Sample records for assess gene function

  1. Assessing gene function in the ruminant placenta.

    PubMed

    Anthony, R V; Cantlon, J D; Gates, K C; Purcell, S H; Clay, C M

    2010-01-01

    The placenta provides the means for nutrient transfer from the mother to the fetus, waste transfer from the fetus to the mother, protection of the fetus from the maternal immune system, and is an active endocrine organ. While many placental functions have been defined and investigated, assessing the function of specific genes expressed by the placenta has been problematic, since classical ablation-replacement methods are not feasible with the placenta. The pregnant sheep has been a long-standing animal model for assessing in vivo physiology during pregnancy, since surgical placement of indwelling catheters into both maternal and fetal vasculature has allowed the assessment of placental nutrient transfer and utilization, as well as placental hormone secretion, under unanesthetized-unstressed steady state sampling conditions. However, in ruminants the lack of well-characterized trophoblast cell lines and the inefficiency of creating transgenic pregnancies in ruminants have inhibited our ability to assess specific gene function. Recently, sheep and cattle primary trophoblast cell lines have been reported, and may further our ability to investigate trophoblast function and transcriptional regulation of genes expressed by the placenta. Furthermore, viral infection of the trophoectoderm layer of hatched blastocysts, as a means for placenta-specific transgenesis, holds considerable potential to assess gene function in the ruminant placenta. This approach has been used successfully to "knockdown" gene expression in the developing sheep conceptus, and has the potential for gain-of-function experiments as well. While this technology is still being developed, it may provide an efficient approach to assess specific gene function in the ruminant placenta.

  2. Fractal Clustering and Knowledge-driven Validation Assessment for Gene Expression Profiling.

    PubMed

    Wang, Lu-Yong; Balasubramanian, Ammaiappan; Chakraborty, Amit; Comaniciu, Dorin

    2005-01-01

    DNA microarray experiments generate a substantial amount of information about the global gene expression. Gene expression profiles can be represented as points in multi-dimensional space. It is essential to identify relevant groups of genes in biomedical research. Clustering is helpful in pattern recognition in gene expression profiles. A number of clustering techniques have been introduced. However, these traditional methods mainly utilize shape-based assumption or some distance metric to cluster the points in multi-dimension linear Euclidean space. Their results shows poor consistence with the functional annotation of genes in previous validation study. From a novel different perspective, we propose fractal clustering method to cluster genes using intrinsic (fractal) dimension from modern geometry. This method clusters points in such a way that points in the same clusters are more self-affine among themselves than to the points in other clusters. We assess this method using annotation-based validation assessment for gene clusters. It shows that this method is superior in identifying functional related gene groups than other traditional methods.

  3. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  4. GO-based functional dissimilarity of gene sets.

    PubMed

    Díaz-Díaz, Norberto; Aguilar-Ruiz, Jesús S

    2011-09-01

    The Gene Ontology (GO) provides a controlled vocabulary for describing the functions of genes and can be used to evaluate the functional coherence of gene sets. Many functional coherence measures consider each pair of gene functions in a set and produce an output based on all pairwise distances. A single gene can encode multiple proteins that may differ in function. For each functionality, other proteins that exhibit the same activity may also participate. Therefore, an identification of the most common function for all of the genes involved in a biological process is important in evaluating the functional similarity of groups of genes and a quantification of functional coherence can helps to clarify the role of a group of genes working together. To implement this approach to functional assessment, we present GFD (GO-based Functional Dissimilarity), a novel dissimilarity measure for evaluating groups of genes based on the most relevant functions of the whole set. The measure assigns a numerical value to the gene set for each of the three GO sub-ontologies. Results show that GFD performs robustly when applied to gene set of known functionality (extracted from KEGG). It performs particularly well on randomly generated gene sets. An ROC analysis reveals that the performance of GFD in evaluating the functional dissimilarity of gene sets is very satisfactory. A comparative analysis against other functional measures, such as GS2 and those presented by Resnik and Wang, also demonstrates the robustness of GFD.

  5. Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia.

    PubMed

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.

  6. Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia

    PubMed Central

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J. Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions. PMID:24940743

  7. Altered expression of four miRNA (miR-1238-3p, miR-202-3p, miR-630 and miR-766-3p) and their potential targets in peripheral blood from vitiligo patients.

    PubMed

    Shang, Zhiwei; Li, Hongwen

    2017-10-01

    Vitiligo is an acquired skin disease with pigmentary disorder. Autoimmune destruction of melanocytes is thought to be major factor in the etiology of vitiligo. miRNA-based regulators of gene expression have been reported to play crucial roles in autoimmune disease. Therefore, we attempt to profile the miRNA expressions and predict their potential targets, assessing the biological functions of differentially expressed miRNA. Total RNA was extracted from peripheral blood of vitiligo (experimental group, n = 5) and non-vitiligo (control group, n = 5) age-matched patients. Samples were hybridized to a miRNA array. Box, scatter and principal component analysis plots were performed, followed by unsupervised hierarchical clustering analysis to classify the samples. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was conducted for validation of microarray data. Three different databases, TargetScan, PITA and microRNA.org, were used to predict the potential target genes. Gene ontology (GO) annotation and pathway analysis were performed to assess the potential functions of predicted genes of identified miRNA. A total of 100 (29 upregulated and 71 downregulated) miRNA were filtered by volcano plot analysis. Four miRNA were validated by quantitative RT-PCR as significantly downregulated in the vitiligo group. The functions of predicted target genes associated with differentially expressed miRNA were assessed by GO analysis, showing that the GO term with most significantly enriched target genes was axon guidance, and that the axon guidance pathway was most significantly correlated with these miRNA. In conclusion, we identified four downregulated miRNA in vitiligo and assessed the potential functions of target genes related to these differentially expressed miRNA. © 2017 Japanese Dermatological Association.

  8. Partial Roc Reveals Superiority of Mutual Rank of Pearson's Correlation Coefficient as a Coexpression Measure to Elucidate Functional Association of Genes

    NASA Astrophysics Data System (ADS)

    Obayashi, Takeshi; Kinoshita, Kengo

    2013-01-01

    Gene coexpression analysis is a powerful approach to elucidate gene function. We have established and developed this approach using vast amount of publicly available gene expression data measured by microarray techniques. The coexpressed genes are used to estimate gene function of the guide gene or to construct gene coexpression networks. In the case to construct gene networks, researchers should introduce an arbitrary threshold of gene coexpression, because gene coexpression value is continuous value. In the viewpoint to introduce common threshold of gene coexpression, we previously reported rank of Pearson's correlation coefficient (PCC) is more useful than the original PCC value. In this manuscript, we re-assessed the measure of gene coexpression to construct gene coexpression network, and found that mutual rank (MR) of PCC showed better performance than rank of PCC and the original PCC in low false positive rate.

  9. Functional Genetic Variation in Dopamine Signaling Moderates Prefrontal Cortical Activity During Risky Decision Making.

    PubMed

    Kohno, Milky; Nurmi, Erika L; Laughlin, Christopher P; Morales, Angelica M; Gail, Emma H; Hellemann, Gerhard S; London, Edythe D

    2016-02-01

    Brain imaging has revealed links between prefrontal activity during risky decision-making and striatal dopamine receptors. Specifically, striatal dopamine D2-like receptor availability is correlated with risk-taking behavior and sensitivity of prefrontal activation to risk in the Balloon Analogue Risk Task (BART). The extent to which these associations, involving a single neurochemical measure, reflect more general effects of dopaminergic functioning on risky decision making, however, is unknown. Here, 65 healthy participants provided genotypes and performed the BART during functional magnetic resonance imaging. For each participant, dopamine function was assessed using a gene composite score combining known functional variation across five genes involved in dopaminergic signaling: DRD2, DRD3, DRD4, DAT1, and COMT. The gene composite score was negatively related to dorsolateral prefrontal cortical function during risky decision making, and nonlinearly related to earnings on the task. Iterative permutations of all possible allelic variations (7777 allelic combinations) was tested on brain function in an independently defined region of the prefrontal cortex and confirmed empirical validity of the composite score, which yielded stronger association than 95% of all other possible combinations. The gene composite score also accounted for a greater proportion of variability in neural and behavioral measures than the independent effects of each gene variant, indicating that the combined effects of functional dopamine pathway genes can provide a robust assessment, presumably reflecting the cumulative and potentially interactive effects on brain function. Our findings support the view that the links between dopaminergic signaling, prefrontal function, and decision making vary as a function of dopamine signaling capacity.

  10. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  11. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study.

    PubMed

    Raethong, Nachon; Wong-Ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H(+)-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.

  12. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations

    PubMed Central

    Peng, Cheng; Shiu, Shin-Han

    2016-01-01

    Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets. PMID:27935950

  13. Genome-wide screening of indicator genes for assessing the potential carcinogenic risk of Nanjing city drinking water.

    PubMed

    Zhang, Rui; Cheng, Shupei; Li, Aimin; Sun, Jie; Zhang, Yan; Zhang, Xuxiang

    2011-07-01

    Effects of all pollutants existing in the Nanjing city drinking water (DWNC) on mouse gene transcription levels were measured to assess the DWNC carcinogenic risks and to identify candidate indicator genes for assessing and early warning the cancer risks. Transcriptional expression levels of 14,000 hepatic genes for the treatment group mice (Mus musculus, ICR) fed with DWNC for 90 days were detected using the GeneChip(®) Mouse Genome 430A 2.0 array. The analysis indicated that the transcriptional levels of 294 genes were up-regulated and 542 ones were down-regulated. Of these genes, 12 ones identified to be involved in at least five different types of cancers were further analyzed. An interrogation by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that three (including ITGAV, CCND1 and SMAD2) of the 12 genes were mapped to pathway in cancer. Gene Ontology (GO) function annotation also showed that they were associated with the functional categories of cell cycle regulation, adhesion, apoptosis, signal transduction and so on which are closely implicated in tumorigenesis and progression. The correlations between the aberrant expressions of them and the genesis and progression of cancers have been further documented by a number of scientific researches. These results might demonstrate that the potential toxicity and carcinogenic risks were associated with DWNC. Moreover, ITGAV, CCND1 and SMAD2 were identified as the most likely candidate indicator genes for the assessment of the combined carcinogenic risk of all pollutants existing in DWNC.

  14. Knowledge Driven Variable Selection (KDVS) – a new approach to enrichment analysis of gene signatures obtained from high–throughput data

    PubMed Central

    2013-01-01

    Background High–throughput (HT) technologies provide huge amount of gene expression data that can be used to identify biomarkers useful in the clinical practice. The most frequently used approaches first select a set of genes (i.e. gene signature) able to characterize differences between two or more phenotypical conditions, and then provide a functional assessment of the selected genes with an a posteriori enrichment analysis, based on biological knowledge. However, this approach comes with some drawbacks. First, gene selection procedure often requires tunable parameters that affect the outcome, typically producing many false hits. Second, a posteriori enrichment analysis is based on mapping between biological concepts and gene expression measurements, which is hard to compute because of constant changes in biological knowledge and genome analysis. Third, such mapping is typically used in the assessment of the coverage of gene signature by biological concepts, that is either score–based or requires tunable parameters as well, limiting its power. Results We present Knowledge Driven Variable Selection (KDVS), a framework that uses a priori biological knowledge in HT data analysis. The expression data matrix is transformed, according to prior knowledge, into smaller matrices, easier to analyze and to interpret from both computational and biological viewpoints. Therefore KDVS, unlike most approaches, does not exclude a priori any function or process potentially relevant for the biological question under investigation. Differently from the standard approach where gene selection and functional assessment are applied independently, KDVS embeds these two steps into a unified statistical framework, decreasing the variability derived from the threshold–dependent selection, the mapping to the biological concepts, and the signature coverage. We present three case studies to assess the usefulness of the method. Conclusions We showed that KDVS not only enables the selection of known biological functionalities with accuracy, but also identification of new ones. An efficient implementation of KDVS was devised to obtain results in a fast and robust way. Computing time is drastically reduced by the effective use of distributed resources. Finally, integrated visualization techniques immediately increase the interpretability of results. Overall, KDVS approach can be considered as a viable alternative to enrichment–based approaches. PMID:23302187

  15. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    PubMed

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  16. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence

    PubMed Central

    Nepal, Madhav P; Benson, Benjamin V

    2015-01-01

    Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the Ks-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future. PMID:25922568

  17. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).

    PubMed

    You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng

    2018-05-01

    Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.

  18. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence.

    PubMed

    Nepal, Madhav P; Benson, Benjamin V

    2015-01-01

    Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the K s-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future.

  19. Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery

    PubMed Central

    Jones, Charles H.; Gollakota, Akhila; Chen, Mingfu; Chung, Tai-Chun; Ravikrishnan, Anitha; Zhang, Guojian; Pfeifer, Blaine A.

    2015-01-01

    Given the rise of antibiotic resistant microbes, genetic vaccination is a promising prophylactic strategy that enables rapid design and manufacture. Facilitating this process is the choice of vector, which is often situationally-specific and limited in engineering capacity. Furthermore, these shortcomings are usually tied to an incomplete understanding of the structure-function relationships driving vector-mediated gene delivery. Building upon our initial report of a hybrid bacterial-biomaterial gene delivery vector, a comprehensive structure-function assessment was completed using a class of mannosylated poly(beta-amino esters). Through a top-down screening methodology, an ideal polymer was selected on the basis of gene delivery efficacy and then used for the synthesis of a stratified molecular weight polymer library. By eliminating contributions of polymer chemical background, we were able to complete an in-depth assessment of gene delivery as a function of (1) polymer molecular weight, (2) relative mannose content, (3) polymer-membrane biophysical properties, (4) APC uptake specificity, and (5) serum inhibition. In summary, the flexibility and potential of the hybrid design featured in this work highlights the ability to systematically probe vector-associated properties for the development of translational gene delivery candidates. PMID:25941787

  20. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  1. Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource.

    PubMed

    Shim, Hongseok; Kim, Ji Hyun; Kim, Chan Yeong; Hwang, Sohyun; Kim, Hyojin; Yang, Sunmo; Lee, Ji Eun; Lee, Insuk

    2016-11-16

    Whole exome sequencing (WES) accelerates disease gene discovery using rare genetic variants, but further statistical and functional evidence is required to avoid false-discovery. To complement variant-driven disease gene discovery, here we present function-driven disease gene discovery in zebrafish (Danio rerio), a promising human disease model owing to its high anatomical and genomic similarity to humans. To facilitate zebrafish-based function-driven disease gene discovery, we developed a genome-scale co-functional network of zebrafish genes, DanioNet (www.inetbio.org/danionet), which was constructed by Bayesian integration of genomics big data. Rigorous statistical assessment confirmed the high prediction capacity of DanioNet for a wide variety of human diseases. To demonstrate the feasibility of the function-driven disease gene discovery using DanioNet, we predicted genes for ciliopathies and performed experimental validation for eight candidate genes. We also validated the existence of heterozygous rare variants in the candidate genes of individuals with ciliopathies yet not in controls derived from the UK10K consortium, suggesting that these variants are potentially involved in enhancing the risk of ciliopathies. These results showed that an integrated genomics big data for a model animal of diseases can expand our opportunity for harnessing WES data in disease gene discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Biomarkers of adult and developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, William; Bowyer, John F.

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessarymore » for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.« less

  3. A critical assessment of Mus musculus gene function prediction using integrated genomic evidence

    PubMed Central

    Peña-Castillo, Lourdes; Tasan, Murat; Myers, Chad L; Lee, Hyunju; Joshi, Trupti; Zhang, Chao; Guan, Yuanfang; Leone, Michele; Pagnani, Andrea; Kim, Wan Kyu; Krumpelman, Chase; Tian, Weidong; Obozinski, Guillaume; Qi, Yanjun; Mostafavi, Sara; Lin, Guan Ning; Berriz, Gabriel F; Gibbons, Francis D; Lanckriet, Gert; Qiu, Jian; Grant, Charles; Barutcuoglu, Zafer; Hill, David P; Warde-Farley, David; Grouios, Chris; Ray, Debajyoti; Blake, Judith A; Deng, Minghua; Jordan, Michael I; Noble, William S; Morris, Quaid; Klein-Seetharaman, Judith; Bar-Joseph, Ziv; Chen, Ting; Sun, Fengzhu; Troyanskaya, Olga G; Marcotte, Edward M; Xu, Dong; Hughes, Timothy R; Roth, Frederick P

    2008-01-01

    Background: Several years after sequencing the human genome and the mouse genome, much remains to be discovered about the functions of most human and mouse genes. Computational prediction of gene function promises to help focus limited experimental resources on the most likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in model organisms; however, the performance of such approaches in mammals has not yet been evaluated. Results: In this study, a standardized collection of mouse functional genomic data was assembled; nine bioinformatics teams used this data set to independently train classifiers and generate predictions of function, as defined by Gene Ontology (GO) terms, for 21,603 mouse genes; and the best performing submissions were combined in a single set of predictions. We identified strengths and weaknesses of current functional genomic data sets and compared the performance of function prediction algorithms. This analysis inferred functions for 76% of mouse genes, including 5,000 currently uncharacterized genes. At a recall rate of 20%, a unified set of predictions averaged 41% precision, with 26% of GO terms achieving a precision better than 90%. Conclusion: We performed a systematic evaluation of diverse, independently developed computational approaches for predicting gene function from heterogeneous data sources in mammals. The results show that currently available data for mammals allows predictions with both breadth and accuracy. Importantly, many highly novel predictions emerge for the 38% of mouse genes that remain uncharacterized. PMID:18613946

  4. Statistical assessment of crosstalk enrichment between gene groups in biological networks.

    PubMed

    McCormack, Theodore; Frings, Oliver; Alexeyenko, Andrey; Sonnhammer, Erik L L

    2013-01-01

    Analyzing groups of functionally coupled genes or proteins in the context of global interaction networks has become an important aspect of bioinformatic investigations. Assessing the statistical significance of crosstalk enrichment between or within groups of genes can be a valuable tool for functional annotation of experimental gene sets. Here we present CrossTalkZ, a statistical method and software to assess the significance of crosstalk enrichment between pairs of gene or protein groups in large biological networks. We demonstrate that the standard z-score is generally an appropriate and unbiased statistic. We further evaluate the ability of four different methods to reliably recover crosstalk within known biological pathways. We conclude that the methods preserving the second-order topological network properties perform best. Finally, we show how CrossTalkZ can be used to annotate experimental gene sets using known pathway annotations and that its performance at this task is superior to gene enrichment analysis (GEA). CrossTalkZ (available at http://sonnhammer.sbc.su.se/download/software/CrossTalkZ/) is implemented in C++, easy to use, fast, accepts various input file formats, and produces a number of statistics. These include z-score, p-value, false discovery rate, and a test of normality for the null distributions.

  5. Assessment of Anaerobic Toluene Biodegradation Activity by bssA Transcript/Gene Ratios

    PubMed Central

    Brow, Christina N.; O'Brien Johnson, Reid; Johnson, Richard L.

    2013-01-01

    Benzylsuccinate synthase (bssA) genes associated with toluene degradation were profiled across a groundwater contaminant plume under nitrate-reducing conditions and were detected in significant numbers throughout the plume. However, differences between groundwater and core sediment samples suggested that microbial transport, rather than local activity, was the underlying cause of the high copy numbers within the downgradient plume. Both gene transcript and reactant concentrations were consistent with this hypothesis. Expression of bssA genes from denitrifying toluene degraders was induced by toluene but only in the presence of nitrate, and transcript abundance dropped rapidly following the removal of either toluene or nitrate. The drop in bssA transcripts following the removal of toluene could be described by an exponential decay function with a half-life on the order of 1 h. Interestingly, bssA transcripts never disappeared completely but were always detected at some level if either inducer was present. Therefore, the detection of transcripts alone may not be sufficient evidence for contaminant degradation. To avoid mistakenly associating basal-level gene expression with actively degrading microbial populations, an integrated approach using the ratio of functional gene transcripts to gene copies is recommended. This approach minimizes the impact of microbial transport on activity assessment and allows reliable assessments of microbial activity to be obtained from water samples. PMID:23811506

  6. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli.

    PubMed

    Gao, Jie; Lan, Ting

    2016-01-19

    Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.

  7. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  8. Human intellectual disability genes form conserved functional modules in Drosophila.

    PubMed

    Oortveld, Merel A W; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A; Schenck, Annette

    2013-10-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules.

  9. Extensive complementarity between gene function prediction methods.

    PubMed

    Vidulin, Vedrana; Šmuc, Tomislav; Supek, Fran

    2016-12-01

    The number of sequenced genomes rises steadily but we still lack the knowledge about the biological roles of many genes. Automated function prediction (AFP) is thus a necessity. We hypothesized that AFP approaches that draw on distinct genome features may be useful for predicting different types of gene functions, motivating a systematic analysis of the benefits gained by obtaining and integrating such predictions. Our pipeline amalgamates 5 133 543 genes from 2071 genomes in a single massive analysis that evaluates five established genomic AFP methodologies. While 1227 Gene Ontology (GO) terms yielded reliable predictions, the majority of these functions were accessible to only one or two of the methods. Moreover, different methods tend to assign a GO term to non-overlapping sets of genes. Thus, inferences made by diverse genomic AFP methods display a striking complementary, both gene-wise and function-wise. Because of this, a viable integration strategy is to rely on a single most-confident prediction per gene/function, rather than enforcing agreement across multiple AFP methods. Using an information-theoretic approach, we estimate that current databases contain 29.2 bits/gene of known Escherichia coli gene functions. This can be increased by up to 5.5 bits/gene using individual AFP methods or by 11 additional bits/gene upon integration, thereby providing a highly-ranking predictor on the Critical Assessment of Function Annotation 2 community benchmark. Availability of more sequenced genomes boosts the predictive accuracy of AFP approaches and also the benefit from integrating them. The individual and integrated GO predictions for the complete set of genes are available from http://gorbi.irb.hr/ CONTACT: fran.supek@irb.hrSupplementary information: Supplementary materials are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Polymorphisms in Dopamine System Genes Are Associated with Individual Differences in Attention in Infancy

    ERIC Educational Resources Information Center

    Holmboe, Karla; Nemoda, Zsofia; Fearon, R. M. Pasco; Csibra, Gergely; Sasvari-Szekely, Maria; Johnson, Mark H.

    2010-01-01

    Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase ("COMT") and the…

  11. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    NASA Astrophysics Data System (ADS)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  12. Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker.

    PubMed

    Zhang, Junli; Huguet-Tapia, Jose Carlos; Hu, Yang; Jones, Jeffrey; Wang, Nian; Liu, Sanzhen; White, Frank F

    2017-08-01

    The lateral organ boundary domain (LBD) genes encode a group of plant-specific proteins that function as transcription factors in the regulation of plant growth and development. Citrus sinensis lateral organ boundary 1 (CsLOB1) is a member of the LBD family and functions as a disease susceptibility gene in citrus bacterial canker (CBC). Thirty-four LBD members have been identified from the Citrus sinensis genome. We assessed the potential for additional members of LBD genes in citrus to function as surrogates for CsLOB1 in CBC, and compared host gene expression on induction of different LBD genes. Using custom-designed transcription activator-like (TAL) effectors, two members of the same clade as CsLOB1, named CsLOB2 and CsLOB3, were found to be capable of functioning similarly to CsLOB1 in CBC. RNA sequencing and quantitative reverse transcription-polymerase chain reaction analyses revealed a set of cell wall metabolic genes that are associated with CsLOB1, CsLOB2 and CsLOB3 expression and may represent downstream genes involved in CBC. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  13. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales

    PubMed Central

    Pabón-Mora, Natalia; Hidalgo, Oriane; Gleissberg, Stefan; Litt, Amy

    2013-01-01

    Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes. PMID:24062757

  14. New gene functions in megakaryopoiesis and platelet formation

    PubMed Central

    Gieger, Christian; Radhakrishnan, Aparna; Cvejic, Ana; Tang, Weihong; Porcu, Eleonora; Pistis, Giorgio; Serbanovic-Canic, Jovana; Elling, Ulrich; Goodall, Alison H.; Labrune, Yann; Lopez, Lorna M.; Mägi, Reedik; Meacham, Stuart; Okada, Yukinori; Pirastu, Nicola; Sorice, Rossella; Teumer, Alexander; Voss, Katrin; Zhang, Weihua; Ramirez-Solis, Ramiro; Bis, Joshua C.; Ellinghaus, David; Gögele, Martin; Hottenga, Jouke-Jan; Langenberg, Claudia; Kovacs, Peter; O’Reilly, Paul F.; Shin, So-Youn; Esko, Tõnu; Hartiala, Jaana; Kanoni, Stavroula; Murgia, Federico; Parsa, Afshin; Stephens, Jonathan; van der Harst, Pim; van der Schoot, C. Ellen; Allayee, Hooman; Attwood, Antony; Balkau, Beverley; Bastardot, François; Basu, Saonli; Baumeister, Sebastian E.; Biino, Ginevra; Bomba, Lorenzo; Bonnefond, Amélie; Cambien, François; Chambers, John C.; Cucca, Francesco; D’Adamo, Pio; Davies, Gail; de Boer, Rudolf A.; de Geus, Eco J. C.; Döring, Angela; Elliott, Paul; Erdmann, Jeanette; Evans, David M.; Falchi, Mario; Feng, Wei; Folsom, Aaron R.; Frazer, Ian H.; Gibson, Quince D.; Glazer, Nicole L.; Hammond, Chris; Hartikainen, Anna-Liisa; Heckbert, Susan R.; Hengstenberg, Christian; Hersch, Micha; Illig, Thomas; Loos, Ruth J. F.; Jolley, Jennifer; Khaw, Kay Tee; Kühnel, Brigitte; Kyrtsonis, Marie-Christine; Lagou, Vasiliki; Lloyd-Jones, Heather; Lumley, Thomas; Mangino, Massimo; Maschio, Andrea; Leach, Irene Mateo; McKnight, Barbara; Memari, Yasin; Mitchell, Braxton D.; Montgomery, Grant W.; Nakamura, Yusuke; Nauck, Matthias; Navis, Gerjan; Nöthlings, Ute; Nolte, Ilja M.; Porteous, David J.; Pouta, Anneli; Pramstaller, Peter P.; Pullat, Janne; Ring, Susan M.; Rotter, Jerome I.; Ruggiero, Daniela; Ruokonen, Aimo; Sala, Cinzia; Samani, Nilesh J.; Sambrook, Jennifer; Schlessinger, David; Schreiber, Stefan; Schunkert, Heribert; Scott, James; Smith, Nicholas L.; Snieder, Harold; Starr, John M.; Stumvoll, Michael; Takahashi, Atsushi; Tang, W. H. Wilson; Taylor, Kent; Tenesa, Albert; Thein, Swee Lay; Tönjes, Anke; Uda, Manuela; Ulivi, Sheila; van Veldhuisen, Dirk J.; Visscher, Peter M.; Völker, Uwe; Wichmann, H.-Erich; Wiggins, Kerri L.; Willemsen, Gonneke; Yang, Tsun-Po; Zhao, Jing Hua; Zitting, Paavo; Bradley, John R.; Dedoussis, George V.; Gasparini, Paolo; Hazen, Stanley L.; Metspalu, Andres; Pirastu, Mario; Shuldiner, Alan R.; van Pelt, L. Joost; Zwaginga, Jaap-Jan; Boomsma, Dorret I.; Deary, Ian J.; Franke, Andre; Froguel, Philippe; Ganesh, Santhi K.; Jarvelin, Marjo-Riitta; Martin, Nicholas G.; Meisinger, Christa; Psaty, Bruce M.; Spector, Timothy D.; Wareham, Nicholas J.; Akkerman, Jan-Willem N.; Ciullo, Marina; Deloukas, Panos; Greinacher, Andreas; Jupe, Steve; Kamatani, Naoyuki; Khadake, Jyoti; Kooner, Jaspal S.; Penninger, Josef; Prokopenko, Inga; Stemple, Derek; Toniolo, Daniela; Wernisch, Lorenz; Sanna, Serena; Hicks, Andrew A.; Rendon, Augusto; Ferreira, Manuel A.; Ouwehand, Willem H.; Soranzo, Nicole

    2012-01-01

    Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function. PMID:22139419

  15. Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery.

    PubMed

    Jones, Charles H; Gollakota, Akhila; Chen, Mingfu; Chung, Tai-Chun; Ravikrishnan, Anitha; Zhang, Guojian; Pfeifer, Blaine A

    2015-07-01

    Given the rise of antibiotic resistant microbes, genetic vaccination is a promising prophylactic strategy that enables rapid design and manufacture. Facilitating this process is the choice of vector, which is often situationally-specific and limited in engineering capacity. Furthermore, these shortcomings are usually tied to an incomplete understanding of the structure-function relationships driving vector-mediated gene delivery. Building upon our initial report of a hybrid bacterial-biomaterial gene delivery vector, a comprehensive structure-function assessment was completed using a class of mannosylated poly(beta-amino esters). Through a top-down screening methodology, an ideal polymer was selected on the basis of gene delivery efficacy and then used for the synthesis of a stratified molecular weight polymer library. By eliminating contributions of polymer chemical background, we were able to complete an in-depth assessment of gene delivery as a function of (1) polymer molecular weight, (2) relative mannose content, (3) polymer-membrane biophysical properties, (4) APC uptake specificity, and (5) serum inhibition. In summary, the flexibility and potential of the hybrid design featured in this work highlights the ability to systematically probe vector-associated properties for the development of translational gene delivery candidates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity

    PubMed Central

    Pohodich, Amy E; Yalamanchili, Hari; Raman, Ayush T; Wan, Ying-Wooi; Gundry, Michael; Hao, Shuang; Jin, Haijing; Tang, Jianrong; Liu, Zhandong

    2018-01-01

    Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer’s patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17–24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders. PMID:29570050

  17. Functional comparison of microarray data across multiple platforms using the method of percentage of overlapping functions.

    PubMed

    Li, Zhiguang; Kwekel, Joshua C; Chen, Tao

    2012-01-01

    Functional comparison across microarray platforms is used to assess the comparability or similarity of the biological relevance associated with the gene expression data generated by multiple microarray platforms. Comparisons at the functional level are very important considering that the ultimate purpose of microarray technology is to determine the biological meaning behind the gene expression changes under a specific condition, not just to generate a list of genes. Herein, we present a method named percentage of overlapping functions (POF) and illustrate how it is used to perform the functional comparison of microarray data generated across multiple platforms. This method facilitates the determination of functional differences or similarities in microarray data generated from multiple array platforms across all the functions that are presented on these platforms. This method can also be used to compare the functional differences or similarities between experiments, projects, or laboratories.

  18. Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy.

    PubMed

    O'Reilly, Paul; Ortutay, Csaba; Gernon, Grainne; O'Connell, Enda; Seoighe, Cathal; Boyce, Susan; Serrano, Luis; Szegezdi, Eva

    2014-12-19

    Identification of differentially expressed genes from transcriptomic studies is one of the most common mechanisms to identify tumor biomarkers. This approach however is not well suited to identify interaction between genes whose protein products potentially influence each other, which limits its power to identify molecular wiring of tumour cells dictating response to a drug. Due to the fact that signal transduction pathways are not linear and highly interlinked, the biological response they drive may be better described by the relative amount of their components and their functional relationships than by their individual, absolute expression. Gene expression microarray data for 109 tumor cell lines with known sensitivity to the death ligand cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was used to identify genes with potential functional relationships determining responsiveness to TRAIL-induced apoptosis. The machine learning technique Random Forest in the statistical environment "R" with backward elimination was used to identify the key predictors of TRAIL sensitivity and differentially expressed genes were identified using the software GeneSpring. Gene co-regulation and statistical interaction was assessed with q-order partial correlation analysis and non-rejection rate. Biological (functional) interactions amongst the co-acting genes were studied with Ingenuity network analysis. Prediction accuracy was assessed by calculating the area under the receiver operator curve using an independent dataset. We show that the gene panel identified could predict TRAIL-sensitivity with a very high degree of sensitivity and specificity (AUC=0·84). The genes in the panel are co-regulated and at least 40% of them functionally interact in signal transduction pathways that regulate cell death and cell survival, cellular differentiation and morphogenesis. Importantly, only 12% of the TRAIL-predictor genes were differentially expressed highlighting the importance of functional interactions in predicting the biological response. The advantage of co-acting gene clusters is that this analysis does not depend on differential expression and is able to incorporate direct- and indirect gene interactions as well as tissue- and cell-specific characteristics. This approach (1) identified a descriptor of TRAIL sensitivity which performs significantly better as a predictor of TRAIL sensitivity than any previously reported gene signatures, (2) identified potential novel regulators of TRAIL-responsiveness and (3) provided a systematic view highlighting fundamental differences between the molecular wiring of sensitive and resistant cell types.

  19. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE PAGES

    Xue, Kai; Xie, Jianping; Zhou, Aifen; ...

    2016-05-06

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  20. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  1. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Xie, Jianping; Zhou, Aifen

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  2. Rapid functional analysis of computationally complex rare human IRF6 gene variants using a novel zebrafish model.

    PubMed

    Li, Edward B; Truong, Dawn; Hallett, Shawn A; Mukherjee, Kusumika; Schutte, Brian C; Liao, Eric C

    2017-09-01

    Large-scale sequencing efforts have captured a rapidly growing catalogue of genetic variations. However, the accurate establishment of gene variant pathogenicity remains a central challenge in translating personal genomics information to clinical decisions. Interferon Regulatory Factor 6 (IRF6) gene variants are significant genetic contributors to orofacial clefts. Although approximately three hundred IRF6 gene variants have been documented, their effects on protein functions remain difficult to interpret. Here, we demonstrate the protein functions of human IRF6 missense gene variants could be rapidly assessed in detail by their abilities to rescue the irf6 -/- phenotype in zebrafish through variant mRNA microinjections at the one-cell stage. The results revealed many missense variants previously predicted by traditional statistical and computational tools to be loss-of-function and pathogenic retained partial or full protein function and rescued the zebrafish irf6 -/- periderm rupture phenotype. Through mRNA dosage titration and analysis of the Exome Aggregation Consortium (ExAC) database, IRF6 missense variants were grouped by their abilities to rescue at various dosages into three functional categories: wild type function, reduced function, and complete loss-of-function. This sensitive and specific biological assay was able to address the nuanced functional significances of IRF6 missense gene variants and overcome many limitations faced by current statistical and computational tools in assigning variant protein function and pathogenicity. Furthermore, it unlocked the possibility for characterizing yet undiscovered human IRF6 missense gene variants from orofacial cleft patients, and illustrated a generalizable functional genomics paradigm in personalized medicine.

  3. A novel scoring system for gastric cancer risk assessment based on the expression of three CLIP4 DNA methylation-associated genes

    PubMed Central

    Hu, Chenggong; Zhou, Yongfang; Liu, Chang; Kang, Yan

    2018-01-01

    Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-associated mortality worldwide. In the current study, comprehensive bioinformatic analyses were performed to develop a novel scoring system for GC risk assessment based on CAP-Gly domain containing linker protein family member 4 (CLIP4) DNA methylation status. Two GC datasets with methylation sequencing information and mRNA expression profiling were downloaded from the The Cancer Genome Atlas and Gene Expression Omnibus databases. Differentially expressed genes (DEGs) between the CLIP4 hypermethylation and CLIP4 hypomethylation groups were screened using the limma package in R 3.3.1, and survival analysis of these DEGs was performed using the survival package. A risk scoring system was established via regression factor-weighted gene expression based on linear combination to screen the most important genes associated with CLIP4 methylation and prognosis. Genes associated with high/low-risk value were selected using the limma package. Functional enrichment analysis of the top 500 DEGs that positively and negatively associated with risk values was performed using DAVID 6.8 online and the gene set enrichment analysis (GSEA) software. In total, 35 genes were identified to be that significantly associated with prognosis and CLIP4 DNA methylation, and three prognostic signature genes, claudin-11 (CLDN11), apolipoprotein D (APOD), and chordin like 1 (CHRDL1), were used to establish a risk assessment system. The prognostic scoring system exhibited efficiency in classifying patients with different prognoses, where the low-risk groups had significantly longer overall survival times than those in the high-risk groups. CLDN11, APOD and CHRDL1 exhibited reduced expression in the hypermethylation and low-risk groups compare with the hypomethylation and high-risk groups, respectively. Multivariate Cox analysis indicated that risk value could be used as an independent prognostic factor. In functional analysis, six functional gene ontology terms and five GSEA pathways were associated with CLDN11, APOD and CHRDL1. The results established the credibility of the scoring system in this study. Additionally, these three genes, which were significantly associated with CLIP4 DNA methylation and GC risk assessment, were identified as potential prognostic biomarkers. PMID:29901187

  4. Memory and Learning--Using Mouse to Model Neurobiological and Behavioural Aspects of Down Syndrome and Assess Pharmacotherapeutics

    ERIC Educational Resources Information Center

    Gardiner, Katheleen

    2009-01-01

    Mouse models are a standard tool in the study of many human diseases, providing insights into the normal functions of a gene, how these are altered in disease and how they contribute to a disease process, as well as information on drug action, efficacy and side effects. Our knowledge of human genes, their genetics, functions, interactions and…

  5. “Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks

    PubMed Central

    Gillis, Jesse; Pavlidis, Paul

    2012-01-01

    Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks. PMID:22479173

  6. Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR

    PubMed Central

    Massingham, Lauren J.; Johnson, Kirby L.; Bianchi, Diana W.; Pei, Shermin; Peter, Inga; Cowan, Janet M.; Tantravahi, Umadevi; Morrison, Tom B.

    2011-01-01

    Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care. PMID:21827969

  7. Dynamic Adaptive Binning: An Improved Quantification Technique for NMR Spectroscopic Data

    DTIC Science & Technology

    2010-01-01

    Reo 2002). Unlike proteomics and genomics that assess inter- mediate products, metabolomics assesses the end product of cellular function, metabolites...other proteomic , genomic , and metabolomic analyses, NMR spectroscopy is Electronic supplementary material The online version of this article (doi...Changes occurring at the level of genes and proteins (assessed by genomics and proteomics ) may or may not influence a variety of cellular functions

  8. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    PubMed Central

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  9. Bacterial infection as assessed by in vivo gene expression

    PubMed Central

    Heithoff, Douglas M.; Conner, Christopher P.; Hanna, Philip C.; Julio, Steven M.; Hentschel, Ute; Mahan, Michael J.

    1997-01-01

    In vivo expression technology (IVET) has been used to identify >100 Salmonella typhimurium genes that are specifically expressed during infection of BALB/c mice and/or murine cultured macrophages. Induction of these genes is shown to be required for survival in the animal under conditions of the IVET selection. One class of in vivo induced (ivi) genes, iviVI-A and iviVI-B, constitute an operon that resides in a region of the Salmonella genome with low G+C content and presumably has been acquired by horizontal transfer. These ivi genes encode predicted proteins that are similar to adhesins and invasins from prokaryotic and eukaryotic pathogens (Escherichia coli [tia], Plasmodium falciparum [PfEMP1]) and have coopted the PhoPQ regulatory circuitry of Salmonella virulence genes. Examination of the in vivo induction profile indicates (i) many ivi genes encode regulatory functions (e.g., phoPQ and pmrAB) that serve to enhance the sensitivity and amplitude of virulence gene expression (e.g., spvB); (ii) the biochemical function of many metabolic genes may not represent their sole contribution to virulence; (iii) the host ecology can be inferred from the biochemical functions of ivi genes; and (iv) nutrient limitation plays a dual signaling role in pathogenesis: to induce metabolic functions that complement host nutritional deficiencies and to induce virulence functions required for immediate survival and spread to subsequent host sites. PMID:9023360

  10. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    PubMed

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  11. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks

    PubMed Central

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568

  12. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    PubMed

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  13. Fos metamorphoses: Lessons from mutants in model organisms (Drosophila).

    PubMed

    Alfonso-Gonzalez, Carlos; Riesgo-Escovar, Juan Rafael

    2018-05-10

    The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes. Copyright © 2018. Published by Elsevier B.V.

  14. Maternal vernalization and vernalization-pathway genes influence progeny seed germination.

    PubMed

    Auge, Gabriela A; Blair, Logan K; Neville, Hannah; Donohue, Kathleen

    2017-10-01

    Different life stages frequently respond to the same environmental cue to regulate development so that each life stage is matched to its appropriate season. We investigated how independently each life stage can respond to shared environmental cues, focusing on vernalization, in Arabidopsis thaliana plants. We first tested whether effects of rosette vernalization persisted to influence seed germination. To test whether genes in the vernalization flowering pathway also influence germination, we assessed germination of functional and nonfunctional alleles of these genes and measured their level of expression at different life stages in response to rosette vernalization. Rosette vernalization increased seed germination in diverse ecotypes. Genes in the vernalization flowering pathway also influenced seed germination. In the Columbia accession, functional alleles of most of these genes opposed the germination response observed in the ecotypes. Some genes influenced germination in a manner consistent with their known effects on FLOWERING LOCUS C gene regulation during the transition to flowering. Others did not, suggesting functional divergence across life stages. Despite persistent effects of environmental conditions across life stages, and despite pleiotropy of genes that affect both flowering and germination, the function of these genes can differ across life stages, potentially mitigating pleiotropic constraints and enabling independent environmental regulation of different life stages. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation.

    PubMed

    Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P

    2010-09-01

    Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.

  16. Prognostic significance of ESR1 gene amplification, mRNA/protein expression and functional profiles in high-risk early breast cancer: a translational study of the Hellenic Cooperative Oncology Group (HeCOG).

    PubMed

    Pentheroudakis, George; Kotoula, Vassiliki; Eleftheraki, Anastasia G; Tsolaki, Eleftheria; Wirtz, Ralph M; Kalogeras, Konstantine T; Batistatou, Anna; Bobos, Mattheos; Dimopoulos, Meletios A; Timotheadou, Eleni; Gogas, Helen; Christodoulou, Christos; Papadopoulou, Kyriaki; Efstratiou, Ioannis; Scopa, Chrisoula D; Papaspyrou, Irene; Vlachodimitropoulos, Dimitrios; Linardou, Helena; Samantas, Epaminontas; Pectasides, Dimitrios; Pavlidis, Nicholas; Fountzilas, George

    2013-01-01

    Discrepant data have been published on the incidence and prognostic significance of ESR1 gene amplification in early breast cancer. Formalin-fixed paraffin-embedded tumor blocks were collected from women with early breast cancer participating in two HeCOG adjuvant trials. Messenger RNA was studied by quantitative PCR, ER protein expression was centrally assessed using immunohistochemistry (IHC) and ESR1 gene copy number by dual fluorescent in situ hybridization probes. In a total of 1010 women with resected node-positive early breast adenocarcinoma, the tumoral ESR1/CEP6 gene ratio was suggestive of deletion in 159 (15.7%), gene gain in 551 (54.6%) and amplification in 42 cases (4.2%), with only 30 tumors (3%) harboring five or more ESR1 copies. Gene copy number ratio showed a significant, though weak correlation to mRNA and protein expression (Spearman's Rho <0.23, p = 0.01). ESR1 clusters were observed in 9.5% (57 gain, 38 amplification) of cases. In contrast to mRNA and protein expression, which were favorable prognosticators, gene copy number changes did not obtain prognostic significance. When ESR1/CEP6 gene ratio was combined with function (as defined by ER protein and mRNA expression) in a molecular classifier, the Gene Functional profile, it was functional status that impacted on prognosis. In univariate analysis, patients with functional tumors (positive ER protein expression and gene ratio normal or gain/amplification) fared better than those with non-functional tumors with ESR1 gain (HR for relapse or death 0.49-0.64, p = 0.003). Significant interactions were observed between gene gain/amplification and paclitaxel therapy (trend for DFS benefit from paclitaxel only in patients with ESR1 gain/amplification, p = 0.066) and Gene Functional profile with HER2 amplification (Gene Functional profile prognostic only in HER2-normal cases, p = 0.029). ESR1 gene deletion and amplification do not constitute per se prognostic markers, instead they can be classified to distinct prognostic groups according to their protein-mediated functional status.

  17. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown. PMID:16685651

  18. Functional toxicogenomic assessment of triclosan in human ...

    EPA Pesticide Factsheets

    Thousands of chemicals for which limited toxicological data are available are used and then detected in humans and the environment. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes (whose knockout gives potential resistance) at IC50 (50% Inhibition concentration of cell viability) were significantly enriched in adherens junction pathway, MAPK signaling pathway and PPAR signaling pathway, suggesting a potential molecular mechanism in TCS induced cytotoxicity. Evaluation of top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes (whose knockout enhances potential sensitivity) at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with the transcriptomic profiling of TCS at concentrations

  19. Functional analysis of rare variants in mismatch repair proteins augments results from computation-based predictive methods

    PubMed Central

    Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.

    2017-01-01

    ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185

  20. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    USGS Publications Warehouse

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  1. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.

  2. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Zhai, Yu-Fei; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-11-01

    Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function

    PubMed Central

    Raychaudhuri, Soumya; Korn, Joshua M.; McCarroll, Steven A.; Altshuler, David; Sklar, Pamela; Purcell, Shaun; Daly, Mark J.

    2010-01-01

    Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous publications have applied “pathway” analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets, but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this association. Our method is implemented in the PLINK software package. PMID:20838587

  4. Detecting differential allelic expression using high-resolution melting curve analysis: application to the breast cancer susceptibility gene CHEK2

    PubMed Central

    2011-01-01

    Background The gene CHEK2 encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though CHEK2 has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE) represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether CHEK2 was subject to DAE in lymphoblastoid cell lines (LCLs) from high-risk breast cancer patients for whom no mutation in BRCA1 or BRCA2 had been identified. Methods We implemented an assay based on high-resolution melting (HRM) curve analysis and developed an analysis tool for DAE assessment. Results We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of CHEK2 that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs. Conclusions Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms. PMID:21569354

  5. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences.

    PubMed

    Zeng, Y H; Chen, X H; Jiao, N Z

    2007-12-01

    To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0.06, 0.15 and 0.48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes.

  6. A Novel FOXE1 Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression

    PubMed Central

    Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel

    2014-01-01

    Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene activity should be considered among the mechanisms underlying Bamforth–Lazarus syndrome. PMID:24219130

  7. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.

    PubMed

    Suo, Chen; Hrydziuszko, Olga; Lee, Donghwan; Pramana, Setia; Saputra, Dhany; Joshi, Himanshu; Calza, Stefano; Pawitan, Yudi

    2015-08-15

    Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. yudi.pawitan@ki.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability.

    PubMed

    Looi, Kevin; Troy, Niamh M; Garratt, Luke W; Iosifidis, Thomas; Bosco, Anthony; Buckley, Alysia G; Ling, Kak-Ming; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Shaw, Nicole C; Sutanto, Erika N; Zosky, Graeme R; Rigby, Paul J; Larcombe, Alexander N; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2016-10-11

    No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID 50 ) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT 2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. HRV-1B infection affected viability that was both time and TCID 50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID 50 , while a significant decrease in all three TJ protein expressions occurred at higher TCID 50 . Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.

  9. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways

    PubMed Central

    Koumakis, Lefteris; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Vassou, Despoina; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-01-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes. PMID:27832067

  10. MinePath: Mining for Phenotype Differential Sub-paths in Molecular Pathways.

    PubMed

    Koumakis, Lefteris; Kanterakis, Alexandros; Kartsaki, Evgenia; Chatzimina, Maria; Zervakis, Michalis; Tsiknakis, Manolis; Vassou, Despoina; Kafetzopoulos, Dimitris; Marias, Kostas; Moustakis, Vassilis; Potamias, George

    2016-11-01

    Pathway analysis methodologies couple traditional gene expression analysis with knowledge encoded in established molecular pathway networks, offering a promising approach towards the biological interpretation of phenotype differentiating genes. Early pathway analysis methodologies, named as gene set analysis (GSA), view pathways just as plain lists of genes without taking into account either the underlying pathway network topology or the involved gene regulatory relations. These approaches, even if they achieve computational efficiency and simplicity, consider pathways that involve the same genes as equivalent in terms of their gene enrichment characteristics. Most recent pathway analysis approaches take into account the underlying gene regulatory relations by examining their consistency with gene expression profiles and computing a score for each profile. Even with this approach, assessing and scoring single-relations limits the ability to reveal key gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath, a pathway analysis methodology that addresses and overcomes the aforementioned problems. MinePath facilitates the decomposition of pathways into their constituent sub-paths. Decomposition leads to the transformation of single-relations to complex regulation sub-paths. Regulation sub-paths are then matched with gene expression sample profiles in order to evaluate their functional status and to assess phenotype differential power. Assessment of differential power supports the identification of the most discriminant profiles. In addition, MinePath assess the significance of the pathways as a whole, ranking them by their p-values. Comparison results with state-of-the-art pathway analysis systems are indicative for the soundness and reliability of the MinePath approach. In contrast with many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offering dynamic and rich pathway visualization functionality, with the unique characteristic to color regulatory relations between genes and reveal their phenotype inclination. This unique characteristic makes MinePath a valuable tool for in silico molecular biology experimentation as it serves the biomedical researchers' exploratory needs to reveal and interpret the regulatory mechanisms that underlie and putatively govern the expression of target phenotypes.

  11. TOXICOGENOMICS AS A TOOL TO ASSESS EXPOSURE OF FISH TO ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Molecular biological techniques such as gene arrays and quantitative real-time PCR are becoming important tools to study alterations in normal gene expression in fish and other wildlife exposed to such pollutants as endocrine disrupting chemicals (EDCs). An important function fo...

  12. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks.

    PubMed

    Maere, Steven; Heymans, Karel; Kuiper, Martin

    2005-08-15

    The Biological Networks Gene Ontology tool (BiNGO) is an open-source Java tool to determine which Gene Ontology (GO) terms are significantly overrepresented in a set of genes. BiNGO can be used either on a list of genes, pasted as text, or interactively on subgraphs of biological networks visualized in Cytoscape. BiNGO maps the predominant functional themes of the tested gene set on the GO hierarchy, and takes advantage of Cytoscape's versatile visualization environment to produce an intuitive and customizable visual representation of the results.

  13. Developing and applying a gene functional association network for anti-angiogenic kinase inhibitor activity assessment in an angiogenesis co-culture model

    PubMed Central

    Chen, Yuefeng; Wei, Tao; Yan, Lei; Lawrence, Frank; Qian, Hui-Rong; Burkholder, Timothy P; Starling, James J; Yingling, Jonathan M; Shou, Jianyong

    2008-01-01

    Background Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy. However, translation of the polypharmacology of a given compound to its antiangiogenic efficacy remains a major technical challenge. Developing a global functional association network among angiogenesis-related genes is much needed to facilitate holistic understanding of angiogenesis and to aid the development of more effective anti-angiogenesis therapeutics. Results We constructed a comprehensive gene functional association network or interactome by transcript profiling an in vitro angiogenesis model, in which human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent. An enrichment test of Biological Processes (BP) of differentially expressed genes (DEG) revealed that angiogenesis related BP categories significantly changed with cell passages. Built upon 2012 DEGs identified from two microarray studies, the resulting interactome captured 17226 functional gene associations and displayed characteristics of a scale-free network. The interactome includes the involvement of oncogenes and tumor suppressor genes in angiogenesis. We developed a network walking algorithm to extract connectivity information from the interactome and applied it to simulate the level of network perturbation by three multi-targeted anti-angiogenic kinase inhibitors. Simulated network perturbation correlated with observed anti-angiogenesis activity in a cord formation bioassay. Conclusion We established a comprehensive gene functional association network to model in vitro angiogenesis regulation. The present study provided a proof-of-concept pilot of applying network perturbation analysis to drug phenotypic activity assessment. PMID:18518970

  14. Vitamin D Receptor Gene Ablation in the Conceptus Has Limited Effects on Placental Morphology, Function and Pregnancy Outcome

    PubMed Central

    Laurence, Jessica A.; Leemaqz, Shalem; O’Leary, Sean; Bianco-Miotto, Tina; Du, Jing; Anderson, Paul H.; Roberts, Claire T.

    2015-01-01

    Vitamin D deficiency has been implicated in the pathogenesis of several pregnancy complications attributed to impaired or abnormal placental function, but there are few clues indicating the mechanistic role of vitamin D in their pathogenesis. To further understand the role of vitamin D receptor (VDR)-mediated activity in placental function, we used heterozygous Vdr ablated C57Bl6 mice to assess fetal growth, morphological parameters and global gene expression in Vdr null placentae. Twelve Vdr +/- dams were mated at 10–12 weeks of age with Vdr +/- males. At day 18.5 of the 19.5 day gestation in our colony, females were euthanised and placental and fetal samples were collected, weighed and subsequently genotyped as either Vdr +/+, Vdr +/- or Vdr -/-. Morphological assessment of placentae using immunohistochemistry was performed and RNA was extracted and subject to microarray analysis. This revealed 25 genes that were significantly differentially expressed between Vdr +/+ and Vdr -/- placentae. The greatest difference was a 6.47-fold change in expression of Cyp24a1 which was significantly lower in the Vdr -/- placentae (P<0.01). Other differentially expressed genes in Vdr -/- placentae included those involved in RNA modification (Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signalling (Plscr1, Pex5) and mammalian target of rapamycin (mTOR) signalling (Deptor and Prr5). Interrogation of the upstream sequence of differentially expressed genes identified that many contain putative vitamin D receptor elements (VDREs). Despite the gene expression differences, this did not contribute to any differences in overall placental morphology, nor was function affected as there was no difference in fetal growth as determined by fetal weight near term. Given our dams still expressed a functional VDR gene, our results suggest that cross-talk between the maternal decidua and the placenta, as well as maternal vitamin D status, may be more important in determining pregnancy outcome than conceptus expression of VDR. PMID:26121239

  15. Metagenomics and novel gene discovery

    PubMed Central

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-01-01

    Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics. PMID:24317337

  16. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tschaplinski, Timothy J; Tsai, Chung-Jui; Harding, Scott A

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expandedmore » hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.« less

  17. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  18. Deciphering life history transcriptomes in different environments

    PubMed Central

    Etges, William J.; Trotter, Meredith V.; de Oliveira, Cássia C.; Rajpurohit, Subhash; Gibbs, Allen G.; Tuljapurkar, Shripad

    2014-01-01

    We compared whole transcriptome variation in six preadult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants in order to understand how differences in gene expression influence standing life history variation. We used Singular Value Decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pair-wise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and aging. Host cactus effects on female gene expression revealed population and stage specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behavior gene expression levels. In 3 - 6 day old virgin females, significant up-regulation of genes associated with meiosis and oogenesis was accompanied by down-regulation of genes associated with somatic maintenance, evidence for a life history tradeoff. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome wide influences on life history variation in natural populations. PMID:25442828

  19. Development of resources for the analysis of gene function in Pucciniomycotina red yeasts.

    PubMed

    Ianiri, Giuseppe; Wright, Sandra A I; Castoria, Raffaello; Idnurm, Alexander

    2011-07-01

    The Pucciniomycotina is an important subphylum of basidiomycete fungi but with limited tools to analyze gene functions. Transformation protocols were established for a Sporobolomyces species (strain IAM 13481), the first Pucciniomycotina species with a completed draft genome sequence, to enable assessment of gene function through phenotypic characterization of mutant strains. Transformation markers were the URA3 and URA5 genes that enable selection and counter-selection based on uracil auxotrophy and resistance to 5-fluoroorotic acid. The wild type copies of these genes were cloned into plasmids that were used for transformation of Sporobolomyces sp. by both biolistic and Agrobacterium-mediated approaches. These resources have been deposited to be available from the Fungal Genetics Stock Center. To show that these techniques could be used to elucidate gene functions, the LEU1 gene was targeted for specific homologous replacement, and also demonstrating that this gene is required for the biosynthesis of leucine in basidiomycete fungi. T-DNA insertional mutants were isolated and further characterized, revealing insertions in genes that encode the homologs of Chs7, Erg3, Kre6, Kex1, Pik1, Sad1, Ssu1 and Tlg1. Phenotypic analysis of these mutants reveals both conserved and divergent functions compared with other fungi. Some of these strains exhibit reduced resistance to detergents, the antifungal agent fluconazole or sodium sulfite, or lower recovery from heat stress. While there are current experimental limitations for Sporobolomyces sp. such as the lack of Mendelian genetics for conventional mating, these findings demonstrate the facile nature of at least one Pucciniomycotina species for genetic manipulation and the potential to develop these organisms into new models for understanding gene function and evolution in the fungi. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts

    PubMed Central

    Vincent, Jonathan; Dai, Zhanwu; Ravel, Catherine; Choulet, Frédéric; Mouzeyar, Said; Bouzidi, M. Fouad; Agier, Marie; Martre, Pierre

    2013-01-01

    The functional annotation of genes based on sequence homology with genes from model species genomes is time-consuming because it is necessary to mine several unrelated databases. The aim of the present work was to develop a functional annotation database for common wheat Triticum aestivum (L.). The database, named dbWFA, is based on the reference NCBI UniGene set, an expressed gene catalogue built by expressed sequence tag clustering, and on full-length coding sequences retrieved from the TriFLDB database. Information from good-quality heterogeneous sources, including annotations for model plant species Arabidopsis thaliana (L.) Heynh. and Oryza sativa L., was gathered and linked to T. aestivum sequences through BLAST-based homology searches. Even though the complexity of the transcriptome cannot yet be fully appreciated, we developed a tool to easily and promptly obtain information from multiple functional annotation systems (Gene Ontology, MapMan bin codes, MIPS Functional Categories, PlantCyc pathway reactions and TAIR gene families). The use of dbWFA is illustrated here with several query examples. We were able to assign a putative function to 45% of the UniGenes and 81% of the full-length coding sequences from TriFLDB. Moreover, comparison of the annotation of the whole T. aestivum UniGene set along with curated annotations of the two model species assessed the accuracy of the annotation provided by dbWFA. To further illustrate the use of dbWFA, genes specifically expressed during the early cell division or late storage polymer accumulation phases of T. aestivum grain development were identified using a clustering analysis and then annotated using dbWFA. The annotation of these two sets of genes was consistent with previous analyses of T. aestivum grain transcriptomes and proteomes. Database URL: urgi.versailles.inra.fr/dbWFA/ PMID:23660284

  1. Identification of hub subnetwork based on topological features of genes in breast cancer

    PubMed Central

    ZHUANG, DA-YONG; JIANG, LI; HE, QING-QING; ZHOU, PENG; YUE, TAO

    2015-01-01

    The aim of this study was to provide functional insight into the identification of hub subnetworks by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We applied a protein network-based approach to identify subnetworks which may provide new insight into the functions of pathways involved in breast cancer rather than individual genes. Five groups of breast cancer data were downloaded and analyzed from the Gene Expression Omnibus (GEO) database of high-throughput gene expression data to identify gene signatures using the genome-wide global significance (GWGS) method. A PPI network was constructed using Cytoscape and clusters that focused on highly connected nodes were obtained using the molecular complex detection (MCODE) clustering algorithm. Pathway analysis was performed to assess the functional relevance of selected gene signatures based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Topological centrality was used to characterize the biological importance of gene signatures, pathways and clusters. The results revealed that, cluster1, as well as the cell cycle and oocyte meiosis pathways were significant subnetworks in the analysis of degree and other centralities, in which hub nodes mostly distributed. The most important hub nodes, with top ranked centrality, were also similar with the common genes from the above three subnetwork intersections, which was viewed as a hub subnetwork with more reproducible than individual critical genes selected without network information. This hub subnetwork attributed to the same biological process which was essential in the function of cell growth and death. This increased the accuracy of identifying gene interactions that took place within the same functional process and was potentially useful for the development of biomarkers and networks for breast cancer. PMID:25573623

  2. Obesity in Aging Exacerbates Neuroinflammation, Dysregulating Synaptic Function-related Genes and Altering Eicosanoid Synthesis in the Mouse Hippocampus: Potential Role in Impaired Synaptic Plasticity and Cognitive Decline.

    PubMed

    Valcarcel-Ares, Marta Noa; Tucsek, Zsuzsanna; Kiss, Tamas; Giles, Cory B; Tarantini, Stefano; Yabluchanskiy, Andriy; Balasubramanian, Priya; Gautam, Tripti; Galvan, Veronica; Ballabh, Praveen; Richardson, Arlan; Freeman, Willard M; Wren, Jonathan D; Deak, Ferenc; Ungvari, Zoltan; Csiszar, Anna

    2018-06-08

    There is strong evidence that obesity has deleterious effects on cognitive function of older adults. Previous preclinical studies demonstrate that obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood brain barrier disruption, promoting neuroinflammation and oxidative stress. To test the hypothesis that synergistic effects of obesity and aging on inflammatory processes exert deleterious effects on hippocampal function, young and aged C57BL/6 mice were rendered obese by chronic feeding of a high fat diet followed by assessment of learning and memory function, measurement of hippocampal long-term potentiation (LTP), assessment of changes in hippocampal expression of genes relevant for synaptic function and determination of synaptic density. Because there is increasing evidence that altered production of lipid mediators modulate LTP, neuroinflammation and neurovascular coupling responses, the effects of obesity on hippocampal levels of relevant eicosanoid mediators were also assessed. We found that aging exacerbates obesity-induced microglia activation, which is associated with deficits in hippocampal-dependent learning and memory tests, impaired LTP, decreased synaptic density and dysregulation of genes involved in regulation of synaptic plasticity. Obesity in aging also resulted in an altered hippocampal eicosanoid profile, including decreases in vasodilator and pro-LTP epoxy-eicosatrienoic acids (EETs). Collectively, our results taken together with previous findings suggest that obesity in aging promotes hippocampal inflammation, which in turn may contribute to synaptic dysfunction and cognitive impairment.

  3. Symptoms of Attention-Deficit/Hyperactivity Disorder in Down Syndrome: Effects of the Dopamine Receptor D4 Gene

    ERIC Educational Resources Information Center

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and…

  4. Changes in expression of genes involved in apoptosis in activated human T-cells in response to modeled microgravity

    NASA Astrophysics Data System (ADS)

    Ward, Nancy E.; Pellis, Neal R.; Risin, Diana; Risin, Semyon A.; Liu, Wenbin

    2006-09-01

    Space flights result in remarkable effects on various physiological systems, including a decline in cellular immune functions. Previous studies have shown that exposure to microgravity, both true and modeled, can cause significant changes in numerous lymphocyte functions. The purpose of this study was to search for microgravity-sensitive genes, and specifically for apoptotic genes influenced by the microgravity environment and other genes related to immune response. The experiments were performed on anti-CD3 and IL-2 activated human T cells. To model microgravity conditions we have utilized the NASA rotating wall vessel bioreactor. Control lymphocytes were cultured in static 1g conditions. To assess gene expression we used DNA microarray chip technology. We had shown that multiple genes (approximately 3-8% of tested genes) respond to microgravity conditions by 1.5 and more fold change in expression. There is a significant variability in the response. However, a certain reproducible pattern in gene response could be identified. Among the genes showing reproducible changes in expression in modeled microgravity, several genes involved in apoptosis as well as in immune response were identified. These are IL-7 receptor, Granzyme B, Beta-3-endonexin, Apo2 ligand and STAT1. Possible functional consequences of these changes are discussed.

  5. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

    USDA-ARS?s Scientific Manuscript database

    We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (“Assessing Changes to Exons”) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detect...

  6. A Statistical Framework for the Functional Analysis of Metagenomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon, Itai; Pati, Amrita; Markowitz, Victor

    2008-10-01

    Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements.more » They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.« less

  7. Differential network analysis reveals the genome-wide landscape of estrogen receptor modulation in hormonal cancers

    PubMed Central

    Hsiao, Tzu-Hung; Chiu, Yu-Chiao; Hsu, Pei-Yin; Lu, Tzu-Pin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Huang, Tim H.-M.; Chuang, Eric Y.; Chen, Yidong

    2016-01-01

    Several mutual information (MI)-based algorithms have been developed to identify dynamic gene-gene and function-function interactions governed by key modulators (genes, proteins, etc.). Due to intensive computation, however, these methods rely heavily on prior knowledge and are limited in genome-wide analysis. We present the modulated gene/gene set interaction (MAGIC) analysis to systematically identify genome-wide modulation of interaction networks. Based on a novel statistical test employing conjugate Fisher transformations of correlation coefficients, MAGIC features fast computation and adaption to variations of clinical cohorts. In simulated datasets MAGIC achieved greatly improved computation efficiency and overall superior performance than the MI-based method. We applied MAGIC to construct the estrogen receptor (ER) modulated gene and gene set (representing biological function) interaction networks in breast cancer. Several novel interaction hubs and functional interactions were discovered. ER+ dependent interaction between TGFβ and NFκB was further shown to be associated with patient survival. The findings were verified in independent datasets. Using MAGIC, we also assessed the essential roles of ER modulation in another hormonal cancer, ovarian cancer. Overall, MAGIC is a systematic framework for comprehensively identifying and constructing the modulated interaction networks in a whole-genome landscape. MATLAB implementation of MAGIC is available for academic uses at https://github.com/chiuyc/MAGIC. PMID:26972162

  8. Risk for Sporadic Breast Cancer in Ataxia Telangiectasia Heterozygotes

    DTIC Science & Technology

    2001-08-01

    assess whether heterozygosity for the ATM gene, due to a loss of function mutation in one of the 2 alleles and found in about 1% of the general population...suppressor role in breast cancer, a loss of wild type ATM expression rather than mutational inactivation could be expected. With this rationale, we...genes. The latter indicates that in p53-deficient tumor cells with activated oncogenic pathways, clonal outgrowth favors loss of p73 function. Taken

  9. NCI-60 Whole Exome Sequencing and Pharmacological CellMiner Analyses

    PubMed Central

    Reinhold, William C.; Varma, Sudhir; Sousa, Fabricio; Sunshine, Margot; Abaan, Ogan D.; Davis, Sean R.; Reinhold, Spencer W.; Kohn, Kurt W.; Morris, Joel; Meltzer, Paul S.; Doroshow, James H.; Pommier, Yves

    2014-01-01

    Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes (approximately 6% of all genes). Variants that are either enriched or depleted compared to non-cancerous genomes, and thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs, reveals ≈80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly correlated with at least one compound (at p<0.0002). These include genes of known pharmacological importance such as IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH. We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for a broad range of researchers, especially those without bioinformatics support. The first tool, “Genetic variant versus drug visualization”, provides a visualization of significant correlations between drug activity-gene variant combinations. Examples are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, “Genetic variant summation” allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors. The new tools are implemented as an updated web-based CellMiner version, for which the present publication serves as a compendium. PMID:25032700

  10. Distinct Molecular Signature of Murine Fetal Liver and Adult Hematopoietic Stem Cells Identify Novel Regulators of Hematopoietic Stem Cell Function

    PubMed Central

    Manesia, Javed K.; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M.

    2018-01-01

    During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term “transcription.” By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function. PMID:27958775

  11. Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening.

    PubMed

    Xia, Pu; Zhang, Xiaowei; Xie, Yuwei; Guan, Miao; Villeneuve, Daniel L; Yu, Hongxia

    2016-10-04

    There are thousands of chemicals used by humans and detected in the environment for which limited or no toxicological data are available. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify the potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes at IC50 (the concentration causing a 50% reduction in cell viability) were significantly enriched in the adherens junction pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting a potential role in the molecular mechanism of TCS-induced cytotoxicity. Evaluation of the top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with transcriptomic profiling of TCS at concentrations of

  12. Genome-Wide Characterization of Transcriptional Patterns in High and Low Antibody Responders to Rubella Vaccination

    PubMed Central

    Haralambieva, Iana H.; Oberg, Ann L.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Grill, Diane E.; Middha, Sumit; Bot, Brian M.; Wang, Vivian W.; Smith, David I.; Jacobson, Robert M.; Poland, Gregory A.

    2013-01-01

    Immune responses to current rubella vaccines demonstrate significant inter-individual variability. We performed mRNA-Seq profiling on PBMCs from high and low antibody responders to rubella vaccination to delineate transcriptional differences upon viral stimulation. Generalized linear models were used to assess the per gene fold change (FC) for stimulated versus unstimulated samples or the interaction between outcome and stimulation. Model results were evaluated by both FC and p-value. Pathway analysis and self-contained gene set tests were performed for assessment of gene group effects. Of 17,566 detected genes, we identified 1,080 highly significant differentially expressed genes upon viral stimulation (p<1.00E−15, FDR<1.00E−14), including various immune function and inflammation-related genes, genes involved in cell signaling, cell regulation and transcription, and genes with unknown function. Analysis by immune outcome and stimulation status identified 27 genes (p≤0.0006 and FDR≤0.30) that responded differently to viral stimulation in high vs. low antibody responders, including major histocompatibility complex (MHC) class I genes (HLA-A, HLA-B and B2M with p = 0.0001, p = 0.0005 and p = 0.0002, respectively), and two genes related to innate immunity and inflammation (EMR3 and MEFV with p = 1.46E−08 and p = 0.0004, respectively). Pathway and gene set analysis also revealed transcriptional differences in antigen presentation and innate/inflammatory gene sets and pathways between high and low responders. Using mRNA-Seq genome-wide transcriptional profiling, we identified antigen presentation and innate/inflammatory genes that may assist in explaining rubella vaccine-induced immune response variations. Such information may provide new scientific insights into vaccine-induced immunity useful in rational vaccine development and immune response monitoring. PMID:23658707

  13. The evolution of duplicate gene expression in mammalian organs

    PubMed Central

    Guschanski, Katerina; Warnefors, Maria; Kaessmann, Henrik

    2017-01-01

    Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates. PMID:28743766

  14. Identifying Novel Helix–Loop–Helix Genes in Caenorhabditis elegans through a Classroom Demonstration of Functional Genomics

    PubMed Central

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the Caenorhabditis elegans genome and further characterized three sequences that were predicted to encode helix–loop–helix proteins. Students then used reverse transcription–polymerase chain reaction to determine which of the three genes is normally expressed in C. elegans. At the end of this laboratory activity, students were 1) to demonstrate a rudimentary knowledge of bioinformatics, including the ability to differentiate between “having” a gene and “expressing” a gene, and 2) to understand basic approaches to functional genomics, including one specific technique for assaying for gene expression. It was also anticipated that students would increase their skills at effectively communicating their research activities through written and/or oral presentation. This article describes the laboratory activity and the assessment of the effectiveness of the activity. PMID:12822036

  15. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.

    PubMed

    Schäfer, Reinhold; Sers, Christine

    2011-01-01

    Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.

  16. Microarray profiling of human white adipose tissue after exogenous leptin injection.

    PubMed

    Taleb, S; Van Haaften, R; Henegar, C; Hukshorn, C; Cancello, R; Pelloux, V; Hanczar, B; Viguerie, N; Langin, D; Evelo, C; Zucker, J; Clément, K; Saris, W H M

    2006-03-01

    Leptin is a secreted adipocyte hormone that plays a key role in the regulation of body weight homeostasis. The leptin effect on human white adipose tissue (WAT) is still debated. The aim of this study was to assess whether the administration of polyethylene glycol-leptin (PEG-OB) in a single supraphysiological dose has transcriptional effects on genes of WAT and to identify its target genes and functional pathways in WAT. Blood samples and WAT biopsies were obtained from 10 healthy nonobese men before treatment and 72 h after the PEG-OB injection, leading to an approximate 809-fold increase in circulating leptin. The WAT gene expression profile before and after the PEG-OB injection was compared using pangenomic microarrays. Functional gene annotations based on the gene ontology of the PEG-OB regulated genes were performed using both an 'in house' automated procedure and GenMAPP (Gene Microarray Pathway Profiler), designed for viewing and analyzing gene expression data in the context of biological pathways. Statistical analysis of microarray data revealed that PEG-OB had a major down-regulated effect on WAT gene expression, as we obtained 1,822 and 100 down- and up-regulated genes, respectively. Microarray data were validated using reverse transcription quantitative PCR. Functional gene annotations of PEG-OB regulated genes revealed that the functional class related to immunity and inflammation was among the most mobilized PEG-OB pathway in WAT. These genes are mainly expressed in the cell of the stroma vascular fraction in comparison with adipocytes. Our observations support the hypothesis that leptin could act on WAT, particularly on genes related to inflammation and immunity, which may suggest a novel leptin target pathway in human WAT.

  17. Gene set analysis of purine and pyrimidine antimetabolites cancer therapies.

    PubMed

    Fridley, Brooke L; Batzler, Anthony; Li, Liang; Li, Fang; Matimba, Alice; Jenkins, Gregory D; Ji, Yuan; Wang, Liewei; Weinshilboum, Richard M

    2011-11-01

    Responses to therapies, either with regard to toxicities or efficacy, are expected to involve complex relationships of gene products within the same molecular pathway or functional gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the true underlying biology and may be more appropriate units for analysis of pharmacogenomic studies. Application of such methods to pharmacogenomic studies may enable the detection of more subtle effects of multiple genes in the same pathway that may be missed by assessing each gene individually. A gene set analysis of 3821 gene sets is presented assessing the association between basal messenger RNA expression and drug cytotoxicity using ethnically defined human lymphoblastoid cell lines for two classes of drugs: pyrimidines [gemcitabine (dFdC) and arabinoside] and purines [6-thioguanine and 6-mercaptopurine]. The gene set nucleoside-diphosphatase activity was found to be significantly associated with both dFdC and arabinoside, whereas gene set γ-aminobutyric acid catabolic process was associated with dFdC and 6-thioguanine. These gene sets were significantly associated with the phenotype even after adjusting for multiple testing. In addition, five associated gene sets were found in common between the pyrimidines and two gene sets for the purines (3',5'-cyclic-AMP phosphodiesterase activity and γ-aminobutyric acid catabolic process) with a P value of less than 0.0001. Functional validation was attempted with four genes each in gene sets for thiopurine and pyrimidine antimetabolites. All four genes selected from the pyrimidine gene sets (PSME3, CANT1, ENTPD6, ADRM1) were validated, but only one (PDE4D) was validated for the thiopurine gene sets. In summary, results from the gene set analysis of pyrimidine and purine therapies, used often in the treatment of various cancers, provide novel insight into the relationship between genomic variation and drug response.

  18. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    PubMed

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  19. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles.

    PubMed

    Czugala, Marta; Mykhaylyk, Olga; Böhler, Philip; Onderka, Jasmine; Stork, Björn; Wesselborg, Sebastian; Kruse, Friedrich E; Plank, Christian; Singer, Bernhard B; Fuchsluger, Thomas A

    2016-07-01

    To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.

  20. cisMEP: an integrated repository of genomic epigenetic profiles and cis-regulatory modules in Drosophila

    PubMed Central

    2014-01-01

    Background Cis-regulatory modules (CRMs), or the DNA sequences required for regulating gene expression, play the central role in biological researches on transcriptional regulation in metazoan species. Nowadays, the systematic understanding of CRMs still mainly resorts to computational methods due to the time-consuming and small-scale nature of experimental methods. But the accuracy and reliability of different CRM prediction tools are still unclear. Without comparative cross-analysis of the results and combinatorial consideration with extra experimental information, there is no easy way to assess the confidence of the predicted CRMs. This limits the genome-wide understanding of CRMs. Description It is known that transcription factor binding and epigenetic profiles tend to determine functions of CRMs in gene transcriptional regulation. Thus integration of the genome-wide epigenetic profiles with systematically predicted CRMs can greatly help researchers evaluate and decipher the prediction confidence and possible transcriptional regulatory functions of these potential CRMs. However, these data are still fragmentary in the literatures. Here we performed the computational genome-wide screening for potential CRMs using different prediction tools and constructed the pioneer database, cisMEP (cis-regulatory module epigenetic profile database), to integrate these computationally identified CRMs with genomic epigenetic profile data. cisMEP collects the literature-curated TFBS location data and nine genres of epigenetic data for assessing the confidence of these potential CRMs and deciphering the possible CRM functionality. Conclusions cisMEP aims to provide a user-friendly interface for researchers to assess the confidence of different potential CRMs and to understand the functions of CRMs through experimentally-identified epigenetic profiles. The deposited potential CRMs and experimental epigenetic profiles for confidence assessment provide experimentally testable hypotheses for the molecular mechanisms of metazoan gene regulation. We believe that the information deposited in cisMEP will greatly facilitate the comparative usage of different CRM prediction tools and will help biologists to study the modular regulatory mechanisms between different TFs and their target genes. PMID:25521507

  1. On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report

    PubMed Central

    Thomas, Paul D.; Wood, Valerie; Mungall, Christopher J.; Lewis, Suzanna E.; Blake, Judith A.

    2012-01-01

    A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the “functional similarity” between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the “ortholog conjecture” (or, more properly, the “ortholog functional conservation hypothesis”). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an “open world assumption” (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a justifiable biological basis. PMID:22359495

  2. The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy.

    PubMed

    Grimm, Simone; Wirth, Katharina; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Dziobek, Isabel; Bajbouj, Malek; Aust, Sabine

    2017-06-30

    Early life stress (ELS) is associated with increased vulnerability for depression, changes to the corticotropin-releasing hormone (CRH) system and structural and functional changes in hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS to predict depression, cognitive functions and hippocampal activity. Social cognition has been related to hippocampal function and might be crucial for maintaining mental health. However, the interaction of CRHR1 gene variation and ELS on social cognition has not been investigated yet. We assessed social cognition in 502 healthy subjects to test effects of ELS and the CRHR1 gene. Participants were genotyped for rs110402 and rs242924. ELS was assessed by Childhood Trauma Questionnaire, social cognition was measured via Multifaceted Empathy Test and Empathy Quotient. Severity of ELS was associated with decreased emotional, but not cognitive empathy. Subjects with the common homozygous GG GG genotype showed decreased implicit emotional empathy after ELS exposure regardless of its severity. The results reveal that specific CRHR1 polymorphisms moderate the effect of ELS on emotional empathy. Exposure to ELS in combination with a vulnerable genotype results in impaired emotional empathy in adulthood, which might represent an early marker of increased vulnerability after ELS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.).

    PubMed

    Fitzgerald, Timothy L; Powell, Jonathan J; Stiller, Jiri; Weese, Terri L; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C Lynne; Li, Zhongyi; Manners, John M; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed.

  4. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  5. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium

    PubMed Central

    Grewe, Felix; Zhu, Andan; Mower, Jeffrey P.

    2016-01-01

    The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches. PMID:27664178

  6. Concordance of transcriptional and apical benchmark dose levels for conazole-ind uced liver effects in mice

    EPA Science Inventory

    The ability to anchor chemical class-based gene expression changes to phenotypic lesions and to describe these changes as a function of dose and time can inform mode of action and improve quantitative risk assessment. Previous research identified a 330-gene cluster commonly resp...

  7. APOE polymorphism as a potential determinant of functional fitness in the elderly regardless of nutritional status.

    PubMed

    Snejdrlova, Michaela; Kalvach, Zdenek; Topinkova, Eva; Vrablik, Michal; Prochazkova, Renata; Kvasilova, Marie; Lanska, Vera; Zlatohlavek, Lukas; Prusikova, Martina; Ceska, Richard

    2011-01-01

    Life expectancy is determined by a combination of genetic predisposition (~25%) and environmental influences (~75%). Nevertheless a stronger genetic influence is anticipated in long-living individuals. Apolipoprotein E (APOE) gene belongs among the most studied candidate genes of longevity. We evaluated the relation of APOE polymorphism and fitness status in the elderly. We examined a total number of 128 subjects, over 80 years of age. Using a battery of functional tests their fitness status was assessed and the subjects were stratified into 5 functional categories according to Spirduso´s classification. Biochemistry analysis was performed by enzymatic method using automated analyzers. APOE gene polymorphism was analysed performed using PCR-RFLP. APOE4 allele carriers had significantly worse fitness status compared to non-carriers (p=0.025). Multiple logistic regression analysis showed the APOE4 carriers had higher risk (p=0.05) of functional unfitness compared to APOE2/E3 individuals. APOE gene polymorphism seems be an important genetic contributor to frailty development in the elderly. While APOE2 carriers tend to remain functionally fit till higher age, the functional status of APOE4 carriers deteriorates more rapidly. © 2011 Neuroendocrinology Letters

  8. MAISTAS: a tool for automatic structural evaluation of alternative splicing products.

    PubMed

    Floris, Matteo; Raimondo, Domenico; Leoni, Guido; Orsini, Massimiliano; Marcatili, Paolo; Tramontano, Anna

    2011-06-15

    Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. http://maistas.bioinformatica.crs4.it/.

  9. Transcriptome-Wide Mega-Analyses Reveal Joint Dysregulation of Immunologic Genes and Transcription Regulators in Brain and Blood in Schizophrenia

    PubMed Central

    Hess, Jonathan L.; Tylee, Daniel S.; Barve, Rahul; de Jong, Simone; Ophoff, Roel A.; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J.; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T.; Glatt, Stephen J.

    2016-01-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. PMID:27450777

  10. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia.

    PubMed

    Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J

    2016-10-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.

  11. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    PubMed Central

    Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  12. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python).

    PubMed

    Irizarry, Kristopher J L; Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  13. Presence and Functionality of Mating Type Genes in the Supposedly Asexual Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.

    2012-01-01

    The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593

  14. Assessment of the reliability of protein-protein interactions and protein function prediction.

    PubMed

    Deng, Minghua; Sun, Fengzhu; Chen, Ting

    2003-01-01

    As more and more high-throughput protein-protein interaction data are collected, the task of estimating the reliability of different data sets becomes increasingly important. In this paper, we present our study of two groups of protein-protein interaction data, the physical interaction data and the protein complex data, and estimate the reliability of these data sets using three different measurements: (1) the distribution of gene expression correlation coefficients, (2) the reliability based on gene expression correlation coefficients, and (3) the accuracy of protein function predictions. We develop a maximum likelihood method to estimate the reliability of protein interaction data sets according to the distribution of correlation coefficients of gene expression profiles of putative interacting protein pairs. The results of the three measurements are consistent with each other. The MIPS protein complex data have the highest mean gene expression correlation coefficients (0.256) and the highest accuracy in predicting protein functions (70% sensitivity and specificity), while Ito's Yeast two-hybrid data have the lowest mean (0.041) and the lowest accuracy (15% sensitivity and specificity). Uetz's data are more reliable than Ito's data in all three measurements, and the TAP protein complex data are more reliable than the HMS-PCI data in all three measurements as well. The complex data sets generally perform better in function predictions than do the physical interaction data sets. Proteins in complexes are shown to be more highly correlated in gene expression. The results confirm that the components of a protein complex can be assigned to functions that the complex carries out within a cell. There are three interaction data sets different from the above two groups: the genetic interaction data, the in-silico data and the syn-express data. Their capability of predicting protein functions generally falls between that of the Y2H data and that of the MIPS protein complex data. The supplementary information is available at the following Web site: http://www-hto.usc.edu/-msms/AssessInteraction/.

  15. Androgen receptor gene CAG repeat polymorphism independently influences recovery of male sexual function after testosterone replacement therapy in postsurgical hypogonadotropic hypogonadism.

    PubMed

    Tirabassi, Giacomo; Delli Muti, Nicola; Corona, Giovanni; Maggi, Mario; Balercia, Giancarlo

    2014-05-01

    Few and contradictory studies have evaluated the possible influence of androgen receptor (AR) gene CAG repeat polymorphism on male sexual function. In this study we evaluated the role of AR gene CAG repeat polymorphism in the recovery of sexual function after testosterone replacement therapy (TRT) in men affected by postsurgical hypogonadotropic hypogonadism, a condition which is often associated with hypopituitarism and in which the sexual benefits of TRT must be distinguished from those of pituitary-function replacement therapies. Fifteen men affected by postsurgical hypogonadotropic hypogonadism were retrospectively assessed before and after TRT. Main outcome measures included sexual parameters as assessed by the International Index of Erectile Function questionnaire, levels of pituitary dependent hormones (total testosterone, free T3, free T4, cortisol, insulin-like growth factor-1 [IGF-1], prolactin), and results of genetic analysis (AR gene CAG repeat number). Plasma concentrations of free T3, free T4, cortisol, and prolactin did not vary significantly between the two phases, while testosterone and IGF-1 increased significantly after TRT. A significant improvement in all sexual parameters studied was found. The number of CAG triplets was negatively and significantly correlated with changes in all the sexual parameters, while opposite correlations were found between changes in sexual parameters and changes in testosterone levels; no correlation of change in IGF1 with change in sexual parameters was reported. On multiple linear regression analysis, after correction for changes in testosterone, nearly all the associations between the number of CAG triplets and changes in sexual parameters were confirmed. Shorter length AR gene CAG repeat number is associated with the recovery of sexual function after TRT in postsurgical male hypogonadotropic hypogonadism, independently of the effects of concomitant pituitary-replacement therapies. © 2014 International Society for Sexual Medicine.

  16. Random forests-based differential analysis of gene sets for gene expression data.

    PubMed

    Hsueh, Huey-Miin; Zhou, Da-Wei; Tsai, Chen-An

    2013-04-10

    In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients. In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest. Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients. In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for interpretation of data in complex biological systems. The classifications of biologically defined gene sets can reveal the underlying interactions of gene sets associated with the phenotypes, and provide an insightful complement to conventional gene set analyses. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification.

    PubMed

    Elyasigomari, V; Lee, D A; Screen, H R C; Shaheed, M H

    2017-03-01

    For each cancer type, only a few genes are informative. Due to the so-called 'curse of dimensionality' problem, the gene selection task remains a challenge. To overcome this problem, we propose a two-stage gene selection method called MRMR-COA-HS. In the first stage, the minimum redundancy and maximum relevance (MRMR) feature selection is used to select a subset of relevant genes. The selected genes are then fed into a wrapper setup that combines a new algorithm, COA-HS, using the support vector machine as a classifier. The method was applied to four microarray datasets, and the performance was assessed by the leave one out cross-validation method. Comparative performance assessment of the proposed method with other evolutionary algorithms suggested that the proposed algorithm significantly outperforms other methods in selecting a fewer number of genes while maintaining the highest classification accuracy. The functions of the selected genes were further investigated, and it was confirmed that the selected genes are biologically relevant to each cancer type. Copyright © 2017. Published by Elsevier Inc.

  18. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map.

    PubMed

    Smith, Ian; Greenside, Peyton G; Natoli, Ted; Lahr, David L; Wadden, David; Tirosh, Itay; Narayan, Rajiv; Root, David E; Golub, Todd R; Subramanian, Aravind; Doench, John G

    2017-11-01

    The application of RNA interference (RNAi) to mammalian cells has provided the means to perform phenotypic screens to determine the functions of genes. Although RNAi has revolutionized loss-of-function genetic experiments, it has been difficult to systematically assess the prevalence and consequences of off-target effects. The Connectivity Map (CMAP) represents an unprecedented resource to study the gene expression consequences of expressing short hairpin RNAs (shRNAs). Analysis of signatures for over 13,000 shRNAs applied in 9 cell lines revealed that microRNA (miRNA)-like off-target effects of RNAi are far stronger and more pervasive than generally appreciated. We show that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a consensus gene signature (CGS). In addition, we compared RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 single guide RNAs (sgRNAs) in 6 cells lines and show that the on-target efficacies are comparable, but CRISPR technology is far less susceptible to systematic off-target effects. These results will help guide the proper use and analysis of loss-of-function reagents for the determination of gene function.

  20. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea).

    PubMed

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-03-06

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  1. Exposure to metals mixtures: Genomic alterations of infectious ...

    EPA Pesticide Factsheets

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression profiles in children in Detroit, Michigan. As part of the Mechanistic Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A metals mixture score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed when comparing children exposed to low and high levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P < 10-6) severe acute respiratory syndrome (P < 10-5), and sepsis (P < 10-3). Taken together, these data demonstrate that exposure to metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policie

  2. Exploring the Yeast Acetylome Using Functional Genomics

    PubMed Central

    Duffy, Supipi Kaluarachchi; Friesen, Helena; Baryshnikova, Anastasia; Lambert, Jean-Philippe; Chong, Yolanda T.; Figeys, Daniel; Andrews, Brenda

    2014-01-01

    SUMMARY Lysine acetylation is a dynamic posttranslational modification with a well-defined role in regulating histones. The impact of acetylation on other cellular functions remains relatively uncharacterized. We explored the budding yeast acetylome with a functional genomics approach, assessing the effects of gene overexpression in the absence of lysine deacetylases (KDACs). We generated a network of 463 synthetic dosage lethal (SDL) interactions involving class I and II KDACs, revealing many cellular pathways regulated by different KDACs. A biochemical survey of genes interacting with the KDAC RPD3 identified 72 proteins acetylated in vivo. In-depth analysis of one of these proteins, Swi4, revealed a role for acetylation in G1-specific gene expression. Acetylation of Swi4 regulates interaction with its partner Swi6, both components of the SBF transcription factor. This study expands our view of the yeast acetylome, demonstrates the utility of functional genomic screens for exploring enzymatic pathways, and provides functional information that can be mined for future studies. PMID:22579291

  3. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs

    PubMed Central

    Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.

    2012-01-01

    A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571

  4. Functional SNP associated with birth weight in independent populations identified with a permutation step added to GBLUP-GWAS

    USDA-ARS?s Scientific Manuscript database

    This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...

  5. Comparative endocrinology of leptin: Assessing function in a phylogenetic context

    PubMed Central

    Londraville, Richard L.; Macotela, Yazmin; Duff, Robert J.; Easterling, Marietta R.; Liu, Qin; Crespi, Erica J.

    2014-01-01

    As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans. PMID:24525452

  6. Idiopathic Hypogonadotropic Hypogonadism Caused by Inactivating Mutations in SRA1

    PubMed Central

    Kotan, Leman Damla; Cooper, Charlton; Darcan, Şükran; Carr, Ian M.; Özen, Samim; Yan, Yi; Hamedani, Mohammad K.; Gürbüz, Fatih; Mengen, Eda; Turan, İhsan; Ulubay, Ayça; Akkuş, Gamze; Yüksel, Bilgin; Topaloğlu, A. Kemal; Leygue, Etienne

    2016-01-01

    Objective: What initiates the pubertal process in humans and other mammals is still unknown. We hypothesized that gene(s) taking roles in triggering human puberty may be identified by studying a cohort of idiopathic hypogonadotropic hypogonadism (IHH). Methods: A cohort of IHH cases was studied based on autozygosity mapping coupled with whole exome sequencing. Results: Our studies revealed three independent families in which IHH/delayed puberty is associated with inactivating SRA1 variants. SRA1 was the first gene to be identified to function through its protein as well as noncoding functional ribonucleic acid products. These products act as co-regulators of nuclear receptors including sex steroid receptors as well as SF-1 and LRH-1, the master regulators of steroidogenesis. Functional studies with a mutant SRA1 construct showed a reduced co-activation of ligand-dependent activity of the estrogen receptor alpha, as assessed by luciferase reporter assay in HeLa cells. Conclusion: Our findings strongly suggest that SRA1 gene function is required for initiation of puberty in humans. Furthermore, SRA1 with its alternative products and functionality may provide a potential explanation for the versatility and complexity of the pubertal process. PMID:27086651

  7. Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Gopalan, Banu; Small, Jack A; Schultz, Irvin R

    2008-03-01

    Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p<0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment.

  8. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis

    PubMed Central

    Guselnikov, S.V.; Grayfer, L.; De Jesús Andino, F.; Rogozin, I.B.; Robert, J.; Taranin, A.V.

    2015-01-01

    The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates. PMID:26170006

  9. An Unbiased Assessment of the Role of Imprinted Genes in an Intergenerational Model of Developmental Programming

    PubMed Central

    Radford, Elizabeth J.; Isganaitis, Elvira; Jimenez-Chillaron, Josep; Schroeder, Joshua; Molla, Michael; Andrews, Simon; Didier, Nathalie; Charalambous, Marika; McEwen, Kirsten; Marazzi, Giovanna; Sassoon, David; Patti, Mary-Elizabeth; Ferguson-Smith, Anne C.

    2012-01-01

    Environmental factors during early life are critical for the later metabolic health of the individual and of future progeny. In our obesogenic environment, it is of great socioeconomic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Imprinted genes, a class of functionally mono-allelic genes critical for early growth and metabolic axis development, have been proposed to be uniquely susceptible to environmental change. Furthermore, it has also been suggested that perturbation of the epigenetic reprogramming of imprinting control regions (ICRs) may play a role in phenotypic heritability following early life insults. Alternatively, the presence of multiple layers of epigenetic regulation may in fact protect imprinted genes from such perturbation. Unbiased investigation of these alternative hypotheses requires assessment of imprinted gene expression in the context of the response of the whole transcriptome to environmental assault. We therefore analyse the role of imprinted genes in multiple tissues in two affected generations of an established murine model of the developmental origins of health and disease using microarrays and quantitative RT–PCR. We demonstrate that, despite the functional mono-allelicism of imprinted genes and their unique mechanisms of epigenetic dosage control, imprinted genes as a class are neither more susceptible nor protected from expression perturbation induced by maternal undernutrition in either the F1 or the F2 generation compared to other genes. Nor do we find any evidence that the epigenetic reprogramming of ICRs in the germline is susceptible to nutritional restriction. However, we propose that those imprinted genes that are affected may play important roles in the foetal response to undernutrition and potentially its long-term sequelae. We suggest that recently described instances of dosage regulation by relaxation of imprinting are rare and likely to be highly regulated. PMID:22511876

  10. Efficacy of a novel water-soluble curcumin derivative versus sildenafil citrate in mediating erectile function.

    PubMed

    Zaahkouk, A M S; Abdel Aziz, M T; Rezq, A M; Atta, H M; Fouad, H H; Ahmed, H H; Sabry, D; Yehia, M H

    2015-01-01

    The present study was conducted to assess the efficacy of a novel curcumin derivative (NCD) versus sildenafil citrate in erectile signaling. The study was conducted on 10 control male rats and 50 diabetic male rats divided into the following groups: diabetic, curcumin, NCD, sildenafil and NCD combined with sildenafil. Cavernous tissue (CC) gene expression levels of heme oxygenase (HO)-1, Nrf2, NF-κβ and p38, enzyme activities of HO and nitric oxide synthase (NOS), cyclic guanosine monophosphate (cGMP) and intracavernosal pressure (ICP) were assessed. Results showed that 12 weeks after induction of diabetes, erectile dysfunction was confirmed by the significant decrease in ICP, a significant decrease in cGMP, NOS, HO enzyme activities, a significant decrease in HO-1 gene and a significant elevation of NF-κβ, p38 genes. Administration of all therapeutic interventions led to a significant elevation in ICP, cGMP levels, a significant increase in HO-1 and NOS enzymes, a significant increase in HO-1 and Nrf2 gene expression, and a significant decrease in NF-κβ, p38 gene expression. NCD or its combination with sildenafil showed significant efficacy and more prolonged duration of action. In conclusion, NCD could enhance erectile function with more efficacy and more prolonged duration of action.

  11. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis.

    PubMed

    Del Toro-De León, Gerardo; García-Aguilar, Marcelina; Gillmor, C Stewart

    2014-10-30

    Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.

  12. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators

    PubMed Central

    Polstein, Lauren R.; Perez-Pinera, Pablo; Kocak, D. Dewran; Vockley, Christopher M.; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Reddy, Timothy E.; Gersbach, Charles A.

    2015-01-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. PMID:26025803

  13. Application of a Novel Functional Gene Microarray to Probe the Functional Ecology of Ammonia Oxidation in Nitrifying Activated Sludge

    PubMed Central

    Short, Michael D.; Abell, Guy C. J.; Bodrossy, Levente; van den Akker, Ben

    2013-01-01

    We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems. PMID:24155925

  14. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes.

    PubMed

    Rojas, Daniel; Rager, Julia E; Smeester, Lisa; Bailey, Kathryn A; Drobná, Zuzana; Rubio-Andrade, Marisela; Stýblo, Miroslav; García-Vargas, Gonzalo; Fry, Rebecca C

    2015-01-01

    Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Discovery of functional non-coding conserved regions in the α-synuclein gene locus

    PubMed Central

    Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt

    2014-01-01

    Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays.  We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351

  16. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure

    PubMed Central

    2012-01-01

    Background Single nucleotide polymorphism (SNP) validation and large-scale genotyping are required to maximize the use of DNA sequence variation and determine the functional relevance of candidate genes for complex stress tolerance traits through genetic association in rice. We used the bead array platform-based Illumina GoldenGate assay to validate and genotype SNPs in a select set of stress-responsive genes to understand their functional relevance and study the population structure in rice. Results Of the 384 putative SNPs assayed, we successfully validated and genotyped 362 (94.3%). Of these 325 (84.6%) showed polymorphism among the 91 rice genotypes examined. Physical distribution, degree of allele sharing, admixtures and introgression, and amino acid replacement of SNPs in 263 abiotic and 62 biotic stress-responsive genes provided clues for identification and targeted mapping of trait-associated genomic regions. We assessed the functional and adaptive significance of validated SNPs in a set of contrasting drought tolerant upland and sensitive lowland rice genotypes by correlating their allelic variation with amino acid sequence alterations in catalytic domains and three-dimensional secondary protein structure encoded by stress-responsive genes. We found a strong genetic association among SNPs in the nine stress-responsive genes with upland and lowland ecological adaptation. Higher nucleotide diversity was observed in indica accessions compared with other rice sub-populations based on different population genetic parameters. The inferred ancestry of 16% among rice genotypes was derived from admixed populations with the maximum between upland aus and wild Oryza species. Conclusions SNPs validated in biotic and abiotic stress-responsive rice genes can be used in association analyses to identify candidate genes and develop functional markers for stress tolerance in rice. PMID:22921105

  17. Agrobacterium-mediated virus-induced gene silencing assay in cotton.

    PubMed

    Gao, Xiquan; Britt, Robert C; Shan, Libo; He, Ping

    2011-08-20

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation(1). To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation(2,3). Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies(3,4). As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development(6), and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves(7), providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.

  18. Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton

    PubMed Central

    Gao, Xiquan; Britt Jr., Robert C.; Shan, Libo; He, Ping

    2011-01-01

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton. PMID:21876527

  19. Quality of life in Huntington's disease: a comparative study investigating the impact for those with pre-manifest and early manifest disease, and their partners.

    PubMed

    Read, Joy; Jones, Rebecca; Owen, Gail; Leavitt, Blair R; Coleman, Allison; Roos, Raymund A C; Dumas, Eve M; Durr, Alexandra; Justo, Damian; Say, Miranda; Stout, Julie C; Tabrizi, Sarah J; Craufurd, David

    2013-01-01

    Given the multifaceted nature of this inherited neurodegenerative condition, typically affecting adults in mid-life, it is perhaps not surprising that studies indicate poorer Health Related Quality of Life (HrQoL) in those with the gene-expansion and, by association, in their families. This study aimed to extend the current literature by exploring specific life domains, including at an earlier disease stage than usually reported in the HRQoL literature, and in a subgroup of gene-negative partners. 355 participants from the TRACK-HD cohort (120 Controls, 118 Pre-HD and 117 early-HD) completed standardised self-report measures of HrQoL (SF36 and QoLI), underwent clinical assessments of capacity and motor function (UHDRS), semi structured interviews assessing neuropsychiatric symptoms (PBA-s), completed paper and computerized cognitive tasks and assessment of behaviours associated with damage to frontal brain circuits (FrSBe). Each gene-expanded group scored statistically significantly lower than gene-negative sibling controls on the SF36 General Health subscale; neuropsychiatric symptoms and executive dysfunction were associated with reduced HrQoL. Those with Stage II disease reported statistically significantly lower HrQoL than gene-negative controls across physical, emotional and social life domains. Those partnered with manifest participants reported lower HrQoL in the social domain compared to those partnered with at-risk participants furthest from disease onset; and perseverative symptoms in manifest partners were found to be related to lower HrQoL in their gene-negative partners. HrQoL in gene-negative partners of pre-manifest individuals was associated with pre-manifest individuals' neuropsychiatric and cognitive function. Understanding the nature and timing of disruption to the HrQoL in people who are pre-manifest and diagnosed with HD, and their gene-negative partners, can inform the development of appropriate strategies and interventions.

  20. Functional Alignment of Metabolic Networks.

    PubMed

    Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded

    2016-05-01

    Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.

  1. Epigenetics and Colorectal Cancer

    PubMed Central

    Lao, Victoria Valinluck; Grady, William M.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in the world. It results from an accumulation of genetic and epigenetic changes in colon epithelial cells that transforms them into adenocarcinomas. There have been major advances in our understanding of cancer epigenetics over the last decade, particularly regarding aberrant DNA methylation. Assessment of the colon cancer epigenome has revealed that virtually all colorectal cancers have aberrantly methylated genes and the average colorectal cancer methylome has hundreds to thousands of abnormally methylated genes. As with gene mutations in the cancer genome, a subset of these methylated genes, called driver genes, is presumed to play a functional role in colorectal cancer. The assessment of methylated genes in colorectal cancers has also revealed a unique molecular subgroup of colorectal cancers called CpG Island Methylator Phenotype (CIMP) cancers; these tumors have a particularly high frequency of methylated genes. The advances in our understanding of aberrant methylation in colorectal cancer has led to epigenetic alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in the assessment of epigenetic alterations in colorectal cancer and their clinical applications has shown that these alterations will be commonly used in the near future as molecular markers to direct the prevention and treatment of colorectal cancer. PMID:22009203

  2. Functional Annotation of the Arabidopsis Genome Using Controlled Vocabularies1

    PubMed Central

    Berardini, Tanya Z.; Mundodi, Suparna; Reiser, Leonore; Huala, Eva; Garcia-Hernandez, Margarita; Zhang, Peifen; Mueller, Lukas A.; Yoon, Jungwoon; Doyle, Aisling; Lander, Gabriel; Moseyko, Nick; Yoo, Danny; Xu, Iris; Zoeckler, Brandon; Montoya, Mary; Miller, Neil; Weems, Dan; Rhee, Seung Y.

    2004-01-01

    Controlled vocabularies are increasingly used by databases to describe genes and gene products because they facilitate identification of similar genes within an organism or among different organisms. One of The Arabidopsis Information Resource's goals is to associate all Arabidopsis genes with terms developed by the Gene Ontology Consortium that describe the molecular function, biological process, and subcellular location of a gene product. We have also developed terms describing Arabidopsis anatomy and developmental stages and use these to annotate published gene expression data. As of March 2004, we used computational and manual annotation methods to make 85,666 annotations representing 26,624 unique loci. We focus on associating genes to controlled vocabulary terms based on experimental data from the literature and use The Arabidopsis Information Resource-developed PubSearch software to facilitate this process. Each annotation is tagged with a combination of evidence codes, evidence descriptions, and references that provide a robust means to assess data quality. Annotation of all Arabidopsis genes will allow quantitative comparisons between sets of genes derived from sources such as microarray experiments. The Arabidopsis annotation data will also facilitate annotation of newly sequenced plant genomes by using sequence similarity to transfer annotations to homologous genes. In addition, complete and up-to-date annotations will make unknown genes easy to identify and target for experimentation. Here, we describe the process of Arabidopsis functional annotation using a variety of data sources and illustrate several ways in which this information can be accessed and used to infer knowledge about Arabidopsis and other plant species. PMID:15173566

  3. Review of functional markers for improving cooking, eating, and the nutritional qualities of rice

    PubMed Central

    Lau, Wendy C. P.; Rafii, Mohd Y.; Ismail, Mohd R.; Puteh, Adam; Latif, Mohammad A.; Ramli, Asfaliza

    2015-01-01

    After yield, quality is one of the most important aspects of rice breeding. Preference for rice quality varies among cultures and regions; therefore, rice breeders have to tailor the quality according to the preferences of local consumers. Rice quality assessment requires routine chemical analysis procedures. The advancement of molecular marker technology has revolutionized the strategy in breeding programs. The availability of rice genome sequences and the use of forward and reverse genetics approaches facilitate gene discovery and the deciphering of gene functions. A well-characterized gene is the basis for the development of functional markers, which play an important role in plant genotyping and, in particular, marker-assisted breeding. In addition, functional markers offer advantages that counteract the limitations of random DNA markers. Some functional markers have been applied in marker-assisted breeding programs and have successfully improved rice quality to meet local consumers’ preferences. Although functional markers offer a plethora of advantages over random genetic markers, the development and application of functional markers should be conducted with care. The decreasing cost of sequencing will enable more functional markers for rice quality improvement to be developed, and application of these markers in rice quality breeding programs is highly anticipated. PMID:26528304

  4. nfi-1 affects behavior and life-span in C. elegans but is not essential for DNA replication or survival

    PubMed Central

    Lazakovitch, Elena; Kalb, John M; Matsumoto, Reiko; Hirono, Keiko; Kohara, Yuji; Gronostajski, Richard M

    2005-01-01

    Background The Nuclear Factor I (one) (NFI) family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. Results C. elegans NFI protein (CeNFI) binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. Conclusion NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C. elegans, likely regulating genes that function in motility, egg-laying, pharyngeal pumping and lifespan maintenance. PMID:16242019

  5. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer

    DOE PAGES

    Wang, Pin; Wang, Yunshan; Hang, Bo; ...

    2016-07-11

    Analysis of gene expression patterns in gastric cancer (GC) can help to identify a comprehensive panel of gene biomarkers for predicting clinical outcomes and to discover potential new therapeutic targets. Here, a multi-step bioinformatics analytic approach was developed to establish a novel prognostic scoring system for GC. We first identified 276 genes that were robustly differentially expressed between normal and GC tissues, of which, 249 were found to be significantly associated with overall survival (OS) by univariate Cox regression analysis. The biological functions of 249 genes are related to cell cycle, RNA/ncRNA process, acetylation and extracellular matrix organization. A networkmore » was generated for view of the gene expression architecture of 249 genes in 265 GCs. Finally, we applied a canonical discriminant analysis approach to identify a 53-gene signature and a prognostic scoring system was established based on a canonical discriminant function of 53 genes. The prognostic scores strongly predicted patients with GC to have either a poor or good OS. Our study raises the prospect that the practicality of GC patient prognosis can be assessed by this prognostic scoring system.« less

  6. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pin; Wang, Yunshan; Hang, Bo

    Analysis of gene expression patterns in gastric cancer (GC) can help to identify a comprehensive panel of gene biomarkers for predicting clinical outcomes and to discover potential new therapeutic targets. Here, a multi-step bioinformatics analytic approach was developed to establish a novel prognostic scoring system for GC. We first identified 276 genes that were robustly differentially expressed between normal and GC tissues, of which, 249 were found to be significantly associated with overall survival (OS) by univariate Cox regression analysis. The biological functions of 249 genes are related to cell cycle, RNA/ncRNA process, acetylation and extracellular matrix organization. A networkmore » was generated for view of the gene expression architecture of 249 genes in 265 GCs. Finally, we applied a canonical discriminant analysis approach to identify a 53-gene signature and a prognostic scoring system was established based on a canonical discriminant function of 53 genes. The prognostic scores strongly predicted patients with GC to have either a poor or good OS. Our study raises the prospect that the practicality of GC patient prognosis can be assessed by this prognostic scoring system.« less

  7. Chemical-genetic profile analysis of five inhibitory compounds in yeast.

    PubMed

    Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan

    2010-08-06

    Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  8. A case report of recessive myotonia congenita and early onset cognitive impairment: Is it a causal or casual link?

    PubMed

    Portaro, Simona; Cacciola, Alberto; Naro, Antonino; Milardi, Demetrio; Morabito, Rosa; Corallo, Francesco; Marino, Silvia; Bramanti, Alessia; Mazzon, Emanuela; Calabrò, Rocco Salvatore

    2018-06-01

    Myotonia congenita (MC) is a non-dystrophic myotonia inherited either in dominant (Thomsen) or recessive (Becker) form. MC is due to an abnormal functioning of skeletal muscle voltage-gated chloride channel (CLCN1), but the genotype/phenotype correlation remains unclear. A 48-year-old man, from consanguineous parents, presented with a fixed muscle weakness, muscle atrophy, and a cognitive impairment. Notably, his brother presented the same mutation but with a different phenotype, mainly involving cognitive function. The patient was submitted to cognitive assessment, needle electromyography, brain and muscle MRI, and genetic analysis. The Milan Overall Dementia Assessment showed short-term memory, verbal fluency and verbal intelligence impairment. His genetic analysis showed a recessive splice-site mutation in the CLCN1 gene (IVS19+2T>A). Muscle MRI revealed a symmetric and bilateral fat infiltration of the tensor of fascia lata, gluteus medius, and gluteus maximus muscles, associated to mild atrophy. Recessive myotonia congenita was diagnosed. Further studies should establish if and to which extent the CLCN1 mutation is responsible for this c MC phenotype, taking into account a gene-gene and /or a gene-environment.

  9. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  10. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development.

    PubMed

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric C; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2016-01-05

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development

    PubMed Central

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W.; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2015-01-01

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. PMID:26427652

  12. Genomic Regions in Local Endangered Sheep Encode Potentially Favorable Genes.

    PubMed

    Moioli, Bianca; Steri, Roberto; Catillo, Gennaro

    2018-01-02

    The economic evaluation of farm animal genetic resources plays a key role in developing conservation programs. However, to date, the link between diversity as assessed by neutral genetic markers and the functional diversity is not yet understood. Two genome-wide comparisons, using over 44,000 Single Nucleotide Polymorphisms, identified the markers with the highest difference in allele frequency between the Alpago endangered breed and two clusters, composed of four specialized dairy sheep, and four meat breeds respectively. The genes in proximity of these markers were mapped to known pathways of the Gene Ontology to determine which ones were most represented. Our results indicated that the differences of the Alpago breed from the more productive sheep rely upon genes involved in cellular defense and repair mechanisms. A higher number of different markers and genes were detected in the comparison with the specialized dairy sheep. These genes play a role in complex biological processes: metabolic, homeostatic, neurological system, and macromolecular organization; such processes may possibly explain the evolution of gene function as a result of selection to improve milk yield.

  13. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach

    PubMed Central

    Petersen-Jones, Simon M.; Occelli, Laurence M.; Winkler, Paige A.; Lee, Winston; Sparrow, Janet R.; Tsukikawa, Mai; Boye, Sanford L.; Chiodo, Vince; Capasso, Jenina E.; Becirovic, Elvir; Schön, Christian; Seeliger, Mathias W.; Levin, Alex V.; Hauswirth, William W.

    2017-01-01

    Retinitis pigmentosa (RP) is a major cause of blindness that affects 1.5 million people worldwide. Mutations in cyclic nucleotide-gated channel β 1 (CNGB1) cause approximately 4% of autosomal recessive RP. Gene augmentation therapy shows promise for treating inherited retinal degenerations; however, relevant animal models and biomarkers of progression in patients with RP are needed to assess therapeutic outcomes. Here, we evaluated RP patients with CNGB1 mutations for potential biomarkers of progression and compared human phenotypes with those of mouse and dog models of the disease. Additionally, we used gene augmentation therapy in a CNGβ1-deficient dog model to evaluate potential translation to patients. CNGB1-deficient RP patients and mouse and dog models had a similar phenotype characterized by early loss of rod function and slow rod photoreceptor loss with a secondary decline in cone function. Advanced imaging showed promise for evaluating RP progression in human patients, and gene augmentation using adeno-associated virus vectors robustly sustained the rescue of rod function and preserved retinal structure in the dog model. Together, our results reveal an early loss of rod function in CNGB1-deficient patients and a wide window for therapeutic intervention. Moreover, the identification of potential biomarkers of outcome measures, availability of relevant animal models, and robust functional rescue from gene augmentation therapy support future work to move CNGB1-RP therapies toward clinical trials. PMID:29202463

  14. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    NASA Technical Reports Server (NTRS)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  16. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction.

    PubMed

    Lamontagne, Maxime; Timens, Wim; Hao, Ke; Bossé, Yohan; Laviolette, Michel; Steiling, Katrina; Campbell, Joshua D; Couture, Christian; Conti, Massimo; Sherwood, Karen; Hogg, James C; Brandsma, Corry-Anke; van den Berge, Maarten; Sandford, Andrew; Lam, Stephen; Lenburg, Marc E; Spira, Avrum; Paré, Peter D; Nickle, David; Sin, Don D; Postma, Dirkje S

    2014-11-01

    COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL). To determine causal associations between COPD and lung function-associated single nucleotide polymorphisms (SNPs) and lung tissue gene expression changes in our lung eQTL dataset. We evaluated causality between SNPs and gene expression for three COPD phenotypes: FEV(1)% predicted, FEV(1)/FVC and COPD as a categorical variable. Different models were assessed in the three cohorts independently and in a meta-analysis. SNPs associated with a COPD phenotype and gene expression were subjected to causal pathway modelling and manual curation. In silico analyses evaluated functional enrichment of biological pathways among newly identified causal genes. Biologically relevant causal genes were validated in two separate gene expression datasets of lung tissues and bronchial airway brushings. High reliability causal relations were found in SNP-mRNA-phenotype triplets for FEV(1)% predicted (n=169) and FEV(1)/FVC (n=80). Several genes of potential biological relevance for COPD were revealed. eQTL-SNPs upregulating cystatin C (CST3) and CD22 were associated with worse lung function. Signalling pathways enriched with causal genes included xenobiotic metabolism, apoptosis, protease-antiprotease and oxidant-antioxidant balance. By using integrative genomics and analysing the relationships of COPD phenotypes with SNPs and gene expression in lung tissue, we identified CST3 and CD22 as potential causal genes for airflow obstruction. This study also augmented the understanding of previously described COPD pathways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Variation of gene expression in Bacillus subtilis samples of fermentation replicates.

    PubMed

    Zhou, Ying; Yu, Wen-Bang; Ye, Bang-Ce

    2011-06-01

    The application of comprehensive gene expression profiling technologies to compare wild and mutated microorganism samples or to assess molecular differences between various treatments has been widely used. However, little is known about the normal variation of gene expression in microorganisms. In this study, an Agilent customized microarray representing 4,106 genes was used to quantify transcript levels of five-repeated flasks to assess normal variation in Bacillus subtilis gene expression. CV analysis and analysis of variance were employed to investigate the normal variance of genes and the components of variance, respectively. The results showed that above 80% of the total variation was caused by biological variance. For the 12 replicates, 451 of 4,106 genes exhibited variance with CV values over 10%. The functional category enrichment analysis demonstrated that these variable genes were mainly involved in cell type differentiation, cell type localization, cell cycle and DNA processing, and spore or cyst coat. Using power analysis, the minimal biological replicate number for a B. subtilis microarray experiment was determined to be six. The results contribute to the definition of the baseline level of variability in B. subtilis gene expression and emphasize the importance of replicate microarray experiments.

  18. Cystic Fibrosis Gene Therapy in the UK and Elsewhere

    PubMed Central

    Pytel, Kamila M.; Alton, Eric W.F.W.

    2015-01-01

    Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  19. Synthetic biology: Novel approaches for microbiology.

    PubMed

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  20. Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.

    PubMed

    Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P

    Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  1. Comparative genomics of duplicate γ-glutamyl transferase genes in teleosts: medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis), fugu (Takifugu rubripes), and zebrafish (Danio rerio).

    PubMed

    Law, Sheran Hiu Wan; Redelings, Benjamin David; Kullman, Seth William

    2012-01-15

    The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we examine multiple paralogous genes of γ-glutamyl transferase (GGT) in several distantly related teleost species including medaka, stickleback, green spotted pufferfish, fugu, and zebrafish. Through mining genome databases, we have identified multiple GGT orthologs. Duplicate (paralogous) GGT sequences for GGT1 (GGT1 a and b), GGTL1 (GGTL1 a and b), and GGTL3 (GGTL3 a and b) were identified for each species. Phylogenetic analysis suggests that GGTs are ancient proteins conserved across most metazoan phyla and those paralogous GGTs in teleosts likely arose from the serial 3R genome duplication events. A third GGTL1 gene (GGTL1c) was found in green spotted pufferfish; however, this gene is not present in medaka, stickleback, or fugu. Similarly, one or both paralogs of GGTL3 appear to have been lost in green spotted pufferfish, fugu, and zebrafish. Syntenic relationships were highly maintained between duplicated teleost chromosomes, among teleosts and across ray-finned (Actinopterygii) and lobe-finned (Sarcopterygii) species. To assess subfunction partitioning, six medaka GGT genes were cloned and assessed for developmental and tissue-specific expression. On the basis of these data, we propose a modification of the "duplication-degeneration-complementation" model of subfunction partitioning where quantitative differences rather than absolute differences in gene expression are observed between gene paralogs. Our results demonstrate that multiple GGT genes have been retained within teleost genomes. Questions remain, however, regarding the functional roles of multiple GGTs in these species. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  2. Widespread antisense transcription of Populus genome under drought.

    PubMed

    Yuan, Yinan; Chen, Su

    2018-06-06

    Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.

  3. Extending bicluster analysis to annotate unclassified ORFs and predict novel functional modules using expression data

    PubMed Central

    Bryan, Kenneth; Cunningham, Pádraig

    2008-01-01

    Background Microarrays have the capacity to measure the expressions of thousands of genes in parallel over many experimental samples. The unsupervised classification technique of bicluster analysis has been employed previously to uncover gene expression correlations over subsets of samples with the aim of providing a more accurate model of the natural gene functional classes. This approach also has the potential to aid functional annotation of unclassified open reading frames (ORFs). Until now this aspect of biclustering has been under-explored. In this work we illustrate how bicluster analysis may be extended into a 'semi-supervised' ORF annotation approach referred to as BALBOA. Results The efficacy of the BALBOA ORF classification technique is first assessed via cross validation and compared to a multi-class k-Nearest Neighbour (kNN) benchmark across three independent gene expression datasets. BALBOA is then used to assign putative functional annotations to unclassified yeast ORFs. These predictions are evaluated using existing experimental and protein sequence information. Lastly, we employ a related semi-supervised method to predict the presence of novel functional modules within yeast. Conclusion In this paper we demonstrate how unsupervised classification methods, such as bicluster analysis, may be extended using of available annotations to form semi-supervised approaches within the gene expression analysis domain. We show that such methods have the potential to improve upon supervised approaches and shed new light on the functions of unclassified ORFs and their co-regulation. PMID:18831786

  4. Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction.

    PubMed

    Fattah, Caroline; Nather, Katrin; McCarroll, Charlotte S; Hortigon-Vinagre, Maria P; Zamora, Victor; Flores-Munoz, Monica; McArthur, Lisa; Zentilin, Lorena; Giacca, Mauro; Touyz, Rhian M; Smith, Godfrey L; Loughrey, Christopher M; Nicklin, Stuart A

    2016-12-20

    Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post-infarction. C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular pressure volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model. Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A-dependent mechanism. Our novel findings showed that Ang-(1-9) gene therapy preserved left ventricular systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase A-dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Gene expression profiling of histologically normal breast tissue in females with human epidermal growth factor receptor 2‑positive breast cancer.

    PubMed

    Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan

    2015-02-01

    Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (P<0.05), as well as GSN, KIT, KLK5, SERPINB5 and STC2 genes (P<0.01). Insignificant differences (P<0.07) were observed for CCNA1, CLU, DLC1, GABRP and IL6 genes. The ontological gene analyses revealed that the majority of the deregulated genes in the HNEpi samples were part of the functional gene group directly associated with BC origin and prognosis. Functional analysis showed that the most frequent gene deregulations occurred in genes associated with apoptosis and cell cycle regulation in BCTis samples, and with angiogenesis, regulation of the cell cycle and transcriptional activity in HNEpi samples. The molecular profiling of HNEpi breast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.

  6. Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis.

    PubMed

    Ryu, Moon-Suhn; Langkamp-Henken, Bobbi; Chang, Shou-Mei; Shankar, Meena N; Cousins, Robert J

    2011-12-27

    Implementation of zinc interventions for subjects suspected of being zinc-deficient is a global need, but is limited due to the absence of reliable biomarkers. To discover molecular signatures of human zinc deficiency, a combination of transcriptome, cytokine, and microRNA analyses was applied to a dietary zinc depletion/repletion protocol with young male human subjects. Concomitant with a decrease in serum zinc concentration, changes in buccal and blood gene transcripts related to zinc homeostasis occurred with zinc depletion. Microarray analyses of whole blood RNA revealed zinc-responsive genes, particularly, those associated with cell cycle regulation and immunity. Responses of potential signature genes of dietary zinc depletion were further assessed by quantitative real-time PCR. The diagnostic properties of specific serum microRNAs for dietary zinc deficiency were identified by acute responses to zinc depletion, which were reversible by subsequent zinc repletion. Depression of immune-stimulated TNFα secretion by blood cells was observed after low zinc consumption and may serve as a functional biomarker. Our findings introduce numerous novel candidate biomarkers for dietary zinc status assessment using a variety of contemporary technologies and which identify changes that occur prior to or with greater sensitivity than the serum zinc concentration which represents the current zinc status assessment marker. In addition, the results of gene network analysis reveal potential clinical outcomes attributable to suboptimal zinc intake including immune function defects and predisposition to cancer. These demonstrate through a controlled depletion/repletion dietary protocol that the illusive zinc biomarker(s) can be identified and applied to assessment and intervention strategies.

  7. Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat.

    PubMed

    Sanderson, Michael J; Copetti, Dario; Búrquez, Alberto; Bustamante, Enriquena; Charboneau, Joseph L M; Eguiarte, Luis E; Kumar, Sudhir; Lee, Hyun Oh; Lee, Junki; McMahon, Michelle; Steele, Kelly; Wing, Rod; Yang, Tae-Jin; Zwickl, Derrick; Wojciechowski, Martin F

    2015-07-01

    • Land-plant plastid genomes have only rarely undergone significant changes in gene content and order. Thus, discovery of additional examples adds power to tests for causes of such genome-scale structural changes.• Using next-generation sequence data, we assembled the plastid genome of saguaro cactus and probed the nuclear genome for transferred plastid genes and functionally related nuclear genes. We combined these results with available data across Cactaceae and seed plants more broadly to infer the history of gene loss and to assess the strength of phylogenetic association between gene loss and loss of the inverted repeat (IR).• The saguaro plastid genome is the smallest known for an obligately photosynthetic angiosperm (∼113 kb), having lost the IR and plastid ndh genes. This loss supports a statistically strong association across seed plants between the loss of ndh genes and the loss of the IR. Many nonplastid copies of plastid ndh genes were found in the nuclear genome, but none had intact reading frames; nor did three related nuclear-encoded subunits. However, nuclear pgr5, which functions in a partially redundant pathway, was intact.• The existence of an alternative pathway redundant with the function of the plastid NADH dehydrogenase-like complex (NDH) complex may permit loss of the plastid ndh gene suite in photoautotrophs like saguaro. Loss of these genes may be a recurring mechanism for overall plastid genome size reduction, especially in combination with loss of the IR. © 2015 Botanical Society of America, Inc.

  8. High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes

    PubMed Central

    Hidalgo, Marta R.; Cubuk, Cankut; Amadoz, Alicia; Salavert, Francisco; Carbonell-Caballero, José; Dopazo, Joaquin

    2017-01-01

    Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway. Moreover, such estimations can be obtained either at cohort-level, in case/control comparisons, or personalized for individual patients. The accuracy of the method is demonstrated in an extensive analysis involving 5640 patients from 12 different cancer types. Circuit activity measurements not only have a high diagnostic value but also can be related to relevant disease outcomes such as survival, and can be used to assess therapeutic interventions. PMID:28042959

  9. Does caregiving cause psychological distress? The case for familial and genetic vulnerabilities in female twins.

    PubMed

    Vitaliano, Peter P; Strachan, Eric; Dansie, Elizabeth; Goldberg, Jack; Buchwald, Dedra

    2014-04-01

    Informal caregiving can be deleterious to mental health, but research results are inconsistent and may reflect an interaction between caregiving and vulnerability to stress. We examined psychological distress among 1,228 female caregiving and non-caregiving twins. By examining monozygotic and dizygotic twin pairs discordant for caregiving, we assessed the extent to which distress is directly related to caregiving or confounded by common genes and environmental exposures. Caregiving was associated with distress as measured by mental health functioning, anxiety, perceived stress, and depression. The overall association between caregiving and distress was confounded by common genes and environment for mental health functioning, anxiety, and depression. Common environment also confounded the association of caregiving and perceived stress. Vulnerability to distress is a factor in predicting caregivers' psychosocial functioning. Additional research is needed to explicate the mechanisms by which common genes and environment increase the risk of distress among informal caregivers.

  10. Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain.

    PubMed

    Lee, Min-Young; Yu, Ji Hea; Kim, Ji Yeon; Seo, Jung Hwa; Park, Eun Sook; Kim, Chul Hoon; Kim, Hyongbum; Cho, Sung-Rae

    2013-01-01

    Housing animals in an enriched environment (EE) enhances behavioral function. However, the mechanism underlying this EE-mediated functional improvement and the resultant changes in gene expression have yet to be elucidated. We attempted to investigate the underlying mechanisms associated with long-term exposure to an EE by evaluating gene expression patterns. We housed 6-week-old CD-1 (ICR) mice in standard cages or an EE comprising a running wheel, novel objects, and social interaction for 2 months. Motor and cognitive performances were evaluated using the rotarod test and passive avoidance test, and gene expression profile was investigated in the cerebral hemispheres using microarray and gene set enrichment analysis (GSEA). In behavioral assessment, an EE significantly enhanced rotarod performance and short-term working memory. Microarray analysis revealed that genes associated with neuronal activity were significantly altered by an EE. GSEA showed that genes involved in synaptic transmission and postsynaptic signal transduction were globally upregulated, whereas those associated with reuptake by presynaptic neurotransmitter transporters were downregulated. In particular, both microarray and GSEA demonstrated that EE exposure increased opioid signaling, acetylcholine release cycle, and postsynaptic neurotransmitter receptors but decreased Na+ / Cl- -dependent neurotransmitter transporters, including dopamine transporter Slc6a3 in the brain. Western blotting confirmed that SLC6A3, DARPP32 (PPP1R1B), and P2RY12 were largely altered in a region-specific manner. An EE enhanced motor and cognitive function through the alteration of synaptic activity-regulating genes, improving the efficient use of neurotransmitters and synaptic plasticity by the upregulation of genes associated with postsynaptic receptor activity and downregulation of presynaptic reuptake by neurotransmitter transporters.

  11. Solexa-Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus)

    PubMed Central

    Pan, Lei; Liu, Yan; Wei, Qiang; Xiao, Chenwen; Ji, Quanan; Bao, Guolian; Wu, Xinsheng

    2015-01-01

    Background Fur is an important genetically-determined characteristic of domestic rabbits; rabbit furs are of great economic value. We used the Solexa sequencing technology to assess gene expression in skin tissues from full-sib Rex rabbits of different phenotypes in order to explore the molecular mechanisms associated with fur determination. Methodology/Principal Findings Transcriptome analysis included de novo assembly, gene function identification, and gene function classification and enrichment. We obtained 74,032,912 and 71,126,891 short reads of 100 nt, which were assembled into 377,618 unique sequences by Trinity strategy (N50=680 nt). Based on BLAST results with known proteins, 50,228 sequences were identified at a cut-off E-value ≥ 10-5. Using Blast to Gene Ontology (GO), Clusters of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we obtained several genes with important protein functions. A total of 308 differentially expressed genes were obtained by transcriptome analysis of plaice and un-plaice phenotype animals; 209 additional differentially expressed genes were not found in any database. These genes included 49 that were only expressed in plaice skin rabbits. The novel genes may play important roles during skin growth and development. In addition, 99 known differentially expressed genes were assigned to PI3K-Akt signaling, focal adhesion, and ECM-receptor interactin, among others. Growth factors play a role in skin growth and development by regulating these signaling pathways. We confirmed the altered expression levels of seven target genes by qRT-PCR. And chosen a key gene for SNP to found the differentially between plaice and un-plaice phenotypes rabbit. Conclusions/Significance The rabbit transcriptome profiling data provide new insights in understanding the molecular mechanisms underlying rabbit skin growth and development. PMID:25955442

  12. Long-term balancing selection at the Phosphorus Starvation Tolerance 1 (PSTOL1) locus in wild, domesticated and weedy rice (Oryza).

    PubMed

    Vigueira, Cynthia C; Small, Linda L; Olsen, Kenneth M

    2016-04-22

    The ability to grow in phosphorus-depleted soils is an important trait for rice cultivation in many world regions, especially in the tropics. The Phosphorus Starvation Tolerance 1 (PSTOL1) gene has been identified as underlying the ability of some cultivated rice varieties to grow under low-phosphorus conditions; however, the gene is absent from other varieties. We assessed PSTOL1 presence/absence in a geographically diverse sample of wild, domesticated and weedy rice and sequenced the gene in samples where it is present. We find that the presence/absence polymorphism spans cultivated, weedy and wild Asian rice groups. For the subset of samples that carry PSTOL1, haplotype sequences suggest long-term selective maintenance of functional alleles, but with repeated evolution of loss-of-function alleles through premature stops and frameshift mutations. The loss-of-function alleles have evolved convergently in multiple rice species and cultivated rice varieties. Greenhouse assessments of plant growth under low- and high-phosphorus conditions did not reveal significant associations with PSTOL1 genotype variation; however, the striking signature of balancing selection at this locus suggests that further phenotypic characterizations of PSTOL1 allelic variants is warranted and may be useful for crop improvement. These findings suggest balancing selection for both functional and non-functional PSTOL1 alleles that predates and transcends Asian rice domestication, a pattern that may reflect fitness tradeoffs associated with geographical variation in soil phosphorus content.

  13. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    PubMed

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene transcriptions in wastewater treatment bioreactors. The NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is a room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples. Copyright © 2018 American Society for Microbiology.

  14. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less

  15. Functional toxicology: tools to advance the future of toxicity testing

    PubMed Central

    Gaytán, Brandon D.; Vulpe, Chris D.

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  16. Genomic cloning and chromosomal localization of HRY, the human homolog to the Drosophila segmentation gene, hairy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feder, J.N.; Jan, L.Y.; Jan, Y.N.

    The Drosophila hairy gene encodes a basic helix- loop-helix protein that functions in at least two steps during Drosophila development: (1) during embryogenesis, when it partakes in the establishment of segments, and (2) during the larval stage, when it functions negatively in determining the pattern of sensory bristles on the adult fly. In the rat, a structurally homologous gene (RHL) behaves as an immediate-early gene in its response to growth factors and can, like that in Drosophila, suppress neuronal differentiation events. Here, the authors report the genomic cloning of the human hairy gene homolog (HRY). The coding region of themore » gene is contained within four exons. The predicted amino acid sequence reveals only four amino acid differences between the human and rat genes. Analysis of the DNA sequence 5[prime] to the coding region reveals a putatitve untranslated exon. To increase the value of the HRY gene as a genetic marker and to assess its potential involvement in genetic disorders, they sublocalized the locus to chromosome 3q28-q29 by fluorescence in situ hybridization. 34 refs., 4 figs., 1 tab.« less

  17. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    PubMed

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences support the hypothesis that, at least in Picea, ndh translocations from the plastid to the nuclear genome have occurred, and that there might have been a functional machinery at some time during evolution to accommodate them within a nuclear-encoded environment, or attempts to form it.

  18. Genome-wide assessment of gene-by-smoking interactions in COPD.

    PubMed

    Park, Boram; Koo, So-My; An, Jaehoon; Lee, MoonGyu; Kang, Hae Yeon; Qiao, Dandi; Cho, Michael H; Sung, Joohon; Silverman, Edwin K; Yang, Hyeon-Jong; Won, Sungho

    2018-06-18

    Cigarette smoke exposure is a major risk factor in chronic obstructive pulmonary disease (COPD) and its interactions with genetic variants could affect lung function. However, few gene-smoking interactions have been reported. In this report, we evaluated the effects of gene-smoking interactions on lung function using Korea Associated Resource (KARE) data with the spirometric variables-forced expiratory volume in 1 s (FEV 1 ). We found that variations in FEV 1 were different among smoking status. Thus, we considered a linear mixed model for association analysis under heteroscedasticity according to smoking status. We found a previously identified locus near SOX9 on chromosome 17 to be the most significant based on a joint test of the main and interaction effects of smoking. Smoking interactions were replicated with Gene-Environment of Interaction and phenotype (GENIE), Multi-Ethnic Study of Atherosclerosis-Lung (MESA-Lung), and COPDGene studies. We found that individuals with minor alleles, rs17765644, rs17178251, rs11870732, and rs4793541, tended to have lower FEV 1 values, and lung function decreased much faster with age for smokers. There have been very few reports to replicate a common variant gene-smoking interaction, and our results revealed that statistical models for gene-smoking interaction analyses should be carefully selected.

  19. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  20. [Effect of afforestation modes on soil microbial community and nitrogen functional genes in Hippophae rhamnoides plantation].

    PubMed

    Yang, Dan; Yu, Xuan; Liu, Xu; Liu, Jin-liana; Zhang, Shun-xiang; Yu, Ze-qun

    2015-12-01

    The study aimed to assess the effect of different afforestation modes on microbial composition and nitrogen functional genes in soil. Soil samples from a pure Hippophae rhamnoides stand (SS) and three mixed stands, namely, H. rhamnoides and Pinus tabuliformis (SY), H. rhamnoides and Platycladus orientalis (SB), H. rhamnoides and Robinia pseucdoacacia (SC) were selected. The results showed that the total PLFA (TPLFA), bacterial PLFA, gram positive bacterial PLFA (G⁺PLFA) were significantly higher in soil samples from other three stands than those of the pure one. However, no significant difference was found for fungal PLFA among them. The abundance of nifH, amoA, nirK and narG genes were higher in SY and SC than in SS. The TPLFA, G⁺PLFA, gram negative bacterial PLFA (G⁻PLFA), and all of the detected gene abundance were significantly and positively correlated with soil pH, total organic carbon, total nitrogen, ammonium nitrogen and available potassium. Afforestation modes affected indirectly soil microbial composition and functional genes through soil properties. Mixing P. tabuliformis or P. orientalis with H. rhamnoides might be suitable afforestation modes, which might improve soil quality.

  1. Dynamic Assessment of Microbial Ecology (DAME): A web app for interactive analysis and visualization of microbial sequencing data

    USDA-ARS?s Scientific Manuscript database

    Dynamic Assessment of Microbial Ecology (DAME) is a shiny-based web application for interactive analysis and visualization of microbial sequencing data. DAME provides researchers not familiar with R programming the ability to access the most current R functions utilized for ecology and gene sequenci...

  2. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

    PubMed

    Sidik, Saima M; Huet, Diego; Ganesan, Suresh M; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S; Thiru, Prathapan; Saeij, Jeroen P J; Carruthers, Vern B; Niles, Jacquin C; Lourido, Sebastian

    2016-09-08

    Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. In Silico Systems Biology Analysis of Variants of Uncertain Significance in Lynch Syndrome Supports the Prioritization of Functional Molecular Validation.

    PubMed

    Borras, Ester; Chang, Kyle; Pande, Mala; Cuddy, Amanda; Bosch, Jennifer L; Bannon, Sarah A; Mork, Maureen E; Rodriguez-Bigas, Miguel A; Taggart, Melissa W; Lynch, Patrick M; You, Y Nancy; Vilar, Eduardo

    2017-10-01

    Lynch syndrome (LS) is a genetic condition secondary to germline alterations in the DNA mismatch repair (MMR) genes with 30% of changes being variants of uncertain significance (VUS). Our aim was to perform an in silico reclassification of VUS from a large single institutional cohort that will help prioritizing functional validation. A total of 54 VUS were detected with 33 (61%) novel variants. We integrated family history, pathology, and genetic information along with supporting evidence from eight different in silico tools at the RNA and protein level. Our assessment allowed us to reclassify 54% (29/54) of the VUS as probably damaging, 13% (7/54) as possibly damaging, and 28% (15/54) as probably neutral. There are more than 1,000 VUS reported in MMR genes and our approach facilitates the prioritization of further functional efforts to assess the pathogenicity to those classified as probably damaging. Cancer Prev Res; 10(10); 580-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. [Atopy and interleukin-4 receptor].

    PubMed

    Izuhara, K

    1999-06-01

    Both IL-4 and IL-13 induce IgE synthesis in B cells by binding to their functional receptors on target cells. These receptors are considered to be composed of heterodimers and both share the IL-4R alpha chain (IL-4R alpha) as a component. Atopy is an inherited tendency, underlying asthma, rhinitis and eczema, and generating high nonspecific IgE and/or high specific IgE against common antigens. Based on findings concerning the molecular mechanism of the signal transduction of IL-4 and IL-13, IL-4R alpha was considered a gene that gave rise to atopy. One polymorphism in the IL-4R alpha gene, Ile50Val, has been correlated with atopy by both genetic and functional assessment. The strategy used in these studies should lead to identification of other genes involved in atopy. Furthermore, these studies should be useful for gene diagnosis of atopy and development of new therapies for atopy in the future.

  5. A systematic approach to infer biological relevance and biases of gene network structures.

    PubMed

    Antonov, Alexey V; Tetko, Igor V; Mewes, Hans W

    2006-01-10

    The development of high-throughput technologies has generated the need for bioinformatics approaches to assess the biological relevance of gene networks. Although several tools have been proposed for analysing the enrichment of functional categories in a set of genes, none of them is suitable for evaluating the biological relevance of the gene network. We propose a procedure and develop a web-based resource (BIOREL) to estimate the functional bias (biological relevance) of any given genetic network by integrating different sources of biological information. The weights of the edges in the network may be either binary or continuous. These essential features make our web tool unique among many similar services. BIOREL provides standardized estimations of the network biases extracted from independent data. By the analyses of real data we demonstrate that the potential application of BIOREL ranges from various benchmarking purposes to systematic analysis of the network biology.

  6. New genes and new biological roles for expansins

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    2000-01-01

    Expansins are extracellular proteins that loosen plant cell walls in novel ways. They are thought to function in cell enlargement, pollen tube invasion of the stigma (in grasses), wall disassembly during fruit ripening, abscission and other cell separation events. Expansins are encoded by two multigene families and each gene is often expressed in highly specific locations and cell types. Structural analysis indicates that one expansin region resembles the catalytic domain of family-45 endoglucanases but glucanase activity has not been detected. The genome projects have revealed numerous expansin-related sequences but their putative wall-loosening functions remain to be assessed.

  7. Intraspecific Polymorphism, Interspecific Divergence, and the Origins of Function-Altering Mutations in Deer Mouse Hemoglobin

    PubMed Central

    Natarajan, Chandrasekhar; Hoffmann, Federico G.; Lanier, Hayley C.; Wolf, Cole J.; Cheviron, Zachary A.; Spangler, Matthew L.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2015-01-01

    Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feature of the Hb polymorphism in P. maniculatus is that an appreciable fraction of functional standing variation in the two transcriptionally active HBA paralogs is attributable to recurrent gene conversion from a tandemly linked HBA pseudogene. Moreover, transpecific polymorphism in the duplicated HBA genes is not solely attributable to incomplete lineage sorting or introgressive hybridization; instead, it is mainly attributable to recurrent interparalog gene conversion that has occurred independently in different species. Partly as a result of concerted evolution between tandemly duplicated globin genes, the same amino acid changes that contribute to variation in Hb function within P. maniculatus also contribute to divergence in Hb function among different species of Peromyscus. In the case of function-altering Hb mutations in Peromyscus, there is no qualitative or quantitative distinction between segregating variants within species and fixed differences between species. PMID:25556236

  8. The mitonuclear compatibility hypothesis of sexual selection

    PubMed Central

    Hill, Geoffrey E.; Johnson, James D.

    2013-01-01

    Why females assess ornaments when choosing mates remains a central question in evolutionary biology. We hypothesize that the imperative for a choosing female to find a mate with nuclear oxidative phosphorylation (OXPHOS) genes that are compatible with her mitochondrial OXPHOS genes drives the evolution of ornaments. Indicator traits are proposed to signal the efficiency of OXPHOS function thus enabling females to select mates with nuclear genes that are compatible with maternal mitochondrial genes in the formation of OXPHOS complexes. Species-typical pattern of ornamentation is proposed to serve as a marker of mitochondrial type ensuring that females assess prospective mates with a shared mitochondrial background. The mitonuclear compatibility hypothesis predicts that the production of ornaments will be closely linked to OXPHOS pathways, and that sexual selection for compatible mates will be strongest when genes for nuclear components of OXPHOS complexes are Z-linked. The implications of this hypothesis are that sexual selection may serve as a driver for the evolution of more efficient cellular respiration. PMID:23945683

  9. Biodegradation of trichloroethylene (TCE) by methanotrophic community.

    PubMed

    Shukla, Awadhesh K; Vishwakarma, Pranjali; Upadhyay, S N; Tripathi, Anil K; Prasana, H C; Dubey, Suresh K

    2009-05-01

    Laboratory incubation experiments were carried out to assess the potential of methanotrophic culture for degrading TCE. Measurements of the growth rate and TCE degradation showed that the methanotrophs not only grew in presence of TCE but also degraded TCE. The rate of TCE degradation was found to be 0.19 ppm h(-1). The reverse transcriptase-PCR test was conducted to quantify expression of pmoA and mmoX genes. RT-PCR revealed expression of pmoA gene only. This observation provides evidence that the pmoA gene was functionally active for pMMO enzyme during the study. The diversity of the methanotrophs involved in TCE degradation was assessed by PCR amplification, cloning, restriction fragment length polymorphism and phylogenetic analysis of pmoA genes. Results suggested the occurrence of nine different phylotypes belonging to Type II methanotrophs in the enriched cultures. Out of the nine, five clustered with, genera Methylocystis and rest got clustered in to a separate group.

  10. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.

    PubMed

    Soares Medeiros, Lia Carolina; South, Lilith; Peng, Duo; Bustamante, Juan M; Wang, Wei; Bunkofske, Molly; Perumal, Natasha; Sanchez-Valdez, Fernando; Tarleton, Rick L

    2017-11-07

    Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei , (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9), but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9), and in vitro -transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi , as well as in T. brucei and Leishmania major RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens. IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi and Leishmania spp., that have eluded investigators for decades. Copyright © 2017 Soares Medeiros et al.

  11. Machine Learning-Assisted Network Inference Approach to Identify a New Class of Genes that Coordinate the Functionality of Cancer Networks.

    PubMed

    Ghanat Bari, Mehrab; Ung, Choong Yong; Zhang, Cheng; Zhu, Shizhen; Li, Hu

    2017-08-01

    Emerging evidence indicates the existence of a new class of cancer genes that act as "signal linkers" coordinating oncogenic signals between mutated and differentially expressed genes. While frequently mutated oncogenes and differentially expressed genes, which we term Class I cancer genes, are readily detected by most analytical tools, the new class of cancer-related genes, i.e., Class II, escape detection because they are neither mutated nor differentially expressed. Given this hypothesis, we developed a Machine Learning-Assisted Network Inference (MALANI) algorithm, which assesses all genes regardless of expression or mutational status in the context of cancer etiology. We used 8807 expression arrays, corresponding to 9 cancer types, to build more than 2 × 10 8 Support Vector Machine (SVM) models for reconstructing a cancer network. We found that ~3% of ~19,000 not differentially expressed genes are Class II cancer gene candidates. Some Class II genes that we found, such as SLC19A1 and ATAD3B, have been recently reported to associate with cancer outcomes. To our knowledge, this is the first study that utilizes both machine learning and network biology approaches to uncover Class II cancer genes in coordinating functionality in cancer networks and will illuminate our understanding of how genes are modulated in a tissue-specific network contribute to tumorigenesis and therapy development.

  12. A human DAZ transgene confers partial rescue of the mouse Dazl null phenotype

    PubMed Central

    Slee, R.; Grimes, B.; Speed, R. M.; Taggart, M.; Maguire, S. M.; Ross, A.; McGill, N. I.; Saunders, P. T. K.; Cooke, H. J.

    1999-01-01

    In a subset of infertile men, a spectrum of spermatogenic defects ranging from a complete absence of germ cells (sertoli cell only) to oligozoospermia is associated with microdeletions of the DAZ (deleted in azoospermia) gene cluster on human distal Yq. DAZ encodes a testis-specific protein with RNA-binding potential recently derived from a single-copy gene DAZL1 (DAZ-like) on chromosome 3. Y chromosomal DAZ homologues are confined to humans and higher primates. It remains unclear which function unique to higher primate spermatogenesis DAZ may serve, and the functional status of the gene recently has been questioned. To assess the extent of functional conservation we have tested the capacity of a human DAZ gene contained in a 225-kb yeast artificial chromosome to complement the sterile phenotype of the Dazl null mouse (Dazl−/−), which is characterized by severe germ-cell depletion and meiotic failure. Although Dazl−/− mice remained infertile when the DAZ transgene was introduced, histological examination revealed a partial and variable rescue of the mutant phenotype, manifest as a pronounced increase in the germ cell population of the seminiferous tubules and survival to the pachytene stage of meiosis. As well as constituting definitive proof of the spermatogenic role of the DAZ gene product, these findings confirm the high degree of functional conservation between the DAZ and DAZL1 genes, suggesting they may constitute a single target for contraceptive intervention and raising the possibility of therapeutic up-regulation of the DAZL1 gene in infertile men. PMID:10393944

  13. Preclinical Assessment of wt GNE Gene Plasmid for Management of Hereditary Inclusion Body Myopathy 2 (HIBM2)

    PubMed Central

    Jay, Chris; Nemunaitis, Gregory; Nemunaitis, John; Senzer, Neil; Hinderlich, Stephan; Darvish, Daniel; Ogden, Julie; Eager, John; Tong, Alex; Maples, Phillip B

    2008-01-01

    Hereditary Inclusion Body Myopathy (HIBM2) is a chronic progressive skeletal muscle wasting disorder which generally leads to complete disability before the age of 50 years. There is currently no effective therapeutic treatment for HIBM2. Development of this disease is related to expression in family members of an autosomal recessive mutation of the GNE gene, which encodes the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK). This is the rate limiting bifunctional enzyme that catalyzes the first 2 steps of sialic acid biosynthesis. Decreased sialic acid production, consequently leads to decreased sialyation of a variety of glycoproteins including the critical muscle protein alpha-dystroglycan (α-DG). This in turn severely cripples muscle function and leads to the onset of the syndrome. We hypothesize that replacing the mutated GNE gene with the wildtype gene may restore functional capacity of GNE/MNK and therefore production of sialic acid, allowing for improvement in muscle function and/or delay in rate of muscle deterioration. We have constructed three GNE gene/CMV promoter plasmids (encoding the wildtype, HIBM2, and Sialuria forms of GNE) and demonstrated enhanced GNE gene activity following delivery to GNE-deficient CHO-Lec3 cells. GNE/MNK enzyme function was significantly increased and subsequent induction of sialic acid production was demonstrated after transfection into Lec3 cells with the wild type or R266Q mutant GNE vector. These data form the foundation for future preclinical and clinical studies for GNE gene transfer to treat HIBM2 patients. PMID:19787087

  14. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review.

    PubMed

    Shahi, Aiyoub; Ince, Bahar; Aydin, Sevcan; Ince, Orhan

    2017-06-01

    Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.

  15. DIANA-microT web server: elucidating microRNA functions through target prediction.

    PubMed

    Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G

    2009-07-01

    Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.

  16. Prediction and Testing of Biological Networks Underlying Intestinal Cancer

    PubMed Central

    Mariadason, John M.; Wang, Donghai; Augenlicht, Leonard H.; Chance, Mark R.

    2010-01-01

    Colorectal cancer progresses through an accumulation of somatic mutations, some of which reside in so-called “driver” genes that provide a growth advantage to the tumor. To identify points of intersection between driver gene pathways, we implemented a network analysis framework using protein interactions to predict likely connections – both precedented and novel – between key driver genes in cancer. We applied the framework to find significant connections between two genes, Apc and Cdkn1a (p21), known to be synergistic in tumorigenesis in mouse models. We then assessed the functional coherence of the resulting Apc-Cdkn1a network by engineering in vivo single node perturbations of the network: mouse models mutated individually at Apc (Apc1638N+/−) or Cdkn1a (Cdkn1a−/−), followed by measurements of protein and gene expression changes in intestinal epithelial tissue. We hypothesized that if the predicted network is biologically coherent (functional), then the predicted nodes should associate more specifically with dysregulated genes and proteins than stochastically selected genes and proteins. The predicted Apc-Cdkn1a network was significantly perturbed at the mRNA-level by both single gene knockouts, and the predictions were also strongly supported based on physical proximity and mRNA coexpression of proteomic targets. These results support the functional coherence of the proposed Apc-Cdkn1a network and also demonstrate how network-based predictions can be statistically tested using high-throughput biological data. PMID:20824133

  17. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    PubMed

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. © 2015 Polstein et al.; Published by Cold Spring Harbor Laboratory Press.

  18. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof

    NASA Technical Reports Server (NTRS)

    Costa, Michael A.; Collins, R. Eric; Anterola, Aldwin M.; Cochrane, Fiona C.; Davin, Laurence B.; Lewis, Norman G.

    2003-01-01

    The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study, an exhaustive analysis of The Institute for Genomic Research (TIGR) and The Arabidopsis Information Resource (TAIR) databases, together with all currently compiled EST sequence data, was carried out in order to determine to what extent the various metabolic networks from phenylalanine ammonia lyase (PAL) to the monolignols were organized and/or could be predicted. In these databases, there are some 65 genes which have been annotated as encoding putative enzymatic steps in monolignol biosynthesis, although many of them have only very low homology to monolignol pathway genes of known function in other plant systems. Our detailed analysis revealed that presently only 13 genes (two PALs, a cinnamate-4-hydroxylase, a p-coumarate-3-hydroxylase, a ferulate-5-hydroxylase, three 4-coumarate-CoA ligases, a cinnamic acid O-methyl transferase, two cinnamoyl-CoA reductases) and two cinnamyl alcohol dehydrogenases can be classified as having a bona fide (definitive) function; the remaining 52 genes currently have undetermined physiological roles. The EST database entries for this particular set of genes also provided little new insight into how the monolignol pathway was organized in the different tissues and organs, this being perhaps a consequence of both limitations in how tissue samples were collected and in the incomplete nature of the EST collections. This analysis thus underscores the fact that even with genomic sequencing, presumed to provide the entire suite of putative genes in the monolignol-forming pathway, a very large effort needs to be conducted to establish actual catalytic roles (including enzyme versatility), as well as the physiological function(s) for each member of the (multi)gene families present and the metabolic networks that are operative. Additionally, one key to identifying physiological functions for many of these (and other) unknown genes, and their corresponding metabolic networks, awaits the development of technologies to comprehensively study molecular processes at the single cell level in particular tissues and organs, in order to establish the actual metabolic context.

  19. Lessons from the canine Oxtr gene: populations, variants and functional aspects.

    PubMed

    Bence, M; Marx, P; Szantai, E; Kubinyi, E; Ronai, Z; Banlaki, Z

    2017-04-01

    Oxytocin receptor (OXTR) acts as a key behavioral modulator of the central nervous system, affecting social behavior, stress, affiliation and cognitive functions. Variants of the Oxtr gene are known to influence behavior both in animals and humans; however, canine Oxtr polymorphisms are less characterized in terms of possible relevance to function, selection criteria in breeding and domestication. In this report, we provide a detailed characterization of common variants of the canine Oxtr gene. In particular (1) novel polymorphisms were identified by direct sequencing of wolf and dog samples, (2) allelic distributions and pairwise linkage disequilibrium patterns of several canine populations were compared, (3) neighbor joining (NJ) tree based on common single nucleotide polymorphisms (SNPs) was constructed, (4) mRNA expression features were assessed, (5) a novel splice variant was detected and (6) in vitro functional assays were performed. Results indicate marked differences regarding Oxtr variations between purebred dogs of different breeds, free-ranging dog populations, wolf subspecies and golden jackals. This, together with existence of explicitly dog-specific alleles and data obtained from the NJ tree implies that Oxtr could indeed have been a target gene during domestication and selection for human preferred aspects of temperament and social behavior. This assumption is further supported by the present observations on gene expression patterns within the brain and luciferase reporter experiments, providing a molecular level link between certain canine Oxtr polymorphisms and differences in nervous system function and behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gene Methylation and Cytological Atypia in Random Fine Needle Aspirates for Assessment of Breast Cancer Risk

    PubMed Central

    Hafeez, Sidra; Bujanda, Zoila Lopez; Chatterton, Robert T.; Jacobs, Lisa K.; Khouri, Nagi F.; Ivancic, David; Kenney, Kara; Shehata, Christina; Jeter, Stacie C.; Wolfman, Judith A.; Zalles, Carola M.; Huang, Peng

    2016-01-01

    Methods to determine individualized breast cancer risk lack sufficient sensitivity to select women most likely to benefit from preventive strategies. Alterations in DNA methylation occur early in breast cancer. We hypothesized that cancer-specific methylation markers could enhance breast cancer risk assessment. We evaluated 380 women without a history of breast cancer. We determined their menopausal status or menstrual cycle phase, risk of developing breast cancer (Gail model), and breast density, and obtained random fine needle aspiration (rFNA) samples for assessment of cytopathology and cumulative methylation index (CMI). Eight methylated gene markers were identified through whole genome methylation analysis and included novel and previously established breast cancer detection genes. We performed correlative and multivariate linear regression analyses to evaluate DNA methylation of a gene panel as a function of clinical factors associated with breast cancer risk. CMI and individual gene methylation were independent of age, menopausal status or menstrual phase, lifetime Gail risk score, and breast density. CMI and individual gene methylation for the eight genes increased significantly (p<0.001) with increasing cytological atypia. The findings were verified with multivariate analyses correcting for age, log (Gail), log (percent density), rFNA cell number and BMI. Our results demonstrate a significant association between cytological atypia and high CMI, which does not vary with menstrual phase or menopause and is independent of Gail risk and mammographic density. Thus CMI is an excellent candidate breast cancer risk biomarker, warranting larger prospective studies to establish its utility for cancer risk assessment. PMID:27261491

  2. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

    PubMed Central

    Majoros, William H.; Campbell, Michael S.; Holt, Carson; DeNardo, Erin K.; Ware, Doreen; Allen, Andrew S.; Yandell, Mark; Reddy, Timothy E.

    2017-01-01

    Abstract Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype–phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results: We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (‘Assessing Changes to Exons’) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Availability and Implementation: ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE Contact: myandell@genetics.utah.edu or tim.reddy@duke.edu Supplementary information: Supplementary information is available at Bioinformatics online. PMID:28011790

  3. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE.

    PubMed

    Majoros, William H; Campbell, Michael S; Holt, Carson; DeNardo, Erin K; Ware, Doreen; Allen, Andrew S; Yandell, Mark; Reddy, Timothy E

    2017-05-15

    The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE. myandell@genetics.utah.edu or tim.reddy@duke.edu. Supplementary information is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  4. The SGBS cell strain as a model for the in vitro study of obesity and cancer.

    PubMed

    Allott, Emma H; Oliver, Elizabeth; Lysaght, Joanne; Gray, Steven G; Reynolds, John V; Roche, Helen M; Pidgeon, Graham P

    2012-10-01

    The murine adipocyte cell line 3T3-L1 is well characterised and used widely, while the human pre-adipocyte cell strain, Simpson-Golabi-Behmel Syndrome (SGBS), requires validation for use in human studies. Obesity is currently estimated to account for up to 41 % of the worldwide cancer burden. A human in vitro model system is required to elucidate the molecular mechanisms for this poorly understood association. This work investigates the relevance of the SGBS cell strain for obesity and cancer research in humans. Pre-adipocyte 3T3-L1 and SGBS were differentiated according to standard protocols. Morphology was assessed by Oil Red O staining. Adipocyte-specific gene expression was measured by qPCR and biochemical function was assessed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity. Differential gene expression in oesophageal adenocarcinoma cell line OE33 following co-culture with SGBS or primary omental human adipocytes was investigated using Human Cancer Profiler qPCR arrays. During the process of differentiation, SGBS expressed higher levels of adipocyte-specific transcripts and fully differentiated SGBS expressed more similar morphology, transcript levels and biochemical function to primary omental adipocytes, relative to 3T3-L1. Co-culture with SGBS or primary omental adipocytes induced differential expression of genes involved in adhesion (ITGB3), angiogenesis (IGF1, TEK, TNF, VEGFA), apoptosis (GZMA, TERT) and invasion and metastasis (MMP9, TIMP3) in OE33 tumour cells. Comparable adipocyte-specific gene expression, biochemical function and a shared induced gene signature in co-cultured OE33 cells indicate that SGBS is a relevant in vitro model for obesity and cancer research in humans.

  5. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.

    PubMed

    Tang, Yao Liang; Qian, Keping; Zhang, Y Clare; Shen, Leping; Phillips, M Ian

    2005-12-01

    The effect of a cardiac specific, hypoxia-regulated, human heme oxygenase-1 (hHO-1) vector to provide cardioprotection from ischemia-reperfusion injury was assessed. When myocardial ischemia and reperfusion is asymptomatic, the damaging effects are cumulative and patients miss timely treatment. A gene therapy approach that expresses therapeutic genes only when ischemia is experienced is a desirable strategy. We have developed a cardiac-specific, hypoxia-regulated gene therapy "vigilant vector'' system that amplifies cardioprotective gene expression. Vigilant hHO-1 plasmids, LacZ plasmids, or saline (n = 40 per group) were injected into mouse heart 2 days in advance of ischemia-reperfusion injury. Animals were exposed to 60 minutes of ischemia followed by 24 hours of reperfusion. For that term (24 hours) effects, the protein levels of HO-1, inflammatory responses, apoptosis, and infarct size were determined. For long-term (3 week) effects, the left ventricular remodeling and recovery of cardiac function were assessed. Ischemia-reperfusion resulted in a timely overexpression of HO-1 protein. Infarct size at 24 hours after ischemia-reperfusion was significantly reduced in the HO-1-treated animals compared with the LacZ-treated group or saline-treated group (P < .001). The reduction of infarct size was accompanied by a decrease in lipid peroxidant activity, inflammatory cell infiltration, and proapoptotic protein level in ischemia-reperfusion-injured myocardium. The long-term study demonstrated that timely, hypoxia-induced HO-1 overexpression is beneficial in conserving cardiac function and attenuating left ventricle remodelling. The vigilant HO-1 vector provides a protective therapy in the heart for reducing cellular damage during ischemia-reperfusion injury and preserving heart function.

  6. Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma.

    PubMed

    Pérez-Losada, Marcos; Castro-Nallar, Eduardo; Bendall, Matthew L; Freishtat, Robert J; Crandall, Keith A

    2015-01-01

    High-throughput sequencing (HTS) analysis of microbial communities from the respiratory airways has heavily relied on the 16S rRNA gene. Given the intrinsic limitations of this approach, airway microbiome research has focused on assessing bacterial composition during health and disease, and its variation in relation to clinical and environmental factors, or other microbiomes. Consequently, very little effort has been dedicated to describing the functional characteristics of the airway microbiota and even less to explore the microbe-host interactions. Here we present a simultaneous assessment of microbiome and host functional diversity and host-microbe interactions from the same RNA-seq experiment, while accounting for variation in clinical metadata. Transcriptomic (host) and metatranscriptomic (microbiota) sequences from the nasal epithelium of 8 asthmatics and 6 healthy controls were separated in silico and mapped to available human and NCBI-NR protein reference databases. Human genes differentially expressed in asthmatics and controls were then used to infer upstream regulators involved in immune and inflammatory responses. Concomitantly, microbial genes were mapped to metabolic databases (COG, SEED, and KEGG) to infer microbial functions differentially expressed in asthmatics and controls. Finally, multivariate analysis was applied to find associations between microbiome characteristics and host upstream regulators while accounting for clinical variation. Our study showed significant differences in the metabolism of microbiomes from asthmatic and non-asthmatic children for up to 25% of the functional properties tested. Enrichment analysis of 499 differentially expressed host genes for inflammatory and immune responses revealed 43 upstream regulators differentially activated in asthma. Microbial adhesion (virulence) and Proteobacteria abundance were significantly associated with variation in the expression of the upstream regulator IL1A; suggesting that microbiome characteristics modulate host inflammatory and immune systems during asthma.

  7. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains.

    PubMed

    Hashemi, Seirana; Nowzari Dalini, Abbas; Jalali, Adrin; Banaei-Moghaddam, Ali Mohammad; Razaghi-Moghadam, Zahra

    2017-08-16

    Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .

  8. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).

    PubMed

    Ramesh, S V

    2013-09-01

    Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.

  9. The D allele of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism is associated with worse functional outcome of ischaemic stroke.

    PubMed

    Malueka, Rusdy Ghazali; Dwianingsih, Ery Kus; Sutarni, Sri; Bawono, Rheza Gandi; Bayuangga, Halwan Fuad; Gofir, Abdul; Setyopranoto, Ismail

    2017-12-29

    Insertion/deletion polymorphism in ACE gene (ACE I/D) is known to be associated with the occurrence of ischaemic stroke through its effect on pathogenesis of atherosclerosis and hypertension. This study was aimed to examine the association between this polymorphism with functional outcome of ischaemic stroke. This was a cross-sectional study. The subjects were patients with ischaemic stroke in a reference hospital in Yogyakarta, Indonesia. Data on demographic characteristics, stroke risk factors, comorbidities and stroke severity were assessed on admission. The functional outcome, Barthel index (BI), was assessed when the patients were discharged from the hospital. ACE I/D genotypes of the patients were identified by polymerase chain reaction (PCR). In total, 61 patients were included. Of these, 38 patients (62.3%) had II polymorphism, 22 patients (36.1%) had ID polymorphism and 1 patient (1.6%) had DD polymorphism in the ACE gene. There were significant differences in the functional outcomes between patients without D allele (II polymorphisms) and patients with D allele (ID and DD polymorphism) (mean BI on discharge: 75 ± 23.57 and 60.65 ± 27.15, respectively; p = 0.034). Multiple linear regression model showed that the availability of D allele is an independent variable negatively associated with functional outcome as assessed by BI (β = -0.232, p = 0.024). This study showed that the D allele in ACE I/D polymorphism is associated with worse functional outcomes. This highlights the possibility of further research to improve functional outcomes of ischaemic stroke by inhibiting the ACE system.

  10. Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins.

    PubMed

    Brandon, Christopher S; Greenwold, Matthew J; Dudycha, Jeffry L

    2017-01-01

    Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.

  11. Human health and ecological risk assessments for SmartStax PRO (MON 89034 x TC1507 x MON 87411 x DAS-59122-7), a plant-incorporated protectant intended to control corn rootworm through ribonucleic acid (RNA) interference

    EPA Science Inventory

    The use of RNA interference (RNAi) gene silencing technology, particularly RNAi for pesticidal purposes to control macroorganism pests, is a relatively recent innovation. Post-transcriptional silencing of gene function is a very rapid process where double-stranded RNA (dsRNA) dir...

  12. Beyond the Central Dogma: Model-Based Learning of How Genes Determine Phenotypes

    PubMed Central

    Reinagel, Adam; Bray Speth, Elena

    2016-01-01

    In an introductory biology course, we implemented a learner-centered, model-based pedagogy that frequently engaged students in building conceptual models to explain how genes determine phenotypes. Model-building tasks were incorporated within case studies and aimed at eliciting students’ understanding of 1) the origin of variation in a population and 2) how genes/alleles determine phenotypes. Guided by theory on hierarchical development of systems-thinking skills, we scaffolded instruction and assessment so that students would first focus on articulating isolated relationships between pairs of molecular genetics structures and then integrate these relationships into an explanatory network. We analyzed models students generated on two exams to assess whether students’ learning of molecular genetics progressed along the theoretical hierarchical sequence of systems-thinking skills acquisition. With repeated practice, peer discussion, and instructor feedback over the course of the semester, students’ models became more accurate, better contextualized, and more meaningful. At the end of the semester, however, more than 25% of students still struggled to describe phenotype as an output of protein function. We therefore recommend that 1) practices like modeling, which require connecting genes to phenotypes; and 2) well-developed case studies highlighting proteins and their functions, take center stage in molecular genetics instruction. PMID:26903496

  13. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  14. Accurate evaluation and analysis of functional genomics data and methods

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2016-01-01

    The development of technology capable of inexpensively performing large-scale measurements of biological systems has generated a wealth of data. Integrative analysis of these data holds the promise of uncovering gene function, regulation, and, in the longer run, understanding complex disease. However, their analysis has proved very challenging, as it is difficult to quickly and effectively assess the relevance and accuracy of these data for individual biological questions. Here, we identify biases that present challenges for the assessment of functional genomics data and methods. We then discuss evaluation methods that, taken together, begin to address these issues. We also argue that the funding of systematic data-driven experiments and of high-quality curation efforts will further improve evaluation metrics so that they more-accurately assess functional genomics data and methods. Such metrics will allow researchers in the field of functional genomics to continue to answer important biological questions in a data-driven manner. PMID:22268703

  15. The translocator protein gene is associated with symptom severity and cerebral pain processing in fibromyalgia.

    PubMed

    Kosek, Eva; Martinsen, Sofia; Gerdle, Björn; Mannerkorpi, Kaisa; Löfgren, Monika; Bileviciute-Ljungar, Indre; Fransson, Peter; Schalling, Martin; Ingvar, Martin; Ernberg, Malin; Jensen, Karin B

    2016-11-01

    The translocator protein (TSPO) is upregulated during glia activation in chronic pain patients. TSPO constitutes the rate-limiting step in neurosteroid synthesis, thus modulating synaptic transmission. Related serotonergic mechanisms influence if pro- or anti-nociceptive neurosteroids are produced. This study investigated the effects of a functional genetic polymorphism regulating the binding affinity to the TSPO, thus affecting symptom severity and cerebral pain processing in fibromyalgia patients. Gene-to-gene interactions with a functional polymorphism of the serotonin transporter gene were assessed. Fibromyalgia patients (n=126) were genotyped regarding the polymorphisms of the TSPO (rs6971) and the serotonin transporter (5-HTTLPR/rs25531). Functional magnetic resonance imaging (n=24) was used to study brain activation during individually calibrated pressure pain. Compared to mixed/low TSPO affinity binders, the high TSPO affinity binders rated more severe pain (p=0.016) and fibromyalgia symptoms (p=0.02). A significant interaction was found between the TSPO and the serotonin transporter polymorphisms regarding pain severity (p<0.0001). Functional connectivity analyses revealed that the TSPO high affinity binding group had more pronounced pain-evoked functional connectivity in the right frontoparietal network, between the dorsolateral prefrontal area and the parietal cortex. In conclusion, fibromyalgia patients with the TSPO high affinity binding genotype reported a higher pain intensity and more severe fibromyalgia symptoms compared to mixed/low affinity binders, and this was modulated by interaction with the serotonin transporter gene. To our knowledge this is the first evidence of functional genetic polymorphisms affecting pain severity in FM and our findings are in line with proposed glia-related mechanisms. Furthermore, the functional magnetic resonance findings indicated an effect of translocator protein on the affective-motivational components of pain perception. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Gene polymorphisms of fibrinolytic enzymes in coal workers' pneumoconiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.C.; Tseng, J.C.; Hua, C.C.

    2006-03-15

    The authors assessed the gene polymorphisms of missense C/T polymorphism in exon 6 of the urokinase-plasminogen activator (PLAU) gene (PLAU P141L), A/u-repeat in intron 8 of the tissue-type plasminogen activator (PLAT) gene (PLAT TPA25 Alu insertion), and 4G/5G in the promoter region of the serine proteinase inhibitor, clade E (SERPINE) or plasminogen activator inhibitor type 1 gene (SERPINE1 -675 4G/5G) in 153 healthy volunteers and 154 retired coal miners with coal miners' pneumoconiosis (CWP). The CWP subjects included 94 individuals with simple pneumoconiosis and 60 individuals with progressive massive fibrosis presenting with worse pulmonary function. The distributions of genotypes ofmore » these three genes did not differ between the control and CWP subjects or between subjects with simple pneumoconiosis and those with progressive massive fibrosis. However, by assessing duration of work and its interaction with genotypes by means of logistic regression, the authors found the missense C/T polymorphism in exon 6 of the PLAU gene to be an effect modifier of the association between work duration and the development of progressive massive fibrosis.« less

  17. Interactions Between Secondhand Smoke and Genes That Affect Cystic Fibrosis Lung Disease

    PubMed Central

    Collaco, J. Michael; Vanscoy, Lori; Bremer, Lindsay; McDougal, Kathryn; Blackman, Scott M.; Bowers, Amanda; Naughton, Kathleen; Jennings, Jacky; Ellen, Jonathan; Cutting, Garry R.

    2011-01-01

    Context Disease variation can be substantial even in conditions with a single gene etiology such as cystic fibrosis (CF). Simultaneously studying the effects of genes and environment may provide insight into the causes of variation. Objective To determine whether secondhand smoke exposure is associated with lung function and other outcomes in individuals with CF, whether socioeconomic status affects the relationship between secondhand smoke exposure and lung disease severity, and whether specific gene-environment interactions influence the effect of secondhand smoke exposure on lung function. Design, Setting, and Participants Retrospective assessment of lung function, stratified by environmental and genetic factors. Data were collected by the US Cystic Fibrosis Twin and Sibling Study with missing data supplemented by the Cystic Fibrosis Foundation Data Registry. All participants were diagnosed with CF, were recruited between October 2000 and October 2006, and were primarily from the United States. Main Outcome Measures Disease-specific cross-sectional and longitudinal measures of lung function. Results Of 812 participants with data on secondhand smoke in the home, 188 (23.2%) were exposed. Of 780 participants with data on active maternal smoking during gestation, 129 (16.5%) were exposed. Secondhand smoke exposure in the home was associated with significantly lower cross-sectional (9.8 percentile point decrease; P<.001) and longitudinal lung function (6.1 percentile point decrease; P=.007) compared with those not exposed. Regression analysis demonstrated that socioeconomic status did not confound the adverse effect of secondhand smoke exposure on lung function. Interaction between gene variants and secondhand smoke exposure resulted in significant percentile point decreases in lung function, namely in CFTR non-ΔF508 homozygotes (12.8 percentile point decrease; P=.001), TGFβ1-509 TT homozygotes (22.7 percentile point decrease; P=.006), and TGFβ1 codon 10 CC homozygotes (20.3 percentile point decrease; P=.005). Conclusions Any exposure to secondhand smoke adversely affects both cross-sectional and longitudinal measures of lung function in individuals with CF. Variations in the gene that causes CF (CFTR) and a CF-modifier gene (TGFβ1) amplify the negative effects of secondhand smoke exposure. PMID:18230779

  18. Evolution of the APETALA2 Gene Lineage in Seed Plants.

    PubMed

    Zumajo-Cardona, Cecilia; Pabón-Mora, Natalia

    2016-07-01

    Gene duplication is a fundamental source of functional evolutionary change and has been associated with organismal diversification and the acquisition of novel features. The APETALA2/ETHYLENE RESPONSIVE ELEMENT-BINDING FACTOR (AP2/ERF) genes are exclusive to vascular plants and have been classified into the AP2-like and ERF-like clades. The AP2-like clade includes the AINTEGUMENTA (ANT) and the euAPETALA2 (euAP2) genes, both regulated by miR172 Arabidopsis has two paralogs in the euAP2 clade, namely APETALA2 (AP2) and TARGET OF EAT3 (TOE3) that control flowering time, meristem determinacy, sepal and petal identity and fruit development. euAP2 genes are likely functionally divergent outside Brassicaceae, as they control fruit development in tomato, and regulate inflorescence meristematic activity in maize. We studied the evolution and expression patterns of euAP2/TOE3 genes to assess large scale and local duplications and evaluate protein motifs likely related with functional changes across seed plants. We sampled euAP2/TOE3 genes from vascular plants and have found three major duplications and a few taxon-specific duplications. Here, we report conserved and new motifs across euAP2/TOE3 proteins and conclude that proteins predating the Brassicaceae duplication are more similar to AP2 than TOE3. Expression data show a shift from restricted expression in leaves, carpels, and fruits in non-core eudicots and asterids to a broader expression of euAP2 genes in leaves, all floral organs and fruits in rosids. Altogether, our data show a functional trend where the canonical A-function (sepal and petal identity) is exclusive to Brassicaceae and it is likely not maintained outside of rosids. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Impact of neonatal iron deficiency on hippocampal DNA methylation and gene transcription in a porcine biomedical model of cognitive development.

    PubMed

    Schachtschneider, Kyle M; Liu, Yingkai; Rund, Laurie A; Madsen, Ole; Johnson, Rodney W; Groenen, Martien A M; Schook, Lawrence B

    2016-11-03

    Iron deficiency is a common childhood micronutrient deficiency that results in altered hippocampal function and cognitive disorders. However, little is known about the mechanisms through which neonatal iron deficiency results in long lasting alterations in hippocampal gene expression and function. DNA methylation is an epigenetic mark involved in gene regulation and altered by environmental factors. In this study, hippocampal DNA methylation and gene expression were assessed via reduced representation bisulfite sequencing and RNA-seq on samples from a previous study reporting reduced hippocampal-based learning and memory in a porcine biomedical model of neonatal iron deficiency. In total 192 differentially expressed genes (DEGs) were identified between the iron deficient and control groups. GO term and pathway enrichment analysis identified DEGs associated with hypoxia, angiogenesis, increased blood brain barrier (BBB) permeability, and altered neurodevelopment and function. Of particular interest are genes previously implicated in cognitive deficits and behavioral disorders in humans and mice, including HTR2A, HTR2C, PAK3, PRSS12, and NETO1. Altered genome-wide DNA methylation was observed across 0.5 million CpG and 2.4 million non-CpG sites. In total 853 differentially methylated (DM) CpG and 99 DM non-CpG sites were identified between groups. Samples clustered by group when comparing DM non-CpG sites, suggesting high conservation of non-CpG methylation in response to neonatal environment. In total 12 DM sites were associated with 9 DEGs, including genes involved in angiogenesis, neurodevelopment, and neuronal function. Neonatal iron deficiency leads to altered hippocampal DNA methylation and gene regulation involved in hypoxia, angiogenesis, increased BBB permeability, and altered neurodevelopment and function. Together, these results provide new insights into the mechanisms through which neonatal iron deficiency results in long lasting reductions in cognitive development in humans.

  20. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  1. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

  2. Polymorphisms in the type I deiodinase gene and frontal function in recurrent depressive disorder.

    PubMed

    Gałecka, Elżbieta; Talarowska, Monika; Orzechowska, Agata; Górski, Paweł; Szemraj, Janusz

    2016-09-01

    Significant impairment of some psychological functions, including cognitive functioning, has been characteristically found in depressed patients. Memory disturbances may be related to the levels of thyroid hormones (TH) that are under the influence of different mechanisms and molecules, including deiodinase type 1(D1) - an important determinant of circulating triiodothyronine (T3). We investigated the relationship between two functionally known polymorphisms within the DIO1 gene, i.e. DIO1a-C/T and DIO1b-A/G, and cognitive functioning in patients diagnosed with recurrent depressive disorder (rDD). In the planned analysis we mainly concentrated on the frontal function: working memory, executive functions and verbal fluency. Genetic variants were genotyped in 128 patients using a method based on polymerase chain reaction (PCR). Cognitive functions were assessed by the Trail Making Test, the Stroop Test and the Verbal Fluency Test (VFT). No significant associations were found between DIO1 polymorphisms and cognitive functioning in rDD. Only the CT and TT genotypes of the DIO1a variant were significantly related to verbal fluency. There were no significant differences between the distribution of the genotypes and demographic/medical variables. Based on the study, the examined polymorphisms are not an important risk or protective factor for cognitive impairment in depressive patients. Functional variants within the DIO1 gene that affect triiodothyronine (T3) levels seem not to be associated with cognitive functions. Nevertheless, considering the fact that the DIO1 gene is related to the course and management of depression, further studies on a larger sample size might be suggested. Copyright © 2016 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Interference of peritoneal dialysis fluids with cell cycle mechanisms.

    PubMed

    Büchel, Janine; Bartosova, Maria; Eich, Gwendolyn; Wittenberger, Timo; Klein-Hitpass, Ludger; Steppan, Sonja; Hackert, Thilo; Schaefer, Franz; Passlick-Deetjen, Jutta; Schmitt, Claus P

    2015-01-01

    Peritoneal dialysis fluids (PDF) differ with respect to osmotic and buffer compound, and pH and glucose degradation products (GDP) content. The impact on peritoneal membrane integrity is still insufficiently described. We assessed global genomic effects of PDF in primary human peritoneal mesothelial cells (PMC) by whole genome analyses, quantitative real-time polymerase chain reaction (RT-PCR) and functional measurements. PMC isolated from omentum of non-uremic patients were incubated with conventional single chamber PDF (CPDF), lactate- (LPDF), bicarbonate- (BPDF) and bicarbonate/lactate-buffered double-chamber PDF (BLPDF), icodextrin (IPDF) and amino acid PDF (APDF), diluted 1:1 with medium. Affymetrix GeneChip U133Plus2.0 (Affymetrix, CA, USA) and quantitative RT-PCR were applied; cell viability was assessed by proliferation assays. The number of differentially expressed genes compared to medium was 464 with APDF, 208 with CPDF, 169 with IPDF, 71 with LPDF, 45 with BPDF and 42 with BLPDF. Out of these genes 74%, 73%, 79%, 72%, 47% and 57% were downregulated. Gene Ontology (GO) term annotations mainly revealed associations with cell cycle (p = 10(-35)), cell division, mitosis, and DNA replication. One hundred and eighteen out of 249 probe sets detecting genes involved in cell cycle/division were suppressed, with APDF-treated PMC being affected the most regarding absolute number and degree, followed by CPDF and IPDF. Bicarbonate-containing PDF and BLPDF-treated PMC were affected the least. Quantitative RT-PCR measurements confirmed microarray findings for key cell cycle genes (CDK1/CCNB1/CCNE2/AURKA/KIF11/KIF14). Suppression was lowest for BPDF and BLPDF, they upregulated CCNE2 and SMC4. All PDF upregulated 3 out of 4 assessed cell cycle repressors (p53/BAX/p21). Cell viability scores confirmed gene expression results, being 79% of medium for LPDF, 101% for BLPDF, 51% for CPDF and 23% for IPDF. Amino acid-containing PDF (84%) incubated cells were as viable as BPDF (86%). In conclusion, PD solutions substantially differ with regard to their gene regulating profile and impact on vital functions of PMC, i.e. on cells known to be essential for peritoneal membrane homeostasis. Copyright © 2015 International Society for Peritoneal Dialysis.

  4. Interference of Peritoneal Dialysis Fluids with Cell Cycle Mechanisms

    PubMed Central

    Büchel, Janine; Bartosova, Maria; Eich, Gwendolyn; Wittenberger, Timo; Klein-Hitpass, Ludger; Steppan, Sonja; Hackert, Thilo; Schaefer, Franz; Passlick-Deetjen, Jutta; Schmitt, Claus P.

    2015-01-01

    ♦ Introduction: Peritoneal dialysis fluids (PDF) differ with respect to osmotic and buffer compound, and pH and glucose degradation products (GDP) content. The impact on peritoneal membrane integrity is still insufficiently described. We assessed global genomic effects of PDF in primary human peritoneal mesothelial cells (PMC) by whole genome analyses, quantitative real-time polymerase chain reaction (RT-PCR) and functional measurements. ♦ Methods: PMC isolated from omentum of non-uremic patients were incubated with conventional single chamber PDF (CPDF), lactate- (LPDF), bicarbonate- (BPDF) and bicarbonate/lactate-buffered double-chamber PDF (BLPDF), icodextrin (IPDF) and amino acid PDF (APDF), diluted 1:1 with medium. Affymetrix GeneChip U133Plus2.0 (Affymetrix, CA, USA) and quantitative RT-PCR were applied; cell viability was assessed by proliferation assays. ♦ Results: The number of differentially expressed genes compared to medium was 464 with APDF, 208 with CPDF, 169 with IPDF, 71 with LPDF, 45 with BPDF and 42 with BLPDF. Out of these genes 74%, 73%, 79%, 72%, 47% and 57% were downregulated. Gene Ontology (GO) term annotations mainly revealed associations with cell cycle (p = 10-35), cell division, mitosis, and DNA replication. One hundred and eighteen out of 249 probe sets detecting genes involved in cell cycle/division were suppressed, with APDF-treated PMC being affected the most regarding absolute number and degree, followed by CPDF and IPDF. Bicarbonate-containing PDF and BLPDF-treated PMC were affected the least. Quantitative RT-PCR measurements confirmed microarray findings for key cell cycle genes (CDK1/CCNB1/CCNE2/AURKA/KIF11/KIF14). Suppression was lowest for BPDF and BLPDF, they upregulated CCNE2 and SMC4. All PDF upregulated 3 out of 4 assessed cell cycle repressors (p53/BAX/p21). Cell viability scores confirmed gene expression results, being 79% of medium for LPDF, 101% for BLPDF, 51% for CPDF and 23% for IPDF. Amino acid-containing PDF (84%) incubated cells were as viable as BPDF (86%). ♦ Conclusion: In conclusion, PD solutions substantially differ with regard to their gene regulating profile and impact on vital functions of PMC, i.e. on cells known to be essential for peritoneal membrane homeostasis. PMID:25082841

  5. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment.

    PubMed

    Störmer, Rebecca; Wichels, Antje; Gerdts, Gunnar

    2013-12-15

    The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    PubMed

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  7. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development

    PubMed Central

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir. PMID:27610237

  8. Nuclear Respiratory Factor-1 (NRF-1) Gene Expression in Chronic Kidney Disease Patients Undergoing Hemodialysis and Mitochondrial Oxidative Dysregulation.

    PubMed

    Hashad, Doaa; Elgohry, Iman; Dwedar, Fatma

    2016-11-01

    Chronic kidney disease (CKD) is characterized by progressive irreversible deterioration of renal functions. Advanced stages of CKD are associated with oxidative stress due to the imbalance between oxidant production and antioxidant defense mechanisms. Survival of patients with end stage renal diseases is maintained on variable forms of renal replacement therapies (RRT) which include peritoneal dialysis, hemodialysis, and sometimes renal transplantation. In humans, Nuclear Respiratory Factor 1 (NRF-1) gene encodes for a transcription factor that, together with the transcriptional co-activator encoded by Peroxisome Proliferator activated Receptor Gamma coactivator 1 Alpha (PGC1-a) gene, stimulates the expression of a broad set of nuclear genes (as COX6C) which are involved in mitochondrial biogenesis and functions. As mitochondria are considered a major source of reactive oxidant species, the objective of the present study was to assess mitochondrial oxidative dysregulation occurring in chronic kidney disease patients undergoing hemodialysis employing NRF-1 and COX6C genes' expression as an indicator of mitochondrial oxidative metabolism. Forty-nine chronic kidney disease patients undergoing intermittent hemodialysis were included in the present study. A group of thirty-three age- and gender- matched healthy volunteers served as a control group. Assessment of expression of NRF-1 and COX6C genes was performed using quantitative real-time PCR technique. NRF-1 and COX6C expression showed a statistically significant difference between both studied groups being down-regulated in CKD patients. In addition, malondialdehyde (MDA) levels were higher in patients on hemodialysis indicating lipid peroxidation. A negative correlation was detected between MDA level and expression of both NRF-1 and COX6C genes. Chronic kidney disease patients undergoing hemodialysis might be subjected to potential mitochondrial oxidative dysregulation with subsequent possible vascular and tissue injury.

  9. Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion.

    PubMed

    Miles, Rebecca R; Perry, William; Haas, Joseph V; Mosior, Marian K; N'Cho, Mathias; Wang, Jian W J; Yu, Peng; Calley, John; Yue, Yong; Carter, Quincy; Han, Bomie; Foxworthy, Patricia; Kowala, Mark C; Ryan, Timothy P; Solenberg, Patricia J; Michael, Laura F

    2013-03-01

    Control of plasma cholesterol levels is a major therapeutic strategy for management of coronary artery disease (CAD). Although reducing LDL cholesterol (LDL-c) levels decreases morbidity and mortality, this therapeutic intervention only translates into a 25-40% reduction in cardiovascular events. Epidemiological studies have shown that a high LDL-c level is not the only risk factor for CAD; low HDL cholesterol (HDL-c) is an independent risk factor for CAD. Apolipoprotein A-I (ApoA-I) is the major protein component of HDL-c that mediates reverse cholesterol transport from tissues to the liver for excretion. Therefore, increasing ApoA-I levels is an attractive strategy for HDL-c elevation. Using genome-wide siRNA screening, targets that regulate hepatocyte ApoA-I secretion were identified through transfection of 21,789 siRNAs into hepatocytes whereby cell supernatants were assayed for ApoA-I. Approximately 800 genes were identified and triaged using a convergence of information, including genetic associations with HDL-c levels, tissue-specific gene expression, druggability assessments, and pathway analysis. Fifty-nine genes were selected for reconfirmation; 40 genes were confirmed. Here we describe the siRNA screening strategy, assay implementation and validation, data triaging, and example genes of interest. The genes of interest include known and novel genes encoding secreted enzymes, proteases, G-protein-coupled receptors, metabolic enzymes, ion transporters, and proteins of unknown function. Repression of farnesyltransferase (FNTA) by siRNA and the enzyme inhibitor manumycin A caused elevation of ApoA-I secretion from hepatocytes and from transgenic mice expressing hApoA-I and cholesterol ester transfer protein transgenes. In total, this work underscores the power of functional genetic assessment to identify new therapeutic targets.

  10. Oncodomains: A protein domain-centric framework for analyzing rare variants in tumor samples

    PubMed Central

    Peterson, Thomas A.; Park, Junyong

    2017-01-01

    The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide sequencing studies have shown that individual malignancies contain many mutations that range from those commonly found in tumor genomes to rare somatic variants present only in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic mutations in cancer, yet efforts to correlate somatic mutations found in one or few individuals with functional roles have been largely unsuccessful. Traditional methods for identifying somatic variants that drive cancer are ‘gene-centric’ in that they consider only somatic variants within a particular gene and make no comparison to other similar genes in the same family that may play a similar role in cancer. In this work, we present oncodomain hotspots, a new ‘domain-centric’ method for identifying clusters of somatic mutations across entire gene families using protein domain models. Our analysis confirms that our approach creates a framework for leveraging structural and functional information encapsulated by protein domains into the analysis of somatic variants in cancer, enabling the assessment of even rare somatic variants by comparison to similar genes. Our results reveal a vast landscape of somatic variants that act at the level of domain families altering pathways known to be involved with cancer such as protein phosphorylation, signaling, gene regulation, and cell metabolism. Due to oncodomain hotspots’ unique ability to assess rare variants, we expect our method to become an important tool for the analysis of sequenced tumor genomes, complementing existing methods. PMID:28426665

  11. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi.

    PubMed

    Aoyagi, Luciano N; Lopes-Caitar, Valéria S; de Carvalho, Mayra C C G; Darben, Luana M; Polizel-Podanosqui, Adriana; Kuwahara, Marcia K; Nepomuceno, Alexandre L; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C

    2014-12-01

    Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies. Due to their apparently highly diverse functions, these genes are promising targets for developing crop varieties resistant to diseases. In the present study, the identification and phylogenetic analysis of the soybean R2R3-MYB (GmMYB) transcription factor family was performed and the expression profiles of these genes under biotic stress were determined. GmMYBs were identified from the soybean genome using bioinformatic tools, and their putative functions were determined based on the phylogenetic tree and classified into subfamilies using guides AtMYBs describing known functions. The transcriptional profiles of GmMYBs upon infection with different pathogen were revealed by in vivo and in silico analyses. Selected target genes potentially involved in disease responses were assessed by RT-qPCR after different times of inoculation with P. pachyrhizi using different genetic backgrounds related to resistance genes (Rpp2 and Rpp5). R2R3-MYB transcription factors related to lignin synthesis and genes responsive to chitin were significantly induced in the resistant genotypes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Test–Retest Variability of Functional and Structural Parameters in Patients with Stargardt Disease Participating in the SAR422459 Gene Therapy Trial

    PubMed Central

    Parker, Maria A.; Choi, Dongseok; Erker, Laura R.; Pennesi, Mark E.; Yang, Paul; Chegarnov, Elvira N.; Steinkamp, Peter N.; Schlechter, Catherine L.; Dhaenens, Claire-Marie; Mohand-Said, Saddek; Audo, Isabelle; Sahel, Jose; Weleber, Richard G.; Wilson, David J.

    2016-01-01

    Purpose The goal of this analysis was to determine the test–retest variability of functional and structural measures from a cohort of patients with advanced forms of Stargardt Disease (STGD) participating in the SAR422459 (NCT01367444) gene therapy clinical trial. Methods Twenty-two participants, aged 24 to 66, diagnosed with advanced forms of STGD, with at least one pathogenic ABCA4 mutation on each chromosome participating in the SAR422459 (NCT01367444) gene therapy clinical trial, were screened over three visits within 3 weeks or less. Functional visual evaluations included: best-corrected visual acuity (BCVA) Early Treatment Diabetic Retinopathy Study (ETDRS) letter score, semiautomated kinetic perimetry (SKP) using isopters I4e, III4e, and V4e, hill of vision (HOV) calculated from static visual fields (SVF) by using a 184n point centrally condensed grid with the stimulus size V test target. Retinal structural changes such as central macular thickness and macular volume were assessed by spectral-domain optical coherence tomography (SD-OCT). Repeatability coefficients (RC) and 95% confidential intervals (CI) were calculated for each parameter using a hierarchical mixed-effects model and bootstrapping. Results Criteria for statistically significant changes for various parameters were found to be the following: BCVA letter score (8 letters), SKP isopters I4e, III4e, and V4e (3478.85; 2488.02 and 2622.46 deg2, respectively), SVF full volume HOV (VTOT, 14.62 dB-sr), central macular thickness, and macular volume (4.27 μm and 0.15 mm3, respectively). Conclusions This analysis provides important information necessary to determine if significant changes are occurring in structural and functional assessments commonly used to measure disease progression in this cohort of patients with STGD. Moreover, this information is useful for future trials assessing safety and efficacy of treatments in STGD. Translational Relevance Determination of variability of functional and structural measures in participants with advanced stages of the STGD is necessary to assess efficacy and safety in treatment trials involving STGD patients. PMID:27730010

  13. Test-Retest Variability of Functional and Structural Parameters in Patients with Stargardt Disease Participating in the SAR422459 Gene Therapy Trial.

    PubMed

    Parker, Maria A; Choi, Dongseok; Erker, Laura R; Pennesi, Mark E; Yang, Paul; Chegarnov, Elvira N; Steinkamp, Peter N; Schlechter, Catherine L; Dhaenens, Claire-Marie; Mohand-Said, Saddek; Audo, Isabelle; Sahel, Jose; Weleber, Richard G; Wilson, David J

    2016-10-01

    The goal of this analysis was to determine the test-retest variability of functional and structural measures from a cohort of patients with advanced forms of Stargardt Disease (STGD) participating in the SAR422459 (NCT01367444) gene therapy clinical trial. Twenty-two participants, aged 24 to 66, diagnosed with advanced forms of STGD, with at least one pathogenic ABCA4 mutation on each chromosome participating in the SAR422459 (NCT01367444) gene therapy clinical trial, were screened over three visits within 3 weeks or less. Functional visual evaluations included: best-corrected visual acuity (BCVA) Early Treatment Diabetic Retinopathy Study (ETDRS) letter score, semiautomated kinetic perimetry (SKP) using isopters I4e, III4e, and V4e, hill of vision (HOV) calculated from static visual fields (SVF) by using a 184n point centrally condensed grid with the stimulus size V test target. Retinal structural changes such as central macular thickness and macular volume were assessed by spectral-domain optical coherence tomography (SD-OCT). Repeatability coefficients (RC) and 95% confidential intervals (CI) were calculated for each parameter using a hierarchical mixed-effects model and bootstrapping. Criteria for statistically significant changes for various parameters were found to be the following: BCVA letter score (8 letters), SKP isopters I4e, III4e, and V4e (3478.85; 2488.02 and 2622.46 deg 2 , respectively), SVF full volume HOV (V TOT, 14.62 dB-sr), central macular thickness, and macular volume (4.27 μm and 0.15 mm 3 , respectively). This analysis provides important information necessary to determine if significant changes are occurring in structural and functional assessments commonly used to measure disease progression in this cohort of patients with STGD. Moreover, this information is useful for future trials assessing safety and efficacy of treatments in STGD. Determination of variability of functional and structural measures in participants with advanced stages of the STGD is necessary to assess efficacy and safety in treatment trials involving STGD patients.

  14. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    PubMed Central

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  15. Assessing the effects of common variation in the FOXP2 gene on human brain structure.

    PubMed

    Hoogman, Martine; Guadalupe, Tulio; Zwiers, Marcel P; Klarenbeek, Patricia; Francks, Clyde; Fisher, Simon E

    2014-01-01

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques.

  16. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients.

    PubMed

    Masson, Emmanuelle; Chen, Jian-Min; Audrézet, Marie-Pierre; Cooper, David N; Férec, Claude

    2013-01-01

    Idiopathic chronic pancreatitis (ICP) has traditionally been defined as chronic pancreatitis in the absence of any obvious precipitating factors (e.g. alcohol abuse) and family history of the disease. Studies over the past 15 years have revealed that ICP has a highly complex genetic architecture involving multiple gene loci. Here, we have attempted to provide a conservative assessment of the major genetic causes of ICP in a sample of 253 young French ICP patients. For the first time, conventional types of mutation (comprising coding sequence variants and variants at intron/exon boundaries) and gross genomic rearrangements were screened for in all four major pancreatitis genes, PRSS1, SPINK1, CTRC and CFTR. For the purposes of the study, synonymous, intronic and 5'- or 3'-untranslated region variants were excluded from the analysis except where there was persuasive evidence of functional consequences. The remaining sequence variants/genotypes were classified into causative, contributory or neutral categories by consideration of (i) their allele frequencies in patient and normal control populations, (ii) their presumed or experimentally confirmed functional effects, (iii) the relative importance of their associated genes in the pathogenesis of chronic pancreatitis and (iv) gene-gene interactions wherever applicable. Adoption of this strategy allowed us to assess the pathogenic relevance of specific variants/genotypes to their respective carriers to an unprecedented degree. The genetic cause of ICP could be assigned in 23.7% of individuals in the study group. A strong genetic susceptibility factor was also present in an additional 24.5% of cases. Taken together, up to 48.2% of the studied ICP patients were found to display evidence of a genetic basis for their pancreatitis. Whereas these particular proportions may not be extrapolable to all ICP patients, the approach employed should serve as a useful framework for acquiring a better understanding of the role of genetic factors in causing this oligogenic disease.

  17. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality

    PubMed Central

    Kingwell, Callum J.; Wcislo, William T.; Robinson, Gene E.

    2017-01-01

    Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. PMID:28053060

  18. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality.

    PubMed

    Jones, Beryl M; Kingwell, Callum J; Wcislo, William T; Robinson, Gene E

    2017-01-11

    Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. © 2017 The Author(s).

  19. Short-term responses of soil nitrogen mineralization, nitrification and denitrification to prescribed burning in a suburban forest ecosystem of subtropical Australia.

    PubMed

    Zhang, Manyun; Wang, Weijin; Wang, Dianjie; Heenan, Marijke; Xu, Zhihong

    2018-06-17

    As an anthropogenic disturbance, prescribed burning may alter the biogeochemistries of nutrients, including nitrogen (N) cycling, in forest ecosystems. This study aimed to examine the changes in N mineralization, nitrification and denitrification rates following prescribed burning in a suburban forest located in subtropical Australia and assess the interactive relationships among soil properties, functional gene abundances and N transformation rates. After a prescribed burning event, soil pH value increased, but soil labile carbon and mineral N contents decreased. Net N mineralization rates, potential nitrification rates and ammonium-oxidizing archaea and bacteria (AOA and AOB) amoA gene abundances in the soils all increased after 3 months of the prescribed burning. However, the abundances of different functional genes related to denitrification changed differently after the prescribed burning. The net N mineralization rates could be best described by soil abiotic properties, rather than functional gene abundances. In contrast, potential denitrification rates were positively related to soil nirK gene abundances. Potential nitrification rates could be influenced by both soil chemical and microbial properties. The results revealed that the prescribed burning might increase N mineralization and nitrification rates in the forest soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    PubMed

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  1. Genetic and Functional Heterogeneity of Tumors in Neurofibromatosis 2

    DTIC Science & Technology

    2015-05-01

    Award Number: W81XWH-13-1-0093 TITLE: Genetic and Functional Heterogeneity of Tumors in Neurofibromatosis 2 PRINCIPAL INVESTIGATOR: James F...Genetic and Functional Heterogeneity of Tumors in Neurofibromatosis 2 5a. CONTRACT NUMBER W81XWH-13-1-0093 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...confirm genes and processes that contribute to NF2 tumor formation and assess their effects on cellular phenotypes. 15. SUBJECT TERMS Neurofibromatosis

  2. Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F

    PubMed Central

    Putker, K.; Tanganyika-de Winter, C. L.; Boertje-van der Meulen, J. W.; van Vliet, L.; Overzier, M.; Plomp, J. J.; Aartsma-Rus, A.; van Putten, M.

    2017-01-01

    Limb-girdle muscular dystrophy types 2D and 2F (LGMD 2D and 2F) are autosomal recessive disorders caused by mutations in the alpha- and delta sarcoglycan genes, respectively, leading to severe muscle weakness and degeneration. The cause of the disease has been well characterized and a number of animal models are available for pre-clinical studies to test potential therapeutic interventions. To facilitate transition from drug discovery to clinical trials, standardized procedures and natural disease history data were collected for these mouse models. Implementing the TREAD-NMD standardized operating procedures, we here subjected LGMD2D (SGCA-null), LGMD2F (SGCD-null) and wild type (C57BL/6J) mice to five functional tests from the age of 4 to 32 weeks. To assess whether the functional test regime interfered with disease pathology, sedentary groups were taken along. Muscle physiology testing of tibialis anterior muscle was performed at the age of 34 weeks. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Mice successfully accomplished the functional tests, which did not interfere with disease pathology. Muscle function of SGCA- and SGCD-null mice was impaired and declined over time. Interestingly, female SGCD-null mice outperformed males in the two and four limb hanging tests, which proved the most suitable non-invasive tests to assess muscle function. Muscle physiology testing of tibialis anterior muscle revealed lower specific force and higher susceptibility to eccentric-induced damage in LGMD mice. Analyzing muscle histopathology and gene expression, we identified the diaphragm as the most affected muscle in LGMD strains. Cardiac fibrosis was found in SGCD-null mice, being more severe in males than in females. Our study offers a comprehensive natural history dataset which will be useful to design standardized tests and future pre-clinical studies in LGMD2D and 2F mice. PMID:28797108

  3. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  4. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach.

    PubMed

    Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-03-01

    This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age.

    PubMed

    Hippe, Berit; Zwielehner, Jutta; Liszt, Kathrin; Lassl, Cornelia; Unger, Frank; Haslberger, Alexander G

    2011-03-01

    The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Nandrolone and resistance training induce heart remodeling: role of fetal genes and implications for cardiac pathophysiology.

    PubMed

    Tanno, Ana Paula; das Neves, Vander José; Rosa, Kaleizu Teodoro; Cunha, Tatiana Sousa; Giordano, Fernanda Cristina Linarello; Calil, Caroline Morini; Guzzoni, Vinicius; Fernandes, Tiago; de Oliveira, Edilamar Menezes; Novaes, Pedro Duarte; Irigoyen, Maria Cláudia; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2011-10-24

    This study was conducted to assess the isolated and combined effects of nandrolone and resistance training on cardiac morphology, function, and mRNA expression of pathological cardiac hypertrophy markers. Wistar rats were randomly divided into four groups and submitted to 6 weeks of treatment with nandrolone and/or resistance training. Cardiac parameters were determined by echocardiography. Heart was analyzed for collagen infiltration. Real-time RT-PCR was used to assess the pathological cardiac hypertrophy markers. Both resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased the cardiac collagen content, and reduced the cardiac index in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the ratio of maximum early to late transmitral flow velocity in non-trained and trained groups, when compared with the respective vehicle-treated groups. Nandrolone reduced the alpha-myosin heavy chain gene expression in both non-trained and trained groups, when compared with the respective vehicle-treated groups. Training reduced the beta-myosin heavy chain gene expression in the groups treated with vehicle and nandrolone. Only the association between training and nandrolone increased the expression of the skeletal alpha-actin gene and atrial natriuretic peptide in the left ventricle. This study indicated that nandrolone, whether associated with resistance training or not, induces cardiac hypertrophy, which is associated with enhanced collagen content, re-expression of fetal genes the in left ventricle, and impaired diastolic and systolic function. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Novel candidate genes of the PARK7 interactome as mediators of apoptosis and acetylation in multiple sclerosis: An in silico analysis.

    PubMed

    Vavougios, George D; Zarogiannis, Sotirios G; Krogfelt, Karen Angeliki; Gourgoulianis, Konstantinos; Mitsikostas, Dimos Dimitrios; Hadjigeorgiou, Georgios

    2018-01-01

    currently only 4 studies have explored the potential role of PARK7's dysregulation in MS pathophysiology Currently, no study has evaluated the potential role of the PARK7 interactome in MS. The aim of our study was to assess the differential expression of PARK7 mRNA in peripheral blood mononuclears (PBMCs) donated from MS versus healthy patients using data mining techniques. The PARK7 interactome data from the GDS3920 profile were scrutinized for differentially expressed genes (DEGs); Gene Enrichment Analysis (GEA) was used to detect significantly enriched biological functions. 27 differentially expressed genes in the MS dataset were detected; 12 of these (NDUFA4, UBA2, TDP2, NPM1, NDUFS3, SUMO1, PIAS2, KIAA0101, RBBP4, NONO, RBBP7 AND HSPA4) are reported for the first time in MS. Stepwise Linear Discriminant Function Analysis constructed a predictive model (Wilk's λ = 0.176, χ 2 = 45.204, p = 1.5275e -10 ) with 2 variables (TIDP2, RBBP4) that achieved 96.6% accuracy when discriminating between patients and controls. Gene Enrichment Analysis revealed that induction and regulation of programmed / intrinsic cell death represented the most salient Gene Ontology annotations. Cross-validation on systemic lupus erythematosus and ischemic stroke datasets revealed that these functions are unique to the MS dataset. Based on our results, novel potential target genes are revealed; these differentially expressed genes regulate epigenetic and apoptotic pathways that may further elucidate underlying mechanisms of autorreactivity in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation

    PubMed Central

    Liang, Jian; Song, Wenjun; Tromp, Gail; Kolattukudy, Pappachan E.; Fu, Mingui

    2008-01-01

    Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family. PMID:18682727

  9. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord

    PubMed Central

    Kamada, Takahito; Hashimoto, Masayuki; Murakami, Masazumi; Shirasawa, Hiroshi; Sakao, Seiichiro; Ino, Hidetoshi; Yoshinaga, Katsunori; Koshizuka, Shuhei; Moriya, Hideshige; Yamazaki, Masashi

    2007-01-01

    The aim of this study was to evaluate the efficacy in adult rat completely transected spinal cord of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to bone marrow stromal cells (BMSC). BMSC were infected with adenovirus vectors carrying β-galactosidase (AxCALacZ) or BDNF (AxCABDNF) genes. The T8 segment of spinal cord was removed and replaced by graft containing Matrigel alone (MG group) or Matrigel and BMSC infected by AxCALacZ (BMSC-LacZ group) or AxCABDNF (BMSC-BDNF group). Axons in the graft were evaluated by immunohistochemistry and functional recovery was assessed with BBB locomotor scale. In the BMSC-BDNF group, the number of fibers positive for growth associated protein-43, tyrosine hydroxylase, and calcitonin gene-related peptide was significantly larger than numbers found for the MG and BMSC-LacZ groups. Rats from BMSC-BDNF and BMSC-LacZ groups showed significant recovery of hind limb function compared with MG rats; however, there was no significant difference between groups in degree of functional recovery. These findings demonstrate that adenovirus vector-mediated ex vivo gene transfer of BDNF enhances the capacity of BMSC to promote axonal regeneration in this completely transected spinal cord model; however, BDNF failed to enhance hind limb functional recovery. Further investigation is needed to establish an optimal combination of cell therapy and neurotrophin gene transfer for cases of spinal cord injury. PMID:17885772

  10. Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes.

    PubMed

    Nishio, Miwako; Saeki, Kumiko

    2014-01-01

    We describe a detailed method for directed differentiation of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), into functional classical brown adipocytes (BAs) under serum-free and feeder-free conditions. It is a two-tiered culture system, based on very simple techniques, a floating culture and a subsequent adherent culture. It does not require gene transfer. The entire process can be carried out in about 10 days. The key point is the usage of our special hematopoietic cytokine cocktail. Almost all the differentiated cells express uncoupling protein 1, a BA-selective marker, as determined by immunostaining. The differentiated cells show characteristics of classical BA as assessed by morphology and gene/protein expression. Moreover, the expression of myoblast marker genes is transiently induced during the floating culture step. hESC/hiPSC-derived BAs show significantly higher oxygen consumption rates (OCRs) than white adipocytes generated from human mesenchymal stem cell. They also show responsiveness to adrenergic stimuli, with about twofold upregulation in OCR by β-adrenergic receptor (β-AR) agonist treatments. hESC/hiPSC-derived BAs exert in vivo calorigenic activities in response to β-AR agonist treatments as assessed by thermography. Finally, lipid and glucose metabolisms are significantly improved in hESC/hiPSC-derived BA-transplanted mice. Our system provides a highly feasible way to produce functional classical BA bearing metabolism-improving capacities from hESC/hiPSC under a feeder-free and serum-free condition without gene transfer. © 2014 Elsevier Inc. All rights reserved.

  11. Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment

    PubMed Central

    Graves, Christopher J.; Makrides, Elizabeth J.; Schmidt, Victor T.; Giblin, Anne E.; Cardon, Zoe G.

    2016-01-01

    ABSTRACT Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. IMPORTANCE In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance. PMID:26944843

  12. Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment.

    PubMed

    Graves, Christopher J; Makrides, Elizabeth J; Schmidt, Victor T; Giblin, Anne E; Cardon, Zoe G; Rand, David M

    2016-05-01

    Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance. Copyright © 2016 Graves et al.

  13. Microevolutionary dynamics of a macroevolutionary key innovation in a Lepidopteran herbivore

    PubMed Central

    2010-01-01

    Background A molecular population genetics understanding is central to the study of ecological and evolutionary functional genomics. Population genetics identifies genetic variation and its distribution within and among populations, it reveals the demographic history of the populations studied, and can provide indirect insights into historical selection dynamics. Here we use this approach to examine the demographic and selective dynamics acting of a candidate gene involved in plant-insect interactions. Previous work documents the macroevolutionary and historical ecological importance of the nitrile-specifier protein (Nsp), which facilitated the host shift of Pieridae butterflies onto Brassicales host plants ~80 Myr ago. Results Here we assess the microevolutionary dynamics of the Nsp gene by studying the within and among-population variation at Nsp and reference genes in the butterfly Pieris rapae (Small Cabbage White). Nsp exhibits unexpectedly high amounts of amino acid polymorphism, unequally distributed across the gene. The vast majority of genetic variation exists within populations, with little to no genetic differentiation among four populations on two continents. A comparison of synonymous and nonsynonymous substitutions in 70 randomly chosen genes among P. rapae and its close relative Pieris brassicae (Large Cabbage White) finds Nsp to have a significantly relaxed functional constraint compared to housekeeping genes. We find strong evidence for a recent population expansion and no role for strong purifying or directional selection upon the Nsp gene. Conclusions The microevolutionary dynamics of the Nsp gene in P. rapae are dominated by recent population expansion and variation in functional constraint across the repeated domains of the Nsp gene. While the high amounts of amino acid diversity suggest there may be significant functional differences among allelic variants segregating within populations, indirect tests of selection could not conclusively identify a signature of historical selection. The importance of using this information for planning future studies of potential performance and fitness consequences of the observed variation is discussed. PMID:20181249

  14. Linking movement and reproductive history of brook trout to assess habitat connectivity in a heterogeneous stream network

    Treesearch

    Yoichiro Kanno; Benjamin H. Letcher; Jason A. Coombs; Keith H. Nislow; Andrew R. Whiteley

    2014-01-01

    Defining functional connectivity between habitats in spatially heterogeneous landscapes is a particular challenge for small-bodied aquatic species. Traditional approaches (e.g. mark-recapture studies) preclude an assessment of animal movement over the life cycle (birth to reproduction), and movement of individuals may not represent the degree of gene movement for...

  15. Gene Methylation and Cytological Atypia in Random Fine-Needle Aspirates for Assessment of Breast Cancer Risk.

    PubMed

    Stearns, Vered; Fackler, Mary Jo; Hafeez, Sidra; Bujanda, Zoila Lopez; Chatterton, Robert T; Jacobs, Lisa K; Khouri, Nagi F; Ivancic, David; Kenney, Kara; Shehata, Christina; Jeter, Stacie C; Wolfman, Judith A; Zalles, Carola M; Huang, Peng; Khan, Seema A; Sukumar, Saraswati

    2016-08-01

    Methods to determine individualized breast cancer risk lack sufficient sensitivity to select women most likely to benefit from preventive strategies. Alterations in DNA methylation occur early in breast cancer. We hypothesized that cancer-specific methylation markers could enhance breast cancer risk assessment. We evaluated 380 women without a history of breast cancer. We determined their menopausal status or menstrual cycle phase, risk of developing breast cancer (Gail model), and breast density and obtained random fine-needle aspiration (rFNA) samples for assessment of cytopathology and cumulative methylation index (CMI). Eight methylated gene markers were identified through whole-genome methylation analysis and included novel and previously established breast cancer detection genes. We performed correlative and multivariate linear regression analyses to evaluate DNA methylation of a gene panel as a function of clinical factors associated with breast cancer risk. CMI and individual gene methylation were independent of age, menopausal status or menstrual phase, lifetime Gail risk score, and breast density. CMI and individual gene methylation for the eight genes increased significantly (P < 0.001) with increasing cytological atypia. The findings were verified with multivariate analyses correcting for age, log (Gail), log (percent density), rFNA cell number, and body mass index. Our results demonstrate a significant association between cytological atypia and high CMI, which does not vary with menstrual phase or menopause and is independent of Gail risk and mammographic density. Thus, CMI is an excellent candidate breast cancer risk biomarker, warranting larger prospective studies to establish its utility for cancer risk assessment. Cancer Prev Res; 9(8); 673-82. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes.

    PubMed

    Dilucca, Maddalena; Cimini, Giulio; Giansanti, Andrea

    2018-07-15

    Essential genes constitute the core of genes which cannot be mutated too much nor lost along the evolutionary history of a species. Natural selection is expected to be stricter on essential genes and on conserved (highly shared) genes, than on genes that are either nonessential or peculiar to a single or a few species. In order to further assess this expectation, we study here how essentiality of a gene is connected with its degree of conservation among several unrelated bacterial species, each one characterised by its own codon usage bias. Confirming previous results on E. coli, we show the existence of a universal exponential relation between gene essentiality and conservation in bacteria. Moreover, we show that, within each bacterial genome, there are at least two groups of functionally distinct genes, characterised by different levels of conservation and codon bias: i) a core of essential genes, mainly related to cellular information processing; ii) a set of less conserved nonessential genes with prevalent functions related to metabolism. In particular, the genes in the first group are more retained among species, are subject to a stronger purifying conservative selection and display a more limited repertoire of synonymous codons. The core of essential genes is close to the minimal bacterial genome, which is in the focus of recent studies in synthetic biology, though we confirm that orthologs of genes that are essential in one species are not necessarily essential in other species. We also list a set of highly shared genes which, reasonably, could constitute a reservoir of targets for new anti-microbial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection.

    PubMed

    Pacheco-Lugo, Lisandro; Díaz-Olmos, Yirys; Sáenz-García, José; Probst, Christian Macagnan; DaRocha, Wanderson Duarte

    2017-06-01

    New opportunities have raised to study the gene function approaches of Trypanosoma cruzi after its genome sequencing in 2005. Functional genomic approaches in Trypanosoma cruzi are challenging due to the reduced tools available for genetic manipulation, as well as to the reduced efficiency of the transient transfection conducted through conventional methods. The Amaxa nucleofector device was systematically tested in the present study in order to improve the electroporation conditions in the epimastigote forms of T. cruzi. The transfection efficiency was quantified using the green fluorescent protein (GFP) as reporter gene followed by cell survival assessment. The herein used nucleofection parameters have increased the survival rates (>90%) and the transfection efficiency by approximately 35%. The small amount of epimastigotes and DNA required for the nucleofection can turn the method adopted here into an attractive tool for high throughput screening (HTS) applications, and for gene editing in parasites where genetic manipulation tools remain relatively scarce. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Tissue-specific expression of the gene coding for human Clara cell 10-kD protein, a phospholipase A2-inhibitory protein.

    PubMed Central

    Peri, A; Cordella-Miele, E; Miele, L; Mukherjee, A B

    1993-01-01

    Clara cell 10-kD protein (cc10kD), a secretory phospholipase A2 inhibitor, is suggested to be the human counterpart of rabbit uteroglobin (UG). Because cc10kD is expressed constitutively at a very high level in the human respiratory epithelium, the 5' region of its gene may be useful in achieving organ-specific expression of recombinant DNA in gene therapy of diseases such as cystic fibrosis. However, it is important to establish the tissue-specific expression of this gene before designing gene transfer experiments. Since the UG gene in the rabbit is expressed in many other organs besides the lung and the endometrium, we investigated the organ and tissue specificity of human cc10kD gene expression using polymerase chain reaction, nucleotide sequence analysis, immunofluorescence, and Northern blotting. Our results indicate that, in addition to the lung, cc10kD is expressed in several nonrespiratory organs, with a distribution pattern very similar, if not identical, to that of UG in the rabbit. These results underscore the necessity for more detailed analyses of the 5' region of the human cc10kD gene before its usefulness in gene therapy could be fully assessed. These data also suggest that cc10kD and UG may have similar physiological function(s). Images PMID:8227325

  19. Mutation analysis of genes within the dynactin complex in a cohort of hereditary peripheral neuropathies.

    PubMed

    Tey, S; Ahmad-Annuar, A; Drew, A P; Shahrizaila, N; Nicholson, G A; Kennerson, M L

    2016-08-01

    The cytoplasmic dynein-dynactin genes are attractive candidates for neurodegenerative disorders given their functional role in retrograde transport along neurons. The cytoplasmic dynein heavy chain (DYNC1H1) gene has been implicated in various neurodegenerative disorders, and dynactin 1 (DCTN1) genes have been implicated in a wide spectrum of disorders including motor neuron disease, Parkinson's disease, spinobulbar muscular atrophy and hereditary spastic paraplegia. However, the involvement of other dynactin genes with inherited peripheral neuropathies (IPN) namely, hereditary sensory neuropathy, hereditary motor neuropathy and Charcot-Marie-Tooth disease is under reported. We screened eight genes; DCTN1-6 and ACTR1A and ACTR1B in 136 IPN patients using whole-exome sequencing and high-resolution melt (HRM) analysis. Eight non-synonymous variants (including one novel variant) and three synonymous variants were identified. Four variants have been reported previously in other studies, however segregation analysis within family members excluded them from causing IPN in these families. No variants of disease significance were identified in this study suggesting the dynactin genes are unlikely to be a common cause of IPNs. However, with the ease of querying gene variants from exome data, these genes remain worthwhile candidates to assess unsolved IPN families for variants that may affect the function of the proteins. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Discovering genetic variants in Crohn's disease by exploring genomic regions enriched of weak association signals.

    PubMed

    D'Addabbo, Annarita; Palmieri, Orazio; Maglietta, Rosalia; Latiano, Anna; Mukherjee, Sayan; Annese, Vito; Ancona, Nicola

    2011-08-01

    A meta-analysis has re-analysed previous genome-wide association scanning definitively confirming eleven genes and further identifying 21 new loci. However, the identified genes/loci still explain only the minority of genetic predisposition of Crohn's disease. To identify genes weakly involved in disease predisposition by analysing chromosomal regions enriched of single nucleotide polymorphisms with modest statistical association. We utilized the WTCCC data set evaluating 1748 CD and 2938 controls. The identification of candidate genes/loci was performed by a two-step procedure: first of all chromosomal regions enriched of weak association signals were localized; subsequently, weak signals clustered in gene regions were identified. The statistical significance was assessed by non parametric permutation tests. The cytoband enrichment analysis highlighted 44 regions (P≤0.05) enriched with single nucleotide polymorphisms significantly associated with the trait including 23 out of 31 previously confirmed and replicated genes. Importantly, we highlight further 20 novel chromosomal regions carrying approximately one hundred genes/loci with modest association. Amongst these we find compelling functional candidate genes such as MAPT, GRB2 and CREM, LCT, and IL12RB2. Our study suggests a different statistical perspective to discover genes weakly associated with a given trait, although further confirmatory functional studies are needed. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. All rights reserved.

  1. Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease.

    PubMed

    Ibanez, Laura; Dube, Umber; Davis, Albert A; Fernandez, Maria V; Budde, John; Cooper, Breanna; Diez-Fairen, Monica; Ortega-Cubero, Sara; Pastor, Pau; Perlmutter, Joel S; Cruchaga, Carlos; Benitez, Bruno A

    2018-01-01

    Background: The prevalence of dementia in Parkinson disease (PD) increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established. Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients. Methods: We analyzed the coding regions of the amyloid-beta precursor protein ( APP ), Presenilin 1 and 2 ( PSEN1, PSEN2 ), and Granulin ( GRN ) genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES) data by single variant and gene base (SKAT-O and burden tests) analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status. Results: Known AD pathogenic mutations in the PSEN1 (p.A79V) and PSEN2 (p.V148I) genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2 , and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients ( p = 2.0 × 10 -4 ), independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site. Conclusions: Pathogenic mutations in the Alzheimer disease-causing genes ( PSEN1 and PSEN2) are found in sporadic PD patients. PD patients with cognitive decline carry rare variants in dementia-causing genes. Variants in genes causing Mendelian neurodegenerative diseases exhibit pleiotropic effects.

  2. Functional genomic responses to cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR(delta508) in the lung.

    PubMed

    Xu, Yan; Liu, Cong; Clark, Jean C; Whitsett, Jeffrey A

    2006-04-21

    Cystic fibrosis (CF), a common lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) that disturbs fluid homeostasis and host defense in target organs. The effects of CFTR and delta508-CFTR were assessed in transgenic mice that 1) lack CFTR expression (Cftr-/-); 2) express the human delta508 CFTR (CFTR(delta508)); 3) overexpress the normal human CFTR (CFTR(tg)) in respiratory epithelial cells. Genes were selected from Affymetrix Murine Gene-Chips analysis and subjected to functional classification, k-means clustering, promoter cis-elements/modules searching, literature mining, and pathway exploring. Genomic responses to Cftr-/- were not corrected by expression of CFTR(delta508). Genes regulating host defense, inflammation, fluid and electrolyte transport were similarly altered in Cftr-/- and CFTR(delta508) mice. CFTR(delta508) induced a primary disturbance in expression of genes regulating redox and antioxidant systems. Genomic responses to CFTR(tg) were modest and were not associated with lung pathology. CFTR(tg) and CFTR(delta508) induced genes encoding heat shock proteins and other chaperones but did not activate the endoplasmic reticulum-associated degradation pathway. RNAs encoding proteins that directly interact with CFTR were identified in each of the CFTR mouse models, supporting the hypothesis that CFTR functions within a multiprotein complex whose members interact at the level of protein-protein interactions and gene expression. Promoters of genes influenced by CFTR shared common regulatory elements, suggesting that their co-expression may be mediated by shared regulatory mechanisms. Genes and pathways involved in the response to CFTR may be of interest as modifiers of CF.

  3. Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus.

    PubMed

    Ianiri, Giuseppe; Averette, Anna F; Kingsbury, Joanne M; Heitman, Joseph; Idnurm, Alexander

    2016-11-29

    The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals. Copyright © 2016 Ianiri et al.

  4. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor-Associated Genes in PDLSCs.

    PubMed

    Abd Rahman, Fazliny; Mohd Ali, Johari; Abdullah, Mariam; Abu Kasim, Noor Hayaty; Musa, Sabri

    2016-07-01

    This study investigates the effects of aspirin (ASA) on the proliferative capacity, osteogenic potential, and expression of growth factor-associated genes in periodontal ligament stem cells (PDLSCs). Mesenchymal stem cells (MSCs) from PDL tissue were isolated from human premolars (n = 3). The MSCs' identity was confirmed by immunophenotyping and trilineage differentiation assays. Cell proliferation activity was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Polymerase chain reaction array was used to profile the expression of 84 growth factor-associated genes. Pathway analysis was used to identify the biologic functions and canonic pathways activated by ASA treatment. The osteogenic potential was evaluated through mineralization assay. ASA at 1,000 μM enhances osteogenic potential of PDLSCs. Using a fold change (FC) of 2.0 as a threshold value, the gene expression analyses indicated that 19 genes were differentially expressed, which includes 12 upregulated and seven downregulated genes. Fibroblast growth factor 9 (FGF9), vascular endothelial growth factor A (VEGFA), interleukin-2, bone morphogenetic protein-10, VEGFC, and 2 (FGF2) were markedly upregulated (FC range, 6 to 15), whereas pleotropin, FGF5, brain-derived neurotrophic factor, and Dickkopf WNT signaling pathway inhibitor 1 were markedly downregulated (FC 32). Of the 84 growth factor-associated genes screened, 35 showed high cycle threshold values (≥35). ASA modulates the expression of growth factor-associated genes and enhances osteogenic potential in PDLSCs. ASA upregulated the expression of genes that could activate biologic functions and canonic pathways related to cell proliferation, human embryonic stem cell pluripotency, tissue regeneration, and differentiation. These findings suggest that ASA enhances PDLSC function and may be useful in regenerative dentistry applications, particularly in the areas of periodontal health and regeneration.

  5. A three-step programmed method for the identification of causative gene mutations of maturity onset diabetes of the young (MODY).

    PubMed

    Li, Qian; Cao, Xi; Qiu, Hai-Yan; Lu, Jing; Gao, Rui; Liu, Chao; Yuan, Ming-Xia; Yang, Guang-Ran; Yang, Jin-Kui

    2016-08-22

    To establish a three-step programmed method to find gene mutations related to maturity onset diabetes of the young (MODY). Target region capture and next-generation sequencing (NGS) were performed using customized oligonucleotide probes designed to capture suspected genes for MODY in 11 probands with clinically diagnosed MODY. The suspected associations of certain genes with MODY were then confirmed by Sanger sequencing in the probands and their family members. Finally, to validate variants of one of the genes of interest (glucokinase, GCK) as pathogenic mutations, protein function editing by the variant genes was assessed. In the target region capture and NGS phase, a total of nine variants of seven genes (GCK, WFS1, SLC19A2, SH2B1, SERPINB4, RFX6, and GATA6) were identified in eight probands. Two heterozygous GCK mutations located on the same allele (p.Leu77Arg and p.Val101Met) were identified in a MODY family. Sanger sequencing was used to confirm the variants identified by NGS to be present in probands and their diabetic family members, but not in non-diabetic family members. Finally, enzyme kinetic and thermal stability analyses revealed that the p.Leu77Arg mutation or the p.Leu77Arg mutation in combination with the p.Val101Met mutation inactivates GCK function and stability, while mutation of p.Val101Met alone does not. The p.Leu77Arg but not p.Val101Met GCK mutation is therefore considered a pathogenic mutation associated with MODY. Genetic screening coupled with gene-editing protein function testing is an effective and reliable method by which causative gene mutations of MODY can be identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: Implications for disease suppression

    PubMed Central

    O’Callaghan, Maureen; Condron, Leo M.; Kowalchuk, George A.; Van Nostrand, Joy D.; Zhou, Jizhong; Wakelin, Steven A.

    2018-01-01

    Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives. Pseudomonas bacteria were selected as a general taxonomic indicator of disease suppressive potential, while genes associated with the biosynthesis of a suite of secondary metabolites provided functional markers (GeoChip 5.0 microarray analysis). The composition of both the Pseudomonas communities and disease suppressive functional genes were responsive to land use. Underlying soil properties explained 37% of the variation in Pseudomonas community structure and up to 61% of the variation in the abundance of disease suppressive functional genes. Notably, measures of soil organic matter quality, C:P ratio, and aromaticity of the dissolved organic matter content (carbon recalcitrance), influenced both the taxonomic and functional disease suppressive potential of the pasture soils. Our results suggest that key components of the soil microbial community may be managed on-farm to enhance disease suppression and plant productivity. PMID:29734390

  7. The OXTR gene, implicit learning and social processing: Does empathy evolve from perceptual skills for details?

    PubMed

    Melchers, Martin; Montag, Christian; Markett, Sebastian; Niazy, Nawael; Groß-Bölting, Johanna; Zimmermann, Jelena; Reuter, Martin

    2017-06-30

    Oxytocin is an important messenger in the brain that has been linked to a variety of social functions in pharmacological studies. Besides, functional genetic variations on the oxytocin receptor gene have been repeatedly associated with social processing and functioning. Despite this knowledge, there are very few studies investigating the mechanisms that may explain the link between oxytocin and social functions. In the endeavor to fill this gap in the literature, the current study searches for associations between the prominent rs2268498 polymorphism on the oxytocin receptor gene and participants' ability to perceive and store implicit social information, which is a fundamental function in social information processing. N=121 healthy participants were experimentally tested with an implicit learning paradigm, answered questionnaires assessing empathy and autistic traits, and were genotyped for the rs2268498 polymorphism. T-allele carriers (TT and TC genotypes) exhibited significantly better implicit learning performance than carriers of the CC-genotype, and learning performance was positively associated with self-reported empathy and negatively with self-reported autistic traits. Results indicate that differences in implicit perception and storing of environmental details while watching social interactions could be an important mechanism to explain the association between differences in endogenous oxytocin activity and social functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: Implications for disease suppression.

    PubMed

    Dignam, Bryony E A; O'Callaghan, Maureen; Condron, Leo M; Kowalchuk, George A; Van Nostrand, Joy D; Zhou, Jizhong; Wakelin, Steven A

    2018-01-01

    Cropping soils vary in extent of natural suppression of soil-borne plant diseases. However, it is unknown whether similar variation occurs across pastoral agricultural systems. We examined soil microbial community properties known to be associated with disease suppression across 50 pastoral fields varying in management intensity. The composition and abundance of the disease-suppressive community were assessed from both taxonomic and functional perspectives. Pseudomonas bacteria were selected as a general taxonomic indicator of disease suppressive potential, while genes associated with the biosynthesis of a suite of secondary metabolites provided functional markers (GeoChip 5.0 microarray analysis). The composition of both the Pseudomonas communities and disease suppressive functional genes were responsive to land use. Underlying soil properties explained 37% of the variation in Pseudomonas community structure and up to 61% of the variation in the abundance of disease suppressive functional genes. Notably, measures of soil organic matter quality, C:P ratio, and aromaticity of the dissolved organic matter content (carbon recalcitrance), influenced both the taxonomic and functional disease suppressive potential of the pasture soils. Our results suggest that key components of the soil microbial community may be managed on-farm to enhance disease suppression and plant productivity.

  9. OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer.

    PubMed

    Van Coillie, Samya; Liang, Lunxi; Zhang, Yao; Wang, Huanbin; Fang, Jing-Yuan; Xu, Jie

    2016-04-05

    High-throughput methods such as co-immunoprecipitationmass spectrometry (coIP-MS) and yeast 2 hybridization (Y2H) have suggested a broad range of unannotated protein-protein interactions (PPIs), and interpretation of these PPIs remains a challenging task. The advancements in cancer genomic researches allow for the inference of "coactivation pairs" in cancer, which may facilitate the identification of PPIs involved in cancer. Here we present OncoBinder as a tool for the assessment of proteomic interaction data based on the functional synergy of oncoproteins in cancer. This decision tree-based method combines gene mutation, copy number and mRNA expression information to infer the functional status of protein-coding genes. We applied OncoBinder to evaluate the potential binders of EGFR and ERK2 proteins based on the gastric cancer dataset of The Cancer Genome Atlas (TCGA). As a result, OncoBinder identified high confidence interactions (annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) or validated by low-throughput assays) more efficiently than co-expression based method. Taken together, our results suggest that evaluation of gene functional synergy in cancer may facilitate the interpretation of proteomic interaction data. The OncoBinder toolbox for Matlab is freely accessible online.

  10. Association of interleukin-1β genetic polymorphisms with cognitive performance in elderly females without dementia.

    PubMed

    Sasayama, Daimei; Hori, Hiroaki; Teraishi, Toshiya; Hattori, Kotaro; Ota, Miho; Matsuo, Junko; Kawamoto, Yumiko; Kinoshita, Yukiko; Higuchi, Teruhiko; Amano, Naoji; Kunugi, Hiroshi

    2011-08-01

    Interleukin-1β (IL-1β) is considered to have a role in age-related cognitive decline. A recent study has shown that a promoter polymorphism of the IL-1β gene (rs16944) is associated with cognitive performance in elderly males without dementia. In this study, we examined whether polymorphisms of the IL-1β gene also influence cognitive functions in elderly females. Cognitive functions were assessed by the Wechsler adult intelligence scale-revised (WAIS-R) in 99 elderly (60 years) females without dementia. We selected five tagging polymorphisms from the IL-1β gene and examined the associations with the WAIS-R scores. Significant associations were found between verbal intelligence quotient (IQ) and the genotypes of rs1143634 and rs1143633 (P=0.0037 and P=0.010, respectively). No significant associations of rs16944 genotype were found with verbal or performance IQ. However, individuals homozygous for the G allele of rs16944 achieved higher scores in digit span compared with their counterpart, which is consistent with the previous findings in males. These results suggest that IL-1β gene variation may have a role in cognitive functions in aging females as well as males.

  11. Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model1[W][OPEN

    PubMed Central

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.

    2014-01-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032

  12. Vestibular function in families with inherited autosomal dominant hearing loss

    PubMed Central

    Street, Valerie A.; Kallman, Jeremy C.; Strombom, Paul D.; Bramhall, Naomi F.; Phillips, James O.

    2008-01-01

    The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given the similar physiology between these two organs, hearing loss and vestibular dysfunction may be expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-two different genes have been discovered that when mutated lead to non-syndromic autosomal dominant hearing loss. A review of the literature indicates that families segregating mutations in 13 of these 22 genes have undergone formal clinical vestibular testing. Formal assessment revealed vestibular dysfunction in families with mutations in ten of these 13 genes. Remarkably, only families with mutations in the COCH and MYO7A genes self-report considerable vestibular challenges. Families segregating mutations in the other eight genes do not self-report significant balance problems and appear to compensate well in everyday life for vestibular deficits discovered during formal clinical vestibular assessment. An example of a family (referred to as the HL1 family) with progressive hearing loss and clinically-detected vestibular hypofunction that does not report vestibular symptoms is described in this review. Notably, one member of the HL1 family with clinically-detected vestibular hypofunction reached the summit of Mount Kilimanjaro. PMID:18776598

  13. GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge

    PubMed Central

    Wagner, Florian

    2015-01-01

    Method Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. Results I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets. PMID:26575370

  14. GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge.

    PubMed

    Wagner, Florian

    2015-01-01

    Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets.

  15. Rare copy number variants in patients with congenital conotruncal heart defects.

    PubMed

    Xie, Hongbo M; Werner, Petra; Stambolian, Dwight; Bailey-Wilson, Joan E; Hakonarson, Hakon; White, Peter S; Taylor, Deanne M; Goldmuntz, Elizabeth

    2017-03-01

    Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Genes are differentially expressed at transcriptional level of Neocaridina denticulata following short-term exposure to nonylphenol.

    PubMed

    Liu, Chang-Lun; Sung, Hung-Hung

    2011-09-01

    To assess the toxicity of nonylphenol towards aquatic crustaceans, Neocaridina denticulata were exposed short-term to sublethal concentration (0.001-0.5 mg/L). Following treatment, differentially expressed genes were identified using suppression subtractive hybridization on samples prepared from whole specimens. There were 20 differentially expressed sequence tags that corresponded to known genes and could be divided into six functional classes: defence, translation, metabolism, ribosomal gene expression, respiration, and genes involved in the stress response. Using semi-quantitative RT-PCR, we found that 14 of the differentially expressed sequence tags significantly responded to nonylphenol, including six at a nominal concentration of 0.01 mg/L; among them, 12 genes were down-regulated. These results suggest that under non-lethal concentrations of nonylphenol, the polluted aquatic environment may still present a potential risk to N. denticulata.

  17. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1.

    PubMed

    Yocgo, Rosita E; Geza, Ephifania; Chimusa, Emile R; Mazandu, Gaston K

    2017-11-23

    Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration. We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched process regulatory network based on the functional degeneracy of the plant proteome to help understand the induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection. Results indicated that the presence of a functionally active NPR1 reduced the plant's susceptibility to the infection, with about 99% of variability in Pseudomonas spore growth between npr1 mutant and wild-type samples. Moreover, the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism. This protocol can improve the characterization of the gene target and, potentially, elucidate induced defence response by more effectively utilizing available phenotype information and plant proteome functional knowledge.

  18. Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.

    PubMed

    Tong, Dong Ling; Schierz, Amanda C

    2011-09-01

    Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ability of the method. These methods also require the microarray data to be preprocessed before analysis takes place. The objective of this study is to develop a hybrid genetic algorithm-neural network (GANN) model that emphasises feature selection and can operate on unpreprocessed microarray data. The GANN is a hybrid model where the fitness value of the genetic algorithm (GA) is based upon the number of samples correctly labelled by a standard feedforward artificial neural network (ANN). The model is evaluated by using two benchmark microarray datasets with different array platforms and differing number of classes (a 2-class oligonucleotide microarray data for acute leukaemia and a 4-class complementary DNA (cDNA) microarray dataset for SRBCTs (small round blue cell tumours)). The underlying concept of the GANN algorithm is to select highly informative genes by co-evolving both the GA fitness function and the ANN weights at the same time. The novel GANN selected approximately 50% of the same genes as the original studies. This may indicate that these common genes are more biologically significant than other genes in the datasets. The remaining 50% of the significant genes identified were used to build predictive models and for both datasets, the models based on the set of genes extracted by the GANN method produced more accurate results. The results also suggest that the GANN method not only can detect genes that are exclusively associated with a single cancer type but can also explore the genes that are differentially expressed in multiple cancer types. The results show that the GANN model has successfully extracted statistically significant genes from the unpreprocessed microarray data as well as extracting known biologically significant genes. We also show that assessing the biological significance of genes based on classification accuracy may be misleading and though the GANN's set of extra genes prove to be more statistically significant than those selected by other methods, a biological assessment of these genes is highly recommended to confirm their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions.

    PubMed

    Sullivan, Craig V; Chapman, Robert W; Reading, Benjamin J; Anderson, Paul E

    2015-09-15

    Maternal mRNA transcripts deposited in growing oocytes regulate early development and are under intensive investigation as determinants of egg quality. The research has evolved from single gene studies to microarray and now RNA-Seq analyses in which mRNA expression by virtually every gene can be assessed and related to gamete quality. Such studies have mainly focused on genes changing two- to several-fold in expression between biological states, and have identified scores of candidate genes and a few gene networks whose functioning is related to successful development. However, ever-increasing yields of information from high throughput methods for detecting transcript abundance have far outpaced progress in methods for analyzing the massive quantities of gene expression data, and especially for meaningful relation of whole transcriptome profiles to gamete quality. We have developed a new approach to this problem employing artificial neural networks and supervised machine learning with other novel bioinformatics procedures to discover a previously unknown level of ovarian transcriptome function at which minute changes in expression of a few hundred genes is highly predictive of egg quality. In this paper, we briefly review the progress in transcriptomics of fish egg quality and discuss some future directions for this field of study. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Lehmann-Che, Jacqueline; Kéri, György; Orfi, László; Iwamoto, Takayuki; Desmedt, Christine; Bianchini, Giampaolo; Turner, Nicholas C; de Thè, Hugues; André, Fabrice; Sotiriou, Christos; Hortobagyi, Gabriel N; Di Leo, Angelo; Pusztai, Lajos; Santarpia, Libero

    2014-05-01

    Breast cancers (BC) carry a complex set of gene mutations that can influence their gene expression and clinical behavior. We aimed to identify genes driven by the TP53 mutation status and assess their clinical relevance in estrogen receptor (ER)-positive and ER-negative BC, and their potential as targets for patients with TP53 mutated tumors. Separate ROC analyses of each gene expression according to TP53 mutation status were performed. The prognostic value of genes with the highest AUC were assessed in a large dataset of untreated, and neoadjuvant chemotherapy treated patients. The mitotic checkpoint gene MPS1 was the most significant gene correlated with TP53 status, and the most significant prognostic marker in all ER-positive BC datasets. MPS1 retained its prognostic value independently from the type of treatment administered. The biological functions of MPS1 were investigated in different BC cell lines. We also assessed the effects of a potent small molecule inhibitor of MPS1, SP600125, alone and in combination with chemotherapy. Consistent with the gene expression profiling and siRNA assays, the inhibition of MPS1 by SP600125 led to a reduction in cell viability and a significant increase in cell death, selectively in TP53-mutated BC cells. Furthermore, the chemical inhibition of MPS1 sensitized BC cells to conventional chemotherapy, particularly taxanes. Our results collectively demonstrate that TP53-correlated kinase MPS1, is a potential therapeutic target in BC patients with TP53 mutated tumors, and that SP600125 warrant further development in future clinical trials. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions

    PubMed Central

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R.

    2016-01-01

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover ‘functional 3D hotspots’, regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 – known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. PMID:26869583

  2. Evidence for the involvement of Globosa-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales.

    PubMed

    Bartlett, Madelaine E; Specht, Chelsea D

    2010-07-01

    *The MADS box transcription factor family has long been identified as an important contributor to the control of floral development. It is often hypothesized that the evolution of floral development across angiosperms and within specific lineages may occur as a result of duplication, functional diversification, and changes in regulation of MADS box genes. Here we examine the role of Globosa (GLO)-like genes, members of the B-class MADS box gene lineage, in the evolution of floral development within the monocot order Zingiberales. *We assessed changes in perianth and stamen whorl morphology in a phylogenetic framework. We identified GLO homologs (ZinGLO1-4) from 50 Zingiberales species and investigated the evolution of this gene lineage. Expression of two GLO homologs was assessed in Costus spicatus and Musa basjoo. *Based on the phylogenetic data and expression results, we propose several family-specific losses and gains of GLO homologs that appear to be associated with key morphological changes. The GLO-like gene lineage has diversified concomitant with the evolution of the dimorphic perianth and the staminodial labellum. *Duplications and expression divergence within the GLO-like gene lineage may have played a role in floral diversification in the Zingiberales.

  3. Focal gene misexpression in zebrafish embryos induced by local heat shock using a modified soldering iron.

    PubMed

    Hardy, Melissa E; Ross, Louis V; Chien, Chi-Bin

    2007-11-01

    Misexpression of genes in a temporally and spatially controlled fashion is an important tool for assessing gene function during development. Because few tissue-specific promoters have been identified in zebrafish, inducible systems such as the Cre/LoxP and Tet repressor systems are of limited utility. Here we describe a new method of misexpression: local heat shock using a modified soldering iron. Zebrafish carrying transgenes under the control of a heat shock promoter (hsp70) are focally heated with the soldering iron to induce gene expression in a small area of the embryo. We have validated this method in three stable transgenic lines and at three developmental timepoints. Local heat shock is a fast, easy, and inexpensive method for gene misexpression. Copyright 2007 Wiley-Liss, Inc.

  4. A Roadmap for Functional Structural Variants in the Soybean Genome

    PubMed Central

    Anderson, Justin E.; Kantar, Michael B.; Kono, Thomas Y.; Fu, Fengli; Stec, Adrian O.; Song, Qijian; Cregan, Perry B.; Specht, James E.; Diers, Brian W.; Cannon, Steven B.; McHale, Leah K.; Stupar, Robert M.

    2014-01-01

    Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max) accessions serving as parents in a soybean nested association mapping population for deletions and duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing methods were used as complementary technologies to identify SV in 1528 genes, or approximately 2.8%, of the soybean gene models. Although SV occurs throughout the genome, SV enrichment was noted in families of biotic defense response genes. Among accessions, SV was nearly eightfold less frequent for gene models that have retained paralogs since the last whole genome duplication event, compared with genes that have not retained paralogs. Increases in gene copy number, similar to that described at the Rhg1 resistance locus, account for approximately one-fourth of the genic SV events. This assessment of soybean SV occurrence presents a target list of genes potentially responsible for rapidly evolving and/or adaptive traits. PMID:24855315

  5. The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments

    PubMed Central

    Lau, Evan; Fisher, Meredith C.; Steudler, Paul A.; Cavanaugh, Colleen M.

    2013-01-01

    The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria. PMID:23451130

  6. Genomic and Network Patterns of Schizophrenia Genetic Variation in Human Evolutionary Accelerated Regions

    PubMed Central

    Xu, Ke; Schadt, Eric E.; Pollard, Katherine S.; Roussos, Panos; Dudley, Joel T.

    2015-01-01

    The population persistence of schizophrenia despite associated reductions in fitness and fecundity suggests that the genetic basis of schizophrenia has a complex evolutionary history. A recent meta-analysis of schizophrenia genome-wide association studies offers novel opportunities for assessment of the evolutionary trajectories of schizophrenia-associated loci. In this study, we hypothesize that components of the genetic architecture of schizophrenia are attributable to human lineage-specific evolution. Our results suggest that schizophrenia-associated loci enrich in genes near previously identified human accelerated regions (HARs). Specifically, we find that genes near HARs conserved in nonhuman primates (pHARs) are enriched for schizophrenia-associated loci, and that pHAR-associated schizophrenia genes are under stronger selective pressure than other schizophrenia genes and other pHAR-associated genes. We further evaluate pHAR-associated schizophrenia genes in regulatory network contexts to investigate associated molecular functions and mechanisms. We find that pHAR-associated schizophrenia genes significantly enrich in a GABA-related coexpression module that was previously found to be differentially regulated in schizophrenia affected individuals versus healthy controls. In another two independent networks constructed from gene expression profiles from prefrontal cortex samples, we find that pHAR-associated schizophrenia genes are located in more central positions and their average path lengths to the other nodes are significantly shorter than those of other schizophrenia genes. Together, our results suggest that HARs are associated with potentially important functional roles in the genetic architecture of schizophrenia. PMID:25681384

  7. Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy.

    PubMed

    Eichler, Florian; Duncan, Christine; Musolino, Patricia L; Orchard, Paul J; De Oliveira, Satiro; Thrasher, Adrian J; Armant, Myriam; Dansereau, Colleen; Lund, Troy C; Miller, Weston P; Raymond, Gerald V; Sankar, Raman; Shah, Ami J; Sevin, Caroline; Gaspar, H Bobby; Gissen, Paul; Amartino, Hernan; Bratkovic, Drago; Smith, Nicholas J C; Paker, Asif M; Shamir, Esther; O'Meara, Tara; Davidson, David; Aubourg, Patrick; Williams, David A

    2017-10-26

    In X-linked adrenoleukodystrophy, mutations in ABCD1 lead to loss of function of the ALD protein. Cerebral adrenoleukodystrophy is characterized by demyelination and neurodegeneration. Disease progression, which leads to loss of neurologic function and death, can be halted only with allogeneic hematopoietic stem-cell transplantation. We enrolled boys with cerebral adrenoleukodystrophy in a single-group, open-label, phase 2-3 safety and efficacy study. Patients were required to have early-stage disease and gadolinium enhancement on magnetic resonance imaging (MRI) at screening. The investigational therapy involved infusion of autologous CD34+ cells transduced with the elivaldogene tavalentivec (Lenti-D) lentiviral vector. In this interim analysis, patients were assessed for the occurrence of graft-versus-host disease, death, and major functional disabilities, as well as changes in neurologic function and in the extent of lesions on MRI. The primary end point was being alive and having no major functional disability at 24 months after infusion. A total of 17 boys received Lenti-D gene therapy. At the time of the interim analysis, the median follow-up was 29.4 months (range, 21.6 to 42.0). All the patients had gene-marked cells after engraftment, with no evidence of preferential integration near known oncogenes or clonal outgrowth. Measurable ALD protein was observed in all the patients. No treatment-related death or graft-versus-host disease had been reported; 15 of the 17 patients (88%) were alive and free of major functional disability, with minimal clinical symptoms. One patient, who had had rapid neurologic deterioration, had died from disease progression. Another patient, who had had evidence of disease progression on MRI, had withdrawn from the study to undergo allogeneic stem-cell transplantation and later died from transplantation-related complications. Early results of this study suggest that Lenti-D gene therapy may be a safe and effective alternative to allogeneic stem-cell transplantation in boys with early-stage cerebral adrenoleukodystrophy. Additional follow-up is needed to fully assess the duration of response and long-term safety. (Funded by Bluebird Bio and others; STARBEAM ClinicalTrials.gov number, NCT01896102 ; ClinicalTrialsRegister.eu number, 2011-001953-10 .).

  8. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.

  9. Evaluation of a toxicogenomic approach to the local lymph node assay (LLNA).

    PubMed

    Boverhof, Darrell R; Gollapudi, B Bhaskar; Hotchkiss, Jon A; Osterloh-Quiroz, Mandy; Woolhiser, Michael R

    2009-02-01

    Genomic technologies have the potential to enhance and complement existing toxicology endpoints; however, assessment of these approaches requires a systematic evaluation including a robust experimental design with genomic endpoints anchored to traditional toxicology endpoints. The present study was conducted to assess the sensitivity of genomic responses when compared with the traditional local lymph node assay (LLNA) endpoint of lymph node cell proliferation and to evaluate the responses for their ability to provide insights into mode of action. Female BALB/c mice were treated with the sensitizer trimellitic anhydride (TMA), following the standard LLNA dosing regimen, at doses of 0.1, 1, or 10% and traditional tritiated thymidine ((3)HTdR) incorporation and gene expression responses were monitored in the auricular lymph nodes. Additional mice dosed with either vehicle or 10% TMA and sacrificed on day 4 or 10, were also included to examine temporal effects on gene expression. Analysis of (3)HTdR incorporation revealed TMA-induced stimulation indices of 2.8, 22.9, and 61.0 relative to vehicle with an EC(3) of 0.11%. Examination of the dose-response gene expression responses identified 9, 833, and 2122 differentially expressed genes relative to vehicle for the 0.1, 1, and 10% TMA dose groups, respectively. Calculation of EC(3) values for differentially expressed genes did not identify a response that was more sensitive than the (3)HTdR value, although a number of genes displayed comparable sensitivity. Examination of temporal responses revealed 1760, 1870, and 953 differentially expressed genes at the 4-, 6-, and 10-day time points respectively. Functional analysis revealed many responses displayed dose- and time-specific induction patterns within the functional categories of cellular proliferation and immune response, including numerous immunoglobin genes which were highly induced at the day 10 time point. Overall, these experiments have systematically illustrated the potential utility of genomic endpoints to enhance the LLNA and support further exploration of this approach through examination of a more diverse array of chemicals.

  10. Assessment of the function of SUB6 in the pathogenic dermatophyte Trichophyton mentagrophytes.

    PubMed

    Shi, Yao; Niu, Qifang; Yu, Xiaoxiao; Jia, Xiaolin; Wang, Jing; Lin, Degui; Jin, Yipeng

    2016-01-01

    Trichophyton mentagrophytes is a keratinophilic pathogenic fungus that infects both humans and animals. Subtilisins are important for T. mentagrophytes virulence, particularly when invading the epidermal barrier of the host. Subtilisin gene SUB6 belongs to a seven-member gene family (SUB1-SUB7) encoding the subtilisin serine proteases. Additionally, the SUB6 gene product Sub6, which is thought to be the major allergen Tri r2 in Trichophyton rubrum, elicits both immediate- and delayed-type hypersensitivity (DTH) reactions in humans. To assess its gene function, SUB6 was disrupted using the Agrobacterium tumefaciens-mediated transformation method. Polymerase chain reaction and Southern blot analyses were used to confirm the disruption. In vitro virulence analyses comparing the mutant with the wild-type strain showed that proteolytic activity was significantly increased in the SUB6 gene disruption strain (SUB6::hph), which corresponded to the significantly increase in MEP4 (metalloprotease gene) and SUB3 expression of SUB6::hph. The SUB6::hph -infected animals showed attenuated clinical symptoms and pathological changes, and because of the persistently high level of immunosuppressive cytokine IL-10, the increase in DTH-related cytokines IFN-γ, TNF-α and IL-12 was delayed and lower than that in animals infected with the wild-type strain. These results suggested that SUB6::hph had attenuated virulence in vivo, and that a genetically-linked regulatory effect may account for the increase in proteolytic activity and the residual pathogenicity of the mutant strain. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Effect of IGF1, GH, and PIT1 markers on the genetic parameters of growth and reproduction traits in Canchim cattle.

    PubMed

    Grossi, Daniela do Amaral; Buzanskas, Marcos Eli; Grupioni, Natalia Vinhal; de Paz, Claudia Cristina Paro; Regitano, Luciana Correia de Almeida; de Alencar, Maurício Mello; Schenkel, Flávio Schramm; Munari, Danísio Prado

    2015-01-01

    The availability of dense genomic information has increased genome-wide association studies for the bovine species; however research to assess the effect of single genes on production traits is still important to elucidate the genes functions. On this study the association of IGF1, GH, and PIT1 markers with growth and reproductive traits (birth weight, weaning weight, weight at 12 and 18 months of age, preweaning average daily weight gain, age and weight at first calving, and scrotal circumference at 12 and 18 months of age) were assessed by means of the variance component approach. The phenotypes were adjusted and then analyzed under two animal models, one which considered the polygenic and genotype (IGF1, GH or PIT1 markers) effects (Model 1), and the other which considers only the polygenic effect (Model 2). When the likelihood ratio test and the Bonferroni correction was applied at 5 % significance level, the genetic markers for the IGF1, GH, and PIT1 genes did not influence significantly the traits (p > 0.002). However, evidence of association of IGF1 with birth weight (p = 0.06) and GH with weight at first calving (p = 0.03) and with weight at 12 months of age (p = 0.08) was observed. In conclusion we could not confirm the associations between IGF1, GH, and PIT1 and growth traits that were previously reported in Canchim cattle, and no association was observed between these genes and reproductive traits. Future studies involving functional markers of IGF1, GH and PIT1 genes may help to clarify the role of these genes in growth and reproductive processes.

  12. The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern North Sea assessed by comparative metagenomic and metatranscriptomic approaches

    PubMed Central

    Wemheuer, Bernd; Wemheuer, Franziska; Hollensteiner, Jacqueline; Meyer, Frauke-Dorothee; Voget, Sonja; Daniel, Rolf

    2015-01-01

    Phytoplankton blooms exhibit a severe impact on bacterioplankton communities as they change nutrient availabilities and other environmental factors. In the current study, the response of a bacterioplankton community to a Phaeocystis globosa spring bloom was investigated in the southern North Sea. For this purpose, water samples were taken inside and reference samples outside of an algal spring bloom. Structural changes of the bacterioplankton community were assessed by amplicon-based analysis of 16S rRNA genes and transcripts generated from environmental DNA and RNA, respectively. Several marine groups responded to bloom presence. The abundance of the Roseobacter RCA cluster and the SAR92 clade significantly increased in bloom presence in the total and active fraction of the bacterial community. Functional changes were investigated by direct sequencing of environmental DNA and mRNA. The corresponding datasets comprised more than 500 million sequences across all samples. Metatranscriptomic data sets were mapped on representative genomes of abundant marine groups present in the samples and on assembled metagenomic and metatranscriptomic datasets. Differences in gene expression profiles between non-bloom and bloom samples were recorded. The genome-wide gene expression level of Planktomarina temperata, an abundant member of the Roseobacter RCA cluster, was higher inside the bloom. Genes that were differently expressed included transposases, which showed increased expression levels inside the bloom. This might contribute to the adaptation of this organism toward environmental stresses through genome reorganization. In addition, several genes affiliated to the SAR92 clade were significantly upregulated inside the bloom including genes encoding for proteins involved in isoleucine and leucine incorporation. Obtained results provide novel insights into compositional and functional variations of marine bacterioplankton communities as response to a phytoplankton bloom. PMID:26322028

  13. Quantitative trait loci mapping and gene network analysis implicate protocadherin-15 as a determinant of brain serotonin transporter expression.

    PubMed

    Ye, R; Carneiro, A M D; Han, Q; Airey, D; Sanders-Bush, E; Zhang, B; Lu, L; Williams, R; Blakely, R D

    2014-03-01

    Presynaptic serotonin (5-hydroxytryptamine, 5-HT) transporters (SERT) regulate 5-HT signaling via antidepressant-sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive-compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region- and gender-specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin-15 gene (Pcdh15), overlapped with a QTL for midbrain 5-HT levels. Pcdh15 was also the only QTL-associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5-HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5-HT neurons. To test this hypothesis, we assessed SERT protein and 5-HT traits in the Pcdh15 functional null line (Pcdh15(av-) (3J) ), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure.

    PubMed

    Kervadec, Anaïs; Bellamy, Valérie; El Harane, Nadia; Arakélian, Lousineh; Vanneaux, Valérie; Cacciapuoti, Isabelle; Nemetalla, Hany; Périer, Marie-Cécile; Toeg, Hadi D; Richart, Adèle; Lemitre, Mathilde; Yin, Min; Loyer, Xavier; Larghero, Jérôme; Hagège, Albert; Ruel, Marc; Boulanger, Chantal M; Silvestre, Jean-Sébastien; Menasché, Philippe; Renault, Nisa K E

    2016-06-01

    Cell-based therapies are being explored as a therapeutic option for patients with chronic heart failure following myocardial infarction. Extracellular vesicles (EV), including exosomes and microparticles, secreted by transplanted cells may orchestrate their paracrine therapeutic effects. We assessed whether post-infarction administration of EV released by human embryonic stem cell-derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to administered hESC-Pg and whether hESC-Pg and EV treatments activate similar endogenous pathways. Mice underwent surgical occlusion of their left coronary arteries. After 2-3 weeks, 95 mice included in the study were treated with hESC-Pg, EV, or Minimal Essential Medium Alpha Medium (alpha-MEM; vehicle control) delivered by percutaneous injections under echocardiographic guidance into the peri-infarct myocardium. functional and histologic end-points were blindly assessed 6 weeks later, and hearts were processed for gene profiling. Genes differentially expressed between control hearts and hESC-Pg-treated and EV-treated hearts were clustered into functionally relevant pathways. At 6 weeks after hESC-Pg administration, treated mice had significantly reduced left ventricular end-systolic (-4.20 ± 0.96 µl or -7.5%, p = 0.0007) and end-diastolic (-4.48 ± 1.47 µl or -4.4%, p = 0.009) volumes compared with baseline values despite the absence of any transplanted hESC-Pg or human embryonic stem cell-derived cardiomyocytes in the treated mouse hearts. Equal benefits were seen with the injection of hESC-Pg-derived EV, whereas animals injected with alpha-MEM (vehicle control) did not improve significantly. Histologic examination suggested a slight reduction in infarct size in hESC-Pg-treated animals and EV-treated animals compared with alpha-MEM-treated control animals. In the hESC-Pg-treated and EV-treated groups, heart gene profiling identified 927 genes that were similarly upregulated compared with the control group. Among the 49 enriched pathways associated with these up-regulated genes that could be related to cardiac function or regeneration, 78% were predicted to improve cardiac function through increased cell survival and/or proliferation or DNA repair as well as pathways related to decreased fibrosis and heart failure. In this post-infarct heart failure model, either hESC-Pg or their secreted EV enhance recovery of cardiac function and similarly affect cardiac gene expression patterns that could be related to this recovery. Although the mechanisms by which EV improve cardiac function remain to be determined, these results support the idea that a paracrine mechanism is sufficient to effect functional recovery in cell-based therapies for post-infarction-related chronic heart failure. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Resistin-like molecule β regulates innate colonic function: Barrier integrity and inflammation susceptibility

    PubMed Central

    Hogan, Simon P.; Seidu, Luqman; Blanchard, Carine; Groschwitz, Katherine; Mishra, Anil; Karow, Margaret L.; Ahrens, Richard; Artis, David; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Rothenberg, Marc E.

    2007-01-01

    Background: Resistin-like molecule (RELM) β is a cysteine-rich cytokine expressed in the gastrointestinal tract and implicated in insulin resistance and gastrointestinal nematode immunity; however, its function primarily remains an enigma. Objective: We sought to elucidate the function of RELM-β in the gastrointestinal tract. Methods: We generated RELM-β gene-targeted mice and examined colonic epithelial barrier function, gene expression profiles, and susceptibility to acute colonic inflammation. Results: We show that RELM-β is constitutively expressed in the colon by goblet cells and enterocytes and has a role in homeostasis, as assessed by alterations in colon mRNA transcripts and epithelial barrier function in the absence of RELM-β. Using acute colonic inflammatory models, we demonstrate that RELM-β has a central role in the regulation of susceptibility to colonic inflammation. Mechanistic studies identify that RELM-β regulates expression of type III regenerating gene (REG) (REG3β and γ), molecules known to influence nuclear factor κB signaling. Conclusions: These data define a critical role for RELM-β in the maintenance of colonic barrier function and gastrointestinal innate immunity. Clinical implications: These findings identify RELM-β as an important molecule in homeostatic gastrointestinal function and colonic inflammation, and as such, these results have implications for a variety of human inflammatory gastrointestinal conditions, including allergic gastroenteropathies. PMID:16815164

  16. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  17. Effects of AAV-mediated knockdown of nNOS and GPx-1 gene expression in rat hippocampus after traumatic brain injury.

    PubMed

    Boone, Deborah R; Leek, Jeanna M; Falduto, Michael T; Torres, Karen E O; Sell, Stacy L; Parsley, Margaret A; Cowart, Jeremy C; Uchida, Tatsuo; Micci, Maria-Adelaide; DeWitt, Douglas S; Prough, Donald S; Hellmich, Helen L

    2017-01-01

    Virally mediated RNA interference (RNAi) to knock down injury-induced genes could improve functional outcome after traumatic brain injury (TBI); however, little is known about the consequences of gene knockdown on downstream cell signaling pathways and how RNAi influences neurodegeneration and behavior. Here, we assessed the effects of adeno-associated virus (AAV) siRNA vectors that target two genes with opposing roles in TBI pathogenesis: the allegedly detrimental neuronal nitric oxide synthase (nNOS) and the potentially protective glutathione peroxidase 1 (GPx-1). In rat hippocampal progenitor cells, three siRNAs that target different regions of each gene (nNOS, GPx-1) effectively knocked down gene expression. However, in vivo, in our rat model of fluid percussion brain injury, the consequences of AAV-siRNA were variable. One nNOS siRNA vector significantly reduced the number of degenerating hippocampal neurons and showed a tendency to improve working memory. GPx-1 siRNA treatment did not alter TBI-induced neurodegeneration or working memory deficits. Nevertheless, microarray analysis of laser captured, virus-infected neurons showed that knockdown of nNOS or GPx-1 was specific and had broad effects on downstream genes. Since nNOS knockdown only modestly ameliorated TBI-induced working memory deficits, despite widespread genomic changes, manipulating expression levels of single genes may not be sufficient to alter functional outcome after TBI.

  18. Competitive Genomic Screens of Barcoded Yeast Libraries

    PubMed Central

    Urbanus, Malene; Proctor, Michael; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey

    2011-01-01

    By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment. PMID:21860376

  19. Cityscape genetics: structural vs. functional connectivity of an urban lizard population.

    PubMed

    Beninde, Joscha; Feldmeier, Stephan; Werner, Maike; Peroverde, Daniel; Schulte, Ulrich; Hochkirch, Axel; Veith, Michael

    2016-10-01

    Functional connectivity is essential for the long-term persistence of populations. However, many studies assess connectivity with a focus on structural connectivity only. Cityscapes, namely urban landscapes, are particularly dynamic and include numerous potential anthropogenic barriers to animal movements, such as roads, traffic or buildings. To assess and compare structural connectivity of habitats and functional connectivity of gene flow of an urban lizard, we here combined species distribution models (SDMs) with an individual-based landscape genetic optimization procedure. The most important environmental factors of the SDMs are structural diversity and substrate type, with high and medium levels of structural diversity as well as open and rocky/gravel substrates contributing most to structural connectivity. By contrast, water cover was the best model of all environmental factors following landscape genetic optimization. The river is thus a major barrier to gene flow, while of the typical anthropogenic factors only buildings showed an effect. Nonetheless, using SDMs as a basis for landscape genetic optimization provided the highest ranked model for functional connectivity. Optimizing SDMs in this way can provide a sound basis for models of gene flow of the cityscape, and elsewhere, while presence-only and presence-absence modelling approaches showed differences in performance. Additionally, interpretation of results based on SDM factor importance can be misleading, dictating more thorough analyses following optimization of SDMs. Such approaches can be adopted for management strategies, for example aiming to connect native common wall lizard populations or disconnect them from non-native introduced populations, which are currently spreading in many cities in Central Europe. © 2016 John Wiley & Sons Ltd.

  20. Improved Pulse Wave Velocity and Renal Function in Individualized Calcineurin Inhibitor Treatment by Immunomonitoring: The Randomized Controlled Calcineurin Inhibitor-Sparing Trial.

    PubMed

    Sommerer, Claudia; Brocke, Janina; Bruckner, Thomas; Schaier, Matthias; Morath, Christian; Meuer, Stefan; Zeier, Martin; Giese, Thomas

    2018-03-01

    A new immune monitoring tool which assesses the expression of nuclear factor of activated T cells (NFAT)-regulated genes measures the functional effects of cyclosporine A. This is the first prospective randomized controlled study to compare standard pharmacokinetic monitoring by cyclosporine trough levels to NFAT-regulated gene expression (NFAT-RE). Expression of the NFAT-regulated genes was determined by qRT-PCR at cyclosporine trough and peak level. Cardiovascular risk was assessed by change of pulse wave velocity from baseline to month 6. Clinical follow-up was 12 months. In total, 55 stable kidney allograft recipients were enrolled. Mean baseline residual NFAT-RE was 13.1 ± 9.1%. Patients in the NFAT-RE group showed a significant decline in pulse wave velocity from baseline to month 6 versus the standard group (-1.7 ± 2.0 m/s vs 0.4 ± 1.4 m/s, P < 0.001). Infections occurred more often in the standard group compared with the immune monitoring group. No opportunistic infections occurred with NFAT-RE monitoring. At 12 months of follow-up, renal function was significantly better with NFAT-RE versus standard monitoring (Nankivell glomerular filtration rate: 68.5 ± 17.4 mL/min vs 57.2 ± 19.0 mL/min; P = 0.009). NFAT-RE as translational immune monitoring tool proved efficacious and safe in individualizing cyclosporine therapy, with the opportunity to reduce the cardiovascular risk and improve long-term renal allograft function.

  1. Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency

    PubMed Central

    Druzhkov, Pavel; Zolotykh, Nikolay; Meyerov, Iosif; Alsaedi, Ahmed; Shutova, Maria; Ivanchenko, Mikhail; Zaikin, Alexey

    2015-01-01

    We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate the further research on the functional consequences of these differences in methylation patterns. The presented approach can be broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of genes constituting multifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest. PMID:26618180

  2. Androgen Receptor Gene Polymorphisms and Alterations in Prostate Cancer: Of Humanized Mice and Men

    PubMed Central

    Robins, Diane M.

    2011-01-01

    Germline polymorphisms and somatic mutations of the androgen receptor (AR) have been intensely investigated in prostate cancer but even with genomic approaches their impact remains controversial. To assess the functional significance of AR genetic variation, we converted the mouse gene to the human sequence by germline recombination and engineered alleles to query the role of a polymorphic glutamine (Q) tract implicated in cancer risk. In a prostate cancer model, AR Q tract length influences progression and castration response. Mutation profiling in mice provides direct evidence that somatic AR variants are selected by therapy, a finding validated in human metastases from distinct treatment groups. Mutant ARs exploit multiple mechanisms to resist hormone ablation, including alterations in ligand specificity, target gene selectivity, chaperone interaction and nuclear localization. Regardless of their frequency, these variants permute normal function to reveal novel means to target wild type AR and its key interacting partners. PMID:21689727

  3. Metagenomic analyses of drinking water receiving different disinfection treatments.

    PubMed

    Gomez-Alvarez, Vicente; Revetta, Randy P; Santo Domingo, Jorge W

    2012-09-01

    A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities.

  4. Metagenomic Analyses of Drinking Water Receiving Different Disinfection Treatments

    PubMed Central

    Gomez-Alvarez, Vicente; Revetta, Randy P.

    2012-01-01

    A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in free-chlorine-treated (CHL) and monochloramine-treated (CHM) drinking water (DW). In all, 362,640 (averaging 544 bp) and 155,593 (averaging 554 bp) pyrosequencing reads were analyzed for the CHL and CHM samples, respectively. Most annotated proteins were found to be of bacterial origin, although eukaryotic, archaeal, and viral proteins were also identified. Differences in community structure and function were noted. Most notably, Legionella-like genes were more abundant in the CHL samples while mycobacterial genes were more abundant in CHM samples. Genes associated with multiple disinfectant mechanisms were identified in both communities. Moreover, sequences linked to virulence factors, such as antibiotic resistance mechanisms, were observed in both microbial communities. This study provides new insights into the genetic network and potential biological processes associated with the molecular microbial ecology of DW microbial communities. PMID:22729545

  5. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds.

    PubMed

    Naval-Sanchez, Marina; Nguyen, Quan; McWilliam, Sean; Porto-Neto, Laercio R; Tellam, Ross; Vuocolo, Tony; Reverter, Antonio; Perez-Enciso, Miguel; Brauning, Rudiger; Clarke, Shannon; McCulloch, Alan; Zamani, Wahid; Naderi, Saeid; Rezaei, Hamid Reza; Pompanon, Francois; Taberlet, Pierre; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Jhangiani, Shalini N; Cockett, Noelle; Daetwyler, Hans; Kijas, James

    2018-02-28

    Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species.

  6. Profiling Hyporheic Microbial Community Nitrogen Cycle and Carbohydrate Active Enzyme Gene Abundances across Seasons

    NASA Astrophysics Data System (ADS)

    Nelson, W. C.; Graham, E.; Stegen, J.

    2016-12-01

    The hyporheic zone (HZ) is the permanently inundated sediment layer between a surface channel and adjacent groundwater-saturated sediments. It has been hypothesized to play a major role in macronutrient (C, N, P) cycling in rivers. The correlation between community taxonomic composition dynamics and functional gene representation is poorly understood for hyporheic communities. To explore how microbial communities respond to temporal changes in environmental conditions, metagenomes were derived from communities captured in sterile sandpacks deployed within the HZ of the Columbia River. HMM databases were used to enumerate protein families present. Functional classification of reads allowed a general assessment of community function over time, while targeted assembly of specific genes enabled investigation of the diversity of organisms encoding these functions. Preliminary analysis of nitrogen cycle pathways shows most gene families examined to have quite steady representation across seasons, with most observed changes being less than an order of magnitude. Analysis of ammonia oxidation genes showed bacterial ammonia oxidizers (AOB) to be stably present across the year, while the archaeal amoA gene increased in late summer, peaking sharply in November, mirroring results from 16S rRNA amplicon analysis which showed an increase in Thaumarcheal OTUs during that same period. Most glycosyl hydrolase GH families had low representation. Highly abundant classes of GH included the GH94 (beta-glucosidase), GH95 (1-2-alpha-L-fucosidase) and GH103 (lytic transglycosylase) families, suggesting activity on plant, fungus and insect polysaccharides and peptidoglycans. Further work is investigating the taxonomy of the sequences identified, to determine how changes in the community composition contribute to the stable gene family profiles observed. These results are intended to work towards a greater understanding of the role of species diversity and functional redundancy in the dynamics of community composition in response to changes in environmental conditions and stochastic processes. In addition, it will serve as a foundation enabling modeling of generalized microbial function in the hyporheic zone, improving our ability to predict fluxes of carbon and nitrogen through riverine systems.

  7. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    PubMed Central

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  8. Novel scalable 3D cell based model for in vitro neurotoxicity testing: Combining human differentiated neurospheres with gene expression and functional endpoints.

    PubMed

    Terrasso, Ana Paula; Pinto, Catarina; Serra, Margarida; Filipe, Augusto; Almeida, Susana; Ferreira, Ana Lúcia; Pedroso, Pedro; Brito, Catarina; Alves, Paula Marques

    2015-07-10

    There is an urgent need for new in vitro strategies to identify neurotoxic agents with speed, reliability and respect for animal welfare. Cell models should include distinct brain cell types and represent brain microenvironment to attain higher relevance. The main goal of this study was to develop and validate a human 3D neural model containing both neurons and glial cells, applicable for toxicity testing in high-throughput platforms. To achieve this, a scalable bioprocess for neural differentiation of human NTera2/cl.D1 cells in stirred culture systems was developed. Endpoints based on neuronal- and astrocytic-specific gene expression and functionality in 3D were implemented in multi-well format and used for toxicity assessment. The prototypical neurotoxicant acrylamide affected primarily neurons, impairing synaptic function; our results suggest that gene expression of the presynaptic marker synaptophysin can be used as sensitive endpoint. Chloramphenicol, described as neurotoxicant affected both cell types, with cytoskeleton markers' expression significantly reduced, particularly in astrocytes. In conclusion, a scalable and reproducible process for production of differentiated neurospheres enriched in mature neurons and functional astrocytes was obtained. This 3D approach allowed efficient production of large numbers of human differentiated neurospheres, which in combination with gene expression and functional endpoints are a powerful cell model to evaluate human neuronal and astrocytic toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Functional Analysis of the Twin-Arginine Translocation Pathway in Corynebacterium glutamicum ATCC 13869▿

    PubMed Central

    Kikuchi, Yoshimi; Date, Masayo; Itaya, Hiroshi; Matsui, Kazuhiko; Wu, Long-Fei

    2006-01-01

    Compared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C. glutamicum Tat pathway, we cloned the tatA, tatB, tatC, and tatE genes from C. glutamicum ATCC 13869 and constructed mutants carrying deletions of each tat gene or of both the tatA and tatE genes. Using green fluorescent protein (GFP) fused with the twin-arginine signal peptide of the Escherichia coli TorA protein, we demonstrated that the minimal functional Tat system required TatA and TatC. TatA and TatE provide overlapping function. Unlike the TatB proteins from gram-negative bacteria, C. glutamicum TatB was dispensable for Tat function, although it was required for maximal efficiency of secretion. The signal peptide sequence of the isomaltodextranase (IMD) of Arthrobacter globiformis contains a twin-arginine motif. We showed that both IMD and GFP fused with the signal peptide of IMD were secreted via the C. glutamicum Tat pathway. These observations indicate that IMD is a bona fide Tat substrate and imply great potential of the C. glutamicum Tat system for industrial production of heterologous folded proteins. PMID:16997984

  10. Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory.

    PubMed

    Hung, Yun-Fen; Chen, Chiung-Ya; Li, Wan-Chen; Wang, Ting-Fang; Hsueh, Yi-Ping

    2018-06-07

    The neuronal innate immune system recognizes endogenous danger signals and regulates neuronal development and function. Toll-like receptor 7 (TLR7), one of the TLRs that trigger innate immune responses in neurons, controls neuronal morphology. To further assess the function of TLR7 in the brain, we applied next generation sequencing to investigate the effect of Tlr7 deletion on gene expression in hippocampal and cortical mixed cultures and on mouse behaviors. Since previous in vivo study suggested that TLR7 is more critical for neuronal morphology at earlier developmental stages, we analyzed two time-points (4 and 18 DIV) to represent young and mature neurons, respectively. At 4 DIV, Tlr7 KO neurons exhibited reduced expression of genes involved in neuronal development, synaptic organization and activity and behaviors. Some of these Tlr7-regulated genes are also associated with multiple neurological and neuropsychiatric diseases. TLR7-regulated transcriptomic profiles differed at 18 DIV. Apart from neuronal genes, genes related to glial cell development and differentiation became sensitive to Tlr7 deletion at 18 DIV. Moreover, Tlr7 KO mice exhibited altered behaviors in terms of anxiety, aggression, olfaction and contextual fear memory. Electrophysiological analysis further showed an impairment of long-term potentiation in Tlr7 KO hippocampus. Taken together, these results indicate that TLR7 regulates neural development and brain function, even in the absence of infectious or pathogenic molecules. Our findings strengthen evidence for the role of the neuronal innate immune system in fine-tuning neuronal morphology and activity and implicate it in neuropsychiatric disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Maintenance of drug metabolism and transport functions in human precision-cut liver slices during prolonged incubation for 5 days.

    PubMed

    Starokozhko, Viktoriia; Vatakuti, Suresh; Schievink, Bauke; Merema, Marjolijn T; Asplund, Annika; Synnergren, Jane; Aspegren, Anders; Groothuis, Geny M M

    2017-05-01

    Human precision-cut liver slices (hPCLS) are a valuable ex vivo model that can be used in acute toxicity studies. However, a rapid decline in metabolic enzyme activity limits their use in studies that require a prolonged xenobiotic exposure. The aim of the study was to extend the viability and function of hPCLS to 5 days of incubation. hPCLS were incubated in two media developed for long-term culture of hepatocytes, RegeneMed ® , and Cellartis ® , and in the standard medium WME. Maintenance of phase I and II metabolism was studied both on gene expression as well as functional level using a mixture of CYP isoform-specific substrates. Albumin synthesis, morphological integrity, and glycogen storage was assessed, and gene expression was studied by transcriptomic analysis using microarrays with a focus on genes involved in drug metabolism, transport and toxicity. The data show that hPCLS retain their viability and functionality during 5 days of incubation in Cellartis ® medium. Albumin synthesis as well as the activity and gene expression of phase I and II metabolic enzymes did not decline during 120-h incubation in Cellartis ® medium, with CYP2C9 activity as the only exception. Glycogen storage and morphological integrity were maintained. Moreover, gene expression changes in hPCLS during incubation were limited and mostly related to cytoskeleton remodeling, fibrosis, and moderate oxidative stress. The expression of genes involved in drug transport, which is an important factor in determining the intracellular xenobiotic exposure, was also unchanged. Therefore, we conclude that hPCLS cultured in Cellartis ® medium are a valuable human ex vivo model for toxicological and pharmacological studies that require prolonged xenobiotic exposure.

  12. Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.

    PubMed

    Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon

    2013-01-01

    This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine to be in short supply for yeast growth in some natural grape musts.

  13. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation.

    PubMed

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A

    2013-11-29

    LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Long-term neural and physiological phenotyping of a single human

    PubMed Central

    Poldrack, Russell A.; Laumann, Timothy O.; Koyejo, Oluwasanmi; Gregory, Brenda; Hover, Ashleigh; Chen, Mei-Yen; Gorgolewski, Krzysztof J.; Luci, Jeffrey; Joo, Sung Jun; Boyd, Ryan L.; Hunicke-Smith, Scott; Simpson, Zack Booth; Caven, Thomas; Sochat, Vanessa; Shine, James M.; Gordon, Evan; Snyder, Abraham Z.; Adeyemo, Babatunde; Petersen, Steven E.; Glahn, David C.; Reese Mckay, D.; Curran, Joanne E.; Göring, Harald H. H.; Carless, Melanie A.; Blangero, John; Dougherty, Robert; Leemans, Alexander; Handwerker, Daniel A.; Frick, Laurie; Marcotte, Edward M.; Mumford, Jeanette A.

    2015-01-01

    Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders. PMID:26648521

  15. Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins

    PubMed Central

    Opazo, Juan C.; Butts, G. Tyler; Nery, Mariana F.; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    Subsequent to the two rounds of whole-genome duplication that occurred in the common ancestor of vertebrates, a third genome duplication occurred in the stem lineage of teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided genetic raw materials for the physiological, morphological, and behavioral diversification of this highly speciose group. The extreme physiological versatility of teleost fish is manifest in their diversity of blood–gas transport traits, which reflects the myriad solutions that have evolved to maintain tissue O2 delivery in the face of changing metabolic demands and environmental O2 availability during different ontogenetic stages. During the course of development, regulatory changes in blood–O2 transport are mediated by the expression of multiple, functionally distinct hemoglobin (Hb) isoforms that meet the particular O2-transport challenges encountered by the developing embryo or fetus (in viviparous or oviparous species) and in free-swimming larvae and adults. The main objective of the present study was to assess the relative contributions of whole-genome duplication, large-scale segmental duplication, and small-scale gene duplication in producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we integrated phylogenetic reconstructions with analyses of conserved synteny to characterize the genomic organization and evolutionary history of the globin gene clusters of teleosts. These results were then integrated with available experimental data on functional properties and developmental patterns of stage-specific gene expression. Our results indicate that multiple α- and β-globin genes were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived globin gene clusters, each of which has undergone lineage-specific changes in gene content via repeated duplication and deletion events. Phylogenetic reconstructions revealed that paralogous genes convergently evolved similar functional properties in different teleost lineages. Consistent with other recent studies of globin gene family evolution in vertebrates, our results revealed evidence for repeated evolutionary transitions in the developmental regulation of Hb synthesis. PMID:22949522

  16. Heterozygous deletion of the LRFN2 gene is associated with working memory deficits

    PubMed Central

    Thevenon, Julien; Souchay, Céline; Seabold, Gail K; Dygai-Cochet, Inna; Callier, Patrick; Gay, Sébastien; Corbin, Lucie; Duplomb, Laurence; Thauvin-Robinet, Christel; Masurel-Paulet, Alice; El Chehadeh, Salima; Avila, Magali; Minot, Delphine; Guedj, Eric; Chancenotte, Sophie; Bonnet, Marlène; Lehalle, Daphne; Wang, Ya-Xian; Kuentz, Paul; Huet, Frédéric; Mosca-Boidron, Anne-Laure; Marle, Nathalie; Petralia, Ronald S; Faivre, Laurence

    2016-01-01

    Learning disabilities (LDs) are a clinically and genetically heterogeneous group of diseases. Array-CGH and high-throughput sequencing have dramatically expanded the number of genes implicated in isolated intellectual disabilities and LDs, highlighting the implication of neuron-specific post-mitotic transcription factors and synaptic proteins as candidate genes. We report a unique family diagnosed with autosomal dominant learning disability and a 6p21 microdeletion segregating in three patients. The 870 kb microdeletion encompassed the brain-expressed gene LRFN2, which encodes for a synaptic cell adhesion molecule. Neuropsychological assessment identified selective working memory deficits, with borderline intellectual functioning. Further investigations identified a defect in executive function, and auditory-verbal processes. These data were consistent with brain MRI and FDG-PET functional brain imaging, which, when compared with controls, revealed abnormal brain volume and hypometabolism of gray matter structures implicated in working memory. We performed electron microscopy immunogold labeling demonstrating the localization of LRFN2 at synapses of cerebellar and hippocampal rat neurons, often associated with the NR1 subunit of N-methyl-D-aspartate receptors (NMDARs). Altogether, the combined approaches imply a role for LRFN2 in LD, specifically for working memory processes and executive function. In conclusion, the identification of familial cases of clinically homogeneous endophenotypes of LD might help in both the management of patients and genetic counseling for families. PMID:26486473

  17. Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes

    PubMed Central

    Li, Xiaofang; Zhu, Yong-Guan; Shaban, Babak; Bruxner, Timothy J. C.; Bond, Philip L.; Huang, Longbin

    2015-01-01

    Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses. PMID:26286020

  18. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India.

    PubMed

    Mohan, Viswanathan; Radha, Venkatesan; Nguyen, Thong T; Stawiski, Eric W; Pahuja, Kanika Bajaj; Goldstein, Leonard D; Tom, Jennifer; Anjana, Ranjit Mohan; Kong-Beltran, Monica; Bhangale, Tushar; Jahnavi, Suresh; Chandni, Radhakrishnan; Gayathri, Vijay; George, Paul; Zhang, Na; Murugan, Sakthivel; Phalke, Sameer; Chaudhuri, Subhra; Gupta, Ravi; Zhang, Jingli; Santhosh, Sam; Stinson, Jeremy; Modrusan, Zora; Ramprasad, V L; Seshagiri, Somasekar; Peterson, Andrew S

    2018-02-13

    Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.

  19. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.

    PubMed

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-03-14

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.

  20. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms

    PubMed Central

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-01-01

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship. PMID:26972977

  1. Perspectives on hand function in girls and women with Rett syndrome.

    PubMed

    Downs, Jenny; Parkinson, Stephanie; Ranelli, Sonia; Leonard, Helen; Diener, Pamela; Lotan, Meir

    2014-06-01

    Rett syndrome is a rare neurodevelopmental disorder that is usually associated with a mutation on the X-linked MECP2 gene. Hand function is particularly affected and we discuss theoretical and practical perspectives for optimising hand function in Rett syndrome. We reviewed the literature pertaining to hand function and stereotypies in Rett syndrome and developed a toolkit for their assessment and treatment. There is little published information on management of hand function in Rett syndrome. We suggest assessment and treatment strategies based on available literature, clinical experience and grounded in theories of motor control and motor learning. Additional studies are needed to determine the best treatments for hand function in Rett syndrome. Meanwhile, clinical needs can be addressed by supplementing the evidence base with an understanding of the complexities of Rett syndrome, clinical experience, environmental enrichment animal studies and theories of motor control and motor learning.

  2. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1.

    PubMed

    Li, Sisi; Xi, Quansheng; Zhang, Xiaoyu; Yu, Dong; Li, Lin; Jiang, Zhenyang; Chen, Qiuyun; Wang, Qing K; Traboulsi, Elias I

    2018-06-01

    We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.

  3. MERRF Classification: Implications for Diagnosis and Clinical Trials.

    PubMed

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda; Shoffner, John M

    2018-03-01

    Given the etiologic heterogeneity of disease classification using clinical phenomenology, we employed contemporary criteria to classify variants associated with myoclonic epilepsy with ragged-red fibers (MERRF) syndrome and to assess the strength of evidence of gene-disease associations. Standardized approaches are used to clarify the definition of MERRF, which is essential for patient diagnosis, patient classification, and clinical trial design. Systematic literature and database search with application of standardized assessment of gene-disease relationships using modified Smith criteria and of variants reported to be associated with MERRF using modified Yarham criteria. Review of available evidence supports a gene-disease association for two MT-tRNAs and for POLG. Using modified Smith criteria, definitive evidence of a MERRF gene-disease association is identified for MT-TK. Strong gene-disease evidence is present for MT-TL1 and POLG. Functional assays that directly associate variants with oxidative phosphorylation impairment were critical to mtDNA variant classification. In silico analysis was of limited utility to the assessment of individual MT-tRNA variants. With the use of contemporary classification criteria, several mtDNA variants previously reported as pathogenic or possibly pathogenic are reclassified as neutral variants. MERRF is primarily an MT-TK disease, with pathogenic variants in this gene accounting for ~90% of MERRF patients. Although MERRF is phenotypically and genotypically heterogeneous, myoclonic epilepsy is the clinical feature that distinguishes MERRF from other categories of mitochondrial disorders. Given its low frequency in mitochondrial disorders, myoclonic epilepsy is not explained simply by an impairment of cellular energetics. Although MERRF phenocopies can occur in other genes, additional data are needed to establish a MERRF disease-gene association. This approach to MERRF emphasizes standardized classification rather than clinical phenomenology, thus improving patient diagnosis and clinical trial design. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy

    DTIC Science & Technology

    2007-03-01

    thymidine kinase transfected EL4 cells . Further exploration of Tc-99m conjugated potential HSV1-TK substrates is still undergoing in our laboratory...prostate cancer cells , has been demonstrated the utility for tissue-specific toxic gene therapy for prostate cancer[10, 11]. Therefore, an adenovirus...BJ5183 together with pAdeasy-1, the viral DNA plasmid. The pAdeasy-1 is E1 and E3 deleted, its E1 function can be complemented in 293A cells . The

  5. Functional Assessment of the Role of BORIS in Ovarian Cancer Using a Novel in Vivo Model System

    DTIC Science & Technology

    2015-12-01

    iv) we obtained founder BORIS-Tg mice and crossed into the FVB/N strain to fully characterize the transgenic gene configuration, v) we conducted...models, transgenic mice 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...genes, and wildtype p53 is a negative regulator of BORIS expression. To test these hypotheses, we will develop and utilize a murine transgenic model

  6. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma.

    PubMed

    Looi, K; Buckley, A G; Rigby, P J; Garratt, L W; Iosifidis, T; Zosky, G R; Larcombe, A N; Lannigan, F J; Ling, K-M; Martinovich, K M; Kicic-Starcevich, E; Shaw, N C; Sutanto, E N; Knight, D A; Kicic, A; Stick, S M

    2018-05-01

    Bronchial epithelial tight junctions (TJ) have been extensively assessed in healthy airway epithelium. However, no studies have yet assessed the effect of human rhinovirus (HRV) infection on the expression and resultant barrier function in epithelial tight junctions (TJ) in childhood asthma. To investigate the impact of HRV infection on airway epithelial TJ expression and barrier function in airway epithelial cells (AECs) of children with and without asthma. Furthermore, to test the hypothesis that barrier integrity and function is compromised to a greater extent by HRV in AECs from asthmatic children. Primary AECs were obtained from children with and without asthma, differentiated into air-liquid interface (ALI) cultures and infected with rhinovirus. Expression of claudin-1, occludin and zonula occluden-1 (ZO-1) was assessed via qPCR, immunocytochemistry (ICC), in-cell western (ICW) and confocal microscopy. Barrier function was assessed by transepithelial electrical resistance (TER; R T ) and permeability to fluorescent dextran. Basal TJ gene expression of claudin-1 and occludin was significantly upregulated in asthmatic children compared to non-asthmatics; however, no difference was seen with ZO-1. Interestingly, claudin-1, occludin and ZO-1 protein expression was significantly reduced in AEC of asthmatic children compared to non-asthmatic controls suggesting possible post-transcriptional inherent differences. HRV infection resulted in a transient dissociation of TJ and airway barrier integrity in non-asthmatic children. Although similar dissociation of TJ was observed in asthmatic children, a significant and sustained reduction in TJ expression concurrent with both a significant decrease in TER and an increase in permeability in asthmatic children was observed. This study demonstrates novel intrinsic differences in TJ gene and protein expression between AEC of children with and without asthma. Furthermore, it correlates directly the relationship between HRV infection and the resultant dissociation of epithelial TJ that causes a continued altered barrier function in children with asthma. © 2018 John Wiley & Sons Ltd.

  7. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis

    PubMed Central

    Alton, Eric W F W; Beekman, Jeffery M; Boyd, A Christopher; Brand, June; Carlon, Marianne S; Connolly, Mary M; Chan, Mario; Conlon, Sinead; Davidson, Heather E; Davies, Jane C; Davies, Lee A; Dekkers, Johanna F; Doherty, Ann; Gea-Sorli, Sabrina; Gill, Deborah R; Griesenbach, Uta; Hasegawa, Mamoru; Higgins, Tracy E; Hironaka, Takashi; Hyndman, Laura; McLachlan, Gerry; Inoue, Makoto; Hyde, Stephen C; Innes, J Alastair; Maher, Toby M; Moran, Caroline; Meng, Cuixiang; Paul-Smith, Michael C; Pringle, Ian A; Pytel, Kamila M; Rodriguez-Martinez, Andrea; Schmidt, Alexander C; Stevenson, Barbara J; Sumner-Jones, Stephanie G; Toshner, Richard; Tsugumine, Shu; Wasowicz, Marguerite W; Zhu, Jie

    2017-01-01

    We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air–liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and ‘benchmarked’ against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90–100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017. PMID:27852956

  8. Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study

    PubMed Central

    Morissette, Mathieu C.; Lamontagne, Maxime; Bérubé, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C.; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R.; Bossé, Yohan

    2014-01-01

    Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases. PMID:24663285

  9. A machine-learned computational functional genomics-based approach to drug classification.

    PubMed

    Lötsch, Jörn; Ultsch, Alfred

    2016-12-01

    The public accessibility of "big data" about the molecular targets of drugs and the biological functions of genes allows novel data science-based approaches to pharmacology that link drugs directly with their effects on pathophysiologic processes. This provides a phenotypic path to drug discovery and repurposing. This paper compares the performance of a functional genomics-based criterion to the traditional drug target-based classification. Knowledge discovery in the DrugBank and Gene Ontology databases allowed the construction of a "drug target versus biological process" matrix as a combination of "drug versus genes" and "genes versus biological processes" matrices. As a canonical example, such matrices were constructed for classical analgesic drugs. These matrices were projected onto a toroid grid of 50 × 82 artificial neurons using a self-organizing map (SOM). The distance, respectively, cluster structure of the high-dimensional feature space of the matrices was visualized on top of this SOM using a U-matrix. The cluster structure emerging on the U-matrix provided a correct classification of the analgesics into two main classes of opioid and non-opioid analgesics. The classification was flawless with both the functional genomics and the traditional target-based criterion. The functional genomics approach inherently included the drugs' modulatory effects on biological processes. The main pharmacological actions known from pharmacological science were captures, e.g., actions on lipid signaling for non-opioid analgesics that comprised many NSAIDs and actions on neuronal signal transmission for opioid analgesics. Using machine-learned techniques for computational drug classification in a comparative assessment, a functional genomics-based criterion was found to be similarly suitable for drug classification as the traditional target-based criterion. This supports a utility of functional genomics-based approaches to computational system pharmacology for drug discovery and repurposing.

  10. atBioNet--an integrated network analysis tool for genomics and biomarker discovery.

    PubMed

    Ding, Yijun; Chen, Minjun; Liu, Zhichao; Ding, Don; Ye, Yanbin; Zhang, Min; Kelly, Reagan; Guo, Li; Su, Zhenqiang; Harris, Stephen C; Qian, Feng; Ge, Weigong; Fang, Hong; Xu, Xiaowei; Tong, Weida

    2012-07-20

    Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity. atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base. Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its integrated PPI network. The statistically significant functional modules are determined by applying a fast network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be visualized either separately or together in the context of the whole network. Integration of pathway information enables enrichment analysis and assessment of the biological function of modules. Three case studies are presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only identify functional modules and pathways related to the studied diseases, but this information can also be used to hypothesize novel biomarkers for future analysis. atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/genes interactions through examining significant functional modules. The identified functional modules are useful for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.

  11. Metabolic alterations, HFE gene mutations and atherogenic lipoprotein modifications in patients with primary iron overload.

    PubMed

    Meroño, Tomás; Brites, Fernando; Dauteuille, Carolane; Lhomme, Marie; Menafra, Martín; Arteaga, Alejandra; Castro, Marcelo; Saez, María Soledad; Ballerga, Esteban González; Sorroche, Patricia; Rey, Jorge; Lesnik, Philippe; Sordá, Juan Andrés; Chapman, M John; Kontush, Anatol; Daruich, Jorge

    2015-05-01

    Iron overload (IO) has been associated with glucose metabolism alterations and increased risk of cardiovascular disease (CVD). Primary IO is associated with mutations in the HFE gene. To which extent HFE gene mutations and metabolic alterations contribute to the presence of atherogenic lipoprotein modifications in primary IO remains undetermined. The present study aimed to assess small, dense low-density lipoprotein (LDL) levels, chemical composition of LDL and high-density lipoprotein (HDL) particles, and HDL functionality in IO patients. Eighteen male patients with primary IO and 16 sex- and age-matched controls were recruited. HFE mutations (C282Y, H63D and S65C), measures of insulin sensitivity and secretion (calculated from the oral glucose tolerance test), chemical composition and distribution profile of LDL and HDL subfractions (isolated by gradient density ultracentrifugation) and HDL functionality (as cholesterol efflux and antioxidative activity) were studied. IO patients compared with controls exhibited insulin resistance (HOMA-IR (homoeostasis model assessment-estimated insulin resistance): +93%, P< 0.001). Metabolic profiles differed across HFE genotypes. C282Y homozygotes (n=7) presented a reduced β-cell function and insulin secretion compared with non-C282Y patients (n=11) (-58% and -73%, respectively, P< 0.05). In addition, C282Y homozygotes featured a predominance of large, buoyant LDL particles (C282Y: 43±5; non-C282Y: 25±8; controls: 32±7%; P< 0.001), whereas non-C282Y patients presented higher amounts of small, dense LDL (C282Y: 23±5; non-C282Y: 39±10; controls: 26±4%; P< 0.01). HDL particles were altered in C282Y homozygotes. However, HDL functionality was conserved. In conclusion, metabolic alterations and HFE gene mutations are involved in the presence of atherogenic lipoprotein modifications in primary IO. To what extent such alterations could account for an increase in CVD risk remains to be determined.

  12. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  13. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex.

    PubMed

    Hill, Matthew J; Killick, Richard; Navarrete, Katherinne; Maruszak, Aleksandra; McLaughlin, Gemma M; Williams, Brenda P; Bray, Nicholas J

    2017-05-01

    Common variants in the TCF4 gene are among the most robustly supported genetic risk factors for schizophrenia. Rare TCF4 deletions and loss-of-function point mutations cause Pitt-Hopkins syndrome, a developmental disorder associated with severe intellectual disability. To explore molecular and cellular mechanisms by which TCF4 perturbation could interfere with human cortical development, we experimentally reduced the endogenous expression of TCF4 in a neural progenitor cell line derived from the developing human cerebral cortex using RNA interference. Effects on genome-wide gene expression were assessed by microarray, followed by Gene Ontology and pathway analysis of differentially expressed genes. We tested for genetic association between the set of differentially expressed genes and schizophrenia using genome-wide association study data from the Psychiatric Genomics Consortium and competitive gene set analysis (MAGMA). Effects on cell proliferation were assessed using high content imaging. Genes that were differentially expressed following TCF4 knockdown were highly enriched for involvement in the cell cycle. There was a nonsignificant trend for genetic association between the differentially expressed gene set and schizophrenia. Consistent with the gene expression data, TCF4 knockdown was associated with reduced proliferation of cortical progenitor cells in vitro. A detailed mechanistic explanation of how TCF4 knockdown alters human neural progenitor cell proliferation is not provided by this study. Our data indicate effects of TCF4 perturbation on human cortical progenitor cell proliferation, a process that could contribute to cognitive deficits in individuals with Pitt-Hopkins syndrome and risk for schizophrenia.

  14. Evolution and Expression Patterns of TCP Genes in Asparagales

    PubMed Central

    Madrigal, Yesenia; Alzate, Juan F.; Pabón-Mora, Natalia

    2017-01-01

    CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25.000 spp) and radially symmetrical flowers in Hypoxidaceae (ca. 200 spp). With the aim of assessing TCP gene evolution in the Asparagales, we isolated TCP-like genes from publicly available databases and our own transcriptomes of Cattleya trianae (Orchidaceae) and Hypoxis decumbens (Hypoxidaceae). Our matrix contains 452 sequences representing the three major clades of TCP genes. Besides the previously identified CYC specific core eudicot duplications, our ML phylogenetic analyses recovered an early CIN-like duplication predating all angiosperms, two CIN-like Asparagales-specific duplications and a duplication prior to the diversification of Orchidoideae and Epidendroideae. In addition, we provide evidence of at least three duplications of PCF-like genes in Asparagales. While CIN-like and PCF-like genes have multiplied in Asparagales, likely enhancing the genetic network for cell proliferation, CYC-like genes remain as single, shorter copies with low expression. Homogeneous expression of CYC-like genes in the labellum as well as the lateral petals suggests little contribution to the bilateral perianth in C. trianae. CIN-like and PCF-like gene expression suggests conserved roles in cell proliferation in leaves, sepals and petals, carpels, ovules and fruits in Asparagales by comparison with previously reported functions in core eudicots and monocots. This is the first large scale analysis of TCP-like genes in Asparagales that will serve as a platform for in-depth functional studies in emerging model monocots. PMID:28144250

  15. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode.

    PubMed

    Matthews, Benjamin F; Beard, Hunter; MacDonald, Margaret H; Kabir, Sara; Youssef, Reham M; Hosseini, Parsa; Brewer, Eric

    2013-05-01

    During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.

  16. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2

    NASA Astrophysics Data System (ADS)

    Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria; Palovaara, Joakim; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva; Pelejero, Carles; Marrasé, Cèlia; Dopson, Mark; Gasol, Josep M.; Pinhassi, Jarone

    2016-05-01

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l-1) however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l-1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  17. Diversity and Abundance of the Denitrifying Microbiota in the Sediment of Eastern China Marginal Seas and the Impact of Environmental Factors.

    PubMed

    Gao, Minghong; Liu, Jiwen; Qiao, Yanlu; Zhao, Meixun; Zhang, Xiao-Hua

    2017-04-01

    Investigating the environmental influence on the community composition and abundance of denitrifiers in marine sediment ecosystem is essential for understanding of the ecosystem-level controls on the biogeochemical process of denitrification. In the present study, nirK-harboring denitrifying communities in different mud deposit zones of eastern China marginal seas (ECMS) were investigated via clone library analysis. The abundance of three functional genes affiliated with denitrification (narG, nirK, nosZ) was assessed by fluorescent quantitative PCR. The nirK-harboring microbiota were dominated by a few operational taxonomic units (OTUs), which were widely distributed in different sites with each site harboring their unique phylotypes. The mean abundance of nirK was significantly higher than that of narG and nosZ genes, and the abundance of narG was higher than that of nosZ. The inconsistent abundance profile of different functional genes along the process of denitrification might indicate that nitrite reduction occurred independently of denitrification in the mud deposit zones of ECMS, and sedimentary denitrification was accomplished by cooperation of different denitrifying species rather than a single species. Such important information would be missed when targeting only a single denitrifying functional gene. Analysis of correlation between abundance ratios and environmental factors revealed that the response of denitrifiers to environmental factors was not invariable in different mud deposit zones. Our results suggested that a comprehensive analysis of different denitrifying functional genes may gain more information about the dynamics of denitrifying microbiota in marine sediments.

  18. Establishment of a Human Conjunctival Epithelial Cell Line Lacking the Functional Tacstd2 Gene (An American Ophthalmological Society Thesis)

    PubMed Central

    Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko

    2012-01-01

    Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740

  19. Altered gene expression in early postnatal monoamine oxidase A knockout mice.

    PubMed

    Chen, Kevin; Kardys, Abbey; Chen, Yibu; Flink, Stephen; Tabakoff, Boris; Shih, Jean C

    2017-08-15

    We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Recreational music-making alters gene expression pathways in patients with coronary heart disease

    PubMed Central

    Bittman, Barry; Croft, Daniel T.; Brinker, Jeannie; van Laar, Ryan; Vernalis, Marina N.; Ellsworth, Darrell L.

    2013-01-01

    Background Psychosocial stress profoundly impacts long-term cardiovascular health through adverse effects on sympathetic nervous system activity, endothelial dysfunction, and atherosclerotic development. Recreational Music Making (RMM) is a unique stress amelioration strategy encompassing group music-based activities that has great therapeutic potential for treating patients with stress-related cardiovascular disease. Material/Methods Participants (n=34) with a history of ischemic heart disease were subjected to an acute time-limited stressor, then randomized to RMM or quiet reading for one hour. Peripheral blood gene expression using GeneChip® Human Genome U133A 2.0 arrays was assessed at baseline, following stress, and after the relaxation session. Results Full gene set enrichment analysis identified 16 molecular pathways differentially regulated (P<0.005) during stress that function in immune response, cell mobility, and transcription. During relaxation, two pathways showed a significant change in expression in the control group, while 12 pathways governing immune function and gene expression were modulated among RMM participants. Only 13% (2/16) of pathways showed differential expression during stress and relaxation. Conclusions Human stress and relaxation responses may be controlled by different molecular pathways. Relaxation through active engagement in Recreational Music Making may be more effective than quiet reading at altering gene expression and thus more clinically useful for stress amelioration. PMID:23435350

  1. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain.

    PubMed

    Simon, Matthew J; Murchison, Charles; Iliff, Jeffrey J

    2018-02-01

    Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes. © 2017 Wiley Periodicals, Inc.

  2. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system

    PubMed Central

    Ling, Hong; Zeng, Xu; Guo, Shunxing

    2016-01-01

    Late embryogenesis abundant (LEA) proteins, a diverse family, accumulate during seed desiccation in the later stages of embryogenesis. LEA proteins are associated with tolerance to abiotic stresses, such as drought, salinity and high or cold temperature. Here, we report the first comprehensive survey of the LEA gene family in Dendrobium officinale, an important and widely grown medicinal orchid in China. Based on phylogenetic relationships with the complete set of Arabidopsis and Oryza LEA proteins, 17 genes encoding D. officinale LEAs (DofLEAs) were identified and their deduced proteins were classified into seven groups. The motif composition of these deduced proteins was correlated with the gene structure found in each LEA group. Our results reveal the DofLEA genes are widely distributed and expressed in tissues. Additionally, 11 genes from different groups were introduced into Escherichia coli to assess the functions of DofLEAs. Expression of 6 and 7 DofLEAs in E. coli improved growth performance compared with the control under salt and heat stress, respectively. Based on qPCR data, all of these genes were up-regulated in various tissues following exposure to salt and heat stresses. Our results suggest that DofLEAs play an important role in responses to abiotic stress. PMID:28004781

  3. Specific gene delivery to liver sinusoidal and artery endothelial cells.

    PubMed

    Abel, Tobias; El Filali, Ebtisam; Waern, Johan; Schneider, Irene C; Yuan, Qinggong; Münch, Robert C; Hick, Meike; Warnecke, Gregor; Madrahimov, Nodir; Kontermann, Roland E; Schüttrumpf, Jörg; Müller, Ulrike C; Seppen, Jurgen; Ott, Michael; Buchholz, Christian J

    2013-09-19

    Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.

  4. Immune competence assessment in marine medaka (Orzyias melastigma)-a holistic approach for immunotoxicology.

    PubMed

    Ye, Roy R; Peterson, Drew R; Seemann, Frauke; Kitamura, Shin-Ichi; Lee, J S; Lau, Terrance C K; Tsui, Stephen K W; Au, Doris W T

    2017-12-01

    Many anthropogenic pollutants in coastal marine environments can induce immune impairments in wild fish and reduce their survival fitness. There is a pressing need to establish sensitive and high throughput in vivo tools to systematically evaluate the immunosuppressive effects of contaminants in marine teleosts. This study reviewed a battery of in vivo immune function detection technologies established for different biological hierarchies at molecular (immune function pathways and genes by next generation sequencing (NGS)), cellular (leukocytes profiles by flow cytometry), tissues/organ system (whole adult histo-array), and organism (host resistance assays (HRAs)) levels, to assess the immune competence of marine medaka Oryzias melastigma. This approach enables a holistic assessment of fish immune competence under different chemical exposure or environmental scenarios. The data obtained will also be useful to unravel the underlying immunotoxic mechanisms. Intriguingly, NGS analysis of hepatic immune gene expression profiles (male > female) are in support of the bacterial HRA findings, in which infection-induced mortality was consistently higher in females than in males. As such, reproductive stages and gender-specific responses must be taken into consideration when assessing the risk of immunotoxicants in the aquatic environment. The distinct phenotypic sexual dimorphism and short generation time (3 months) of marine medaka offer additional advantages for sex-related immunotoxicological investigation.

  5. The Influence of Genetics on Cystic Fibrosis Phenotypes

    PubMed Central

    Knowles, Michael R.; Drumm, Mitchell

    2012-01-01

    Technological advances in genetics have made feasible and affordable large studies to identify genetic variants that cause or modify a trait. Genetic studies have been carried out to assess variants in candidate genes, as well as polymorphisms throughout the genome, for their associations with heritable clinical outcomes of cystic fibrosis (CF), such as lung disease, meconium ileus, and CF-related diabetes. The candidate gene approach has identified some predicted relationships, while genome-wide surveys have identified several genes that would not have been obvious disease-modifying candidates, such as a methionine sulfoxide transferase gene that influences intestinal obstruction, or a region on chromosome 11 proximate to genes encoding a transcription factor and an apoptosis controller that associates with lung function. These unforeseen associations thus provide novel insight into disease pathophysiology, as well as suggesting new therapeutic strategies for CF. PMID:23209180

  6. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  7. STOPGAP: a database for systematic target opportunity assessment by genetic association predictions.

    PubMed

    Shen, Judong; Song, Kijoung; Slater, Andrew J; Ferrero, Enrico; Nelson, Matthew R

    2017-09-01

    We developed the STOPGAP (Systematic Target OPportunity assessment by Genetic Association Predictions) database, an extensive catalog of human genetic associations mapped to effector gene candidates. STOPGAP draws on a variety of publicly available GWAS associations, linkage disequilibrium (LD) measures, functional genomic and variant annotation sources. Algorithms were developed to merge the association data, partition associations into non-overlapping LD clusters, map variants to genes and produce a variant-to-gene score used to rank the relative confidence among potential effector genes. This database can be used for a multitude of investigations into the genes and genetic mechanisms underlying inter-individual variation in human traits, as well as supporting drug discovery applications. Shell, R, Perl and Python scripts and STOPGAP R data files (version 2.5.1 at publication) are available at https://github.com/StatGenPRD/STOPGAP . Some of the most useful STOPGAP fields can be queried through an R Shiny web application at http://stopgapwebapp.com . matthew.r.nelson@gsk.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Relationship of Serum Klotho Level With ACE Gene Polymorphism in Stable Kidney Allograft Recipients.

    PubMed

    Zaare Nahandi, Maryam; Ardalan, Mohamad Reza; Banagozar Mohamadi, Ali; Ghorbani Haghjo, Amir; Jabbarpor Bonyadi, Morteza; Mohamadian, Tahere

    2017-03-01

    The kidney is the main source of serum Klotho production. Immunosuppressive agents could affect the kidney in this regard. The effect of the ACE gene polymorphism on Klotho production is a less studied area. This study aimed to assess serum Klotho and ACE gene in a group of stable kidney transplant recipients. In a cross-sectional study, 30 kidney transplant recipients with stable allograft function and 27 healthy young individuals were assessed for their serum Klotho levels. The ACE gene polymorphisms were studied in both groups. Klotho level was higher in kidney transplant recipients than the controls, but the difference was not significant (2.76 ± 2.41 ng/mL versus 2.01 ± 1.41 ng/mL, respectively). In both groups, serum Klotho level was higher in those with the I>I polymorphism, the men, those with higher glomerular filtration rate, and younger individuals, but the differences did not reach a significant level. Higher body mass index was significantly associated with lower serum Klotho level in both groups. Klotho level after kidney transplantation meets the range in healthy individuals, and it is not affected by the ACE gene polymorphism.

  9. Assessment of the Requirements for Magnesium Transporters in Bacillus subtilis

    PubMed Central

    Wakeman, Catherine A.; Goodson, Jonathan R.; Zacharia, Vineetha M.

    2014-01-01

    Magnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements. In this study, we investigated the cellular requirements for magnesium homeostasis in the model microorganism Bacillus subtilis. Putative magnesium transporter genes were mutationally disrupted, singly and in combination, in order to assess their general importance. Mutation of only one of these genes resulted in strong dependency on supplemental extracellular magnesium. Notably, this transporter gene, mgtE, is known to be under magnesium-responsive genetic regulatory control. This suggests that the identification of magnesium-responsive genetic mechanisms may generally denote primary transport proteins for bacteria. To investigate whether B. subtilis encodes yet additional classes of transport mechanisms, suppressor strains that permitted the growth of a transporter-defective mutant were identified. Several of these strains were sequenced to determine the genetic basis of the suppressor phenotypes. None of these mutations occurred in transport protein homologues; instead, they affected housekeeping functions, such as signal recognition particle components and ATP synthase machinery. From these aggregate data, we speculate that the mgtE protein provides the primary route of magnesium import in B. subtilis and that the other putative transport proteins are likely to be utilized for more-specialized growth conditions. PMID:24415722

  10. Quality controls in cellular immunotherapies: rapid assessment of clinical grade dendritic cells by gene expression profiling.

    PubMed

    Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F

    2013-02-01

    Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers.

  11. Effects of GSTM1/GSTT1 gene polymorphism and fruit & vegetable consumption on antioxidant biomarkers and cognitive function in the elderly: a community based cross-sectional study.

    PubMed

    Yuan, Linhong; Ma, Weiwei; Liu, Jinmeng; Meng, Liping; Liu, Jixia; Li, Shuang; Han, Jing; Liu, Quanri; Feng, Lingli; Wang, Chao; Xiao, Rong

    2014-01-01

    It was reported that Glutathione S-transferase (GST) gene polymorphism and fruit and vegetable (FV) intake were associated with body antioxidant capacity. The oxidative/anti-oxidative imbalance played an important role in the pathogenesis of AD. However, the association of GST genotype, dietary FV consumption with body antioxidant biomarkers and cognitive function in the elderly is not clear. The aim of the present study was to determine the association of GST genotype, and dietary FV intake, with antioxidant biomarkers and cognitive function in the elderly. Food frequency questionnaire was used to collect data of dietary FV intakes in 504 community dwelling elderly aged from 55 to 75 years old. GSTM1 and GSTT1 genotypes were determined by using multiple-PCR method. Plasma and erythrocyte antioxidant biomarkers were measured. Cognitive function was measured by using Montreal Cognitive Assessment. Statistical analysis was applied for exploring the association of GST genotype and FV intake with antioxidant biomarkers level and cognitive function in the elderly. Individual GSTM1 or GSTT1 gene deletion affects body antioxidant biomarkers levels, including erythrocyte GST activity, plasma total antioxidant capacity, and glutathione levels. GSTM1and/or GSTT1 gene deletion have no effects on cognitive function in the surveyed participants. The effect of GST genotype on antioxidant biomarkers are FV intake dependent. There is interaction of FV intake and GST genotype on cognitive function in the elderly. GST genotype or daily FV consumption impact body antioxidant biomarkers, but not cognitive function in the elderly. There were combined effects of GST genotype and FV consumption on cognitive function in the elderly population. Large scale perspective population study is required to explore the association of GST genetic polymorphism, FV consumption and antioxidant biomarkers and cognitive function in the elderly.

  12. Activity of genes with functions in human Williams-Beuren Syndrome are impacted by mobile element insertions in the gray wolf genome.

    PubMed

    vonHoldt, Bridgett M; Ji, Sarah S; Aardema, Matthew L; Stahler, Daniel; Udell, Monique A R; Sinsheimer, Janet S

    2018-06-01

    In canines, transposon dynamics have been associated with a hyper-social behavioral syndrome, although the functional mechanism has yet to be described. We investigate the epigenetic and transcriptional consequences of these behavior-associated mobile element insertions in dogs and Yellowstone wolves. We posit that the transposons themselves may not be the causative feature; rather, their transcriptional regulation may exert the functional impact. We survey four outlier transposons associated with hyper-sociability, with the expectation that they are targeted for epigenetic silencing. We predict hyper-methylation of mobile element insertions (MEIs), suggestive that the epigenetic silencing of and not the MEIs themselves may be driving dysregulation of nearby genes. We found that transposon-derived sequences are significantly hyper-methylated, regardless of their copy number or species. Further, we have assessed transcriptome sequence data and found evidence that mobile element insertions impact the expression levels of six genes (WBSCR17, LIMK1, GTF2I, WBSCR27, BAZ1B, and BCL7B), all of which have known roles in human Williams-Beuren syndrome due to changes in copy number, typically hemizygosity. Although further evidence is needed, our results suggest that a few insertions alter local expression at multiple genes, likely through a cis-regulatory mechanism that excludes proximal methylation.

  13. Necessity of angiotensin-converting enzyme-related gene for cardiac functions and longevity of Drosophila melanogaster assessed by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liao, Fang-Tsu; Chang, Cheng-Yi; Su, Ming-Tsan; Kuo, Wen-Chuan

    2014-01-01

    Prior studies have established the necessity of an angiotensin-converting enzyme-related (ACER) gene for heart morphogenesis of Drosophila. Nevertheless, the physiology of ACER has yet to be comprehensively understood. Herein, we employed RNA interference to down-regulate the expression of ACER in Drosophila's heart and swept source optical coherence tomography to assess whether ACER is required for cardiac functions in living adult flies. Several contractile parameters of Drosophila heart, including the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), percent fractional shortening (%FS), and stress-induced cardiac performance, are shown, which are age dependent. These age-dependent cardiac functions declined significantly when ACER was down-regulated. Moreover, the lifespans of ACER knock-down flies were significantly shorter than those of wild-type control flies. Thus, we posit that ACER, the Drosophila ortholog of mammalian angiotensin-converting enzyme 2 (ACE2), is essential for both heart physiology and longevity of animals. Since mammalian ACE2 controls many cardiovascular physiological features and is implicated in cardiomyopathies, our findings that ACER plays conserved roles in genetically tractable animals will pave the way for uncovering the genetic pathway that controls the renin-angiotensin system.

  14. Functional Assessment of Disease-Associated Regulatory Variants In Vivo Using a Versatile Dual Colour Transgenesis Strategy in Zebrafish

    PubMed Central

    Bhatia, Shipra; Gordon, Christopher T.; Foster, Robert G.; Melin, Lucie; Abadie, Véronique; Baujat, Geneviève; Vazquez, Marie-Paule; Amiel, Jeanne; Lyonnet, Stanislas; van Heyningen, Veronica; Kleinjan, Dirk A.

    2015-01-01

    Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. PMID:26030420

  15. Effects of mechanical ventilation on gene expression profiles in renal allografts from brain dead rats.

    PubMed

    Hottenrott, Maximilia C; Krebs, Joerg; Pelosi, Paolo; Luecke, Thomas; Rocco, Patricia R M; Sticht, Carsten; Breedijk, Annette; Yard, Benito; Tsagogiorgas, Charalambos

    2017-12-01

    Pathophysiological changes of brain death (BD) are impairing distal organ function and harming potential renal allografts. Whether ventilation strategies influence the quality of renal allografts from BD donors has not been thoroughly studied. 28 adult male Wistar rats were randomly assigned to four groups: 1) no brain death (NBD) with low tidal volume/low positive endexpiratory pressure (PEEP) titrated to minimal static elastance of the respiratory system (LVT/OLPEEP); 2) NBD with high tidal volume/low PEEP (HVT/LPEEP); 3) brain death (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. We hypothesized that HVT/LPEEP in BD leads to increased interleukin 6 (IL-6) gene expression and impairs potential renal allografts after six hours of mechanical ventilation. We assessed inflammatory cytokines in serum, genome wide gene expression profiles and quantitative PCR (qPCR) in kidney tissue. The influence of BD on renal gene-expression profiles was greater than the influence of the ventilation strategy. In BD, LVT ventilation did not influence the inflammatory parameters or kidney function in our experimental model. Copyright © 2017. Published by Elsevier B.V.

  16. Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae

    PubMed Central

    O’Connor, Sean Timothy Francis; Lan, Jiaqi; North, Matthew; Loguinov, Alexandre; Zhang, Luoping; Smith, Martyn T.; Gu, April Z.; Vulpe, Chris

    2012-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous, potent, and complete carcinogen resulting from incomplete organic combustion. BaP can form DNA adducts but other mechanisms may play a role in toxicity. We used a functional toxicology approach in S. cerevisiae to assess the genetic requirements for cellular resistance to BaP. In addition, we examined translational activities of key genes involved in various stress response pathways. We identified multiple genes and processes involved in modulating BaP toxicity in yeast which support DNA damage as a primary mechanism of toxicity, but also identify other potential toxicity pathways. Gene ontology enrichment analysis indicated that DNA damage and repair as well as redox homeostasis and oxidative stress are key processes in cellular response to BaP suggesting a similar mode of action of BaP in yeast and mammals. Interestingly, toxicant export is also implicated as a potential novel modulator of cellular susceptibility. In particular, we identified several transporters with human orthologs (solute carrier family 22) which may play a role in mammalian systems. PMID:23403841

  17. Genetic recombination is targeted towards gene promoter regions in dogs.

    PubMed

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  18. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals

    USDA-ARS?s Scientific Manuscript database

    Natural antibiotics are thought to function in microbial defense, fitness, competitiveness, biocontrol, communication and gene regulation. However, the frequency and amount of antibiotics produced in nature are poorly understood. In this study, we assessed the geographic distribution of indigenous p...

  19. Concordance of Transcriptional and Apical Benchmark Dose Levels for Conazole-Induced Liver Effects in Mice

    EPA Science Inventory

    ABSTRACT The ability to anchor chemical class-based gene expression changes to phenotypic lesions and to describe these changes as a function of dose and time informs mode of action determinations and improves quantitative risk assessments. Previous transcription-based microarra...

  20. Modulation of cortisol responses to the DEX/CRH test by polymorphisms of the interleukin-1beta gene in healthy adults.

    PubMed

    Sasayama, Daimei; Hori, Hiroaki; Iijima, Yoshimi; Teraishi, Toshiya; Hattori, Kotaro; Ota, Miho; Fujii, Takashi; Higuchi, Teruhiko; Amano, Naoji; Kunugi, Hiroshi

    2011-07-05

    Recently, hypothalamus-pituitary-adrenal (HPA) axis function assessed with the combined dexamethasone (DEX)/corticotropin releasing hormone (CRH) test has been shown to be associated with response to antidepressant treatment. A polymorphism (rs16944) in the interleukin-1beta (IL-1β) gene has also been reported to be associated with the medication response in depression. These findings prompted us to examine the possible association between IL-1β gene polymorphisms and HPA axis function assessed with the DEX/CRH test. DEX/CRH test was performed in 179 healthy volunteers (45 males: mean age 40.5 ± 15.8 years; 134 females: mean age 47.1 ± 13.2 years). Five tagging single nucleotide polymorphisms (SNPs) of IL-1β gene (rs2853550, rs1143634, rs1143633, rs1143630, rs16944) were selected at an r2 threshold of 0.80 with a minor allele frequency > 0.1. Genotyping was performed by the TaqMan allelic discrimination assay. A two-way factorial analysis of variance (ANOVA) was performed with the DEX/CRH test results as the dependent variable and genotype and gender as independent variables. To account for multiple testing, P values < 0.01 were considered statistically significant for associations between the genotypes and the cortisol levels. The cortisol levels after DEX administration (DST-Cortisol) showed significant associations with the genotypes of rs16944 (P = 0.00049) and rs1143633 (P = 0.0060), with no significant gender effect or genotype × gender interaction. On the other hand, cortisol levels after CRH administration (DEX/CRH-Cortisol) were affected by gender but were not significantly influenced by the genotype of the examined SNPs, with no significant genotype × gender interaction. Our results suggest that genetic variations in the IL-1β gene contribute to the HPA axis alteration assessed by DST-Cortisol in healthy subjects. On the other hand, no significant associations of the IL-1β gene polymorphisms with the DEX/CRH-Cortisol were observed. Confirmation of our findings in futures studies may add new insight into the communication between the immune system and the HPA axis.

  1. Modulation of cortisol responses to the DEX/CRH test by polymorphisms of the interleukin-1beta gene in healthy adults

    PubMed Central

    2011-01-01

    Background Recently, hypothalamus-pituitary-adrenal (HPA) axis function assessed with the combined dexamethasone (DEX)/corticotropin releasing hormone (CRH) test has been shown to be associated with response to antidepressant treatment. A polymorphism (rs16944) in the interleukin-1beta (IL-1β) gene has also been reported to be associated with the medication response in depression. These findings prompted us to examine the possible association between IL-1β gene polymorphisms and HPA axis function assessed with the DEX/CRH test. Methods DEX/CRH test was performed in 179 healthy volunteers (45 males: mean age 40.5 ± 15.8 years; 134 females: mean age 47.1 ± 13.2 years). Five tagging single nucleotide polymorphisms (SNPs) of IL-1β gene (rs2853550, rs1143634, rs1143633, rs1143630, rs16944) were selected at an r2 threshold of 0.80 with a minor allele frequency > 0.1. Genotyping was performed by the TaqMan allelic discrimination assay. A two-way factorial analysis of variance (ANOVA) was performed with the DEX/CRH test results as the dependent variable and genotype and gender as independent variables. To account for multiple testing, P values < 0.01 were considered statistically significant for associations between the genotypes and the cortisol levels. Results The cortisol levels after DEX administration (DST-Cortisol) showed significant associations with the genotypes of rs16944 (P = 0.00049) and rs1143633 (P = 0.0060), with no significant gender effect or genotype × gender interaction. On the other hand, cortisol levels after CRH administration (DEX/CRH-Cortisol) were affected by gender but were not significantly influenced by the genotype of the examined SNPs, with no significant genotype × gender interaction. Conclusions Our results suggest that genetic variations in the IL-1β gene contribute to the HPA axis alteration assessed by DST-Cortisol in healthy subjects. On the other hand, no significant associations of the IL-1β gene polymorphisms with the DEX/CRH-Cortisol were observed. Confirmation of our findings in futures studies may add new insight into the communication between the immune system and the HPA axis. PMID:21726461

  2. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions.

    PubMed

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R

    2016-03-18

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover 'functional 3D hotspots', regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 - known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    PubMed Central

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. Availability The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download. PMID:21695124

  4. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    PubMed

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download.

  5. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth.

    PubMed

    Connor, Erin E; Baldwin, Ransom L; Li, Cong-jun; Li, Robert W; Chung, Hoyoung

    2013-03-01

    During weaning, epithelial cell function in the rumen transitions in response to conversion from a pre-ruminant to a true ruminant environment to ensure efficient nutrient absorption and metabolism. To identify gene networks affected by weaning in bovine rumen, Holstein bull calves were fed commercial milk replacer only (MRO) until 42 days of age, then were provided diets of either milk + orchardgrass hay (MH) or milk + grain-based calf starter (MG). Rumen epithelial RNA was extracted from calves sacrificed at four time points: day 14 (n = 3) and day 42 (n = 3) of age while fed the MRO diet and day 56 (n = 3/diet) and day 70 (n = 3/diet) while fed the MH and MG diets for transcript profiling by microarray hybridization. Five two-group comparisons were made using Permutation Analysis of Differential Expression® to identify differentially expressed genes over time and developmental stage between days 14 and 42 within the MRO diet, between day 42 on the MRO diet and day 56 on the MG or MH diets, and between the MG and MH diets at days 56 and 70. Ingenuity Pathway Analysis (IPA) of differentially expressed genes during weaning indicated the top 5 gene networks involving molecules participating in lipid metabolism, cell morphology and death, cellular growth and proliferation, molecular transport, and the cell cycle. Putative genes functioning in the establishment of the rumen microbial population and associated rumen epithelial inflammation during weaning were identified. Activation of transcription factor PPAR-α was identified by IPA software as an important regulator of molecular changes in rumen epithelium that function in papillary development and fatty acid oxidation during the transition from pre-rumination to rumination. Thus, molecular markers of rumen development and gene networks regulating differentiation and growth of rumen epithelium were identified for selecting targets and methods for improving and assessing rumen development and function, particularly in the growing calf.

  6. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    PubMed

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  7. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    PubMed Central

    Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna

    2012-01-01

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313

  8. Prevalence of the Pro12Ala missense mutation in the PPARG2 gene in Kuwaiti patients with primary knee osteoarthritis

    PubMed Central

    Al-Jarallah, Khaled F.; Shehab, Diaa K.; Haider, Mohammad Z.

    2011-01-01

    BACKGROUND AND OBJECTIVES: Peroxisome proliferator–activated receptors (PPARs) play an important role in a number of cellular and metabolic functions. This study was carried out to determine the prevalence of a missense mutation (Pro12Ala) in the PPARG2 gene in Kuwaiti Arab patients with primary knee osteoarthritis (OA) and healthy controls with the aim of identifying a possible association. DESIGN AND SETTING: A prospective cross-sectional study carried out at three major teaching hospitals (referral centers) in the country over a one-year period. PATIENTS AND METHODS: The prevalence of PPARG2 gene Pro12Ala missense mutation was determined in 104 Kuwaiti Arab patients with primary knee OA and 111 ethnically matched healthy controls. The prevalence of this Pro12Ala missense mutation was also determined in clinical subgroups of OA patients divided on the basis of age at onset, function and radiologic grading. RESULTS The Pro-Pro genotype of the PPARG2 gene Pro12Ala missense mutation was detected in 95/104 (91.3%) cases compared to 111/111 (100%) in the control subjects. The heterozygous Pro-Ala genotype was detected in 9/104 (8.7%) of the OA patients, while it was not detected in any of the controls. The Ala-Ala genotype was not detected in any of the OA patients or the controls. No significant differences were detected in the PPARG2 gene Pro12Ala genotypes in the subgroups of patients classified on the basis of age at onset, functional assessment using Lequesne’s functional index, and radiological grading using Kellgren-Lawrence (K-L) grading. CONCLUSIONS This study found no significant association between the PPARG2 gene Pro12Ala missense mutation and knee OA. However, the presence of the Pro-Pro genotype of the PPARG2 gene mutation has a protective effect against development of OA. PMID:21245597

  9. Predicting the Impact of Alternative Splicing on Plant MADS Domain Protein Function

    PubMed Central

    Severing, Edouard I.; van Dijk, Aalt D. J.; Morabito, Giuseppa; Busscher-Lange, Jacqueline; Immink, Richard G. H.; van Ham, Roeland C. H. J.

    2012-01-01

    Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1–3) subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP), resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the potential impact on the interaction capabilities of the encoded MIKC proteins. PMID:22295091

  10. Gene network biological validity based on gene-gene interaction relevance.

    PubMed

    Gómez-Vela, Francisco; Díaz-Díaz, Norberto

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.

  11. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    PubMed

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.

  12. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.

    PubMed

    Brown, William M

    2015-12-01

    Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Analysis of the Elodea nuttallii transcriptome in response to mercury and cadmium pollution: development of sensitive tools for rapid ecotoxicological testing.

    PubMed

    Regier, Nicole; Baerlocher, Loïc; Münsterkötter, Martin; Farinelli, Laurent; Cosio, Claudia

    2013-08-06

    Toxic metals polluting aquatic ecosystems are taken up by inhabitants and accumulate in the food web, affecting species at all trophic levels. It is therefore important to have good tools to assess the level of risk represented by toxic metals in the environment. Macrophytes are potential organisms for the identification of metal-responsive biomarkers but are still underrepresented in ecotoxicology. In the present study, we used next-generation sequencing to investigate the transcriptomic response of Elodea nuttallii exposed to enhanced concentrations of Hg and Cd. We de novo assembled more than 60 000 contigs, of which we found 170 to be regulated dose-dependently by Hg and 212 by Cd. Functional analysis showed that these genes were notably related to energy and metal homeostasis. Expression analysis using nCounter of a subset of genes showed that the gene expression pattern was able to assess toxic metal exposure in complex environmental samples and was more sensitive than other end points (e.g., bioaccumulation, photosynthesis, etc.). In conclusion, we demonstrate the feasibility of using gene expression signatures for the assessment of environmental contamination, using an organism without previous genetic information. This is of interest to ecotoxicology in a wider sense given the possibility to develop specific and sensitive bioassays.

  14. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle.

    PubMed

    Auffret, Marc D; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; John Wallace, R; Freeman, Tom C; Stewart, Robert; Watson, Mick; Roehe, Rainer

    2017-12-11

    The emergence and spread of antimicrobial resistance is the most urgent current threat to human and animal health. An improved understanding of the abundance of antimicrobial resistance genes and genes associated with microbial colonisation and pathogenicity in the animal gut will have a major role in reducing the contribution of animal production to this problem. Here, the influence of diet on the ruminal resistome and abundance of pathogenicity genes was assessed in ruminal digesta samples taken from 50 antibiotic-free beef cattle, comprising four cattle breeds receiving two diets containing different proportions of concentrate. Two hundred and four genes associated with antimicrobial resistance (AMR), colonisation, communication or pathogenicity functions were identified from 4966 metagenomic genes using KEGG identification. Both the diversity and abundance of these genes were higher in concentrate-fed animals. Chloramphenicol and microcin resistance genes were dominant in samples from forage-fed animals (P < 0.001), while aminoglycoside and streptomycin resistances were enriched in concentrate-fed animals. The concentrate-based diet also increased the relative abundance of Proteobacteria, which includes many animal and zoonotic pathogens. A high ratio of Proteobacteria to (Firmicutes + Bacteroidetes) was confirmed as a good indicator for rumen dysbiosis, with eight cases all from concentrate-fed animals. Finally, network analysis demonstrated that the resistance/pathogenicity genes are potentially useful as biomarkers for health risk assessment of the ruminal microbiome. Diet has important effects on the complement of AMR genes in the rumen microbial community, with potential implications for human and animal health.

  15. HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy.

    PubMed

    Friedrichs, Frauke; Zugck, Christian; Rauch, Gerd-Jörg; Ivandic, Boris; Weichenhan, Dieter; Müller-Bardorff, Margit; Meder, Benjamin; El Mokhtari, Nour Eddine; Regitz-Zagrosek, Vera; Hetzer, Roland; Schäfer, Arne; Schreiber, Stefan; Chen, Jian; Neuhaus, Isaac; Ji, Ruiru; Siemers, Nathan O; Frey, Norbert; Rottbauer, Wolfgang; Katus, Hugo A; Stoll, Monika

    2009-03-01

    Human dilated cardiomyopathy (DCM), a disorder of the cardiac muscle, causes considerable morbidity and mortality and is one of the major causes of sudden cardiac death. Genetic factors play a role in the etiology and pathogenesis of DCM. Disease-associated genetic variations identified to date have been identified in single families or single sporadic patients and explain a minority of the etiology of DCM. We show that a 600-kb region of linkage disequilibrium (LD) on 5q31.2-3, harboring multiple genes, is associated with cardiomyopathy in three independent Caucasian populations (combined P-value = 0.00087). Functional assessment in zebrafish demonstrates that at least three genes, orthologous to loci in this LD block, HBEGF, IK, and SRA1, result independently in a phenotype of myocardial contractile dysfunction when their expression is reduced with morpholino antisense reagents. Evolutionary analysis across multiple vertebrate genomes suggests that this heart failure-associated LD block emerged by a series of genomic rearrangements across amphibian, avian, and mammalian genomes and is maintained as a cluster in mammals. Taken together, these observations challenge the simple notion that disease phenotypes can be traced to altered function of a single locus within a haplotype and suggest that a more detailed assessment of causality can be necessary.

  16. HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy

    PubMed Central

    Friedrichs, Frauke; Zugck, Christian; Rauch, Gerd-Jörg; Ivandic, Boris; Weichenhan, Dieter; Müller-Bardorff, Margit; Meder, Benjamin; El Mokhtari, Nour Eddine; Regitz-Zagrosek, Vera; Hetzer, Roland; Schäfer, Arne; Schreiber, Stefan; Chen, Jian; Neuhaus, Isaac; Ji, Ruiru; Siemers, Nathan O.; Frey, Norbert; Rottbauer, Wolfgang; Katus, Hugo A.; Stoll, Monika

    2009-01-01

    Human dilated cardiomyopathy (DCM), a disorder of the cardiac muscle, causes considerable morbidity and mortality and is one of the major causes of sudden cardiac death. Genetic factors play a role in the etiology and pathogenesis of DCM. Disease-associated genetic variations identified to date have been identified in single families or single sporadic patients and explain a minority of the etiology of DCM. We show that a 600-kb region of linkage disequilibrium (LD) on 5q31.2-3, harboring multiple genes, is associated with cardiomyopathy in three independent Caucasian populations (combined P-value = 0.00087). Functional assessment in zebrafish demonstrates that at least three genes, orthologous to loci in this LD block, HBEGF, IK, and SRA1, result independently in a phenotype of myocardial contractile dysfunction when their expression is reduced with morpholino antisense reagents. Evolutionary analysis across multiple vertebrate genomes suggests that this heart failure-associated LD block emerged by a series of genomic rearrangements across amphibian, avian, and mammalian genomes and is maintained as a cluster in mammals. Taken together, these observations challenge the simple notion that disease phenotypes can be traced to altered function of a single locus within a haplotype and suggest that a more detailed assessment of causality can be necessary. PMID:19064678

  17. Differential Gene Expression in Pycnoporus coccineus during Interspecific Mycelial Interactions with Different Competitors

    PubMed Central

    Levasseur, Anthony; Record, Eric

    2013-01-01

    Fungi compete against each other for environmental resources. These interspecific combative interactions encompass a wide range of mechanisms. In this study, we highlight the ability of the white-rot fungus Pycnoporus coccineus to quickly overgrow or replace a wide range of competitor fungi, including the gray-mold fungus Botrytis cinerea and the brown-rot fungus Coniophora puteana. To gain a better understanding of the mechanisms deployed by P. coccineus to compete against other fungi and to assess whether common pathways are used to interact with different competitors, differential gene expression in P. coccineus during cocultivation was assessed by transcriptome sequencing and confirmed by quantitative reverse transcription-PCR analysis of a set of 15 representative genes. Compared with the pure culture, 1,343 transcripts were differentially expressed in the interaction with C. puteana and 4,253 were differentially expressed in the interaction with B. cinerea, but only 197 transcripts were overexpressed in both interactions. Overall, the results suggest that a broad array of functions is necessary for P. coccineus to replace its competitors and that different responses are elicited by the two competitors, although a portion of the mechanism is common to both. However, the functions elicited by the expression of specific transcripts appear to converge toward a limited set of roles, including detoxification of secondary metabolites. PMID:23974131

  18. Large scale genomic reorganization of topological domains at the HoxD locus.

    PubMed

    Fabre, Pierre J; Leleu, Marion; Mormann, Benjamin H; Lopez-Delisle, Lucille; Noordermeer, Daan; Beccari, Leonardo; Duboule, Denis

    2017-08-07

    The transcriptional activation of HoxD genes during mammalian limb development involves dynamic interactions with two topologically associating domains (TADs) flanking the HoxD cluster. In particular, the activation of the most posterior HoxD genes in developing digits is controlled by regulatory elements located in the centromeric TAD (C-DOM) through long-range contacts. To assess the structure-function relationships underlying such interactions, we measured compaction levels and TAD discreteness using a combination of chromosome conformation capture (4C-seq) and DNA FISH. We assessed the robustness of the TAD architecture by using a series of genomic deletions and inversions that impact the integrity of this chromatin domain and that remodel long-range contacts. We report multi-partite associations between HoxD genes and up to three enhancers. We find that the loss of native chromatin topology leads to the remodeling of TAD structure following distinct parameters. Our results reveal that the recomposition of TAD architectures after large genomic re-arrangements is dependent on a boundary-selection mechanism in which CTCF mediates the gating of long-range contacts in combination with genomic distance and sequence specificity. Accordingly, the building of a recomposed TAD at this locus depends on distinct functional and constitutive parameters.

  19. Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs

    PubMed Central

    Dutta, Noton K.; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C.; Bader, Joel S.

    2014-01-01

    ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. PMID:24549847

  20. Structural and Functional Assessment of APOBEC3G Macromolecular Complexes

    PubMed Central

    Polevoda, Bogdan; McDougall, William M.; Bennett, Ryan P.; Salter, Jason D.; Smith, Harold C.

    2016-01-01

    There are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells. In both cases, formation of higher-order structures driven by APOBEC protein-protein interactions and binding to RNA and/or single stranded DNA are integral to their function. In some circumstances, these interactions are regulatory and modulate APOBEC activities. We are just beginning to understand how macromolecular interactions drive processes such as APOBEC subcellular compartmentalization, formation of holoenzyme complexes, gene targeting, foreign DNA restriction, anti-retroviral activity, formation of ribonucleoprotein particles and APOBEC degradation. Protein-protein and protein-nucleic acid cross-linking methods coupled with mass spectrometry, electrophoretic mobility shift assays, glycerol gradient sedimentation, fluorescence anisotropy and APOBEC deaminase assays are enabling mapping of interacting surfaces that are essential for these functions. The goal of this methods review is through example of our research on APOBEC3G, describe the application of cross-linking methods to characterize and quantify macromolecular interactions and their functional implications. Given the homology in structure and function, it is proposed that these methods will be generally applicable to the discovery process for other APOBEC and RNA and DNA editing and modifying proteins. PMID:26988126

  1. Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during In Situ Uranium Reduction

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.

    2012-01-01

    To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592

  2. Genic insights from integrated human proteomics in GeneCards.

    PubMed

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/. © The Author(s) 2016. Published by Oxford University Press.

  3. WONOEP appraisal: new genetic approaches to study epilepsy

    PubMed Central

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non-coding RNAs involved in modifying gene expression following seizures. In addition, genetically-based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient iPS cells and genetically-modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Significance Genetics has considerably changed the field of epilepsy research and is paving the way for better diagnosis and therapies for patients with epilepsy. PMID:24965021

  4. The role of ghrelin and ghrelin-receptor gene variants and promoter activity in type 2 diabetes.

    PubMed

    Garcia, Edwin A; King, Peter; Sidhu, Kally; Ohgusu, Hideko; Walley, Andrew; Lecoeur, Cecile; Gueorguiev, Maria; Khalaf, Sahira; Davies, Derek; Grossman, Ashley B; Kojima, Masayasu; Petersenn, Stephan; Froguel, Phillipe; Korbonits, Márta

    2009-08-01

    Ghrelin and its receptor play an important role in glucose metabolism and energy homeostasis, and therefore they are functional candidates for genes carrying susceptibility alleles for type 2 diabetes. We assessed common genetic variation of the ghrelin (GHRL; five single nucleotide polymorphisms (SNP)) and the ghrelin-receptor (GHSR) genes (four SNPs) in 610 Caucasian patients with type 2 diabetes and 820 controls. In addition, promoter reporter assays were conducted to model the regulatory regions of both genes. Neither GHRL nor GHSR gene SNPs were associated with type 2 diabetes. One of the ghrelin haplotypes showed a marginal protective role in type 2 diabetes. We observed profound differences in the regulation of the GHRL gene according to promoter sequence variants. There are three different GHRL promoter haplotypes represented in the studied cohort causing up to 45% difference in the level of gene expression, while the promoter region of GHSR gene is primarily represented by a single haplotype. The GHRL and GHSR gene variants are not associated with type 2 diabetes, although GHRL promoter variants have significantly different activities.

  5. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less

  6. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE PAGES

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; ...

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.« less

  7. Management of Gene Variants of Unknown Significance: Analysis Method and Risk Assessment of the VHL Mutation p.P81S (c.241C>T).

    PubMed

    Alosi, Daniela; Bisgaard, Marie Luise; Hemmingsen, Sophie Nowak; Krogh, Lotte Nylandsted; Mikkelsen, Hanne Birte; Binderup, Marie Louise Mølgaard

    2017-02-01

    Evaluation of the pathogenicity of a gene variant of unknown significance (VUS) is crucial for molecular diagnosis and genetic counseling, but can be challenging. This is especially so in phenotypically variable diseases, such as von Hippel-Lindau disease (vHL). vHL is caused by germline mutations in the VHL gene, which predispose to the development of multiple tumors such as central nervous system hemangioblastomas and renal cell carcinoma (RCC). We propose a method for the evaluation of VUS pathogenicity through our experience with the VHL missense mutation c.241C>T (p.P81S). 1) Clinical evaluation of known variant carriers: We evaluated a family of five VHL p.P81S carriers, as well as the clinical characteristics of all the p.P81S carriers reported in the literature; 2) Evaluation of tumor tissue via genetic analysis, histology, and immunohistochemistry (IHC); 3) Assessment of the variant's impact on protein structure and function, using multiple databases, in silico algorithms, and reports of functional studies. Only one family member had clinical signs of vHL with early-onset RCC. IHC analysis showed no VHL protein expressed in the tumor, consistent with biallelic VHL inactivation. The majority of in silico algorithms reported p.P81S as possibly pathogenic in relation to vHL or RCC, but there were discrepancies. Functional studies suggest that p.P81S impairs the VHL protein's function. The VHL p.P81S mutation is most likely a low-penetrant pathogenic variant predisposing to RCC development. We suggest the above-mentioned method for VUS evaluation with use of different methods, especially a variety of in silico methods and tumor tissue analysis.

  8. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  9. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  10. Functional Genomic Screening Approaches in Mechanistic Toxicology and Potential Future Applications of CRISPR-Cas9

    PubMed Central

    Shen, Hua; McHale, Cliona M.; Smith, Martyn T; Zhang, Luoping

    2015-01-01

    Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells, have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology. PMID:26041264

  11. Dietary Nutrient Intake, Ethnicity, and Epigenetic Silencing of Lung Cancer Genes Detected in Sputum in New Mexican Smokers.

    PubMed

    Leng, Shuguang; Picchi, Maria A; Kang, Huining; Wu, Guodong; Filipczak, Piotr T; Juri, Daniel E; Zhang, Xiequn; Gauderman, W James; Gilliland, Frank D; Belinsky, Steven A

    2018-02-01

    Lung cancer gene methylation detected in sputum assesses field cancerization and predicts lung cancer incidence. Hispanic smokers have higher lung cancer susceptibility compared with non-Hispanic whites (NHW). We aimed to identify novel dietary nutrients affecting lung cancer gene methylation and determine the degree of ethnic disparity in methylation explained by diet. Dietary intakes of 139 nutrients were assessed using a validated Harvard food frequency questionnaire in 327 Hispanics and 1,502 NHWs from the Lovelace Smokers Cohort. Promoter methylation of 12 lung cancer genes was assessed in sputum DNA. A global association was identified between dietary intake and gene methylation ( P permutation = 0.003). Seventeen nutrient measurements were identified with magnitude of association with methylation greater than that seen for folate. A stepwise approach identified B12, manganese, sodium, and saturated fat as the minimally correlated set of nutrients whose optimal intakes could reduce the methylation by 36% ( P permutation < 0.001). Six protective nutrients included vitamin D, B12, manganese, magnesium, niacin, and folate. Approximately 42% of ethnic disparity in methylation was explained by insufficient intake of protective nutrients in Hispanics compared with NHWs. Functional validation of protective nutrients showed an enhanced DNA repair capacity toward double-strand DNA breaks, a mechanistic biomarker strongly linked to acquisition of lung cancer gene methylation in smokers. Dietary intake is a major modifiable factor for preventing promoter methylation of lung cancer genes in smokers' lungs. Complex dietary supplements could be developed on the basis of these protective nutrients for lung cancer chemoprevention in smokers. Hispanic smokers may benefit the most from this complex for reducing their lung cancer susceptibility. Cancer Prev Res; 11(2); 93-102. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  13. Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues.

    PubMed

    Parrish, R Ryley; Day, Jeremy J; Lubin, Farah D

    2012-07-01

    DNA methylation is an epigenetic modification that is essential for the development and mature function of the central nervous system. Due to the relevance of this modification to the transcriptional control of gene expression, it is often necessary to examine changes in DNA methylation patterns with both gene and single-nucleotide resolution. Here, we describe an in-depth basic protocol for direct bisulfite sequencing of DNA isolated from brain tissue, which will permit direct assessment of methylation status at individual genes as well as individual cytosine molecules/nucleotides within a genomic region. This method yields analysis of DNA methylation patterns that is robust, accurate, and reproducible, thereby allowing insights into the role of alterations in DNA methylation in brain tissue.

  14. Gene Silencing in Crustaceans: From Basic Research to Biotechnologies

    PubMed Central

    Sagi, Amir; Manor, Rivka; Ventura, Tomer

    2013-01-01

    Gene silencing through RNA interference (RNAi) is gaining momentum for crustaceans, both in basic research and for commercial development. RNAi has proven instrumental in a growing number of crustacean species, revealing the functionality of novel crustacean genes essential among others to development, growth, metabolism and reproduction. Extensive studies have also been done on silencing of viral transcripts in crustaceans, contributing to the understanding of the defense mechanisms of crustaceans and strategies employed by viruses to overcome these. The first practical use of gene silencing in aquaculture industry has been recently achieved, through manipulation of a crustacean insulin-like androgenic gland hormone. This review summarizes the advancements in the use of RNAi in crustaceans, and assesses the advantages of this method, as well as the current hurdles that hinder its large-scale practice. PMID:24705266

  15. Clinical trials of GMP products in the gene therapy field.

    PubMed

    Bamford, Kathleen B

    2011-01-01

    Advances in gene therapy are increasingly leading to clinical assessment in many fields of medicine with diverse approaches. The basic science stems from approaches aimed at different functions such as correcting a missing/abnormal gene, altering the proportion or expression of normal genes to augment a physiological process or using this principle to destroy malignant or infected cells. As the technology advances, it is increasingly important to ensure that clinical trials answer the questions that need to be asked. In this chapter we review examples of published clinical trials, resources for accessing information about registered trials, the process of regulating trials, good clinical practice, and good manufacturing practice as well as summarising the approach taken by regulatory authorities in reviewing applications for the introduction of products for use in the clinic.

  16. Breath Biomarkers in Environmental Health Science: Exploring Patterns in the Human Exposome

    EPA Science Inventory

    The human genome is the counterpart to the human exposome with respect to the gene × environment interaction that describes health state and outcome. The genome has already been sequenced and is in the process of being assessed for specific functionality; to similarly decode the ...

  17. Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome.

    PubMed

    Hansen, Katelin F; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H; Loeser, Jacob; Hesse, Andrea M; Page, Chloe E; Pelz, Carl; Arthur, J Simon C; Impey, Soren; Obrietan, Karl

    2016-02-01

    miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. © 2016 Hansen et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome

    PubMed Central

    Hansen, Katelin F.; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H.; Loeser, Jacob; Hesse, Andrea M.; Page, Chloe E.; Pelz, Carl; Arthur, J. Simon C.; Impey, Soren

    2016-01-01

    miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. PMID:26773099

  19. [Molecular genetics of functional articulation disorder in children].

    PubMed

    Zhao, Yun-Jing; Ma, Hong-Wei

    2012-04-01

    Genetic factors are an important cause of functional articulation disorder in children. This article reviews some genes and chromosome regions associated with a genetic susceptibility to functional articulation disorders. The forkhead box P2 (FOXP2) gene on chromosome 7 is introduced in details including its structure, expression and function. The relationship between the FOXP2 gene and developmental apraxia of speech is discussed. As a transcription factor, FOXP2 gene regulates the expression of many genes. CNTNAP2 as an important target gene of FOXP2 is a key gene influencing language development. Functional articulation disorder may be developed to dyslexia, therefore some candidate regions and genes related to dyslexia, such as 3p12-13, 15q11-21, 6p22 and 1p34-36, are also introduced. ROBO1 gene in 3p12.3, ZNF280D gene, TCF12 gene, EKN1 gene in 15q21, and KIAA0319 gene in 6p22 have been candidate genes for the study of functional articulation disorder.

  20. Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    PubMed Central

    Chang, Howard C.; Sen, Anindya; Kalloo, Geetika; Harris, Jevede; Barsby, Tom; Walsh, Melissa B.; Satterlee, John S.; Li, Chris; Van Vactor, David; Artavanis-Tsakonas, Spyros; Hart, Anne C.

    2010-01-01

    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species. PMID:21124729

  1. Quantification of multiple gene expression in individual cells.

    PubMed

    Peixoto, António; Monteiro, Marta; Rocha, Benedita; Veiga-Fernandes, Henrique

    2004-10-01

    Quantitative gene expression analysis aims to define the gene expression patterns determining cell behavior. So far, these assessments can only be performed at the population level. Therefore, they determine the average gene expression within a population, overlooking possible cell-to-cell heterogeneity that could lead to different cell behaviors/cell fates. Understanding individual cell behavior requires multiple gene expression analyses of single cells, and may be fundamental for the understanding of all types of biological events and/or differentiation processes. We here describe a new reverse transcription-polymerase chain reaction (RT-PCR) approach allowing the simultaneous quantification of the expression of 20 genes in the same single cell. This method has broad application, in different species and any type of gene combination. RT efficiency is evaluated. Uniform and maximized amplification conditions for all genes are provided. Abundance relationships are maintained, allowing the precise quantification of the absolute number of mRNA molecules per cell, ranging from 2 to 1.28 x 10(9) for each individual gene. We evaluated the impact of this approach on functional genetic read-outs by studying an apparently homogeneous population (monoclonal T cells recovered 4 d after antigen stimulation), using either this method or conventional real-time RT-PCR. Single-cell studies revealed considerable cell-to-cell variation: All T cells did not express all individual genes. Gene coexpression patterns were very heterogeneous. mRNA copy numbers varied between different transcripts and in different cells. As a consequence, this single-cell assay introduces new and fundamental information regarding functional genomic read-outs. By comparison, we also show that conventional quantitative assays determining population averages supply insufficient information, and may even be highly misleading.

  2. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    PubMed

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less

  4. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    PubMed

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  5. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    PubMed Central

    2009-01-01

    Background Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders. PMID:19925672

  6. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics

    USGS Publications Warehouse

    Fahrenfeld, N.L.; Reyes, Hannah Delos; Eramo, Alessia; Akob, Denise M.; Mumford, Adam; Cozzarelli, Isabelle M.

    2017-01-01

    Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18–86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.

  7. Functional Assessment of Genetic Variants with Outcomes Adapted to Clinical Decision-Making

    PubMed Central

    Thouvenot, Pierre; Ben Yamin, Barbara; Fourrière, Lou; Lescure, Aurianne; Boudier, Thomas; Del Nery, Elaine; Chauchereau, Anne; Goldgar, David E.; Stoppa-Lyonnet, Dominique; Nicolas, Alain; Millot, Gaël A.

    2016-01-01

    Understanding the medical effect of an ever-growing number of human variants detected is a long term challenge in genetic counseling. Functional assays, based on in vitro or in vivo evaluations of the variant effects, provide essential information, but they require robust statistical validation, as well as adapted outputs, to be implemented in the clinical decision-making process. Here, we assessed 25 pathogenic and 15 neutral missense variants of the BRCA1 breast/ovarian cancer susceptibility gene in four BRCA1 functional assays. Next, we developed a novel approach that refines the variant ranking in these functional assays. Lastly, we developed a computational system that provides a probabilistic classification of variants, adapted to clinical interpretation. Using this system, the best functional assay exhibits a variant classification accuracy estimated at 93%. Additional theoretical simulations highlight the benefit of this ready-to-use system in the classification of variants after functional assessment, which should facilitate the consideration of functional evidences in the decision-making process after genetic testing. Finally, we demonstrate the versatility of the system with the classification of siRNAs tested for human cell growth inhibition in high throughput screening. PMID:27272900

  8. Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs.

    PubMed

    Francica, Joseph R; Zak, Daniel E; Linde, Caitlyn; Siena, Emilio; Johnson, Carrie; Juraska, Michal; Yates, Nicole L; Gunn, Bronwyn; De Gregorio, Ennio; Flynn, Barbara J; Valiante, Nicholas M; Malyala, Padma; Barnett, Susan W; Sarkar, Pampi; Singh, Manmohan; Jain, Siddhartha; Ackerman, Margaret; Alam, Munir; Ferrari, Guido; Tomaras, Georgia D; O'Hagan, Derek T; Aderem, Alan; Alter, Galit; Seder, Robert A

    2017-11-28

    Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function.

  9. Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology.

    PubMed

    Robinson, Joshua F; Theunissen, Peter T; van Dartel, Dorien A M; Pennings, Jeroen L; Faustman, Elaine M; Piersma, Aldert H

    2011-09-01

    Toxicogenomic evaluations may improve toxicity prediction of in vitro-based developmental models, such as whole embryo culture (WEC) and embryonic stem cells (ESC), by providing a robust mechanistic marker which can be linked with responses associated with developmental toxicity in vivo. While promising in theory, toxicogenomic comparisons between in vivo and in vitro models are complex due to inherent differences in model characteristics and experimental design. Determining factors which influence these global comparisons are critical in the identification of reliable mechanistic-based markers of developmental toxicity. In this study, we compared available toxicogenomic data assessing the impact of the known teratogen, methylmercury (MeHg) across a diverse set of in vitro and in vivo models to investigate the impact of experimental variables (i.e. model, dose, time) on our comparative assessments. We evaluated common and unique aspects at both the functional (Gene Ontology) and gene level of MeHg-induced response. At the functional level, we observed stronger similarity in MeHg-response between mouse embryos exposed in utero (2 studies), ESC, and WEC as compared to liver, brain and mouse embryonic fibroblast MeHg studies. These findings were strongly correlated to the presence of a MeHg-induced developmentally related gene signature. In addition, we identified specific MeHg-induced gene expression alterations associated with developmental signaling and heart development across WEC, ESC and in vivo systems. However, the significance of overlap between studies was highly dependent on traditional experimental variables (i.e. dose, time). In summary, we identify promising examples of unique gene expression responses which show in vitro-in vivo similarities supporting the relevance of in vitro developmental models for predicting in vivo developmental toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs

    PubMed Central

    Francica, Joseph R.; Zak, Daniel E.; Linde, Caitlyn; Siena, Emilio; Johnson, Carrie; Juraska, Michal; Yates, Nicole L.; Gunn, Bronwyn; De Gregorio, Ennio; Flynn, Barbara J.; Valiante, Nicholas M.; Malyala, Padma; Barnett, Susan W.; Sarkar, Pampi; Singh, Manmohan; Jain, Siddhartha; Ackerman, Margaret; Alam, Munir; Ferrari, Guido; Tomaras, Georgia D.; O’Hagan, Derek T.; Aderem, Alan; Alter, Galit

    2017-01-01

    Adjuvants have a critical role for improving vaccine efficacy against many pathogens, including HIV. Here, using transcriptional RNA profiling and systems serology, we assessed how distinct innate pathways altered HIV-specific antibody responses in nonhuman primates (NHPs) using 8 clinically based adjuvants. NHPs were immunized with a glycoprotein 140 HIV envelope protein (Env) and insoluble aluminum salts (alum), MF59, or adjuvant nanoemulsion (ANE) coformulated with or without Toll-like receptor 4 (TLR4) and 7 agonists. These were compared with Env administered with polyinosinic-polycytidylic acid:poly-L-lysine, carboxymethylcellulose (pIC:LC) or immune-stimulating complexes. Addition of the TLR4 agonist to alum enhanced upregulation of a set of inflammatory genes, whereas the TLR7 agonist suppressed expression of alum-responsive inflammatory genes and enhanced upregulation of antiviral and interferon (IFN) genes. Moreover, coformulation of the TLR4 or 7 agonists with alum boosted Env-binding titers approximately threefold to 10-fold compared with alum alone, but remarkably did not alter gene expression or enhance antibody titers when formulated with ANE. The hierarchy of adjuvant potency was established after the second of 4 immunizations. In terms of antibody durability, antibody titers decreased ∼10-fold after the final immunization and then remained stable after 65 weeks for all adjuvants. Last, Env-specific Fc-domain glycan structures and a series of antibody effector functions were assessed by systems serology. Antiviral/IFN gene signatures correlated with Fc-receptor binding across all adjuvant groups. This study defines the potency and durability of 8 different clinically based adjuvants in NHPs and shows how specific innate pathways can alter qualitative aspects of Env antibody function. PMID:29296883

  11. A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression.

    PubMed

    Kuhl, U; Lassner, D; Dorner, A; Rohde, M; Escher, F; Seeberg, B; Hertel, E; Tschope, C; Skurk, C; Gross, U M; Schultheiss, H-P; Poller, W

    2013-09-01

    Recent studies have detected erythrovirus genomes in the hearts of cardiomyopathy and cardiac transplant patients. Assessment of the functional status of viruses may provide clinically important information beyond detection of the viral genomes. Here, we report transcriptional activation of cardiotropic erythrovirus to be associated with strongly altered myocardial gene expression in a distinct subgroup of cardiomyopathy patients. Endomyocardial biopsies (EMBs) from 415 consecutive cardiac erythrovirus (B19V)-positive patients with clinically suspected cardiomyopathy were screened for virus-encoded VP1/VP2 mRNA indicating transcriptional activation of the virus, and correlated with cardiac host gene expression patterns in transcriptionally active versus latent infections, and in virus-free control hearts. Transcriptional activity was detected in baseline biopsies of only 66/415 patients (15.9 %) harbouring erythrovirus. At the molecular level, significant differences between cardiac B19V-positive patients with transcriptionally active versus latent virus were revealed by expression profiling of EMBs. Importantly, latent B19V infection was indistinguishable from controls. Genes involved encode proteins of antiviral immune response, B19V receptor complex, and mitochondrial energy metabolism. Thus, functional mapping of erythrovirus allows definition of a subgroup of B19V-infected cardiomyopathy patients characterized by virus-encoded VP1/VP2 transcripts and anomalous host myocardial transcriptomes. Cardiac B19V reactivation from latency, as reported here for the first time, is a key factor required for erythrovirus to induce altered cardiac gene expression in a subgroup of cardiomyopathy patients. Virus genome detection is insufficient to assess pathogenic potential, but additional transcriptional mapping should be incorporated into future pathogenetic and therapeutic studies both in cardiology and transplantation medicine.

  12. Alteration of human umbilical vein endothelial cell gene expression in different biomechanical environments.

    PubMed

    Shoajei, Shahrokh; Tafazzoli-Shahdpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin

    2014-05-01

    Biomechanical environments affect the function of cells. In this study we analysed the effects of five mechanical stimuli on the gene expression of human umbilical vein endothelial cells (HUVECs) in mRNA level using real-time PCR. The following loading regimes were applied on HUVECs for 48 h: intermittent (0-5 dyn/cm(2) , 1 Hz) and uniform (5 dyn/cm(2) ) shear stresses concomitant by 10% intermittent equiaxial stretch (1 Hz), uniform shear stress alone (5 dyn/cm(2) ), and intermittent uniaxial and equiaxial stretches (10%, 1 Hz). A new bioreactor was made to apply uniform/cyclic shear and tensile loadings. Three endothelial suggestive specific genes (vascular endothelial growth factor receptor-2 (VEGFR-2, also known as FLK-1), von Willebrand Factor (vWF) and vascular endothelial-cadherin (VE-cadherin)), and two smooth muscle genes (α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC)) were chosen for assessment of alteration in gene expression of endothelial cells and transdifferentiation toward smooth cells following load applications. Shear stress alone enhanced the endothelial gene expression significantly, while stretching alone was identified as a transdifferentiating factor. Cyclic equiaxial stretch contributed less to elevation of smooth muscle genes compared to uniaxial stretch. Cyclic shear stress in comparison to uniform shear stress concurrent with cyclic stretch was more influential on promotion of endothelial genes expression. Influence of different mechanical stimuli on gene expression may open a wider horizon to regulate functions of cell for tissue engineering purposes. © 2013 International Federation for Cell Biology.

  13. Investigation of a thiolated polymer in gene delivery

    NASA Astrophysics Data System (ADS)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  14. Mining microarrays for metabolic meaning: nutritional regulation of hypothalamic gene expression.

    PubMed

    Mobbs, Charles V; Yen, Kelvin; Mastaitis, Jason; Nguyen, Ha; Watson, Elizabeth; Wurmbach, Elisa; Sealfon, Stuart C; Brooks, Andrew; Salton, Stephen R J

    2004-06-01

    DNA microarray analysis has been used to investigate relative changes in the level of gene expression in the CNS, including changes that are associated with disease, injury, psychiatric disorders, drug exposure or withdrawal, and memory formation. We have used oligonucleotide microarrays to identify hypothalamic genes that respond to nutritional manipulation. In addition to commonly used microarray analysis based on criteria such as fold-regulation, we have also found that simply carrying out multiple t tests then sorting by P value constitutes a highly reliable method to detect true regulation, as assessed by real-time polymerase chain reaction (PCR), even for relatively low abundance genes or relatively low magnitude of regulation. Such analyses directly suggested novel mechanisms that mediate effects of nutritional state on neuroendocrine function and are being used to identify regulated gene products that may elucidate the metabolic pathology of obese ob/ob, lean Vgf-/Vgf-, and other models with profound metabolic impairments.

  15. Is Each Light-Harvesting Complex Protein Important for Plant Fitness?1[w

    PubMed Central

    Ganeteg, Ulrika; Külheim, Carsten; Andersson, Jenny; Jansson, Stefan

    2004-01-01

    Many of the photosynthetic genes are conserved among all higher plants, indicating that there is strong selective pressure to maintain the genes of each protein. However, mutants of these genes often lack visible growth phenotypes, suggesting that they are important only under certain conditions or have overlapping functions. To assess the importance of specific genes encoding the light-harvesting complex (LHC) proteins for the survival of the plant in the natural environment, we have combined two different scientific traditions by using an ecological fitness assay on a set of genetically modified Arabidopsis plants with differing LHC protein contents. The fitness of all of the LHC-deficient plants was reduced in some of the growth environments, supporting the hypothesis that each of the genes has been conserved because they provide ecological flexibility, which is of great adaptive value given the highly variable conditions encountered in nature. PMID:14730076

  16. Corticosteroid-induced gene expression in allergen-challenged asthmatic subjects taking inhaled budesonide

    PubMed Central

    Kelly, MM; King, EM; Rider, CF; Gwozd, C; Holden, NS; Eddleston, J; Zuraw, B; Leigh, R; O'Byrne, PM; Newton, R

    2012-01-01

    BACKGROUND AND PURPOSE Inhaled corticosteroids (ICS) are the cornerstone of asthma pharmacotherapy and, acting via the glucocorticoid receptor (GR), reduce inflammatory gene expression. While this is often attributed to a direct inhibitory effect of the GR on inflammatory gene transcription, corticosteroids also induce the expression of anti-inflammatory genes in vitro. As there are no data to support this effect in asthmatic subjects taking ICS, we have assessed whether ICS induce anti-inflammatory gene expression in subjects with atopic asthma. EXPERIMENTAL APPROACH Bronchial biopsies from allergen-challenged atopic asthmatic subjects taking inhaled budesonide or placebo were subjected to gene expression analysis using real-time reverse transcriptase-PCR for the corticosteroid-inducible genes (official gene symbols with aliases in parentheses): TSC22D3 [glucocorticoid-induced leucine zipper (GILZ)], dual-specificity phosphatase-1 (MAPK phosphatase-1), both anti-inflammatory effectors, and FKBP5 [FK506-binding protein 51 (FKBP51)], a regulator of GR function. Cultured pulmonary epithelial and smooth muscle cells were also treated with corticosteroids before gene expression analysis. KEY RESULTS Compared with placebo, GILZ and FKBP51 mRNA expression was significantly elevated in budesonide-treated subjects. Budesonide also increased GILZ expression in human epithelial and smooth muscle cells in culture. Immunostaining of bronchial biopsies revealed GILZ expression in the airways epithelium and smooth muscle of asthmatic subjects. CONCLUSIONS AND IMPLICATIONS Expression of the corticosteroid-induced genes, GILZ and FKBP51, is up-regulated in the airways of allergen-challenged asthmatic subjects taking inhaled budesonide. Consequently, the biological effects of corticosteroid-induced genes should be considered when assessing the actions of ICS. Treatment modalities that increase or decrease GR-dependent transcription may correspondingly affect corticosteroid efficacy. PMID:21827450

  17. OGRO: The Overview of functionally characterized Genes in Rice online database.

    PubMed

    Yamamoto, Eiji; Yonemaru, Jun-Ichi; Yamamoto, Toshio; Yano, Masahiro

    2012-12-01

    The high-quality sequence information and rich bioinformatics tools available for rice have contributed to remarkable advances in functional genomics. To facilitate the application of gene function information to the study of natural variation in rice, we comprehensively searched for articles related to rice functional genomics and extracted information on functionally characterized genes. As of 31 March 2012, 702 functionally characterized genes were annotated. This number represents about 1.6% of the predicted loci in the Rice Annotation Project Database. The compiled gene information is organized to facilitate direct comparisons with quantitative trait locus (QTL) information in the Q-TARO database. Comparison of genomic locations between functionally characterized genes and the QTLs revealed that QTL clusters were often co-localized with high-density gene regions, and that the genes associated with the QTLs in these clusters were different genes, suggesting that these QTL clusters are likely to be explained by tightly linked but distinct genes. Information on the functionally characterized genes compiled during this study is now available in the O verview of Functionally Characterized G enes in R ice O nline database (OGRO) on the Q-TARO website ( http://qtaro.abr.affrc.go.jp/ogro ). The database has two interfaces: a table containing gene information, and a genome viewer that allows users to compare the locations of QTLs and functionally characterized genes. OGRO on Q-TARO will facilitate a candidate-gene approach to identifying the genes responsible for QTLs. Because the QTL descriptions in Q-TARO contain information on agronomic traits, such comparisons will also facilitate the annotation of functionally characterized genes in terms of their effects on traits important for rice breeding. The increasing amount of information on rice gene function being generated from mutant panels and other types of studies will make the OGRO database even more valuable in the future.

  18. Gene function prediction with gene interaction networks: a context graph kernel approach.

    PubMed

    Li, Xin; Chen, Hsinchun; Li, Jiexun; Zhang, Zhu

    2010-01-01

    Predicting gene functions is a challenge for biologists in the postgenomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.

  19. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    PubMed

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out to dissect the PHB gene function. The conserved gene evolution indicated that the study in the model species can be translated to human and mammalian studies.

  20. Identification of the key regulating genes of diminished ovarian reserve (DOR) by network and gene ontology analysis.

    PubMed

    Pashaiasl, Maryam; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2016-09-01

    Diminished ovarian reserve (DOR) is one of the reasons for infertility that not only affects both older and young women. Ovarian reserve assessment can be used as a new prognostic tool for infertility treatment decision making. Here, up- and down-regulated gene expression profiles of granulosa cells were analysed to generate a putative interaction map of the involved genes. In addition, gene ontology (GO) analysis was used to get insight intol the biological processes and molecular functions of involved proteins in DOR. Eleven up-regulated genes and nine down-regulated genes were identified and assessed by constructing interaction networks based on their biological processes. PTGS2, CTGF, LHCGR, CITED, SOCS2, STAR and FSTL3 were the key nodes in the up-regulated networks, while the IGF2, AMH, GREM, and FOXC1 proteins were key in the down-regulated networks. MIRN101-1, MIRN153-1 and MIRN194-1 inhibited the expression of SOCS2, while CSH1 and BMP2 positively regulated IGF1 and IGF2. Ossification, ovarian follicle development, vasculogenesis, sequence-specific DNA binding transcription factor activity, and golgi apparatus are the major differential groups between up-regulated and down-regulated genes in DOR. Meta-analysis of publicly available transcriptomic data highlighted the high coexpression of CTGF, connective tissue growth factor, with the other key regulators of DOR. CTGF is involved in organ senescence and focal adhesion pathway according to GO analysis. These findings provide a comprehensive system biology based insight into the aetiology of DOR through network and gene ontology analyses.

  1. Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations

    PubMed Central

    Gu, Yunfu; D. Van Nostrand, Joy; Wu, Liyou; He, Zhili; Qin, Yujia; Zhao, Fang-Jie; Zhou, Jizhong

    2017-01-01

    To understand how soil microbial communities and arsenic (As) functional genes respond to soil arsenic (As) contamination, five soils contaminated with As at different levels were collected from diverse geographic locations, incubated for 54 days under flooded conditions, and examined by both MiSeq sequencing of 16S rRNA gene amplicons and functional gene microarray (GeoChip 4.0). The results showed that both bacterial community structure and As functional gene structure differed among geographical locations. The diversity of As functional genes correlated positively with the diversity of 16S rRNA genes (P< 0.05). Higher diversities of As functional genes and 16S rRNA genes were observed in the soils with higher available As. Soil pH, phosphate-extractable As, and amorphous Fe content were the most important factors in shaping the bacterial community structure and As transformation functional genes. Geographic location was also important in controlling both the bacterial community and As transformation functional potential. These findings provide insights into the variation of As transformation functional genes in soils contaminated with different levels of As at different geographic locations, and the impact of environmental As contamination on the soil bacterial community. PMID:28475654

  2. The genetic and epigenetic landscapes of the epithelium in asthma.

    PubMed

    Moheimani, Fatemeh; Hsu, Alan C-Y; Reid, Andrew T; Williams, Teresa; Kicic, Anthony; Stick, Stephen M; Hansbro, Philip M; Wark, Peter A B; Knight, Darryl A

    2016-09-22

    Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.

  3. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.

    PubMed

    Mercatanti, Alberto; Lodovichi, Samuele; Cervelli, Tiziana; Galli, Alvaro

    2017-12-01

    Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain localization and functional conservation between yeast and human, the selected variants are ranked by the RS. The RS is assigned by an algorithm that computes functional data, type of mutation, chemistry of amino acid substitution and the degree of mutation transferability between human and yeast protein. Mutations giving a positive RS are highly transferable to yeast and, therefore, yeast functional assays will be more predictable. To validate the web application, we have analyzed 8078 cancer-associated variants located in 31 genes that have a yeast homologue. More than 50% of variants are transferable to yeast. Incidentally, 88% of all transferable mutations have a reliability score >0. Moreover, we analyzed by CTY 72 functionally validated missense variants located in yeast genes at positions corresponding to the human cancer-associated variants. All these variants gave a positive RS. To further validate CTY, we analyzed 3949 protein variants (with positive RS) by the predictive algorithm PROVEAN. This analysis shows that yeast-based functional assays will be more predictable for the variants with positive RS. We believe that CTY could be an important resource for the cancer research community by providing information concerning the functional impact of specific mutations, as well as for the design of functional assays useful for decision support in precision medicine. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network

    PubMed Central

    Hwang, Sohyun; Rhee, Seung Y; Marcotte, Edward M; Lee, Insuk

    2012-01-01

    AraNet is a functional gene network for the reference plant Arabidopsis and has been constructed in order to identify new genes associated with plant traits. It is highly predictive for diverse biological pathways and can be used to prioritize genes for functional screens. Moreover, AraNet provides a web-based tool with which plant biologists can efficiently discover novel functions of Arabidopsis genes (http://www.functionalnet.org/aranet/). This protocol explains how to conduct network-based prediction of gene functions using AraNet and how to interpret the prediction results. Functional discovery in plant biology is facilitated by combining candidate prioritization by AraNet with focused experimental tests. PMID:21886106

  5. Function and Evolution of DNA Methylation in Nasonia vitripennis

    PubMed Central

    Wang, Xu; Wheeler, David; Avery, Amanda; Rago, Alfredo; Choi, Jeong-Hyeon; Colbourne, John K.; Clark, Andrew G.; Werren, John H.

    2013-01-01

    The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5′ regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5′ and 3′ UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression. PMID:24130511

  6. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar

    PubMed Central

    Li, Xia; Li, Weihua; Wang, Hong; Cao, Jie; Maehashi, Kenji; Huang, Liquan; Bachmanov, Alexander A; Reed, Danielle R; Legrand-Defretin, Véronique; Beauchamp, Gary K; Brand, Joseph G

    2005-01-01

    Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3), we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer cannot form, and thus the cat lacks the receptor likely necessary for detection of sweet stimuli. This molecular change was very likely an important event in the evolution of the cat's carnivorous behavior. PMID:16103917

  7. Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model

    PubMed Central

    2012-01-01

    Background We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis. Methods The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions. Results The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression. Conclusions We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients. PMID:23241496

  8. Homeosis and beyond. What is the function of the Hox genes?

    PubMed

    Deutsch, Jean S

    2010-01-01

    What is the function of the Hox genes? At first glance, it is a curious question. Indeed, the answer seems so obvious that several authors have spoken of 'the Hox function' about some of the Hox genes, namely Hox3/zen and Hox6/ftz that seem to have lost it during the evolution of Arthropods. What these authors meant is that these genes have lost their 'homeotic' function. Indeed, 'homeotic' refers to a functional property that is so often associated with the Hox genes. However, the word 'Hox' should not be used to refer to a function, but to a group of genes. The above examples of Hox3/zen (see Schmitt-Ott's chapter, this book) and Hox6/ftz show that the homeotic function may be not so tightly linked to the Hox genes. Reversely, many genes, not belonging to the Hox group, do present a homeotic function. In the present chapter, I will first give a definition of the Hox genes. I will then ask what is the 'function' of a gene, examining its various meanings at different levels of biological organization. I will review and revisit the relation between the Hox genes and homeosis. I will suggest that their morphological homeotic function has been secondarily derived during the evolution of the Bilateria.

  9. The significance of translation regulation in the stress response

    PubMed Central

    2013-01-01

    Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although mRNA stabilization and lower dilution by growth counterbalanced this effect. Conclusions We show that the contribution of translational regulation to the control of gene expression is significant in the stress response. Post-transcriptional regulation is complex and not systematically co-directional with transcription regulation. Post-transcriptional regulation is important to the understanding of gene expression control. PMID:23985063

  10. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering.

    PubMed

    Garst, Andrew D; Bassalo, Marcelo C; Pines, Gur; Lynch, Sean A; Halweg-Edwards, Andrea L; Liu, Rongming; Liang, Liya; Wang, Zhiwen; Zeitoun, Ramsey; Alexander, William G; Gill, Ryan T

    2017-01-01

    Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.

  11. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene

    PubMed Central

    Sosnay, Patrick R; Siklosi, Karen R; Van Goor, Fredrick; Kaniecki, Kyle; Yu, Haihui; Sharma, Neeraj; Ramalho, Anabela S; Amaral, Margarida D; Dorfman, Ruslan; Zielenski, Julian; Masica, David L; Karchin, Rachel; Millen, Linda; Thomas, Philip J; Patrinos, George P; Corey, Mary; Lewis, Michelle H; Rommens, Johanna M; Castellani, Carlo; Penland, Christopher M; Cutting, Garry R

    2013-01-01

    Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation to clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 cystic fibrosis patients in registries and clinics in North America and Europe. Among these patients, 159 CFTR variants had an allele frequency of ≥0.01%. These variants were evaluated for both clinical severity and functional consequence with 127 (80%) meeting both clinical and functional criteria consistent with disease. Assessment of disease penetrance in 2,188 fathers of cystic fibrosis patients enabled assignment of 12 of the remaining 32 variants as neutral while the other 20 variants remained indeterminate. This study illustrates that sourcing data directly from well-phenotyped subjects can address the gap in our ability to interpret clinically-relevant genomic variation. PMID:23974870

  12. Selection of reference genes for tissue/organ samples on day 3 fifth-instar larvae in silkworm, Bombyx mori.

    PubMed

    Wang, Genhong; Chen, Yanfei; Zhang, Xiaoying; Bai, Bingchuan; Yan, Hao; Qin, Daoyuan; Xia, Qingyou

    2018-06-01

    The silkworm, Bombyx mori, is one of the world's most economically important insect. Surveying variations in gene expression among multiple tissue/organ samples will provide clues for gene function assignments and will be helpful for identifying genes related to economic traits or specific cellular processes. To ensure their accuracy, commonly used gene expression quantification methods require a set of stable reference genes for data normalization. In this study, 24 candidate reference genes were assessed in 10 tissue/organ samples of day 3 fifth-instar B. mori larvae using geNorm and NormFinder. The results revealed that, using the combination of the expression of BGIBMGA003186 and BGIBMGA008209 was the optimum choice for normalizing the expression data of the B. mori tissue/organ samples. The most stable gene, BGIBMGA003186, is recommended if just one reference gene is used. Moreover, the commonly used reference gene encoding cytoplasmic actin was the least appropriate reference gene of the samples investigated. The reliability of the selected reference genes was further confirmed by evaluating the expression profiles of two cathepsin genes. Our results may be useful for future studies involving the quantification of relative gene expression levels of different tissue/organ samples in B. mori. © 2018 Wiley Periodicals, Inc.

  13. Analysis of multiplex gene expression maps obtained by voxelation.

    PubMed

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental results confirm the hypothesis that genes with similar gene expression maps might have similar gene functions. The voxelation data takes into account the location information of gene expression level in mouse brain, which is novel in related research. The proposed approach can potentially be used to predict gene functions and provide helpful suggestions to biologists.

  14. Gene transcription in sea otters (Enhydra lutris); development of a diagnostic tool for sea otter and ecosystem health

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Murray, Michael; Haulena, Martin; Tuttle, Judy; van Bonn, William; Adams, Lance; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Tinker, M. Tim; Keister, Robin; Stott, Jeffrey L.

    2012-01-01

    Gene transcription analysis for diagnosing or monitoring wildlife health requires the ability to distinguish pathophysiological change from natural variation. Herein, we describe methodology for the development of quantitative real-time polymerase chain reaction (qPCR) assays to measure differential transcript levels of multiple immune function genes in the sea otter (Enhydra lutris); sea otter-specific qPCR primer sequences for the genes of interest are defined. We establish a ‘reference’ range of transcripts for each gene in a group of clinically healthy captive and free-ranging sea otters. The 10 genes of interest represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumour suppression, cellular stress response, xenobiotic metabolizing enzymes, antioxidant enzymes and cell–cell adhesion. The cycle threshold (CT) measures for most genes were normally distributed; the complement cytolysis inhibitor was the exception. The relative enumeration of multiple gene transcripts in simple peripheral blood samples expands the diagnostic capability currently available to assess the health of sea otters in situ and provides a better understanding of the state of their environment.

  15. Marker-assisted identification of restorer gene(s) in iso-cytoplasmic restorer lines of WA cytoplasm in rice and assessment of their fertility restoration potential across environments.

    PubMed

    Kumar, Amit; Bhowmick, Prolay Kumar; Singh, Vikram Jeet; Malik, Manoj; Gupta, Ashish Kumar; Seth, R; Nagarajan, M; Krishnan, S Gopala; Singh, Ashok Kumar

    2017-10-01

    Iso-cytoplasmic restorers possess the same male sterile cytoplasm as the cytoplasmic male sterile (CMS) lines, thereby minimizing the potential cyto-nuclear conflict in the hybrids. Restoration of fertility of the wild abortive CMS is governed by two major genes namely, Rf3 and Rf4 . Therefore, assessing the allelic status of these restorer genes in the iso-cytoplasmic restorers using molecular markers will not only help in estimating the efficiency of these genes either alone or in combination, in fertility restoration in the hybrids in different environments, but will also be useful in determining the efficacy of these markers. In the present study, the efficiency of molecular markers in identifying genotypes carrying restorer allele of the gene(s) Rf3 and Rf4, restoring male fertility of WA cytoplasm in rice was assessed in a set of 100 iso-cytoplasmic rice restorers using gene linked as well as candidate gene based markers. In order to validate the efficacy of markers in identifying the restorers, a sub-set of selected 25 iso-cytoplasmic rice restorers were crossed with four different cytoplasmic male sterile lines namely, IR 79156A, IR 58025A, Pusa 6A and RTN 12A, and the pollen and spikelet fertility of the F 1 s were evaluated at three different locations. Marker analysis showed that Rf4 was the predominant fertility restorer gene in the iso-cytoplasmic restorers and Rf3 had a synergistic effect on fertility restoration. The efficiency of gene based markers, DRCG-RF4-14 and DRRM-RF3-10 for Rf4 (87%) and Rf3 (84%) genes was higher than respective gene-linked SSR markers RM6100 (80%) and RM3873 (82%). It is concluded that the gene based markers can be effectively used in identifying fertility restorer lines obviating the need for making crosses and evaluating the F 1 s. Though gene based markers are more efficient, there is a need to identify functional polymorphisms which can provide 100% efficiency. Three iso-cytoplasmic restorers namely, PRR 300, PRR 363 and PRR 396 possessing both Rf4 and Rf3 genes and good fertility restoration have been identified which could be used further in hybrid rice breeding.

  16. Beyond main effects of gene-sets: harsh parenting moderates the association between a dopamine gene-set and child externalizing behavior.

    PubMed

    Windhorst, Dafna A; Mileva-Seitz, Viara R; Rippe, Ralph C A; Tiemeier, Henning; Jaddoe, Vincent W V; Verhulst, Frank C; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J

    2016-08-01

    In a longitudinal cohort study, we investigated the interplay of harsh parenting and genetic variation across a set of functionally related dopamine genes, in association with children's externalizing behavior. This is one of the first studies to employ gene-based and gene-set approaches in tests of Gene by Environment (G × E) effects on complex behavior. This approach can offer an important alternative or complement to candidate gene and genome-wide environmental interaction (GWEI) studies in the search for genetic variation underlying individual differences in behavior. Genetic variants in 12 autosomal dopaminergic genes were available in an ethnically homogenous part of a population-based cohort. Harsh parenting was assessed with maternal (n = 1881) and paternal (n = 1710) reports at age 3. Externalizing behavior was assessed with the Child Behavior Checklist (CBCL) at age 5 (71 ± 3.7 months). We conducted gene-set analyses of the association between variation in dopaminergic genes and externalizing behavior, stratified for harsh parenting. The association was statistically significant or approached significance for children without harsh parenting experiences, but was absent in the group with harsh parenting. Similarly, significant associations between single genes and externalizing behavior were only found in the group without harsh parenting. Effect sizes in the groups with and without harsh parenting did not differ significantly. Gene-environment interaction tests were conducted for individual genetic variants, resulting in two significant interaction effects (rs1497023 and rs4922132) after correction for multiple testing. Our findings are suggestive of G × E interplay, with associations between dopamine genes and externalizing behavior present in children without harsh parenting, but not in children with harsh parenting experiences. Harsh parenting may overrule the role of genetic factors in externalizing behavior. Gene-based and gene-set analyses offer promising new alternatives to analyses focusing on single candidate polymorphisms when examining the interplay between genetic and environmental factors.

  17. Axon guidance pathways served as common targets for human speech/language evolution and related disorders.

    PubMed

    Lei, Huimeng; Yan, Zhangming; Sun, Xiaohong; Zhang, Yue; Wang, Jianhong; Ma, Caihong; Xu, Qunyuan; Wang, Rui; Jarvis, Erich D; Sun, Zhirong

    2017-11-01

    Human and several nonhuman species share the rare ability of modifying acoustic and/or syntactic features of sounds produced, i.e. vocal learning, which is the important neurobiological and behavioral substrate of human speech/language. This convergent trait was suggested to be associated with significant genomic convergence and best manifested at the ROBO-SLIT axon guidance pathway. Here we verified the significance of such genomic convergence and assessed its functional relevance to human speech/language using human genetic variation data. In normal human populations, we found the affected amino acid sites were well fixed and accompanied with significantly more associated protein-coding SNPs in the same genes than the rest genes. Diseased individuals with speech/language disorders have significant more low frequency protein coding SNPs but they preferentially occurred outside the affected genes. Such patients' SNPs were enriched in several functional categories including two axon guidance pathways (mediated by netrin and semaphorin) that interact with ROBO-SLITs. Four of the six patients have homozygous missense SNPs on PRAME gene family, one youngest gene family in human lineage, which possibly acts upon retinoic acid receptor signaling, similarly as FOXP2, to modulate axon guidance. Taken together, we suggest the axon guidance pathways (e.g. ROBO-SLIT, PRAME gene family) served as common targets for human speech/language evolution and related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of Germline Mutations in the Ras/MAPK Signaling Pathway on Adaptive Behavior: Cardiofaciocutaneous Syndrome and Noonan Syndrome

    PubMed Central

    Pierpont, Elizabeth I.; Pierpont, Mary Ella; Mendelsohn, Nancy J.; Roberts, Amy E.; Tworog-Dube, Erica; Rauen, Katherine A.; Seidenberg, Mark S.

    2011-01-01

    Cardiofaciocutaneous syndrome (CFC) and Noonan syndrome (NS) are two phenotypically overlapping genetic disorders whose underlying molecular etiologies affect a common signaling pathway. Mutations in the BRAF, MEK1 and MEK2 genes cause most cases of CFC and mutations in PTPN11, SOS1, KRAS and RAF1 typically cause NS. Although both syndromes are associated with developmental delays of varying severity, the extent to which the behavioral profiles differ may shed light on the different roles these respective genes play in development of skills necessary for everyday functioning. In this study, profiles of adaptive behavior of individuals with CFC and NS who had confirmed pathogenic mutations in Ras/MAPK pathway genes were investigated. Patterns of strengths and weaknesses, age-related differences, and risk factors for difficulties in adaptive skills were assessed. Although genes acting more downstream in the Ras/MAPK pathway were associated with more difficulties in adaptive functioning than genes more upstream in the pathway, several inconsistencies highlight the wide spectrum of possible developmental courses in CFC and NS. Along with clinical and genetic factors, variables such as chronological age, gestational age at birth and parental education levels accounted for significant variance in adaptive skills. Results indicate that there is wide heterogeneity in adaptive ability in CFC and NS, but that these abilities are correlated to some extent with the specific disease-causing genes. PMID:20186801

  19. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  20. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  1. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    PubMed

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.

    PubMed

    Zhou, Shanshan; Morozova, Tatiana V; Hussain, Yasmeen N; Luoma, Sarah E; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F C; Anholt, Robert R H

    2016-07-01

    Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health Perspect 124:1062-1070; http://dx.doi.org/10.1289/ehp.1510513.

  3. An Association Between Functional Polymorphisms of the Interleukin 1 Gene Complex and Schizophrenia Using Transmission Disequilibrium Test.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Pawlak, Joanna; Dmitrzak-Weglarz, Monika; Szczepankiewicz, Aleksandra; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2016-12-01

    IL1 gene complex has been implicated in the etiology of schizophrenia. To assess whether IL1 gene complex is associated with susceptibility to schizophrenia in Polish population we conducted family-based study. Functional polymorphisms from IL1A (rs1800587, rs17561, rs11677416), IL1B (rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627) and IL1RN (rs419598, rs315952, rs9005, rs4251961) genes were genotyped in 143 trio with schizophrenia. Statistical analysis was performed using transmission disequilibrium test. We have found a trend toward an association of rs1143627, rs16944, rs1143623 in IL1B gene with the risk of schizophrenia. Our results show a protective effect of allele T of rs4251961 in IL1RN against schizophrenia. We also performed haplotype analysis of IL1 gene complex and found a trend toward an association with schizophrenia of GAGG haplotype (rs1143627, rs16944, rs1143623, rs4848306) in IL1B gene, haplotypes: TG (rs315952, rs9005) and TT (rs4251961, rs419598) in IL1RN. Haplotype CT (rs4251961, rs419598) in IL1RN was found to be associated with schizophrenia. After correction for multiple testing associations did not reach significance level. Our results might support theory that polymorphisms of interleukin 1 complex genes (rs1143627, rs16944, rs1143623, rs4848306 in IL1B gene and rs4251961, rs419598, rs315952, rs9005 in IL1RN gene) are involved in the pathogenesis of schizophrenia, however, none of the results reach significance level after correction for multiple testing.

  4. Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders.

    PubMed

    Sgadò, Paola; Provenzano, Giovanni; Dassi, Erik; Adami, Valentina; Zunino, Giulia; Genovesi, Sacha; Casarosa, Simona; Bozzi, Yuri

    2013-12-19

    Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.

  5. Similarities and Differences between Porcine Mandibular and Limb Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Lloyd, Brandon; Tee, Boon Ching; Headley, Colwyn; Emam, Hany; Mallery, Susan; Sun, Zongyang

    2017-01-01

    Objective Research has shown promise of using bone marrow mesenchymal stem cells (BMSCs) for craniofacial bone regeneration; yet little is known about the differences of BMSCs from limb and craniofacial bones. This study compared pig mandibular and tibia BMSCs for their in vitro proliferation, osteogenic differentiation properties and gene expression. Design Bone marrow was aspirated from the tibia and mandible of 3–4 month-old pigs (n=4), followed by BMSC isolation, culture-expansion and characterization by flow cytometry. Proliferation rates were assessed using population doubling times. Osteogenic differentiation was evaluated by alkaline phosphatase activity. Affymetrix porcine microarray was used to compare gene expressions of tibial and mandibular BMSCs, followed by real-time RT-PCR evaluation of certain genes. Results Our results showed that BMSCs from both locations expressed MSC markers but not hematopoietic markers. The proliferation and osteogenic differentiation potential of mandibular BMSCs were significantly stronger than those of tibial BMSCs. Microarray analysis identified 404 highly abundant genes, out of which 334 genes were matched between the two locations and annotated into the same functional groups including osteogenesis and angiogenesis, while 70 genes were mismatched and annotated into different functional groups. In addition, 48 genes were differentially expressed by at least 1.5-fold difference between the two locations, including higher expression of cranial neural crest-related gene BMP-4 in mandibular BMSCs, which was confirmed by real-time RT-PCR. Conclusions Altogether, these data indicate that despite strong similarities in gene expression between mandibular and tibial BMSCs, mandibular BMSCs express some genes differently than tibial BMSCs and have a phenotypic profile that may make them advantageous for craniofacial bone regeneration. PMID:28135571

  6. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes.

    PubMed

    Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky

    2017-09-01

    Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Involvement of Ethylene in the Latex Metabolism and Tapping Panel Dryness of Hevea brasiliensis

    PubMed Central

    Putranto, Riza-Arief; Herlinawati, Eva; Rio, Maryannick; Leclercq, Julie; Piyatrakul, Piyanuch; Gohet, Eric; Sanier, Christine; Oktavia, Fetrina; Pirrello, Julien; Kuswanhadi; Montoro, Pascal

    2015-01-01

    Ethephon, an ethylene releaser, is used to stimulate latex production in Hevea brasiliensis. Ethylene induces many functions in latex cells including the production of reactive oxygen species (ROS). The accumulation of ROS is responsible for the coagulation of rubber particles in latex cells, resulting in the partial or complete stoppage of latex flow. This study set out to assess biochemical and histological changes as well as changes in gene expression in latex and phloem tissues from trees grown under various harvesting systems. The Tapping Panel Dryness (TPD) susceptibility of Hevea clones was found to be related to some biochemical parameters, such as low sucrose and high inorganic phosphorus contents. A high tapping frequency and ethephon stimulation induced early TPD occurrence in a high latex metabolism clone and late occurrence in a low latex metabolism clone. TPD-affected trees had smaller number of laticifer vessels compared to healthy trees, suggesting a modification of cambial activity. The differential transcript abundance was observed for twenty-seven candidate genes related to TPD occurrence in latex and phloem tissues for ROS-scavenging, ethylene biosynthesis and signalling genes. The predicted function for some Ethylene Response Factor genes suggested that these candidate genes should play an important role in regulating susceptibility to TPD. PMID:26247941

  8. Involvement of Ethylene in the Latex Metabolism and Tapping Panel Dryness of Hevea brasiliensis.

    PubMed

    Putranto, Riza-Arief; Herlinawati, Eva; Rio, Maryannick; Leclercq, Julie; Piyatrakul, Piyanuch; Gohet, Eric; Sanier, Christine; Oktavia, Fetrina; Pirrello, Julien; Kuswanhadi; Montoro, Pascal

    2015-08-04

    Ethephon, an ethylene releaser, is used to stimulate latex production in Hevea brasiliensis. Ethylene induces many functions in latex cells including the production of reactive oxygen species (ROS). The accumulation of ROS is responsible for the coagulation of rubber particles in latex cells, resulting in the partial or complete stoppage of latex flow. This study set out to assess biochemical and histological changes as well as changes in gene expression in latex and phloem tissues from trees grown under various harvesting systems. The Tapping Panel Dryness (TPD) susceptibility of Hevea clones was found to be related to some biochemical parameters, such as low sucrose and high inorganic phosphorus contents. A high tapping frequency and ethephon stimulation induced early TPD occurrence in a high latex metabolism clone and late occurrence in a low latex metabolism clone. TPD-affected trees had smaller number of laticifer vessels compared to healthy trees, suggesting a modification of cambial activity. The differential transcript abundance was observed for twenty-seven candidate genes related to TPD occurrence in latex and phloem tissues for ROS-scavenging, ethylene biosynthesis and signalling genes. The predicted function for some Ethylene Response Factor genes suggested that these candidate genes should play an important role in regulating susceptibility to TPD.

  9. Lower cognitive performance in healthy G2019S LRRK2 mutation carriers

    PubMed Central

    Thaler, Avner; Mirelman, Anat; Gurevich, Tanya; Simon, Ely; Orr-Urtreger, Avi; Marder, Karen; Bressman, Susan

    2012-01-01

    Objective: To assess cognitive abilities of healthy first-degree relatives of Ashkenazi patients with Parkinson disease (PD), carriers of the G2019S mutation in the LRRK2 gene. Methods: In this observational study, 60 consecutive healthy first-degree relatives (aged 50.9 ± 6.2 years; 48% male; 30 G2019S carriers) were assessed using a computerized cognitive program, the Montreal Cognitive Assessment questionnaire, the Unified Parkinson's Disease Rating Scale Part III, and the Geriatric Depression Scale. Results: G2019S carriers scored significantly lower on the computerized executive function index (p = 0.04) and on specific executive function tasks (Stroop test, p = 0.007). Conclusion: Carrying the LRRK2 G2019S mutation was associated with lower executive performance in a population at risk for PD. PMID:22914834

  10. Using Signature Genes as Tools To Assess Environmental Viral Ecology and Diversity

    PubMed Central

    Adriaenssens, Evelien M.

    2014-01-01

    Viruses (including bacteriophages) are the most abundant biological entities on the planet. As such, they are thought to have a major impact on all aspects of microbial community structure and function. Despite this critical role in ecosystem processes, the study of virus/phage diversity has lagged far behind parallel studies of the bacterial and eukaryotic kingdoms, largely due to the absence of any universal phylogenetic marker. Here we review the development and use of signature genes to investigate viral diversity, as a viable strategy for data sets of specific virus groups. Genes that have been used include those encoding structural proteins, such as portal protein, major capsid protein, and tail sheath protein, auxiliary metabolism genes, such as psbA, psbB, and phoH, and several polymerase genes. These marker genes have been used in combination with PCR-based fingerprinting and/or sequencing strategies to investigate spatial, temporal, and seasonal variations and diversity in a wide range of habitats. PMID:24837394

  11. Fully moderated T-statistic for small sample size gene expression arrays.

    PubMed

    Yu, Lianbo; Gulati, Parul; Fernandez, Soledad; Pennell, Michael; Kirschner, Lawrence; Jarjoura, David

    2011-09-15

    Gene expression microarray experiments with few replications lead to great variability in estimates of gene variances. Several Bayesian methods have been developed to reduce this variability and to increase power. Thus far, moderated t methods assumed a constant coefficient of variation (CV) for the gene variances. We provide evidence against this assumption, and extend the method by allowing the CV to vary with gene expression. Our CV varying method, which we refer to as the fully moderated t-statistic, was compared to three other methods (ordinary t, and two moderated t predecessors). A simulation study and a familiar spike-in data set were used to assess the performance of the testing methods. The results showed that our CV varying method had higher power than the other three methods, identified a greater number of true positives in spike-in data, fit simulated data under varying assumptions very well, and in a real data set better identified higher expressing genes that were consistent with functional pathways associated with the experiments.

  12. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules

    PubMed Central

    Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried

    2015-01-01

    A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis. PMID:26355961

  13. Transcriptional over-expression of chloride intracellular channels 3 and 4 in malignant pleural mesothelioma.

    PubMed

    Tasiopoulou, Vasiliki; Magouliotis, Dimitrios; Solenov, Evgeniy I; Vavougios, Georgios; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G

    2015-12-01

    Chloride Intracellular Channels (CLICs) are contributing to the regulation of multiple cellular functions. CLICs have been found over-expressed in several malignancies, and therefore they are currently considered as potential drug targets. The goal of our study was to assess the gene expression levels of the CLIC's 1-6 in malignant pleural mesothelioma (MPM) as compared to controls. We used gene expression data from a publicly available microarray dataset comparing MPM versus healthy tissue in order to investigate the differential expression profile of CLIC 1-6. False discovery rates were calculated and the interactome of the significantly differentially expressed CLICs was constructed and Functional Enrichment Analysis for Gene Ontologies (FEAGO) was performed. In MPM, the gene expressions of CLIC3 and CLIC4 were significantly increased compared to controls (p=0.001 and p<0.001 respectively). A significant positive correlation between the gene expressions of CLIC3 and CLIC4 (p=0.0008 and Pearson's r=0.51) was found. Deming regression analysis provided an association equation between the CLIC3 and CLIC4 gene expressions: CLIC3=4.42CLIC4-10.07. Our results indicate that CLIC3 and CLIC4 are over-expressed in human MPM. Moreover, their expressions correlate suggesting that they either share common gene expression inducers or that their products act synergistically. FAEGO showed that CLIC interactome might contribute to TGF beta signaling and water transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules.

    PubMed

    Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried

    2015-01-01

    A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.

  15. Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation.

    PubMed

    Staes, Nicky; Koski, Sonja E; Helsen, Philippe; Fransen, Erik; Eens, Marcel; Stevens, Jeroen M G

    2015-09-01

    The importance of genes in regulating phenotypic variation of personality traits in humans and animals is becoming increasingly apparent in recent studies. Here we focus on variation in the vasopressin receptor gene 1a (Avpr1a) and oxytocin receptor gene (OXTR) and their effects on social personality traits in chimpanzees. We combine newly available genetic data on Avpr1a and OXTR allelic variation of 62 captive chimpanzees with individual variation in personality, based on behavioral assessments. Our study provides support for the positive association of the Avpr1a promoter region, in particular the presence of DupB, and sociability in chimpanzees. This complements findings of previous studies on adolescent chimpanzees and studies that assessed personality using questionnaire data. In contrast, no significant associations were found for the single nucleotide polymorphism (SNP) ss1388116472 of the OXTR and any of the personality components. Most importantly, our study provides additional evidence for the regulatory function of the 5' promoter region of Avpr1a on social behavior and its evolutionary stable effect across species, including rodents, chimpanzees and humans. Although it is generally accepted that complex social behavior is regulated by a combination of genes, the environment and their interaction, our findings highlight the importance of candidate genes with large effects on behavioral variation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. IRAK1 variant is protective for orthodontic-induced external apical root resorption.

    PubMed

    Pereira, S; Nogueira, L; Canova, F; Lopez, M; Silva, H C

    2016-10-01

    Interleukin-1 beta (IL1B) pathway is a key player in orthodontic-induced external apical root resorption (EARR). The aim of this work was to identify the genes related to the IL1 pathway as possible candidate genes for EARR, which might be included in an integrative predictive model of this complex phenotype. Using a stepwise multiple linear regression model, 195 patients who had undergone orthodontic treatment were assessed for clinical and genetic factors associated with %EARRmax (maximum %EARR value obtained for each patient). The four maxillary incisors and the two maxillary canines were assessed. Three functional single nucleotide polymorphisms (SNPs) were genotyped: rs1143634 in IL1B gene, rs315952 in IL1RN gene, and rs1059703 in X-linked IRAK1 gene. The model showed that four of the nine clinical variables and one SNP explained 30% of the %EARRmax variability. The most significant unique contributions to the model were gender (P = 0.001), treatment duration (P < 0.001), premolar extractions (P = 0.003), Hyrax appliance (P < 0.001), and homozygosity/hemizygosity for variant C from IRAK1 gene (P = 0.018), which proved to be a protective factor. IRAK1 polymorphism is proposed as a protective variant for EARR. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Systematically Differentiating Functions for Alternatively Spliced Isoforms through Integrating RNA-seq Data

    PubMed Central

    Menon, Rajasree; Wen, Yuchen; Omenn, Gilbert S.; Kretzler, Matthias; Guan, Yuanfang

    2013-01-01

    Integrating large-scale functional genomic data has significantly accelerated our understanding of gene functions. However, no algorithm has been developed to differentiate functions for isoforms of the same gene using high-throughput genomic data. This is because standard supervised learning requires ‘ground-truth’ functional annotations, which are lacking at the isoform level. To address this challenge, we developed a generic framework that interrogates public RNA-seq data at the transcript level to differentiate functions for alternatively spliced isoforms. For a specific function, our algorithm identifies the ‘responsible’ isoform(s) of a gene and generates classifying models at the isoform level instead of at the gene level. Through cross-validation, we demonstrated that our algorithm is effective in assigning functions to genes, especially the ones with multiple isoforms, and robust to gene expression levels and removal of homologous gene pairs. We identified genes in the mouse whose isoforms are predicted to have disparate functionalities and experimentally validated the ‘responsible’ isoforms using data from mammary tissue. With protein structure modeling and experimental evidence, we further validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our generic framework is the first to predict and differentiate functions for alternatively spliced isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and other species with alternatively spliced isoforms, and shifts the current gene-centered function prediction to isoform-level predictions. PMID:24244129

  18. Partitioning of functional gene expression data using principal points.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2017-10-12

    DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex dynamics of biological systems in functional genomics.

  19. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia

    DOE PAGES

    Wright, C.; Gupta, C. N.; Chen, J.; ...

    2016-02-02

    Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene ( MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137- regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes ofmore » these four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Furthermore, given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.« less

  20. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, C.; Gupta, C. N.; Chen, J.

    Evidence suggests that microRNA-137 (miR-137) is involved in the genetic basis of schizophrenia. Risk variants within the miR-137 host gene ( MIR137HG) influence structural and functional brain-imaging measures, and miR-137 itself is predicted to regulate hundreds of genes. We evaluated the influence of a MIR137HG risk variant (rs1625579) in combination with variants in miR-137- regulated genes TCF4, PTGS2, MAPK1 and MAPK3 on gray matter concentration (GMC). These genes were selected based on our previous work assessing schizophrenia risk within possible miR-137-regulated gene sets using the same cohort of subjects. A genetic risk score (GRS) was determined based on genotypes ofmore » these four schizophrenia risk-associated genes in 221 Caucasian subjects (89 schizophrenia patients and 132 controls). The effects of the rs1625579 genotype with the GRS of miR-137-regulated genes in a three-way interaction with diagnosis on GMC patterns were assessed using a multivariate analysis. We found that schizophrenia subjects homozygous for the MIR137HG risk allele show significant decreases in occipital, parietal and temporal lobe GMC with increasing miR-137-regulated GRS, whereas those carrying the protective minor allele show significant increases in GMC with GRS. No correlations of GMC and GRS were found in control subjects. Variants within or upstream of genes regulated by miR-137 in combination with the MIR137HG risk variant may influence GMC in schizophrenia-related regions in patients. Furthermore, given that the genes evaluated here are involved in protein kinase A signaling, dysregulation of this pathway through alterations in miR-137 biogenesis may underlie the gray matter loss seen in the disease.« less

  1. Modeling Dynamic Regulatory Processes in Stroke.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.

    2012-10-11

    The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to developmore » dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.« less

  2. GenomeRNAi: a database for cell-based RNAi phenotypes.

    PubMed

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.

  3. GenomeRNAi: a database for cell-based RNAi phenotypes

    PubMed Central

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at PMID:17135194

  4. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer's disease and progressive supranuclear palsy brains.

    PubMed

    Huin, Vincent; Buée, Luc; Behal, Hélène; Labreuche, Julien; Sablonnière, Bernard; Dhaenens, Claire-Marie

    2017-10-03

    Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.

  5. Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy

    PubMed Central

    Sauer, Aisha V.; Morbach, Henner; Brigida, Immacolata; Ng, Yen-Shing; Aiuti, Alessandro; Meffre, Eric

    2012-01-01

    Adenosine deaminase (ADA) gene defects are among the most common causes of SCID. Restoration of purine metabolism and immune functions can be achieved by enzyme replacement therapy, or more effectively by bone marrow transplant or HSC gene therapy (HSC-GT). However, autoimmune complications and autoantibody production, including anti-nuclear antibodies (ANAs), frequently occur in ADA-SCID patients after treatment. To assess whether ADA deficiency affects the establishment of B cell tolerance, we tested the reactivity of recombinant antibodies isolated from single B cells of ADA-SCID patients before and after HSC-GT. We found that before HSC-GT, new emigrant/transitional and mature naive B cells from ADA-SCID patients contained more autoreactive and ANA-expressing clones, indicative of defective central and peripheral B cell tolerance checkpoints. We further observed impaired B cell receptor (BCR) and TLR functions in B cells after ADA inhibition, which may underlie the defects in B cell tolerance. Strikingly, after HSC-GT, ADA-SCID patients displayed quasi-normal early B cell tolerance checkpoints, as evidenced by restored removal of developing autoreactive and ANA-expressing B cells. Hence, ADA plays an essential role in controlling autoreactive B cell counterselection by regulating BCR and TLR functions. PMID:22622038

  6. Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line.

    PubMed

    Stephenson, Sarah E M; Aumann, Timothy D; Taylor, Juliet M; Riseley, Jessica R; Li, Ruili; Mann, Jeffrey R; Tomas, Doris; Lockhart, Paul J

    2018-05-14

    Mutations in PARK2 (parkin) can result in Parkinson's disease (PD). Parkin shares a bidirectional promoter with parkin coregulated gene (PACRG) and the transcriptional start sites are separated by only ~200 bp. Bidirectionally regulated genes have been shown to function in common biological pathways. Mice lacking parkin have largely failed to recapitulate the dopaminergic neuronal loss and movement impairments seen in individuals with parkin-mediated PD. We aimed to investigate the function of PACRG and test the hypothesis that parkin and PACRG function in a common pathway by generating and characterizing two novel knockout mouse lines harbouring loss of both parkin and Pacrg or Pacrg alone. Successful modification of the targeted allele was confirmed at the genomic, transcriptional and steady state protein levels for both genes. At 18-20 months of age, there were no significant differences in the behaviour of parental and mutant lines when assessed by openfield, rotarod and balance beam. Subsequent neuropathological examination suggested there was no gross abnormality of the dopaminergic system in the substantia nigra and no significant difference in the number of dopaminergic neurons in either knockout model compared to wildtype mice.

  7. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment.

    PubMed

    Imhoff, Johannes F

    2016-05-24

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane monooxygenase (pmoA) for methane oxidizing bacteria.

  8. funRiceGenes dataset for comprehensive understanding and application of rice functional genes.

    PubMed

    Yao, Wen; Li, Guangwei; Yu, Yiming; Ouyang, Yidan

    2018-01-01

    As a main staple food, rice is also a model plant for functional genomic studies of monocots. Decoding of every DNA element of the rice genome is essential for genetic improvement to address increasing food demands. The past 15 years have witnessed extraordinary advances in rice functional genomics. Systematic characterization and proper deposition of every rice gene are vital for both functional studies and crop genetic improvement. We built a comprehensive and accurate dataset of ∼2800 functionally characterized rice genes and ∼5000 members of different gene families by integrating data from available databases and reviewing every publication on rice functional genomic studies. The dataset accounts for 19.2% of the 39 045 annotated protein-coding rice genes, which provides the most exhaustive archive for investigating the functions of rice genes. We also constructed 214 gene interaction networks based on 1841 connections between 1310 genes. The largest network with 762 genes indicated that pleiotropic genes linked different biological pathways. Increasing degree of conservation of the flowering pathway was observed among more closely related plants, implying substantial value of rice genes for future dissection of flowering regulation in other crops. All data are deposited in the funRiceGenes database (https://funricegenes.github.io/). Functionality for advanced search and continuous updating of the database are provided by a Shiny application (http://funricegenes.ncpgr.cn/). The funRiceGenes dataset would enable further exploring of the crosslink between gene functions and natural variations in rice, which can also facilitate breeding design to improve target agronomic traits of rice. © The Authors 2017. Published by Oxford University Press.

  9. Radiation Quality Effects on Transcriptome Profiles in 3-D Cultures After Charged Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kidane, Yared H.; Huff, Janice L.

    2014-01-01

    In this work, we evaluated the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Current risk models for assessment of space radiation-induced cancer have large uncertainties because the models for adverse health effects following radiation exposure are founded on epidemiological analyses of human populations exposed to low-LET radiation. Reducing these uncertainties requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. In order to better quantify these radiation quality effects in biological systems, we are utilizing novel 3-D organotypic human tissue models for space radiation research. These models hold promise for risk assessment as they provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information.

  10. Single-joint outcome measures: preliminary validation of patient-reported outcomes and physical examination.

    PubMed

    Heald, Alison E; Fudman, Edward J; Anklesaria, Pervin; Mease, Philip J

    2010-05-01

    To assess the validity, responsiveness, and reliability of single-joint outcome measures for determining target joint (TJ) response in patients with inflammatory arthritis. Patient-reported outcomes (PRO), consisting of responses to single questions about TJ global status on a 100-mm visual analog scale (VAS; TJ global score), function on a 100-mm VAS (TJ function score), and pain on a 5-point Likert scale (TJ pain score) were piloted in 66 inflammatory arthritis subjects in a phase 1/2 clinical study of an intraarticular gene transfer agent and compared to physical examination measures (TJ swelling, TJ tenderness) and validated function questionnaires (Disabilities of the Arm, Shoulder and Hand scale, Rheumatoid Arthritis Outcome Score, and the Health Assessment Questionnaire). Construct validity was assessed by evaluating the correlation between the single-joint outcome measures and validated function questionnaires using Spearman's rank correlation. Responsiveness or sensitivity to change was assessed through calculating effect size and standardized response means (SRM). Reliability of physical examination measures was assessed by determining interobserver agreement. The single-joint PRO were highly correlated with each other and correlated well with validated functional measures. The TJ global score exhibited modest effect size and modest SRM that correlated well with the patient's assessment of response on a 100-mm VAS. Physical examination measures exhibited high interrater reliability, but correlated less well with validated functional measures and the patient's assessment of response. Single-joint PRO, particularly the TJ global score, are simple to administer and demonstrate construct validity and responsiveness in patients with inflammatory arthritis. (ClinicalTrials.gov identifier NCT00126724).

  11. A model for obesity and gigantism due to disruption of the Ankrd26 gene.

    PubMed

    Bera, Tapan K; Liu, Xiu-Fen; Yamada, Masanori; Gavrilova, Oksana; Mezey, Eva; Tessarollo, Lino; Anver, Miriam; Hahn, Yoonsoo; Lee, Byungkook; Pastan, Ira

    2008-01-08

    Obesity is a major health hazard that is caused by a combination of genetic and behavioral factors. Several models of obesity have been described in mice that have defects in the production of peptide hormones, in the function of cell membrane receptors, or in a transcription factor required for neuronal cell development. We have been investigating the function of a family of genes (POTE and ANKRD26) that encode proteins that are associated with the inner aspect of the cell membrane and that contain both ankyrin repeats and spectrin helices, motifs known to interact with signaling proteins in the cell. To assess the function of ANKRD26, we prepared a mutant mouse with partial inactivation of the Ankrd26 gene. We find that the homozygous mutant mice develop extreme obesity, insulin resistance, and an increase in body size. The obesity is associated with hyperphagia with no reduction in energy expenditure and activity. The Ankrd26 protein is expressed in the arcuate and ventromedial nuclei within the hypothalamus and in the ependyma and the circumventricular organs that act as an interface between the peripheral circulation and the brain. In the enlarged hearts of the mutant mice, the levels of both phospho-Akt and mTOR were elevated. These results show that alterations in an unidentified gene can lead to obesity and identify a molecular target for the treatment of obesity.

  12. A model for obesity and gigantism due to disruption of the Ankrd26 gene

    PubMed Central

    Bera, Tapan K.; Liu, Xiu-Fen; Yamada, Masanori; Gavrilova, Oksana; Mezey, Eva; Tessarollo, Lino; Anver, Miriam; Hahn, Yoonsoo; Lee, Byungkook; Pastan, Ira

    2008-01-01

    Obesity is a major health hazard that is caused by a combination of genetic and behavioral factors. Several models of obesity have been described in mice that have defects in the production of peptide hormones, in the function of cell membrane receptors, or in a transcription factor required for neuronal cell development. We have been investigating the function of a family of genes (POTE and ANKRD26) that encode proteins that are associated with the inner aspect of the cell membrane and that contain both ankyrin repeats and spectrin helices, motifs known to interact with signaling proteins in the cell. To assess the function of ANKRD26, we prepared a mutant mouse with partial inactivation of the Ankrd26 gene. We find that the homozygous mutant mice develop extreme obesity, insulin resistance, and an increase in body size. The obesity is associated with hyperphagia with no reduction in energy expenditure and activity. The Ankrd26 protein is expressed in the arcuate and ventromedial nuclei within the hypothalamus and in the ependyma and the circumventricular organs that act as an interface between the peripheral circulation and the brain. In the enlarged hearts of the mutant mice, the levels of both phospho-Akt and mTOR were elevated. These results show that alterations in an unidentified gene can lead to obesity and identify a molecular target for the treatment of obesity. PMID:18162531

  13. Effects of iron ions, protons and X rays on human lens cell differentiation.

    PubMed

    Chang, P Y; Bjornstad, K A; Rosen, C J; McNamara, M P; Mancini, R; Goldstein, L E; Chylack, L T; Blakely, E A

    2005-10-01

    We have investigated molecular changes in cultured differentiating human lens epithelial cells exposed to high-energy accelerated iron-ion beams as well as to protons and X rays. In this paper, we present results on the effects of radiation on gene families that include or are related to DNA damage, cell cycle regulators, cell adhesion molecules, and cell cytoskeletal function. A limited microarray survey with a panel of cell cycle-regulated genes illustrates that irradiation with protons altered the gene expression pattern of human lens epithelial cells. A focus of our work is CDKN1A (p21(CIP1/WAF1)), a protein that we demonstrate here has a role in several pathways functionally related to LET-responsive radiation damage. We quantitatively assessed RNA and protein expression in a time course before and after single 4-Gy radiation doses and demonstrated that transcription and translation of CDKN1A are both temporally regulated after exposure. Furthermore, we show qualitative differences in the distribution of CDKN1A immunofluorescence signals after exposure to X rays, protons or iron ions, suggesting that LET effects likely play a role in the misregulation of gene function in these cells. A model of molecular and cellular events is proposed to account for precataractous changes in the human lens after exposure to low- or high-LET radiations.

  14. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes

    PubMed Central

    Perfus-Barbeoch, Laetitia; Da Rocha, Martine; Sallet, Erika; Bailly-Bechet, Marc; Castagnone-Sereno, Philippe; Flot, Jean-François; Kozlowski, Djampa K.; Cazareth, Julie; Couloux, Arnaud; Da Silva, Corinne; Guy, Julie; Kim-Jo, Yu-Jin; Rancurel, Corinne; Abad, Pierre; Wincker, Patrick

    2017-01-01

    Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis. PMID:28594822

  15. Functional requirements of cellular differentiation: lessons from Bacillus subtilis.

    PubMed

    Narula, Jatin; Fujita, Masaya; Igoshin, Oleg A

    2016-12-01

    Successful execution of differentiation programs requires cells to assess multitudes of internal and external cues and respond with appropriate gene expression programs. Here, we review how Bacillus subtilis sporulation network deals with these tasks focusing on the lessons generalizable to other systems. With feedforward loops controlling both production and activation of downstream transcriptional regulators, cells achieve ultrasensitive threshold-like responses. The arrangement of sporulation network genes on the chromosome and transcriptional feedback loops allow coordination of sporulation decision with DNA-replication. Furthermore, to assess the starvation conditions without sensing specific metabolites, cells respond to changes in their growth rates with increased activity of sporulation master regulator. These design features of the sporulation network enable cells to robustly decide between vegetative growth and sporulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identifying Functionally Linked Gene Modules Within Biological Pathways Assessed by ToxCast In Vitro Assays

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro high-throughput screening assays to profile the bioactivity of environmental chemicals, with the ultimate goal of predicting in vivo toxicity. We hypothesize that in modeling toxicity it will be more constructive to understand the pert...

  17. Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa Strain Stag's Leap.

    PubMed

    Chen, J; Wu, F; Zheng, Z; Deng, X; Burbank, L P; Stenger, D C

    2016-04-21

    ITALIC! Xylella fastidiosasubsp. ITALIC! fastidiosacauses Pierce's disease of grapevine. Presented here is the draft genome sequence of the Stag's Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce's disease resistance and a phenotypic assessment of knockout mutants to determine gene function. Copyright © 2016 Chen et al.

  18. Short-term transcriptional response of microbial communities to N-fertilization in pine forest soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Michaeline Burr Nelson; Johansen, Renee; Lopez, Deanna

    Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems, however N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) timescale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (c.a. 1mg/g of soil material) in laboratory microcosms. Here, we hypothesized that N fertilization would repress the expression of fungalmore » and bacterial genes linked to N-mining from plant litter. However, despite N-suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ~4% of metabolic genes changed in expression with N addition, while three times as many (~12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N-addition observed in longer-term field studies likely results from changes in microbial composition.« less

  19. Diseases and Molecular Diagnostics: A Step Closer to Precision Medicine.

    PubMed

    Dwivedi, Shailendra; Purohit, Purvi; Misra, Radhieka; Pareek, Puneet; Goel, Apul; Khattri, Sanjay; Pant, Kamlesh Kumar; Misra, Sanjeev; Sharma, Praveen

    2017-10-01

    The current advent of molecular technologies together with a multidisciplinary interplay of several fields led to the development of genomics, which concentrates on the detection of pathogenic events at the genome level. The structural and functional genomics approaches have now pinpointed the technical challenge in the exploration of disease-related genes and the recognition of their structural alterations or elucidation of gene function. Various promising technologies and diagnostic applications of structural genomics are currently preparing a large database of disease-genes, genetic alterations etc., by mutation scanning and DNA chip technology. Further the functional genomics also exploring the expression genetics (hybridization-, PCR- and sequence-based technologies), two-hybrid technology, next generation sequencing with Bioinformatics and computational biology. Advances in microarray "chip" technology as microarrays have allowed the parallel analysis of gene expression patterns of thousands of genes simultaneously. Sequence information collected from the genomes of many individuals is leading to the rapid discovery of single nucleotide polymorphisms or SNPs. Further advances of genetic engineering have also revolutionized immunoassay biotechnology via engineering of antibody-encoding genes and the phage display technology. The Biotechnology plays an important role in the development of diagnostic assays in response to an outbreak or critical disease response need. However, there is also need to pinpoint various obstacles and issues related to the commercialization and widespread dispersal of genetic knowledge derived from the exploitation of the biotechnology industry and the development and marketing of diagnostic services. Implementation of genetic criteria for patient selection and individual assessment of the risks and benefits of treatment emerges as a major challenge to the pharmaceutical industry. Thus this field is revolutionizing current era and further it may open new vistas in the field of disease management.

  20. Brain transcriptome perturbations in the Hfe(-/-) mouse model of genetic iron loading.

    PubMed

    Johnstone, Daniel; Graham, Ross M; Trinder, Debbie; Delima, Roheeth D; Riveros, Carlos; Olynyk, John K; Scott, Rodney J; Moscato, Pablo; Milward, Elizabeth A

    2012-04-11

    Severe disruption of brain iron homeostasis can cause fatal neurodegenerative disease, however debate surrounds the neurologic effects of milder, more common iron loading disorders such as hereditary hemochromatosis, which is usually caused by loss-of-function polymorphisms in the HFE gene. There is evidence from both human and animal studies that HFE gene variants may affect brain function and modify risks of brain disease. To investigate how disruption of HFE influences brain transcript levels, we used microarray and real-time reverse transcription polymerase chain reaction to assess the brain transcriptome in Hfe(-/-) mice relative to wildtype AKR controls (age 10 weeks, n≥4/group). The Hfe(-/-) mouse brain showed numerous significant changes in transcript levels (p<0.05) although few of these related to proteins directly involved in iron homeostasis. There were robust changes of at least 2-fold in levels of transcripts for prominent genes relating to transcriptional regulation (FBJ osteosarcoma oncogene Fos, early growth response genes), neurotransmission (glutamate NMDA receptor Grin1, GABA receptor Gabbr1) and synaptic plasticity and memory (calcium/calmodulin-dependent protein kinase IIα Camk2a). As previously reported for dietary iron-supplemented mice, there were altered levels of transcripts for genes linked to neuronal ceroid lipofuscinosis, a disease characterized by excessive lipofuscin deposition. Labile iron is known to enhance lipofuscin generation which may accelerate brain aging. The findings provide evidence that iron loading disorders can considerably perturb levels of transcripts for genes essential for normal brain function and may help explain some of the neurologic signs and symptoms reported in hemochromatosis patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Short-term transcriptional response of microbial communities to N-fertilization in pine forest soil

    DOE PAGES

    Albright, Michaeline Burr Nelson; Johansen, Renee; Lopez, Deanna; ...

    2018-05-25

    Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems, however N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) timescale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (c.a. 1mg/g of soil material) in laboratory microcosms. Here, we hypothesized that N fertilization would repress the expression of fungalmore » and bacterial genes linked to N-mining from plant litter. However, despite N-suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ~4% of metabolic genes changed in expression with N addition, while three times as many (~12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N-addition observed in longer-term field studies likely results from changes in microbial composition.« less

  2. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants

    PubMed Central

    Ziyab, A. H.; Karmaus, W.; Holloway, J. W.; Zhang, H.; Ewart, S.; Arshad, S. H.

    2012-01-01

    Background Loss-of-function variants within the filaggrin gene (FLG) are associated with a dysfunctional skin barrier that contributes to the development of eczema. Epigenetic modifications, such as DNA methylation, are genetic regulatory mechanisms that modulate gene expression without changing the DAN sequence. Objectives To investigate whether genetic variants and adjacent differential DNA methylation within the FLG gene synergistically act on the development of eczema. Methods A subsample (n = 245, only females aged 18 years) of the Isle of Wight birth cohort participants (n = 1,456) had available information for FLG variants R501X, 2282del4, and S3247X and DNA methylation levels for 10 CpG sites within the FLG gene. Log-binomial regression was used to estimate the risk ratios (RRs) of eczema associated with FLG variants at different methylation levels. Results The period prevalence of eczema was 15.2% at age 18 years and 9.0% of participants were carriers (heterozygous) of FLG variants. Of the 10 CpG sites spanning the genomic region of FLG, methylation levels of CpG site ‘cg07548383’ showed a significant interaction with FLG sequence variants on the risk for eczema. At 86% methylation level, filaggrin haploinsufficient individuals had 5.48-fold increased risk of eczema when compared to those with wild type FLG genotype (p-value = 0.0008). Conclusions Our novel results indicated that the association between FLG loss-of-function variants and eczema is modulated by DNA methylation. Simultaneously assessing the joint effect of genetic and epigenetic factors within the FLG gene further highlights the importance of this genomic region for eczema manifestation. PMID:23003573

  3. Growth condition dependency is the major cause of non-responsiveness upon genetic perturbation

    PubMed Central

    Amini, Saman; Holstege, Frank C. P.

    2017-01-01

    Investigating the role and interplay between individual proteins in biological processes is often performed by assessing the functional consequences of gene inactivation or removal. Depending on the sensitivity of the assay used for determining phenotype, between 66% (growth) and 53% (gene expression) of Saccharomyces cerevisiae gene deletion strains show no defect when analyzed under a single condition. Although it is well known that this non-responsive behavior is caused by different types of redundancy mechanisms or by growth condition/cell type dependency, it is not known what the relative contribution of these different causes is. Understanding the underlying causes of and their relative contribution to non-responsive behavior upon genetic perturbation is extremely important for designing efficient strategies aimed at elucidating gene function and unraveling complex cellular systems. Here, we provide a systematic classification of the underlying causes of and their relative contribution to non-responsive behavior upon gene deletion. The overall contribution of redundancy to non-responsive behavior is estimated at 29%, of which approximately 17% is due to homology-based redundancy and 12% is due to pathway-based redundancy. The major determinant of non-responsiveness is condition dependency (71%). For approximately 14% of protein complexes, just-in-time assembly can be put forward as a potential mechanistic explanation for how proteins can be regulated in a condition dependent manner. Taken together, the results underscore the large contribution of growth condition requirement to non-responsive behavior, which needs to be taken into account for strategies aimed at determining gene function. The classification provided here, can also be further harnessed in systematic analyses of complex cellular systems. PMID:28257504

  4. Characteristics of genomic signatures derived using univariate methods and mechanistically anchored functional descriptors for predicting drug- and xenobiotic-induced nephrotoxicity.

    PubMed

    Shi, Weiwei; Bugrim, Andrej; Nikolsky, Yuri; Nikolskya, Tatiana; Brennan, Richard J

    2008-01-01

    ABSTRACT The ideal toxicity biomarker is composed of the properties of prediction (is detected prior to traditional pathological signs of injury), accuracy (high sensitivity and specificity), and mechanistic relationships to the endpoint measured (biological relevance). Gene expression-based toxicity biomarkers ("signatures") have shown good predictive power and accuracy, but are difficult to interpret biologically. We have compared different statistical methods of feature selection with knowledge-based approaches, using GeneGo's database of canonical pathway maps, to generate gene sets for the classification of renal tubule toxicity. The gene set selection algorithms include four univariate analyses: t-statistics, fold-change, B-statistics, and RankProd, and their combination and overlap for the identification of differentially expressed probes. Enrichment analysis following the results of the four univariate analyses, Hotelling T-square test, and, finally out-of-bag selection, a variant of cross-validation, were used to identify canonical pathway maps-sets of genes coordinately involved in key biological processes-with classification power. Differentially expressed genes identified by the different statistical univariate analyses all generated reasonably performing classifiers of tubule toxicity. Maps identified by enrichment analysis or Hotelling T-square had lower classification power, but highlighted perturbed lipid homeostasis as a common discriminator of nephrotoxic treatments. The out-of-bag method yielded the best functionally integrated classifier. The map "ephrins signaling" performed comparably to a classifier derived using sparse linear programming, a machine learning algorithm, and represents a signaling network specifically involved in renal tubule development and integrity. Such functional descriptors of toxicity promise to better integrate predictive toxicogenomics with mechanistic analysis, facilitating the interpretation and risk assessment of predictive genomic investigations.

  5. On the role of PDZ domain-encoding genes in Drosophila border cell migration.

    PubMed

    Aranjuez, George; Kudlaty, Elizabeth; Longworth, Michelle S; McDonald, Jocelyn A

    2012-11-01

    Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in vivo RNAi knockdown. The PDZ domain is one of the largest families of protein-protein interaction domains found in eukaryotes. Proteins that contain PDZ domains participate in a variety of biological processes, including signal transduction and establishment of epithelial apical-basal polarity. Targeting PDZ proteins effectively assesses a larger number of genes via the protein complexes and pathways through which these proteins function. par-6, a known regulator of border cell migration, was a positive hit and thus validated the approach. Knockdown of 14 PDZ domain genes disrupted migration with multiple RNAi lines. The candidate genes have diverse predicted cellular functions and are anticipated to provide new insights into the mechanisms that control border cell movement. As a test of this concept, two genes that disrupted migration were characterized in more detail: big bang and the Dlg5 homolog CG6509. We present evidence that Big bang regulates JAK/STAT signaling, whereas Dlg5/CG6509 maintains cluster cohesion. Moreover, these results demonstrate that targeting a selected class of genes by RNAi can uncover novel regulators of collective cell migration.

  6. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    PubMed

    Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico

    2014-01-01

    Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.

  7. EST-derived SNP discovery and selective pressure analysis in Pacific white shrimp ( Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Liu, Chengzhang; Wang, Xia; Xiang, Jianhai; Li, Fuhua

    2012-09-01

    Pacific white shrimp has become a major aquaculture and fishery species worldwide. Although a large scale EST resource has been publicly available since 2008, the data have not yet been widely used for SNP discovery or transcriptome-wide assessment of selective pressure. In this study, a set of 155 411 expressed sequence tags (ESTs) from the NCBI database were computationally analyzed and 17 225 single nucleotide polymorphisms (SNPs) were predicted, including 9 546 transitions, 5 124 transversions and 2 481 indels. Among the 7 298 SNP substitutions located in functionally annotated contigs, 58.4% (4 262) are non-synonymous SNPs capable of introducing amino acid mutations. Two hundred and fifty nonsynonymous SNPs in genes associated with economic traits have been identified as candidates for markers in selective breeding. Diversity estimates among the synonymous nucleotides were on average 3.49 times greater than those in non-synonymous, suggesting negative selection. Distribution of non-synonymous to synonymous substitutions (Ka/Ks) ratio ranges from 0 to 4.01, (average 0.42, median 0.26), suggesting that the majority of the affected genes are under purifying selection. Enrichment analysis identified multiple gene ontology categories under positive or negative selection. Categories involved in innate immune response and male gamete generation are rich in positively selected genes, which is similar to reports in Drosophila and primates. This work is the first transcriptome-wide assessment of selective pressure in a Penaeid shrimp species. The functionally annotated SNPs provide a valuable resource of potential molecular markers for selective breeding.

  8. Network Reconstruction Using Nonparametric Additive ODE Models

    PubMed Central

    Henderson, James; Michailidis, George

    2014-01-01

    Network representations of biological systems are widespread and reconstructing unknown networks from data is a focal problem for computational biologists. For example, the series of biochemical reactions in a metabolic pathway can be represented as a network, with nodes corresponding to metabolites and edges linking reactants to products. In a different context, regulatory relationships among genes are commonly represented as directed networks with edges pointing from influential genes to their targets. Reconstructing such networks from data is a challenging problem receiving much attention in the literature. There is a particular need for approaches tailored to time-series data and not reliant on direct intervention experiments, as the former are often more readily available. In this paper, we introduce an approach to reconstructing directed networks based on dynamic systems models. Our approach generalizes commonly used ODE models based on linear or nonlinear dynamics by extending the functional class for the functions involved from parametric to nonparametric models. Concomitantly we limit the complexity by imposing an additive structure on the estimated slope functions. Thus the submodel associated with each node is a sum of univariate functions. These univariate component functions form the basis for a novel coupling metric that we define in order to quantify the strength of proposed relationships and hence rank potential edges. We show the utility of the method by reconstructing networks using simulated data from computational models for the glycolytic pathway of Lactocaccus Lactis and a gene network regulating the pluripotency of mouse embryonic stem cells. For purposes of comparison, we also assess reconstruction performance using gene networks from the DREAM challenges. We compare our method to those that similarly rely on dynamic systems models and use the results to attempt to disentangle the distinct roles of linearity, sparsity, and derivative estimation. PMID:24732037

  9. Functional Targets of the Monogenic Diabetes Transcription Factors HNF-1α and HNF-4α Are Highly Conserved Between Mice and Humans

    PubMed Central

    Boj, Sylvia F.; Servitja, Joan Marc; Martin, David; Rios, Martin; Talianidis, Iannis; Guigo, Roderic; Ferrer, Jorge

    2009-01-01

    OBJECTIVE The evolutionary conservation of transcriptional mechanisms has been widely exploited to understand human biology and disease. Recent findings, however, unexpectedly showed that the transcriptional regulators hepatocyte nuclear factor (HNF)-1α and -4α rarely bind to the same genes in mice and humans, leading to the proposal that tissue-specific transcriptional regulation has undergone extensive divergence in the two species. Such observations have major implications for the use of mouse models to understand HNF-1α– and HNF-4α–deficient diabetes. However, the significance of studies that assess binding without considering regulatory function is poorly understood. RESEARCH DESIGN AND METHODS We compared previously reported mouse and human HNF-1α and HNF-4α binding studies with independent binding experiments. We also integrated binding studies with mouse and human loss-of-function gene expression datasets. RESULTS First, we confirmed the existence of species-specific HNF-1α and -4α binding, yet observed incomplete detection of binding in the different datasets, causing an underestimation of binding conservation. Second, only a minor fraction of HNF-1α– and HNF-4α–bound genes were downregulated in the absence of these regulators. This subset of functional targets did not show evidence for evolutionary divergence of binding or binding sequence motifs. Finally, we observed differences between conserved and species-specific binding properties. For example, conserved binding was more frequently located near transcriptional start sites and was more likely to involve multiple binding events in the same gene. CONCLUSIONS Despite evolutionary changes in binding, essential direct transcriptional functions of HNF-1α and -4α are largely conserved between mice and humans. PMID:19188435

  10. Bacterial gene abundances as indicators of greenhouse gas emission in soils.

    PubMed

    Morales, Sergio E; Cosart, Theodore; Holben, William E

    2010-06-01

    Nitrogen fixing and denitrifying bacteria, respectively, control bulk inputs and outputs of nitrogen in soils, thereby mediating nitrogen-based greenhouse gas emissions in an ecosystem. Molecular techniques were used to evaluate the relative abundances of nitrogen fixing, denitrifying and two numerically dominant ribotypes (based on the > or =97% sequence similarity at the 16S rRNA gene) of bacteria in plots representing 10 agricultural and other land-use practices at the Kellogg biological station long-term ecological research site. Quantification of nitrogen-related functional genes (nitrite reductase, nirS; nitrous oxide reductase, nosZ; and nitrogenase, nifH) as well as two dominant 16S ribotypes (belonging to the phyla Acidobacteria, Thermomicrobia) allowed us to evaluate the hypothesis that microbial community differences are linked to greenhouse gas emissions under different land management practices. Our results suggest that the successional stages of the ecosystem are strongly linked to bacterial functional group abundance, and that the legacy of agricultural practices can be sustained over decades. We also link greenhouse gas emissions with specific compositional responses in the soil bacterial community and assess the use of denitrifying gene abundances as proxies for determining nitrous oxide emissions from soils.

  11. Accessing the genomic effects of naked nanoceria in murine neuronal cells.

    PubMed

    Lee, Tin-Lap; Raitano, Joan M; Rennert, Owen M; Chan, Siu-Wai; Chan, Wai-Yee

    2012-07-01

    Cerium oxide nanoparticles (nanoceria) are engineered nanoparticles whose versatility is due to their unique redox properties. We and others have demonstrated that naked nanoceria can act as antioxidants to protect cells against oxidative damage. Although the redox properties may be beneficial, the genome-wide effects of nanoceria on gene transcription and associated biological processes remain elusive. Here we applied a functional genomic approach to examine the genome-wide effects of nanoceria on global gene transcription and cellular functions in mouse neuronal cells. Importantly, we demonstrated that nanoceria induced chemical- and size-specific changes in the murine neuronal cell transcriptome. The nanoceria contributed more than 83% of the population of uniquely altered genes and were associated with a unique spectrum of genes related to neurological disease, cell cycle control, and growth. These observations suggest that an in-depth assessment of potential health effects of naked nanoceria and other naked nanoparticles is both necessary and imminent. Cerium oxide nanoparticles are important antioxidants, with potential applications in neurodegenerative conditions. This team of investigators demonstrated the genomic effects of nanoceria, showing that it induced chemical- and size-specific changes in the murine neuronal cell transcriptome. Published by Elsevier Inc.

  12. Convergence of the Insulin and Serotonin Programs in the Pancreatic β-Cell

    PubMed Central

    Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B.; Honig, Gerard; Kim, Hail; Gasa, Rosa M.; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H.; Deneris, Evan S.; German, Michael S.

    2011-01-01

    OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes. PMID:22013016

  13. Convergence of the insulin and serotonin programs in the pancreatic β-cell.

    PubMed

    Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B; Honig, Gerard; Kim, Hail; Gasa, Rosa M; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H; Deneris, Evan S; German, Michael S

    2011-12-01

    Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.

  14. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  15. A study of the influence of different genotypes on the physical and behavioral phenotypes of children and adults ascertained clinically as having PWS.

    PubMed

    Webb, T; Whittington, J; Clarke, D; Boer, H; Butler, J; Holland, A

    2002-10-01

    A population-based cohort of people with a clinical diagnosis of Prader-Willi syndrome (PWS) was genetically assessed using molecular diagnostic methods and subsequently divided into the following genetic subtypes involving chromosome 15: 'deletion', 'disomy' and genetically negative (referred to as 'PWS-like'). The physical and behavioral characteristics of the three groups were compared in order to evaluate the unique characteristics of the phenotype resulting from loss of expression of imprinted genes at 15q11q13 (PWS vs. PWS-like cases), the possible effect of either haploid insufficiency of non-imprinted genes (deletion cases), or gain of function of imprinted genes (disomy cases) located within the PWS critical region at 15q11q13. In this study, the main differences between probands with either a deletion or disomy are considered, and the possible involvement of contributing genes discussed. The differences within the PWS group proved difficult to quantify. It would appear that haploid insufficiency or gain of function are more subtle contributors than gender-specific genomic imprinting in the production of the PWS phenotype.

  16. Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs

    PubMed Central

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J. Kim; Hayward, Jessica J.; Cohen, Paula E.; Greally, John M.; Wang, Jun; Bustamante, Carlos D.; Boyko, Adam R.

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred. PMID:24348265

  17. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    PubMed

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  18. Functional correction of dystrophin actin binding domain mutations by genome editing

    PubMed Central

    Kyrychenko, Viktoriia; Kyrychenko, Sergii; Tiburcy, Malte; Shelton, John M.; Long, Chengzu; Schneider, Jay W.; Zimmermann, Wolfram-Hubertus; Bassel-Duby, Rhonda

    2017-01-01

    Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2–8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3–9, 6–9, or 7–11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3–9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1. PMID:28931764

  19. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants

    PubMed Central

    Yu, Xiaofen; Luo, Qingchen; Huang, Kaixun; Yang, Guangxiao; He, Guangyuan

    2018-01-01

    Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper. PMID:29599791

  20. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    DOE PAGES

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; ...

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less

Top