Science.gov

Sample records for assess microbial communities

  1. Using Artificial Neural Networks to Assess Changes in Microbial Communities

    SciTech Connect

    Brandt, C.C.; Macnaughton, S.; Palumbo, A.V.; Pfiffner, S.M.; Schryver, J.C.

    1999-04-19

    We evaluated artificial neural networks (ANNs) as a technique for assessing changes in soil microbial communities following exposure to metals. We analyzed signature lipid biomarker (SLB) data collected from two soil microcosm experiments using traditional statistical techniques and ANN. Two phases of data analysis were done; pattern recognition and prediction. In general, the ANNs were better able to detect patterns and relationships in the SLB data than were the traditional statistical techniques.

  2. Ecotoxicological assessment of soil microbial community tolerance to glyphosate.

    PubMed

    Allegrini, Marco; Zabaloy, María Celina; Gómez, Elena del V

    2015-11-15

    Glyphosate is the most used herbicide worldwide. While contrasting results have been observed related with its impact on soil microbial communities, more studies are necessary to elucidate the potential effects of the herbicide. Differences in tolerance detected by Pollution Induced Community Tolerance (PICT) approach could reflect these effects. The objective of the present study was to assess the tolerance to glyphosate (the active ingredient and a commercial formulation) of contrasting soils with (H) and without (NH) history of exposure. The hypothesis of a higher tolerance in H soils due to a sustained selection pressure on community structure was tested through the PICT approach. Results indicated that tolerance to glyphosate is not consistent with previous history of exposure to the herbicide either for the active ingredient or for a commercial formulation. Soils of H and NH sites were also characterized in order to determine to what extent they differ in their functional diversity and structure of microbial communities. Denaturant Gradient Gel Electrophoresis (DGGE) and Quantitative Real Time PCR (Q-PCR) indicated high similarity of Eubacteria profiles as well as no significant differences in abundance, respectively, between H and NH sites. Community level physiological profiling (CLPP) indicated some differences in respiration of specific sources but functional diversity was very similar as reflected by catabolic evenness (E). These results support PICT assay, which ideally requires soils with differences in their exposure to the contaminant but minor differences in other characteristics. This is, to our knowledge, the first report of PICT approach with glyphosate examining tolerance at soil microbial community level.

  3. Biosafety assessment of GFP transplastomic tobacco to rhizosphere microbial community.

    PubMed

    Lv, Yueping; Cai, Hongsheng; Yu, Jianping; Liu, Jiali; Liu, Qingguo; Guo, Changhong

    2014-05-01

    Green fluorescent protein (GFP) is one of the most widely studied and exploited proteins in biochemistry, and has many applications as a marker, especially in plant transformation system. Although a number of studies have been conducted to assess the toxify of this protein to specific organisms, little is known about GFP on rhizosphere microbial community, which is regarded as good indicator for environmental risk assessment. Chloroplast genetic engineering has shown superiority over traditional nuclear genetic engineering, and has been used in many aspects of plant genetic engineering. High levels of chloroplast-based protein accumulation make this technology as an ideal strategy to evaluate biosafety of transgenes. In the present study, the effects of field-released GFP transplastomic tobacco (Nicotiana tabacum) on rhizosphere microbes over a whole growth cycle were investigated by using both culture-dependent and culture-independent methods. Compared to wild-type control, transplastomic tobacco had no significant influence on the microbial population at the seedling, vegetative, flowering and senescing stages. However, developmental stages had more influence than ecotypes (GFP-transformed and wild-type). This was confirmed by colony forming unit, Biolog Eco(TM) and PCR-DGGE analysis. Thus, these results suggest chloroplast transformation with a GFP reporter gene has no significant influence on rhizosphere microbial community, and will be potential platform for plant biotechnology in future. PMID:24429672

  4. Using Artificial Neural Networks to Assess Microbial Communities

    SciTech Connect

    Almeida, J.S.; Brand, C.C.; Palumbo, A.V.; Pfiffner, S.M.; Schryver, J.C.

    1998-09-08

    We are evaluating artificial neural networks (ANNs) as tools for assessing changes in soil microbial communities following exposure to metals. We analyzed signature lipid biomarker data collected from two soil microcosm experiments using an autoassociative ANN. In one experiment, the microcosms were exposed to O, 100, or 250 ppm of metals, and in the other experiment the microcosms were exposed to O or 500 ppm of metals. The ANNs were able to distinguish between microcosms exposed and not exposed to metals in both experiments.

  5. Multilevel Samplers to Assess Microbial Community Response to Biostimulation

    NASA Astrophysics Data System (ADS)

    Baldwin, B. R.; McKinley, J. P.; Peacock, A. D.; Park, M.; Ogles, D.; Istok, J. D.; Resch, C. T.; White, D. C.

    2006-05-01

    Passive multilevel samplers (MLS) containing a solid matrix for microbial colonization were used in conjunction with a push-pull biostimulation experiment designed to promote biological U(VI) and Tc(VII) reduction. MLS were deployed at 24 elevations in the injection well and two down gradient wells to investigate the spatial variability in microbial community composition and growth prior to and following biostimulation. The microbial community was characterized by real-time PCR (Q-PCR) quantification of eubacteria, NO3- reducing bacteria (nirS and nirK), δ-proteobacteria, Geobacter sp., and methanogens (mcrA). Pretest cell densities were low overall but varied substantially with significantly greater eubacterial populations detected at circumneutral pH (T-test, α=0.05) suggesting carbon substrate and low pH limitation of microbial activity. Although pretest cell densities were low, denitrifying bacteria were dominant members of the microbial community. Biostimulation with an ethanol amended groundwater resulted in concurrent NO3- and Tc(VII) reduction followed by U(VI) reduction. Q-PCR analysis of MLS revealed significant (1-2 orders of magnitude, T-test, α=0.05) increases in cell densities of eubacteria, denitrifiers, δ- proteobacteria, Geobacter sp., and methanogens in response to biostimulation. Traditionally characterization of sediment samples has been used to investigate the microbial community response to biostimulation, however, collection of sediment samples is expensive and not conducive to deep aquifers or temporal studies. The results presented demonstrate that push-pull tests with passive MLS provide an inexpensive approach to determine the effect of biostimulation on contaminant concentrations, geochemical conditions, and the microbial community composition and function.

  6. Quantitative phylogenetic assessment of microbial communities indiverse environments

    SciTech Connect

    von Mering, C.; Hugenholtz, P.; Raes, J.; Tringe, S.G.; Doerks,T.; Jensen, L.J.; Ward, N.; Bork, P.

    2007-01-01

    The taxonomic composition of environmental communities is an important indicator of their ecology and function. Here, we use a set of protein-coding marker genes, extracted from large-scale environmental shotgun sequencing data, to provide a more direct, quantitative and accurate picture of community composition than traditional rRNA-based approaches using polymerase chain reaction (PCR). By mapping marker genes from four diverse environmental data sets onto a reference species phylogeny, we show that certain communities evolve faster than others, determine preferred habitats for entire microbial clades, and provide evidence that such habitat preferences are often remarkably stable over time.

  7. Assessing the Unseen Bacterial Diversity in Microbial Communities

    PubMed Central

    Caro-Quintero, Alejandro; Ochman, Howard

    2015-01-01

    For both historical and technical reasons, 16S ribosomal RNA has been the most common molecular marker used to analyze the contents of microbial communities. However, its slow rate of evolution hinders the resolution of closely related bacteria—individual 16S-phylotypes, particularly when clustered at 97% sequence identity, conceal vast amounts of species- and strain-level variation. Protein-coding genes, which evolve more quickly, are useful for differentiating among more recently diverged lineages, but their application is complicated by difficulties in designing low-redundancy primers that amplify homologous regions from distantly related taxa. Given the now-common practice of multiplexing hundreds of samples, adopting new genes usually entails the synthesis of large sets of barcoded primers. To circumvent problems associated with use of protein-coding genes to survey microbial communities, we develop an approach—termed phyloTAGs—that offers an automatic solution for primer design and can be easily adapted to target different taxonomic groups and/or different protein-coding regions. We applied this method to analyze diversity within the gorilla gut microbiome and recovered hundreds of strains that went undetected after deep-sequencing of 16S rDNA amplicons. PhyloTAGs provides a powerful way to recover the fine-level diversity within microbial communities and to study stability and dynamics of bacterial populations. PMID:26615218

  8. Assessing the Unseen Bacterial Diversity in Microbial Communities.

    PubMed

    Caro-Quintero, Alejandro; Ochman, Howard

    2015-12-01

    For both historical and technical reasons, 16S ribosomal RNA has been the most common molecular marker used to analyze the contents of microbial communities. However, its slow rate of evolution hinders the resolution of closely related bacteria--individual 16S-phylotypes, particularly when clustered at 97% sequence identity, conceal vast amounts of species- and strain-level variation. Protein-coding genes, which evolve more quickly, are useful for differentiating among more recently diverged lineages, but their application is complicated by difficulties in designing low-redundancy primers that amplify homologous regions from distantly related taxa. Given the now-common practice of multiplexing hundreds of samples, adopting new genes usually entails the synthesis of large sets of barcoded primers. To circumvent problems associated with use of protein-coding genes to survey microbial communities, we develop an approach--termed phyloTAGs--that offers an automatic solution for primer design and can be easily adapted to target different taxonomic groups and/or different protein-coding regions. We applied this method to analyze diversity within the gorilla gut microbiome and recovered hundreds of strains that went undetected after deep-sequencing of 16S rDNA amplicons. PhyloTAGs provides a powerful way to recover the fine-level diversity within microbial communities and to study stability and dynamics of bacterial populations. PMID:26615218

  9. Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile.

    PubMed

    Fuentes, Sebastián; Ding, Guo-Chun; Cárdenas, Franco; Smalla, Kornelia; Seeger, Michael

    2015-10-01

    Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils.

  10. Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile.

    PubMed

    Fuentes, Sebastián; Ding, Guo-Chun; Cárdenas, Franco; Smalla, Kornelia; Seeger, Michael

    2015-10-01

    Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils. PMID:26362923

  11. Why Microbial Communities?

    ScienceCinema

    Fredrickson, Jim (PNNL)

    2016-07-12

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Fredrickson introduces the symposium by defining microbial communities and describing their scientific relevance as they relate to solving problems in energy, climate, and sustainability.

  12. An assessment of microbial communities associated with surface mining-disturbed overburden.

    PubMed

    Poncelet, Dominique M; Cavender, Nicole; Cutright, Teresa J; Senko, John M

    2014-03-01

    To assess the microbiological changes that occur during the maturation of overburden that has been disturbed by surface mining of coal, a surface mining-disturbed overburden unit in southeastern Ohio, USA was characterized. Overburden from the same unit that had been disturbed for 37 and 16 years were compared to undisturbed soil from the same region. Overburden and soil samples were collected as shallow subsurface cores from each subregion of the mined area (i.e., land 16 years and 37 years post-mining, and unmined land). Chemical and mineralogical characteristics of overburden samples were determined, as were microbial respiration rates. The composition of microbial communities associated with overburden and soil were determined using culture-independent, nucleic acid-based approaches. Chemical and mineralogical evaluation of overburden suggested that weathering of disturbed overburden gave rise to a setting with lower pH and more oxidized chemical constituents. Overburden-associated microbial biomass and respiration rates increased with time after overburden disturbance. Evaluation of 16S rRNA gene libraries that were produced by "next-generation" sequencing technology revealed that recently disturbed overburden contained an abundance of phylotypes attributable to sulfur-oxidizing Limnobacter spp., but with increasing time post-disturbance, overburden-associated microbial communities developed a structure similar to that of undisturbed soil, but retained characteristics of more recently disturbed overburden. Our results indicate that over time, the biogeochemical weathering of disturbed overburden leads to the development of geochemical conditions and microbial communities that approximate those of undisturbed soil, but that this transition is incomplete after 37 years of overburden maturation.

  13. The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities

    PubMed Central

    Lee, Yong-Jin; van Nostrand, Joy D; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; Carter, Michelle Q; He, Zhili; Wu, Liyou; Yang, Fang; Xu, Jian; Zhou, Jizhong

    2013-01-01

    Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. PMID:23765101

  14. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5

  15. Analysis of Structural and Physiological Profiles To Assess the Effects of Cu on Biofilm Microbial Communities

    PubMed Central

    Massieux, B.; Boivin, M. E. Y.; van den Ende, F. P.; Langenskiöld, J.; Marvan, P.; Barranguet, C.; Admiraal, W.; Laanbroek, H. J.; Zwart, G.

    2004-01-01

    We investigated the effects of copper on the structure and physiology of freshwater biofilm microbial communities. For this purpose, biofilms that were grown during 4 weeks in a shallow, slightly polluted ditch were exposed, in aquaria in our laboratory, to a range of copper concentrations (0, 1, 3, and 10 μM). Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community in all aquaria. The extent of change was related to the concentration of copper applied, indicating that copper directly or indirectly caused the effects. Concomitantly with these changes in structure, changes in the metabolic potential of the heterotrophic bacterial community were apparent from changes in substrate use profiles as assessed on Biolog plates. The structure of the phototrophic community also changed during the experiment, as observed by microscopic analysis in combination with DGGE analysis of eukaryotic microorganisms and cyanobacteria. However, the extent of community change, as observed by DGGE, was not significantly greater in the copper treatments than in the control. Yet microscopic analysis showed a development toward a greater proportion of cyanobacteria in the treatments with the highest copper concentrations. Furthermore, copper did affect the physiology of the phototrophic community, as evidenced by the fact that a decrease in photosynthetic capacity was detected in the treatment with the highest copper concentration. Therefore, we conclude that copper affected the physiology of the biofilm and had an effect on the structure of the communities composing this biofilm. PMID:15294780

  16. In-Drift Microbial Communities

    SciTech Connect

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  17. Mathematical modeling as a tool to assess microbial community responses to CO2 injection

    NASA Astrophysics Data System (ADS)

    Vilcaez, J.

    2014-12-01

    The issue of subsurface microbial community responses to the injection of CO2 has great importance not only from a risk assessment point of view but also from the perspective of CO2 recycling to CH4. In this sense, the objective of this study is to develop mathematical models to make a quantitative description of the responses of subsurface indigenous microbial communities to the injection of CO2. For this end, TOUGHREACTV1.2 reactive transport simulator with its module ECO2N is used as the modeling framework. The targeted microbial community is composed of fermentative bacteria (Organic matter → Acetate & H2), acetotrophic methanogens (Acetate → Methane & CO2), acetotrophic Sulfate Reducing Bacteria (SRB) (Acetate → H2S & CO2), hydrogenotrophic methanogens (H2 & CO2 → CH4), and hydrogenotrophic SRB (H2 → H2S). Due to the multiple hydrogeological, geochemical and microbiological factors intervening in both the response of subsurface microbial communities to the injection of CO2 and the chemical and physical fate of CO2 itself, at this stage simulations have been performed in batch mode. That means numerical simulations aimed to track changes in CO2 saturation levels, pH, and concentrations of mineral and aqueous phase species over time at selected initial conditions. Numerical simulation results indicate that the activity of microbes associated with methanogenic processes in geological storage sites of CO2 is governed by the level of CO2 saturation in the pore space as well as by the presence of pH buffering minerals such as calcite. With calcite in the mineral phase attenuating drops in pH below inhibitory levels, for instance it is shown that acetotrophic and hydrogenotrophic SRB outcompete acetotrophic and hydrogenotrophic methanogens for acetate and H2, respectively. During the initial stages of the reaction when the pH level is lowest, the higher tolerance of hydrogenotrophic methanogens to acidic pH levels is reflected by a preferential formation of

  18. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community

    PubMed Central

    Tapio, Ilma; Shingfield, Kevin J.; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R.; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J.; Wallace, R. John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  19. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community.

    PubMed

    Tapio, Ilma; Shingfield, Kevin J; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J; Wallace, R John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  20. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic farming is a growing field of agriculture that is benign on the environment but there are contradictory reports about the impact of these practices on the soil microbial community, i.e. some studies showed higher microbial diversity in organic farms but others showed no differences in divers...

  1. Temporal and spatial assessment of microbial communities in commercial silages from bunker silos.

    PubMed

    Kraut-Cohen, J; Tripathi, V; Chen, Y; Gatica, J; Volchinski, V; Sela, S; Weinberg, Z; Cytryn, E

    2016-08-01

    Ensiling is a feed preservation method of moist forage crops that generally depends on naturally developing lactic acid bacteria to convert water-soluble carbohydrates into organic acids. While bacterial community dynamics have been previously assessed in bench-scale and pilot ensiling facilities, almost no studies have assessed the microbiomes of large-scale silage facilities. This study analyzed bacterial community composition in mature silage from bunker silos in three commercial production centers as related to pH, organic matter, volatile fatty acid composition, and spatial distribution within the ensiling bunker. It revealed significant physicochemical differences between "preserved" regions situated in the center and along the walls of the silage bunkers that were characterized by high concentrations of lactic acid and other volatiles and pH values below 5, and "spoiled" regions in the corners (shoulders) of the bunkers that had low lactic acid concentrations and high pH values. Preserved silage was dominated (>90 %) by lactic acid bacteria and characterized by high similarity and low taxonomic diversity, whereas spoiled silage had highly diverse microbiomes with low abundances of lactic acid bacteria (<5 %) that were sometimes characterized by high levels of Enterobacteriaceae. Spatial position had a much stronger impact on the microbial community composition than feedstock type, sampling date, or production center location supporting previous studies demonstrating that ecology and not geography is a major driver of environmental microbiomes. PMID:27075739

  2. Effects of pig manure containing copper and zinc on microbial community assessed via phospholipids in soils.

    PubMed

    Zhang, Yan; Luo, Wei; Jia, Junmei; Kong, Peiru; Tong, Xiaojuan; Lu, Yonglong; Xie, Liqiong; Ma, Fulong; Giesy, John P

    2014-08-01

    Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg(-1), dry mass (dm) and 1,497 mg Zn kg(-1), dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg(-1), dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 (+)-N, NO3 (-)-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88-222 g PM kg(-1), dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg(-1), dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44-222 g PM kg(-1), dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22-44 g PM kg(-1) dm, soil containing Cu and Zn. PMID:24791911

  3. SEAGRASS RHIZOSPHERE MICROBIAL COMMUNITIES

    EPA Science Inventory

    Devereux, Richard. 2005. Seagrass Rhizosphere Microbial Communities. In: Interactions Between Macro- and Microorganisms in Marine Sediments. E. Kristense, J.E. Kostka and R.H. Haese, Editors. American Geophysical Union, Washington, DC. p199-216. (ERL,GB 1213).

    Seagrasses ...

  4. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter.

    PubMed

    Gou, Huange; Lu, Jianjiang; Li, Shanman; Tong, Yanbin; Xie, Chunbin; Zheng, Xiaowu

    2016-07-01

    Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM1 and PM10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert. PMID:27086076

  5. Application of Ion Torrent Sequencing to the Assessment of the Effect of Alkali Ballast Water Treatment on Microbial Community Diversity

    PubMed Central

    Fujimoto, Masanori; Moyerbrailean, Gregory A.; Noman, Sifat; Gizicki, Jason P.; Ram, Michal L.; Green, Phyllis A.; Ram, Jeffrey L.

    2014-01-01

    The impact of NaOH as a ballast water treatment (BWT) on microbial community diversity was assessed using the 16S rRNA gene based Ion Torrent sequencing with its new 400 base chemistry. Ballast water samples from a Great Lakes ship were collected from the intake and discharge of both control and NaOH (pH 12) treated tanks and were analyzed in duplicates. One set of duplicates was treated with the membrane-impermeable DNA cross-linking reagent propidium mono-azide (PMA) prior to PCR amplification to differentiate between live and dead microorganisms. Ion Torrent sequencing generated nearly 580,000 reads for 31 bar-coded samples and revealed alterations of the microbial community structure in ballast water that had been treated with NaOH. Rarefaction analysis of the Ion Torrent sequencing data showed that BWT using NaOH significantly decreased microbial community diversity relative to control discharge (p<0.001). UniFrac distance based principal coordinate analysis (PCoA) plots and UPGMA tree analysis revealed that NaOH-treated ballast water microbial communities differed from both intake communities and control discharge communities. After NaOH treatment, bacteria from the genus Alishewanella became dominant in the NaOH-treated samples, accounting for <0.5% of the total reads in intake samples but more than 50% of the reads in the treated discharge samples. The only apparent difference in microbial community structure between PMA-processed and non-PMA samples occurred in intake water samples, which exhibited a significantly higher amount of PMA-sensitive cyanobacteria/chloroplast 16S rRNA than their corresponding non-PMA total DNA samples. The community assembly obtained using Ion Torrent sequencing was comparable to that obtained from a subset of samples that were also subjected to 454 pyrosequencing. This study showed the efficacy of alkali ballast water treatment in reducing ballast water microbial diversity and demonstrated the application of new Ion Torrent

  6. First Microbial Community Assessment of Borehole Fluids from the Deep Underground Science and Engineering Laboratory (DUSEL)

    NASA Astrophysics Data System (ADS)

    Moser, D. P.; Anderson, C.; Bang, S.; Jones, T. L.; Boutt, D.; Kieft, T.; Sherwood Lollar, B.; Murdoch, L. C.; Pfiffner, S. M.; Bruckner, J.; Fisher, J. C.; Newburn, J.; Wheatley, A.; Onstott, T. C.

    2010-12-01

    Fluid and gas samples were collected from two flowing boreholes at the 4100 (1,250 m) and 4850 ft (1478 m) levels of the former Homestake Gold Mine in Lead, South Dakota. Service- and flood water samples were also collected as comparative benchmarks. With a maximum depth of 8,000 ft, (2,438 m), this mine currently hosts the Sanford Laboratory and is the proposed location for the US Deep Underground Science and Engineering Laboratory (DUSEL). The uncased 4100L hole is a legacy of mining; whereas, the cased 4850 hole was drilled in 2009 in support of large cavity construction. Both were packered or valved to exclude mine air and sampled anaerobically using aseptic technique. Physical measurements, aquatic and dissolved gas chemistry, cell counts, and microbial community assessments (SSU rRNA libraries) were performed on all samples. This study represents the first at Sanford Lab/DUSEL specifically focused on the deep biosphere rather than mine microbiology. Fluids from the two holes differed markedly, with that from 4100L being characterized by NaHCO3 and 4850 by Na2SO4. pH values of 8.2 vs. 7.5, conductivities (μS) of 1790 vs. 7667 and alkalinities (mg/L) of 767 vs. 187 were obtained from 4100L and 4850, respectively. As expected, the deeper 4850L hole had the higher temperature (38 vs. 30 oC). Neither had measureable nitrate, but both had similar dissolved organic C (DOC) concentrations (0.8 vs. 0.9 mg/L). Sulfate was present at 337 vs. 4,470 mg/L in 4100L and 4850L. Major dissolved gases were N2 (91 and 81 vol%), O2 (12 and 16 vol%) and CH4 (0.07 and 3.35 vol%) in 4100L and 4850L. The δ13C of CH4 was -51 and -56.7 permil in 4100L and 4850, respectively. The uncorrected 14C age of DIC was calculated at 25,310 (+/- 220) and 47,700 (+/-3,100) years for the two fluids. Cell counts were 5.9e3 and 2.01e5 in 4100L and 4850. Microbial community structure was diverse in both holes and distinct from that of service water. A large proportion of rRNA library clones were

  7. Development of a Model, Metal-reducing Microbial Community for a System Biology Level Assessment of Desulfovibrio vulgaris as part of a Community

    SciTech Connect

    Elias, Dwayne; Schadt, Christopher; Miller, Lance; Phelps, Tommy; Brown, S. D.; Arkin, Adam; Hazen, Terry; Drake, Megin; Yang, Z.K.; Podar, Mircea

    2010-05-17

    One of the largest experimental gaps is between the simplicity of pure cultures and the complexity of open environmental systems, particularly in metal-contaminated areas. These microbial communities form ecosystem foundations, drive biogeochemical processes, and are relevant for biotechnology and bioremediation. A model, metal-reducing microbial community was constructed as either syntrophic or competitive to study microbial cell to cell interactions, cell signaling and competition for resources. The microbial community was comprised of the metal-reducing Desulfovibrio vulgaris Hildenborough and Geobacter sulfurreducens PCA. Additionally, Methanococcus maripaludis S2 was added to study complete carbon reduction and maintain a low hydrogen partial pressure for syntrophism to occur. Further, considerable work has been published on D. vulgaris and the D. vulgaris/ Mc. maripaludis co-culture both with and without stress. We are extending this work by conducting the same stress conditions on the model community. Additionally, this comprehensive investigation includes physiological and metabolic analyses as well as specially designed mRNA microarrays with the genes for all three organisms on one slide so as to follow gene expression changes in the various cultivation conditions as well as being comparable to the co- and individual cultures. Further, state-of -the-art comprehensive AMT tag proteomics allows for these comparisons at the protein level for a systems biology assessment of a model, metal-reducing microbial community. Preliminary data revealed that lactate oxidation by D. vulgaris was sufficient to support both G. sulfurreducens and M. maripaludis via the excretion of H2 and acetate. Fumarate was utilized by G. sulfurreducens and reduced to succinate since neither of the other two organisms can reduce fumarate. Methane was quantified, suggesting acetate and H2 concentrations were sufficient for M. maripaludis. Steady state community cultivation will allow for

  8. Quantitative assessment of in situ microbial communities affecting nuclear waste disposal

    SciTech Connect

    White, D.C. |

    1996-05-01

    Microbes in the environments surrounding nuclear waste depositories pose several questions regarding the protection of the surrounding communities. microbes can facilitate microbially influenced corrosion (MIC), mobilize and facilitate the transport of nuclides as well as produce gaseous emissions which can compromise containment. We have developed an analysis of the extant microbiota that is independent of quantitative recovery and subsequent growth, based on signature biomarkers analysis (SBA).

  9. Microbial Communities as Experimental Units.

    PubMed

    Day, Mitch D; Beck, Daniel; Foster, James A

    2011-05-01

    Artificial ecosystem selection is an experimental technique that treats microbial communities as though they were discrete units by applying selection on community-level properties. Highly diverse microbial communities associated with humans and other organisms can have significant impacts on the health of the host. It is difficult to find correlations between microbial community composition and community-associated diseases, in part because it may be impossible to define a universal and robust species concept for microbes. Microbial communities are composed of potentially thousands of unique populations that evolved in intimate contact, so it is appropriate in many situations to view the community as the unit of analysis. This perspective is supported by recent discoveries using metagenomics and pangenomics. Artificial ecosystem selection experiments can be costly, but they bring the logical rigor of biological model systems to the emerging field of microbial community analysis.

  10. Assessing the bias linked to DNA recovery from biofiltration woodchips for microbial community investigation by fingerprinting.

    PubMed

    Cabrol, Léa; Malhautier, Luc; Poly, Franck; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis

    2010-01-01

    In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.

  11. Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities

    PubMed Central

    Lamendella, Regina; Strutt, Steven; Borglin, Sharon; Chakraborty, Romy; Tas, Neslihan; Mason, Olivia U.; Hultman, Jenni; Prestat, Emmanuel; Hazen, Terry C.; Jansson, Janet K.

    2014-01-01

    One of the major environmental concerns of the Deepwater Horizon oil spill in the Gulf of Mexico was the ecological impact of the oil that reached shorelines of the Gulf Coast. Here we investigated the impact of the oil on the microbial composition in beach samples collected in June 2010 along a heavily impacted shoreline near Grand Isle, Louisiana. Successional changes in the microbial community structure due to the oil contamination were determined by deep sequencing of 16S rRNA genes. Metatranscriptomics was used to determine expression of functional genes involved in hydrocarbon degradation processes. In addition, potential hydrocarbon-degrading Bacteria were obtained in culture. The 16S data revealed that highly contaminated samples had higher abundances of Alpha- and Gammaproteobacteria sequences. Successional changes in these classes were observed over time, during which the oil was partially degraded. The metatranscriptome data revealed that PAH, n-alkane, and toluene degradation genes were expressed in the contaminated samples, with high homology to genes from Alteromonadales, Rhodobacterales, and Pseudomonales. Notably, Marinobacter (Gammaproteobacteria) had the highest representation of expressed genes in the samples. A Marinobacter isolated from this beach was shown to have potential for transformation of hydrocarbons in incubation experiments with oil obtained from the Mississippi Canyon Block 252 (MC252) well; collected during the Deepwater Horizon spill. The combined data revealed a response of the beach microbial community to oil contaminants, including prevalence of Bacteria endowed with the functional capacity to degrade oil. PMID:24772107

  12. Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities.

    PubMed

    Lamendella, Regina; Strutt, Steven; Borglin, Sharon; Chakraborty, Romy; Tas, Neslihan; Mason, Olivia U; Hultman, Jenni; Prestat, Emmanuel; Hazen, Terry C; Jansson, Janet K

    2014-01-01

    One of the major environmental concerns of the Deepwater Horizon oil spill in the Gulf of Mexico was the ecological impact of the oil that reached shorelines of the Gulf Coast. Here we investigated the impact of the oil on the microbial composition in beach samples collected in June 2010 along a heavily impacted shoreline near Grand Isle, Louisiana. Successional changes in the microbial community structure due to the oil contamination were determined by deep sequencing of 16S rRNA genes. Metatranscriptomics was used to determine expression of functional genes involved in hydrocarbon degradation processes. In addition, potential hydrocarbon-degrading Bacteria were obtained in culture. The 16S data revealed that highly contaminated samples had higher abundances of Alpha- and Gammaproteobacteria sequences. Successional changes in these classes were observed over time, during which the oil was partially degraded. The metatranscriptome data revealed that PAH, n-alkane, and toluene degradation genes were expressed in the contaminated samples, with high homology to genes from Alteromonadales, Rhodobacterales, and Pseudomonales. Notably, Marinobacter (Gammaproteobacteria) had the highest representation of expressed genes in the samples. A Marinobacter isolated from this beach was shown to have potential for transformation of hydrocarbons in incubation experiments with oil obtained from the Mississippi Canyon Block 252 (MC252) well; collected during the Deepwater Horizon spill. The combined data revealed a response of the beach microbial community to oil contaminants, including prevalence of Bacteria endowed with the functional capacity to degrade oil. PMID:24772107

  13. Archean Microbial Mat Communities

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Thornton, Daniel C. O.; Pope, Michael C.; Olszewski, Thomas D.; Gong, Jian

    2011-05-01

    Much of the Archean record of microbial communities consists of fossil mats and stromatolites. Critical physical emergent properties governing the evolution of large-scale (centimeters to meters) topographic relief on the mat landscape are (a) mat surface roughness relative to the laminar sublayer and (b) cohesion. These properties can be estimated for fossil samples under many circumstances. A preliminary analysis of Archean mat cohesion suggests that mats growing in shallow marine environments from throughout this time had cohesions similar to those of modern shallow marine mats. There may have been a significant increase in mat strength at the end of the Archean.

  14. Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome

    PubMed Central

    Urich, Tim; Lanzén, Anders; Qi, Ji; Huson, Daniel H.; Schleper, Christa; Schuster, Stephan C.

    2008-01-01

    Background Soil ecosystems harbor the most complex prokaryotic and eukaryotic microbial communities on Earth. Experimental approaches studying these systems usually focus on either the soil community's taxonomic structure or its functional characteristics. Many methods target DNA as marker molecule and use PCR for amplification. Methodology/Principal Findings Here we apply an RNA-centered meta-transcriptomic approach to simultaneously obtain information on both structure and function of a soil community. Total community RNA is random reversely transcribed into cDNA without any PCR or cloning step. Direct pyrosequencing produces large numbers of cDNA rRNA-tags; these are taxonomically profiled in a binning approach using the MEGAN software and two specifically compiled rRNA reference databases containing small and large subunit rRNA sequences. The pyrosequencing also produces mRNA-tags; these provide a sequence-based transcriptome of the community. One soil dataset of 258,411 RNA-tags of ∼98 bp length contained 193,219 rRNA-tags with valid taxonomic information, together with 21,133 mRNA-tags. Quantitative information about the relative abundance of organisms from all three domains of life and from different trophic levels was obtained in a single experiment. Less frequent taxa, such as soil Crenarchaeota, were well represented in the data set. These were identified by more than 2,000 rRNA-tags; furthermore, their activity in situ was revealed through the presence of mRNA-tags specific for enzymes involved in ammonia oxidation and CO2 fixation. Conclusions/Significance This approach could be widely applied in microbial ecology by efficiently linking community structure and function in a single experiment while avoiding biases inherent in other methods. PMID:18575584

  15. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  16. Performance Assessment of Full-Scale Wastewater Treatment Plants Based on Seasonal Variability of Microbial Communities via High-Throughput Sequencing.

    PubMed

    Liu, Tang; Liu, Shufeng; Zheng, Maosheng; Chen, Qian; Ni, Jinren

    2016-01-01

    Microbial communities of activated sludge (AS) play a key role in the performance of wastewater treatment processes. However, seasonal variability of microbial population in varying AS-based processes has been poorly correlated with operation of full-scale wastewater treatment systems (WWTSs). In this paper, significant seasonal variability of AS microbial communities in eight WWTSs located in the city of Guangzhou were revealed in terms of 16S rRNA-based Miseq sequencing. Furthermore, variation redundancy analysis (RDA) demonstrated that the microbial community compositions closely correlated with WWTS operation parameters such as temperature, BOD, NH4+-N and TN. Consequently, support vector regression models which reasonably predicted effluent BOD, SS and TN in WWTSs were established based on microbial community compositions. This work provided an alternative tool for rapid assessment on performance of full-scale wastewater treatment plants. PMID:27049964

  17. Performance Assessment of Full-Scale Wastewater Treatment Plants Based on Seasonal Variability of Microbial Communities via High-Throughput Sequencing

    PubMed Central

    Liu, Tang; Liu, Shufeng; Zheng, Maosheng; Chen, Qian; Ni, Jinren

    2016-01-01

    Microbial communities of activated sludge (AS) play a key role in the performance of wastewater treatment processes. However, seasonal variability of microbial population in varying AS-based processes has been poorly correlated with operation of full-scale wastewater treatment systems (WWTSs). In this paper, significant seasonal variability of AS microbial communities in eight WWTSs located in the city of Guangzhou were revealed in terms of 16S rRNA-based Miseq sequencing. Furthermore, variation redundancy analysis (RDA) demonstrated that the microbial community compositions closely correlated with WWTS operation parameters such as temperature, BOD, NH4+-N and TN. Consequently, support vector regression models which reasonably predicted effluent BOD, SS and TN in WWTSs were established based on microbial community compositions. This work provided an alternative tool for rapid assessment on performance of full-scale wastewater treatment plants. PMID:27049964

  18. Toxicity of triclosan, penconazole and metalaxyl on Caulobacter crescentus and a freshwater microbial community as assessed by flow cytometry.

    PubMed

    Johnson, David R; Czechowska, Kamila; Chèvre, Nathalie; van der Meer, Jan Roelof

    2009-07-01

    Biocides are widely used for domestic hygiene, agricultural and industrial applications. Their widespread use has resulted in their introduction into the environment and raised concerns about potential deleterious effects on aquatic ecosystems. In this study, the toxicity of the biocides triclosan, penconazole and metalaxyl were evaluated with the freshwater bacterium Caulobacter crescentus and with a freshwater microbial community using a combination of single- and double-stain flow cytometric assays. Growth of C.  crescentus and the freshwater community were repressed by triclosan but not by penconazole or metalaxyl at concentrations up to 250 μM. The repressive effect of triclosan was dependent on culture conditions. Caulobacter crescentus was more sensitive to triclosan when grown with high glucose at high cell density than when grown directly in sterilized lake water at low cell density. This suggests that the use of conventional growth conditions may overestimate biocide toxicity. Additional experiments showed that the freshwater community was more sensitive to triclosan than C.  crescentus, with 10 nM of triclosan being sufficient to repress growth and change the phylogenetic composition of the community. These results demonstrate that isolate-based assays may underestimate biocide toxicity and highlight the importance of assessing toxicity directly on natural microbial communities. Because 10 nM of triclosan is within the range of concentrations observed in freshwater systems, these results also raise concerns about the risk of introducing triclosan into the environment. PMID:19239485

  19. Endogenous isolation of replicon probes for assessing plasmid ecology of marine sediment microbial communities.

    PubMed

    Cook, M A; Osborn, A M; Bettandorff, J; Sobecky, P A

    2001-08-01

    Six functional replication origins (repGA14, repGA33, repGA70, repSD41, repSD164 and repSD172), obtained from endogenously isolated, broad-host-range (BHR) marine plasmids ranging in size from 5 to 60 kb, were used to determine plasmid occurrence in three coastal marine sediment sites (in California, Georgia and South Carolina, USA). The plasmid-specific replicons were isolated from plasmid-bearing marine sediment bacteria belonging to the alpha and gamma subclasses of the Proteobacteria. The plasmid sources of the endogenous replicons were considered to be cryptic due to a lack of identifiable phenotypic traits. The putative Rep proteins from a number of these replicons showed similarity to replicons of two recognized families: RCR group III (repSD164) and the FIA family of theta group A (repSD41, repSD121, repGA33 and repGA14). Plasmids isolated from marine bacteria belonging to the genera Pseudoalteromonas, Shewanella and Vibrio cultivated from geographically different coastal sites exhibited homology to two of the marine plasmid replicons, repSD41 and repGA70, obtained from a Vibrio sp. The repGA33 plasmid origin, obtained from a Shewanella sp. isolated from coastal Georgia, was detected in 7% of the Georgia marine sediment Shewanella sp. isolates. Microbial community DNA extracted from marine sediments was also screened for the presence of the plasmid replication sequences. Community DNA samples amplified by PCR yielded a positive signal for the repSD172 and repGA14 replication sequences. The replication origin of BHR plasmid RK2 (IncP) was also detected in marine Vibrio sp. and microbial community DNA extracted from the three coastal sites. These findings provide molecular evidence that marine sediment bacteria harbour an untapped population of BHR plasmids.

  20. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    SciTech Connect

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H.

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  1. Resistance, resilience, and redundancy in microbial communities

    PubMed Central

    Allison, Steven D.; Martiny, Jennifer B. H.

    2008-01-01

    Although it is generally accepted that plant community composition is key for predicting rates of ecosystem processes in the face of global change, microbial community composition is often ignored in ecosystem modeling. To address this issue, we review recent experiments and assess whether microbial community composition is resistant, resilient, or functionally redundant in response to four different disturbances. We find that the composition of most microbial groups is sensitive and not immediately resilient to disturbance, regardless of taxonomic breadth of the group or the type of disturbance. Other studies demonstrate that changes in composition are often associated with changes in ecosystem process rates. Thus, changes in microbial communities due to disturbance may directly affect ecosystem processes. Based on these relationships, we propose a simple framework to incorporate microbial community composition into ecosystem process models. We conclude that this effort would benefit from more empirical data on the links among microbial phylogeny, physiological traits, and disturbance responses. These relationships will determine how readily microbial community composition can be used to predict the responses of ecosystem processes to global change. PMID:18695234

  2. Interchange of entire communities: microbial community coalescence.

    PubMed

    Rillig, Matthias C; Antonovics, Janis; Caruso, Tancredi; Lehmann, Anika; Powell, Jeff R; Veresoglou, Stavros D; Verbruggen, Erik

    2015-08-01

    Microbial communities are enigmatically diverse. We propose a novel view of processes likely affecting microbial assemblages, which could be viewed as the Great American Interchange en miniature: the wholesale exchange among microbial communities resulting from moving pieces of the environment containing entire assemblages. Incidental evidence for such 'community coalescence' is accumulating, but such processes are rarely studied, likely because of the absence of suitable terminology or a conceptual framework. We provide the nucleus for such a conceptual foundation for the study of community coalescence, examining factors shaping these events, links to bodies of ecological theory, and we suggest modeling approaches for understanding coalescent communities. We argue for the systematic study of community coalescence because of important functional and applied consequences.

  3. Quantitative microbial risk assessment of Cryptosporidium and Giardia in well water from a native community of Mexico.

    PubMed

    Balderrama-Carmona, Ana Paola; Gortáres-Moroyoqui, Pablo; Álvarez-Valencia, Luis Humberto; Castro-Espinoza, Luciano; Balderas-Cortés, José de Jesús; Mondaca-Fernández, Iram; Chaidez-Quiroz, Cristóbal; Meza-Montenegro, María Mercedes

    2015-01-01

    Cryptosporidium and Giardia are gastrointestinal disease-causing organisms transmitted by the fecal-oral route, zoonotic and prevalent in all socioeconomic segments with greater emphasis in rural communities. The goal of this study was to assess the risk of cryptosporidiosis and giardiasis of Potam dwellers consuming drinking water from communal well water. To achieve the goal, quantitative microbial risk assessment (QMRA) was carried out as follows: (a) identification of Cryptosporidium oocysts and Giardia cysts in well water samples by information collection rule method, (b) assessment of exposure to healthy Potam residents, (c) dose-response modelling, and (d) risk characterization using an exponential model. All well water samples tested were positive for Cryptosporidium and Giardia. The QMRA results indicate a mean of annual risks of 99:100 (0.99) for cryptosporidiosis and 1:1 (1.0) for giardiasis. The outcome of the present study may drive decision-makers to establish an educational and treatment program to reduce the incidence of parasite-borne intestinal infection in the Potam community, and to conduct risk analysis programs in other similar rural communities in Mexico. PMID:25494486

  4. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools

    NASA Technical Reports Server (NTRS)

    Sakano, Y.; Kerkhof, L.; Janes, H. W. (Principal Investigator)

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria.

  5. Microbial community modeling using reliability theory.

    PubMed

    Zilles, Julie L; Rodríguez, Luis F; Bartolerio, Nicholas A; Kent, Angela D

    2016-08-01

    Linking microbial community composition with the corresponding ecosystem functions remains challenging. Because microbial communities can differ in their functional responses, this knowledge gap limits ecosystem assessment, design and management. To develop models that explicitly incorporate microbial populations and guide efforts to characterize their functional differences, we propose a novel approach derived from reliability engineering. This reliability modeling approach is illustrated here using a microbial ecology dataset from denitrifying bioreactors. Reliability modeling is well-suited for analyzing the stability of complex networks composed of many microbial populations. It could also be applied to evaluate the redundancy within a particular biochemical pathway in a microbial community. Reliability modeling allows characterization of the system's resilience and identification of failure-prone functional groups or biochemical steps, which can then be targeted for monitoring or enhancement. The reliability engineering approach provides a new perspective for unraveling the interactions between microbial community diversity, functional redundancy and ecosystem services, as well as practical tools for the design and management of engineered ecosystems.

  6. Molecular assessment of the sensitivity of sulfate-reducing microbial communities remediating mine drainage to aerobic stress.

    PubMed

    Lefèvre, Emilie; Pereyra, Luciana P; Hiibel, Sage R; Perrault, Elizabeth M; De Long, Susan K; Reardon, Kenneth F; Pruden, Amy

    2013-09-15

    Sulfate-reducing permeable reactive zones (SR-PRZs) are microbially-driven anaerobic systems designed for the removal of heavy metals and sulfate in mine drainage. Environmental perturbations, such as oxygen exposure, may adversely affect system stability and long-term performance. The objective of this study was to examine the effect of two successive aerobic stress events on the performance and microbial community composition of duplicate laboratory-scale lignocellulosic SR-PRZs operated using the following microbial community management strategies: biostimulation with ethanol or carboxymethylcellulose; bioaugmentation with sulfate-reducing or cellulose-degrading enrichments; inoculation with dairy manure only; and no inoculation. A functional gene-based approach employing terminal restriction fragment length polymorphism and quantitative polymerase chain reaction targeting genes of sulfate-reducing (dsrA), cellulose-degrading (cel5, cel48), fermentative (hydA), and methanogenic (mcrA) microbes was applied. In terms of performance (i.e., sulfate removal), biostimulation with ethanol was the only strategy that clearly had an effect (positive) following exposure to oxygen. In terms of microbial community composition, significant shifts were observed over the course of the experiment. Results suggest that exposure to oxygen more strongly influenced microbial community shifts than the different microbial community management strategies. Sensitivity to oxygen exposure varied among different populations and was particularly pronounced for fermentative bacteria. Although the community structure remained altered after exposure, system performance recovered, indicating that SR-PRZ microbial communities were functionally redundant. Results suggest that pre-exposure to oxygen might be a more effective strategy to improve the resilience of SR-PRZ microbial communities relative to bioaugmentation or biostimulation. PMID:23863381

  7. Systems biology of Microbial Communities

    SciTech Connect

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  8. Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community.

    PubMed

    Lipp, E K; Farrah, S A; Rose, J B

    2001-04-01

    The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between < 5 and > 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.

  9. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania.

    PubMed

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J; Wright, Justin R; Rosenberger, Abigail; McClure, Erin E; Grube, Alyssa M; Peterson, Mark P; Keddache, Mehdi; Mason, Olivia U; Hazen, Terry C; Grant, Christopher J; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

  10. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania

    PubMed Central

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J.; Wright, Justin R.; Rosenberger, Abigail; McClure, Erin E.; Grube, Alyssa M.; Peterson, Mark P.; Keddache, Mehdi; Mason, Olivia U.; Hazen, Terry C.; Grant, Christopher J.; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  11. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania.

    PubMed

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J; Wright, Justin R; Rosenberger, Abigail; McClure, Erin E; Grube, Alyssa M; Peterson, Mark P; Keddache, Mehdi; Mason, Olivia U; Hazen, Terry C; Grant, Christopher J; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  12. Using Phospholipids and Stable Carbon Isotopes to Assess Microbial Community Structures and Carbon Cycle Pathways in Kamchatka Hot Springs

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Romanek, C. S.; Burgess, E. A.; Wiegel, J.; Mills, G.; Zhang, C. L.

    2006-12-01

    Phospholipid fatty acid (PLFA) and stable carbon isotopes were used to assess the microbial community structures in Kamchatka hot springs. Eighteen mats or surface sediments were collected from hot springs having temperatures of 31 to 91°C and pHs of 4.9 to 8.5. These samples were clearly separated into three groups according to the bacterial PLFA: 1) those dominated by terminally branched odd-numbered fatty acids, 2) those dominated by C18:1 and 3) those dominated by C20:1. With support from other minor PLFA components, group 2 may be used as biomarkers for Chloroflexales or other phototrophic bacteria and group 3 for Aquificales, respectively. Among the sampled hot springs, the Arkashin pool represents the simplest microbial structure with members of Aquificales being the dominant primary producers. On the other hand, the Zavarzin pool may represent the most heterogeneous pool that may include members of Chloroflexales and Aquificales as primary producers. Bacterial 16S rDNA clone libraries confirmed the presence of these microbial groups in the two pools. Results of stable carbon isotope fractionation between CO2 source, bulk biomass and total PLFA showed that primary producers in the Arkashin pool primarily used the reductive tricarboxylic acid (rTCA) cycle (e.g., members of Aquificales); whereas the Zavarzin pool may be a mixture of the 3-hydroxypropionate (3-HP) pathway (e.g. members of Chloroflexales) and the rTCA cycle. Bacterial contribution using the Calvin cycle was not significant and may be less important in Kamchatka hot springs.

  13. Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition.

    PubMed

    Kohler, J; Caravaca, F; Azcón, R; Díaz, G; Roldán, A

    2016-03-15

    The recovery of species composition and functions of soil microbial community of degraded lands is crucial in order to guarantee the long-term self-sustainability of the ecosystems. A field experiment was carried out to test the influence of combining fermented sugar beet residue (SBR) addition and inoculation with the arbuscular mycorrhizal (AM) fungus Funneliformis mosseae on the plant growth parameters and microbial community composition and function in the rhizosphere of two autochthonous plant species (Dorycnium pentaphyllum L. and Asteriscus maritimus L.) growing in a semiarid soil contaminated by heavy metals. We analysed the phospholipid fatty acids (PLFAs), neutral lipids fatty acids (NLFAs) and enzyme activities to study the soil microbial community composition and function, respectively. The combined treatment was not effective for increasing plant growth. The SBR promoted the growth of both plant species, whilst the AM fungus was effective only for D. pentaphyllum. The effect of the treatments on plant growth was linked to shifts in the rhizosphere microbial community composition and function. The highest increase in dehydrogenase and β-glucosidase activities was recorded in SBR-amended soil. The SBR increased the abundance of marker PLFAs for saprophytic fungi, Gram+ and Gram- bacteria and actinobacteria, whereas the AM fungus enhanced the abundance of AM fungi-related NLFA and marker PLFAs for Gram- bacteria. Measurement of the soil microbial community composition and function was useful to assess the success of phytomanagement technologies in a semiarid, contaminated soil.

  14. Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination.

    PubMed

    Xiong, Jinbo; He, Zhili; Van Nostrand, Joy D; Luo, Guosheng; Tu, Shuxin; Zhou, Jizhong; Wang, Gejiao

    2012-01-01

    Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO(3) (-) and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management.

  15. Assessing the Microbial Community and Functional Genes in a Vertical Soil Profile with Long-Term Arsenic Contamination

    PubMed Central

    Xiong, Jinbo; He, Zhili; Van Nostrand, Joy D.; Luo, Guosheng; Tu, Shuxin; Zhou, Jizhong; Wang, Gejiao

    2012-01-01

    Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO3− and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management. PMID:23226297

  16. Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation

    SciTech Connect

    Austin, Emily E; Castro Gonzalez, Hector F; Sides, Katherine E; Schadt, Christopher Warren; Classen, Aimee T

    2009-01-01

    Increased vegetative growth and soil carbon (C) storage under elevated carbon dioxide concentration ([CO2]) has been demonstrated in a number of experiments. However, the ability of ecosystems, either above- or belowground, to maintain increased carbon storage relies on the response of soil processes, such as nitrogen (N) availability, to climatic change. These soil processes are mediated by microbial communities whose activity and structure may also respond to increasing atmospheric [CO2]. We took advantage of a long-term (ca 10 year) CO2 enrichment experiment in a sweetgum plantation located in Tennessee to test the hypothesis that observed increases in root production in elevated relative to ambient CO2 plots would alter microbial community structure, increase microbial activity, and increase soil nutrient cycling. We found that elevated [CO2] had no detectable effect on microbial community structure using 16S rRNA gene cloning libraries, on microbial activity measured with extracellular enzyme activity, or on potential soil N mineralization and nitrification rates. These results are similar to those found at other sites and are consistent with continued C storage in forest ecosystems in the near future.

  17. Microbial Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Mena, K. D.; Nickerson, C.A.; Pierson, D. L.

    2009-01-01

    Historically, microbiological spaceflight requirements have been established in a subjective manner based upon expert opinion of both environmental and clinical monitoring results and the incidence of disease. The limited amount of data, especially from long-duration missions, has created very conservative requirements based primarily on the concentration of microorganisms. Periodic reevaluations of new data from later missions have allowed some relaxation of these stringent requirements. However, the requirements remain very conservative and subjective in nature, and the risk of crew illness due to infectious microorganisms is not well defined. The use of modeling techniques for microbial risk has been applied in the food and potable water industries and has exceptional potential for spaceflight applications. From a productivity standpoint, this type of modeling can (1) decrease unnecessary costs and resource usage and (2) prevent inadequate or inappropriate data for health assessment. In addition, a quantitative model has several advantages for risk management and communication. By identifying the variable components of the model and the knowledge associated with each component, this type of modeling can: (1) Systematically identify and close knowledge gaps, (2) Systematically identify acceptable and unacceptable risks, (3) Improve communication with stakeholders as to the reasons for resource use, and (4) Facilitate external scientific approval of the NASA requirements. The modeling of microbial risk involves the evaluation of several key factors including hazard identification, crew exposure assessment, dose-response assessment, and risk characterization. Many of these factors are similar to conditions found on Earth; however, the spaceflight environment is very specialized as the inhabitants live in a small, semi-closed environment that is often dependent on regenerative life support systems. To further complicate modeling efforts, microbial dose

  18. Development and Assessment of Whole-Genome Oligonucleotide Microarrays to Analyze an Anaerobic Microbial Community and its Responses to Oxidative Stress

    SciTech Connect

    Scholten, Johannes C.; Culley, David E.; Nie, Lei; Munn, Kyle J.; Chow, Lely; Brockman, Fred J.; Zhang, Weiwen

    2007-06-29

    The application of DNA microarray technology to investigate multiple-species microbial community presents great challenges. In this study, we reported the design and quality assessment of four whole genome oligonucleotide microarrays for two syntroph bacteria, Desulfovibrio vulgaris and Syntrophobacter fumaroxidans, and two archaeal methanogens, Methanosarcina barkeri and Methanospirillum hungatei, and their application to analyze global gene expression of this four-species microbial community in response to oxidative stress. In order to minimize the possible cross-hybridization, cross-genome comparison was performed to assure all probes unique to each genome so that the microarrays could provide species-level resolution. Microarray quality was validated by the good reproducibility of experimental measurements of multiple biological and analytical replicates. Microarray analysis showed that S. fumaroxidans and M. hungatei responded to the stress with up-regulation of several genes known to be involved in ROS detoxification, such as catalase and rubrerythrin in S. fumaroxidans and thioredoxin and heat shock protein Hsp20 in M. hungatei. Consistent with previous study in pure culture, the microarray analysis showed that genes involved in methane production and energy metabolism were down-regulated by oxidative stress in M. barkeri. However, D. vulgaris seemed less sensitive to the oxidative stress when grown in a community, with almost no gene up-regulated. The study demonstrated the successful application of microarray technology to multiple-species microbial community, and our preliminary results indicated that the approach can provide novel insights on the metabolic and regulatory networks within microbial communities.

  19. Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors.

    PubMed

    Viret, H; Pringault, O; Duran, R

    2006-08-15

    In this study, the effect of zinc and nickel on oxygen consumption in sediments was determined using oxygen microsensors. Sediments from the southwest lagoon of New Caledonia, in the vicinity of the city of Nouméa, were incubated nearby in situ conditions and exposed to Zn and Ni concentrations of 20 and 60 mg l(-1). The depth distribution of oxygen consumption was estimated from the steady-state oxygen microprofiles, and the effects of metal were compared on the distributions before and after spiking. In most cases, metal had a strong effect on oxygen consumption at the surface. After 6 h exposure, oxygen consumption was only 10-40% of the initial value. However, the strong decrease in oxygen consumption observed at the sediment surface was counterbalanced by an increase of oxygen consumption deeper in the sediment. This is probably due to (i) a downward migration of aerobic microbial microorganisms living at the surface in order to escape the toxic effect of metal or/and (ii) a switch of the facultative aerobes from the low efficiency fermentation mode to the high-energy aerobic respiration mode.

  20. The influence of soluble microbial products on microbial community composition: hypothesis of microbial community succession.

    PubMed

    Chipasa, Kangala B; Medrzycka, Krystyna

    2008-01-01

    Soluble microbial products (SMP) are organic compounds produced by activated sludge microorganisms as they degrade substrates. They include by-products of microbial activity, death and lysis. The available literature does not reveal how SMP influence microbial community composition. In this regard, we microscopically studied changes in composition of microbial communities, especially protozoa and metazoa, under the influence of increased as well as reduced levels of SMP. The presence of SMP at high level significantly caused changes in microbial community composition. Microbial species shifted from attached ciliates (12-175 microm) to free-swimming and crawling ciliates (35-330 microm) and then invertebrates, which included rotifers (0.2-1 mm) and nematodes (1-50 mm). The shift of small-size microorganisms to large ones was observed as one of the most significant influences of SMP. Attached ciliates reappeared when we removed the SMP that had accumulated in the bioreactors - we have called this as the resurrection phenomenon of microorganisms. Such rapid changes in microbial community composition were not observed in the experiment with low concentration of SMP. Overall, the results suggest that accumulation of SMP is one of the intrinsic regulatory mechanisms that control viability and dormancy of microbial communities in activated sludge. PMID:18610657

  1. Comparison of microbial community assays for the assessment of stream biofilm ecology.

    PubMed

    Vinten, A J A; Artz, R R E; Thomas, N; Potts, J M; Avery, L; Langan, S J; Watson, H; Cook, Y; Taylor, C; Abel, C; Reid, E; Singh, B K

    2011-06-01

    We investigated a range of microbiological community assays performed on scrapes of biofilms formed on artificial diffusing substrates deployed in 8 streams in eastern Scotland, with a view to using them to characterize ecological response to stream water quality. The assays considered were: Multiplex Terminal Restriction Fragment Length Polymorphism or M-TRFLP (a molecular method), Phospholipid Fatty Acid or PLFA analysis (a biochemical method) and MICRORESP™ (a physiological method) alongside TDI, diatom species, and chlorophyll a content. Four of the streams were classified as of excellent status (3-6μg/L Soluble Reactive Phosphorus (SRP)) with respect to soluble P content under the EU Water Framework Directive and four were of borderline good/moderate or moderate status (43-577μg/L SRP). At each site, 3 replicates of 3 solute diffusion treatments were deployed in a Latin square design. Solute diffusion treatments were: KCl (as a control solute), N and P (to investigate the effect of nutrient enrichment), or the herbicide isoproturon (as a "high impact" control, which aimed to affect biofilm growth in a way detectable by all assays). Biofilms were sampled after 4weeks deployment in a low flow period of early summer 2006. The chlorophyll a content of biofilms after 4weeks was 2.0±0.29mg/m(2) (mean±se). Dry matter content was 16.0±13.1g/m(2). The M-TRFLP was successfully used for generating community profiles of cyanobacteria, algae and bacteria and was much faster than diatom identification. The PFLA and TDI were successful after an increase in the sample size, due to low counts. The MICRORESP(™) assays were often below or near detection limit. We estimated the per-sample times for the successful assays as follows: M-TRFLP: 20min, PLFA 40min, TDI 90min. Using MANOVA on the first 5 principal co-ordinates, all the assays except MICRORESP(™) showed significant differences between sites, but none of the assays showed a significant effect of either initial

  2. Rapid Mass Spectrometric DNA Diagnostics for Assessing Microbial Community Activity During Bioremediation

    SciTech Connect

    Benner, W. Henry; Hunter-Cevera, Jennie; Jaklevic, Joseph M.; Torok, Tamas

    1999-12-31

    large number of samples so that significantly representative sampling and monitoring strategies are implementable? Diagnostic procedures based on identifying the activity of biodegrading organisms by using DNA-based procedures are attractive in light of these problems because they can be tuned to identify groups of organisms, specific organisms, and to detect signals that measure community activity.

  3. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics.

    PubMed

    Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise

    2014-09-01

    Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments.

  4. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics.

    PubMed

    Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise

    2014-09-01

    Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments. PMID:24112684

  5. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  6. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP) Analysis to Assess Microbial Community Structure in Compost Systems

    NASA Astrophysics Data System (ADS)

    Tiquia, Sonia M.

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified genes is a widely used fingerprinting technique in composting systems. This analysis is based on the restriction endonuclease digestion of fluorescently end-labeled PCR products. The digested product is mixed with a DNA size standard, itself labeled with a distinct fluorescent dye, and the fragments are then separated by capillary or gel electrophoresis using an automated sequencer. Upon analysis, only the terminal end-labeled restriction fragments are detected. An electropherogram is produced, which shows a profile of compost microbial community as a series of peaks of varying height. This technique has also been effectively used in the exploration of complex microbial environments and in the study of bacterial, archaeal, and eukaryal populations in natural habitats.

  7. Microbial biomass, activity and community composition in constructed wetlands.

    PubMed

    Truu, Marika; Juhanson, Jaanis; Truu, Jaak

    2009-06-15

    The aim of the current article is to give an overview about microbial communities and their functioning but also about factors affecting microbial activity in the three most common types (surface flow and two types of sub-surface flow) of constructed wetlands. The paper reviews the community composition and structural diversity of the microbial biomass, analyzing different aspects of microbial activity with respect to wastewater properties, specific wetland type, and environmental parameters. A brief introduction about the application of different novel molecular techniques for the assessment of microbial communities in constructed wetlands is also given. Microbially mediated processes in constructed wetlands are mainly dependent on hydraulic conditions, wastewater properties, including substrate and nutrient quality and availability, filter material or soil type, plants, and different environmental factors. Microbial biomass is within similar ranges in both horizontal and vertical subsurface flow and surface flow constructed wetlands. Stratification of the biomass but also a stratified structural pattern of the bacterial community can be seen in subsurface flow systems. Microbial biomass C/N ratio is higher in horizontal flow systems compared to vertical flow systems, indicating the structural differences in microbial communities between those two constructed wetland types. The total activity of the microbial community is in the same range, but heterotrophic growth is higher in the subsurface (vertical flow) system compared to the surface flow systems. Available species-specific data about microbial communities in different types of wetlands is scarce and therefore it is impossible make any general conclusions about the dynamics of microbial community structure in wetlands, its relationship to removal processes and operational parameters.

  8. Fundamentals of microbial community resistance and resilience.

    PubMed

    Shade, Ashley; Peter, Hannes; Allison, Steven D; Baho, Didier L; Berga, Mercè; Bürgmann, Helmut; Huber, David H; Langenheder, Silke; Lennon, Jay T; Martiny, Jennifer B H; Matulich, Kristin L; Schmidt, Thomas M; Handelsman, Jo

    2012-01-01

    Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives - informed by meta-omics data - may provide about microbial community stability.

  9. Assessment of microbial communities in mung bean (Vigna radiata) rhizosphere upon exposure to phytotoxic levels of Copper.

    PubMed

    Sharaff, Murali; Archana, G

    2015-11-01

    Pollution of agricultural soils by Cu is of concern as it could bring about alterations in microbial communities, ultimately eliminating certain plant beneficial bacteria thus disturbing soil fertility and plant growth. To understand the response of rhizobacterial communities upon Cu perturbation, mung bean (Vigna radiata) plants were grown in agricultural soil amended with CuSO4 (0-1000 mg kg(-1) ) under laboratory conditions. Culture-independent and -dependent Denaturing Gradient Gel Electrophoresis (CI-DGGE and CD-DGGE) fingerprinting techniques were employed to monitor rhizobacterial community shifts upon Cu amendment. In group specific PCR-DGGE, a negative impact was seen on α-Proteobacteria followed by β-Proteobacteria resulting in a concomitant decrease in diversity indices with increased Cu concentration. No significant changes were observed in Firmicutes and Actinomycetes populations. In CD-DGGE rhizobacterial community shift was observed above 500 mg kg(-1) (CuSO4 ), however certain bands were predominantly present in all treatments. Plants showed toxic effects by reduction in growth and elevated Cu accumulation, with root system being affected prominently. From this study it is evident that above 250 mg kg(-1) , rhizobacterial communities are adversely affected. α-Proteobacteria was found to be a sensitive bio-indicator for Cu toxicity and is of particular significance since this group includes majority of plant growth promoting rhizobacteria.

  10. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    PubMed

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects.

  11. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    PubMed

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects. PMID:26678139

  12. Microbial communities in a chlorinated solvent contaminated tidal freshwater wetland: molecular techniques for assessing potentially important biodegrading organisms

    NASA Astrophysics Data System (ADS)

    Kirshtein, J. D.; Voytek, M. A.; Lorah, M m

    2001-05-01

    Aberdeen Proving Ground MD (APG) is a hazardous waste site where a chlorinated solvent plume discharges into anaerobic sediments in a tidal freshwater wetland. Wetlands can be ideal sites for intrinsic remediation of chlorinated volatile organic compounds (VOCs) due to availability of organic substrates and the wide range of redox zones. And indeed natural attenuation of these compounds appears to be an important process at this site. The biodegradation of chlorinated VOCs such as PCA can follow several pathways: 1) sequential hydrogenolysis of PCA to ethane or ethene via TCA 2) dichloroelimation of TCA to vinyl chloride (VC) or 3) dichloroelimination of PCA to DCE, and hydrogenolysis of DCE to VC. Pathways 2 and 3 can result in the accumulation of VC which is considered more hazardous than the original parent compounds. Identifying microbial components involved in the series of degradation steps of each pathway can provide a better understanding of factors controlling the intrinsic bioremediation of these compounds. PCA-amended microcosm experiments were conducted during two seasons, March-April, and July-August 1999 at APG using wetland sediments collected from two distinct sites (one is methanogenic and one is both iron reducing and methanogenic). During the course of the experiments, VOCs, methane, ferrous iron and sulfate were measured. Terminal restriction fragment polymorphism (tRFLP) analysis provides a molecularly-derived microbial "fingerprint" and was used to document the total microbial abundance and characterize the diversity of the bacterial and methanogen communities. Higher rates of degradation observed during the spring sampling were associated with higher biomass and microbial diversity. As the microcosm proceeded, shifts in redox conditions and associated degradation rates and pathways were observed. These shifts were tracked by changes in the microbial community. Three phylotypes were identified that appear to be important in controlling the

  13. Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing.

    PubMed

    Basak, Pijush; Pramanik, Arnab; Sengupta, Sohan; Nag, Sudip; Bhattacharyya, Anish; Roy, Debojyoti; Pattanayak, Rudradip; Ghosh, Abhrajyoti; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2016-03-01

    The global knowledge of microbial diversity and function in Sundarbans ecosystem is still scarce, despite global advancement in understanding the microbial diversity. In the present study, we have analyzed the diversity and distribution of bacteria in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. Metagenome is comprised of 1,53,926 sequences with 108.8 Mbp data and with 55 ± 2% G + C content. Metagenome sequence data are available at NCBI under the Bioproject database with accession no. PRJNA245459. Bacterial community metagenome sequences were analyzed by MG-RAST software representing the presence of 56,547 species belonging to 44 different phyla. The taxonomic analysis revealed the dominance of phyla Proteobacteria within our dataset. Further taxonomic analysis revealed abundance of Bacteroidetes, Acidobactreia, Firmicutes, Actinobacteria, Nitrospirae, Cyanobacteria, Planctomycetes and Fusobacteria group as the predominant bacterial assemblages in this largely pristine mangrove habitat. The distribution of different community datasets obtained from four sediment samples originated from one sampling station at two different depths providing better understanding of the sediment bacterial diversity and its relationship to the ecosystem dynamics of this pristine mangrove sediment of Dhulibhashani in, Sundarbans.

  14. Hydrolytic microbial communities in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Manucharova, Natalia; Chernov, Timofey; Kolcova, Ekaterina; Zelezova, Alena; Lukacheva, Euhenia; Zenova, Galina

    2014-05-01

    Hydrolytic microbial communities in terrestrial ecosystems Manucharova N.A., Chernov T.I., Kolcova E.M., Zelezova A.D., Lukacheva E.G. Lomonosov Moscow State University, Russia Vertical differentiation of terrestrial biogeocenoses is conditioned by the formation of vertical tiers that differ considerably in the composition and structure of microbial communities. All the three tiers, phylloplane, litter and soil, are united by a single flow of organic matter, and are spatially separated successional stages of decomposition of organic substances. Decomposition of organic matter is mainly due to the activity of microorganisms producing enzymes - hydrolase and lyase - which destroy complex organic compounds. Application of molecular biological techniques (FISH) in environmental studies provides a more complete information concerning the taxonomic diversity and potential hydrolytic activity of microbial complexes of terrestrial ecosystems that exist in a wide range of environmental factors (moisture, temperature, redox potential, organic matter). The combination of two molecular biological techniques (FISH and DGGE-analysis of fragments of gene 16S rRNA total amplificate) enables an informative assessment of the differences in the structure of dominant and minor components of hydrolytic complexes formed in different tiers of terrestrial ecosystems. The functional activity of hydrolytic microbial complexes of terrestrial ecosystems is determined by the activity of dominant and minor components, which also have a high gross enzymatic activity. Degradation of biopolymers in the phylloplane is mainly due to the representatives of the Proteobacteria phylogenetic group (classes alpha and beta). In mineral soil horizons, the role of hydrolytic representatives of Firmicutes and Actinobacteria increases. Among the key environmental parameters that determine the functional activity of the hydrolytic (chitinolytic) complex of soil layer (moisture, nutrient supply, successional

  15. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  16. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    SciTech Connect

    Zhou, J.; Wu, L.; Gentry, T.; Schadt, C.; He, Z.; Li, X.

    2006-04-05

    different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.

  17. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    SciTech Connect

    J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu

    2004-03-17

    different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.

  18. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science.

  19. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. PMID:22465599

  20. Novel Assay To Assess Permissiveness of a Soil Microbial Community toward Receipt of Mobile Genetic Elements▿ †

    PubMed Central

    Musovic, Sanin; Dechesne, Arnaud; Sørensen, Jan; Smets, Barth F.

    2010-01-01

    There is a wealth of evidence indicating that mobile genetic elements can spread in natural microbial communities. However, little is known regarding the fraction of the community that actually engages in this behavior. Here we report on a new approach to quantify the fraction of a bacterial community that is able to receive and maintain an exogenous conjugal plasmid termed community permissiveness. Conjugal transfer of a broad-host-range plasmid labeled with a zygotically inducible green fluorescent protein (RP4::gfp) from a donor strain (Pseudomonas putida) to a soil bacterial suspension was examined. The mixture of cells was incubated on membrane filters supported by different solid media. Plasmid transfer was scored by in situ visualization of green fluorescent transconjugant microcolonies, and host range was determined by traditional plating or microcolony isolation by using a micromanipulator. Among the conditions tested, the highest plasmid transfer incidence (approximately 1 transfer per 104 soil bacteria) was measured after 48 h of incubation on either a 10% soil extract or a 10-fold diluted R2A medium. Stereomicroscopy combined with image analysis allowed easy examination and enumeration of green fluorescent microcolonies. In all experiments, however, stereomicroscopy consistently underestimated the number of conjugation events (approximately 10-fold) in comparison to confocal laser scanning microscopy. The plasmid host range was broad and included bacteria belonging to the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria classes of proteobacteria. The isolation of transconjugant microcolonies by micromanipulation greatly extended the estimated plasmid host range among soil bacteria. The new approach can be applied to examine the permissiveness of various communities toward receipt of different mobile elements. PMID:20511430

  1. Microbial communities analysis assessed by pyrosequencing--a new approach applied to conservation state studies of mural paintings.

    PubMed

    Rosado, T; Mirão, J; Candeias, A; Caldeira, A T

    2014-01-01

    The knowledge about the microbial communities present in mural paintings is of utmost importance to develop effective conservation and mitigation strategies. The present paper describes a methodological approach for the detailed characterisation of microorganisms thriving in mural paintings by combining culture-dependent methods that allow the identification of microorganisms capable of growing in the laboratory conditions and to obtain high cell densities for further studies, and culture independent methods, such as denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. The coupled use of culture-dependent methods and DGGE does not give enough information to investigate the diversity and abundance of microorganisms present in wall paintings. Pyrosequencing, a novel molecular technique, used here for the first time in this area of research, allowed the identification of a large number of microorganisms, confirming some already identified by the cultivation-dependent methods such as fungi of the genera Penicillium and Cladosporium, but also providing a great contribution in the identification of several genera and species, not previously identified in these artworks, giving also a detailed overview of contaminants which was not possible with the other approaches. The results obtained on several mural painting samples show a strong relationship between the most deteriorated areas of the paintings and higher microbial contamination.

  2. Patterns and Processes of Microbial Community Assembly

    PubMed Central

    Schmidt, Steven K.; Fukami, Tadashi; O'Neill, Sean P.; Bilinski, Teresa M.; Stanish, Lee F.; Knelman, Joseph E.; Darcy, John L.; Lynch, Ryan C.; Wickey, Phillip; Ferrenberg, Scott

    2013-01-01

    SUMMARY Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183–206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity. PMID:24006468

  3. Comparative molecular analysis of endoevaporitic microbial communities.

    PubMed

    Sahl, Jason W; Pace, Norman R; Spear, John R

    2008-10-01

    A phylogenetic comparison of microbial communities in hypersaline evaporites was conducted on crusts from Guerrero Negro, Mexico, and Lindsey Lake, New Mexico, using culture-independent rRNA gene sequence analysis. Many sequences were shared between evaporites, which suggests that similar environments select for specific microbial lineages from a global metacommunity. PMID:18757573

  4. Comparative molecular analysis of endoevaporitic microbial communities.

    PubMed

    Sahl, Jason W; Pace, Norman R; Spear, John R

    2008-10-01

    A phylogenetic comparison of microbial communities in hypersaline evaporites was conducted on crusts from Guerrero Negro, Mexico, and Lindsey Lake, New Mexico, using culture-independent rRNA gene sequence analysis. Many sequences were shared between evaporites, which suggests that similar environments select for specific microbial lineages from a global metacommunity.

  5. Microbial community assembly and metabolic function during mammalian corpse decomposition

    USGS Publications Warehouse

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  6. Microbial community assembly and metabolic function during mammalian corpse decomposition.

    PubMed

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  7. Microbial community assembly and metabolic function during mammalian corpse decomposition.

    PubMed

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations. PMID:26657285

  8. Preliminary assessment of microbial communities and biodegradation of chlorinated volatile organic compounds in wetlands at Cluster 13, Lauderick Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Voytek, Mary A.; Spencer, Tracey A.

    2003-01-01

    A preliminary assessment of the microbial communities and biodegradation processes for chlorinated volatile organic compounds was con-ducted by the U.S. Geological Survey in wetlands at the Cluster 13, Lauderick Creek area at Aberdeen Proving Ground, Maryland. The U.S. Geological Survey collected wetland sediment samples from 11 sites in the Lauderick Creek area for microbial analyses, and used existing data to evaluate biodegradation processes and rates. The bacterial and methanogen communities in the Lauderick Creek wetland sediments were similar to those observed in a previous U.S. Geological Survey study at the West Branch Canal Creek wet-land area, Aberdeen Proving Ground. Evaluation of the degradation rate of 1,1,2,2-tetrachloroethane and the daughter compounds produced also showed similar results for the two wetlands. How-ever, a vertical profile of contaminant concentra-tions in the wetlands was available at only one site in the Lauderick Creek area, and flow velocities in the wetland sediment are unknown. To better evaluate natural attenuation processes and rates in the wetland sediments at Lauderick Creek, chemi-cal and hydrologic measurements are needed along ground-water flowpaths in the wetland at additional sites and during different seasons. Nat-ural attenuation in the wetlands, enhanced biore-mediation, and constructed wetlands could be feasible remediation methods for the chlorinated volatile organic compounds discharging in the Lauderick Creek area. The similarities in the microbial communities and biodegradation pro-cesses at the Lauderick Creek and West Branch Canal Creek areas indicate that enhanced bioreme-diation techniques currently being developed for the West Branch Canal Creek wetland area would be transferable to this area.

  9. Metabolic Network Modeling of Microbial Communities

    PubMed Central

    Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.

    2015-01-01

    Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480

  10. Two-stage microbial community experimental design.

    PubMed

    Tickle, Timothy L; Segata, Nicola; Waldron, Levi; Weingart, Uri; Huttenhower, Curtis

    2013-12-01

    Microbial community samples can be efficiently surveyed in high throughput by sequencing markers such as the 16S ribosomal RNA gene. Often, a collection of samples is then selected for subsequent metagenomic, metabolomic or other follow-up. Two-stage study design has long been used in ecology but has not yet been studied in-depth for high-throughput microbial community investigations. To avoid ad hoc sample selection, we developed and validated several purposive sample selection methods for two-stage studies (that is, biological criteria) targeting differing types of microbial communities. These methods select follow-up samples from large community surveys, with criteria including samples typical of the initially surveyed population, targeting specific microbial clades or rare species, maximizing diversity, representing extreme or deviant communities, or identifying communities distinct or discriminating among environment or host phenotypes. The accuracies of each sampling technique and their influences on the characteristics of the resulting selected microbial community were evaluated using both simulated and experimental data. Specifically, all criteria were able to identify samples whose properties were accurately retained in 318 paired 16S amplicon and whole-community metagenomic (follow-up) samples from the Human Microbiome Project. Some selection criteria resulted in follow-up samples that were strongly non-representative of the original survey population; diversity maximization particularly undersampled community configurations. Only selection of intentionally representative samples minimized differences in the selected sample set from the original microbial survey. An implementation is provided as the microPITA (Microbiomes: Picking Interesting Taxa for Analysis) software for two-stage study design of microbial communities.

  11. Composition and physiological profiling of sprout-associated microbial communities

    NASA Technical Reports Server (NTRS)

    Matos, Anabelle; Garland, Jay L.; Fett, William F.

    2002-01-01

    The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of

  12. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  13. Microbial eukaryotic community in response to Microcystis spp. bloom, as assessed by an enclosure experiment in Lake Taihu, China.

    PubMed

    Chen, Meijun; Chen, Feizhou; Xing, Peng; Li, Huabing; Wu, Qinglong L

    2010-10-01

    Mesocosm experiments were carried out to examine the potential impacts of Microcystis blooms on microbial eukaryotic community composition (MECC). Four treatment additions of differing Microcystis spp. biomass were performed in enclosures, as indicated by chlorophyll a concentrations from 15 to 3217 μg L(-1) in the water column. Dialysis bags were used in enclosures to measure MECC dynamics without influence from predation and irradiance. Samples were taken on days 0, 1 and 4 for MECC analysis, based on changes in the chemical parameters during simultaneous monitoring. The MECC were determined by terminal restriction fragment length polymorphism (T-RFLP), followed by cloning and sequencing of 18S rRNA genes of selected samples. T-RFLP and clone library analysis revealed that MECC in enclosures and dialysis bags shifted strongly during Microcystis spp. decomposition. Members belonging to fungi became the dominant organisms in enclosures with a high biomass of Microcystis spp. Canonical correspondence analysis indicated that temporal changes in MECC were mostly related to changes in the pH and concentrations of dissolved oxygen and dissolved organic carbon, which were induced by the addition of Microcystis spp. The experiment suggests that accumulation of Microcystis biomass can strongly impact MECC, and there might be a saprophytic association between fungi and the decomposition of Microcystis biomass.

  14. High-resolution phylogenetic microbial community profiling

    PubMed Central

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; Bowman, Brett; Bowers, Robert M; Levy, Asaf; Gies, Esther A; Cheng, Jan-Fang; Copeland, Alex; Klenk, Hans-Peter; Hallam, Steven J; Hugenholtz, Philip; Tringe, Susannah G; Woyke, Tanja

    2016-01-01

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential. PMID:26859772

  15. Surface reflectance degradation by microbial communities

    SciTech Connect

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  16. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  17. Nutrient Addition Dramatically Accelerates Microbial Community Succession

    PubMed Central

    Knelman, Joseph E.; Schmidt, Steven K.; Lynch, Ryan C.; Darcy, John L.; Castle, Sarah C.; Cleveland, Cory C.; Nemergut, Diana R.

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession. PMID:25050551

  18. Metabolic interactions and dynamics in microbial communities

    NASA Astrophysics Data System (ADS)

    Segre', Daniel

    Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.

  19. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing “Stress-on-Stress” Responses

    PubMed Central

    Azarbad, Hamed; van Gestel, Cornelis A. M.; Niklińska, Maria; Laskowski, Ryszard; Röling, Wilfred F. M.; van Straalen, Nico M.

    2016-01-01

    Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the “costs” of adaptation to metals affect the responses of metal-tolerant communities to other stress factors (“stress-on-stress”). We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors. PMID:27314330

  20. Resilience of Soil Microbial Communities to Metals and Additional Stressors: DNA-Based Approaches for Assessing "Stress-on-Stress" Responses.

    PubMed

    Azarbad, Hamed; van Gestel, Cornelis A M; Niklińska, Maria; Laskowski, Ryszard; Röling, Wilfred F M; van Straalen, Nico M

    2016-01-01

    Many microbial ecology studies have demonstrated profound changes in community composition caused by environmental pollution, as well as adaptation processes allowing survival of microbes in polluted ecosystems. Soil microbial communities in polluted areas with a long-term history of contamination have been shown to maintain their function by developing metal-tolerance mechanisms. In the present work, we review recent experiments, with specific emphasis on studies that have been conducted in polluted areas with a long-term history of contamination that also applied DNA-based approaches. We evaluate how the "costs" of adaptation to metals affect the responses of metal-tolerant communities to other stress factors ("stress-on-stress"). We discuss recent studies on the stability of microbial communities, in terms of resistance and resilience to additional stressors, focusing on metal pollution as the initial stress, and discuss possible factors influencing the functional and structural stability of microbial communities towards secondary stressors. There is increasing evidence that the history of environmental conditions and disturbance regimes play central roles in responses of microbial communities towards secondary stressors. PMID:27314330

  1. Stable microbial community composition on the Greenland Ice Sheet.

    PubMed

    Musilova, Michaela; Tranter, Martyn; Bennett, Sarah A; Wadham, Jemma; Anesio, Alexandre M

    2015-01-01

    The first molecular-based studies of microbes in snow and on glaciers have only recently been performed on the vast Greenland Ice Sheet (GrIS). Aeolian microbial seeding is hypothesized to impact on glacier surface community compositions. Localized melting of glacier debris (cryoconite) into the surface ice forms cryoconite holes, which are considered 'hot spots' for microbial activity on glaciers. To date, few studies have attempted to assess the origin and evolution of cryoconite and cryoconite hole communities throughout a melt season. In this study, a range of experimental approaches was used for the first time to study the inputs, temporal and structural transformations of GrIS microbial communities over the course of a whole ablation season. Small amounts of aeolian (wind and snow) microbes were potentially seeding the stable communities that were already present on the glacier (composed mainly of Proteobacteria, Cyanobacteria, and Actinobacteria). However, the dominant bacterial taxa in the aeolian samples (Firmicutes) did not establish themselves in local glacier surface communities. Cryoconite and cryoconite hole community composition remained stable throughout the ablation season following the fast community turnover, which accompanied the initial snow melt. The presence of stable communities in cryoconite and cryoconite holes on the GrIS will allow future studies to assess glacier surface microbial diversity at individual study sites from sampling intervals of short duration only. Aeolian inputs also had significantly different organic δ(13)C values (-28.0 to -27.0‰) from the glacier surface values (-25.7 to -23.6‰), indicating that in situ microbial processes are important in fixing new organic matter and transforming aeolian organic carbon. The continuous productivity of stable communities over one melt season makes them important contributors to biogeochemical nutrient cycling on glaciers.

  2. Development of a Screening Assay for Microbial Community Profiling

    NASA Astrophysics Data System (ADS)

    Miracle, A. L.; Tilton, F.; Bonheyo, G. T.; McDermott, J.

    2010-12-01

    Remediation of subsurface contaminant plumes has been challenging in the aspects of site characterization, design for treatability, and monitoring of treatment efficacy, to name a few. Characterization of physical and geochemical properties can be achieved through advances in sensor technologies, modeling, and well placement. However, the biotic composition within the subsurface is also an important component that adds an additional biochemical contribution that is not currently being assessed. Changes in the environment have impacts to the composition of microbial communities at this solid/fluid phase interface. The introduction of a remediative treatment may provide an abundant food source for microorganisms in the subsurface and alter the community dynamics. Such changes to the microbial community composition may have dramatic effects on bulk community biochemistry, which in turn may affect the quality of the remediative treatment in terms of effectiveness and transport through alteration of the environment. A screening array is being developed based on DNA sequence information from indigenous microorganisms within target sediments to be used to assess microbial community changes throughout remediative treatments and through time. Integration of physical, chemical, and biotic community information will be assessed to determine efficacy of treatment before, during, and after treatment to assess success of treatment, and measure any post-treatment changes.

  3. Microbial Community Degradation of Widely Used Quaternary Ammonium Disinfectants

    PubMed Central

    Oh, Seungdae; Kurt, Zohre; Tsementzi, Despina; Weigand, Michael R.; Kim, Minjae; Hatt, Janet K.; Tandukar, Madan; Pavlostathis, Spyros G.; Spain, Jim C.

    2014-01-01

    Benzalkonium chlorides (BACs) are disinfectants widely used in a variety of clinical and environmental settings to prevent microbial infections, and they are frequently detected in nontarget environments, such as aquatic and engineered biological systems, even at toxic levels. Therefore, microbial degradation of BACs has important ramifications for alleviating disinfectant toxicity in nontarget environments as well as compromising disinfectant efficacy in target environments. However, how natural microbial communities respond to BAC exposure and what genes underlie BAC biodegradation remain elusive. Our previous metagenomic analysis of a river sediment microbial community revealed that BAC exposure selected for a low-diversity community, dominated by several members of the Pseudomonas genus that quickly degraded BACs. To elucidate the genetic determinants of BAC degradation, we conducted time-series metatranscriptomic analysis of this microbial community during a complete feeding cycle with BACs as the sole carbon and energy source under aerobic conditions. Metatranscriptomic profiles revealed a candidate gene for BAC dealkylation, the first step in BAC biodegradation that results in a product 500 times less toxic. Subsequent biochemical assays and isolate characterization verified that the putative amine oxidase gene product was functionally capable of initiating BAC degradation. Our analysis also revealed cooperative interactions among community members to alleviate BAC toxicity, such as the further degradation of BAC dealkylation by-products by organisms not encoding amine oxidase. Collectively, our results advance the understanding of BAC aerobic biodegradation and provide genetic biomarkers to assess the critical first step of this process in nontarget environments. PMID:24951783

  4. Integrated Environmental Modeling: Quantitative Microbial Risk Assessment

    EPA Science Inventory

    The presentation discusses the need for microbial assessments and presents a road map associated with quantitative microbial risk assessments, through an integrated environmental modeling approach. A brief introduction and the strengths of the current knowledge are illustrated. W...

  5. Does iron inhibit cryptoendolithic microbial communities?

    NASA Technical Reports Server (NTRS)

    Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community.

  6. Does iron inhibit cryptoendolithic microbial communities?

    PubMed

    Johnston, C G; Vestal, J R

    1988-01-01

    Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community. PMID:11538332

  7. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  8. Microbial astronauts: assembling microbial communities for advanced life support systems.

    PubMed

    Roberts, M S; Garland, J L; Mills, A L

    2004-02-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  9. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  10. Microbial communities evolve faster in extreme environments

    PubMed Central

    Li, Sheng-Jin; Hua, Zheng-Shuang; Huang, Li-Nan; Li, Jie; Shi, Su-Hua; Chen, Lin-Xing; Kuang, Jia-Liang; Liu, Jun; Hu, Min; Shu, Wen-Sheng

    2014-01-01

    Evolutionary analysis of microbes at the community level represents a new research avenue linking ecological patterns to evolutionary processes, but remains insufficiently studied. Here we report a relative evolutionary rates (rERs) analysis of microbial communities from six diverse natural environments based on 40 metagenomic samples. We show that the rERs of microbial communities are mainly shaped by environmental conditions, and the microbes inhabiting extreme habitats (acid mine drainage, saline lake and hot spring) evolve faster than those populating benign environments (surface ocean, fresh water and soil). These findings were supported by the observation of more relaxed purifying selection and potentially frequent horizontal gene transfers in communities from extreme habitats. The mechanism of high rERs was proposed as high mutation rates imposed by stressful conditions during the evolutionary processes. This study brings us one stage closer to an understanding of the evolutionary mechanisms underlying the adaptation of microbes to extreme environments. PMID:25158668

  11. Method for analyzing microbial communities

    SciTech Connect

    Zhou, Jizhong; Wu, Liyou

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  12. Microbial Communities of Pavilion Lake Microbialites

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Biddle, J.; Pointing, S.; Cardman, Z.; Brady, A. L.; Slater, G. F.; Lim, D. S.

    2011-12-01

    Fossilized remnants of microbial mat growth, called stromatolites, are found in the rock record and are thought to be some of the earliest evidence for life on Earth. On the modern Earth, living versions of these stromatolites, called microbialites, are found in few environments across the globe. Pavilion Lake in British Columbia was found to host these microbialites, even though conditions are not extreme in the lake and grazers exist amongst the microbial growths. The Pavilion Lake Research Project, funded by NASA, the CSA and others, has developed the lake into an analog research site for the exploration of extraplanetary bodies since 2004. Pavilion Lake began to be explored for microbial ecology in 2007 to attempt to determine how the microbial communities change over time, location and depth to build these microbialite structures. DNA extracted from microbialites at two different locations and 3 depths at each location were analyzed by T-RFLP patterns. Significant differences were seen in the total communities from each location. Additional samples were taken in the summer and budding seasons, and significant differences were seen by season. A survey performed on just the cyanobacterial populations show less differences between taxa between sites, but significant differences with depth above and below the chemocline and between mineralized and non-mineralized mats. Differences were also examined between purple and green nodules, which are thought to be the growth forms of the microbialites. Detailed sequence analysis shows that Pavilion Lake microorganisms are similar, yet different, from microbial communities seen in other microbialite systems. In 2011, the research project moved to Kelly Lake, a lake nearby Pavilion Lake, that also contain microbialite structures. Similar morphologies were seen in Kelly Lake with an approximate 20 ft. offset in the typical depths where morphologies were seen. Continued analysis of Kelly Lake microbialites will be performed

  13. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    SciTech Connect

    Firestone, Mary

    2015-01-14

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  14. Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides.

    PubMed

    Fernández-Gómez, Manuel J; Nogales, Rogelio; Insam, Heribert; Romero, Esperanza; Goberna, Marta

    2011-10-01

    The relationships between vermicompost chemical features, enzyme activities, community-level physiological profiles (CLPPs), fungal community structures, and its microbial respiratory response to pesticides were investigated. Fungal community structure of vermicomposts produced from damaged tomato fruits (DT), winery wastes (WW), olive-mill waste and biosolids (OB), and cattle manure (CM) were determined by denaturing gradient gel electrophoresis of 18S rDNA. MicroResp™ was used for assessing vermicompost CLPPs and testing the microbial response to metalaxyl, imidacloprid, and diuron. Vermicompost enzyme activities and CLPPs indicated that WW, OB, and DT had higher microbial functional diversity than CM. The microbiota of the former tolerated all three pesticides whereas microbial respiration in CM was negatively affected by metalaxyl and imidacloprid. The response of vermicompost microbiota to the fungicide metalaxyl was correlated to its fungal community structure. The results suggest that vermicomposts with higher microbial functional diversity can be useful for the management of pesticide pollution in agriculture.

  15. Experimental warming effects on the microbial community of a temperate mountain forest soil.

    PubMed

    Schindlbacher, A; Rodler, A; Kuffner, M; Kitzler, B; Sessitsch, A; Zechmeister-Boltenstern, S

    2011-07-01

    Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO(2) (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency.

  16. Environmental Microbial Community Proteomics: Status, Challenges and Perspectives

    PubMed Central

    Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian

    2016-01-01

    Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment. PMID:27527164

  17. Environmental Microbial Community Proteomics: Status, Challenges and Perspectives.

    PubMed

    Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian

    2016-01-01

    Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment. PMID:27527164

  18. Wetland Microbial Community Response to Restoration

    NASA Astrophysics Data System (ADS)

    Theroux, S.; Hartman, W.; Tringe, S. G.

    2015-12-01

    Wetland restoration has been proposed as a potential long-term carbon storage solution, with a goal of engineering geochemical dynamics to accelerate peat accretion and encourage greenhouse gas (GHG) sequestration. However, wetland microbial community composition and metabolic rates are poorly understood and their predicted response to wetland restoration is a veritable unknown. In an effort to better understand the underlying factors that shape the balance of carbon flux in wetland soils, we targeted the microbial communities along a salinity gradient ranging from freshwater tidal marshes to hypersaline ponds in the San Francisco Bay-Delta region. Using 16S rRNA gene sequencing and shotgun metagenomics, coupled with greenhouse gas measurements, we sampled sixteen sites capturing a range in salinity and restoration status. Seawater delivers sulfate to wetland ecosystems, encouraging sulfate reduction and discouraging methane production. As expected, we observed the highest rates of methane production in the freshwater wetlands. Recently restored wetlands had significantly higher rates of methane production compared to their historic counterparts that could be attributed to variations in trace metal and organic carbon content in younger wetlands. In contrast, our sequencing results revealed an almost immediate return of the indigenous microbial communities following seasonal flooding and full tidal restoration in saline and hypersaline wetlands and managed ponds. Notably, we found elevated methane production rates in hypersaline ponds, the result of methylotrophic methane production confirmed by sequence data and lab incubations. Our study links belowground microbial communities and their aboveground greenhouse gas production and highlights the inherent complexity in predicting wetland microbial response in the face of both natural and unnatural disturbances.

  19. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  20. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    PubMed

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  1. High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes

    PubMed Central

    Ling, Alison L.; Robertson, Charles E.; Harris, J. Kirk; Frank, Daniel N.; Kotter, Cassandra V.; Stevens, Mark J.; Pace, Norman R.; Hernandez, Mark T.

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  2. From microbial communities to cells

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1985-01-01

    The eukraotic cell, the unit of structure of protoctists, plants, fungi, and animals, is not at all homologous to prokaryotic cells. Instead the eukaryotic cell is homologous to communities of microorganisms such as those of the sulfuretum. This research is based on the hypothesis that at least four different interacting community members entered the original associations that, when stabilized, led to the emergence of eukaryotic cells. These are: (1) host nucleocytoplasm (thermoplasma like archaebacteria); (2) mitochrondria (paracoccus or bdellovibryo like respiring bacteria; and (3) plastids (cyanobacteria) and undulipodia. Tubulin like protein was found in the free living spirochete Spirochaeta bajacaliforniensis and in several other spirochetes. The amino acid sequence was to see if the spirochete protein is homologous to the tubulin of undulipodial and mitotic spindle microtubules.

  3. Community Impact Assessment Handbook.

    ERIC Educational Resources Information Center

    Northern Alberta Development Council, Peace River.

    This handbook is intended for communities that wish to undertake their own community impact assessment (CIA). The goal is to enable communities to plan for changes before they occur, so they can cope with changes when they do occur. CIA involves forecasting and evaluating the full range of unintended consequences for the community of development…

  4. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  5. Carbon Accumulation and Microbial Community Structure in Reclaimed Mine Soils

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Palumbo, A. V.; Tarver, J. D.; Fisher, S.; Cantu, J.; Brandt, C. C.

    2002-12-01

    microbial biomass and percent carbon and percent nitrogen for the Walls Farm and Jenkins Farm samples was 0.72 and 0.84, respectively. In addition, the PLFA profile was explored for certain PLFA ratios that are indications of physiological or toxic stress. One sample from the Walls Farm showed high stress values for both the cyclopropyl to monoenic ratio and the trans to cis ratio, indicated that there were nutrient limitations and potentially toxic or inhibitory conditions present. In samples from a site with sawdust and two levels of biosolids added, the microbial biomass was not correlated with percent carbon. The microbial biomass was highest in the sawdust treatments, followed by the high and then low biomass treatments. The community structure was similar for the control and low biosolid plots. The high biosolid plot had elevated levels of terminally branched saturates and branched monoenoics (indicative of gram positive prokaryotes and actinomycetes) and reduced levels of polyunsaturates.. ANN was used to more fully assess the relationship between changes in microbial community structure and changes in soil geochemistry.

  6. Characterizing microbial communities through space and time

    PubMed Central

    Gonzalez, Antonio; King, Andrew; Robeson, Michael S.; Song, Sejin; Shade, Ashley; Metcalf, Jessica; Knight, Rob

    2011-01-01

    Until recently, the study of microbial diversity has mainly been limited to descriptive approaches, rather than predictive model-based analyses. The development of advanced analytical tools and decreasing cost of high-throughput multi-omics technologies has made the later approach more feasible. However, consensus is lacking as to which spatial and temporal scales best facilitate understanding of the role of microbial diversity in determining both public and environmental health. Here, we review the potential for combining these new technologies with both traditional and nascent spatio-temporal analysis methods. The fusion of proper spatio-temporal sampling, combined with modern multi-omics and computational tools, will provide insight into the tracking, development and manipulation of microbial communities. PMID:22154467

  7. Microbial abundance and community structure in a melting alpine snowpack.

    PubMed

    Lazzaro, Anna; Wismer, Andrea; Schneebeli, Martin; Erny, Isolde; Zeyer, Josef

    2015-05-01

    Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930-2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L(-1), 5-30 μg NH4 (+)-N L(-1)) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.

  8. A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community.

    PubMed

    Oguchi, Taichi; Kashimura, Yuko; Mimura, Makiko; Yu, Xiang; Matsunaga, Etsuko; Nanto, Kazuya; Shimada, Teruhisa; Kikuchi, Akira; Watanabe, Kazuo N

    2014-10-01

    A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial. PMID:24927812

  9. The dynamic genetic repertoire of microbial communities

    PubMed Central

    Wilmes, Paul; Simmons, Sheri L; Denef, Vincent J; Banfield, Jillian F

    2009-01-01

    Community genomic data have revealed multiple levels of variation between and within microbial consortia. This variation includes large-scale differences in gene content between ecosystems as well as within-population sequence heterogeneity. In the present review, we focus specifically on how fine-scale variation within microbial and viral populations is apparent from community genomic data. A major unresolved question is how much of the observed variation is due to neutral vs. adaptive processes. Limited experimental data hint that some of this fine-scale variation may be in part functionally relevant, whereas sequence-based and modeling analyses suggest that much of it may be neutral. While methods for interpreting population genomic data are still in their infancy, we discuss current interpretations of existing datasets in the light of evolutionary processes and models. Finally, we highlight the importance of virus–host dynamics in generating and shaping within-population diversity. PMID:19054116

  10. Microbial Forensics: A Scientific Assessment

    SciTech Connect

    Keim, Paul

    2003-02-17

    be accomplished if we understand basic principles that control microbial physiology. Finally, the more precise and refined a microbial forensic system becomes, the more proper guidelines for handling and storage will be defined. Thus, improper dissemination or use of the pathogens will be reduced and inadvertent release will be minimized. An additional outcome of establishing these guidelines or rules is that the legitimate investigator will be protected to pursue research without unnecessary intrusion. Colloquium participants identified a variety of needs and directions in the following areas: sample handling and collection, detection, research direction, data access, QA/QC, and education. General recommendations are provided for direction or insight for the scientific community, law enforcement community, legal community, and the public.

  11. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry.

    PubMed

    Sotres, Ana; Tey, Laura; Bonmatí, August; Viñas, Marc

    2016-10-01

    Two-chambered microbial fuel cells (MFCs) operating with synthetic wastewater and pig slurry were assessed. Additionally, the use of 2-bromoethanesulfonate (BES-Inh) was studied. The synthetic wastewater-fed MFC (MFCSW) showed a maximum power density (PDmax) of 2138mWm(-3), and the addition of BES-Inh (10mM) did not show any improvement in its performance (PDmax=2078mWm(-3)). When pig slurry was used as feed (MFCPS), PDmax increased up to 5623mWm(-3). The microbial community composition was affected by the type of substrate used. While, Pseudomonadaceae and Clostridiaceae were the most representative families within the acetate-based medium, Flavobacteriaceae, Chitinophagaceae, Comamonadaceae and Nitrosomonadaceae were predominant when pig slurry was used as feed. Otherwise, only the Eubacterial microbial community composition was strongly modified when adding BES-Inh, thus leading to an enrichment of the Bacteroidetes phylum. Oppositely, the Archaeal community was less affected by the addition of BES-Inh, and Methanosarcina sp., arose as the predominant family in both situations. Despite all the differences in microbial communities, 6 operational taxonomic units (OTUs) belonging to Bacteroidetes (Porphyromonadaceae and Marinilabiaceae) and Firmicutes (Clostridiales) were found to be common to both MFCs, also for different contents of COD and N-NH4(+), and therefore could be considered as the bioanode core microbiome.

  12. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon.

    PubMed

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  13. Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon

    PubMed Central

    Rosselli, Riccardo; Romoli, Ottavia; Vitulo, Nicola; Vezzi, Alessandro; Campanaro, Stefano; de Pascale, Fabio; Schiavon, Riccardo; Tiarca, Maurizio; Poletto, Fabio; Concheri, Giuseppe; Valle, Giorgio; Squartini, Andrea

    2016-01-01

    The analysis of environmental microbial communities has largely relied on a PCR-dependent amplification of genes entailing species identity as 16S rRNA. This approach is susceptible to biases depending on the level of primer matching in different species. Moreover, possible yet-to-discover taxa whose rRNA could differ enough from known ones would not be revealed. DNA-based methods moreover do not provide information on the actual physiological relevance of each taxon within an environment and are affected by the variable number of rRNA operons in different genomes. To overcome these drawbacks we propose an approach of direct sequencing of 16S ribosomal RNA without any primer- or PCR-dependent step. The method was tested on a microbial community developing in an anammox bioreactor sampled at different time-points. A conventional PCR-based amplicon pyrosequencing was run in parallel. The community resulting from direct rRNA sequencing was highly consistent with the known biochemical processes operative in the reactor. As direct rRNA-seq is based not only on taxon abundance but also on physiological activity, no comparison between its results and those from PCR-based approaches can be applied. The novel principle is in this respect proposed not as an alternative but rather as a complementary methodology in microbial community studies. PMID:27577787

  14. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  15. Relationship between honeybee nutrition and their microbial communities.

    PubMed

    Saraiva, Miriane Acosta; Zemolin, Ana Paula Pegoraro; Franco, Jeferson Luis; Boldo, Juliano Tomazzoni; Stefenon, Valdir Marcos; Triplett, Eric W; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Wurdig

    2015-04-01

    The microbiota and the functional genes actively involved in the process of breakdown and utilization of pollen grains in beebread and bee guts are not yet understood. The aim of this work was to assess the diversity and community structure of bacteria and archaea in Africanized honeybee guts and beebread as well as to predict the genes involved in the microbial bioprocessing of pollen using state of the art 'post-light' based sequencing technology. A total of 11 bacterial phyla were found within bee guts and 10 bacterial phyla were found within beebread. Although the phylum level comparison shows most phyla in common, a deeper phylogenetic analysis showed greater variation of taxonomic composition. The families Enterobacteriaceae, Ricketsiaceae, Spiroplasmataceae and Bacillaceae, were the main groups responsible for the specificity of the bee gut while the main families responsible for the specificity of the beebread were Neisseriaceae, Flavobacteriaceae, Acetobacteraceae and Lactobacillaceae. In terms of microbial community structure, the analysis showed that the communities from the two environments were quite different from each other with only 7 % of species-level taxa shared between bee gut and beebread. The results indicated the presence of a highly specialized and well-adapted microbiota within each bee gut and beebread. The beebread community included a greater relative abundance of genes related to amino acid, carbohydrate, and lipid metabolism, suggesting that pollen biodegradation predominantly occurs in the beebread. These results suggests a complex and important relationship between honeybee nutrition and their microbial communities. PMID:25601048

  16. Relationship between honeybee nutrition and their microbial communities.

    PubMed

    Saraiva, Miriane Acosta; Zemolin, Ana Paula Pegoraro; Franco, Jeferson Luis; Boldo, Juliano Tomazzoni; Stefenon, Valdir Marcos; Triplett, Eric W; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Wurdig

    2015-04-01

    The microbiota and the functional genes actively involved in the process of breakdown and utilization of pollen grains in beebread and bee guts are not yet understood. The aim of this work was to assess the diversity and community structure of bacteria and archaea in Africanized honeybee guts and beebread as well as to predict the genes involved in the microbial bioprocessing of pollen using state of the art 'post-light' based sequencing technology. A total of 11 bacterial phyla were found within bee guts and 10 bacterial phyla were found within beebread. Although the phylum level comparison shows most phyla in common, a deeper phylogenetic analysis showed greater variation of taxonomic composition. The families Enterobacteriaceae, Ricketsiaceae, Spiroplasmataceae and Bacillaceae, were the main groups responsible for the specificity of the bee gut while the main families responsible for the specificity of the beebread were Neisseriaceae, Flavobacteriaceae, Acetobacteraceae and Lactobacillaceae. In terms of microbial community structure, the analysis showed that the communities from the two environments were quite different from each other with only 7 % of species-level taxa shared between bee gut and beebread. The results indicated the presence of a highly specialized and well-adapted microbiota within each bee gut and beebread. The beebread community included a greater relative abundance of genes related to amino acid, carbohydrate, and lipid metabolism, suggesting that pollen biodegradation predominantly occurs in the beebread. These results suggests a complex and important relationship between honeybee nutrition and their microbial communities.

  17. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    PubMed Central

    Maphosa, Farai; Lieten, Shakti H.; Dinkla, Inez; Stams, Alfons J.; Smidt, Hauke; Fennell, Donna E.

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring bacteria and also via hydrolytic, oxygenic, and reductive mechanisms by aerobic bacteria. Microbial ecogenomics has enabled us to not only study the microbiology involved in these complex processes but also develop tools to better monitor and assess these sites during bioremediation. Microbial ecogenomics have capitalized on recent advances in high-throughput and -output genomics technologies in combination with microbial physiology studies to address these complex bioremediation problems at a system level. Advances in environmental metagenomics, transcriptomics, and proteomics have provided insights into key genes and their regulation in the environment. They have also given us clues into microbial community structures, dynamics, and functions at contaminated sites. These techniques have not only aided us in understanding the lifestyles of common organohalide respirers, for example Dehalococcoides, Dehalobacter, and Desulfitobacterium, but also provided insights into novel and yet uncultured microorganisms found in organohalide respiring consortia. In this paper, we look at how ecogenomic studies have aided us to understand the microbial structures and functions in response to environmental stimuli such as the presence of chlorinated pollutants. PMID:23060869

  18. ANALYSIS OF AQUATIC MICROBIAL COMMUNITIES IMPACTED BY LARGE POULTRY FORMS

    EPA Science Inventory

    Microbial communities often respond more rapidly and extensively to environmental change than communities of higher organisms. Thus, characterizing shifts in the structure of native bacterial communities as a response to changes in nutrients, antimicrobials, and invading pathogen...

  19. Microbial Communities in Pre-Columbian Coprolites

    PubMed Central

    Santiago-Rodriguez, Tasha M.; Narganes-Storde, Yvonne M.; Chanlatte, Luis; Crespo-Torres, Edwin; Toranzos, Gary A.; Jimenez-Flores, Rafael; Hamrick, Alice; Cano, Raul J.

    2013-01-01

    The study of coprolites from earlier cultures represents a great opportunity to study an “unaltered” composition of the intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial communities of coprolite samples from various cultures. PMID:23755194

  20. Decoding molecular interactions in microbial communities.

    PubMed

    Abreu, Nicole A; Taga, Michiko E

    2016-09-01

    Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions among microbes is critical for understanding how single species and complex communities impact their associated host or natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches investigators have taken within their areas of research to decode interspecies molecular interactions that occur between microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments and within synthetic consortia. PMID:27417261

  1. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    PubMed

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. PMID:27208755

  2. Degradation and impact of phthalate plasticizers on soil microbial communities

    SciTech Connect

    Cartwright, C.D.; Thompson, I.P.; Burns, R.G.

    2000-05-01

    To assess the impact of phthalates on soil microorganisms and to supplement the environmental risk assessment for these xenobiotics, soil was treated with diethyl phthalate (DEP) or di (2-ethyl hexyl) phthalate (DEHP) at 0.1 to 100 mg/g. Bioavailability and membrane disruption were proposed as the characteristics responsible for the observed fate and toxicity of both compounds. Diethyl phthalate was biodegraded rapidly in soil with a half-life of 0.75 d at 20 C, and was not expected to persist in the environment. The DEHP, although biodegradable in aqueous solution, was recalcitrant in soil, because of poor bioavailability and was predicted to account for the majority of phthalate contamination in the environment. Addition of DEP or DEHP to soil at a concentration similar to that detected in nonindustrial environments had no impact on the structural diversity or functional diversity (BIOLOG) of the microbial community. At concentrations representative of a phthalate spill, DEP reduced numbers of both total culturable bacteria and pseudomonads within 1 d. This was due to disruption of membrane fluidity by the lipophilic phthalate, a mechanism not previously attributed to phthalates. However, DEHP had no effect on the microbial community or membrane fluidity, even at 100 mg/g, and was predicted to have no impact on microbial communities in the environment.

  3. Use of 16S rRNA Gene Based Clone Libraries to Assess Microbial Communities Potentially Involved in Anaerobic Methane Oxidation in a Mediterranean Cold Seep

    PubMed Central

    Haese, Ralf R.; van der Wielen, Paul W. J. J.; Forney, Larry J.; van Elsas, Jan Dirk

    2007-01-01

    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22–34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0–6 cm). Communities in the middle layer (6–22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study. PMID:17431711

  4. Evolutionary limits to cooperation in microbial communities

    PubMed Central

    Oliveira, Nuno M.; Niehus, Rene; Foster, Kevin R.

    2014-01-01

    Microbes produce many compounds that are costly to a focal cell but promote the survival and reproduction of neighboring cells. This observation has led to the suggestion that microbial strains and species will commonly cooperate by exchanging compounds. Here, we examine this idea with an ecoevolutionary model where microbes make multiple secretions, which can be exchanged among genotypes. We show that cooperation between genotypes only evolves under specific demographic regimes characterized by intermediate genetic mixing. The key constraint on cooperative exchanges is a loss of autonomy: strains become reliant on complementary genotypes that may not be reliably encountered. Moreover, the form of cooperation that we observe arises through mutual exploitation that is related to cheating and “Black Queen” evolution for a single secretion. A major corollary is that the evolution of cooperative exchanges reduces community productivity relative to an autonomous strain that makes everything it needs. This prediction finds support in recent work from synthetic communities. Overall, our work suggests that natural selection will often limit cooperative exchanges in microbial communities and that, when exchanges do occur, they can be an inefficient solution to group living. PMID:25453102

  5. Defining seasonal marine microbial community dynamics.

    PubMed

    Gilbert, Jack A; Steele, Joshua A; Caporaso, J Gregory; Steinbrück, Lars; Reeder, Jens; Temperton, Ben; Huse, Susan; McHardy, Alice C; Knight, Rob; Joint, Ian; Somerfield, Paul; Fuhrman, Jed A; Field, Dawn

    2012-02-01

    Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.

  6. Microbial community composition in sediments resists perturbation by nutrient enrichment.

    PubMed

    Bowen, Jennifer L; Ward, Bess B; Morrison, Hilary G; Hobbie, John E; Valiela, Ivan; Deegan, Linda A; Sogin, Mitchell L

    2011-09-01

    Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. PMID:21412346

  7. Microbial community composition in sediments resists perturbation by nutrient enrichment

    PubMed Central

    Bowen, Jennifer L; Ward, Bess B; Morrison, Hilary G; Hobbie, John E; Valiela, Ivan; Deegan, Linda A; Sogin, Mitchell L

    2011-01-01

    Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. PMID:21412346

  8. Microbial community assembly, theory and rare functions

    PubMed Central

    Pholchan, Mujalin K.; Baptista, Joana de C.; Davenport, Russell J.; Sloan, William T.; Curtis, Thomas P.

    2013-01-01

    Views of community assembly have traditionally been based on the contrasting perspectives of the deterministic niche paradigm and stochastic neutral models. This study sought to determine if we could use empirical interventions conceived from a niche and neutral perspective to change the diversity and evenness of the microbial community within a reactor treating wastewater and to see if there was any associated change in the removal of endocrine disrupting compounds (EDCs). The systematic removal of EDCs and micropollutants from biological treatment systems is a major challenge for environmental engineers. We manipulated pairs of bioreactors in an experiment in which “niche” (temporal variation in resource concentration and resource complexity) and “neutral” (community size and immigration) attributes were changed and the effect on the detectable diversity and the removal of steroidal estrogens was evaluated. The effects of manipulations on diversity suggested that both niche and neutral processes are important in community assembly. We found that temporal variation in environmental conditions increased diversity but resource complexity did not. Larger communities had greater diversity but attempting to increase immigration by adding soil had the opposite effect. The effects of the manipulations on EDC removal efficiency were complex. Decreases in diversity, which were associated with a decrease in evenness, were associated with an increase in EDC removal. A simple generalized neutral model (calibrated with parameters typical of wastewater treatment plants) showed that decreases in diversity should lead to the increase in abundance of some ostensibly taxa rare. We conclude that neither niche and neutral perspectives nor the effect of diversity on putative rare functions can be properly understood by naïve qualitative observations. Instead, the relative importance of the key microbial mechanisms must be determined and, ideally, expressed mathematically

  9. Microbial community assembly, theory and rare functions.

    PubMed

    Pholchan, Mujalin K; Baptista, Joana de C; Davenport, Russell J; Sloan, William T; Curtis, Thomas P

    2013-01-01

    Views of community assembly have traditionally been based on the contrasting perspectives of the deterministic niche paradigm and stochastic neutral models. This study sought to determine if we could use empirical interventions conceived from a niche and neutral perspective to change the diversity and evenness of the microbial community within a reactor treating wastewater and to see if there was any associated change in the removal of endocrine disrupting compounds (EDCs). The systematic removal of EDCs and micropollutants from biological treatment systems is a major challenge for environmental engineers. We manipulated pairs of bioreactors in an experiment in which "niche" (temporal variation in resource concentration and resource complexity) and "neutral" (community size and immigration) attributes were changed and the effect on the detectable diversity and the removal of steroidal estrogens was evaluated. The effects of manipulations on diversity suggested that both niche and neutral processes are important in community assembly. We found that temporal variation in environmental conditions increased diversity but resource complexity did not. Larger communities had greater diversity but attempting to increase immigration by adding soil had the opposite effect. The effects of the manipulations on EDC removal efficiency were complex. Decreases in diversity, which were associated with a decrease in evenness, were associated with an increase in EDC removal. A simple generalized neutral model (calibrated with parameters typical of wastewater treatment plants) showed that decreases in diversity should lead to the increase in abundance of some ostensibly taxa rare. We conclude that neither niche and neutral perspectives nor the effect of diversity on putative rare functions can be properly understood by naïve qualitative observations. Instead, the relative importance of the key microbial mechanisms must be determined and, ideally, expressed mathematically. PMID

  10. Microbial community composition and diversity in Caspian Sea sediments

    PubMed Central

    Mahmoudi, Nagissa; Robeson, Michael S.; Castro, Hector F.; Fortney, Julian L.; Techtmann, Stephen M.; Joyner, Dominique C.; Paradis, Charles J.; Pfiffner, Susan M.; Hazen, Terry C.

    2014-01-01

    The Caspian Sea is heavily polluted due to industrial and agricultural effluents as well as extraction of oil and gas reserves. Microbial communities can influence the fate of contaminants and nutrients. However, insight into the microbial ecology of the Caspian Sea significantly lags behind other marine systems. Here we describe microbial biomass, diversity and composition in sediments collected from three sampling stations in the Caspian Sea. Illumina sequencing of 16S rRNA genes revealed the presence of a number of known bacterial and archaeal heterotrophs suggesting that organic carbon is a primary factor shaping microbial communities. Surface sediments collected from bottom waters with low oxygen levels were dominated by Gammaproteobacteria while surface sediments collected from bottom waters under hypoxic conditions were dominated by Deltaproteobacteria, specifically sulfate-reducing bacteria. Thaumarchaeota was dominant across all surface sediments indicating that nitrogen cycling in this system is strongly influenced by ammonia-oxidizing archaea. This study provides a baseline assessment that may serve as a point of reference as this system changes or as the efficacy of new remediation efforts are implemented. PMID:25764536

  11. Microbial community composition and diversity in Caspian Sea sediments.

    PubMed

    Mahmoudi, Nagissa; Robeson, Michael S; Castro, Hector F; Fortney, Julian L; Techtmann, Stephen M; Joyner, Dominique C; Paradis, Charles J; Pfiffner, Susan M; Hazen, Terry C

    2015-01-01

    The Caspian Sea is heavily polluted due to industrial and agricultural effluents as well as extraction of oil and gas reserves. Microbial communities can influence the fate of contaminants and nutrients. However, insight into the microbial ecology of the Caspian Sea significantly lags behind other marine systems. Here we describe microbial biomass, diversity and composition in sediments collected from three sampling stations in the Caspian Sea. Illumina sequencing of 16S rRNA genes revealed the presence of a number of known bacterial and archaeal heterotrophs suggesting that organic carbon is a primary factor shaping microbial communities. Surface sediments collected from bottom waters with low oxygen levels were dominated by Gammaproteobacteria while surface sediments collected from bottom waters under hypoxic conditions were dominated by Deltaproteobacteria, specifically sulfate-reducing bacteria. Thaumarchaeota was dominant across all surface sediments indicating that nitrogen cycling in this system is strongly influenced by ammonia-oxidizing archaea. This study provides a baseline assessment that may serve as a point of reference as this system changes or as the efficacy of new remediation efforts are implemented. PMID:25764536

  12. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  13. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities.

    PubMed

    Cole, Jessica K; Peacock, Joseph P; Dodsworth, Jeremy A; Williams, Amanda J; Thompson, Daniel B; Dong, Hailiang; Wu, Geng; Hedlund, Brian P

    2013-04-01

    Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87-80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (\\[pmacr]=36.1%), Aeropyrum (\\[pmacr]=16.6%), the archaeal lineage pSL4 (\\[pmacr]=15.9%), the archaeal lineage NAG1 (\\[pmacr]=10.6%) and Thermocrinis (\\[pmacr]=7.6%). The ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (\\[pmacr]=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles.

  14. Evaluation of estuarine sediment communities exposed to pentachlorophenol on the basis of microbial community parameters

    SciTech Connect

    Kurtz, J.C.; Barkay, T.; Devereux, R.; Jonas, R.B.

    1995-12-31

    The effect of pentachlorophenol (PCP), a widely-used wood preserving agent, on natural sediment microbial communities was examined to determine if methods for assessing changes in microbial community structure and function were useful for studies of environmental impact. Current impact assessments predict the potential for environmental impact from data on contaminant bioavailability (partitioning to interstitial water), or on toxicity to benthic infauna, epibenthic species or species that obtain nutrients from the sediment or water column. Since sediment microorganisms are important as terminal oxidizers of organic compounds, providing essential nutrients for support of higher trophic levels, study of the impact of contaminants on microbial communities may add an important dimension to assessments. Estuarine sediment slurries in field-validated microcosms were exposed to PCP at environmentally relevant concentrations (1.0 and 5.0 ug{center_dot}ml{sup {minus}1}). Results indicated that microcosm-contained communities were metabolically impacted by PCP treatment (reduction of sulfate reduction rates to 17.6% of untreated controls, reduction of dark CO{sub 2} fixation rates less pronounced). The structure of sulfate reducing bacterial (SRB) communities changed in response to PCP exposure as revealed by specific 16S ribosomal RNA probes, although direct counts of epifluorescent-stained bacteria remained stable. When compared to untreated microcosms, SRB groups capable of incomplete oxidation of substrates increased in relative abundance when exposed to 5 ug{center_dot}ml{sup {minus}1} PCP, while groups capable of complete oxidation declined in relative abundance. Impacts on the microbial community were produced by PCP exposure and could be detected by the methods employed; therefore, this approach may provide a means for detecting adverse impacts on sediment communities where many recalcitrant pollutants persist.

  15. Biochar addition impacts soil microbial community in tropical soils

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel

    2014-05-01

    Studies on the effect of biochar on soil microbial activity and community structure in tropical areas are scarce. In this study we report the effect of several types of biochar (sewage sludge biochar, paper mill waste biochar, miscanthus biochar and pinewood biochar) in the soil microbial community of two tropical soils, an Acrisol and an Oxisol. In addition we study the effect of the presence or absence of earthworms in soil microbial community. Soil microbial community was more strongly affected by biochar than by the presence or absence of macrofauna.

  16. Microbial Communities Initiative: Melding Technology, Experimentation, and Theory

    ScienceCinema

    Konopka, Allan

    2016-07-12

    The Microbial Communities Initiative is a 5-year investment by Pacific Northwest National Laboratory that integrates biological/ecological experimentation, analytical chemistry, and simulation modeling. The objective is to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities. Dr. Konopka describes PNNLs Microbial Communities Initiative. The MCI will integrate biological/ecological experimentation, analytical chemistry, and simulation modeling to create transforming technologies, elucidate mechanistic forces, and develop theoretical frameworks for the analysis and predictive understanding of microbial communities.

  17. Reaction Progress and the Changing Diversity of Chemolithotrophic Microbial Communities

    NASA Astrophysics Data System (ADS)

    Shock, E.; Boyd, E.

    2012-12-01

    Is there a correlation between the abundance and diversity of geochemical energy sources and the diversity of chemolithotrophic microbial communities? The available data are suggestive, but not yet conclusive owing to a general lack of models and sampling strategies that integrate microbial, molecular, and geochemical data from microbially dominated ecosystems. While improvements are being made in sampling and analytical strategies, there is an opportunity to examine the underlying thermodynamic framework and generate hypotheses that can lead to quantitate tests of how reaction progress drives microbial diversity. Such quantitative approaches would allow accurate forecasts of the response of microbial communities, the base of all food webs, to environmental change, and development of strategies to deal with shifts in ecosystem function. As a first order consideration, chemolithotrophs require sources of chemical energy, which are provided by oxidation-reduction (redox) reactions that are far from equilibrium. Larger energy supplies can be expected to support larger populations of microbes unless nutrient supply (e.g., phosphate limitation) or other physiological limitations (e.g., thermal limits) are encountered. In geochemical systems, the magnitudes of disequilibria can be evaluated by quantifying how far from equilibrium individual reactions are. As reactions progress, fluctuations in disequilibria can be monitored by explicitly assessing values of reaction-progress variables. Such approaches are commonly used to develop dynamic models of weathering, diagenesis, hydrothermal alteration, and other geochemical processes involving mass transfer. The same framework applied to overall reactions capable of supporting chemolithotrophic populations enables dynamic predictions of changes in the predominant metabolic strategies capable of supporting microbial communities during geochemical processes. These predictions are not limited to changes in microbial biomass and

  18. Metagenomic analysis of the microbial community in kefir grains.

    PubMed

    Nalbantoglu, Ufuk; Cakar, Atilla; Dogan, Haluk; Abaci, Neslihan; Ustek, Duran; Sayood, Khalid; Can, Handan

    2014-08-01

    Kefir grains as a probiotic have been subject to microbial community identification using culture-dependent and independent methods that target specific strains in the community, or that are based on limited 16S rRNA analysis. We performed whole genome shotgun pyrosequencing using two Turkish Kefir grains. Sequencing generated 3,682,455 high quality reads for a total of ∼1.6 Gbp of data assembled into 6151 contigs with a total length of ∼24 Mbp. Species identification mapped 88.16% and 93.81% of the reads rendering 4 Mpb of assembly that did not show any homology to known bacterial sequences. Identified communities in the two grains showed high concordance where Lactobacillus was the most abundant genus with a mapped abundance of 99.42% and 99.79%. This genus was dominantly represented by three species Lactobacillus kefiranofaciens, Lactobacillus buchneri and Lactobacillus helveticus with a total mapped abundance of 97.63% and 98.74%. We compared and verified our findings with 16S pyrosequencing and model based 16S data analysis. Our results suggest that microbial community profiling using whole genome shotgun data is feasible, can identify novel species data, and has the potential to generate a more accurate and detailed assessment of the underlying bacterial community, especially for low abundance species.

  19. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests

    SciTech Connect

    Cusack, Daniela F.; Silver, Whendee; Torn, Margaret S.; Burton, Sarah D.; Firestone, Mary

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  20. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  1. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types. PMID:21608471

  2. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    NASA Astrophysics Data System (ADS)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  3. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    NASA Astrophysics Data System (ADS)

    Dhar, Bipro Ranjan; Ryu, Hodon; Santo Domingo, Jorge W.; Lee, Hyung-Sool

    2016-11-01

    Multi-anode microbial electrochemical cells (MxCs) are considered as one of the most promising configurations for scale-up of MxCs, but understanding of anode kinetics in multiple anodes is limited in the MxCs. In this study we assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MxC to better comprehend anode fundamentals. Microbial community analysis targeting 16S rRNA Illumina sequencing showed that Geobacter genus was abundant (87%) only on the biofilm anode closest to a reference electrode (low ohmic energy loss) in which current density was the highest among three anodes. In comparison, Geobacter populations were less than 1% for biofilms on other two anodes distant from the reference electrode (high ohmic energy loss), generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest biofilm anode to the reference electrode, while EKA was as high as -0.134 V for the farthest anode. Our study proves that electric potential of individual anodes changed by ohmic energy loss shifts biofilm communities on individual anodes and consequently influences electron transfer kinetics on each anode in the multi-anode MxC.

  4. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  5. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  6. Response of soil microbial communities during changes in land management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of soil microbial communities to restoration following disturbances is poorly understood. We studied the soil microbial communities in a forest disturbance-restoration series comprising a native deciduous forest (DF), conventionally tilled cropland (CT) and mid-succession forest (SF) re...

  7. Soil amendments yield persisting changes in the microbial communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities are sensitive to carbon amendments and largely control the decomposition and accumulation of soil organic matter. In this study, we evaluated whether the type of carbon amendment applied to wheat-cropped or fallow soil imparted lasting effects on the microbial community w...

  8. Cheese Microbial Risk Assessments — A Review

    PubMed Central

    Choi, Kyoung-Hee; Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Yoon, Yohan

    2016-01-01

    Cheese is generally considered a safe and nutritious food, but foodborne illnesses linked to cheese consumption have occurred in many countries. Several microbial risk assessments related to Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli infections, causing cheese-related foodborne illnesses, have been conducted. Although the assessments of microbial risk in soft and low moisture cheeses such as semi-hard and hard cheeses have been accomplished, it has been more focused on the correlations between pathogenic bacteria and soft cheese, because cheese-associated foodborne illnesses have been attributed to the consumption of soft cheeses. As a part of this microbial risk assessment, predictive models have been developed to describe the relationship between several factors (pH, Aw, starter culture, and time) and the fates of foodborne pathogens in cheese. Predictions from these studies have been used for microbial risk assessment as a part of exposure assessment. These microbial risk assessments have identified that risk increased in cheese with high moisture content, especially for raw milk cheese, but the risk can be reduced by preharvest and postharvest preventions. For accurate quantitative microbial risk assessment, more data including interventions such as curd cooking conditions (temperature and time) and ripening period should be available for predictive models developed with cheese, cheese consumption amounts and cheese intake frequency data as well as more dose-response models. PMID:26950859

  9. Cheese Microbial Risk Assessments - A Review.

    PubMed

    Choi, Kyoung-Hee; Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Yoon, Yohan

    2016-03-01

    Cheese is generally considered a safe and nutritious food, but foodborne illnesses linked to cheese consumption have occurred in many countries. Several microbial risk assessments related to Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli infections, causing cheese-related foodborne illnesses, have been conducted. Although the assessments of microbial risk in soft and low moisture cheeses such as semi-hard and hard cheeses have been accomplished, it has been more focused on the correlations between pathogenic bacteria and soft cheese, because cheese-associated foodborne illnesses have been attributed to the consumption of soft cheeses. As a part of this microbial risk assessment, predictive models have been developed to describe the relationship between several factors (pH, Aw, starter culture, and time) and the fates of foodborne pathogens in cheese. Predictions from these studies have been used for microbial risk assessment as a part of exposure assessment. These microbial risk assessments have identified that risk increased in cheese with high moisture content, especially for raw milk cheese, but the risk can be reduced by preharvest and postharvest preventions. For accurate quantitative microbial risk assessment, more data including interventions such as curd cooking conditions (temperature and time) and ripening period should be available for predictive models developed with cheese, cheese consumption amounts and cheese intake frequency data as well as more dose-response models.

  10. Characterization Of Sponge-Associated Microbial Communities

    NASA Astrophysics Data System (ADS)

    Bailey, K. L.; Weisz, J.; Lindquist, N.

    2004-12-01

    To more fully understand the endosymbiotic relationship between sponges and microorganisms, it is necessary to characterize the microbial communities of the sponges. In this study, DNA was extracted from each of three individual sponges from four sponge species collected in a shallow mangrove cut in Florida Bay near Key Largo, Florida. A fragment of the 16S rRNA gene from sponge-associated bacteria was amplified using the polymerase chain reaction (PCR). The resulting PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE), which separates DNA fragments based on their sequence differences. Some 16S sequences appeared to be shared by each of the four sponge species, while other fragments found in only particular species likely represent unique bacterial strains that play a role in sponge nutrition.

  11. Community Proteomics of a Natural Microbial Biofilm

    SciTech Connect

    Ram, Rachna J.; Verberkmoes, Nathan C; Thelen, Michael P.; Tyson, Gene W.; Baker, Brett J.; Shah, Manesh B; BlakeII, Robert C.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2005-06-01

    Using genomic and mass spectrometry-based proteomic methods, we evaluated gene expression, identified key activities, and examined partitioning of metabolic functions in a natural acid mine drainage (AMD) microbial biofilm community. We detected 2033 proteins from the five most abundant species in the biofilm, including 48% of the predicted proteins from the dominant biofilm organism, Leptospirillum group II. Proteins involved in protein refolding and response to oxidative stress appeared to be highly expressed, which suggests that damage to biomolecules is a key challenge for survival. We validated and estimated the relative abundance and cellular localization of 357 unique and 215 conserved novel proteins and determined that one abundant novel protein is a cytochrome central to iron oxidation and AMD formation.

  12. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil.

    PubMed

    Weaver, Mark A; Krutz, L Jason; Zablotowicz, Robert M; Reddy, Krishna N

    2007-04-01

    Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] has enabled highly effective and economical weed control. The concomitant increased application of glyphosate could lead to shifts in the soil microbial community. The objective of these experiments was to evaluate the effects of glyphosate on soil microbial community structure, function and activity. Field assessments on soil microbial communities were conducted on a silt loam soil near Stoneville, MS, USA. Surface soil was collected at time of planting, before initial glyphosate application and 14 days after two post-emergence glyphosate applications. Microbial community fatty acid methyl esters (FAMEs) were analyzed from these soil samples and soybean rhizospheres. Principal component analysis of the total FAME profile revealed no differentiation between field treatments, although the relative abundance of several individual fatty acids differed significantly. There was no significant herbicide effect in bulk soil or rhizosphere soils. Collectively, these findings indicate that glyphosate caused no meaningful whole microbial community shifts in this time period, even when applied at greater than label rates. Laboratory experiments, including up to threefold label rates of glyphosate, resulted in up to a 19% reduction in soil hydrolytic activity and small, brief (<7 days) changes in the soil microbial community. After incubation for 42 days, 32-37% of the applied glyphosate was mineralized when applied at threefold field rates, with about 9% forming bound residues. These results indicate that glyphosate has only small and transient effects on the soil microbial community, even when applied at greater than field rates.

  13. Microbial Community and Chemical Characteristics of Swine Manure during Maturation.

    PubMed

    Trabue, Steven L; Kerr, Brian J; Bearson, Bradley L; Hur, Manhoi; Parkin, Timothy; Wurtele, Eve S; Ziemer, Cherrie J

    2016-07-01

    Swine diet formulations have the potential to lower animal emissions, including odor and ammonia (NH). The purpose of this study was to determine the impact of manure storage duration on manure chemical and microbial properties in swine feeding trials. Three groups of 12 pigs were fed a standard corn-soybean meal diet over a 13-wk period. Urine and feces were collected at each feeding and transferred to 12 manure storage tanks. Manure chemical characteristics and headspace gas concentrations were monitored for NH, hydrogen sulfide (HS), volatile fatty acids, phenols, and indoles. Microbial analysis of the stored manure included plate counts, community structure (denaturing gradient gel electrophoresis), and metabolic function (Biolog). All odorants in manure and headspace gas concentrations were significantly ( < 0.01) correlated for length of storage using quadratic equations, peaking after Week 5 for all headspace gases and most manure chemical characteristics. Microbial community structure and metabolic utilization patterns showed continued change throughout the 13-wk trial. Denaturing gradient gel electrophoresis species diversity patterns declined significantly ( < 0.01) with time as substrate utilization declined for sugars and certain amino acids, but functionality increased in the utilization of short chain fatty acids as levels of these compounds increased in manure. Studies to assess the effect of swine diet formulations on manure emissions for odor need to be conducted for a minimum of 5 wk. Efforts to determine the impact of diets on greenhouse gas emissions will require longer periods of study (>13 wk). PMID:27380061

  14. Microbial Community Functional Change during Vertebrate Carrion Decomposition

    PubMed Central

    Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741

  15. Microbial community functional change during vertebrate carrion decomposition.

    PubMed

    Pechal, Jennifer L; Crippen, Tawni L; Tarone, Aaron M; Lewis, Andrew J; Tomberlin, Jeffery K; Benbow, M Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  16. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes.

  17. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  18. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    PubMed

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  19. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    PubMed

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes.

  20. Microbial Communities of the Okinawa Backarc Basin Subvent Biosphere

    NASA Astrophysics Data System (ADS)

    Brandt, L. D.; House, C. H.

    2014-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 m. Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 m. Site C0014 is a unique location to study changes in microbial communities with depth, as the hydrothermal system generates a thermally and geochemically restrictive subvent biosphere. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data suggests that Archaea represent a significant proportion of the indigenous community throughout the top 15 m of sediment, where Archaea then abruptly disappear. Furthermore, a deeper classification of Archaeal sequences suggests a transition from a mesophilic community to a potentially thermophilic one, where there is an increasingly stronger signal of Miscellaneous Crenarchaeotic Group (MCG) followed by Terrestrial Hot Spring Crenarchaeotic Group (THSCG). Additionally, there are several horizons in which methanotrophy is likely supported, indicated by peaks in anaerobic methanotrophic Archaea. The cessation of Archaea as well as Chloroflexi, a common marine subsurface bacterial phylum, at approximately 15 meters below seafloor (mbsf) is suggestive of a potential boundary within Site C0014 in which the environmental conditions have become too restrictive

  1. Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment.

    PubMed

    González-Toril, Elena; Santofimia, Esther; Blanco, Yolanda; López-Pamo, Enrique; Gómez, Manuel J; Bobadilla, Miguel; Cruz, Rolando; Palomino, Edwin Julio; Aguilera, Ángeles

    2015-11-01

    The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).

  2. "LOVE TO HATE" pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms.

    PubMed

    Karpouzas, D G; Tsiamis, G; Trevisan, M; Ferrari, F; Malandain, C; Sibourg, O; Martin-Laurent, F

    2016-09-01

    Pesticides end up in soil where they interact with soil microorganisms in various ways. On the Yin Side of the interaction, pesticides could exert toxicity on soil microorganisms, while on the Yang side of interaction, pesticides could be used as energy source by a fraction of the soil microbial community. The LOVE TO HATE project is an IAPP Marie Curie project which aims to study these complex interactions of pesticides with soil microorganisms and provide novel tools which will be useful both for pesticide regulatory purposes and agricultural use. On the Yin side of the interactions, a new regulatory scheme for assessing the soil microbial toxicity of pesticides will be proposed based on the use of advanced standardized tools and a well-defined experimental tiered scheme. On the Yang side of the interactions, advanced molecular tools like amplicon sequencing and functional metagenomics will be applied to define microbes that are involved in the rapid transformation of pesticides in soils and isolate novel pesticide biocatalysts. In addition, a functional microarray has been designed to estimate the biodegradation genetic potential of the microbial community of agricultural soils for a range of pesticide groups. PMID:27470248

  3. "LOVE TO HATE" pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms.

    PubMed

    Karpouzas, D G; Tsiamis, G; Trevisan, M; Ferrari, F; Malandain, C; Sibourg, O; Martin-Laurent, F

    2016-09-01

    Pesticides end up in soil where they interact with soil microorganisms in various ways. On the Yin Side of the interaction, pesticides could exert toxicity on soil microorganisms, while on the Yang side of interaction, pesticides could be used as energy source by a fraction of the soil microbial community. The LOVE TO HATE project is an IAPP Marie Curie project which aims to study these complex interactions of pesticides with soil microorganisms and provide novel tools which will be useful both for pesticide regulatory purposes and agricultural use. On the Yin side of the interactions, a new regulatory scheme for assessing the soil microbial toxicity of pesticides will be proposed based on the use of advanced standardized tools and a well-defined experimental tiered scheme. On the Yang side of the interactions, advanced molecular tools like amplicon sequencing and functional metagenomics will be applied to define microbes that are involved in the rapid transformation of pesticides in soils and isolate novel pesticide biocatalysts. In addition, a functional microarray has been designed to estimate the biodegradation genetic potential of the microbial community of agricultural soils for a range of pesticide groups.

  4. Reciprocal influences of microbial community and hydrogeomorphology in sandy streambeds

    NASA Astrophysics Data System (ADS)

    Mendoza-Lera, C.; Federlein, L. L.; Frossard, A.; Gessner, M. O.; Knie, M.; Mutz, M.

    2015-12-01

    Stream hydrogeomorphology is a strong determinant of streambed microbial community activity, which in turn influences stream biogeochemistry. Whether this influence is unidirectional or whether microbial communities can also modulate biogeochemical processes by affecting hydrogeomorphology is an emerging question in research on sediment-water interfaces. Using experimental flumes simulating sandy streams, we tested whether such influences can occur through altered water exchange across the sediment-water interface. Results show that microbial communities in sandy streambeds can indeed affect hydrogeomorphology by producing gas bubbles. Specifically, gas bubbles accumulating in microbial biofilms can alter the water exchange by (i) reducing sediment pore space or (ii) provoking the detachment of the microbial biofilm detachment and thus altering streambed topography. Additionally, results indicate that water exchange is the major for the structure and activity of the microbial community. Our data also indicate that the potential of microbial communities to influence water exchange can be modulated by factors such as light intensity and discharge fluctuations. These biological-physical interactions and their effects on the influence of microbial communities on hydrogeomorphology is a source of spatiotemporal variability in water exchange across the sediment-water interface. Heterogeneity in water exchange is known to increase biogeochemical pathways and, thus, ecosystem functions. These results suggest that a holistic understanding of vertical connectivity in running waters requires consideration of biological-physical interactions at the water-sediment interface.

  5. Substrate-induced changes in microbial community-level physiological profiles and their application to discriminate soil microbial communities.

    PubMed

    Chen, Jian; Xie, Huijun; Zhuang, Xuliangli; Zhuang, Guoqiang; Bai, Zhihui; Zhang, Hongxun

    2008-01-01

    The addition of simple substrates could affect the microbial respiration in soils. This substrate-induced respiration is widely used to estimate the soil microbial biomass, but little attention has been paid to its influence on the changes of community-level physiological profiles. In this study, the process of microbial communities responding to the added substrate using sole-carbon-source utilization (BIOLOG) was investigated. BIOLOG is biased toward fast-growing bacteria; this advantage was taken to detect the prompt response of the active microbial communities to the added substrate. Four soil samples from agricultural fields adjacent to heavy metal mines were amended with L-arginine, citric acid, or D-glucose. Substrate amendments could, generally, not only increase the metabolic activity of the microbial communities, but also change the metabolic diverse patterns compared with no-substrate control. By tracking the process, it was found that the variance between substrate-induced treatment and control fluctuated greatly during the incubation course, and the influences of these three substrates were different. In addition, the application of these induced changes to discriminate soil microbial communities was tested. The distance among all samples was greatly increased, which further showed the functional variance among microbial communities in soils. This can be very useful in the discrimination of microbial communities even with high similarity.

  6. Biodiversity at the plant-soil interface: microbial abundance and community structure respond to litter mixing.

    PubMed

    Chapman, Samantha K; Newman, Gregory S

    2010-03-01

    The interactive effects of diversity in plants and microbial communities at the litter interface are not well understood. Mixtures of plant litter from different species often decompose differently than when individual species decompose alone. Previously, we found that litter mixtures of multiple conifers decomposed more rapidly than expected, but litter mixtures that included conifer and aspen litter did not. Understanding the mechanisms underlying these diversity effects may help explain existing anomalous decay dynamics and provide a glimpse into the elusive linkage between plant diversity and the fungi and bacteria that carry out decomposition. We examined the microbial communities on litter from individual plant species decomposing both in mixture and alone. We assessed two main hypotheses to explain how the decomposer community could stimulate mixed-litter decomposition above predicted rates: either by being more abundant, or having a different or more diverse community structure than when microbes decompose a single species of litter. Fungal, bacterial and total phospholipid fatty acid microbial biomass increased by over 40% on both conifer and aspen litter types in mixture, and microbial community composition changed significantly when plant litter types were mixed. Microbial diversity also increased with increasing plant litter diversity. While our data provide support for both the increased abundance hypothesis and the altered microbial community hypothesis, microbial changes do not translate to predictably altered litter decomposition and may only produce synergisms when mixed litters are functionally similar.

  7. Microbial diversity and community structure in an antimony-rich tailings dump.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities. PMID:27188777

  8. Comparative Metagenomics of Freshwater Microbial Communities

    SciTech Connect

    Hemme, Chris; Deng, Ye; Tu, Qichao; Fields, Matthew; Gentry, Terry; Wu, Liyou; Tringe, Susannah; Watson, David; He, Zhili; Hazen, Terry; Tiedje, James; Rubin, Eddy; Zhou, Jizhong

    2010-05-17

    Previous analyses of a microbial metagenome from uranium and nitric-acid contaminated groundwater (FW106) showed significant environmental effects resulting from the rapid introduction of multiple contaminants. Effects include a massive loss of species and strain biodiversity, accumulation of toxin resistant genes in the metagenome and lateral transfer of toxin resistance genes between community members. To better understand these results in an ecological context, a second metagenome from a pristine groundwater system located along the same geological strike was sequenced and analyzed (FW301). It is hypothesized that FW301 approximates the ancestral FW106 community based on phylogenetic profiles and common geological parameters; however, even if is not the case, the datasets still permit comparisons between healthy and stressed groundwater ecosystems. Complex carbohydrate metabolism has been almost entirely lost in the stressed ecosystem. In contrast, the pristine system encodes a wide diversity of complex carbohydrate metabolism systems, suggesting that carbon turnover is very rapid and less leaky in the healthy groundwater system. FW301 encodes many (~;;160+) carbon monoxide dehydrogenase genes while FW106 encodes none. This result suggests that the community is frequently exposed to oxygen from aerated rainwater percolating into the subsurface, with a resulting high rate of carbon metabolism and CO production. When oxygen levels fall, the CO then serves as a major carbon source for the community. FW301 appears to be capable of CO2 fixation via the reductive carboxylase (reverse TCA) cycle and possibly acetogenesis, activities; these activities are lacking in the heterotrophic FW106 system which relies exclusively on respiration of nitrate and/or oxygen for energy production. FW301 encodes a complete set of B12 biosynthesis pathway at high abundance suggesting the use of sodium gradients for energy production in the healthy groundwater community. Overall

  9. Seasonal Changes in the Rhizosphere Microbial Communities Associated with Field-Grown Genetically Modified Canola (Brassica napus)

    PubMed Central

    Dunfield, Kari E.; Germida, James J.

    2003-01-01

    The introduction of transgenic plants into agricultural ecosystems has raised the question of the ecological impact of these plants on nontarget organisms, such as soil bacteria. Although differences in both the genetic structure and the metabolic function of the microbial communities associated with some transgenic plant lines have been established, it remains to be seen whether these differences have an ecological impact on the soil microbial communities. We conducted a 2-year, multiple-site field study in which rhizosphere samples associated with a transgenic canola variety and a conventional canola variety were sampled at six times throughout the growing season. The objectives of this study were to identify differences between the rhizosphere microbial community associated with the transgenic plants and the rhizosphere microbial community associated with the conventional canola plants and to determine whether the differences were permanent or depended on the presence of the plant. Community-level physiological profiles, fatty acid methyl ester profiles, and terminal amplified ribosomal DNA restriction analysis profiles of rhizosphere microbial communities were compared to the profiles of the microbial community associated with an unplanted, fallow field plot. Principal-component analysis showed that there was variation in the microbial community associated with both canola variety and growth season. Importantly, while differences between the microbial communities associated with the transgenic plant variety were observed at several times throughout the growing season, all analyses indicated that when the microbial communities were assessed after winter, there were no differences between microbial communities from field plots that contained harvested transgenic canola plants and microbial communities from field plots that did not contain plants during the field season. Hence, the changes in the microbial community structure associated with genetically modified

  10. Mangrove succession enriches the sediment microbial community in South China.

    PubMed

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  11. Integrating Ecological and Engineering Concepts of Resilience in Microbial Communities

    PubMed Central

    Song, Hyun-Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-01-01

    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from compositionally simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems that undergo both recoverable and unrecoverable transitions, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community's functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities and suggest that state changes in response to environmental variation may be a key mechanism driving functional resilience in microbial communities. PMID:26648912

  12. Mangrove succession enriches the sediment microbial community in South China

    PubMed Central

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  13. Integrating Ecological and Engineering Concepts of Resilience in Microbial Communities.

    PubMed

    Song, Hyun-Seob; Renslow, Ryan S; Fredrickson, Jim K; Lindemann, Stephen R

    2015-01-01

    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from compositionally simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems that undergo both recoverable and unrecoverable transitions, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community's functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities and suggest that state changes in response to environmental variation may be a key mechanism driving functional resilience in microbial communities.

  14. Mangrove succession enriches the sediment microbial community in South China.

    PubMed

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  15. A trait-based approach for examining microbial community assembly

    NASA Astrophysics Data System (ADS)

    Prest, T. L.; Nemergut, D.

    2015-12-01

    Microorganisms regulate all of Earth's major biogeochemical cycles and an understanding of how microbial communities assemble is a key part in evaluating controls over many types of ecosystem processes. Rapid advances in technology and bioinformatics have led to a better appreciation for the variation in microbial community structure in time and space. Yet, advances in theory are necessary to make sense of these data and allow us to generate unifying hypotheses about the causes and consequences of patterns in microbial biodiversity and what they mean for ecosystem function. Here, I will present a metaanalysis of microbial community assembly from a variety of successional and post-disturbance systems. Our analysis shows various distinct patterns in community assembly, and the potential importance of nutrients and dispersal in shaping microbial community beta diversity in these systems. We also used a trait-based approach to generate hypotheses about the mechanisms driving patterns of microbial community assembly and the implications for function. Our work reveals the importance of rRNA operon copy number as a community aggregated trait in helping to reconcile differences in community dynamics between distinct types of successional and disturbed systems. Specifically, our results demonstrate that decreases in average copy number can be a common feature of communities across various drivers of ecological succession, supporting a transition from an r-selected to a K-selected community. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, from cells to populations and communities, and has implications for both ecology and evolution. Trait-based approaches are an important next step to generate and test hypotheses about the forces structuring microbial communities and the subsequent consequences for ecosystem function.

  16. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities

    PubMed Central

    Cole, Jessica K; Peacock, Joseph P; Dodsworth, Jeremy A; Williams, Amanda J; Thompson, Daniel B; Dong, Hailiang; Wu, Geng; Hedlund, Brian P

    2013-01-01

    Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles. PMID:23235293

  17. Microbial community dynamics alleviate stoichiometric constraints during litter decay.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-06-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions. PMID:24628731

  18. Microbial community dynamics alleviate stoichiometric constraints during litter decay.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-06-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions.

  19. Microbial community dynamics alleviate stoichiometric constraints during litter decay

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-01-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions. PMID:24628731

  20. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks

    USGS Publications Warehouse

    Révész, Kinga M.; Lollar, Barbara Sherwood; Kirshtein, Julie D.; Tiedeman, Claire R.; Imbrigiotta, Thomas E.; Goode, Daniel J.; Shapiro, Allen M.; Voytek, Mary A.; Lancombe, Pierre J.; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in 2H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ13C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ2H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H2 gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE + VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average 13C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect of the

  1. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and ²HH₂O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks.

    PubMed

    Révész, Kinga M; Lollar, Barbara Sherwood; Kirshtein, Julie D; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Shapiro, Allen M; Voytek, Mary A; Lacombe, Pierre J; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in ²H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ¹³C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ²H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H₂ gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE+VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average ¹³C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect

  2. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and ²HH₂O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks.

    PubMed

    Révész, Kinga M; Lollar, Barbara Sherwood; Kirshtein, Julie D; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Shapiro, Allen M; Voytek, Mary A; Lacombe, Pierre J; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in ²H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ¹³C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ²H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H₂ gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE+VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average ¹³C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect

  3. Cultivation and quantitative proteomic analyses of acidophilic microbial communities

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Verberkmoes, Nathan C; Power, Mary E.; Samatova, Nagiza F; Carver, Rudolf L.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Acid mine drainage (AMD), an extreme environment characterized by low pH and high metal concentrations, can support dense acidophilic microbial biofilm communities that rely on chemoautotrophic production based on iron oxidation. Field determined production rates indicate that, despite the extreme conditions, these communities are sufficiently well adapted to their habitats to achieve primary production rates comparable to those of microbial communities occurring in some non-extreme environments. To enable laboratory studies of growth, production and ecology of AMD microbial communities, a culturing system was designed to reproduce natural biofilms, including organisms recalcitrant to cultivation. A comprehensive metabolic labeling-based quantitative proteomic analysis was used to verify that natural and laboratory communities were comparable at the functional level. Results confirmed that the composition and core metabolic activities of laboratory-grown communities were similar to a natural community, including the presence of active, low abundance bacteria and archaea that have not yet been isolated. However, laboratory growth rates were slow compared with natural communities, and this correlated with increased abundance of stress response proteins for the dominant bacteria in laboratory communities. Modification of cultivation conditions reduced the abundance of stress response proteins and increased laboratory community growth rates. The research presented here represents the first description of the application of a metabolic labeling-based quantitative proteomic analysis at the community level and resulted in a model microbial community system ideal for testing physiological and ecological hypotheses.

  4. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability.

    PubMed

    Leckie, S E; Prescott, C E; Grayston, S J; Neufeld, J D; Mohn, W W

    2004-07-01

    To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.

  5. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.

    PubMed

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang

    2010-10-15

    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution.

  6. Integrating ecological and engineering concepts of resilience in microbial communities

    DOE PAGES

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the twomore » concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.« less

  7. Integrating ecological and engineering concepts of resilience in microbial communities

    SciTech Connect

    Song, Hyun -Seob; Renslow, Ryan S.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2015-12-01

    We note that many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. Here, we argue that the disconnect largely results from the wide variance in microbial community complexity, which range from simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community’s functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities, suggesting that state changes in response to environmental variation may be a key mechanism driving resilience in microbial communities.

  8. Which Microbial Communities Are Present? Sequence-Based Metagenomics

    NASA Astrophysics Data System (ADS)

    Caffrey, Sean M.

    The use of metagenomic methods that directly sequence environmental samples has revealed the extraordinary microbial diversity missed by traditional culture-based methodologies. Therefore, to develop a complete and representative model of an environment's microbial community and activities, metagenomic analysis is an essential tool.

  9. The viability of native microbial communities in martian environment (model)

    NASA Astrophysics Data System (ADS)

    Vorobyova, Elena; Cheptcov, Vladimir; Pavlov, Anatolyi; Vdovina, Mariya; Lomasov, Vladimir

    For today the important direction in astrobiology is the experimental simulation of extraterrestrial habitats with the assessment of survivability of microorganisms in such conditions. A new task is to investigate the resistance of native microbial ecosystems which are well adapted to the environment and develop unique protection mechanisms that enable to ensure biosphere formation. The purpose of this research was to study the viability of microorganisms as well as viability of native microbial communities of arid soils and permafrost under stress conditions simulating space environment and martian regolith environment, estimation of duration of Earth like life in the Martian soil. The experimental data obtained give the proof of the preservation of high population density, biodiversity, and reproduction activity under favorable conditions in the Earth analogues of Martian soil - arid soils (Deserts of Israel and Morocco) and permafrost (East Siberia, Antarctica), after the treatment of samples by ionizing radiation dose up to 100 kGy at the pressure of 1 torr, temperature (- 50oC) and in the presence of perchlorate (5%). It was shown that in simulated conditions close to the parameters of the Martian regolith, the diversity of natural bacterial communities was not decreased, and in some cases the activation of some bacterial populations occurred in situ. Our results allow suggesting that microbial communities like those that inhabit arid and permafrost ecosystems on the Earth, can survive at least 500 thousand years under conditions of near surface layer of the Martian regolith. Extrapolation of the data according to the intensity of ionizing radiation to the open space conditions allows evaluating the potential lifespan of cells inside meteorites as 20-50 thousand years at least. In this work new experimental data have been obtained confirming the occurrence of liquid water and the formation of wet soil layer due to sublimation of ice when the temperature of the

  10. Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater

    SciTech Connect

    Zhen Li; Rishika Haynes; Eugene Sato; Malcolm Shields; Yoshiko Fujita; Chikashi Sato

    2014-04-01

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.

  11. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neill, K.; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  12. A hydrogen-based subsurface microbial community dominated by methanogens.

    PubMed

    Chapelle, Francis H; O'Neill, Kathleen; Bradley, Paul M; Methé, Barbara A; Ciufo, Stacy A; Knobel, LeRoy L; Lovley, Derek R

    2002-01-17

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  13. Sequencing, Assembly and Analysis of Human Microbial Communities

    SciTech Connect

    Petrosino, Joe

    2010-06-04

    Joe Petrosino of Baylor College of Medicine discusses using next generation sequencing technologies to study human microbial communities associated with health and disease on June 4, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  14. Microbial communities respond to experimental warming, but site matters.

    PubMed

    Cregger, Melissa A; Sanders, Nathan J; Dunn, Robert R; Classen, Aimée T

    2014-01-01

    Because microorganisms are sensitive to temperature, ongoing global warming is predicted to influence microbial community structure and function. We used large-scale warming experiments established at two sites near the northern and southern boundaries of US eastern deciduous forests to explore how microbial communities and their function respond to warming at sites with differing climatic regimes. Soil microbial community structure and function responded to warming at the southern but not the northern site. However, changes in microbial community structure and function at the southern site did not result in changes in cellulose decomposition rates. While most global change models rest on the assumption that taxa will respond similarly to warming across sites and their ranges, these results suggest that the responses of microorganisms to warming may be mediated by differences across the geographic boundaries of ecosystems.

  15. Effects of a Ciliate Protozoa Predator on Microbial Communities in Pitcher Plant (Sarracenia purpurea) Leaves

    PubMed Central

    Paisie, Taylor K.; Miller, Thomas E.; Mason, Olivia U.

    2014-01-01

    The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria) community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems. PMID:25423622

  16. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    PubMed

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition. PMID:25575309

  17. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    PubMed Central

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition. PMID:25575309

  18. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    PubMed

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  19. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    PubMed

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.

  20. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    PubMed

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems. PMID:26509157

  1. Microbial community transitions across the deep sediment-basement interface

    NASA Astrophysics Data System (ADS)

    Labonté, J.; Lever, M. A.; Orcutt, B.

    2015-12-01

    Previous studies of microbial abundance and geochemistry in deep marine sediments indicate a stimulation of microbial activity near the sediment-basement interface; yet, the extent to which microbial communities in bottom sediments and underlying crustal habitats interact is unclear. We conducted tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement samples to try to identify patterns in microbial community shifts across sediment-basement interfaces, focusing on samples from the subsurface of the Juan de Fuca Ridge flank (IODP Expedition 327). Our results demonstrate that sediment and the basaltic crust harbor microbial communities that are phylogenetically connected, but the eveness is characteristic of the environment. We will discuss the microbial community transitions that occur horizontally along fluid flow pathways and vertically across the sediment basement interface, as well as the possible implications regarding the controls of microbial community composition along deep sediment-basement interfaces in hydrothermal systems. We will also highlight efforts to overcome sample contamination in crustal subsurface samples.

  2. Culturability as an indicator of succession in microbial communities

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Adams, J. L.; Kerkhof, L.

    2001-01-01

    Successional theory predicts that opportunistic species with high investment of energy in reproduction and wide niche width will be replaced by equilibrium species with relatively higher investment of energy in maintenance and narrower niche width as communities develop. Since the ability to rapidly grow into a detectable colony on nonselective agar medium could be considered as characteristic of opportunistic types of bacteria, the percentage of culturable cells may be an indicator of successional state in microbial communities. The ratios of culturable cells (colony forming units on R2A agar) to total cells (acridine orange direct microscopic counts) and culturable cells to active cells (reduction of 5-cyano-2,3-ditolyl tetrazolium chloride) were measured over time in two types of laboratory microcosms (the rhizosphere of hydroponically grown wheat and aerobic, continuously stirred tank reactors containing plant biomass) to determine the effectiveness of culturabilty as an index of successional state. The culturable cell:total cell ratio in the rhizosphere decreased from approximately 0.25 to less than 0.05 during the first 30-50 days of plant growth, and from 0.65 to 0.14 during the first 7 days of operation of the bioreactor. The culturable cell:active cell ratio followed similar trends, but the values were consistently greater than the culturable cell:total cell ratio, and even exceeded I in early samples. Follow-up studies used a cultivation-independent method, terminal restriction fragment length polymorphisms (TRFLP) from whole community DNA, to assess community structure. The number of TRFLP peaks increased with time, while the number of culturable types did not, indicating that the general decrease in culturability is associated with a shift in community structure. The ratio of respired to assimilated C-14-labeled amino acids increased with the age of rhizosphere communities, supporting the hypothesis that a shift in resource allocation from growth to

  3. Assessing the soil microbial carbon budget: Probing with salt stress

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Rousk, Johannes

    2014-05-01

    The amount of carbon stored as soil organic matter (SOM) constitutes a pool more than double the size of the atmospheric carbon pool. Soil respiration represents one of the largest fluxes of carbon between terrestrial ecosystems and the atmosphere. A large fraction of the CO2 released by soils is produced by the microbial decomposition of SOM. The microbial carbon budget is characterized by their carbon use efficiency, i.e. the partitioning of substrate into growth and respiration. This will shape the role of the soil as a net source or sink for carbon. One of the canonical factors known to influence microbial processes in soil is pH. In aquatic systems salinity has been found to have a comparably strong influence as pH. However salinity remains understudied in soil, despite its growing relevance due to land use change and agricultural practices. The aim of this project is to understand how microbial carbon dynamics respond to disturbance by changing environmental conditions, using salinity as a reversible stressor. First, we compiled a comparative analysis of the sensitivity of different microbial processes to increasing salt concentrations. Second, we compared different salts to determine whether salt toxicity depended on the identity of the salt. Third, we used samples from a natural salinity gradient to assess if a legacy of salt exposure can influence the microbial response to changing salt concentrations. If salt had an ecologically significant effect in shaping these communities, we would assume that microbial processes would be less sensitive to an increase in salt concentrations. The sensitivity of microbial processes to salt was investigated by establishing inhibition curves in order to estimate EC50 values (the concentration resulting in 50% inhibition). These EC50 values were used to compare bacterial and fungal growth responses, as well as catabolic processes such as respiration and nitrogen mineralisation. Initial results suggest that growth related

  4. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  5. Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities

    PubMed Central

    Deng, Ye; He, Zhili; Xu, Meiying; Qin, Yujia; Van Nostrand, Joy D.; Wu, Liyou; Roe, Bruce A.; Wiley, Graham; Hobbie, Sarah E.; Reich, Peter B.

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to examine impacts of elevated CO2 (eCO2) on soil microbial communities from 12 replicates each from ambient CO2 (aCO2) and eCO2 settings. The results suggest that the soil microbial community composition and structure significantly altered under conditions of eCO2, which was closely associated with soil and plant properties. PMID:22307288

  6. Shifts in microbial communities in bioaugmented grease interceptors removing fat, oil, and grease (FOG).

    PubMed

    He, Xia; So, Mark Jason; de Los Reyes, Francis L

    2016-08-01

    To understand the effect of daily bioaugmentation in full-scale grease interceptors (GIs), we compared the microbial communities occurring in two full-scale GIs during bioaugmented and non-bioaugmented cycles. The changes in microbial communities were determined using terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene clone library construction. Differences in the microbial community structure between control and bioaugmented cycles were observed in all cases, although the dominant terminal restriction fragments in the biological product were not detected. The addition of bioaugmentation products and changes in the GI microbial ecology were related to differences in GI performance. Understanding the shifts due to bioaugmentation will result in more informed assessments of the benefits of bioadditives on FOG removal in GIs as well as the effects on downstream sewer lines.

  7. Community Analysis of Dynamic Microbial Mat Communities from Actively Erupting Seamounts (Invited)

    NASA Astrophysics Data System (ADS)

    Davis, R.; Tebo, B.; Moyer, C. L.

    2009-12-01

    The actively erupting deep-sea volcanoes NW Rota-1 and W Mata have multiple diffuse low-temperature (Tmax= 20-30 degrees) vent sites which harbor dense populations of microbial mat communities driven by chemoautotrophy. These microbial mats were often composed of white filamentous bacteria growing in close proximity to focused hydrothermal flow. Eight microbial mats were sampled from discrete hydrothermal vents on NW Rota-1 and W Mata volcanoes in 2009. The microbial mat communities were analyzed with quantitative PCR (Q-PCR) and terminal-restriction fragment length polymorphism (T-RFLP) community fingerprinting. All of the sampled microbial mats were dominated by the class Epsilonproteobacteria. The microbial mat at Iceberg Vent contained 13.5% Archaea, while all other microbial mats contained less than 1% Archaea. Bacterial community fingerprints from NW Rota-1 and W Mata formed distinct clusters that were well separated from clusters formed by hydrothermal communities from Axial and Eifuku Seamounts that were also dominated by Epsilonproteobacteria. Iceberg vent communities from NW Rota-1 have transitioned from being dominated by Caminibacter phylotypes to Sulfuimonas group phylotypes since 2004. These data suggest that microbial communities found on actively erupting volcanoes are geographically distinct and provide a natural laboratory to study microbial colonization and community succession at hydrothermal systems.

  8. Characterization of the microbial community in a lotic environment to assess the effect of pollution on nitrifying and potentially pathogenic bacteria.

    PubMed

    Medeiros, J D; Araújo, L X; da Silva, V L; Diniz, C G; Cesar, D E; Del'Duca, A; Coelho, C M

    2014-08-01

    This study aimed to investigate microbes involved in the nitrogen cycle and potentially pathogenic bacteria from urban and rural sites of the São Pedro stream. Water samples were collected from two sites. A seasonal survey of bacterial abundance was conducted. The dissolved nutrient content was analysed. PCR and FISH analysis were performed to identify and quantify microbes involved in the nitrogen cycle and potentially pathogenic bacteria. The seasonal survey revealed that the bacterial abundance was similar along the year on the rural area but varied on the urban site. Higher concentration of dissolved nutrients in the urban area indicated a eutrophic system. Considering the nitrifying microbes, the genus Nitrobacter was found, especially in the urban area, and may act as the principal bacteria in converting nitrite into nitrate at this site. The molecular markers napA, amoA, and nfrA were more accumulated at the urban site, justifying the higher content of nutrients metabolised by these enzymes. Finally, high intensity of amplicons from Enterococcus, Streptococcus, Bacteroides/Prevotella/Porphyromonas, Salmonella, S. aureus, P. aeruginosa and the diarrheagenic lineages of E. coli were observed at the urban site. These results indicate a change in the structure of the microbial community imposed by anthrophic actions. The incidence of pathogenic bacteria in aquatic environments is of particular importance to public health, emphasising the need for sewage treatment to minimise the environmental impacts associated with urbanisation. PMID:25296210

  9. Characterization of the microbial community in a lotic environment to assess the effect of pollution on nitrifying and potentially pathogenic bacteria.

    PubMed

    Medeiros, J D; Araújo, L X; da Silva, V L; Diniz, C G; Cesar, D E; Del'Duca, A; Coelho, C M

    2014-08-01

    This study aimed to investigate microbes involved in the nitrogen cycle and potentially pathogenic bacteria from urban and rural sites of the São Pedro stream. Water samples were collected from two sites. A seasonal survey of bacterial abundance was conducted. The dissolved nutrient content was analysed. PCR and FISH analysis were performed to identify and quantify microbes involved in the nitrogen cycle and potentially pathogenic bacteria. The seasonal survey revealed that the bacterial abundance was similar along the year on the rural area but varied on the urban site. Higher concentration of dissolved nutrients in the urban area indicated a eutrophic system. Considering the nitrifying microbes, the genus Nitrobacter was found, especially in the urban area, and may act as the principal bacteria in converting nitrite into nitrate at this site. The molecular markers napA, amoA, and nfrA were more accumulated at the urban site, justifying the higher content of nutrients metabolised by these enzymes. Finally, high intensity of amplicons from Enterococcus, Streptococcus, Bacteroides/Prevotella/Porphyromonas, Salmonella, S. aureus, P. aeruginosa and the diarrheagenic lineages of E. coli were observed at the urban site. These results indicate a change in the structure of the microbial community imposed by anthrophic actions. The incidence of pathogenic bacteria in aquatic environments is of particular importance to public health, emphasising the need for sewage treatment to minimise the environmental impacts associated with urbanisation.

  10. Soil microbial communities following bush removal in a Namibian savanna

    NASA Astrophysics Data System (ADS)

    Buyer, J. S.; Schmidt-Küntzel, A.; Nghikembua, M.; Maul, J. E.; Marker, L.

    2015-12-01

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.

  11. Soil microbial communities following bush removal in a Namibian savanna

    NASA Astrophysics Data System (ADS)

    Buyer, Jeffrey S.; Schmidt-Küntzel, Anne; Nghikembua, Matti; Maul, Jude E.; Marker, Laurie

    2016-03-01

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.

  12. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    SciTech Connect

    D.M. Jolley

    2001-12-18

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  13. In-Drift Microbial Communities Model Validation Calculations

    SciTech Connect

    D. M. Jolley

    2001-09-24

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  14. In-Drift Microbial Communities Model Validation Calculation

    SciTech Connect

    D. M. Jolley

    2001-10-31

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  15. Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers

    PubMed Central

    Yrjälä, Kim; Alakukku, Laura; Palojärvi, Ansa

    2012-01-01

    The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy. PMID:22983972

  16. Succession in a microbial mat community - A Gaian perspective

    NASA Technical Reports Server (NTRS)

    Stolz, J. F.

    1984-01-01

    The contribution of prokaryotes to Gaian control systems is discussed. The survival of the Microcoleus-dominated stratified microbial community at Laguna Figueroa, after heavy rains flooded the evaporite flat with up to 3 m of water and deposited 5-10 cm of allocthonous sediment, demonstrates the resiliency of these communities to short-term perturbations while the microbial fossil record attests to their persistence over geologic time. It is shown that the great diversity of microbial species and their short generation time make them uniquely suited for Gaian mechanisms.

  17. Exploration of community traits as ecological markers in microbial metagenomes.

    PubMed

    Barberán, Albert; Fernández-Guerra, Antoni; Bohannan, Brendan J M; Casamayor, Emilio O

    2012-04-01

    The rate of information collection generated by metagenomics is uncoupled with its meaningful ecological interpretation. New analytical approaches based on functional trait-based ecology may help to bridge this gap and extend the trait approach to the community level in vast and complex environmental genetic data sets. Here, we explored a set of community traits that range from nucleotidic to genomic properties in 53 metagenomic aquatic samples from the Global Ocean Sampling (GOS) expedition. We found significant differences between the community profile derived from the commonly used 16S rRNA gene and from the functional trait set. The traits proved to be valuable ecological markers by discriminating between marine ecosystems (coastal vs. open ocean) and between oceans (Atlantic vs. Indian vs. Pacific). Intertrait relationships were also assessed, and we propose some that could be further used as habitat descriptors or indicators of artefacts during sample processing. Overall, the approach presented here may help to interpret metagenomics data to gain a full understanding of microbial community patterns in a rigorous ecological framework.

  18. Relating Anaerobic Digestion Microbial Community and Process Function

    PubMed Central

    Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel

    2015-01-01

    Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure–function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community–activity relationships or improve engineered bioprocesses. PMID:27127410

  19. Environmental metabarcoding reveals contrasting microbial communities at two poplar phytomanagement sites.

    PubMed

    Foulon, Julie; Zappelini, Cyril; Durand, Alexis; Valot, Benoit; Girardclos, Olivier; Blaudez, Damien; Chalot, Michel

    2016-11-15

    The aim of the present study is to deepen the current understanding of the microbial communities at two poplar phytomanagement sites to reveal the environmental factors that drive the abundance, diversity and composition of microbial communities. A soil analysis revealed that the two soils displayed contrasting physico-chemical characteristics, with significant lower pH and higher Cd, Zn and Mn CaCl2-extractable fractions at Leforest site, compared with Pierrelaye site. The fungal and bacterial community profiles in the poplar roots and soils were assessed through Illumina MiSeq sequencing. Diversity indices and β-diversity measures illustrated that the root microbial communities were well separated from the soil microbial communities at both sites. A detailed study of the fungal composition showed that Ascomycota dominated the overall fungal communities on poplar soil, the root samples at Pierrelaye, and the unplanted soil at the experimental sites. Conversely, Basidiomycota accounted for a much higher percentage of the fungal community in poplar root samples from the Leforest site. The root bacterial communities were dominated by Alphaproteobacteria and Actinobacteria, and the soil samples were dominated by Alphaproteobacteria and Acidobacteria. The occurrence and dominance of the ectomycorrhizal community at Leforest but not at Pierrelaye is the major feature of our data set. Overall, ectomycorrhizal root symbionts appeared to be highly constrained by soil characteristics at the phytomanagement sites. Our data support the view that mycorrhizal inoculation is needed in highly stressed and nutrient-poor environments.

  20. QUANTITATIVE RISK ASSESSMENT FOR MICROBIAL AGENTS

    EPA Science Inventory

    Compared to chemical risk assessment, the process for microbial agents and infectious disease is more complex because of host factors and the variety of settings in which disease transmission can occur. While the National Academy of Science has established a paradigm for performi...

  1. Metagenomics meets time series analysis: unraveling microbial community dynamics.

    PubMed

    Faust, Karoline; Lahti, Leo; Gonze, Didier; de Vos, Willem M; Raes, Jeroen

    2015-06-01

    The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic patterns, help to build predictive models or, on the contrary, quantify irregularities that make community behavior unpredictable. Microbial communities can change abruptly in response to small perturbations, linked to changing conditions or the presence of multiple stable states. With sufficient samples or time points, such alternative states can be detected. In addition, temporal variation of microbial interactions can be captured with time-varying networks. Here, we apply these techniques on multiple longitudinal datasets to illustrate their potential for microbiome research.

  2. Sulfur Cycling and Microbial Community Structure in Cave Environment: some geomicrobiological aspects

    NASA Astrophysics Data System (ADS)

    Gulecal, Y.; Temel, M.

    2013-12-01

    In the last decade, cave microbiology has emerged as a growing interdisciplinary field. Because of caves provides a unique subsurface environment for the exploration of microbial life and their roles on biogeochemical cycling under extreme condition. Sulfidic caves form in carbonate rocks where sulfide-rich waters interact with oxygen at the water table or at subterranean springs (1). Terrestrial sulfidic caves and springs are abundant and diverse, as assessed by efforts to characterize cave microbial ecosystems and to understand large scale geochemical processes (2). In this study we examined the geochemical features, microbial community and capacity of sulfur cycling in sulfidic cave ( Kaklik Cave, Turkey ) and its two hot springs. Pyrosequencing were used to understand bacterial diversity and community structure in this study area with contrasting hydrochemial and geological properties. Environmental nucleic acids were extracted, and PCR-directed screens reveal the presence or absence of functional genes, indicating genetic capacity for sulfur cycling. The microbial community displayed a high level of microbial diversity, representing 22 phylum of the Bacteria and 5 phylum of the Archaea. Our results provide a comparative view of the microbial communities and processes involved in sulfur cycling in sulfidic cave environments. 1- Macalady et al. (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Env.Mic. 9(6), 1402-1414 2- Rossmassler et al. Drivers of epsilonproteobacterial community composition in sulfidic caves and springs.

  3. Microbial communities associated with wet flue gas desulfurization systems.

    PubMed

    Brown, Bryan P; Brown, Shannon R; Senko, John M

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SO(x) gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems.

  4. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  5. Microbial communities associated with wet flue gas desulfurization systems.

    PubMed

    Brown, Bryan P; Brown, Shannon R; Senko, John M

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SO(x) gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  6. ADAPTATION OF AQUIFER MICROBIAL COMMUNITIES TO THE BIODEGRADATION OF XENOBIOTIC COMPOUNDS: INFLUENCE OF SUBSTRATE CONCENTRATION AND PREEXPOSURE

    EPA Science Inventory

    Studies were conducted to examine the adaptation response of aquifer microbial communities to xenobiotic compounds and the influence of chemical preexposure in the laboratory and in situ on adaptation. Adaptation and biodegradation were assessed as mineralization and cellular inc...

  7. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing.

    PubMed

    Beloshapka, Alison N; Dowd, Scot E; Suchodolski, Jan S; Steiner, Jörg M; Duclos, Laura; Swanson, Kelly S

    2013-06-01

    Our objective was to determine the effects of feeding raw meat-based diets with or without inulin or yeast cell wall extract (YCW) on fecal microbial communities of dogs using 454 pyrosequencing. Six healthy female adult beagles (5.5 ± 0.5 years; 8.5 ± 0.5 kg) were randomly assigned to six test diets using a Latin square design: (1) beef control; (2) beef + 1.4% inulin; (3) beef + 1.4% YCW; (4) chicken control; (5) chicken + 1.4% inulin; and (6) chicken + 1.4% YCW. Following 14 days of adaptation, fresh fecal samples were collected on day 15 or day 16 of each period. Fecal genomic DNA was extracted and used to create 16S rRNA gene amplicons, which were subjected to 454 pyrosequencing and qPCR. Predominant fecal bacterial phyla included Fusobacteria, Firmicutes, Bacteroidetes, and Proteobacteria. Beef-based diets increased (P < 0.05) Escherichia, but decreased (P < 0.05) Anaerobiospirillum vs. chicken-based diets. Inulin decreased (P < 0.05) Enterobacteriaceae. Inulin increased (P < 0.05) Megamonas vs. control. Inulin also decreased (P < 0.05) Escherichia vs. YCW. qPCR data showed that YCW increased (P < 0.05) Bifidobacterium vs. inulin and control and inulin increased (P < 0.05) Lactobacillus vs. YCW. Although a few changes in fecal microbiota were observed with inulin or YCW consumption, a strong prebiotic effect was not observed.

  8. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade.

    PubMed

    Hodgson, Douglas M; Smith, Ann; Dahale, Sonal; Stratford, James P; Li, Jia V; Grüning, André; Bushell, Michael E; Marchesi, Julian R; Avignone Rossa, C

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities.

  9. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade

    PubMed Central

    Hodgson, Douglas M.; Smith, Ann; Dahale, Sonal; Stratford, James P.; Li, Jia V.; Grüning, André; Bushell, Michael E.; Marchesi, Julian R.; Avignone Rossa, C.

    2016-01-01

    Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723

  10. Community-Level Assessment of the Effects of the Broad-Spectrum Antimicrobial Chlorhexidine on the Outcome of River Microbial Biofilm Development▿

    PubMed Central

    Lawrence, J. R.; Zhu, B.; Swerhone, G. D. W.; Topp, E.; Roy, J.; Wassenaar, L. I.; Rema, T.; Korber, D. R.

    2008-01-01

    Chlorhexidine is a common-use antibacterial agent found in a range of personal-care products. We used rotating annular reactors to cultivate river biofilms under the influence of chlorhexidine or its molar equivalent in nutrients. Studies of the degradation of [14C]chlorhexidine demonstrated that no mineralization of the compound occurred. During studies with 100 μg liter−1 chlorhexidine, significant changes were observed in the protozoan and micrometazoan populations, the algal and cyanobacterial biomass, the bacterial biomass, and carbon utilization. Denaturing gradient gel electrophoresis (DGGE) in combination with statistical analyses showed that the communities developing under control and 100 μg liter−1 chlorhexidine were significantly different. At 10 μg liter−1 chlorhexidine, there was significantly increased algal and cyanobacterial biomass while the bacterial biomass was not significantly affected (P < 0.05). No significant effects on protozoan or metazoan grazing were detected at the 10-μg liter−1 chlorhexidine level. Fluorescent in situ hybridization indicated a significant reduction in the abundance of betaproteobacteria and gammaproteobacteria (P < 0.05). Archaeal cell counts were significantly reduced by both chlorhexidine and nutrient treatments. DGGE and statistical analyses indicated that 10 μg liter−1 chlorhexidine and molar equivalent nutrient treatments were significantly different from control communities. In contrast to community level observations, toxicological testing with a panel of cyanobacteria, algae, and protozoa indicated no detectable effects at 10, 50, and 100 μg liter−1 chlorhexidine. Thus, community level assessment indicated a risk of low levels of chlorhexidine in aquatic habitats while conventional approaches did not. PMID:18378652

  11. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    SciTech Connect

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  12. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies.

    PubMed

    Stegen, James C; Konopka, Allan; McKinley, James P; Murray, Chris; Lin, Xueju; Miller, Micah D; Kennedy, David W; Miller, Erin A; Resch, Charles T; Fredrickson, Jim K

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies-oxidized, reduced, and transition-within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness-the number of microbial taxa-was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  13. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    PubMed Central

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  14. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  15. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    NASA Astrophysics Data System (ADS)

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  16. Soil water fluctuations: microbial community responses and CO2 production

    NASA Astrophysics Data System (ADS)

    Placella, S.; Brodie, E. L.; Firestone, M. K.; Lennon, J. T.

    2012-12-01

    Water availability is one of the primary controllers of microbial activity in soils. Likely even more important to microbial activity than static values of soil water potential are changes in soil water potential; changes in soil water potential may trigger pulses of or cross thresholds for microbial activity. How do increases and declines in soil water potential affect microbial activity and rates of carbon dioxide (CO2) production from soil? While extremely dry soils have very low rates of CO2 production, wetting of dry soil is known to initiate a large CO2 pulse known as the Birch effect. We studied this pulse in two California annual grassland soils while concurrently monitoring microbial resuscitation. We also examined the impacts of reduced rainfall in a successional grassland in Michigan, with a focus on changes in microbial activity during a dry down period. In both systems we used relative RNA quantity to identify when different microorganisms were relatively more active. Upon wetting of dry soil, we found that the large CO2 pulse occurred during the resuscitation of the microbial community. We identified three resuscitation strategies (rapid, intermediate and delayed responders) and found that they are phylogenetically conserved, with related organisms displaying the same strategy. During a soil dry down event, we found a decline in the rate of CO2 production from soils and examined the concurrent change in the microbial community during this 7-day period. We also investigated how a summer of greater water potential fluctuation, due to reduced rainfall, impacted the stability of the microbial community. Our results demonstrate that changes in water potential can drive changes in microbial activity, leading to serious implications for soil CO2 production.

  17. Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA.

    PubMed

    Meadow, James F; Zabinski, Catherine A

    2012-10-01

    Knowledge of microbial communities and their inherent heterogeneity has dramatically increased with the widespread use of high-throughput sequencing technologies, and we are learning more about the ecological processes that structure microbial communities across a wide range of environments, as well as the relative scales of importance for describing bacterial communities in natural systems. Little work has been carried out to assess fine-scale eukaryotic microbial heterogeneity in soils. Here, we present findings from a bar-coded 18S rRNA survey of the eukaryotic microbial communities in a previously unstudied geothermal diatomaceous biological soil crust in Yellowstone National Park, WY, USA, in which we explicitly compare microbial community heterogeneity at the particle scale within soil cores. Multivariate analysis of community composition showed that while subsamples from within the same soil core clustered together, community dissimilarity between particles in the same core was high. This study describes a novel soil microbial environment and also adds to our growing understanding of microbial heterogeneity and the scales relevant to the study of soil microbial communities.

  18. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review

    SciTech Connect

    Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.; Konopka, Allan

    2014-10-17

    Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can be potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.

  19. Microbial community biogeographic patterns in the rhizosphere of two Brazilian semi-arid leguminous trees.

    PubMed

    Lançoni, Milena Duarte; Taketani, Rodrigo Gouvêa; Kavamura, Vanessa Nessner; de Melo, Itamar Soares

    2013-07-01

    Arid environments are regular and well distributed over all continents and display drought characteristics whether full-time or seasonal. This study aims to characterize how the microbial communities of the rhizosphere of two leguminous trees from the Brazilian semi-arid biome the Caatinga are geographically and seasonally shaped, as well as the factors driving this variation. With that purpose, the soil rhizosphere from two leguminous trees (Mimosa tenuiflora and Piptadenia stipulacea (Benth.) Ducke) were sampled in two different seasons: rainy and drought at five different sites. Assessment of bacterial and archaeal communities occurred by T-RFLP analysis of 16S rRNA and archaeal amoA genes. By these means, it was observed that the seasons (wet and dry periods) are the factors that most influence the composition of the microbial community from both analyzed plants, except for the results obtained from the CCA applied to Archaeas. Furthermore, soil physical-chemical factors also had a significant influence on the community and indicated a geographical pattern of the bacterial community. It was not possible to observe significant modifications in the composition in relation to the plant species. We have seen that soil characteristics and rainfall were the factors that most influenced the microbial composition. Also, the bacterial community had a significant correlation with soil characteristics that indicates that these rhizosphere communities might be selected by environmental characteristics. Furthermore, the data suggest that climate plays a key role in structuring the microbial community of this biome. PMID:23435935

  20. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  1. Microbial communities and soil fertility in flood irrigated orchards under different management systems in eastern spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio

    2016-04-01

    Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.

  2. Structures of Microbial Communities in Alpine Soils: Seasonal and Elevational Effects

    PubMed Central

    Lazzaro, Anna; Hilfiker, Daniela; Zeyer, Josef

    2015-01-01

    Microbial communities in alpine environments are exposed to several environmental factors related to elevation and local site conditions and to extreme seasonal variations. However, little is known on the combined impact of such factors on microbial community structure. We assessed the effects of seasonal variations on soil fungal and bacterial communities along an elevational gradient (from alpine meadows to a glacier forefield, 1930–2519 m a.s.l.) over 14 months. Samples were taken during all four seasons, even under the winter snowpack and at snowmelt. Microbial community structures and abundances were investigated using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and quantitative PCR (qPCR) of the 16S and 18S rRNA genes. Illumina sequencing was performed to identify key bacterial groups in selected samples. We found that the soil properties varied significantly with the seasons and along the elevational gradient. For example, concentrations of soluble nutrients (e.g., NH4+-N, SO42−-S, PO43−-P) significantly increased in October but decreased drastically under the winter snowpack. At all times, the alpine meadows showed higher soluble nutrient concentrations than the glacier forefield. Microbial community structures at the different sites were strongly affected by seasonal variations. Under winter snowpack, bacterial communities were dominated by ubiquitous groups (i.e., beta-Proteobacteria, which made up to 25.7% of the total reads in the glacier forefield). In the snow-free seasons, other groups (i.e., Cyanobacteria) became more abundant (from 1% under winter snow in the glacier forefield samples to 8.1% in summer). In summary, elevation had a significant effect on soil properties, whereas season influenced soil properties as well as microbial community structure. Vegetation had a minor impact on microbial communities. At every elevation analyzed, bacterial, and fungal community structures exhibited a pronounced annual cycle. PMID:26635785

  3. Ecofunctional enzymes of microbial communities in ground water.

    PubMed

    Fliermans, C B; Franck, M M; Hazen, T C; Gorden, R W

    1997-07-01

    Biolog technology was initially developed as a rapid, broad spectrum method for the biochemical identification of clinical microorganisms. Demand and creative application of this technology has resulted in the development of Biolog plates for Gram-negative and Gram-positive bacteria, for yeast and Lactobacillus sp. Microbial ecologists have extended the use of these plates from the identification of pure culture isolates to a tool for quantifying the metabolic patterns of mixed cultures, consortia and entire microbial communities. Patterns that develop on Biolog microplates are a result of the oxidation of the substrates by microorganisms in the inoculum and the subsequent reduction of the tetrazolium dye to form a color in response to detectable reactions. Depending upon the functional enzymes present in the isolate or community one of a possible 4 x 10(28) patterns can be expressed. The patterns were used to distinguish the physiological ecology of various microbial communities present in remediated groundwater. The data indicate that one can observe differences in the microbial community among treatments of bioventing, 1% and 4% methane injection, and pulse injection of air, methane and nutrients both between and among wells. The investigation indicates that Biolog technology is a useful parameter to measure the physiological response of the microbial community to perturbation and allows one to design enhancement techniques to further the degradation of selected recalcitrant and toxic chemicals. Further it allows one to evaluate the recovery of the microbial subsurface ecosystem after the perturbations have ceased. We propose the term 'ecofunctional enzymes' (EFE) as the most descriptive and useful term for the Biolog plate patterns generated by microbial communities. We offer this designation and provide ecological application in an attempt to standardize the terminology for this relatively new and unique technology.

  4. Microbial communities within saltmarsh sediments: Composition, abundance and pollution constraints

    NASA Astrophysics Data System (ADS)

    Machado, Ana; Magalhães, Catarina; Mucha, Ana P.; Almeida, C. Marisa R.; Bordalo, Adriano A.

    2012-03-01

    The influence of the saltmarsh plant Halimione portucaloides and the level of sediment metal contamination on the distribution of microbial communities were investigated in two Portuguese estuarine systems with different degrees of metal contamination: the Cavado (41.5 N; 8.7 W) and Sado estuaries. In the Sado, two saltmarshes were studied: Lisnave (38.4 N; 8.7 W) and Comporta (38.4 N; 8.8 W). A PCR rDNA-DGGE approach and direct microscopic counts of DAPI-stained cells were applied to study the biodiversity and abundance of prokaryotic communities. Sediment characteristics and metal concentrations (Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn) were also evaluated to identify possible environmental pollution constraints on spatial and temporal microbial dynamics. Redundancy analysis (RDA) revealed that the Lisnave saltmarsh microbial community was usually associated with a higher degree of metal contamination, especially the metal Pb. In clear contrast, the Cavado estuary microbial assemblage composition was associated with low metal concentrations but higher organic matter content. The Comporta saltmarsh bacterial community clustered in a separate branch, and was associated with higher levels of different metals, such as Ni, Cr and Zn. Additionally, the microbial community structure of the Lisnave and Cavado showed a seasonal pattern. Moreover, microbial abundance correlated negatively with metal concentrations, being higher at the Cavado estuarine site and with general higher counts in the rhizosediment. These findings suggest that increased metal concentrations negatively affect the abundance of prokaryotic cells and that saltmarsh plants may have a pivotal role in shaping the microbial community structure.

  5. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    PubMed Central

    Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W.; Dufresne, Alexis

    2015-01-01

    This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990

  6. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths.

    PubMed

    Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W; Dufresne, Alexis

    2015-01-01

    This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990

  7. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  8. Direct Evidence Linking Soil Organic Matter Development to Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kallenbach, C.; Grandy, S.

    2013-12-01

    Despite increasing recognition of microbial contributions to soil organic matter (SOM) formation there is little experimental evidence linking microbial processes to SOM development and the mechanisms responsible remain unclear. Specifically, if stable SOM is largely comprised of microbial products, we need to better understand the soil conditions that influence microbial biomass production and ultimately its stability. Microbial physiology, such as microbial growth efficiency (MGE) and rate (MGR) have direct influences on microbial biomass production and are highly sensitive to resource quality. Therefore, the importance of resource quality on SOM is not necessarily a function of resistance to decay but the degree to which it optimizes microbial biomass production. While resource quality may have an indirect effect on SOM abundance via its influence on microbial physiology, SOM stabilization of labile microbial products may rely heavily on a soil's capacity to form organo-mineral interactions. To examine the relative importance of soil microbial community function, resource quality and mineralogy on direct microbial contributions to SOM formation and stability, an ongoing 15-mo incubation experiment was set up using artificial, initially C- and microbial-free soils. Soil microcosms were constructed by mixing sand with either kaolinite or montmorillonite clays followed with a natural soil microbial inoculum. For both soil mineral treatments, weekly additions of glucose, cellobiose, or syringol are carried out, with an additional treatment of plant leachate to serve as a reference. This simplified system allows us to determine if, in the absence of plant-derived C, microbial products using simple substrates can result in chemically complex SOM similar to natural soils. Over the course of the incubation, MGE, MGR, microbial activity, and SOM accumulation rates are monitored. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) is used to track the microbial

  9. Microbial communities play important roles in modulating paddy soil fertility

    PubMed Central

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-01-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production. PMID:26841839

  10. Microbial communities play important roles in modulating paddy soil fertility

    NASA Astrophysics Data System (ADS)

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.

  11. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    PubMed Central

    2013-01-01

    The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research. PMID:23957006

  12. Attached and suspended microbial communities in a pristine confined aquifer

    NASA Astrophysics Data System (ADS)

    Flynn, Theodore M.; Sanford, Robert A.; Bethke, Craig M.

    2008-07-01

    We compare the community of microbes attached to the sediments in a pristine confined aquifer to the free-floating community suspended in the groundwater there. We sampled the attached microbial community at 19 wells completed in the glacial Mahomet aquifer in east central Illinois using in situ samplers, and we sampled the suspended community by filtering microbes from groundwater. At each well, we profiled the two communities using terminal restriction fragment length polymorphism and compared the profiles we obtained with multivariate statistical analyses. Some populations at a well are detected both in the attached and suspended communities, but the shared populations represent, on average, only one third of each community; the remaining populations are detected exclusively in one community or the other. Clones closely related to the iron-reducing bacteria Geobacter and Geothrix represent more than 20% of the total attached community detected at many wells, but at no well do they make up more than 1% of the suspended community. To fully characterize the microbial community in an aquifer, it may be necessary to sample the attached as well as suspended communities.

  13. The Relationship between Microbial Community Evenness and Function in Slow Sand Filters

    PubMed Central

    Quince, Christopher; Davies, Robert L.; Dorea, Caetano C.; Collins, Gavin

    2015-01-01

    ABSTRACT Two full-scale slow sand filters (SSFs) were sampled periodically from April until November 2011 to study the spatial and temporal structures of the bacterial communities found in the filters. To monitor global changes in the microbial communities, DNA from sand samples taken at different depths and locations within the SSFs and at different filters ages was used for Illumina 16S rRNA gene sequencing. Additionally, 15 water quality parameters were monitored to assess filter performance, with functionally relevant microbial members being identified by using multivariate statistics. The bacterial diversity in the SSFs was found to be much larger than previously documented, with community composition being shaped by the characteristics of the SSFs (filter age and depth) and sampling characteristics (month, side, and distance from the influent and effluent pipes). We found that several key genera (Acidovorax, Halomonas, Sphingobium, and Sphingomonas) were associated with filter performance. In addition, at the whole-community level, a strong positive correlation was found between species evenness and filter performance. This study is the first to comprehensively characterize the microbial community of SSFs and link specific microbes to water quality parameters. In doing so, we reveal key patterns in microbial community structure that relate to overall community function. PMID:26463159

  14. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    PubMed

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. PMID:23022426

  15. Assessment of the living and total biomass of microbial communities in the background chestnut soil and in the paleosols under burial mounds

    NASA Astrophysics Data System (ADS)

    Khomutova, T. E.; Kashirskaya, N. N.; Demkin, V. A.

    2011-12-01

    The contents of phospholipids and carbon of the total microbial biomass were determined in the modern chestnut soil and in the paleosols buried under mounds of the Bronze and Early Iron Ages (5000-1800 years ago) in the dry steppe of the Lower Volga River basin. Judging from data on the ratio between the contents of phospholipids and organic carbon in the microbial cells, the carbon content of the living microbial biomass was calculated and compared with the total microbial biomass and total organic carbon in the studied soils. In the background chestnut soil, the content of phospholipids in the A1, B1, and B2 horizons amounted to 452, 205, and 189 nmol/g, respectively; in the paleosols, it was 28-130% of the present-day level. The maximum content was measured in the paleosols buried 5000 and 2000 years ago, in the periods with an increased humidity of the climate. In the background chestnut soil, the total microbial biomass was estimated at 5680 (the A1 horizon), 3380 (B1), and 4250 (B2) μg C/g; in the paleosols, it was by 2.5-7.0 times lower. In the upper horizons of the background soil, the portion of the living microbial biomass in the total biomass was much less than that in the paleosols under the burial mounds; it varied within 8.5-15.3% and 15-81%, respectively. The portion of living microbial biomass in the total organic carbon content of the background chestnut soil was about 4-8%. In the paleosols buried in the Early Iron Age (2000 and 1800 years ago), this value did not exceed 3-8%; in the paleosols of the Bronze Age (5000-4000 years ago), it reached 40% of the total organic carbon.

  16. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  17. Microbial community structure and diversity as indicators for evaluating soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review addresses two critical questions regarding soil quality: (1) which soil microbial properties, in particular diversity and community structure, most effectively characterize soil quality and should be used as indicators, and (2) how can soil quality assessed by such indicators be improved...

  18. Characterization of Microbial Communities from Pristine and Chlorinated-Ethene-Contaminated Landfill Groundwater

    SciTech Connect

    Brigmon, R.L.

    2002-05-17

    Molecular, phospholipid fatty acid analysis (PLFA), and substrate utilization (BIOLOG) techniques were used to assess structural and functional differences between microbial communities from a chlorinated-ethene (CE)-contaminated groundwater at a sanitary landfill. The information will be used to evaluate natural attenuation of the associated CE plume. Two groundwater-monitoring wells were tested.

  19. Nitrogen amendments have predictable effects on soil microbial communities and processes

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Craine, J. M.; Fierer, N.

    2011-12-01

    Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. While there has been much effort devoted to quantifying aboveground impacts of anthropogenic N effects, less work has focused on identifying belowground impacts. Bacteria play critical roles in ecosystem processes and identifying how anthropogenic N impacts bacterial communities may elucidate how critical microbially-mediated ecosystem functions are altered by N additions. In order to connect changes in soil processes to changes in the microbial community, we need to first determine if the changes are consistent across different soil types and ecosystems. We assessed the patterns of N effects across a variety of ecosystems in two ways. First, utilizing long-term experimental N gradients at Cedar Creek LTER, MN and Kellogg Biological Station LTER, MI, we examined the response of microbial communities to anthropogenic N additions. Using high-throughput pyrosequencing techniques we quantified changes in soil microbial communities across the nitrogen gradients. We observed strong directional shifts in community composition at both sites; N fertilization consistently impacted both the phylogenetic and taxonomic structure of soil bacterial community structure in a predictable manner regardless of ecosystem type. For example, at both sites Acidobacteria experienced significant declines as nitrogen increased, while other groups such as Actinobacteria and Bacteroidetes increased in relative abundance. Our results suggest that bacterial communities across these N fertility gradients are structured by either nitrogen and/or soil carbon availability, rather than by shifts in the plant community or soil pH indirectly associated with the elevated nitrogen inputs. Still, this field-work does not incorporate changes in soil processes (e.g. soil respiration) or microbial activity (e.g. microbial biomass and extracellular enzyme activity), or separate N from C effects. To

  20. Neotropical Andes hot springs harbor diverse and distinct planktonic microbial communities.

    PubMed

    Delgado-Serrano, Luisa; López, Gina; Bohorquez, Laura C; Bustos, José R; Rubiano, Carolina; Osorio-Forero, César; Junca, Howard; Baena, Sandra; Zambrano, María M

    2014-07-01

    Microbial explorations of hot springs have led to remarkable discoveries and improved our understanding of life under extreme conditions. The Andean Mountains harbor diverse habitats, including an extensive chain of geothermal heated water sources. In this study, we describe and compare the planktonic microbial communities present in five high-mountain hot springs with distinct geochemical characteristics, at varying altitudes and geographical locations in the Colombian Andes. The diversity and structure of the microbial communities were assessed by pyrosequencing the V5 - V6 region of the 16S rRNA gene. The planktonic communities varied in terms of diversity indexes and were dominated by the bacterial phyla Proteobacteria, Aquificae, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, and Thermotogae, with site-specific bacterial taxa also observed in some cases. Statistical analyses showed that these microbial communities were distinct from one another and that they clustered in a manner consistent with physicochemical parameters of the environment sampled. Multivariate analysis suggested that pH and sulfate were among the main variables influencing population structure and diversity. The results show that despite their geographical proximity and some shared geochemical characteristics, there were few shared operational taxonomic units (OTUs) and that community structure was influenced mainly by environmental factors that have resulted in different microbial populations.

  1. Anodic and cathodic microbial communities in single chamber microbial fuel cells.

    PubMed

    Daghio, Matteo; Gandolfi, Isabella; Bestetti, Giuseppina; Franzetti, Andrea; Guerrini, Edoardo; Cristiani, Pierangela

    2015-01-25

    Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.

  2. Quantitative Tracking of Isotope Flows in Proteomes of Microbial Communities*

    PubMed Central

    Pan, Chongle; Fischer, Curt R.; Hyatt, Doug; Bowen, Benjamin P.; Hettich, Robert L.; Banfield, Jillian F.

    2011-01-01

    Stable isotope probing (SIP) has been used to track nutrient flows in microbial communities, but existing protein-based SIP methods capable of quantifying the degree of label incorporation into peptides and proteins have been demonstrated only by targeting usually less than 100 proteins per sample. Our method automatically (i) identifies the sequence of and (ii) quantifies the degree of heavy atom enrichment for thousands of proteins from microbial community proteome samples. These features make our method suitable for comparing isotopic differences between closely related protein sequences, and for detecting labeling patterns in low-abundance proteins or proteins derived from rare community members. The proteomic SIP method was validated using proteome samples of known stable isotope incorporation levels at 0.4%, ∼50%, and ∼98%. The method was then used to monitor incorporation of 15N into established and regrowing microbial biofilms. The results indicate organism-specific migration patterns from established communities into regrowing communities and provide insights into metabolism during biofilm formation. The proteomic SIP method can be extended to many systems to track fluxes of 13C or 15N in microbial communities. PMID:21285414

  3. Quantitative tracking of isotope flows in proteomes of microbial communities.

    PubMed

    Pan, Chongle; Fischer, Curt R; Hyatt, Doug; Bowen, Benjamin P; Hettich, Robert L; Banfield, Jillian F

    2011-04-01

    Stable isotope probing (SIP) has been used to track nutrient flows in microbial communities, but existing protein-based SIP methods capable of quantifying the degree of label incorporation into peptides and proteins have been demonstrated only by targeting usually less than 100 proteins per sample. Our method automatically (i) identifies the sequence of and (ii) quantifies the degree of heavy atom enrichment for thousands of proteins from microbial community proteome samples. These features make our method suitable for comparing isotopic differences between closely related protein sequences, and for detecting labeling patterns in low-abundance proteins or proteins derived from rare community members. The proteomic SIP method was validated using proteome samples of known stable isotope incorporation levels at 0.4%, ∼50%, and ∼98%. The method was then used to monitor incorporation of (15)N into established and regrowing microbial biofilms. The results indicate organism-specific migration patterns from established communities into regrowing communities and provide insights into metabolism during biofilm formation. The proteomic SIP method can be extended to many systems to track fluxes of (13)C or (15)N in microbial communities.

  4. Microbial ecology of ocean biogeochemistry: a community perspective.

    PubMed

    Strom, Suzanne L

    2008-05-23

    The oceans harbor a tremendous diversity of marine microbes. Different functional groups of bacteria, archaea, and protists arise from this diversity to dominate various habitats and drive globally important biogeochemical cycles. Explanations for the distribution of microbial taxa and their associated activity often focus on resource availability and abiotic conditions. However, the continual reshaping of communities by mortality, allelopathy, symbiosis, and other processes shows that community interactions exert strong selective pressure on marine microbes. Deeper exploration of microbial interactions is now possible via molecular prospecting and taxon-specific experimental approaches. A holistic outlook that encompasses the full array of selective pressures on individuals will help elucidate the maintenance of microbial diversity and the regulation of biogeochemical reactions by planktonic communities.

  5. Evolutionary relationships of wild hominids recapitulated by gut microbial communities.

    PubMed

    Ochman, Howard; Worobey, Michael; Kuo, Chih-Horng; Ndjango, Jean-Bosco N; Peeters, Martine; Hahn, Beatrice H; Hugenholtz, Philip

    2010-11-16

    Multiple factors over the lifetime of an individual, including diet, geography, and physiologic state, will influence the microbial communities within the primate gut. To determine the source of variation in the composition of the microbiota within and among species, we investigated the distal gut microbial communities harbored by great apes, as present in fecal samples recovered within their native ranges. We found that the branching order of host-species phylogenies based on the composition of these microbial communities is completely congruent with the known relationships of the hosts. Although the gut is initially and continuously seeded by bacteria that are acquired from external sources, we establish that over evolutionary timescales, the composition of the gut microbiota among great ape species is phylogenetically conserved and has diverged in a manner consistent with vertical inheritance.

  6. Community structure of a microbial mat: The phylogenetic dimension

    USGS Publications Warehouse

    Risatti, J.B.; Capman, W.C.; Stahl, D.A.

    1994-01-01

    Traditional studies of microbial communities are incomplete because of the inability to identify and quantify all contributing populations. In the present study, we directly determine the abundance and distribution of sulfate-reducing bacterial populations in a microbial mat community by using hybridization probes complementary to the 16S-like rRNAs of major phylogenetic groups. Most of the major groups were found in this single community, distributed for the most part in nonoverlapping depth intervals of the mat. The reflection of the phylogenetic structure in the community structure suggests that those species making up the major phylogenetic groups perform specific interrelated metabolic functions in the community. Comparison of population profiles to previously observed rates of sulfate reduction suggests there are additional populations of sulfate-reducing bacteria both within the photooxic zone and deeper in the mat.

  7. Microbial community composition in soils of Northern Victoria Land, Antarctica.

    PubMed

    Niederberger, Thomas D; McDonald, Ian R; Hacker, Amy L; Soo, Rochelle M; Barrett, John E; Wall, Diana H; Cary, S Craig

    2008-07-01

    Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher

  8. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...

    SciTech Connect

    Terence L. Marsh

    2004-05-26

    The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

  9. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  10. Microbial Communities Model Parameter Calculation for TSPA/SR

    SciTech Connect

    D. Jolley

    2001-07-16

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.

  11. Taxonomical and functional microbial community selection in soybean rhizosphere

    PubMed Central

    Mendes, Lucas W; Kuramae, Eiko E; Navarrete, Acácio A; van Veen, Johannes A; Tsai, Siu M

    2014-01-01

    This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors. PMID:24553468

  12. Effects of Nutrient Enrichment on Microbial Communities and Carbon Cycling in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Neubauer, S. C.; Richardson, C. J.

    2013-12-01

    Soil microbial communities are responsible for catalyzing biogeochemical transformations underlying critical wetland functions, including cycling of carbon (C) and nutrients, and emissions of greenhouse gasses (GHG). Alteration of nutrient availability in wetland soils may commonly occur as the result of anthropogenic impacts including runoff from human land uses in uplands, alteration of hydrology, and atmospheric deposition. However, the impacts of altered nutrient availability on microbial communities and carbon cycling in wetland soils are poorly understood. To assess these impacts, soil microbial communities and carbon cycling were determined in replicate experimental nutrient addition plots (control, +N, +P, +NP) across several wetland types, including pocosin peat bogs (NC), freshwater tidal marshes (GA), and tidal salt marshes (SC). Microbial communities were determined by pyrosequencing (Roche 454) extracted soil DNA, targeting both bacteria (16S rDNA) and fungi (LSU) at a depth of ca. 1000 sequences per plot. Wetland carbon cycling was evaluated using static chambers to determine soil GHG fluxes, and plant inclusion chambers were used to determine ecosystem C cycling. Soil bacterial communities responded to nutrient addition treatments in freshwater and tidal marshes, while fungal communities did not respond to treatments in any of our sites. We also compared microbial communities to continuous biogeochemical variables in soil, and found that bacterial community composition was correlated only with the content and availability of soil phosphorus, while fungi responded to phosphorus stoichiometry and soil pH. Surprisingly, we did not find a significant effect of our nutrient addition treatments on most metrics of carbon cycling. However, we did find that several metrics of soil carbon cycling appeared much more related to soil phosphorus than to nitrogen or soil carbon pools. Finally, while overall microbial community composition was weakly correlated with

  13. Manipulating soil microbial communities in extensive green roof substrates.

    PubMed

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition.

  14. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-01

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure. PMID:26962674

  15. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-01

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  16. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils.

    PubMed

    Waldrop, M P; Firestone, M K

    2006-10-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  17. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  18. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration

    NASA Astrophysics Data System (ADS)

    Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; Fischer, Joseph C.

    2016-06-01

    There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.

  19. Heterogeneity of Vaginal Microbial Communities within Individuals▿ #

    PubMed Central

    Kim, Tae Kyung; Thomas, Susan M.; Ho, Mengfei; Sharma, Shobha; Reich, Claudia I.; Frank, Jeremy A.; Yeater, Kathleen M.; Biggs, Diana R.; Nakamura, Noriko; Stumpf, Rebecca; Leigh, Steven R.; Tapping, Richard I.; Blanke, Steven R.; Slauch, James M.; Gaskins, H. Rex; Weisbaum, Jon S.; Olsen, Gary J.; Hoyer, Lois L.; Wilson, Brenda A.

    2009-01-01

    Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota. 16S rRNA gene clone libraries were prepared from samples obtained from different locations (cervix, fornix, outer vaginal canal) and by different methods (swabbing, scraping, lavaging) from the vaginal tracts of eight clinically healthy, asymptomatic women. The data reveal that the vaginal microbiota is not homogenous throughout the vaginal tract but differs significantly within an individual with regard to anatomical site and sampling method used. Thus, this study illuminates the complex structure of the vaginal ecosystem and calls for the consideration of microenvironments when sampling vaginal microbiota as a clinical predictor of vaginal health. PMID:19158255

  20. Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2016-10-01

    Controlling microbial activity is a primary concern during the management of the large volumes of wastewater (produced water) generated during high-volume hydraulic fracturing. In this study we analyzed the transcriptional activity (metatranscriptomes) of three produced water samples from the Marcellus Shale. The goal of this study was to describe active metabolic pathways of industrial concern for produced water management and reuse, and to improve understanding of produced water microbial activity. Metatranscriptome analysis revealed active biofilm formation, sulfide production, and stress management mechanisms of the produced water microbial communities. Biofilm-formation and sulfate-reduction pathways were identified in all samples. Genes related to a diverse array of stress response mechanisms were also identified with implications for biocide efficacy. Additionally, active expression of a methanogenesis pathway was identified in a sample of produced water collected prior to holding pond storage. The active microbial community identified by metatranscriptome analysis was markedly different than the community composition as identified by 16S rRNA sequencing, highlighting the value of evaluating the active microbial fraction during assessments of produced water biofouling potential and evaluation of biocide application strategies. These results indicate biofouling and corrosive microbial processes are active in produced water and should be taken into consideration while designing produced water reuse strategies. PMID:27457653

  1. Quantitative tracking of isotope flows in proteomes of microbial communities

    SciTech Connect

    Fisher, Curt; Hyatt, Philip Douglas; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2011-01-01

    Stable isotope probing (SIP) has been used to track nutrient flows in microbial communities, but existing protein-based SIP methods capable of quantifying the degree of label incorporation into peptides and proteins have been demonstrated only by targeting usually less than 100 proteins per sample. Our method automatically (i) identifies the sequence of and (ii) quantifies the degree of heavy atom enrichment for thousands of proteins from microbial community proteome samples. These features make our method suitable for comparing isotopic differences between closely related protein sequences, and for detecting labeling patterns in low-abundance proteins or proteins derived from rare community members. The proteomic stable isotope probing (SIP) method was validated using proteome samples of known stable isotope incorporation levels at 0.4%, {approx}50%, and {approx}98%. The method was then used to monitor incorporation of 15N into established and regrowing microbial biofilms. The results indicate organism-specific migration patterns from established into regrowing communities and provides insight into metabolism during biofilm formation. The SIP-proteomics method can be extended to many systems to track fluxes of 13C or 15N in microbial communities.

  2. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  3. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  4. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  5. Life in the "plastisphere": microbial communities on plastic marine debris.

    PubMed

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-01

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean. PMID:23745679

  6. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    SciTech Connect

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as

  7. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE PAGES

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as

  8. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre.

    PubMed

    Fontanez, Kristina M; Eppley, John M; Samo, Ty J; Karl, David M; DeLong, Edward F

    2015-01-01

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. These data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid

  9. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    PubMed Central

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-01-01

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. These data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid

  10. Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities

    SciTech Connect

    Stegen, James C.; Lin, Xueju; Konopka, Allan; Fredrickson, Jim K.

    2012-03-29

    A major goal of microbial community ecology is to understand the forces that structure community composition. Deterministic selection by specific environmental factors is sometimes important, but in other cases stochastic or ecologically neutral processes dominate. Lacking is a unified conceptual framework aiming to understand why deterministic processes dominate in some contexts but not others. Here we work towards such a framework. By testing predictions derived from general ecological theory we aim to uncover factors that govern the relative influences of deterministic and stochastic processes. We couple spatiotemporal data on subsurface microbial communities and environmental parameters with metrics and null models of within and between community phylogenetic composition. Testing for phylogenetic signal in organismal niches showed that more closely related taxa have more similar habitat associations. Community phylogenetic analyses further showed that ecologically similar taxa coexist to a greater degree than expected by chance. Environmental filtering thus deterministically governs subsurface microbial community composition. More importantly, the influence of deterministic environmental filtering relative to stochastic factors was maximized at both ends of an environmental variation gradient. A stronger role of stochastic factors was, however, supported through analyses of phylogenetic temporal turnover. While phylogenetic turnover was on average faster than expected, most pairwise comparisons were not themselves significantly non-random. The relative influence of deterministic environmental filtering over community dynamics was elevated, however, in the most temporally and spatially variable environments. Our results point to general rules governing the relative influences of stochastic and deterministic processes across micro- and macro-organisms.

  11. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    PubMed Central

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-01-01

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878

  12. Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities

    PubMed Central

    Gonzalez, Juan M.; Portillo, Maria C.; Belda-Ferre, Pedro; Mira, Alex

    2012-01-01

    The microbial world has been shown to hold an unimaginable diversity. The use of rRNA genes and PCR amplification to assess microbial community structure and diversity present biases that need to be analyzed in order to understand the risks involved in those estimates. Herein, we show that PCR amplification of specific sequence targets within a community depends on the fractions that those sequences represent to the total DNA template. Using quantitative, real-time, multiplex PCR and specific Taqman probes, the amplification of 16S rRNA genes from four bacterial species within a laboratory community were monitored. Results indicate that the relative amplification efficiency for each bacterial species is a nonlinear function of the fraction that each of those taxa represent within a community or multispecies DNA template. Consequently, the low-proportion taxa in a community are under-represented during PCR-based surveys and a large number of sequences might need to be processed to detect some of the bacterial taxa within the ‘rare biosphere’. The structure of microbial communities from PCR-based surveys is clearly biased against low abundant taxa which are required to decipher the complete extent of microbial diversity in nature. PMID:22253843

  13. Extractable nitrogen and microbial community structure respond to grassland restoration regardless of historical context and soil composition

    PubMed Central

    Dickens, Sara Jo M.; Allen, Edith B.; Santiago, Louis S.; Crowley, David

    2015-01-01

    Grasslands have a long history of invasion by exotic annuals, which may alter microbial communities and nutrient cycling through changes in litter quality and biomass turnover rates. We compared plant community composition, soil chemical and microbial community composition, potential soil respiration and nitrogen (N) turnover rates between invaded and restored plots in inland and coastal grasslands. Restoration increased microbial biomass and fungal : bacterial (F : B) ratios, but sampling season had a greater influence on the F : B ratio than did restoration. Microbial community composition assessed by phospholipid fatty acid was altered by restoration, but also varied by season and by site. Total soil carbon (C) and N and potential soil respiration did not differ between treatments, but N mineralization decreased while extractable nitrate and nitrification and N immobilization rate increased in restored compared with unrestored sites. The differences in soil chemistry and microbial community composition between unrestored and restored sites indicate that these soils are responsive, and therefore not resistant to feedbacks caused by changes in vegetation type. The resilience, or recovery, of these soils is difficult to assess in the absence of uninvaded control grasslands. However, the rapid changes in microbial and N cycling characteristics following removal of invasives in both grassland sites suggest that the soils are resilient to invasion. The lack of change in total C and N pools may provide a buffer that promotes resilience of labile pools and microbial community structure. PMID:25555522

  14. Assembly-Driven Community Genomics of a Hypersaline Microbial Ecosystem

    PubMed Central

    Podell, Sheila; Ugalde, Juan A.; Narasingarao, Priya; Banfield, Jillian F.; Heidelberg, Karla B.; Allen, Eric E.

    2013-01-01

    Microbial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 and 14.1% of the planktonic community. Eight of the eleven archaeal genomes were from microbial species without previously cultured representatives. These new genomes provide habitat-specific reference sequences enabling detailed, lineage-specific compartmentalization of predicted functional capabilities and cellular properties associated with both dominant and less abundant community members, including organisms previously known only by their 16S rRNA sequences. Together, these data provide a comprehensive, culture-independent genomic blueprint for ecosystem-wide analysis of protein functions, population structure, and lifestyles of co-existing, co-evolving microbial groups within the same natural habitat. The “assembly-driven” community genomic approach demonstrated in this study advances our ability to push beyond single gene investigations, and promotes genome-scale reconstructions as a tangible goal in the quest to define the metabolic, ecological, and evolutionary dynamics that underpin environmental microbial diversity. PMID:23637883

  15. The functional gene composition and metabolic potential of coral-associated microbial communities

    PubMed Central

    Zhang, Yanying; Ling, Juan; Yang, Qingsong; Wen, Chongqing; Yan, Qingyun; Sun, Hongyan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2015-01-01

    The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems. PMID:26536917

  16. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas.

    PubMed

    Amalfitano, S; Del Bon, A; Zoppini, A; Ghergo, S; Fazi, S; Parrone, D; Casella, P; Stano, F; Preziosi, E

    2014-11-15

    Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies.

  17. The functional gene composition and metabolic potential of coral-associated microbial communities.

    PubMed

    Zhang, Yanying; Ling, Juan; Yang, Qingsong; Wen, Chongqing; Yan, Qingyun; Sun, Hongyan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2015-01-01

    The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems.

  18. Microbial Communities Show Parallels at Sites with Distinct Litter and Soil Characteristics▿†

    PubMed Central

    Sagova-Mareckova, Marketa; Omelka, Marek; Cermak, Ladislav; Kamenik, Zdenek; Olsovska, Jana; Hackl, Evelyn; Kopecky, Jan; Hadacek, Franz

    2011-01-01

    Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds. PMID:21926225

  19. Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities

    PubMed Central

    Milshteyn, Aleksandr; Schneider, Jessica S.; Brady, Sean F.

    2014-01-01

    Summary Microbial-derived natural products provide the foundation for most of the chemotherapeutic arsenal available to contemporary medicine. In the face of a dwindling pipeline of new lead structures identified by traditional culturing techniques and an increasing need for new therapeutics, surveys of microbial biosynthetic diversity across environmental metabiomes have revealed enormous reservoirs of as yet untapped natural products chemistry. In this review we touch on the historical context of microbial natural product discovery and discuss innovations and technological advances that are facilitating culture-dependent and culture-independent access to new chemistry from environmental microbiomes with the goal of re-invigorating the small molecule therapeutics discovery pipeline. We highlight the successful strategies that have emerged and some of the challenges that must be overcome to enable the development of high-throughput methods for natural product discovery from complex microbial communities. PMID:25237864

  20. Microbial communities of alluvial soils in the Volga River delta

    NASA Astrophysics Data System (ADS)

    Sal'Nikova, N. A.; Polyanskaya, L. M.; Tyugai, Z. N.; Sal'Nikov, A. N.; Egorov, M. A.

    2009-01-01

    The number and biomass of the microbial community in the upper humus horizon (0-20 cm) were determined in the main types of alluvial soils (mucky gley, desertified soddy calcareous, hydrometamorphic dark-humus soils) in the Volga River delta. Fungal mycelium and alga cells predominate in the biomass of the microorganisms (35-50% and 30-47%, respectively). The proportion of prokaryotes in the microbial biomass of the alluvial soils amounts to 2-6%. No significant seasonal dynamics in the number and biomass of microorganisms were revealed in the alluvial soils. The share of carbon of the microbial biomass in the total carbon content of the soil organic matter is 1.4-2.3% in the spring. High coefficients of microbial mineralization and oligotrophy characterize the processes of organic matter decomposition in the alluvial soils of the mucky gley, desertified soddy calcareous, and hydrometamorphic dark humus soil types.

  1. Which Members of the Microbial Communities Are Active? Microarrays

    NASA Astrophysics Data System (ADS)

    Morris, Brandon E. L.

    only at the early stages of understanding the microbial processes that occur in petroliferous formations and the surrounding subterranean environment. Important first steps in characterising the microbiology of oilfield systems involve identifying the microbial community structure and determining how population diversity changes are affected by the overall geochemical and biological parameters of the system. This is relatively easy to do today by using general 16S rRNA primers for PCR and building clone libraries. For example, previous studies using molecular methods characterised many dominant prokaryotes in petroleum reservoirs (Orphan et al., 2000) and in two Alaskan North Slope oil facilities (Duncan et al., 2009; Pham et al., 2009). However, the problem is that more traditional molecular biology approaches, such as 16S clone libraries, fail to detect large portions of the community perhaps missing up to half of the biodiversity (see Hong et al., 2009) and require significant laboratory time to construct large libraries necessary to increase the probability of detecting the majority of even bacterial biodiversity. In the energy sector, the overarching desire would be to quickly assess the extent of in situ hydrocarbon biodegradation or to disrupt detrimental processes such as biofouling, and in these cases it may not be necessary to identify specific microbial species. Rather, it would be more critical to evaluate metabolic processes or monitor gene products that are implicated in the specific activity of interest. Research goals such as these are well suited for a tailored application of microarray technology.

  2. Modeling food spoilage in microbial risk assessment.

    PubMed

    Koutsoumanis, Konstantinos

    2009-02-01

    In this study, I describe a systematic approach for modeling food spoilage in microbial risk assessment that is based on the incorporation of kinetic spoilage modeling in exposure assessment by combining data and models for the specific spoilage organisms (SSO: fraction of the total microflora responsible for spoilage) with those for pathogens. The structure of the approach is presented through an exposure assessment application for Escherichia coli O157:H7 in ground beef. The proposed approach allows for identifying spoiled products at the time of consumption by comparing the estimated level of SSO (pseudomonads) with the spoilage level (level of SSO at which spoilage is observed). The results of the application indicate that ignoring spoilage in risk assessment could lead to significant overestimations of risk.

  3. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  4. Oral cavity contains distinct niches with dynamic microbial communities.

    PubMed

    Xu, Xin; He, Jinzhi; Xue, Jing; Wang, Yan; Li, Kun; Zhang, Keke; Guo, Qiang; Liu, Xianghong; Zhou, Yuan; Cheng, Lei; Li, Mingyun; Li, Yuqing; Li, Yan; Shi, Wenyuan; Zhou, Xuedong

    2015-03-01

    Microbes colonize human oral surfaces within hours after delivery. During postnatal development, physiological changes, such as the eruption of primary teeth and replacement of the primary dentition with permanent dentition, greatly alter the microbial habitats, which, in return, may lead to community composition shifts at different phases in people's lives. By profiling saliva, supragingival and mucosal plaque samples from healthy volunteers at different ages and dentition stages, we observed that the oral cavity is a highly heterogeneous ecological system containing distinct niches with significantly different microbial communities. More importantly, the phylogenetic microbial structure varies with ageing. In addition, only a few taxa were present across the whole populations, indicating a core oral microbiome should be defined based on age and oral niches. PMID:24800728

  5. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3‑ concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  6. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3- concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  7. A Comparison of Microbial Communities from Deep Igneous Crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.

    2013-12-01

    Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.

  8. Microbial communities and exopolysaccharides from Polynesian mats.

    PubMed

    Rougeaux, H; Guezennec, M; Che, L M; Payri, C; Deslandes, E; Guezennec, J

    2001-03-01

    Microbial mats present in two shallow atolls of French Polynesia were characterized by high amounts of exopolysaccharides associated with cyanobacteria as the predominating species. Cyanobacteria were found in the first centimeters of the gelatinous mats, whereas deeper layers showing the occurrence of the sulfate reducers Desulfovibrio and Desulfobacter species as determined by the presence of specific biomarkers. Exopolysaccharides were extracted from these mats and partially characterized. All fractions contained both neutral sugars and uronic acids with a predominance of the former. The large diversity in monosaccharides can be interpreted as the result of exopolymer biosynthesis by either different or unidentified cyanobacterial species. PMID:14961381

  9. Development of soil microbial communities during tallgrass prairie restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities were examined in a chronosequence of four different land-use treatments at the Konza Prairie Biological Station, Kansas. The time series comprised a conventionally tilled cropland (CTC) developed on former prairie soils, two restored grasslands that were initiated on forme...

  10. Post fumigation recovery of soil microbial community structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigants have been extensively used to control target soil-borne pathogens and weeds for the past few decades. It is known that the fumigants with broad biocidal activity can affect both target and non-target soil organisms, but the recovery of soil microbial communities are unknown until rece...

  11. Spatial patterns of microbial community composition within Lake Erie sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lake Erie is a large freshwater ecosystem with three distinct basins that exhibit an east-west gradient of increasing productivity, as well as allochthonous inputs of nutrients and xenobiotics. To evaluate microbial community composition throughout this ecosystem, 435 16S rDNA environmental clones w...

  12. Microbial community functional change during vertebrate carrion decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem, yet little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to ...

  13. Changes in Soil Microbial Community Structure with Flooding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...

  14. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    SciTech Connect

    Xiao, Shengmu; Xue, Kai; He, Zhili; VanNostrand, Joy D.; Liu, Jianshe; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNA from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.

  15. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  16. Bacterial Invasion Dynamics in Zebrafish Gut Microbial Communities

    NASA Astrophysics Data System (ADS)

    Logan, Savannah; Jemielita, Matthew; Wiles, Travis; Schlomann, Brandon; Hammer, Brian; Guillemin, Karen; Parthasarathy, Raghuveer

    Microbial communities residing in the vertebrate intestine play an important role in host development and health. These communities must be in part shaped by interactions between microbial species as they compete for resources in a physically constrained system. To better understand these interactions, we use light sheet microscopy and zebrafish as a model organism to image established gut microbial communities as they are invaded by robustly-colonizing challengers. We demonstrate that features of the challenger, including motility and spatial distribution, impact success in invasion and in outcompeting the original community. We also show that physical characteristics of the host, such as the motility of the gut, play important roles in mediating inter-species competition. Finally, we examine the influence of the contact-dependent type VI secretion system (T6SS), which is used by specific bacteria to cause cell lysis by injecting toxic effector proteins into competitors. Our findings provide insights into the determinants of microbial success in the complex ecosystems found in the gut.

  17. Microbial Community Structure in the Rhizosphere of Rice Plants.

    PubMed

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G

    2015-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  18. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  19. Soil microbial communities following bush removal in a Namibian savanna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the grazing value of the land and hence the carrying capacity for wildlife and livestock. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil at a chronose...

  20. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    EPA Science Inventory

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  1. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  2. HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes.

    PubMed

    Forster, Samuel C; Browne, Hilary P; Kumar, Nitin; Hunt, Martin; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Lawley, Trevor D

    2016-01-01

    The Human Pan-Microbe Communities (HPMC) database (http://www.hpmcd.org/) provides a manually curated, searchable, metagenomic resource to facilitate investigation of human gastrointestinal microbiota. Over the past decade, the application of metagenome sequencing to elucidate the microbial composition and functional capacity present in the human microbiome has revolutionized many concepts in our basic biology. When sufficient high quality reference genomes are available, whole genome metagenomic sequencing can provide direct biological insights and high-resolution classification. The HPMC database provides species level, standardized phylogenetic classification of over 1800 human gastrointestinal metagenomic samples. This is achieved by combining a manually curated list of bacterial genomes from human faecal samples with over 21000 additional reference genomes representing bacteria, viruses, archaea and fungi with manually curated species classification and enhanced sample metadata annotation. A user-friendly, web-based interface provides the ability to search for (i) microbial groups associated with health or disease state, (ii) health or disease states and community structure associated with a microbial group, (iii) the enrichment of a microbial gene or sequence and (iv) enrichment of a functional annotation. The HPMC database enables detailed analysis of human microbial communities and supports research from basic microbiology and immunology to therapeutic development in human health and disease. PMID:26578596

  3. MICROBIAL SURVIVAL: The Paleome: A Sedimentary Genetic Record of Past Microbial Communities

    NASA Astrophysics Data System (ADS)

    Inagaki, Fumio; Okada, Hisatake; Tsapin, Alexandre I.; Nealson, Kenneth H.

    2005-06-01

    Molecular genetic methods were used to analyze the remnants of microbial ecosystems contained within an ancient oceanic microbial habitat that was recovered from a continental drilled core of black shale ~100 million years in age. Bacterial ribosomal RNA genes were vertically amplified from the six different depths of a black shale core associated with a phosphate- rich stratum, defined as one of the mid-Cretaceous oceanic anoxic events (OAEs). Although the black shale core was recovered from a terrestrial coring effort, the recovered 16S rRNA gene sequences showed affinity to microbial communities previously seen in deep-sea sedimentary environments (i.e., the microbial assemblage was easily recognizable as a marine community). In particular, a number of 16S rRNA gene clones of oceanic sulfate-reducing bacteria within the δ-Proteobacteria predominated at the OAE layer. The recovered bacterial DNA signatures are consistent with the interpretation that the sequences are derived from the past microbial communities buried in either sea-bottom or subseafloor environments during the sedimentation process and, after ceasing growth, preserved until the present.

  4. HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes.

    PubMed

    Forster, Samuel C; Browne, Hilary P; Kumar, Nitin; Hunt, Martin; Denise, Hubert; Mitchell, Alex; Finn, Robert D; Lawley, Trevor D

    2016-01-01

    The Human Pan-Microbe Communities (HPMC) database (http://www.hpmcd.org/) provides a manually curated, searchable, metagenomic resource to facilitate investigation of human gastrointestinal microbiota. Over the past decade, the application of metagenome sequencing to elucidate the microbial composition and functional capacity present in the human microbiome has revolutionized many concepts in our basic biology. When sufficient high quality reference genomes are available, whole genome metagenomic sequencing can provide direct biological insights and high-resolution classification. The HPMC database provides species level, standardized phylogenetic classification of over 1800 human gastrointestinal metagenomic samples. This is achieved by combining a manually curated list of bacterial genomes from human faecal samples with over 21000 additional reference genomes representing bacteria, viruses, archaea and fungi with manually curated species classification and enhanced sample metadata annotation. A user-friendly, web-based interface provides the ability to search for (i) microbial groups associated with health or disease state, (ii) health or disease states and community structure associated with a microbial group, (iii) the enrichment of a microbial gene or sequence and (iv) enrichment of a functional annotation. The HPMC database enables detailed analysis of human microbial communities and supports research from basic microbiology and immunology to therapeutic development in human health and disease.

  5. Metabarcoding of the kombucha microbial community grown in different microenvironments.

    PubMed

    Reva, Oleg N; Zaets, Iryna E; Ovcharenko, Leonid P; Kukharenko, Olga E; Shpylova, Switlana P; Podolich, Olga V; de Vera, Jean-Pierre; Kozyrovska, Natalia O

    2015-12-01

    Introducing of the DNA metabarcoding analysis of probiotic microbial communities allowed getting insight into their functioning and establishing a better control on safety and efficacy of the probiotic communities. In this work the kombucha poly-microbial probiotic community was analysed to study its flexibility under different growth conditions. Environmental DNA sequencing revealed a complex and flexible composition of the kombucha microbial culture (KMC) constituting more bacterial and fungal organisms in addition to those found by cultural method. The community comprised bacterial and yeast components including cultured and uncultivable microorganisms. Culturing the KMC under different conditions revealed the core part of the community which included acetobacteria of two genera Komagataeibacter (former Gluconacetobacter) and Gluconobacter, and representatives of several yeast genera among which Brettanomyces/Dekkera and Pichia (including former Issatchenkia) were dominant. Herbaspirillum spp. and Halomonas spp., which previously had not been described in KMC, were found to be minor but permanent members of the community. The community composition was dependent on the growth conditions. The bacterial component of KMC was relatively stable, but may include additional member-lactobacilli. The yeast species composition was significantly variable. High-throughput sequencing showed complexity and variability of KMC that may affect the quality of the probiotic drink. It was hypothesized that the kombucha core community might recruit some environmental bacteria, particularly lactobacilli, which potentially may contribute to the fermentative capacity of the probiotic drink. As many KMC-associated microorganisms cannot be cultured out of the community, a robust control for community composition should be provided by using DNA metabarcoding. PMID:26061774

  6. Microbial community structure in three deep-sea carbonate crusts.

    PubMed

    Heijs, S K; Aloisi, G; Bouloubassi, I; Pancost, R D; Pierre, C; Sinninghe Damsté, J S; Gottschal, J C; van Elsas, J D; Forney, L J

    2006-10-01

    Carbonate crusts in marine environments can act as sinks for carbon dioxide. Therefore, understanding carbonate crust formation could be important for understanding global warming. In the present study, the microbial communities of three carbonate crust samples from deep-sea mud volcanoes in the eastern Mediterranean were characterized by sequencing 16S ribosomal RNA (rRNA) genes amplified from DNA directly retrieved from the samples. In combination with the mineralogical composition of the crusts and lipid analyses, sequence data were used to assess the possible role of prokaryotes in crust formation. Collectively, the obtained data showed the presence of highly diverse communities, which were distinct in each of the carbonate crusts studied. Bacterial 16S rRNA gene sequences were found in all crusts and the majority was classified as alpha-, gamma-, and delta- Proteobacteria. Interestingly, sequences of Proteobacteria related to Halomonas and Halovibrio sp., which can play an active role in carbonate mineral formation, were present in all crusts. Archaeal 16S rRNA gene sequences were retrieved from two of the crusts studied. Several of those were closely related to archaeal sequences of organisms that have previously been linked to the anaerobic oxidation of methane (AOM). However, the majority of archaeal sequences were not related to sequences of organisms known to be involved in AOM. In combination with the strongly negative delta 13C values of archaeal lipids, these results open the possibility that organisms with a role in AOM may be more diverse within the Archaea than previously suggested. Different communities found in the crusts could carry out similar processes that might play a role in carbonate crust formation.

  7. Plant rhizosphere species-specific stoichiometry and regulation of extracellular enzyme and microbial community structure

    NASA Astrophysics Data System (ADS)

    Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.

    2012-12-01

    control soil samples) were collected on day 28, 78, and 148 (N = 4 /sample period/species). Microbial community structure was quantified using the barcoded pyrosequencing protocols. We measured the potential activity of seven hydrolytic soil enzymes to represent the degradation of C, N, and P-rich substrates. Soil microbial C:N biomass responses to specific plant rhizospheres (MBC and MBN) were measured using the chloroform fumigation extraction method followed by DOC & N analysis. Fourier Transform Infrared Spectroscopy was used to assess differences in plant and soil C chemistry. We found that species specific rhizospheres are characteristic of very different soil chemical, edaphic, and microbial properties. These plant species act as gateways that introduce variability into soil C, N, and P ecosystem functional dynamics directly facilitated by rhizosphere - microbe associations. Our results suggest that nutrient stoichiometry within plant species' rhizospheres is a useful tool for identifying intra-ecosystem functional patterns. By identifying what and how specific species rhizospheres differ among the overall plant community, we can better predict how below-ground microbial community function and subsequent ecosystem processes can be influenced by alterations in plant community shifts based on the rhizosphere effects.

  8. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    PubMed

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment. PMID:23485423

  9. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    PubMed

    McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing. PMID:22970122

  10. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    PubMed

    McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  11. Assessing Coral Reefs on a Pacific-Wide Scale Using the Microbialization Score

    PubMed Central

    McDole, Tracey; Nulton, James; Barott, Katie L.; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O.; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A.; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J.; Brainard, Russell E.; Rohwer, Forest

    2012-01-01

    The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing. PMID:22970122

  12. Methods for understanding microbial community structures and functions in microbial fuel cells: a review.

    PubMed

    Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen

    2014-11-01

    Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output.

  13. Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment

    PubMed Central

    Graves, Christopher J.; Makrides, Elizabeth J.; Schmidt, Victor T.; Giblin, Anne E.; Cardon, Zoe G.

    2016-01-01

    ABSTRACT Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. IMPORTANCE In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole

  14. Environmental microarray analyses of Antarctic soil microbial communities.

    PubMed

    Yergeau, Etienne; Schoondermark-Stolk, Sung A; Brodie, Eoin L; Déjean, Sébastien; DeSantis, Todd Z; Gonçalves, Olivier; Piceno, Yvette M; Andersen, Gary L; Kowalchuk, George A

    2009-03-01

    Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size ( approximately 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats. PMID:19020556

  15. Environmental microarray analyses of Antarctic soil microbial communities.

    PubMed

    Yergeau, Etienne; Schoondermark-Stolk, Sung A; Brodie, Eoin L; Déjean, Sébastien; DeSantis, Todd Z; Gonçalves, Olivier; Piceno, Yvette M; Andersen, Gary L; Kowalchuk, George A

    2009-03-01

    Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size ( approximately 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats.

  16. Influence of geogenic factors on microbial communities in metallogenic Australian soils

    PubMed Central

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-01-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626

  17. Influence of geogenic factors on microbial communities in metallogenic Australian soils.

    PubMed

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-11-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626

  18. Effect of electricity on microbial community of microbial fuel cell simultaneously treating sulfide and nitrate

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Zheng, Ping; Xing, Yajuan; Qaisar, Mahmood

    2015-05-01

    The effect of electric current on microbial community is explored in Microbial Fuel Cells (MFCs) simultaneously treating sulfide and nitrate. The MFCs are operated under four different conditions which exhibited different characteristics of electricity generation. In batch mode, MFCs generate intermittently high current pulses in the beginning, and the current density is instable subsequently, while the current density of MFCs in continuous mode is relatively stable. All operational parameters show good capacity for substrate removal, and nitrogen and sulfate were the main reaction products. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis is employed to obtain profiles of the bacterial communities present in inoculum and suspension of four MFCs. Based on the community diversity indices and Spearman correlation analyses, significant correlation exists between Richness of the community of anode chamber and the electricity generated, while no strong correlation is evident between other indexes (Shannon index, Simpson index and Equitability index) and the electricity. Additionally, the results of Principal Component Analysis (PCA) suggest that MFCs suffering from current shock have similar suspension communities, while the others have diverse microbial communities.

  19. Halophilic microbial communities and their environments.

    PubMed

    Oren, Aharon

    2015-06-01

    Use of culture-independent studies have greatly increased our understanding of the microbiology of hypersaline lakes (the Dead Sea, Great Salt Lake) and saltern ponds in recent years. Exciting new information has become available on the microbial processes in Antarctic lakes and in deep-sea brines. These studies led to the recognition of many new lineages of microorganisms not yet available for study in culture, and their cultivation in the laboratory is now a major challenge. Studies of the metabolic potentials of different halophilic microorganisms, Archaea as well as Bacteria, shed light on the possibilities and the limitations of life at high salt concentrations, and also show their potential for applications in bioremediation. PMID:25727188

  20. Effects of experimental lead pollution on the microbial communities associated with Sphagnum fallax (Bryophyta).

    PubMed

    Nguyen-Viet, H; Gilbert, D; Mitchell, E A D; Badot, P-M; Bernard, N

    2007-08-01

    Ecotoxicological studies usually focus on single microbial species under controlled conditions. As a result, little is known about the responses of different microbial functional groups or individual species to stresses. In an aim to assess the response of complex microbial communities to pollution in their natural habitat, we studied the effect of a simulated lead pollution on the microbial community (bacteria, cyanobacteria, protists, fungi, and micrometazoa) living on Sphagnum fallax. Mosses were grown in the laboratory with 0 (control), 625, and 2,500 microg L(-1) of Pb(2+) diluted in a standard nutrient solution and were sampled after 0, 6, 12, and 20 weeks. The biomasses of bacteria, microalgae, testate amoebae, and ciliates were dramatically and significantly decreased in both Pb addition treatments after 6, 12, and 20 weeks in comparison with the control. The biomass of cyanobacteria declined after 6 and 12 weeks in the highest Pb treatment. The biomasses of fungi, rotifers, and nematodes decreased along the duration of the experiment but were not significantly affected by lead addition. Consequently, the total microbial biomass was lower for both Pb addition treatments after 12 and 20 weeks than in the controls. The community structure was strongly modified due to changes in the densities of testate amoebae and ciliates, whereas the relative contribution of bacteria to the microbial biomass was stable. Differences in responses among the microbial groups suggest changes in the trophic links among them. The correlation between the biomass of bacteria and that of ciliates or testate amoebae increased with increasing Pb loading. We interpret this result as an effect on the grazing pathways of these predators and by the Pb effect on other potential prey (i.e., smaller protists). The community approach used here complements classical ecotoxicological studies by providing clues to the complex effect of pollutant-affecting organisms both directly and indirectly

  1. Utilization of alternate chirality enantiomers in microbial communities

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-09-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers - L-sugars and D- amino acids; 2) Growthinhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  2. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  3. Microbial communities on Australian modified atmosphere packaged Atlantic salmon.

    PubMed

    Powell, S M; Tamplin, M L

    2012-05-01

    The role of specific spoilage organisms (SSO) in products such as Atlantic salmon has been well documented. However, little is known about what other micro-organisms are present and these organisms may indirectly influence spoilage by their interactions with the SS0. We used a combination of culture-based and DNA-based methods to explore the microbial communities found on Atlantic salmon fillets packed in a modified atmosphere of carbon dioxide and nitrogen. After 15 days the communities were dominated by Shewanella spp. or Carnobacterium spp. and a variety of other genera were present in smaller numbers. Variability in the microbial community composition in packages processed on the same day was also observed. This was mostly due to differences in the presence of minor members of the community including species from genera such as Iodobacter, Serratia, Morganella and Yersinia. The combination of culture-based and culture-independent methods provided greater insight into the development of microbial communities on Atlantic salmon than would have been possible using only one method. This work highlights the potential importance of lactic acid bacteria (LAB) in fresh Atlantic salmon stored under modified atmosphere conditions.

  4. Rooting Theories of Plant Community Ecology in Microbial Interactions

    PubMed Central

    Bever, James D.; Dickie, Ian A.; Facelli, Evelina; Facelli, Jose M.; Klironomos, John; Moora, Mari; Rillig, Matthias C.; Stock, William D.; Tibbett, Mark; Zobel, Martin

    2010-01-01

    Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and suggest these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance, and invasion ecology. PMID:20557974

  5. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China.

    PubMed

    Lu, Sidan; Sun, Yujiao; Zhao, Xuan; Wang, Lei; Ding, Aizhong; Zhao, Xiaohui

    2016-07-01

    The connection between microbial community structure and spatial variation and pollution in river waters has been widely investigated. However, water and sediments together have rarely been explored. In this study, Illumina high-throughput sequencing was performed to analyze microbes in 24 water and sediment samples from natural to anthropogenic sources and from headstream to downstream areas. These data were used to assess variability in microbial community structure and diversity along in the Fenghe River, China. The relationship between bacterial diversity and environmental parameters was statistically analyzed. An average of 1682 operational taxonomic units was obtained. Microbial diversity increased from the headstream to downstream and tended to be greater in sediment compared with water. The water samples near the headstream endured relatively low Shannon and Chao1 indices. These diversity indices and the number of observed species in the water and sediment samples increase downstream. The parameters also differ in the two river tributaries. Community structures shift based on the extent of nitrogen pollution variation in the sediment and water samples. The four most dominant genera in the water community were Escherichia, Acinetobacter, Comamonadaceae, and Pseudomonas. In the sediments, the most dominant genera were Stramenopiles, Flavobacterium, Pseudomonas, and Comamonadaceae. The number of ammonia-oxidizing archaea in the headstream water slightly differed from that in the sediment but varied considerably in the downstream sediments. Statistical analysis showed that community variation is correlated with changes in ammonia nitrogen, total nitrogen, and nitrate nitrogen. This study identified different microbial community structures in river water and sediments. Overall this study emphasized the need to elucidate spatial variations in bacterial diversity in water and sediments associated with physicochemical gradients and to show the effects of such

  6. Characterization of Microbial Communities in Gas Industry Pipelines

    PubMed Central

    Zhu, Xiang Y.; Lubeck, John; Kilbane, John J.

    2003-01-01

    Culture-independent techniques, denaturing gradient gel electrophoresis (DGGE) analysis, and random cloning of 16S rRNA gene sequences amplified from community DNA were used to determine the diversity of microbial communities in gas industry pipelines. Samples obtained from natural gas pipelines were used directly for DNA extraction, inoculated into sulfate-reducing bacterium medium, or used to inoculate a reactor that simulated a natural gas pipeline environment. The variable V2-V3 (average size, 384 bp) and V3-V6 (average size, 648 bp) regions of bacterial and archaeal 16S rRNA genes, respectively, were amplified from genomic DNA isolated from nine natural gas pipeline samples and analyzed. A total of 106 bacterial 16S rDNA sequences were derived from DGGE bands, and these formed three major clusters: beta and gamma subdivisions of Proteobacteria and gram-positive bacteria. The most frequently encountered bacterial species was Comamonas denitrificans, which was not previously reported to be associated with microbial communities found in gas pipelines or with microbially influenced corrosion. The 31 archaeal 16S rDNA sequences obtained in this study were all related to those of methanogens and phylogenetically fall into three clusters: order I, Methanobacteriales; order III, Methanomicrobiales; and order IV, Methanosarcinales. Further microbial ecology studies are needed to better understand the relationship among bacterial and archaeal groups and the involvement of these groups in the process of microbially influenced corrosion in order to develop improved ways of monitoring and controlling microbially influenced corrosion. PMID:12957923

  7. Intraspecific Variation in Microbial Symbiont Communities of the Sun Sponge, Hymeniacidon heliophila, from Intertidal and Subtidal Habitats.

    PubMed

    Weigel, Brooke L; Erwin, Patrick M

    2015-11-13

    Sponges host diverse and complex communities of microbial symbionts that display a high degree of host specificity. The microbiomes of conspecific sponges are relatively constant, even across distant locations, yet few studies have directly examined the influence of abiotic factors on intraspecific variation in sponge microbial community structure. The contrast between intertidal and subtidal environments is an ideal system to assess the effect of environmental variation on sponge-microbe symbioses, producing two drastically different environments on a small spatial scale. Here, we characterized the microbial communities of individual intertidal and subtidal Hymeniacidon heliophila sponges, ambient seawater, and sediment from a North Carolina oyster reef habitat by partial (Illumina sequencing) and nearly full-length (clone libraries) 16S rRNA gene sequence analyses. Clone library sequences were compared to H. heliophila symbiont communities from the Gulf of Mexico and Brazil, revealing strong host specificity of dominant symbiont taxa across expansive geographic distances. Sediment and seawater samples yielded clearly distinct microbial communities from those found in H. heliophila. Despite the close proximity of the sponges sampled, significant differences between subtidal and intertidal sponges in the diversity, structure, and composition of their microbial communities were detected. Differences were driven by changes in the relative abundance of a few dominant microbial symbiont taxa, as well as the presence or absence of numerous rare microbial taxa. These findings suggest that extreme abiotic fluctuations, such as periodic air exposure in intertidal habitats, can drive intraspecific differences in complex host-microbe symbioses.

  8. Patterns in the Composition of Microbial Communities from a Subtropical River: Effects of Environmental, Spatial and Temporal Factors

    PubMed Central

    Liu, Lemian; Yang, Jun; Yu, Xiaoqing; Chen, Guangjie; Yu, Zheng

    2013-01-01

    Microbes are key components of aquatic ecosystems and play crucial roles in global biogeochemical cycles. However, the spatiotemporal dynamics of planktonic microbial community composition in riverine ecosystems are still poorly understood. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified 16S and 18S rRNA gene fragments and multivariate statistical methods to explore the spatiotemporal patterns and driving factors of planktonic bacterial and microbial eukaryotic communities in the subtropical Jiulong River, southeast China. Both bacterial and microbial eukaryotic communities varied significantly in time and were spatially structured according to upper stream, middle-lower stream and estuary. Among all the environmental factors measured, water temperature, conductivity, PO4-P and TN/TP were best related to the spatiotemporal distribution of bacterial community, while water temperature, conductivity, NOx-N and transparency were closest related to the variation of eukaryotic community. Variation partitioning, based on partial RDA, revealed that environmental factors played the most important roles in structuring the microbial assemblages by explaining 11.3% of bacterial variation and 17.5% of eukaryotic variation. However, pure spatial factors (6.5% for bacteria and 9.6% for eukaryotes) and temporal factors (3.3% for bacteria and 5.5% for eukaryotes) also explained some variation in microbial distribution, thus inherent spatial and temporal variation of microbial assemblages should be considered when assessing the impact of environmental factors on microbial communities. PMID:24244735

  9. Intraspecific Variation in Microbial Symbiont Communities of the Sun Sponge, Hymeniacidon heliophila, from Intertidal and Subtidal Habitats

    PubMed Central

    Weigel, Brooke L.

    2015-01-01

    Sponges host diverse and complex communities of microbial symbionts that display a high degree of host specificity. The microbiomes of conspecific sponges are relatively constant, even across distant locations, yet few studies have directly examined the influence of abiotic factors on intraspecific variation in sponge microbial community structure. The contrast between intertidal and subtidal environments is an ideal system to assess the effect of environmental variation on sponge-microbe symbioses, producing two drastically different environments on a small spatial scale. Here, we characterized the microbial communities of individual intertidal and subtidal Hymeniacidon heliophila sponges, ambient seawater, and sediment from a North Carolina oyster reef habitat by partial (Illumina sequencing) and nearly full-length (clone libraries) 16S rRNA gene sequence analyses. Clone library sequences were compared to H. heliophila symbiont communities from the Gulf of Mexico and Brazil, revealing strong host specificity of dominant symbiont taxa across expansive geographic distances. Sediment and seawater samples yielded clearly distinct microbial communities from those found in H. heliophila. Despite the close proximity of the sponges sampled, significant differences between subtidal and intertidal sponges in the diversity, structure, and composition of their microbial communities were detected. Differences were driven by changes in the relative abundance of a few dominant microbial symbiont taxa, as well as the presence or absence of numerous rare microbial taxa. These findings suggest that extreme abiotic fluctuations, such as periodic air exposure in intertidal habitats, can drive intraspecific differences in complex host-microbe symbioses. PMID:26567307

  10. Dynamic changes in microbial community structure and function in phenol-degrading microcosms inoculated with cells from a contaminated aquifer.

    PubMed

    Elliott, David R; Scholes, Julie D; Thornton, Steven F; Rizoulis, Athanasios; Banwart, Steven A; Rolfe, Stephen A

    2010-02-01

    Contamination of aquifers by organic pollutants threatens groundwater supplies and the environment. In situ biodegradation of organic pollutants by microbial communities is important for the remediation of contaminated sites, but our understanding of the relationship between microbial development and pollutant biodegradation is poor. A particular challenge is understanding the in situ status of microorganisms attached to solid surfaces, but not accessible via conventional sampling of groundwater. We have developed novel flow-through microcosms and examined dynamic changes in microbial community structure and function in a phenol-degrading system. Inoculation of these microcosms with a complex microbial community from a plume in a phenol-contaminated aquifer led to the initial establishment of a population dominated by a few species, most attached to the solid substratum. Initially, phenol biodegradation was incomplete, but as the microbial community structure became more complex, phenol biodegradation was more extensive and complete. These results were replicated between independent microcosms, indicating a deterministic succession of species. This work demonstrates the importance of examining community dynamics when assessing the potential for microbial biodegradation of organic pollutants. It provides a novel system in which such measurements can be made readily and reproducibly to study the temporal development and spatial succession of microbial communities during biodegradation of organic pollutants at interfaces within such environments.

  11. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    PubMed Central

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes. PMID:26791101

  12. Microbial community and performance of slaughterhouse wastewater treatment filters.

    PubMed

    Stets, M I; Etto, R M; Galvão, C W; Ayub, R A; Cruz, L M; Steffens, M B R; Barana, A C

    2014-06-16

    The performance of anaerobic filter bioreactors (AFs) is influenced by the composition of the substrate, support medium, and the microbial species present in the sludge. In this study, the efficiency of a slaughterhouse effluent treatment using three AFs containing different support media was tested, and the microbial diversity was investigated by amplified ribosomal DNA restriction analysis and 16S rRNA gene sequencing. The physicochemical analysis of the AF systems tested suggested their feasibility, with rates of chemical oxygen demand removal of 72±8% in hydraulic retention times of 1 day. Analysis of pH, alkalinity, volatile acidity, total solids, total volatile solids, total Kjeldahl nitrogen, and the microbial community structures indicated high similarity among the three AFs. The composition of prokaryotic communities showed a prevalence of Proteobacteria (27.3%) and Bacteroidetes (18.4%) of the Bacteria domain and Methanomicrobiales (36.4%) and Methanosarcinales (35.3%) of the Archaea domain. Despite the high similarity of the microbial communities among the AFs, the reactor containing pieces of clay brick as a support medium presented the highest richness and diversity of bacterial and archaeal operational taxonomic units.

  13. Functional Potential of Soil Microbial Communities in the Maize Rhizosphere

    PubMed Central

    Xiong, Jingbo; Li, Jiabao; He, Zhili; Zhou, Jizhong; Yannarell, Anthony C.; Mackie, Roderick I.

    2014-01-01

    Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds. PMID:25383887

  14. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  15. Unravelling Microbial Communities with DNA-Microarrays: Challengesand Future Directions.

    SciTech Connect

    Wagner, Michael; Smidt, Hauke; Loy, Alexander; Zhou, Jizhong

    2007-03-08

    High-throughput technologies are urgently needed formonitoring the formidable biodiversity and functional capabilities ofmicroorganisms in the environment. Ten years ago, DNA microarrays,miniaturized platforms for highly parallel hybridization reactions, foundtheir way into environmental microbiology and raised great expectationsamong researchers in the field. In this article, we briefly summarize thestate-of-the-art of microarray approaches in microbial ecology researchand discuss in more detail crucial problems and promising solutions.Finally, we outline scenarios for an innovative combination ofmicroarrays with other molecular tools for structure-function analysis ofcomplex microbial communities.

  16. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change. PMID:25341787

  17. Cecum microbial communities from steers differing in feed efficiency.

    PubMed

    Myer, P R; Wells, J E; Smith, T P L; Kuehn, L A; Freetly, H C

    2015-11-01

    Apart from the rumen, limited knowledge exists regarding the structure and function of bacterial communities within the gastrointestinal tract and their association with beef cattle feed efficiency. The objective of this study was to characterize the microbial communities of the cecum among steers differing in feed efficiency. Within 2 contemporary groups of steers, individual feed intake and BW gain were determined from animals fed the same diet. Within both of 2 contemporary groups, BW was regressed on feed intake and 4 steers within each Cartesian quadrant were sampled ( = 16/group). Bacterial 16S rRNA gene amplicons were sequenced from the cecal content using next-generation sequencing technology. No significant changes in diversity or richness were detected among quadrants, and UniFrac principal coordinate analysis did not show any differences among quadrants for microbial communities within the cecum. The relative abundances of microbial populations and operational taxonomic units revealed significant differences among feed efficiency groups ( < 0.05). Firmicutes was the dominant cecal phylum in all groups and accounted for up to 81% of the populations among samples. Populations were also dominated by families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae, with significant shifts in the relative abundance of taxa among feed efficiency groups, including families Ruminococcaceae ( = 0.040), Lachnospiraceae ( = 0.020), Erysipelotrichaceae ( = 0.046), and Clostridiaceae ( = 0.043) and genera ( = 0.049), ( = 0.044), ( = 0.042), ( = 0.040), ( = 0.042), and ( = 0.042). The study identified cecal microbial associations with feed efficiency, ADG, and ADFI. This study suggests an association of the cecum microbial community with bovine feed efficiency at the 16S level. PMID:26641052

  18. Microbial community composition and function across an arctic tundra landscape.

    PubMed

    Zak, Donald R; Kling, George W

    2006-07-01

    Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, lowland tundra. To test this idea, we studied soil microbial communities in upland tussock, stream-side birch-willow, and lakeside wet sedge tundra in arctic Alaska, USA. These are a series of ecosystems that differ in topographic position, plant composition, and soil drainage. Phospholipid fatty acid (PLFA) analyses, coupled with compound-specific 13C isotope tracing, were used to quantify microbial community composition and function; we also assayed the activity of extracellular enzymes involved in cellulose, chitin, and lignin degradation. Surface soil from each tundra ecosystem was labeled with 13C-cellobiose,13C-N-acetylglucosamine, or 13C-vanillin. After a five-day incubation, we followed the movement of 13C into bacterial and fungal PLFAs, microbial respiration, dissolved organic carbon, and soil organic matter. Microbial community composition and function were distinct among tundra ecosystems, with tussock tundra containing a significantly greater abundance and activity of soil fungi. Although the majority of 13C-labeled substrates rapidly moved into soil organic matter in all tundra soils (i.e., 50-90% of applied 13C), microbial respiration of labeled substrates in wet sedge tundra soil was lower than in tussock and birch-willow tundra; approximately 8% of 13C-cellobiose and approximately 5% of 13C-vanillin was respired in wet sedge soil vs. 26-38% of 13C-cellobiose and 18-21% of 13C-vanillin in the other tundra ecosystems. Despite these differences, wet sedge tundra exhibited the greatest extracellular enzyme activity. Topographic variation in plant litter biochemistry

  19. The Effect of Dilution on the Structure of Microbial Communities

    NASA Technical Reports Server (NTRS)

    Mills, Aaron L.

    2000-01-01

    To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.

  20. The impact of genetically modified crops on soil microbial communities.

    PubMed

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  1. Mechanisms Controlling the Plant Diversity Effect on Soil Microbial Community Composition and Soil Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Mellado Vázquez, P. G.; Lange, M.; Griffiths, R.; Malik, A.; Ravenek, J.; Strecker, T.; Eisenhauer, N.; Gleixner, G.

    2015-12-01

    Soil microorganisms are the main drivers of soil organic matter cycling. Organic matter input by living plants is the major energy and matter source for soil microorganisms, higher organic matter inputs are found in highly diverse plant communities. It is therefore relevant to understand how plant diversity alters the soil microbial community and soil organic matter. In a general sense, microbial biomass and microbial diversity increase with increasing plant diversity, however the mechanisms driving these interactions are not fully explored. Working with soils from a long-term biodiversity experiment (The Jena Experiment), we investigated how changes in the soil microbial dynamics related to plant diversity were explained by biotic and abiotic factors. Microbial biomass quantification and differentiation of bacterial and fungal groups was done by phospholipid fatty acid (PLFA) analysis; terminal-restriction fragment length polymorphism was used to determine the bacterial diversity. Gram negative (G-) bacteria predominated in high plant diversity; Gram positive (G+) bacteria were more abundant in low plant diversity and saprotrophic fungi were independent from plant diversity. The separation between G- and G+ bacteria in relation to plant diversity was governed by a difference in carbon-input related factors (e.g. root biomass and soil moisture) between plant diversity levels. Moreover, the bacterial diversity increased with plant diversity and the evenness of the PLFA markers decreased. Our results showed that higher plant diversity favors carbon-input related factors and this in turn favors the development of microbial communities specialized in utilizing new carbon inputs (i.e. G- bacteria), which are contributing to the export of new C from plants to soils.

  2. Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities

    PubMed Central

    Bever, James D.; Platt, Thomas G.; Morton, Elise R.

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology. PMID:22726216

  3. Fluvial network imprints on microbial diversity and community network topology

    NASA Astrophysics Data System (ADS)

    Battin, T. J.; Besemer, K.; Widder, S.; Singer, G. A.; Ceola, S.; Bertuzzo, E.; Quince, C.; Sloan, W. T.; Rinaldo, A.

    2013-12-01

    Streams and rivers sculpt continental landscapes and the networks they form carry universal signatures of spatial organization. Biodiversity in fluvial networks ranks among the highest on Earth and microorganisms therein, often enclosed in biofilms, fulfill critical ecosystem functions even with repercussions on the global carbon cycle. We extensively used 454 pyrosequencing on biofilm samples from more than 100 streams from a 5th-order catchment, derived alpha and beta diversity patterns and, using co-occurrence analyses, we studied community network organization. Contrary to current theory and to animal diversity studies, we found microbial alpha diversity in biofilms to decrease downstream with confluences likely acting as filters to biodiversity as it propagates from the smallest headwaters to larger rivers. Along with higher beta diversity in the headwaters, these findings highlight headwaters as critical reservoirs of microbial diversity for entire fluvial networks. Co-occurrence analyses revealed a lower level of fragmentation of community networks in headwaters than in larger rivers downstream and further identified gatekeepers (at family level) as potential architects of the observed network topology. Similarly, fragmentation was higher downstream than upstream of confluences. Consistent with current network theory, simple model simulations suggest that fragmentation patterns are linked to persistence against perturbations. We further explore the role of perturbation for community network topology in the context of fluvial network hydrology. Our findings have deep implications for restoration and conservation. They portrait the imprint of fluvial networks on microbial community networks and thereby expand our knowledge on biodiversity and ecosystem persistence.

  4. Microbial Communities in a High Arctic Polar Desert Landscape

    PubMed Central

    McCann, Clare M.; Wade, Matthew J.; Gray, Neil D.; Roberts, Jennifer A.; Hubert, Casey R. J.; Graham, David W.

    2016-01-01

    The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices. PMID:27065980

  5. Counteraction of antibiotic production and degradation stabilizes microbial communities

    PubMed Central

    Kelsic, Eric D.; Zhao, Jeffrey; Vetsigian, Kalin; Kishony, Roy

    2015-01-01

    Summary A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity1-8, and in particular how antibiotic producing, sensitive and resistant species coexist9-15. While cyclic “rock-paper-scissors” interactions can stabilize communities in spatial environments9-11, coexistence in unstructured environments remains an enigma12,16. Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on 3-way interactions where an antibiotic degrading species attenuates the inhibitory interactions between two other species. These 3-way interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by “cheating” species that cease producing or degrading antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamical behaviors ranging from stable fixed-points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatial and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity. PMID:25992546

  6. Microbial diversity in polluted harbor sediments II: Sulfate-reducing bacterial community assessment using terminal restriction fragment length polymorphism and clone library of dsrAB gene

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Song, Lin-sheng; Ki, Jang-Seu; Lau, Chun-Kwan; Li, Xiang-Dong; Qian, Pei-Yuan

    2008-02-01

    Sulfate-reducing bacteria (SRB) are important regulators of a variety of processes in coastal marine sediments regarding organic matter turnover, biodegradation of pollutants, and sulfur and carbon cycles. Yet their community compositions have not been investigated in polluted harbor sediments. This study described the diversity and spatial variation of SRB communities in surface sediments in Victoria Harbor, Hong Kong. The spatial variation of SRB communities was described by terminal restriction fragment length polymorphism (T-RFLP). The results showed that the most diversified terminal restriction fragments were found at polluted sites. In addition, cluster analysis indicated that although the SRB communities were different at the two polluted sites, they were still more similar to each other than to the two more distant reference sites. Based on a dsrAB clone library constructed at a polluted site, diversified SRB were found, represented by 30 Operational Taxonomic Units (OTUs). Upon comparisons among the SRB sequences detected from this study and those in the GenBank, five clades of SRB were found. Three clades belonged to the known families Desulfobacteraceae, Desulfobulbaceae, and Syntrophobacteriaceae. The majority of sequenced clones, which distantly related to sequences in the GenBank, constituted the remaining two unclassified groups, suggesting unique SRB members related to the polluted harbor environment. Statistical analyses indicated that estimated SRB richness correlated with environment factors such as sulfur content, acid volatile sulfate, and redox potential.

  7. High resolution single cell analytics to follow microbial community dynamics in anaerobic ecosystems.

    PubMed

    Müller, Susann; Hübschmann, Thomas; Kleinsteuber, Sabine; Vogt, Carsten

    2012-07-01

    Analyzing natural anaerobic microbial communities is a challenge and interpretation of the respective members' performances arduous. Strict anaerobes are often slow-growing and difficult to cultivate due to their unknown physiological capacities. Additionally, abiotic micro-environmental data are difficult to assess, limiting the information on the eco-chemical background in natural environments. This review describes how qualitative and quantitative data can be obtained on anaerobic microbial communities isolated from anoxic environments and treated under laboratory conditions. It gives information on how community composition ('phylogenetic fingerprint') and community structure ('cytometric fingerprint') can be described by PCR-based and single cell-based techniques, respectively. A cell sorting step combined both approaches and enabled quantitative and more precise community resolution. The community dynamics found were swift and strong, despite low and slow changes in measured abiotic parameters. Therefore, the community structure itself mirrored variation in the constructed long term (6 years) ecosystem in a most sensitive way and can be used as sensor for the ecosystems situation. New statistical tools are presented allowing suddenly changing performances of complex communities to be detected and community (in) stabilities to be monitored and/or predicted.

  8. Eukaryotic and prokaryotic microbial communities during microalgal biomass production.

    PubMed

    Lakaniemi, Aino-Maija; Hulatt, Chris J; Wakeman, Kathryn D; Thomas, David N; Puhakka, Jaakko A

    2012-11-01

    Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates. PMID:22995170

  9. Using dispersants after oil spills: impacts on the composition and activity of microbial communities.

    PubMed

    Kleindienst, Sara; Paul, John H; Joye, Samantha B

    2015-06-01

    Dispersants are globally and routinely applied as an emergency response to oil spills in marine ecosystems with the goal of chemically enhancing the dissolution of oil into water, which is assumed to stimulate microbially mediated oil biodegradation. However, little is known about how dispersants affect the composition of microbial communities or their biodegradation activities. The published findings are controversial, probably owing to variations in laboratory methods, the selected model organisms and the chemistry of different dispersant-oil mixtures. Here, we argue that an in-depth assessment of the impacts of dispersants on microorganisms is needed to evaluate the planning and use of dispersants during future responses to oil spills. PMID:25944491

  10. Using dispersants after oil spills: impacts on the composition and activity of microbial communities.

    PubMed

    Kleindienst, Sara; Paul, John H; Joye, Samantha B

    2015-06-01

    Dispersants are globally and routinely applied as an emergency response to oil spills in marine ecosystems with the goal of chemically enhancing the dissolution of oil into water, which is assumed to stimulate microbially mediated oil biodegradation. However, little is known about how dispersants affect the composition of microbial communities or their biodegradation activities. The published findings are controversial, probably owing to variations in laboratory methods, the selected model organisms and the chemistry of different dispersant-oil mixtures. Here, we argue that an in-depth assessment of the impacts of dispersants on microorganisms is needed to evaluate the planning and use of dispersants during future responses to oil spills.

  11. Probabilistic models to describe the dynamics of migrating microbial communities.

    PubMed

    Schroeder, Joanna L; Lunn, Mary; Pinto, Ameet J; Raskin, Lutgarde; Sloan, William T

    2015-01-01

    In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported.

  12. Probabilistic models to describe the dynamics of migrating microbial communities.

    PubMed

    Schroeder, Joanna L; Lunn, Mary; Pinto, Ameet J; Raskin, Lutgarde; Sloan, William T

    2015-01-01

    In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported. PMID:25803866

  13. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    PubMed Central

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  14. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  15. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake.

    PubMed

    Schütte, Ursel M E; Cadieux, Sarah B; Hemmerich, Chris; Pratt, Lisa M; White, Jeffrey R

    2016-01-01

    Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under ice cover. We assessed the vertical microbial community distribution and geochemical composition in early spring under ice in a seasonally ice-covered lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake. PMID:27458438

  16. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils.

    PubMed

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: K fa ~ 1.2 and K oc ~ 140 mL g(-1)). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated.

  17. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    PubMed Central

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  18. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake.

    PubMed

    Schütte, Ursel M E; Cadieux, Sarah B; Hemmerich, Chris; Pratt, Lisa M; White, Jeffrey R

    2016-01-01

    Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under ice cover. We assessed the vertical microbial community distribution and geochemical composition in early spring under ice in a seasonally ice-covered lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake.

  19. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake

    PubMed Central

    Schütte, Ursel M. E.; Cadieux, Sarah B.; Hemmerich, Chris; Pratt, Lisa M.; White, Jeffrey R.

    2016-01-01

    Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under ice cover. We assessed the vertical microbial community distribution and geochemical composition in early spring under ice in a seasonally ice-covered lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake. PMID:27458438

  20. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils.

    PubMed

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: K fa ~ 1.2 and K oc ~ 140 mL g(-1)). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  1. Application of nonlinear analysis methods for identifying relationships between microbial community structure and groundwater geochemistry.

    PubMed

    Schryver, Jack C; Brandt, Craig C; Pfiffner, Susan M; Palumbo, Anthony V; Peacock, Aaron D; White, David C; McKinley, James P; Long, Philip E

    2006-02-01

    The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.

  2. Application of Nonlinear Analysis Methods for Identifying Relationships Between Microbial Community Structure and Groundwater Geochemistry

    SciTech Connect

    Schryver, Jack C.; Brandt, Craig C.; Pfiffner, Susan M.; Palumbo, A V.; Peacock, Aaron D.; White, David C.; McKinley, James P.; Long, Philip E.

    2006-02-01

    The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.

  3. Environmental controls on microbial community cycling in modern marine stromatolites

    NASA Astrophysics Data System (ADS)

    Bowlin, Emily M.; Klaus, James S.; Foster, Jamie S.; Andres, Miriam S.; Custals, Lillian; Reid, R. Pamela

    2012-07-01

    Living stromatolites on the margins of Exuma Sound, Bahamas, are the only examples of modern stromatolites forming in open marine conditions similar to those that may have existed on Precambrian platforms. Six microbial mat types have previously been documented on the surfaces of stromatolites along the eastern side of Highborne Cay (Schizothrix, Solentia, heterotrophic biofilm, stalked diatom, tube diatom and Phormidium mats). Cycling of these communities create laminae with distinct microstructures. Subsurface laminae thus represent a chronology of former surface mats. The present study documents the effects of environmental factors on surface microbial communities of modern marine stromatolites and identifies potential causes of microbial mat cycling. Mat type and burial state at 43 markers along a stromatolitic reef on the margin of Highborne Cay were monitored over a two-year period (2005-2006). Key environmental parameters (i.e., temperature, light, wind, water chemistry) were also monitored. Results indicated that the composition of stromatolite surface mats and transitions from one mat type to another are controlled by both seasonal and stochastic events. All six stromatolite mat communities at Highborne Cay showed significant correlations with water temperature. Heterotrophic biofilms, Solentia, stalked diatom and Phormidium mats showed positive correlations with temperature, whereas Schizothrix and tube diatom communities showed negative correlations. A significant correlation with light (photosynthetically active radiation, PAR) was detected only for the heterotrophic biofilm community. No significant correlations were found between mat type and the monitored wind intensity data, but field observations indicated that wind-related events such as storms and sand abrasion play important roles in the transitions from one mat type to another. An integrated model of stromatolite mat community cycling is developed that includes both predictable seasonal

  4. Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips

    SciTech Connect

    van der Lelie, D.; Taghavi, S.; McCorkle, S. M.; Li, L. L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S. Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

    2012-05-01

    This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to

  5. Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses

    NASA Astrophysics Data System (ADS)

    di Meo, C. A.; Giovannoni, S.; Fisk, M.

    2002-12-01

    Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (<20 yrs old) from six different sites along the ridge axis at 9°N, East Pacific Rise were examined for microbial life. Total DNA was extracted from the basalt glass and screened for the presence of both bacteria and archaea using the PCR. Repeated attempts with different primer sets yielded no bacterial genes, whereas archaeal genes were quite abundant. A genetic fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP), was used to compare the archaeal community compositions among the six different basalts. Filtered deep-sea water samples (~15 L) were examined in parallel to identify any overlap between rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal

  6. Community-analyzer: a platform for visualizing and comparing microbial community structure across microbiomes.

    PubMed

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2013-10-01

    A key goal in comparative metagenomics is to identify microbial group(s) which are responsible for conferring specific characteristics to a given environment. These characteristics are the result of the inter-microbial interactions between the resident microbial groups. We present a new GUI-based comparative metagenomic analysis application called Community-Analyzer which implements a correlation-based graph layout algorithm that not only facilitates a quick visualization of the differences in the analyzed microbial communities (in terms of their taxonomic composition), but also provides insights into the inherent inter-microbial interactions occurring therein. Notably, this layout algorithm also enables grouping of the metagenomes based on the probable inter-microbial interaction patterns rather than simply comparing abundance values of various taxonomic groups. In addition, the tool implements several interactive GUI-based functionalities that enable users to perform standard comparative analyses across microbiomes. For academic and non-profit users, the Community-Analyzer is currently available for download from: http://metagenomics.atc.tcs.com/Community_Analyzer/.

  7. Simulating Microbial Community Patterning Using Biocellion

    SciTech Connect

    Kang, Seung-Hwa; Kahan, Simon H.; Momeni, Babak

    2014-04-17

    Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis forma- tion. Momeni et al. [5] investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling and simulation to actual patterns observed in wet-lab experiments. However, simu- lations of millions of cells in a three-dimensional community are ex- tremely time-consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vast space of parameter combinations and assumptions. Improving the speed, scale, and accu- racy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high performance software framework for ac- celerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accu- racy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion fur- ther accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chap- ter describes the necessary steps to adapt the original Momeni et al.'s model to the Biocellion framework as a case study.

  8. MetaBoot: a machine learning framework of taxonomical biomarker discovery for different microbial communities based on metagenomic data

    PubMed Central

    Wang, Xiaojun; Su, Xiaoquan

    2015-01-01

    As more than 90% of species in a microbial community could not be isolated and cultivated, the metagenomic methods have become one of the most important methods to analyze microbial community as a whole. With the fast accumulation of metagenomic samples and the advance of next-generation sequencing techniques, it is now possible to qualitatively and quantitatively assess all taxa (features) in a microbial community. A set of taxa with presence/absence or their different abundances could potentially be used as taxonomical biomarkers for identification of the corresponding microbial community’s phenotype. Though there exist some bioinformatics methods for metagenomic biomarker discovery, current methods are not robust, accurate and fast enough at selection of non-redundant biomarkers for prediction of microbial community’s phenotype. In this study, we have proposed a novel method, MetaBoot, that combines the techniques of mRMR (minimal redundancy maximal relevance) and bootstrapping, for discover of non-redundant biomarkers for microbial communities through mining of metagenomic data. MetaBoot has been tested and compared with other methods on well-designed simulated datasets considering normal and gamma distribution as well as publicly available metagenomic datasets. Results have shown that MetaBoot was robust across datasets of varied complexity and taxonomical distribution patterns and could also select discriminative biomarkers with quite high accuracy and biological consistency. Thus, MetaBoot is suitable for robustly and accurately discover taxonomical biomarkers for different microbial communities. PMID:26213658

  9. [Establishment of ARDRA system for Panax ginseng cultivated soil microbial community study].

    PubMed

    Ying, Yixin; Ding, Wanlong; Li, Yong

    2011-02-01

    In this study, ARDRA system was established for Panax ginseng cultivated soil microbial community analysis. In the process of soil analysis we found that, ARDRA can not only distinguish soil microbial communities, proportion of each microbial type in total microorganisms can be calculated based on profiles of restricted enzyme digested 16S rDNA, also. Results indicated that, ARDRA system established was able to analyze microbial communities of P. ginseng cultivated soil samples.

  10. Community Assessment, 2001.

    ERIC Educational Resources Information Center

    Bradbury, Tom; Cable, Libby

    This report presents data from a 2001 telephone survey of registered voters that examined community attitudes and expectations regarding public education in the Charlotte-Mecklenburg public school system (CMS). Respondents were committed to improving public schools and willing to increase taxes to achieve that goal. They expressed ambivalence…

  11. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities.

    PubMed

    de Vries, Franciska T; Manning, Pete; Tallowin, Jerry R B; Mortimer, Simon R; Pilgrim, Emma S; Harrison, Kathryn A; Hobbs, Phil J; Quirk, Helen; Shipley, Bill; Cornelissen, Johannes H C; Kattge, Jens; Bardgett, Richard D

    2012-11-01

    The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community-weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.

  12. Computational meta'omics for microbial community studies

    PubMed Central

    Segata, Nicola; Boernigen, Daniela; Tickle, Timothy L; Morgan, Xochitl C; Garrett, Wendy S; Huttenhower, Curtis

    2013-01-01

    Complex microbial communities are an integral part of the Earth's ecosystem and of our bodies in health and disease. In the last two decades, culture-independent approaches have provided new insights into their structure and function, with the exponentially decreasing cost of high-throughput sequencing resulting in broadly available tools for microbial surveys. However, the field remains far from reaching a technological plateau, as both computational techniques and nucleotide sequencing platforms for microbial genomic and transcriptional content continue to improve. Current microbiome analyses are thus starting to adopt multiple and complementary meta'omic approaches, leading to unprecedented opportunities to comprehensively and accurately characterize microbial communities and their interactions with their environments and hosts. This diversity of available assays, analysis methods, and public data is in turn beginning to enable microbiome-based predictive and modeling tools. We thus review here the technological and computational meta'omics approaches that are already available, those that are under active development, their success in biological discovery, and several outstanding challenges. PMID:23670539

  13. The genotypic view of social interactions in microbial communities.

    PubMed

    Mitri, Sara; Foster, Kevin Richard

    2013-01-01

    Dense and diverse microbial communities are found in many environments. Disentangling the social interactions between strains and species is central to understanding microbes and how they respond to perturbations. However, the study of social evolution in microbes tends to focus on single species. Here, we broaden this perspective and review evolutionary and ecological theory relevant to microbial interactions across all phylogenetic scales. Despite increased complexity, we reduce the theory to a simple null model that we call the genotypic view. This states that cooperation will occur when cells are surrounded by identical genotypes at the loci that drive interactions, with genetic identity coming from recent clonal growth or horizontal gene transfer (HGT). In contrast, because cooperation is only expected to evolve between different genotypes under restrictive ecological conditions, different genotypes will typically compete. Competition between two genotypes includes mutual harm but, importantly, also many interactions that are beneficial to one of the two genotypes, such as predation. The literature offers support for the genotypic view with relatively few examples of cooperation between genotypes. However, the study of microbial interactions is still at an early stage. We outline the logic and methods that help to better evaluate our perspective and move us toward rationally engineering microbial communities to our own advantage.

  14. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    PubMed

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  15. Computational meta'omics for microbial community studies.

    PubMed

    Segata, Nicola; Boernigen, Daniela; Tickle, Timothy L; Morgan, Xochitl C; Garrett, Wendy S; Huttenhower, Curtis

    2013-01-01

    Complex microbial communities are an integral part of the Earth's ecosystem and of our bodies in health and disease. In the last two decades, culture-independent approaches have provided new insights into their structure and function, with the exponentially decreasing cost of high-throughput sequencing resulting in broadly available tools for microbial surveys. However, the field remains far from reaching a technological plateau, as both computational techniques and nucleotide sequencing platforms for microbial genomic and transcriptional content continue to improve. Current microbiome analyses are thus starting to adopt multiple and complementary meta'omic approaches, leading to unprecedented opportunities to comprehensively and accurately characterize microbial communities and their interactions with their environments and hosts. This diversity of available assays, analysis methods, and public data is in turn beginning to enable microbiome-based predictive and modeling tools. We thus review here the technological and computational meta'omics approaches that are already available, those that are under active development, their success in biological discovery, and several outstanding challenges.

  16. Metabolic modeling of a mutualistic microbial community

    SciTech Connect

    Stolyar, Sergey; Van Dien, Steve; Hillesland, Kristina Linnea; Pinel, Nicolas; Lie, Thomas J.; Leigh, John A.; Stahl, David A.

    2007-03-13

    The rate of production of methane in many environmentsdepends upon mutualistic interactions between sulfate-reducing bacteriaand methanogens. To enhance our understanding of these relationships, wetook advantage of the fully sequenced genomes of Desulfovibrio vulgarisand Methanococcus maripaludis to produce and analyze the firstmultispecies stoichiometric metabolic model. Model results were comparedto data on growth of the co-culture on lactate in the absence of sulfate.The model accurately predicted several ecologically relevantcharacteristics, including the flux of metabolites and the ratio of D.vulgaris to M. maripaludis cells during growth. In addition, the modeland our data suggested that it was possible to eliminate formate as aninterspecies electron shuttle, but hydrogen transfer was essential forsyntrophic growth. Our work demonstrated that reconstructed metabolicnetworks and stoichiometric models can serve not only to predictmetabolic fluxes and growth phenotypes of single organisms, but also tocapture growth parameters and community composition of simple bacterialcommunities.

  17. Quantitative comparison of the in situ microbial communities in different biomes

    SciTech Connect

    White, D.C. |; Ringelberg, D.B.; Palmer, R.J.

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedly documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography/

  18. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity.

    PubMed

    Wolfe, Benjamin E; Button, Julie E; Santarelli, Marcela; Dutton, Rachel J

    2014-07-17

    Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137 different rind communities across 10 countries revealed 24 widely distributed and culturable genera of bacteria and fungi as dominant community members. Reproducible community types formed independent of geographic location of production. Intensive temporal sampling demonstrated that assembly of these communities is highly reproducible. Patterns of community composition and succession observed in situ can be recapitulated in a simple in vitro system. Widespread positive and negative interactions were identified between bacterial and fungal community members. Cheese rind microbial communities represent an experimentally tractable system for defining mechanisms that influence microbial community assembly and function.

  19. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity

    PubMed Central

    Wolfe, Benjamin E.; Button, Julie E.; Santarelli, Marcela; Dutton, Rachel J.

    2014-01-01

    SUMMARY Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137 different rind communities across 10 countries revealed 24 widely distributed and culturable genera of bacteria and fungi as dominant community members. Reproducible community types formed independent of geographic location of production. Intensive temporal sampling demonstrated that assembly of these communities is highly reproducible. Patterns of community composition and succession observed in situ can be recapitulated in a simple in vitro system. Widespread positive and negative interactions were identified between bacterial and fungal community members. Cheese rind microbial communities represent an experimentally tractable system for defining mechanisms that influence microbial community assembly and function. PMID:25036636

  20. Soil Microbial Community Responses to Short-term Multiple Experimental Climate Change Drivers

    NASA Astrophysics Data System (ADS)

    Li, Guanlin; Lee, Jongyeol; Lee, Sohye; Roh, Yujin; Son, Yowhan

    2016-04-01

    It is agreed that soil microbial communities are responsible for the cycling of carbon and nutrients in ecosystems; however, the response of these microbial communities to climate change has not been clearly understood. In this study, we measured the direct and interactive effects of climate change drivers on soil bacterial and fungal communities (abundance and composition) in an open-field multifactor climate change experiment. The experimental treatment system was established with two-year-old Pinus densiflora seedlings at Korea University in April 2013, and consisted of six different treatments with three replicates: two levels of air temperature warming (control and +3° C) were crossed with three levels of precipitation manipulation (control, -30% and +30%). After 2.5 years of treatments, in August, 2015, soil samples were collected from the topsoil (0-15cm) of all plots (n=18). High-throughput sequencing technology was used to assess the abundance and composition of soil bacterial and fungal community. Analysis of variance for a blocked split-plot design was used to detect the effects of climate change drivers and their interaction on the abundance and composition of soil bacterial and fungal community. Our results showed that 1) only the significant effect of warming on fungal community abundance was observed (P <0.05); 2) on average, warming decreased both bacterial and fungal community abundance by 20.90% and 32.30%, 6.69% and 45.89%, 14.71% and 19.56% in control, decreased, and increased precipitation plots, respectively; 3) however, warming increased the relative bacterium/fungus ratio on average by 14.03%, 37.03% and 14.31% in control, decreased, and increased precipitation plots, respectively; 4) the phylogenetic distribution of bacterial and fungal groups and their relative abundance varied among treatments; 5) treatments altered the relative abundance of Ascomycota and Basidiomycota, where Ascomycota decreased with a concomitant increase in the

  1. Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Wang, Jingwei; Zhang, Zhaojing; Zhang, Xuwang; Zhou, Hao; Zhou, Jiti

    2015-01-01

    The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures. PMID:25909735

  2. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    PubMed Central

    Niederberger, Thomas D.; Sohm, Jill A.; Gunderson, Troy E.; Parker, Alexander E.; Tirindelli, Joëlle; Capone, Douglas G.; Carpenter, Edward J.; Cary, Stephen C.

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm3 for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas. PMID:25674080

  3. Microbial Community Acquisition of Nutrients from Mineral Surfaces. Final Report

    SciTech Connect

    Hochella, M. F.

    2003-06-03

    Minerals and microbes undergo complex interactions in nature that impact broad aspects of near-surface Earth chemistry. Our primary objective in this project was to gain insight into how microbial species and communities acquire critical but tightly held nutrients residing on or within minerals common in rocks and soils, and to quantitatively study related microbe-mineral interactions including cell adhesion, electron transfer, and siderophore-mineral interaction processes.

  4. Dynamics in microbial communities: Unraveling mechanisms to identify principles

    SciTech Connect

    Konopka, Allan; Lindemann, Stephen R.; Fredrickson, Jim K.

    2015-07-01

    Diversity begets higher order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions, and it is this “system” that is the basis for higher order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.

  5. Dynamics in microbial communities: unraveling mechanisms to identify principles

    PubMed Central

    Konopka, Allan; Lindemann, Stephen; Fredrickson, Jim

    2015-01-01

    Diversity begets higher-order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions and it is this ‘system' that is the basis for higher-order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions. PMID:25526370

  6. Survival of a microbial soil community under Martian conditions

    NASA Astrophysics Data System (ADS)

    Hansen, A. A.; Noernberg, P.; Merrison, J.; Lomstein, B. Aa.; Finster, K. W.

    2003-04-01

    Because of the similarities between Earth and Mars early history the hypothesis was forwarded that Mars is a site where extraterrestrial life might have and/or may still occur(red). Sample-return missions are planned by NASA and ESA to test this hypothesis. The enormous economic costs and the logistic challenges of these missions make earth-based model facilities inevitable. The Mars simulation system at University of Aarhus, Denmark allows microbiological experiments under Mars analogue conditions. Thus detailed studies on the effect of Mars environmental conditions on the survival and the activity of a natural microbial soil community were carried out. Changes in the soil community were determined with a suite of different approaches: 1) total microbial respiration activity was investigated with 14C-glucose, 2) the physiological profile was investigated by the EcoLog-system, 3) colony forming units were determined by plate counts and 4) the microbial diversity on the molecular level was accessed with Denaturing Gradient Gel Electrophoresis. The simulation experiments showed that a part of the bacterial community survived Martian conditions corresponding to 9 Sol. These and future simulation experiments will contribute to our understanding of the possibility for extraterrestrial and terrestrial life on Mars.

  7. Biofouling and microbial communities in membrane distillation and reverse osmosis.

    PubMed

    Zodrow, Katherine R; Bar-Zeev, Edo; Giannetto, Michael J; Elimelech, Menachem

    2014-11-18

    Membrane distillation (MD) is an emerging desalination technology that uses low-grade heat to drive water vapor across a microporous hydrophobic membrane. Currently, little is known about the biofilms that grow on MD membranes. In this study, we use estuarine water collected from Long Island Sound in a bench-scale direct contact MD system to investigate the initial stages of biofilm formation. For comparison, we studied biofilm formation in a bench-scale reverse osmosis (RO) system using the same feedwater. These two membrane desalination systems expose the natural microbial community to vastly different environmental conditions: high temperatures with no hydraulic pressure in MD and low temperature with hydraulic pressure in RO. Over the course of 4 days, we observed a steady decline in bacteria concentration (nearly 2 orders of magnitude) in the MD feed reservoir. Even with this drop in planktonic bacteria, significant biofilm formation was observed. Biofilm morphologies on MD and RO membranes were markedly different. MD membrane biofilms were heterogeneous and contained several colonies, while RO membrane biofilms, although thicker, were a homogeneous mat. Phylogenetic analysis using next-generation sequencing of 16S rDNA showed significant shifts in the microbial communities. Bacteria representing the orders Burkholderiales, Rhodobacterales, and Flavobacteriales were most abundant in the MD biofilms. On the basis of the results, we propose two different regimes for microbial community shifts and biofilm development in RO and MD systems. PMID:25295386

  8. Metaproteomics of complex microbial communities in biogas plants

    PubMed Central

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-01-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed. PMID:25874383

  9. Biofouling and microbial communities in membrane distillation and reverse osmosis.

    PubMed

    Zodrow, Katherine R; Bar-Zeev, Edo; Giannetto, Michael J; Elimelech, Menachem

    2014-11-18

    Membrane distillation (MD) is an emerging desalination technology that uses low-grade heat to drive water vapor across a microporous hydrophobic membrane. Currently, little is known about the biofilms that grow on MD membranes. In this study, we use estuarine water collected from Long Island Sound in a bench-scale direct contact MD system to investigate the initial stages of biofilm formation. For comparison, we studied biofilm formation in a bench-scale reverse osmosis (RO) system using the same feedwater. These two membrane desalination systems expose the natural microbial community to vastly different environmental conditions: high temperatures with no hydraulic pressure in MD and low temperature with hydraulic pressure in RO. Over the course of 4 days, we observed a steady decline in bacteria concentration (nearly 2 orders of magnitude) in the MD feed reservoir. Even with this drop in planktonic bacteria, significant biofilm formation was observed. Biofilm morphologies on MD and RO membranes were markedly different. MD membrane biofilms were heterogeneous and contained several colonies, while RO membrane biofilms, although thicker, were a homogeneous mat. Phylogenetic analysis using next-generation sequencing of 16S rDNA showed significant shifts in the microbial communities. Bacteria representing the orders Burkholderiales, Rhodobacterales, and Flavobacteriales were most abundant in the MD biofilms. On the basis of the results, we propose two different regimes for microbial community shifts and biofilm development in RO and MD systems.

  10. Metaproteomics of complex microbial communities in biogas plants.

    PubMed

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-09-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.

  11. Linking microbial community structure and microbial processes: An empirical and conceptual overview

    USGS Publications Warehouse

    Bier, R.L.; Bernhardt, E.S.;; Boot, C.M.; Graham, E.B.;; Hall, E.K.; Lennon, J.T.; Nemergut, D.R.; Osborne, B.B.; Ruiz-Gonzalez, C.; Schimel, J.P.; Waldrop, Mark P.; Wallenstein, M.D.

    2015-01-01

    A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.

  12. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    PubMed

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were e