    Payne, Christopher Todd

    The commercial and industrial sectors of the United States compose roughly one-third of total United States energy consumption. Many studies have suggested that significant cost-effective energy savings opportunities exist in this sector, but there is a gap between predictions of potential and actual investment in energy-efficient technologies. Very few studies have been conducted to examine the decision-making environment of the business sector. In particular, there is essentially no information about how small-business decision-makers make choices about energy consumption. My research is intended to begin the process of understanding this important arena of energy consumption behavior. Using semi-structured interview techniques, I interviewed forty-four businesses in ten states. The focus of the interviews was the business decision-maker's handling and use of the utility bill---the main (often sole) piece of information that links energy consumption to cost. Through the interviews, I collected information about how utility bills are understood and misunderstood, what components of the bill are seen as useful or confusing, and how energy consumption was seen in the context of larger business decision-making. In addition, I collected data on two forms of energy consumption feedback: historic consumption feedback, in which informants compared their current energy use to patterns of their own energy consumption over time; and group comparison consumption feedback, in which informants compared their energy consumption to the consumption of a group of similar energy consumers. Finally, I collected data on sources of information to which decision-makers turned when they wanted to seek more information about energy consumption alternatives. Overall, my findings suggest that the current utility bill format is often misunderstood. In many cases, particularly in the small-business and medium-size-business categories, the link between energy consumption and energy cost is

  6. Assessment for Fuel Consumption and Exhaust Emissions of China's Vehicles: Future Trends and Policy Implications

    PubMed Central

    Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020–2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NOx, and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017–2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry. PMID:23365524

  7. Assessment for fuel consumption and exhaust emissions of China's vehicles: future trends and policy implications.

    PubMed

    Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry.

  8. Estimating the HVAC energy consumption of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Kambly, Kiran R.; Bradley, Thomas H.

    2014-08-01

    Plug in electric vehicles are vehicles that use energy from the electric grid to provide tractive and accessory power to the vehicle. Due to the limited specific energy of energy storage systems, the energy requirements of heating, ventilation, and air conditioning (HVAC) systems for cabin conditioning can significantly reduce their range between charges. Factors such as local ambient temperature, local solar radiation, local humidity, length of the trip and thermal soak have been identified as primary drivers of cabin conditioning loads and therefore of vehicle range. The objective of this paper is to develop a detailed systems-level approach to connect HVAC technologies and usage conditions to consumer-centric metrics of vehicle performance including energy consumption and range. This includes consideration of stochastic and transient inputs to the HVAC energy consumption model including local weather, solar loads, driving behavior, charging behavior, and regional passenger fleet population. The resulting engineering toolset is used to determine the summation of and geographical distribution of energy consumption by HVAC systems in electric vehicles, and to identify regions of US where the distributions of electric vehicle range are particularly sensitive to climate.

  9. Future U.S. water consumption : The role of energy production.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  10. Perceived Stress, Energy Drink Consumption, and Academic Performance among College Students

    ERIC Educational Resources Information Center

    Pettit, Michele L.; DeBarr, Kathy A.

    2011-01-01

    Objective: This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants: Participants included 136 undergraduates attending a large southern plains university. Methods: Participants completed surveys including items from the Perceived Stress Scale and items to…

  11. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Federal Register on October 15, 2010 (75 FR 63404), announcing a public meeting and seeking comments... received, please refer to the October 15, 2010, notice (75 FR 63404). Issued in Washington, DC, on October... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New...

  12. Diel dualism in the energy consumption of the European catfish Silurus glanis.

    PubMed

    Slavík, O; Horký, P

    2012-12-01

    Twenty individuals of the largest European freshwater predator, the European catfish Silurus glanis, were tagged with electromyogram (EMG) physiological telemetry sensors. The fish were observed during diel cycles during the spring and summer in the Elbe and Berounka Rivers, Czech Republic. The purpose of this study was to determine whether diel dualism in the activity of S. glanis occurs naturally or is induced by the laboratory environment and by the conditions occurring in aquaculture. The results obtained from the riverine environment tended to show dualism in the use of the light and dark phases of the day because 35% of the individuals varied from a site-specific common diel activity pattern. The EMG values increased in accordance with the mass (M) of the fish. To eliminate the influence of M on individual energy consumption, the EMG records were analysed in terms of the EMG:M ratios. High individual variability was found in these ratios. The diel activity pattern of the individuals with relatively high energy consumption differed from the common diel activity pattern. In contrast, the fish that adopted the common diel activity pattern displayed relatively low energy consumption. The results of this study indicated that dualism and energy consumption are related. The EMG values also varied with the values of the environmental variables. Increasing temperature was associated with high EMG values, whereas the EMG values decreased with increasing flow.

  13. Renewable energy rebound effect?: Estimating the impact of state renewable energy financial incentives on residential electricity consumption

    NASA Astrophysics Data System (ADS)

    Stephenson, Beth A.

    Climate change is a well-documented phenomenon. If left unchecked greenhouse gas emissions will continue global surface warming, likely leading to severe and irreversible impacts. Generating renewable energy has become an increasingly salient topic in energy policy as it may mitigate the impact of climate change. State renewable energy financial incentives have been in place since the mid-1970s in some states and over 40 states have adopted one or more incentives at some point since then. Using multivariate linear and fixed effects regression for the years 2002 through 2012, I estimate the relationship between state renewable energy financial incentives and residential electricity consumption, along with the associated policy implications. My hypothesis is that a renewable energy rebound effect is present; therefore, states with renewable energy financial incentives have a higher rate of residential electricity consumption. I find a renewable energy rebound effect is present in varying degrees for each model, but the results do not definitively indicate how particular incentives influence consumer behavior. States should use caution when adopting and keeping renewable energy financial incentives as this may increase consumption in the short-term. The long-term impact is unclear, making it worthwhile for policymakers to continue studying the potential for renewable energy financial incentives to alter consumer behavior.

  14. Energy Consumption Analysis Procedure for Robotic Applications in different task motion

    NASA Astrophysics Data System (ADS)

    Ahmed, Iman; Aris, Ishak b.; Hamiruce Marhaban, Mohammad; Juraiza Ishak, Asnor

    2015-11-01

    This work proposes energy analysis method for humanoid robot, seen from simple motion task to complex one in energy chain. The research developed a procedure suitable for analysis, saving and modelling of energy consumption not only in this type of robot but also in most robots that based on electrical power as an energy source. This method has validated by an accurate integration using Matlab software for the power consumption curve to calculate the energy of individual and multiple servo motors. Therefore, this study can be considered as a procedure for energy analysis by utilizing the laboratory instruments capabilities to measure the energy parameters. We performed a various task motions with different angular speed to find out the speed limits in terms of robot stability and control strategy. A battery capacity investigation have been searched for several types of batteries to extract the power modelling equation and energy density parameter for each battery type, Matlab software have been built to design the algorithm and to evaluate experimental amount of the energy which is represented by area under the curve of the power curves. This will provide a robust estimation for the required energy in different task motions to be considered in energy saving (i.e., motion planning and real time scheduling).

  15. Anticipation Driving Behavior and Related Reduction of Energy Consumption in Traffic Flow

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wei, Yan-Fang; Song, Tao; Dai, Shi-Qiang; Dong, Li-Yun

    In view that drivers would pay attention to the variation of headway on roads, an extended optimal velocity model is proposed by considering anticipation driving behavior. A stability criterion is given through linear stability analysis of traffic flows. The mKdV equation is derived with the reductive perturbation method for headway evolution which could be used to describe the stop-and-go traffic phenomenon. The results show a good effect of anticipation driving behavior on the stabilization of car flows and the anticipation driving behavior can improve the numerical stability of the model as well. In addition, the fluctuation of kinetic energy and the consumption of average energy in congested traffic flows are systematically analyzed. The results show that the reasonable level of anticipation driving behavior can save energy consumption in deceleration process effectively and lead to an associated relation like a "bow-tie" between the energy-saving and the value of anticipation factor.

  16. Something to buy paraffin with: an investigation into domestic energy consumption in rural Kenya

    SciTech Connect

    Hosier, R.H.

    1982-01-01

    Recently, two government agencies have surveyed energy consumption in Kenya. These two studies yielded conflicting results, necessitating that a third, more carefully conducted survey be used as the basis for this study. The survey instrument used was designed by the author and included questions regarding the types and quantities of fuels used, income information, and demographic data; 572 households were surveyed. The results are first aggregated by ecological zone and compared with the responses of the same households from the 1979 energy survey. Two findings emerge. First, wood consumption is lower in the high and medium potential lands. Fuelwood scarcity appears to be caused by high population density, not low ecological potential. Second, consumption of fuelwood and paraffin (i.e., kerosene) has decreased significantly over the past two years, due mainly to the increased price of the latter and the increased scarcity of the former. Next, the survey results are analyzed by way of a farm-type classification system which classifies the respondents into five groups: non-surplus farmers, surplus farmers, cash-surplus farmers, cash crop farmers, and wage workers. Finally, the analysis takes a relational perspective relying upon regression analysis. Income serves as a determinant of kerosene consumption, but not of fuelwood consumption.

  17. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    SciTech Connect

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings

  18. Reduction potentials of total energy consumption and GHG emissions in Xiamen

    NASA Astrophysics Data System (ADS)

    Bin, C.; Cui, S.

    2009-12-01

    Urban areas contain 40% of the population and contribute 75% of the Chinese national economy. The 35 largest cities in China, which contain 18% of the population, contribute 40% of China’s energy uses and CO2 emissions. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying effects of energy-saving policies and finding solution to GHG emissions in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from Xiamen city. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2007-2020 and GHG emissions are estimated. Two scenarios have been designed to describe the future strategies relating to the development of Xiamen city. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of urban energy demand. The ‘Integrated’ scenario is considered to be the most optimized case where a series of available reduction measures such as clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control and new and renewable energy development and utilization are assumed to be implemented. Energy demand and GHG emissions in Xiamen up to 2020 are estimated in these two scenarios. The total reduction potentials in the ‘Integrated’ scenario and the relative contribution rate of reduction potentials of each measure have been estimated.

  19. Energy consumption analysis for various memristive networks under different learning strategies

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Dong; Zhang, Ziyang; Tang, Pei; Li, Guoqi; Pei, Jing

    2016-02-01

    Recently, various memristive systems emerge to emulate the efficient computing paradigm of the brain cortex; whereas, how to make them energy efficient still remains unclear, especially from an overall perspective. Here, a systematical and bottom-up energy consumption analysis is demonstrated, including the memristor device level and the network learning level. We propose an energy estimating methodology when modulating the memristive synapses, which is simulated in three typical neural networks with different synaptic structures and learning strategies for both offline and online learning. These results provide an in-depth insight to create energy efficient brain-inspired neuromorphic devices in the future.

  20. Thermostats with attitudes: A sociological analysis of assumptions underlying common approaches to reducing residential energy consumption

    NASA Astrophysics Data System (ADS)

    Nevius, Monica Josefina

    2001-12-01

    This dissertation contributes to the emerging literature in the sociology of energy consumption by answering three important questions about the assumptions underlying popular approaches to reducing energy consumption behavior. The answers are gleaned from data on Wisconsin households gathered in 1998 and 1999. The first question has to do with the efficacy of a "cognitive fix" approach of attempting to change attitudes in hopes of changing behavior, and asks whether energy-related attitudes can predict actual energy savings. The results of a regression analysis of heating energy intensity revealed that a variable measuring respondents' attitudes toward energy conservation predict heating energy intensity, but the effect was overwhelmed by control variables for insulation and draftiness. These and other results offer some support for the cognitive fix approach of attitudinal change as a means of reducing energy consumption. The second question concerns a popular "technological fix" of subsidizing the replacement of manual thermostats with programmable ones, and asks whether programmable thermostats actually save significant home heating energy. The data show that households with programmable thermostats appear to use no less energy than do households with manual thermostats, and that it is behavioral norms, not the type of thermostat, that determine thermostat setting behavior. The results suggest strongly that in aggregate, the installation of programmable thermostats in residential households cannot be expected to deliver promised energy savings. The third question addressed is whether popular knowledge about global warming or the connection between energy use and global environmental change is growing, and if so, what is the likelihood that these prospective socio-cultural shifts might result in increased residential energy conservation. The analysis suggests that, compared to the findings of earlier studies, awareness of the environmental consequences of energy

  1. How effective is group feedback in encouraging occupants of an office building to reduce energy consumption?

    NASA Astrophysics Data System (ADS)

    Shah, Ushik D.

    Lighting contributes to a high percentage of the total energy use in office buildings. The lack of financial incentive often dissuades office workers from trying to save electricity at their work place. This thesis aims at reducing the total power consumed by an office building by using persuasive technologies on the occupants to promote environmentally conscious and energy saving behavior. A three week field study was conducted by providing occupants of an office building feedback about their energy consumption along with messages to encourage them to save energy. Feedback was provided via television screens and flyers placed strategically at the study location, the fourth floor of the Knoy Hall of Technology, Purdue University, West Lafayette campus. The results obtained from the analysis of data showed no change in energy consumption post intervention. Group feedback thus proved to be ineffective in encouraging occupants of this office building to reduce their energy consumption. This thesis presents the findings of the study and discusses recommendations and future scope for similar studies.

  2. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.

    PubMed

    Zhu, J Y; Pan, X J

    2010-07-01

    This review presents a comprehensive discussion of the key technical issues in woody biomass pretreatment: barriers to efficient cellulose saccharification, pretreatment energy consumption, in particular energy consumed for wood-size reduction, and criteria to evaluate the performance of a pretreatment. A post-chemical pretreatment size-reduction approach is proposed to significantly reduce mechanical energy consumption. Because the ultimate goal of biofuel production is net energy output, a concept of pretreatment energy efficiency (kg/MJ) based on the total sugar recovery (kg/kg wood) divided by the energy consumption in pretreatment (MJ/kg wood) is defined. It is then used to evaluate the performances of three of the most promising pretreatment technologies: steam explosion, organosolv, and sulfite pretreatment to overcome lignocelluloses recalcitrance (SPORL) for softwood pretreatment. The present study found that SPORL is the most efficient process and produced highest sugar yield. Other important issues, such as the effects of lignin on substrate saccharification and the effects of pretreatment on high-value lignin utilization in woody biomass pretreatment, are also discussed.

  3. Quantitative risk assessment for human salmonellosis through the consumption of pork sausage in Porto Alegre, Brazil.

    PubMed

    Mürmann, Lisandra; Corbellini, Luis Gustavo; Collor, Alexandre Ávila; Cardoso, Marisa

    2011-04-01

    A quantitative microbiology risk assessment was conducted to evaluate the risk of Salmonella infection to consumers of fresh pork sausages prepared at barbecues in Porto Alegre, Brazil. For the analysis, a prevalence of 24.4% positive pork sausages with a level of contamination between 0.03 and 460 CFU g(-1) was assumed. Data related to frequency and habits of consumption were obtained by a questionnaire survey given to 424 people. A second-order Monte Carlo simulation separating the uncertain parameter of cooking time from the variable parameters was run. Of the people interviewed, 87.5% consumed pork sausage, and 85.4% ate it at barbecues. The average risk of salmonellosis per barbecue at a minimum cooking time of 15.6 min (worst-case scenario) was 6.24 × 10(-4), and the risk assessed per month was 1.61 × 10(-3). Cooking for 19 min would fully inactivate Salmonella in 99.9% of the cases. At this cooking time, the sausage reached a mean internal temperature of 75.7°C. The results of the quantitative microbiology risk assessment revealed that the consumption of fresh pork sausage is safe when cooking time is approximately 19 min, whereas undercooked pork sausage may represent a nonnegligible health risk for consumers.

  4. Predictive models of energy consumption in multi-family housing in College Station, Texas

    NASA Astrophysics Data System (ADS)

    Ali, Hikmat Hummad

    Patterns of energy consumption in apartment buildings are different than those in single-family houses. Apartment buildings have different physical characteristics, and their inhabitants have different demographic attributes. This study develops models that predict energy usage in apartment buildings in College Station. This is accomplished by analyzing and identifying the predictive variables that affect energy usage, studying the consumption patterns, and creating formulas based on combinations of these variables. According to the hypotheses and the specific research context, a cross-sectional design strategy is adopted. This choice implies analyses across variations within a sample of fourplex apartments in College Station. The data available for analysis include the monthly billing data along with the physical characteristics of the building, climate data for College Station, and occupant demographic characteristics. A simple random sampling procedure is adopted. The sample size of 176 apartments is drawn from the population in such a way that every possible sample has the same chance of being selected. Statistical methods used to interpret the data include univariate analysis (mean, standard deviation, range, and distribution of data), correlation analysis, regression analysis, and ANOVA (analyses of variance). The results show there are significant differences in cooling efficiency and actual energy consumption among different building types, but there are no significant differences in heating consumption. There are no significant differences in actual energy consumption between student and non-student groups or among ethnic groups. The findings indicate that there are significant differences in actual energy consumption among marital status groups and educational level groups. The multiple regression procedures show there is a significant relationship between normalized annual consumption and the combined variables of floor area, marital status, dead band

  5. 10 CFR Appendix X1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers X1 Appendix X1 to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App....

  6. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy consumption of commercial refrigerators, freezers, and refrigerator-freezers. 431.64 Section 431.64 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  7. 10 CFR Appendix N to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers N Appendix N to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App....

  8. 10 CFR Appendix P to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Pool Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Pool Heaters P Appendix P to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. P Appendix P...

  9. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  10. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  11. 10 CFR 431.134 - Uniform test methods for the measurement of energy and water consumption of automatic commercial...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test methods for the measurement of energy and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test Procedures §...

  12. Assessment of exposure to polybrominated diphenyl ethers (PBDEs) via seafood consumption and dust ingestion in Korea.

    PubMed

    Lee, Sunggyu; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2013-01-15

    Concentrations of polybrominated diphenyl ethers (PBDEs) were determined in commonly consumed seafood and house dust collected from Korea. Total concentrations of PBDEs in seafood and house dust samples were in the ranges of 0.06 to 6.25 ng/g wet weight and 80 to 16,000 ng/g dry weight, respectively. Predominant congeners in seafood were BDEs 47, 99 and 100 and those in dust samples were BDE 209. Estimated daily intakes (EDIs) of PBDEs through seafood consumption and dust ingestion for adults (>20 years) and toddlers (<2 years) were 1.83 and 11.4 ng/kg body weight/day, respectively. In comparison with the EDIs reported for PBDEs by general population in several countries, the contribution of seafood consumption to PBDE intake in Korea was the highest. Seafood consumption and dust ingestion contributed equally to the total PBDE intakes in Korean adults, while dust ingestion was the major contributor to toddlers. This study was the first to assess exposure of humans to PBDEs through two major exposure pathways.

  13. Using GIS and Teledetection data to assess mobility and land consumption in polynucleated landscapes

    NASA Astrophysics Data System (ADS)

    Marmolejo Duarte, Carlos; Tornés Fernández, Moira

    2014-03-01

    Polycentrism has become the keystone in a major number of regional and urban policies, since it has been seen as a sustainable and equilibrated urban model. In this paper, the problem has been focused in case study the biggest metropolitan areas in Spain and pretends test whether polycentric urban growth does effectively reduce land consumption and travel-to-work journeys, protecting in this way agricultural and forest areas around cities and at the same time reducing energy and air emissions produced by cars. The methodology used has been departed from land-use, transport and census data, and using ArcGIS and TransCAD a group of spatial indicators is calculated and introduced in a family of regression models, where explained variables are per capita land consumption and excess commuting respectively. The results suggest that polynucleation has little effect both in the reduction of land consumption and excess commuting. On the contrary, other variables associated to urban form do highly influence land and mobility patterns, such as fragmentation of urban fabrics, job ratio balance, and the diversity of economic activities and housing offer. Such conclusions may shed light in the design of urban policies, and focus the attention on the definition of small-scale urban variables instead of structural ones at metropolitan scale.

  14. Exploratory assessment of fish consumption among Asian-origin sportfishers on the St. Lawrence River in the Montreal region

    SciTech Connect

    Shatenstein, B. |; Kosatsky, T.; Tapia, M.; Nadon, S.; Leclerc, B.S.

    1999-02-01

    An exploratory survey was undertaken in the fall 1995 open-water fishing seasons with nine Bangladeshi and nine Vietnamese-origin sportfishers. A 70-item instrument assessing sportfishing practices and fish consumption habits was administered by dietitians in participants` homes. Two 24-h diet recalls and a fish consumption calendar permitted the assessment of fish intake in the overall dietary context. Annually, Bangladeshi fishers consumed 46.8 {+-} 25.6 sportfish meals, and Vietnamese fishers ate 40.7 {+-} 35.1 meals. Consumption of sportfish taken from the St. Lawrence River has the potential both for dietary benefit and for hazardous chemical exposure.

  15. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    NASA Astrophysics Data System (ADS)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  16. Modeling energy savings from urban shade trees: an assessment of the CITYgreen energy conservation module.

    PubMed

    Carver, Andrew D; Unger, Daniel R; Parks, Courtney L

    2004-11-01

    CITYgreen software has become a commonly used tool to quantify the benefits of urban shade trees. Despite its frequent use, little research has been conducted to validate results of the CITYgreen energy conservation module. The first objective of this study is to perform a familiar application of CITYgreen software to predict the potential energy savings contribution of existing tree canopies in residential neighborhoods during peak cooling summer months. Unlike previous studies utilizing CITYgreen, this study also seeks to assess the software's performance by comparing model results (i.e., predicted energy savings) with actual savings (i.e., savings derived directly from energy consumption data provided by the electric utility provider). Homeowners in an older neighborhood with established trees were found to use less energy for air-conditioning than homeowners in a recently developed site. Results from the assessment of model performance indicated that CITYgreen more accurately estimated the energy savings in the highly vegetated, older neighborhood.

  17. China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    SciTech Connect

    Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

    2008-06-02

    In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

  18. Energy consumption and performance models of small Philippine-built rice mills

    SciTech Connect

    Paras, A.S. Jr.

    1984-01-01

    Two simulation models were developed for small rice mills of the conventional disc-cone and rubber-roll equipped designs that range from 0.3 to 1.8 tons-per-hour capacity. These sizes comprise a large proportion of the rice mills in the Philippines. The first, a computer model, evaluated these two types of mills with regard to energy consumption, total and head grain recovery, and processing time. Field and laboratory data taken by research workers and direct measurements by the author were compiled and employed in the development of equations and distribution functions for the variables that make up the subroutines for the models. The results indicated that the energy consumption of small rice mills in the Philippines could be reduced by 5 to 19%, depending on size, without loss of quality in good-performance mills by using one bigger huller and an adjustable separator, and that the output quality of poor performance mills could be improved with just 4% increase in energy consumption by adding a second stage whitener. The second model estimated the cost of milled rice by utilizing Kirchoff's current and voltage laws and energy conservation principles to derive a cost equation involving the material energy and processing cost.

  19. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions. PMID:26282441

  20. Modeling of rotary cement kilns: Applications to reduction in energy consumption

    SciTech Connect

    Mujumdar, K.S.; Arora, A.; Ranade, V.V.

    2006-03-29

    We discuss and evaluate possible ways of reducing energy consumption in rotary cement kilns. A comprehensive one-dimensional model was developed to simulate complex processes occurring in rotary cement kilns. A modeling strategy comprising three submodels, viz. a model for simulating the variation of bed height in the kiln, a model for simulating reactions and heat transfer in the bed region, and a model for simulating coal combustion and heat transfer in the freeboard region, was developed. Melting and formation of coating within the kiln were accounted for. Combustion of coal in the freeboard region was modeled by accounting for devolatilization, finite-rate gas-phase combustion, and char reaction. The simulated results were validated with the available data from three industrial kilns. The model was then used to understand the influence of various design and operating parameters on kiln performance. Several ways of reducing energy consumption in kilns were then computationally investigated. The model was also used to propose and to evaluate a practical solution of using a secondary shell to reduce energy consumption in rotary cement kilns. Simulation results indicate that varying kiln operating variables, viz. solid flow rate or RPM, can result only in small changes in kiln energetics. Use of a secondary shell over the kiln and energy recovery by passing air through the annular gap between the two appears to be a promising way to achieve significant energy savings. The developed model and the presented results will be useful for enhancing the performance of rotary cement kilns.

  1. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.

  2. 10 CFR 431.134 - Uniform test methods for the measurement of energy and water consumption of automatic commercial...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF... Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy and water consumption of automatic commercial ice makers. (a) Scope. This section provides the...

  3. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... traffic signal modules and pedestrian modules. For purposes of 10 CFR part 431 and EPCA, the test... consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF... measurement of energy consumption for traffic signal modules and pedestrian modules. (a) Scope. This...

  4. Mode shift strategies in intercity transportation and their effect on energy consumption

    NASA Technical Reports Server (NTRS)

    Sokolsky, S.

    1975-01-01

    Policies are examined which, if implemented, could lead to significant energy savings in intercity travel in the northeast corridor arena, without restricting the traveler's freedom of mode choice. The effects on arena energy consumption of introducing new, more energy-efficient aircraft are investigated; and several strategies unrelated to the implementation of new aircraft are introduced to yield reductions in overall intercity energy use. In both parts of this analysis, resulting changes in patronage (modal share) and energy use are demonstrated, leading to new insights into the effectiveness of different potential policies for achieving energy conservation. Some observations on induced demand trends that could be associated with certain strategies and the resultant potential effect on energy conservation are provided.

  5. Indoor weather related to the energy consumption of air conditioned classroom: Monitoring system for energy efficient building plan

    NASA Astrophysics Data System (ADS)

    Rattanongphisat, W.; Suwannakom, A.; Harfield, A.

    2016-08-01

    The current research aims to investigate the relation of indoor weather to energy consumption of air conditioned classroom by design and construct the indoor weather and energy monitoring systems. In this research, a combined temperature and humidity sensor in conjunction with a microcontroller was constructed for the indoor weather monitoring system. The wire sensor network for the temperature-humidity sensor nodes is the Controller Area Network (CAN). Another part is using a nonintrusive method where a wireless current transformer sending the signal to the data collection box then transmitted by the radio frequency to the computer where the Ethernet application software was installed for the energy monitoring system. The results show that the setting air temperature, outdoor ambient temperature and operating time impact to the energy consumption of the air conditioned classroom.

  6. Lead exposure through consumption of big game meat in Quebec, Canada: risk assessment and perception.

    PubMed

    Fachehoun, Richard Coovi; Lévesque, Benoit; Dumas, Pierre; St-Louis, Antoine; Dubé, Marjolaine; Ayotte, Pierre

    2015-01-01

    Game meat from animals killed by lead ammunition may expose consumers to lead. We assessed the risk related to lead intake from meat consumption of white-tailed deer and moose killed by lead ammunition and documented the perception of hunters and butchers regarding this potential contamination. Information on cervid meat consumption and risk perception were collected using a mailed self-administrated questionnaire which was addressed to a random sample of Quebec hunters. In parallel, 72 samples of white-tailed deer (n = 35) and moose (n = 37) meats were collected from voluntary hunters and analysed for lead content using inductively coupled plasma-mass spectrometry. A risk assessment for people consuming lead shot game meat was performed using Monte Carlo simulations. Mean lead levels in white-tailed deer and moose killed by lead ammunition were 0.28 and 0.17 mg kg(-1) respectively. Risk assessment based on declared cervid meat consumption revealed that 1.7% of the surveyed hunters would exceed the dose associated with a 1 mmHg increase in systolic blood pressure (SBP). For consumers of moose meat once, twice or three times a week, simulations predicted that 0.5%, 0.9% and 1.5% of adults would be exposed to a dose associated with a 1 mmHg increase in SBP, whereas 0.9%, 1.9% and 3.3% of children would be exposed to a dose associated with 1 point intelligence quotient (IQ) decrease, respectively. For consumers of deer meat once, twice or three times a week, the proportions were 1.6%, 2.9% and 4% for adults and 2.9%, 5.8% and 7.7% for children, respectively. The consumption of meat from cervids killed with lead ammunition may increase lead exposure and its associated health risks. It would be important to inform the population, particularly hunters, about this potential risk and promote the use of lead-free ammunition.

  7. Lead exposure through consumption of big game meat in Quebec, Canada: risk assessment and perception.

    PubMed

    Fachehoun, Richard Coovi; Lévesque, Benoit; Dumas, Pierre; St-Louis, Antoine; Dubé, Marjolaine; Ayotte, Pierre

    2015-01-01

    Game meat from animals killed by lead ammunition may expose consumers to lead. We assessed the risk related to lead intake from meat consumption of white-tailed deer and moose killed by lead ammunition and documented the perception of hunters and butchers regarding this potential contamination. Information on cervid meat consumption and risk perception were collected using a mailed self-administrated questionnaire which was addressed to a random sample of Quebec hunters. In parallel, 72 samples of white-tailed deer (n = 35) and moose (n = 37) meats were collected from voluntary hunters and analysed for lead content using inductively coupled plasma-mass spectrometry. A risk assessment for people consuming lead shot game meat was performed using Monte Carlo simulations. Mean lead levels in white-tailed deer and moose killed by lead ammunition were 0.28 and 0.17 mg kg(-1) respectively. Risk assessment based on declared cervid meat consumption revealed that 1.7% of the surveyed hunters would exceed the dose associated with a 1 mmHg increase in systolic blood pressure (SBP). For consumers of moose meat once, twice or three times a week, simulations predicted that 0.5%, 0.9% and 1.5% of adults would be exposed to a dose associated with a 1 mmHg increase in SBP, whereas 0.9%, 1.9% and 3.3% of children would be exposed to a dose associated with 1 point intelligence quotient (IQ) decrease, respectively. For consumers of deer meat once, twice or three times a week, the proportions were 1.6%, 2.9% and 4% for adults and 2.9%, 5.8% and 7.7% for children, respectively. The consumption of meat from cervids killed with lead ammunition may increase lead exposure and its associated health risks. It would be important to inform the population, particularly hunters, about this potential risk and promote the use of lead-free ammunition. PMID:26161681

  8. Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes

    PubMed Central

    Nowak, Dariusz; Jasionowski, Artur

    2016-01-01

    Background: Energy drinks (EDs) have become widely popular among young adults and, even more so, among adolescents. Increasingly, they are consumed by athletes, particularly those who have just begun their sporting career. Uncontrolled and high consumption of EDs, in addition to other sources of caffeine, may pose a threat to the health of young people. Hence, our objective was to analyze the consumption of EDs among teenagers engaged in sports, including quantity consumed, identification of factors influencing consumption, and risks associated with EDs and EDs mixed with alcohol (AmEDs). Methods: The study involved a specially designed questionnaire, which was completed by 707 students, 14.3 years of age on average, attending secondary sports schools. Results: EDs were consumed by 69% of the young athletes, 17% of whom drank EDs quite often: every day or 1–3 times a week. Most respondents felt no effects after drinking EDs, but some reported symptoms, including insomnia, anxiety, tachycardia, nervousness and irritability. The major determinant of the choice of EDs was taste (47%), followed by price (21%). One in ten respondents admitted to consumption of AmEDs. Among the consequences reported were: abdominal pains, nausea, vomiting, amnesia, headache, and hangover. Conclusions: EDs consumption among adolescent athletes was relatively high. Considering the habit of AmEDs and literature data, it is worth emphasizing that it may lead to health problems in the near future, alcohol- or drug-dependence, as well as other types of risk behaviour. PMID:27483299

  9. Energy consumption estimation of an OMAP-based Android operating system

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Juárez, Eduardo; Castro, Juan José; Sanz, César

    2011-05-01

    System-level energy optimization of battery-powered multimedia embedded systems has recently become a design goal. The poor operational time of multimedia terminals makes computationally demanding applications impractical in real scenarios. For instance, the so-called smart-phones are currently unable to remain in operation longer than several hours. The OMAP3530 processor basically consists of two processing cores, a General Purpose Processor (GPP) and a Digital Signal Processor (DSP). The former, an ARM Cortex-A8 processor, is aimed to run a generic Operating System (OS) while the latter, a DSP core based on the C64x+, has architecture optimized for video processing. The BeagleBoard, a commercial prototyping board based on the OMAP processor, has been used to test the Android Operating System and measure its performance. The board has 128 MB of SDRAM external memory, 256 MB of Flash external memory and several interfaces. Note that the clock frequency of the ARM and DSP OMAP cores is 600 MHz and 430 MHz, respectively. This paper describes the energy consumption estimation of the processes and multimedia applications of an Android v1.6 (Donut) OS on the OMAP3530-Based BeagleBoard. In addition, tools to communicate the two processing cores have been employed. A test-bench to profile the OS resource usage has been developed. As far as the energy estimates concern, the OMAP processor energy consumption model provided by the manufacturer has been used. The model is basically divided in two energy components. The former, the baseline core energy, describes the energy consumption that is independent of any chip activity. The latter, the module active energy, describes the energy consumed by the active modules depending on resource usage.

  10. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  11. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  12. How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies.

    PubMed

    Sala, Juan E; Wilson, Rory P; Quintana, Flavio

    2012-01-01

    Penguins are major consumers in the southern oceans although quantification of this has been problematic. One suggestion proposes the use of points of inflection in diving profiles ('wiggles') for this, a method that has been validated for the estimation of prey consumption by Magellanic penguins (Spheniscus magellanicus) by Simeone and Wilson (2003). Following them, we used wiggles from 31 depth logger-equipped Magellanic penguins foraging from four Patagonian colonies; Punta Norte (PN), Bahía Bustamente (BB), Puerto Deseado (PD) and Puerto San Julián (PSJ), all located in Argentina between 42-49° S, to estimate the prey captured and calculate the catch per unit time (CPUT) for birds foraging during the early chick-rearing period. Numbers of prey caught and CPUT were significantly different between colonies. Birds from PD caught the highest number of prey per foraging trip, with CPUT values of 68±19 prey per hour underwater (almost two times greater than for the three remaining colonies). We modeled consumption from these data and calculate that the world Magellanic penguin population consumes about 2 million tons of prey per year. Possible errors in this calculation are discussed. Despite this, the analysis of wiggles seems a powerful and simple tool to begin to quantify prey consumption by Magellanic penguins, allowing comparison between different breeding sites. The total number of wiggles and/or CPUT do not reflect, by themselves, the availability of food for each colony, as the number of prey consumed by foraging trip is strongly associated with the energy content and wet mass of each colony-specific 'prey type'. Individuals consuming more profitable prey could be optimizing the time spent underwater, thereby optimizing the energy expenditure associated with the dives. PMID:23251554

  13. How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies.

    PubMed

    Sala, Juan E; Wilson, Rory P; Quintana, Flavio

    2012-01-01

    Penguins are major consumers in the southern oceans although quantification of this has been problematic. One suggestion proposes the use of points of inflection in diving profiles ('wiggles') for this, a method that has been validated for the estimation of prey consumption by Magellanic penguins (Spheniscus magellanicus) by Simeone and Wilson (2003). Following them, we used wiggles from 31 depth logger-equipped Magellanic penguins foraging from four Patagonian colonies; Punta Norte (PN), Bahía Bustamente (BB), Puerto Deseado (PD) and Puerto San Julián (PSJ), all located in Argentina between 42-49° S, to estimate the prey captured and calculate the catch per unit time (CPUT) for birds foraging during the early chick-rearing period. Numbers of prey caught and CPUT were significantly different between colonies. Birds from PD caught the highest number of prey per foraging trip, with CPUT values of 68±19 prey per hour underwater (almost two times greater than for the three remaining colonies). We modeled consumption from these data and calculate that the world Magellanic penguin population consumes about 2 million tons of prey per year. Possible errors in this calculation are discussed. Despite this, the analysis of wiggles seems a powerful and simple tool to begin to quantify prey consumption by Magellanic penguins, allowing comparison between different breeding sites. The total number of wiggles and/or CPUT do not reflect, by themselves, the availability of food for each colony, as the number of prey consumed by foraging trip is strongly associated with the energy content and wet mass of each colony-specific 'prey type'. Individuals consuming more profitable prey could be optimizing the time spent underwater, thereby optimizing the energy expenditure associated with the dives.

  14. How Much Is Too Much? Assessment of Prey Consumption by Magellanic Penguins in Patagonian Colonies

    PubMed Central

    Sala, Juan E.; Wilson, Rory P.; Quintana, Flavio

    2012-01-01

    Penguins are major consumers in the southern oceans although quantification of this has been problematic. One suggestion proposes the use of points of inflection in diving profiles (‘wiggles’) for this, a method that has been validated for the estimation of prey consumption by Magellanic penguins (Spheniscus magellanicus) by Simeone and Wilson (2003). Following them, we used wiggles from 31 depth logger-equipped Magellanic penguins foraging from four Patagonian colonies; Punta Norte (PN), Bahía Bustamente (BB), Puerto Deseado (PD) and Puerto San Julián (PSJ), all located in Argentina between 42–49° S, to estimate the prey captured and calculate the catch per unit time (CPUT) for birds foraging during the early chick-rearing period. Numbers of prey caught and CPUT were significantly different between colonies. Birds from PD caught the highest number of prey per foraging trip, with CPUT values of 68±19 prey per hour underwater (almost two times greater than for the three remaining colonies). We modeled consumption from these data and calculate that the world Magellanic penguin population consumes about 2 million tons of prey per year. Possible errors in this calculation are discussed. Despite this, the analysis of wiggles seems a powerful and simple tool to begin to quantify prey consumption by Magellanic penguins, allowing comparison between different breeding sites. The total number of wiggles and/or CPUT do not reflect, by themselves, the availability of food for each colony, as the number of prey consumed by foraging trip is strongly associated with the energy content and wet mass of each colony-specific ‘prey type’. Individuals consuming more profitable prey could be optimizing the time spent underwater, thereby optimizing the energy expenditure associated with the dives. PMID:23251554

  15. An analysis of residential energy consumption in a temperate climate. Volume 1

    SciTech Connect

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  16. Reduction in Energy Consumption for Pretreatment Process and Transportation of Pulverized Wood Fuel

    NASA Astrophysics Data System (ADS)

    Nishi, Kenji; Sawai, Toru; Ohmasa, Mitsushi; Hirokawa, Noriyasu; Shibue, Tadashi; Kajimoto, Takeshi

    In recent years, much attention has been focused on the energy utilization of biomass to reduce the emission of greenhouse gas. Especially, woody biomass such as the forestry biomass derived from logging and thinning operations in forests is one of the most promising domestic resources in Japan. Woody biomass contributes not only to the improvement of energy self-sufficiency in Japan, but also to the environmental protection of Japanese forests. When the woody biomass is utilized, it is necessary to examine the energy consumption for collection of resources, pretreatment, transportation and after-treatment. In the present study, woody biomass is assumed to be utilized as pulverized wood fuel in local area. The pretreatment of pulverized wood fuel is consisted of three procedures; drying, semi-carbonizaion and fine comminution. The main purpose of the study is to investigate the comminution characteristic of the Japanese cedar thinning and the reduction in energy consumption for pretreatment process and transportation of pulverized wood fuel. The results obtained in the present study are as follows. (1) Comminution energy increases as the water content increases and the sieve of screen becomes small. The comminution energy of hammer mill is largely affected by the water content. Difference in comminution energy between the hammer and cutter mills is large. The ratio of comminution energy of the hammer mill to that of the cutter mill exceeds 10 for the water content of 40% and sieve of screen of 3mm. (2) To estimate the comminution energy of woody biomass, empirical equations of work index in Bond's Law are presented. In woody biomass region, the empirical equations of work index depend on the comminution method. In semi-carbonization and carbonization regions, the empirical equation of work index is presented regardless of comminution method and sieve of screen. The comminution energy can be estimated by using the present empirical equations within accuracy ±50

  17. An analysis of residential energy consumption in a temperate climate. Volume 2

    SciTech Connect

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  18. Energy consumption and expenditure projections by population group on the basis on the annual energy outlook 2000 forecast.

    SciTech Connect

    Poyer, D. A.; Decision and Information Sciences

    2001-05-31

    The changes in the patterns of energy use and expenditures by population group are analyzed by using the 1993 and 1997 Residential Energy Consumption Surveys. Historically, these patterns have differed among non-Hispanic White households, non-Hispanic Black households, and Hispanic households. Patterns of energy use and expenditures are influenced by geographic and metropolitan location, the composition of housing stock, economic and demographic status, and the composition of energy use by end-use category. As a consequence, as energy-related factors change across groups, patterns of energy use and expenditures also change. Over time, with changes in the composition of these factors by population group and their variable influences on energy use, the impact on energy use and expenditures has varied across these population groups.

  19. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  20. Using high frequency consumption data to identify demand response potential for solar energy integration

    NASA Astrophysics Data System (ADS)

    Jin, L.; Borgeson, S.; Fredman, D.; Hans, L.; Spurlock, A.; Todd, A.

    2015-12-01

    California's renewable portfolio standard (2012) requires the state to get 33% of its electricity from renewable sources by 2020. Increased share of variable renewable sources such as solar and wind in the California electricity system may require more grid flexibility to insure reliable power services. Such grid flexibility can be potentially provided by changes in end use electricity consumptions in response to grid conditions (demand-response). In the solar case, residential consumption in the late afternoon can be used as reserve capacity to balance the drop in solar generation. This study presents our initial attempt to identify, from a behavior perspective, residential demand response potentials in relation to solar ramp events using a data-driven approach. Based on hourly residential energy consumption data, we derive representative daily load shapes focusing on discretionary consumption with an innovative clustering analysis technique. We aggregate the representative load shapes into behavior groups in terms of the timing and rhythm of energy use in the context of solar ramp events. Households of different behavior groups that are active during hours with high solar ramp rates are identified for capturing demand response potential. Insights into the nature and predictability of response to demand-response programs are provided.

  1. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    SciTech Connect

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  2. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    SciTech Connect

    Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

    1980-07-01

    This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

  3. Experimental Energy Consumption of Frame Slotted ALOHA and Distributed Queuing for Data Collection Scenarios

    PubMed Central

    Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis; Vilajosana, Xavier

    2014-01-01

    Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC) protocols, Frame Slotted ALOHA (FSA) and Distributed Queuing (DQ). We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA. PMID:25061839

  4. Management of Energy Consumption on Cluster Based Routing Protocol for MANET

    NASA Astrophysics Data System (ADS)

    Hosseini-Seno, Seyed-Amin; Wan, Tat-Chee; Budiarto, Rahmat; Yamada, Masashi

    The usage of light-weight mobile devices is increasing rapidly, leading to demand for more telecommunication services. Consequently, mobile ad hoc networks and their applications have become feasible with the proliferation of light-weight mobile devices. Many protocols have been developed to handle service discovery and routing in ad hoc networks. However, the majority of them did not consider one critical aspect of this type of network, which is the limited of available energy in each node. Cluster Based Routing Protocol (CBRP) is a robust/scalable routing protocol for Mobile Ad hoc Networks (MANETs) and superior to existing protocols such as Ad hoc On-demand Distance Vector (AODV) in terms of throughput and overhead. Therefore, based on this strength, methods to increase the efficiency of energy usage are incorporated into CBRP in this work. In order to increase the stability (in term of life-time) of the network and to decrease the energy consumption of inter-cluster gateway nodes, an Enhanced Gateway Cluster Based Routing Protocol (EGCBRP) is proposed. Three methods have been introduced by EGCBRP as enhancements to the CBRP: improving the election of cluster Heads (CHs) in CBRP which is based on the maximum available energy level, implementing load balancing for inter-cluster traffic using multiple gateways, and implementing sleep state for gateway nodes to further save the energy. Furthermore, we propose an Energy Efficient Cluster Based Routing Protocol (EECBRP) which extends the EGCBRP sleep state concept into all idle member nodes, excluding the active nodes in all clusters. The experiment results show that the EGCBRP decreases the overall energy consumption of the gateway nodes up to 10% and the EECBRP reduces the energy consumption of the member nodes up to 60%, both of which in turn contribute to stabilizing the network.

  5. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. X Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption...

  6. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. X Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption...

  7. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. E Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  8. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Battery Chargers Y Appendix Y to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. Y Appendix Y to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  9. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. F Appendix F to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Room...

  10. Consumption of low-fat dairy products and energy and protein intake in cancer patients at risk of malnutrition.

    PubMed

    Vidal-Casariego, Alfonso; Pintor-de la Maza, Begoña; Calleja-Fernández, Alicia; Villar-Taibo, Rocío; Cano-Rodríguez, Isidoro; Ballesteros-Pomar, María D

    2015-01-01

    Current nutritional guidelines encourage the reduction of fat intake from animal sources like dairy products. The aim was to determine whether the consumption of low-fat dairy is related to poorer dietary intake and nutritional status in cancer patients at risk of malnutrition. This cross-sectional included patients with solid or hematological malignancies at risk of malnutrition. Nutritional status was studied using Subjective Global Assessment, anthropometry, and grip strength. Dietary intake was evaluated with a 24-h recall and dairy consumption with a structured questionnaire. Seventy-four patients were recruited; 71.6% males of 64.8 yr, most with gastrointestinal malignancies. Only 37.8% consumed whole milk, and 61.4% consumed whole yogurt. Reasons for consumption of low-fat dairies were healthy diet (58.0%), hypercholesterolemia (20.0%), and digestive intolerance (10.0%). There were similar rates of malnutrition according the type of dairy (whole 60.9% vs. low-fat 66.7%, P = 0.640). Low-fat dairies were related to a reduction in energy (whole 1980.1 kcal vs. low-fat 1480.9, P = 0.007) and protein intake (whole 86.0 g vs. low-fat 63.0 g, P = 0.030).

  11. Effect of standard of living on energy consumption and the CO{sub 2} greenhouse effect

    SciTech Connect

    Hung-Yee Shu; Ming-Chin Chang; Shaw, H.

    1996-12-31

    Per capita energy growth patterns were lumped into 6 global regions of similar sociopolitical background, and used to project the rate of growth of atmospheric CO{sub 2}. The 6 key global regions specifically considered were: (1) North America (U.S. and Canada) [NA], (2) Middle East (North Africa and Persian Gulf States) [ME], (3) Commonwealth of Independent States and Eastern Europe [CISEE], (4) China and other centrally planned Asiatic economies [CPAE], (5) Industrialized Countries (including Western Europe, Australia, New Zealand, Israel, Japan, and South Africa) [IC], (6) Less Developed Countries (including all of South and Central America, Central Africa, and the rest of Asia) [LDC]. LDC population will grow 2.7 times from 50 to 67% of world population from 1990 to 2100. Over the same period, world population will grow from 5.2 to 11.9 billion people, and energy use from 15 to 60 TW. LDC energy use will grow disproportionately faster from 20 to 40%, and that in IC will slow from 30 to 22% of world energy. Data on the gross domestic product (GDP) from the World Bank were used as surrogates for standard of living (SOL) to relate world energy consumption with SOL. Per capita energy consumption varied linearly with per capita GDP for the LDC, but was independent of GDP for IC. The per capita energy consumption was multiplied by the population to project the total world energy consumption. We projected that non-fossil energy sources consisting mostly of nuclear energy will overtake fossil energy consisting mostly of coal derived products in the year 2075. The growth of CO{sub 2} emissions from 6 to 18.2 GtC/a will result in an average global temperature increase of 3{degrees}C due to this source only. However, CO{sub 2} is only about half the problem. When all infrared absorbing gases are considered, an average increase of 5.6 {degrees}C is projected for 2100. 7 figs., 1 tab.

  12. Review of the indoor environmental quality and energy consumption studies for low income households in Europe.

    PubMed

    Kolokotsa, D; Santamouris, M

    2015-12-01

    The term energy poverty is used to describe a situation of a household not able to satisfy socially and materially the required levels of its energy services. Energy and fuel poverty is an increasing problem in the European Union. Although the specific conditions vary from country to country the drivers defining fuel and energy poverty are similar in all Europe. This paper aims to present the state of the art regarding the energy demand and indoor environmental quality of low income households in Europe. The characteristics of this specific population group are presented including details on the specific energy consumption, the indoor comfort and finally the impact of the specific living conditions on the occupants' health. PMID:26225739

  13. An investigation of the energy consumption and conversion of piezoelectric actuators integrated in active structures

    SciTech Connect

    Liang, C.; Sun, F.; Rogers, C.A.

    1994-12-31

    This paper quantifies the energy consumption and conversion of an active structure driven by piezoelectric ceramic (PZT) actuators. The principle and methodology discussed in this paper may also be applied to other active structures with different types of actuators. The paper first discusses the energy conversion of PZT actuator materials, including the energy dissipation and electro-mechanical energy conversion. The energy conversion efficiency for the static and dynamic applications of PZT actuator is then defined and discussed. A numerical case study has also been conducted. One of the major conclusions from the investigation is that the physical process of energy conversion (electrical to mechanical and vice versa) within an induced strain actuator depends on the operating conditions of the actuator, namely, the type of structure it interacts, as well as the structural impedance.

  14. Promontory Facility Plant-wide Energy Assessment

    SciTech Connect

    Weir, Roger M.; Bebb, Deanna, Brown, Herman E.

    2008-03-28

    A 1-year plant-wide assessment at the ATK Promontory manufacturing facility utilizing innovative assessment technologies to identify energy savings opportunities in: steam, water, compressed air, HVAC, utility, production, and building systems.

  15. Computer usage and national energy consumption: Results from a field-metering study

    SciTech Connect

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah; Young, Scott

    2014-12-01

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power

  16. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  17. Reduced energy consumption evaporator for use in desalting impaired waters. Technical completion report (Final)

    SciTech Connect

    Tleimat, B.W.; Tleimat, M.C.

    1995-06-01

    The basic objective of this program is to demonstrate significant savings in energy consumption by the use of the wiped film rotating disk (WFRD) evaporator in a five-effect vapor compression distillation (MEVCD) system to recover the maximum amount of water from agricultural drainage water and other impaired waters. Tests were conducted using a 10,000 ppm aqueous solution of sodium sulfate and sodium chloride to simulate the composition of agricultural drainage water in the San Joaquin Valley, California. The feed was concentrated by a factor ranging from 15 to 20 resulting in a blowdown salinity of 150,000 to 200,000 ppm. The results showed the presence of dissolved salts has significant influence on energy consumption by the compressor of a commercial 60,000 gal/day VCD unit tested at Los Banos, California.

  18. Detecting the relationship between economic growth, CO2 and energy consumption by using panel data approach

    NASA Astrophysics Data System (ADS)

    Sayed, Ahmed R. M. Al; Isa, Zaidi

    2015-09-01

    Many scholars have shown their interest into the relationship between energy consumption (EC), gross domestic product (GDP) and emissions. The main objective of this study is to investigate the relationship between GDP, EC and CO2 within multivariate model by using panel data method in Asian countries; Korea, Malaysia, Japan and China for annually data during the period 1960 to 2010. The main finding shows that CO2 can be explained more than 86% & 78% by EC and GDP in each of cross section model and period model respectively. As a result of that, CO2 emissions should be considered as an important factor in energy consumption and gross domestic product by policy maker.

  19. Effect of hydrocolloids on the energy consumption and quality of frozen noodles.

    PubMed

    Pan, Zhi-Li; Ai, Zhi-Lu; Wang, Tao; Wang, Yu-Hong; Zhang, Xiu-Ling

    2016-05-01

    Effects of hydrocolloids such as Sodium polyacrylate, xanthan gum and sodium alginate on the energy consumption and quality of frozen cooked noodles were investigated. Results showed that gelatinization temperature (GT) shortened significantly and texture properties (hardness, firmness, break strength) of frozen cooked noodle were significantly improved by adding different hydrocolloid additives (P < 0.05). Nevertheless, there were no significant differences of glass-transition temperature between hydrocolloid fortified and non fortified frozen cooked noodles. Moreover, the hydrocolloids improved quality of cooked noodle and increased energy consumption, however, xanthan gum showed the best results. The optimized constituents were: sodium polyacrylate 0.13 %, xanthan gum 0.86 %, sodium alginate 0.18 % with predicted sensory scores of 90.30. The study showed that hydrocolloids could be used as modifying agents in frozen cooked noodle process. PMID:27407208

  20. Assessing Energy Use in Your Plant

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program fact sheet describes ITP resources and software that industrial plants can use for energy assessments that result in greater energy efficiency and lower costs.

  1. The use of food consumption data in assessments of exposure to food chemicals including the application of probabilistic modelling.

    PubMed

    Lambe, Joyce

    2002-02-01

    Emphasis on public health and consumer protection, in combination with globalisation of the food market, has created a strong demand for exposure assessments of food chemicals. The food chemicals for which exposure assessments are required include food additives, pesticide residues, environmental contaminants, mycotoxins, novel food ingredients, packaging-material migrants, flavouring substances and nutrients. A wide range of methodologies exists for estimating exposure to food chemicals, and the method chosen for a particular exposure assessment is influenced by the nature of the chemical, the purpose of the assessment and the resources available. Sources of food consumption data currently used in exposure assessments range from food balance sheets to detailed food consumption surveys of individuals and duplicate-diet studies. The fitness-for-purpose of the data must be evaluated in the context of data quality and relevance to the assessment objective. Methods to combine the food consumption data with chemical concentration data may be deterministic or probabilistic. Deterministic methods estimate intakes of food chemicals that may occur in a population, but probabilistic methods provide the advantage of estimating the probability with which different levels of intake will occur. Probabilistic analysis permits the exposure assessor to model the variability (true heterogeneity) and uncertainty (lack of knowledge) that may exist in the exposure variables, including food consumption data, and thus to examine the full distribution of possible resulting exposures. Challenges for probabilistic modelling include the selection of appropriate modes of inputting food consumption data into the models. PMID:12002785

  2. The use of food consumption data in assessments of exposure to food chemicals including the application of probabilistic modelling.

    PubMed

    Lambe, Joyce

    2002-02-01

    Emphasis on public health and consumer protection, in combination with globalisation of the food market, has created a strong demand for exposure assessments of food chemicals. The food chemicals for which exposure assessments are required include food additives, pesticide residues, environmental contaminants, mycotoxins, novel food ingredients, packaging-material migrants, flavouring substances and nutrients. A wide range of methodologies exists for estimating exposure to food chemicals, and the method chosen for a particular exposure assessment is influenced by the nature of the chemical, the purpose of the assessment and the resources available. Sources of food consumption data currently used in exposure assessments range from food balance sheets to detailed food consumption surveys of individuals and duplicate-diet studies. The fitness-for-purpose of the data must be evaluated in the context of data quality and relevance to the assessment objective. Methods to combine the food consumption data with chemical concentration data may be deterministic or probabilistic. Deterministic methods estimate intakes of food chemicals that may occur in a population, but probabilistic methods provide the advantage of estimating the probability with which different levels of intake will occur. Probabilistic analysis permits the exposure assessor to model the variability (true heterogeneity) and uncertainty (lack of knowledge) that may exist in the exposure variables, including food consumption data, and thus to examine the full distribution of possible resulting exposures. Challenges for probabilistic modelling include the selection of appropriate modes of inputting food consumption data into the models.

  3. Baseline test data for the EVA electric vehicle. [low energy consumption automobiles

    NASA Technical Reports Server (NTRS)

    Harhay, W. C.; Bozek, J.

    1976-01-01

    Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.

  4. Assessing consumption of bioactive micro-particles by filter-feeding Asian carp

    USGS Publications Warehouse

    Jensen, Nathan R.; Amberg, Jon J.; Luoma, James A.; Walleser, Liza R.; Gaikowski, Mark P.

    2012-01-01

    Silver carp Hypophthalmichthys molitrix (SVC) and bighead carp H. nobilis (BHC) have impacted waters in the US since their escape. Current chemical controls for aquatic nuisance species are non-selective. Development of a bioactive micro-particle that exploits filter-feeding habits of SVC or BHC could result in a new control tool. It is not fully understood if SVC or BHC will consume bioactive micro-particles. Two discrete trials were performed to: 1) evaluate if SVC and BHC consume the candidate micro-particle formulation; 2) determine what size they consume; 3) establish methods to evaluate consumption of filter-feeders for future experiments. Both SVC and BHC were exposed to small (50-100 μm) and large (150-200 μm) micro-particles in two 24-h trials. Particles in water were counted electronically and manually (microscopy). Particles on gill rakers were counted manually and intestinal tracts inspected for the presence of micro-particles. In Trial 1, both manual and electronic count data confirmed reductions of both size particles; SVC appeared to remove more small particles than large; more BHC consumed particles; SVC had fewer overall particles in their gill rakers than BHC. In Trial 2, electronic counts confirmed reductions of both size particles; both SVC and BHC consumed particles, yet more SVC consumed micro-particles compared to BHC. Of the fish that ate micro-particles, SVC consumed more than BHC. It is recommended to use multiple metrics to assess consumption of candidate micro-particles by filter-feeders when attempting to distinguish differential particle consumption. This study has implications for developing micro-particles for species-specific delivery of bioactive controls to help fisheries, provides some methods for further experiments with bioactive micro-particles, and may also have applications in aquaculture.

  5. Global assessment of select phytonutrient intakes by level of fruit and vegetable consumption.

    PubMed

    Murphy, Mary M; Barraj, Leila M; Spungen, Judith H; Herman, Dena R; Randolph, R Keith

    2014-09-28

    Despite dietary recommendations that have repeatedly underscored the importance of increasing consumption of fruits and vegetables, intakes worldwide are lower than recommended levels. Consequently, the diets of many individuals may be lacking in nutrients and phytonutrients typical of a diet rich in a variety of fruits and vegetables. In the present study, we estimated phytonutrient intakes by adults categorised by sex, level of fruit and vegetable consumption (< 5 v. ≥ 5 servings/d), and geographic diet cluster. Intakes of nine select phytonutrients were estimated from the 2002-4 World Health Survey fruit and vegetable servings intake data (n 198,637), the FAO supply utilisation accounts data, and phytonutrient concentration data obtained from the US Department of Agriculture databases and the published literature. Percentage contributions to each phytonutrient intake from fruit and vegetable sources were also estimated. Estimated intakes of phytonutrients from fruits and vegetables varied across the thirteen geographic diet clusters, reflecting regional differences in both numbers and proportions of fruit and vegetable servings consumed, and the specific types of fruits and vegetables available in the diet. The mean phytonutrient intakes by adults consuming ≥ 5 servings/d of fruits and vegetables were approximately 2- to 6-fold the mean phytonutrient intakes by adults with low fruit and vegetable consumption (< 5 servings/d). In some cases, phytonutrient intakes by adults consuming ≥ 5 servings/d of fruits and vegetables in one geographic diet cluster were lower than the intakes by adults reporting < 5 servings/d in another cluster. The findings from this assessment provide important information regarding the major dietary patterns of phytonutrient intakes across geographic diet clusters.

  6. The projection of world geothermal energy consumption from time series and regression model

    NASA Astrophysics Data System (ADS)

    Simanullang, Elwin Y.; Supriatna, Agus; Supriatna, Asep K.

    2015-12-01

    World population growth has many impacts on human live activities and other related aspects. One among the aspects is the increase of the use of energy to support human daily activities, covering industrial aspect, transportation, domestic activities, etc. It is plausible that the higher the population size in a country the higher the needs for energy to support all aspects of human activities in the country. Considering the depletion of petroleum and other fossil-based energy, recently there is a tendency to use geothermal as other source of energy. In this paper we will discuss the prediction of the world consumption of geothermal energy by two different methods, i.e. via the time series of the geothermal usage and via the time series of the geothermal usage combined with the prediction of the world total population. For the first case, we use the simple exponential smoothing method while for the second case we use the simple regression method. The result shows that taking into account the prediction of the world population size giving a better prediction to forecast a short term of the geothermal energy consumption.

  7. Assessing Multidimensional Energy Literacy of Secondary Students Using Contextualized Assessment

    ERIC Educational Resources Information Center

    Chen, Kuan-Li; Liu, Shiang-Yao; Chen, Po-Hsi

    2015-01-01

    Energy literacy is multidimensional, comprising broad content knowledge as well as affect and behavior. Our previous study has defined four core dimensions for the assessment framework, including energy concepts, reasoning on energy issues, low-carbon lifestyle, and civic responsibility for a sustainable society. The present study compiled a…

  8. Energy consumption due to local travel by urban households under three alternative policies: 1980 to 2000

    SciTech Connect

    Singh, M K

    1981-11-01

    An evaluation was made of total energy consumption, by fuel type, resulting from local travel (by urban households) in 1980, 1990, and 2000, in two scenarios and three alternative policies. Energy consumed in vehicle operation, fuel production, vehicle production, and infrastructure construction was projected; and the relative impact of each policy was also evaluated. The results indicate that the Group Travel and Individual Travel Policies in both scenarios save on total energy use and total petroleum use relative to the In-Place Travel Policy in both scenarios. However, the results also indicate that some of the savings achieved in direct energy consumed by vehicle operation under the Group Travel and Individual Travel Policies are offset by the increased energy required to manufacture the vehicles and to build the infrastructure associated with these policies.

  9. Towards an Optimal Energy Consumption for Unattended Mobile Sensor Networks through Autonomous Sensor Redeployment

    PubMed Central

    Jia, Jie; Wen, Yingyou; Zhao, Dazhe

    2014-01-01

    Energy hole is an inherent problem caused by heavier traffic loads of sensor nodes nearer the sink because of more frequent data transmission, which is strongly dependent on the topology induced by the sensor deployment. In this paper, we propose an autonomous sensor redeployment algorithm to balance energy consumption and mitigate energy hole for unattended mobile sensor networks. First, with the target area divided into several equal width coronas, we present a mathematical problem modeling sensor node layout as well as transmission pattern to maximize network coverage and reduce communication cost. And then, by calculating the optimal node density for each corona to avoid energy hole, a fully distributed movement algorithm is proposed, which can achieve an optimal distribution quickly only by pushing or pulling its one-hop neighbors. The simulation results demonstrate that our algorithm achieves a much smaller average moving distance and a much longer network lifetime than existing algorithms and can eliminate the energy hole problem effectively. PMID:24949494

  10. A UK student survey investigating the effects of consuming alcohol mixed with energy drinks on overall alcohol consumption and alcohol-related negative consequences.

    PubMed

    Johnson, Sean J; Alford, Chris; Stewart, Karina; Verster, Joris C

    2016-12-01

    Previous research reported positive associations between alcohol mixed with energy drink (AMED) consumption and overall alcohol consumption. However, results were largely based on between-subjects comparisons comparing AMED consumers with alcohol-only (AO) consumers, and therefore cannot sufficiently control for differences in personal characteristics between these groups. In order to determine whether AMED consumers drink more alcohol on occasions they consume AMED compared to those when they drink AO additional within-subjects comparisons are required. Therefore, this UK student survey assessed both alcohol consumption and alcohol-related negative consequences when consumed alone and when mixed with energy drinks, using a within-subject design. A total of 1873 students completed the survey, including 732 who consumed AMED. It was found that AMED consumers drank significantly less alcohol when they consumed AMED compared to when they drank AO (p < 0.001). In line with reduced alcohol consumption significantly fewer negative alcohol-related consequences were reported on AMED occasions compared to AO occasions (p < 0.001). These findings suggest that mixing alcohol with energy drinks does not increase total alcohol consumption or alcohol-related negative consequences.

  11. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  12. Exposure assessment for methyl and total mercury from seafood consumption in Korea, 2005 to 2008.

    PubMed

    Moon, Hyo-Bang; Kim, Sang-Jo; Park, Hyejin; Jung, Yun Sun; Lee, Suuggyu; Kim, Yun-Hee; Choi, Minkyu

    2011-09-01

    Reports on the occurrence and intake assessment of mercury for Korean seafood are currently not available. This is the first report to estimate the intake of methyl (Me-Hg) and total mercury (T-Hg) from seafood consumption in Korea. The concentrations of Me-Hg and T-Hg in seafood ranged from 1.02 to 780 (mean: 55.6) ng g(-1) wet weight and 4.89 to 1008 (mean: 100) ng g(-1) wet weight, respectively. The residue levels of Me-Hg and T-Hg in Korean seafood were moderate compared with those found in other countries. The methylation ratios of fish, cephalopods and crustaceans were similar, but shellfish had lower values compared with other species. The intakes of Me-Hg and T-Hg from seafood consumption for the general population were estimated to be 38.8 and 73.8 ng kg(-1) body weight per day, respectively. Mackerel, tuna and squid made the highest contributions to the total intake of these contaminants. Among eight age groups, 30-49 year and 3-6 year age groups had the highest exposure to Me-Hg and T-Hg. The concentrations and intakes of Me-Hg and T-Hg from Korean seafood were less than the allowable residue levels and threshold intake levels suggested by Korean and international authorities. The present study may be useful for risk management of mercury in Korean seafood. PMID:21847486

  13. A regular curd consumption improves gastrointestinal status assessed by a randomized controlled nutritional intervention.

    PubMed

    Navas-Carretero, Santiago; Abete, Itziar; Cuervo, Marta; Zulet, M Ángeles; Martínez, J Alfredo

    2013-09-01

    This study evaluated the influence of curd consumption (a dairy product in which most whey proteins are discarded) on nutritional status markers and on gastrointestinal symptoms through an open-label randomized nutritional intervention. A total of 20 males and 20 females were involved in the study. Body weight and plasma levels of different health markers were measured at baseline and at the end of the study. Gastrointestinal symptoms and satiety were assessed by self-reported subjective questionnaires. There were neither relevant changes in body weight and composition, nor in all screened plasma determinations after the intervention. Satiety score analyses revealed no differences between the two experimental groups. The regular consumption of curd-improved abdominal pain (19%) and deposition scores (16%) when compared with those participants non-consuming curd, which may indicate a better tolerability of this product. Curd intake within a balanced diet improved some subjective markers of gastrointestinal status, which may be explained by the nutritional composition of curds.

  14. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    SciTech Connect

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.; Desjarlais, Andre Omer

    2015-12-12

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials are a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.

  15. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    DOE PAGESBeta

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.; Desjarlais, Andre Omer

    2015-12-12

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials aremore » a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.« less

  16. Energy Drink Consumption in Europe: A Review of the Risks, Adverse Health Effects, and Policy Options to Respond

    PubMed Central

    Breda, João Joaquim; Whiting, Stephen Hugh; Encarnação, Ricardo; Norberg, Stina; Jones, Rebecca; Reinap, Marge; Jewell, Jo

    2014-01-01

    With the worldwide consumption of energy drinks increasing in recent years, concerns have been raised both in the scientific community and among the general public about the health effects of these products. Recent studies provide data on consumption patterns in Europe; however, more research is needed to determine the potential for adverse health effects related to the increasing consumption of energy drinks, particularly among young people. A review of the literature was conducted to identify published articles that examined the health risks, consequences, and policies related to energy drink consumption. The health risks associated with energy drink consumption are primarily related to their caffeine content, but more research is needed that evaluates the long-term effects of consuming common energy drink ingredients. The evidence indicating adverse health effects due to the consumption of energy drinks with alcohol is growing. The risks of heavy consumption of energy drinks among young people have largely gone unaddressed and are poised to become a significant public health problem in the future. PMID:25360435

  17. What are the health implications associated with the consumption of energy drinks? A systematic review.

    PubMed

    Burrows, Tracy; Pursey, Kirrilly; Neve, Melinda; Stanwell, Peter

    2013-03-01

    There is increasing interest regarding the potential health effects of energy drink (ED) consumption. The aim of the present review was to investigate the existing evidence on health outcomes associated with ED consumption. Studies published between 1966 and February 2011 were retrieved and included if they met the following criteria: were randomized or pseudo randomized control trials; studied a human population; reported a health-related measure; and investigated a whole ED (as opposed to individual ingredients). Study quality was evaluated and data extracted using standardized tools. Fifteen studies were identified, the majority of which had less than 30 participants and included a short term of follow-up (range: 30 min-3 h). The following outcome measures were included: cardiorespiratory effects, physiological measures, pathological measures, and body composition. The mean dosage of ED was 390 mL (range: 250-750 mL). Commercial ED funding and/or study associations were identified in six studies. Studies investigating long-term consumption and follow-up were lacking. The findings from this review do not allow definitive dietary recommendations to be made regarding safe levels of ED consumption; caution should be exercised when consuming these drinks until further high-quality research is undertaken to substantiate findings. PMID:23452281

  18. Identifying and analyzing methods for reducing the energy consumption of helicopters

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Rosenstein, H. J.

    1976-01-01

    Reductions in helicopter energy consumption can be accomplished through the use of advanced technology in the areas of powerplant design, improved rotor efficiency, reduced parasite drag, and reduced structural empty weight. Baseline helicopters incorporating technology were designed for a short range (200 n mi) and a very short haul (100 n mi) mission scenario. Parametric analyses were then conducted to determine the impact of technology improvement. Many of the parameters varied are interrelated. A summary of such interactions is presented, and some additional sensitivity values were added so that energy reduction and DOC as affected by the major technological factors or operational modes are clearly defined.

  19. Survey of socio-economic and contextual factors of households׳ energy consumption

    PubMed Central

    Jridi, Omar; Nouri, Fethi Zouheir

    2015-01-01

    We present a set of data relating to the investigation of the Tunisian Company of Electricity and Gas (STEG). The census is done on a sample of 3000 electrified households. The questionnaire is divided into three main sections: household socioeconomic status, contextual characteristics related to their housing and technical characteristics of equipments used. The objective of this survey is to achieve a reliable and detailed knowledge on the behavior of household energy consumption, particularly for energy saving behavior. This objective has recently been the subject of a research article Jridi et al. (2015) [2]. PMID:26568974

  20. Survey of socio-economic and contextual factors of households׳ energy consumption.

    PubMed

    Jridi, Omar; Nouri, Fethi Zouheir

    2015-12-01

    We present a set of data relating to the investigation of the Tunisian Company of Electricity and Gas (STEG). The census is done on a sample of 3000 electrified households. The questionnaire is divided into three main sections: household socioeconomic status, contextual characteristics related to their housing and technical characteristics of equipments used. The objective of this survey is to achieve a reliable and detailed knowledge on the behavior of household energy consumption, particularly for energy saving behavior. This objective has recently been the subject of a research article Jridi et al. (2015) [2]. PMID:26568974

  1. ECASTAR: Energy conservation. An assessment of systems, technologies and requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A methodology was presented for a systems approach to energy conservation actions and their potentials and impacts in the United States. Constraints affecting the approach were ranked, and the most important ones are the present economic and technical conditions. The following unresolved issues were identified: consumptive lifestyles vs. conservation ethic, environmental standards vs. energy conservation, capital availability, decentralization and vertical integration vs. centralization, fuel rich regions vs. fuel poor regions, supply vs. end use conservation, life cycle costing vs. initial cost, mandatory savings vs. voluntary savings, labor intensive vs. capital intensive, price control vs. free market. The following recommendations were made: provide action/impact assessment, establish regional energy centers, improve technology articulation with government, design total energy systems, utilize existing systems approach expertise.

  2. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  3. Assessment of consumption of marine food in Greenland by a food frequency questionnaire and biomarkers

    PubMed Central

    Jeppesen, Charlotte; Jørgensen, Marit Eika; Bjerregaard, Peter

    2012-01-01

    Objectives We studied the association and agreement between questionnaire data and biomarkers of marine food among Greenland Inuit. Design Cross sectional study. Methods The study population comprised 2,224 Inuit, age 18+ (43% men); data collected 2005–2008 in Greenland. Using a food frequency questionnaire (FFQ), we calculated consumption of seal, whale, and fish (g/day) and as meals/month, intake of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), total N3, and mercury. We measured erythrocyte membrane fatty acids (FA) and whole blood mercury (Hg). Associations were assessed by Pearson correlation and agreement between the 2 methods was assessed by Bland–Altman plots depicting mean difference between the methods. Using multiple linear regressions, the associations were studied between whole blood mercury, erythrocyte FA and frequency or gram per day of seal, whale, and fish. Results Partial correlations ranged from r=0.16, p<0.0001 (DHA) to r=0.56, p<0.0001 (mercury). The best fitted lines were found for mercury and DHA. Mean difference was negative for mercury but positive for all the FA biomarkers. In a multiple logistic regression analysis, the best association was found between whole blood mercury and seal consumption, both as frequency in meals and actual intake gram per day: β=1.07 µg (95% CI: 1.06; 1.08) and β=1.04 µg (95% CI: 1.03; 1.04), respectively. Conclusion Mercury showed the best correlation and agreement between calculated and measured values. Calculated actual intake in gram per day and frequency of meals showed similar associations with whole blood mercury and erythrocyte membrane FAs. PMID:22663940

  4. Probabilistic framework for assessing the arsenic exposure risk from cooked fish consumption.

    PubMed

    Ling, Min-Pei; Wu, Chiu-Hua; Chen, Szu-Chieh; Chen, Wei-Yu; Chio, Chia-Pin; Cheng, Yi-Hsien; Liao, Chung-Min

    2014-12-01

    Geogenic arsenic (As) contamination of groundwater is a major ecological and human health problem in southwestern and northeastern coastal areas of Taiwan. Here, we present a probabilistic framework for assessing the human health risks from consuming raw and cooked fish that were cultured in groundwater As-contaminated ponds in Taiwan by linking a physiologically based pharmacokinetics model and a Weibull dose-response model. Results indicate that As levels in baked, fried, and grilled fish were higher than those of raw fish. Frying resulted in the greatest increase in As concentration, followed by grilling, with baking affecting the As concentration the least. Simulation results show that, following consumption of baked As-contaminated fish, the health risk to humans is <10(-6) excess bladder cancer risk level for lifetime exposure; as the incidence ratios of liver and lung cancers are generally acceptable at risk ranging from 10(-6) to 10(-4), the consumption of baked As-contaminated fish is unlikely to pose a significant risk to human health. However, contaminated fish cooked by frying resulted in significant health risks, showing the highest cumulative incidence ratios of liver cancer. We also show that males have higher cumulative incidence ratio of liver cancer than females. We found that although cooking resulted in an increase for As levels in As-contaminated fish, the risk to human health of consuming baked fish is nevertheless acceptable. We suggest the adoption of baking as a cooking method and warn against frying As-contaminated fish. We conclude that the concentration of contaminants after cooking should be taken into consideration when assessing the risk to human health.

  5. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Water Heaters 1. Definitions 1.1Cut-in means the time when or water temperature at which a water heater...

  6. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Water Heaters 1. Definitions 1.1Cut-in means the time when or water temperature at which a water heater...

  7. Effects of sitting time associated with media consumption on physical activity patterns and daily energy expenditure of Saudi school students

    PubMed Central

    Alghadir, Ahmad H.; Gabr, Sami A.; Iqbal, Zaheen A.

    2015-01-01

    [Purpose] This study was performed to assess the effect of daily sitting time during media consumption on physical fitness, total energy expenditure (TEE), and body composition indices of Saudi school children. [Subjects and Methods] A total of 180 healthy Saudi school students (8–18 years) were included in this study. Sitting time, total energy expenditure, and levels of physical activity were evaluated with pre-validated internet based questionnaires. Body composition indices were evaluated using anthropometric analysis. [Results] Out of the studied participants, only 22.2% of students were physically inactive. Children with moderate and active physical scores demonstrated less sedentary behavior (TV viewing and computer usage), lower body composition values (BMI, WC, WHtR), and higher TEE than sedentary or mild activity level participants. Boys showed higher fitness scores and less sedentary behavior than girls. Media sitting time among the studied subjects correlated negatively with physical scores and positively with body composition. [Conclusion] The data presented here suggests that poor physical fitness, lower TEE, and longer sitting times differentially influence normal body composition indices among school children which may lead to overweight or obese individuals. Thus, decreasing sitting time during media consumption and enhancing physical activity may play a pivotal role in preventing obesity in young children. PMID:26504298

  8. Environmental assessment of a program to reduce oil and gas consumption by electric utilities

    SciTech Connect

    Not Available

    1980-03-01

    An environmental assessment is presented of a program aimed at reducing oil and gas consumption in electric utility power plants by the equivalent of approximately 10/sup 6/ barrels per day by 1990. The program would mandate the conversion of 45 power plants (approximately 21 GW) to coal and would provide financial incentives for the accelerated replacement of other existing oil- and gas-fired plants (estimated to be 30 GW) by new coal-fired plants or other acceptable alternatives. The report analyzes the air quality impacts of potential increases in sulfur dioxide, nitrogen oxides, and particulate matter emissions associated with the program. The assessment also considers potential solid waste, coal production and transportation, and public health and welfare impacts. The Coal and Electric Utilities Model (CEUM) of ICF, Incorporated, was used to generate the numerical data on which the assessment is based. Impacts are presented at the national and regional levels, with some discussion of possible local air quality effects of conversion of specific plants.

  9. A Framework for Comparative Assessments of Energy Efficiency Policy Measures

    SciTech Connect

    Blum, Helcio; Atkinson, Barbara; Lekov, Alex

    2011-05-24

    When policy makers propose new policies, there is a need to assess the costs and benefits of the proposed policy measures, to compare them to existing and alternative policies, and to rank them according to their effectiveness. In the case of equipment energy efficiency regulations, comparing the effects of a range of alternative policy measures requires evaluating their effects on consumers’ budgets, on national energy consumption and economics, and on the environment. Such an approach should be able to represent in a single framework the particularities of each policy measure and provide comparable results. This report presents an integrated methodological framework to assess prospectively the energy, economic, and environmental impacts of energy efficiency policy measures. The framework builds on the premise that the comparative assessment of energy efficiency policy measures should (a) rely on a common set of primary data and parameters, (b) follow a single functional approach to estimate the energy, economic, and emissions savings resulting from each assessed measure, and (c) present results through a set of comparable indicators. This framework elaborates on models that the U.S. Department of Energy (DOE) has used in support of its rulemakings on mandatory energy efficiency standards. In addition to a rigorous analysis of the impacts of mandatory standards, DOE compares the projected results of alternative policy measures to those projected to be achieved by the standards. The framework extends such an approach to provide a broad, generic methodology, with no geographic or sectoral limitations, that is useful for evaluating any type of equipment energy efficiency market intervention. The report concludes with a demonstration of how to use the framework to compare the impacts estimated for twelve policy measures focusing on increasing the energy efficiency of gas furnaces in the United States.

  10. Effects of microwave - fluidized bed drying on quality, energy consumption and drying kinetics of soybean kernels.

    PubMed

    Khoshtaghaza, Mohammad Hadi; Darvishi, Hosain; Minaei, Saeid

    2015-08-01

    Moisture content of soybean kernel at harvest time is too high for storage, and needs to be reduced. In this research, drying characteristics, quality and energy requirement for microwave-fluidized bed drying of soybean kernels were studied. The results showed that air temperature (80-140 °C), velocity (1.8-4.5 m/s) and microwave power (200-500 W) significantly influenced drying time, moisture diffusivity, rehydration capacity, cracking, and specific energy consumption (P ≤ 0.05). Among the applied models, Page's model has the best performance to estimate the microwave-fluidized bed drying behavior of the soybean kernels. Moisture diffusivity values increased (6.25 × 10(-10) to 42.14 × 10(-10) m(2)/s) as the air velocity decreased and air temperature and microwave power increased. Activation energy was foundto be between 3.33 and 17.70 kJ/mol. Minimum cracking percentage of soybean kernels (12.96 %) was obtained at 80 °C, 1.8 m/s and 200 W treatments. The increase in microwave power and decrease in air velocity level decreased the rehydration capacity. Specific energy consumption varied from 50.94 to 338.76 MJ/kg water and the lowest specific energy consumption were obtained at 80 °C, 4.5 m/s and 500 W. PMID:26243896

  11. Geothermal energy: a brief assessment

    SciTech Connect

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  12. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  13. Effect of the section geometry of saucepan base on the energy consumption: an experimental study

    NASA Astrophysics Data System (ADS)

    Ayata, Tahir; Yücel, Yılmaz

    2016-08-01

    In this study, it is aimed to obtain a uniform temperature distribution on the top surface of a circular shaped aluminum saucepan base with rectangular section, while it is heated from the bottom surface by burnt gases. For this purpose, an aluminum saucepan with 10 mm thickness has been manufactured and used in the experiments. Water and oil were used to fill the saucepan during the tests. Tests were conducted at 0.7 and 0.9 m3/h gas flow rates. Firstly, experiments were performed for straight base geometry of the aluminum saucepan and then some modifications have been made in the thickness of the base along the radial direction using the temperature values obtained from the test with normal base. Experiments were repeated with modified base to obtain the new temperature distribution. Final comparison of the modified and unmodified base geometry results revealed that the temperatures obtained at the top surface of the modified base is more uniform than the normal base and the energy consumption decreased by up to 31 %. Thus, comparing both geometry to each other in terms of energy efficiency and consumption, modified based geometry is more promising with its shorter heat up time and lower gas consumption.

  14. Assessment of alcohol consumption in liver transplant candidates and recipients: the best combination of the tools available.

    PubMed

    Piano, Salvatore; Marchioro, Lucio; Gola, Elisabetta; Rosi, Silvia; Morando, Filippo; Cavallin, Marta; Sticca, Antonietta; Fasolato, Silvano; Forza, Giovanni; Chiara Frigo, Anna; Plebani, Mario; Zanus, Giacomo; Cillo, Umberto; Gatta, Angelo; Angeli, Paolo

    2014-07-01

    The detection of alcohol consumption in liver transplant candidates (LTCs) and liver transplant recipients (LTRs) is required to enable a proper assessment of transplant eligibility and early management of alcohol relapse, respectively. In this clinical setting, urinary ethyl glucuronide (uEtG), the Alcohol Use Disorders Identification Test for Alcohol Consumption (AUDIT-c), serum ethanol, urinary ethanol, carbohydrate-deficient transferrin (CDT), and other indirect markers of alcohol consumption were evaluated and compared prospectively in 121 LTCs and LTRs. Alcohol consumption was diagnosed when AUDIT-c results were positive or it was confirmed by a patient's history in response to abnormal results. Alcohol consumption was found in 30.6% of the patients. uEtG was found to be the strongest marker of alcohol consumption (odds ratio = 414.5, P < 0.001) and provided a more accurate prediction rate of alcohol consumption [area under receiving operating characteristic (ROC) curve = 0.94] than CDT (area under ROC curve = 0.63, P < 0.001) and AUDIT-c (area under ROC curve = 0.73, P < 0.001). The combination of uEtG and AUDIT-c showed higher accuracy in detecting alcohol consumption in comparison with the combination of CDT and AUDIT-c (area under ROC curve = 0.98 versus 0.80, P < 0.001). Furthermore, uEtG was the most useful marker for detecting alcohol consumption in patients with negative AUDIT-c results. In conclusion, the combination of AUDIT-c and uEtG improves the detection of alcohol consumption in LTCs and LTRs. Therefore, they should be used routinely for these patients.

  15. NodePM: A Remote Monitoring Alert System for Energy Consumption Using Probabilistic Techniques

    PubMed Central

    Filho, Geraldo P. R.; Ueyama, Jó; Villas, Leandro A.; Pinto, Alex R.; Gonçalves, Vinícius P.; Pessin, Gustavo; Pazzi, Richard W.; Braun, Torsten

    2014-01-01

    In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out. PMID:24399157

  16. NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques.

    PubMed

    Filho, Geraldo P R; Ueyama, Jó; Villas, Leandro A; Pinto, Alex R; Gonçalves, Vinícius P; Pessin, Gustavo; Pazzi, Richard W; Braun, Torsten

    2014-01-06

    In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

  17. The energy-water nexus: are there tradeoffs between residential energy and water consumption in arid cities?

    PubMed

    Ruddell, Darren M; Dixon, P Grady

    2014-09-01

    Water scarcity, energy consumption, and air temperature regulation are three critical resource and environmental challenges linked to urban population growth. While appliance efficiency continues to increase, today's homes are larger and residents are using more energy-consuming devices. Recent research has often described the energy-water nexus as a "tradeoff" between energy and water due to reduced temperatures resulting from irrigated vegetation. Accordingly, some arid cities have implemented landscape-conversion programs that encourage homeowners to convert their yards from grass (mesic) to drought-tolerant (xeric) landscapes to help conserve water resources. We investigated these relationships in Phoenix, Arizona by examining energy and water data for the summer months of June-September 2005 while temperature variability was analyzed from a local heat wave. Results show parallel consumption patterns with energy and water use strongly correlated and newer homes using more of both. The counterintuitive findings show that "drought-resistant" models may not be beneficial for community health, environment, or economics and that this issue is further complicated by socio-economic variables. PMID:24146303

  18. The energy-water nexus: are there tradeoffs between residential energy and water consumption in arid cities?

    PubMed

    Ruddell, Darren M; Dixon, P Grady

    2014-09-01

    Water scarcity, energy consumption, and air temperature regulation are three critical resource and environmental challenges linked to urban population growth. While appliance efficiency continues to increase, today's homes are larger and residents are using more energy-consuming devices. Recent research has often described the energy-water nexus as a "tradeoff" between energy and water due to reduced temperatures resulting from irrigated vegetation. Accordingly, some arid cities have implemented landscape-conversion programs that encourage homeowners to convert their yards from grass (mesic) to drought-tolerant (xeric) landscapes to help conserve water resources. We investigated these relationships in Phoenix, Arizona by examining energy and water data for the summer months of June-September 2005 while temperature variability was analyzed from a local heat wave. Results show parallel consumption patterns with energy and water use strongly correlated and newer homes using more of both. The counterintuitive findings show that "drought-resistant" models may not be beneficial for community health, environment, or economics and that this issue is further complicated by socio-economic variables.

  19. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    SciTech Connect

    Secrest, T.J.; Freeman, S.L.; Popelka, A.; Shestopal, P.A.; Gagurin, E.V.

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  20. Water withdrawal and consumption reduction analysis for electrical energy generation system

    NASA Astrophysics Data System (ADS)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  1. Estimation of main greenhouse gases emission from household energy consumption in the West Bank, Palestine.

    PubMed

    Abu-Madi, Maher; Abu Rayyan, Ma'moun

    2013-08-01

    The main GHGs (CO₂, NO(x), and SO₂) have been quantified based on national energy and population statistics. The results show that the contribution of households' energy consumption in the West Bank to global CO₂ emission is about 0.016%, while contribution of total energy consumption by all sectors is about 0.041%. The results show that wood is the most polluting energy source in terms of CO₂ and NO(x) emission, while electricity is the most polluting source in terms of SO₂. Other sources like diesel, kerosene, and LPG that contribute to the GHGs emission are also quantified. The total amounts of CO₂, NO(x), and SO₂ by households in the West Bank are 4.7 million tonne per year, 3.02 thousand tonne per year, and 2.23 thousand tonne per year respectively. This study presents a set of measures that might help in reducing the level of GHGs emission and protect the environment.

  2. Estimates of the cost and energy consumption of aluminum-air electric vehicles

    SciTech Connect

    Cooper, J.F.

    1980-11-01

    Economic costs and primary energy consumption are estimated for general purpose electric vehicles using aluminium-air propulsion batteries within the time frame of the 1990's (earliest possible date of introduction). Critical assumptions were: aluminum production at efficiencies at least as high as those of the best currently operating industrial installations; competitive performance automobiles with gasoline or diesel fuel economies at least as high as those of the best currently-available vehicles-13.5 to 19.3 tonne-km/liter (35 to 50 gross ton-miles/gal-fuel); and aluminum-air battery discharge efficiencies at least as high as those obtained with electrodes available prior to the start of the present alloy development program. For an aluminum-air fuel economy of 36 tonne/km/kg-Al (optimized low-gallium alloys), a total refueling cost of 5.6 cents/km (1979$) was estimated for a 1.27 tonne vehicle. This is equivalent to $2 to 3/gal for automobiles of the same weight with fuel economies of 13.5 to 19.3 tonne-km/liter. Critical to the cost estimate is the assumption of anode slab production directly from the product of a reduction cell by low cost casting and shearing operations. The total primary energy consumption was estimated to be 1.3 to 1.7 kWh/km (coal) for the electric vehicle, which corresponds roughly to the energy cost of the automobiles using liquid fuels synthesized from coal. The energy consumption is 30 to 70% greater than the reference automobile using petroleum-derived gasoline. The cost of the battery (including air-electrodes) was estimated to be about $30/kW including 30% markup over producer's cost; or $36/kW, if electrodes are used with 0.25 mg/cm/sup 2/ Pt loadings. (LCL)

  3. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    PubMed

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs.

  4. 10 CFR 431.304 - Uniform test method for the measurement of energy consumption of walk-in coolers and walk-in...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumption of walk-in coolers and walk-in freezers. 431.304 Section 431.304 Energy DEPARTMENT OF ENERGY... consumption of walk-in coolers and walk-in freezers. (a) Scope. This section provides test procedures for measuring, pursuant to EPCA, the energy consumption of refrigerated bottled or canned beverage...

  5. 10 CFR 431.304 - Uniform test method for the measurement of energy consumption of walk-in coolers and walk-in...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption of walk-in coolers and walk-in freezers. 431.304 Section 431.304 Energy DEPARTMENT OF ENERGY... consumption of walk-in coolers and walk-in freezers. (a) Scope. This section provides test procedures for measuring, pursuant to EPCA, the energy consumption of refrigerated bottled or canned beverage...

  6. Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain).

    PubMed

    Vázquez-Rowe, Ian; Villanueva-Rey, Pedro; Hospido, Almudena; Moreira, María Teresa; Feijoo, Gumersindo

    2014-03-15

    European pilchard or sardines (Sardina pilchardus) are an attractive raw material to extract from Iberian waters, since they constitute a cheap source of protein and they are a popular product among consumers. This has led to a wide range of final products available for consumers to purchase based on this single raw material. Therefore, this study presents a cross-product environmental assessment using life cycle assessment of three different final products based on sardine landings: canned sardines, fresh sardines and European hake caught by using sardine as bait. In addition, the products were followed throughout their entire life cycle, considering different cooking methods for each final product. Results showed high variability in environmental impacts, not only between the three final products, but also when one single product was cooked in different ways, highlighting the importance that the consumption phase and other post-landing stages may have on the final environmental profile of seafood. Results are then analysed regarding relevant limitations and uncertainties, as well as in terms of the consumer and policy implications.

  7. Ultrasonic vibration-assisted pelleting of wheat straw: a predictive model for energy consumption using response surface methodology.

    PubMed

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai

    2014-01-01

    Cellulosic biomass can be used as a feedstock for biofuel manufacturing. Pelleting of cellulosic biomass can increase its bulk density and thus improve its storability and reduce the feedstock transportation costs. Ultrasonic vibration-assisted (UV-A) pelleting can produce biomass pellets whose density is comparable to that processed by traditional pelleting methods (e.g. extruding, briquetting, and rolling). This study applied response surface methodology to the development of a predictive model for the energy consumption in UV-A pelleting of wheat straw. Effects of pelleting pressure, ultrasonic power, sieve size, and pellet weight were investigated. This study also optimized the process parameters to minimize the energy consumption in UV-A pelleting using response surface methodology. Optimal conditions to minimize the energy consumption were the following: ultrasonic power at 20%, sieve size at 4 mm, and pellet weight at 1g, and the minimum energy consumption was 2.54 Wh. PMID:23859359

  8. Evaluation of the effects of vegetation and green walls on building thermal performance and energy consumption

    NASA Astrophysics Data System (ADS)

    Susorova, Irina

    This research explored the use of vegetation in building facades as a potential solution to the problems of urban ecology and the excessive energy consumption in buildings. Vegetated facades substantially reduce building energy use, reduce the urban heat island effect, improve air quality, and increase the biodiversity of plants and animals in cities. The goal of this research was to evaluate the effects of plants on building thermal performance and energy consumption by developing a thermal model of a building facade covered with a layer of plants. The developed mathematical model accounts for thermal physical processes in a vegetated exterior wall including solar radiation, infrared radiative exchange between the facade and sky, the facade and ground, the facade and vegetation layer, convection to and from the facade, evapotranspiration from the plant layer, heat storage in the facade material, and heat conduction through the facade. The model calculates vegetated facade surface temperature and heat flux through the facade for multiple weather conditions, plant physiological characteristics, and facade parameters inputs. The model was validated with the results of a one-week long experiment measuring the thermal properties of bare and vegetated facades on the Illinois Institute of Technology campus. The experiment and subsequent sensitivity analysis demonstrated that a plant layer can effectively reduce the facade exterior surface temperature, daily temperature fluctuations, exterior wall temperature gradient, and, as a result, provide as much additional thermal insulation to the facade as a 2.5 cm layer of expanded polystyrene insulation. The vegetated facade model was also used to analyze the reduction in energy consumption in generic office and residential thermal zones for multiple parameters. The simulations showed that energy reduction could be as high as 6.2% of annual total energy use and 34.6% of cooling energy use in residential thermal zones. Overall

  9. Analysis of energy-related CO2 emissions and driving factors in five major energy consumption sectors in China.

    PubMed

    Cui, Erqian; Ren, Lijun; Sun, Haoyu

    2016-10-01

    Continual growth of energy-related CO2 emissions in China has received great attention, both domestically and internationally. In this paper, we evaluated the CO2 emissions in five major energy consumption sectors which were evaluated from 1991 to 2012. In order to analyze the driving factors of CO2 emission change in different sectors, the Kaya identity was extended by adding several variables based on specific industrial characteristics and a decomposition analysis model was established according to the LMDI method. The results demonstrated that economic factor was the leading force explaining emission increase in each sector while energy intensity and sector contribution were major contributors to emission mitigation. Meanwhile, CO2 emission intensity had no significant influence on CO2 emission in the short term, and energy consumption structure had a small but growing negative impact on the increase of CO2 emissions. In addition, the future CO2 emissions of industry from 2013 to 2020 under three scenarios were estimated, and the reduction potential of CO2 emissions in industry are 335 Mt in 2020 under lower-emission scenario while the CO2 emission difference between higher-emission scenario and lower-emission scenario is nearly 725 Mt. This paper can offer complementary perspectives on determinants of energy-related CO2 emission change in different sectors and help to formulate mitigation strategies for CO2 emissions.

  10. Analysis of energy-related CO2 emissions and driving factors in five major energy consumption sectors in China.

    PubMed

    Cui, Erqian; Ren, Lijun; Sun, Haoyu

    2016-10-01

    Continual growth of energy-related CO2 emissions in China has received great attention, both domestically and internationally. In this paper, we evaluated the CO2 emissions in five major energy consumption sectors which were evaluated from 1991 to 2012. In order to analyze the driving factors of CO2 emission change in different sectors, the Kaya identity was extended by adding several variables based on specific industrial characteristics and a decomposition analysis model was established according to the LMDI method. The results demonstrated that economic factor was the leading force explaining emission increase in each sector while energy intensity and sector contribution were major contributors to emission mitigation. Meanwhile, CO2 emission intensity had no significant influence on CO2 emission in the short term, and energy consumption structure had a small but growing negative impact on the increase of CO2 emissions. In addition, the future CO2 emissions of industry from 2013 to 2020 under three scenarios were estimated, and the reduction potential of CO2 emissions in industry are 335 Mt in 2020 under lower-emission scenario while the CO2 emission difference between higher-emission scenario and lower-emission scenario is nearly 725 Mt. This paper can offer complementary perspectives on determinants of energy-related CO2 emission change in different sectors and help to formulate mitigation strategies for CO2 emissions. PMID:27397029

  11. Quantitative risk assessment of human salmonellosis and listeriosis related to the consumption of raw milk in Italy.

    PubMed

    Giacometti, Federica; Bonilauri, Paolo; Albonetti, Sabrina; Amatiste, Simonetta; Arrigoni, Norma; Bianchi, Manila; Bertasi, Barbara; Bilei, Stefano; Bolzoni, Giuseppe; Cascone, Giuseppe; Comin, Damiano; Daminelli, Paolo; Decastelli, Lucia; Merialdi, Giuseppe; Mioni, Renzo; Peli, Angelo; Petruzzelli, Annalisa; Tonucci, Franco; Bonerba, Elisabetta; Serraino, Andrea

    2015-01-01

    Two quantitative risk assessment (RA) models were developed to describe the risk of salmonellosis and listeriosis linked to consumption of raw milk sold in vending machines in Italy. Exposure assessment considered the official microbiological records monitoring raw milk samples from vending machines performed by the regional veterinary authorities from 2008 to 2011, microbial growth during storage, destruction experiments, consumption frequency of raw milk, serving size, and consumption preference. Two separate RA models were developed: one for the consumption of boiled milk and the other for the consumption of raw milk. The RA models predicted no human listeriosis cases per year either in the best or worst storage conditions and with or without boiling raw milk, whereas the annual estimated cases of salmonellosis depend on the dose-response relationships used in the model, the milk storage conditions, and consumer behavior in relation to boiling raw milk or not. For example, the estimated salmonellosis cases ranged from no expected cases, assuming that the entire population boiled milk before consumption, to a maximum of 980,128 cases, assuming that the entire population drank raw milk without boiling, in the worst milk storage conditions, and with the lowest dose-response model. The findings of this study clearly show how consumer behavior could affect the probability and number of salmonellosis cases and in general, the risk of illness. Hence, the proposed RA models emphasize yet again that boiling milk before drinking is a simple yet effective tool to protect consumers against the risk of illness inherent in the consumption of raw milk. The models may also offer risk managers a useful tool to identify or implement appropriate measures to control the risk of acquiring foodborne pathogens. Quantification of the risks associated with raw milk consumption is necessary from a public health perspective.

  12. Comparative measurement and quantitative risk assessment of alcohol consumption through wastewater-based epidemiology: An international study in 20 cities.

    PubMed

    Ryu, Yeonsuk; Barceló, Damià; Barron, Leon P; Bijlsma, Lubertus; Castiglioni, Sara; de Voogt, Pim; Emke, Erik; Hernández, Félix; Lai, Foon Yin; Lopes, Alvaro; de Alda, Miren López; Mastroianni, Nicola; Munro, Kelly; O'Brien, Jake; Ort, Christoph; Plósz, Benedek G; Reid, Malcolm J; Yargeau, Viviane; Thomas, Kevin V

    2016-09-15

    Quantitative measurement of drug consumption biomarkers in wastewater can provide objective information on community drug use patterns and trends. This study presents the measurement of alcohol consumption in 20 cities across 11 countries through the use of wastewater-based epidemiology (WBE), and reports the application of these data for the risk assessment of alcohol on a population scale using the margin of exposure (MOE) approach. Raw 24-h composite wastewater samples were collected over a one-week period from 20 cities following a common protocol. For each sample a specific and stable alcohol consumption biomarker, ethyl sulfate (EtS) was determined by liquid chromatography coupled to tandem mass spectrometry. The EtS concentrations were used for estimation of per capita alcohol consumption in each city, which was further compared with international reports and applied for risk assessment by MOE. The average per capita consumption in 20 cities ranged between 6.4 and 44.3L/day/1000 inhabitants. An increase in alcohol consumption during the weekend occurred in all cities, however the level of this increase was found to differ. In contrast to conventional data (sales statistics and interviews), WBE revealed geographical differences in the level and pattern of actual alcohol consumption at an inter-city level. All the sampled cities were in the "high risk" category (MOE<10) and the average MOE for the whole population studied was 2.5. These results allowed direct comparisons of alcohol consumption levels, patterns and risks among the cities. This study shows that WBE can provide timely and complementary information on alcohol use and alcohol associated risks in terms of exposure at the community level. PMID:27188267

  13. Caffeine consumption and self-assessed stress, anxiety, and depression in secondary school children.

    PubMed

    Richards, Gareth; Smith, Andrew

    2015-12-01

    Previous research suggests that effects of caffeine on behaviour are positive unless one is investigating sensitive groups or ingestion of large amounts. Children are a potentially sensitive subgroup, and especially so considering the high levels of caffeine currently found in energy drinks. The present study used data from the Cornish Academies Project to investigate associations between caffeine (both its total consumption, and that derived separately from energy drinks, cola, tea, and coffee) and single-item measures of stress, anxiety, and depression, in a large cohort of secondary school children from the South West of England. After adjusting for additional dietary, demographic, and lifestyle covariates, positive associations between total weekly caffeine intake and anxiety and depression remained significant, and the effects differed between males and females. Initially, effects were also observed in relation to caffeine consumed specifically from coffee. However, coffee was found to be the major contributor to high overall caffeine intake, providing explanation as to why effects relating to this source were also apparent. Findings from the current study increase our knowledge regarding associations between caffeine intake and stress, anxiety, and depression in secondary school children, though the cross-sectional nature of the research made it impossible to infer causality.

  14. Caffeine consumption and self-assessed stress, anxiety, and depression in secondary school children

    PubMed Central

    Richards, Gareth; Smith, Andrew

    2015-01-01

    Previous research suggests that effects of caffeine on behaviour are positive unless one is investigating sensitive groups or ingestion of large amounts. Children are a potentially sensitive subgroup, and especially so considering the high levels of caffeine currently found in energy drinks. The present study used data from the Cornish Academies Project to investigate associations between caffeine (both its total consumption, and that derived separately from energy drinks, cola, tea, and coffee) and single-item measures of stress, anxiety, and depression, in a large cohort of secondary school children from the South West of England. After adjusting for additional dietary, demographic, and lifestyle covariates, positive associations between total weekly caffeine intake and anxiety and depression remained significant, and the effects differed between males and females. Initially, effects were also observed in relation to caffeine consumed specifically from coffee. However, coffee was found to be the major contributor to high overall caffeine intake, providing explanation as to why effects relating to this source were also apparent. Findings from the current study increase our knowledge regarding associations between caffeine intake and stress, anxiety, and depression in secondary school children, though the cross-sectional nature of the research made it impossible to infer causality. PMID:26508718

  15. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption.

    PubMed

    Xu, Wentao; Min, Sung-Yong; Hwang, Hyunsang; Lee, Tae-Woo

    2016-06-01

    Emulation of biological synapses is an important step toward construction of large-scale brain-inspired electronics. Despite remarkable progress in emulating synaptic functions, current synaptic devices still consume energy that is orders of magnitude greater than do biological synapses (~10 fJ per synaptic event). Reduction of energy consumption of artificial synapses remains a difficult challenge. We report organic nanowire (ONW) synaptic transistors (STs) that emulate the important working principles of a biological synapse. The ONWs emulate the morphology of nerve fibers. With a core-sheath-structured ONW active channel and a well-confined 300-nm channel length obtained using ONW lithography, ~1.23 fJ per synaptic event for individual ONW was attained, which rivals that of biological synapses. The ONW STs provide a significant step toward realizing low-energy-consuming artificial intelligent electronics and open new approaches to assembling soft neuromorphic systems with nanometer feature size. PMID:27386556

  16. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  17. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  18. Energy Consumption in Copper Smelting: A New Asian Horse in the Race

    NASA Astrophysics Data System (ADS)

    Coursol, P.; Mackey, P. J.; Kapusta, J. P. T.; Valencia, N. Cardona

    2015-05-01

    After a marked improvement in energy consumption in copper smelting during the past few decades, technology development has been slowing down in the Americas and in Europe. Innovation, however, is still required to further reduce energy consumption while complying with stringent environmental regulations. The bottom blowing smelting technology being developed in China shows success and promise. The general configuration of the bath smelting vessel, the design of high-pressure injectors, and the concentrate addition system are described and discussed in this article with respect to those used in other technologies. The bottom blowing technology is shown to be operating at a temperature in the range of 1160-1180°C, which is the lowest reported temperature range for a modern copper smelting process. In this article, it is suggested that top feeding of filter cake concentrate, which is also used in other technologies, has a positive effect in reducing the oxidation potential of the slag ( p(O2)) while increasing the FeS solubility in slag. This reduction in p(O2) lowers the magnetite liquidus of the slag, while the increased solubility of FeS in slag helps toward reaching very low copper levels in flotation slag tailings. The application of high-pressure injectors allows for the use of high levels of oxygen enrichment with no requirements for punching. Using a standard modeling approach from the authors' previous studies, this article discusses these aspects and compares the energy consumption of the bottom blowing technology with that of other leading flash and bath smelting technologies, namely: flash smelting, Noranda/Teniente Converter, TSL (Isasmelt [Glencore Technology Pty. Ltd., Brisbane, Queensland, Australia]/Outotec), and the Mitsubishi Process (Mitsubishi Materials Corporation, Tokyo, Japan).

  19. Milk consumption following exercise reduces subsequent energy intake in female recreational exercisers.

    PubMed

    Rumbold, Penny; Shaw, Emily; James, Lewis; Stevenson, Emma

    2015-01-01

    The aim of this study was to evaluate the effects of skimmed milk as a recovery drink following moderate-vigorous cycling exercise on subsequent appetite and energy intake in healthy, female recreational exercisers. Utilising a randomised cross-over design, nine female recreational exercisers (19.7 ± 1.3 years) completed a V̇O2peak test followed by two main exercise trials. The main trials were conducted following a standardised breakfast. Following 30 min of moderate-vigorous exercise (65% V̇O2peak), either 600 mL of skimmed milk or 600 mL of orange drink (475 mL orange juice from concentrate, 125 mL water), which were isoenergetic (0.88 MJ), were ingested, followed 60 min later with an ad libitum pasta meal. Absolute energy intake was reduced 25.2% ± 16.6% after consuming milk compared to the orange drink (2.39 ± 0.70 vs. 3.20 ± 0.84 MJ, respectively; p = 0.001). Relative energy intake (in relation to the energy content of the recovery drinks and energy expenditure) was significantly lower after milk consumption compared to the orange drink (1.49 ± 0.72 vs. 2.33 ± 0.90 MJ, respectively; p = 0.005). There were no differences in AUC (× 1 h) subjective appetite parameters (hunger, fullness and desire to eat) between trials. The consumption of skimmed milk following 30 min of moderate-vigorous cycling exercise reduces subsequent energy intake in female recreational exercisers.

  20. Analyzing the Energy and Power Consumption of Remote Memory Accesses in the OpenSHMEM Model

    SciTech Connect

    Jana, Siddhartha; Hernandez, Oscar R; Poole, Stephen W; Hsu, Chung-Hsing; Chapman, Barbara

    2014-01-01

    PGAS models like OpenSHMEM provide interfaces to explicitly initiate one-sided remote memory accesses among processes. In addition, the model also provides synchronizing barriers to ensure a consistent view of the distributed memory at different phases of an application. The incorrect use of such interfaces affects the scalability achievable while using a parallel programming model. This study aims at understanding the effects of these constructs on the energy and power consumption behavior of OpenSHMEM applications. Our experiments show that cost incurred in terms of the total energy and power consumed depends on multiple factors across the software and hardware stack. We conclude that there is a significant impact on the power consumed by the CPU and DRAM due to multiple factors including the design of the data transfer patterns within an application, the design of the communication protocols within a middleware, the architectural constraints laid by the interconnect solutions, and also the levels of memory hierarchy within a compute node. This work motivates treating energy and power consumption as important factors while designing compute solutions for current and future distributed systems.