Science.gov

Sample records for assess plant diversity

  1. PLANT DIVERSITY

    EPA Science Inventory

    Habitat change statistics and species-area curves were used to estimate the effects of alternative future scenarios for agriculture on plant diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future s...

  2. Assessing the diversity of bacterial communities associated with plants

    PubMed Central

    Andreote, Fernando Dini; Azevedo, João Lúcio; Araújo, Welington Luiz

    2009-01-01

    Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

  3. Evolution & Diversity in Plants.

    ERIC Educational Resources Information Center

    Pearson, Lorentz C.

    1988-01-01

    Summarizes recent findings that help in understanding how evolution has brought about the diversity of plant life that presently exists. Discusses basic concepts of evolution, diversity and classification, the three-line hypothesis of plant evolution, the origin of fungi, and the geologic time table. Included are 31 references. (CW)

  4. Palaeo plant diversity in subtropical Africa - ecological assessment of a conceptual model of climate-vegetation interaction

    NASA Astrophysics Data System (ADS)

    Groner, V. P.; Claussen, M.; Reick, C.

    2015-07-01

    We here critically re-assess a conceptual model dealing with the potential effect of plant diversity on climate-vegetation feedback, and provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP). Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past two decades using a wide range of model and palaeoproxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013) introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate-vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. Based on recently published pollen data and the current state of ecological literature, we evaluate the representation of climate-vegetation feedback in this conceptual approach, and put the suggested conclusions into an ecological context. In principle, the original model reproduces the main features of different plant types interacting together with climate although vegetation determinants other than precipitation are neglected. However, the model cannot capture the diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. In order to fill the gaps in the description of plant types regarding AHP diversity, we modify the original model in four main aspects. First, the growth ranges in terms of moisture requirements are extended by upper limits to represent full environmental envelopes. Second, data-based AHP plant types replace the hypothetical plant

  5. Assessing Diverse Populations.

    ERIC Educational Resources Information Center

    Lee, Courtland C.

    This keynote address begins with examples that underscore how profoundly the issues of multiculturalism and diversity impact the consciousness of society at the end of the 20th century. Changes in assessment that can lead to assessment for change in a culturally diverse society are based on the ideas that "assessment as a process must be…

  6. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    PubMed Central

    Govindaraj, M.; Vetriventhan, M.; Srinivasan, M.

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  7. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    PubMed

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  8. Palaeo plant diversity in subtropical Africa - ecological assessment of a conceptual model of climate-vegetation interaction

    NASA Astrophysics Data System (ADS)

    Groner, V. P.; Claussen, M.; Reick, C.

    2015-10-01

    We critically reassess a conceptual model here, dealing with the potential effect of plant diversity on climate-vegetation feedback, and we provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP). Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past 2 decades using a wide range of model and palaeo-proxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013) introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate-vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. In the light of recently published pollen data and the current state of ecological literature, the conceptual model by Claussen et al. (2013) reproduces the main features of different plant types interacting together with climate, but it does not capture the reconstructed diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. With a new model version adjusted to AHP vegetation, we can simulate a diverse mosaic-like environment as reconstructed from pollen, and we observe a stabilizing effect of high functional diversity on vegetation cover and precipitation. Sensitivity studies with different combinations of plant types highlight the importance of plant composition on system stability, and the stabilizing or destabilizing potential a single plant type may inherit. The model's simplicity limits its application; however, it provides a useful tool to

  9. Pyrodiversity begets plant-pollinator community diversity.

    PubMed

    Ponisio, Lauren C; Wilkin, Kate; M'Gonigle, Leithen K; Kulhanek, Kelly; Cook, Lindsay; Thorp, Robbin; Griswold, Terry; Kremen, Claire

    2016-05-01

    Fire has a major impact on the structure and function of many ecosystems globally. Pyrodiversity, the diversity of fires within a region (where diversity is based on fire characteristics such as extent, severity, and frequency), has been hypothesized to promote biodiversity, but changing climate and land management practices have eroded pyrodiversity. To assess whether changes in pyrodiversity will have impacts on ecological communities, we must first understand the mechanisms that might enable pyrodiversity to sustain biodiversity, and how such changes might interact with other disturbances such as drought. Focusing on plant-pollinator communities in mixed-conifer forest with frequent fire in Yosemite National Park, California, we examine how pyrodiversity, combined with drought intensity, influences those communities. We find that pyrodiversity is positively related to the richness of the pollinators, flowering plants, and plant-pollinator interactions. On average, a 5% increase in pyrodiversity led to the gain of approximately one pollinator and one flowering plant species and nearly two interactions. We also find that a diversity of fire characteristics contributes to the spatial heterogeneity (β-diversity) of plant and pollinator communities. Lastly, we find evidence that fire diversity buffers pollinator communities against the effects of drought-induced floral resource scarcity. Fire diversity is thus important for the maintenance of flowering plant and pollinator diversity and predicted shifts in fire regimes to include less pyrodiversity compounded with increasing drought occurrence will negatively influence the richness of these communities in this and other forested ecosystems. In addition, lower heterogeneity of fire severity may act to reduce spatial turnover of plant-pollinator communities. The heterogeneity of community composition is a primary determinant of the total species diversity present in a landscape, and thus, lower pyrodiversity may

  10. Pyrodiversity begets plant-pollinator community diversity.

    PubMed

    Ponisio, Lauren C; Wilkin, Kate; M'Gonigle, Leithen K; Kulhanek, Kelly; Cook, Lindsay; Thorp, Robbin; Griswold, Terry; Kremen, Claire

    2016-05-01

    Fire has a major impact on the structure and function of many ecosystems globally. Pyrodiversity, the diversity of fires within a region (where diversity is based on fire characteristics such as extent, severity, and frequency), has been hypothesized to promote biodiversity, but changing climate and land management practices have eroded pyrodiversity. To assess whether changes in pyrodiversity will have impacts on ecological communities, we must first understand the mechanisms that might enable pyrodiversity to sustain biodiversity, and how such changes might interact with other disturbances such as drought. Focusing on plant-pollinator communities in mixed-conifer forest with frequent fire in Yosemite National Park, California, we examine how pyrodiversity, combined with drought intensity, influences those communities. We find that pyrodiversity is positively related to the richness of the pollinators, flowering plants, and plant-pollinator interactions. On average, a 5% increase in pyrodiversity led to the gain of approximately one pollinator and one flowering plant species and nearly two interactions. We also find that a diversity of fire characteristics contributes to the spatial heterogeneity (β-diversity) of plant and pollinator communities. Lastly, we find evidence that fire diversity buffers pollinator communities against the effects of drought-induced floral resource scarcity. Fire diversity is thus important for the maintenance of flowering plant and pollinator diversity and predicted shifts in fire regimes to include less pyrodiversity compounded with increasing drought occurrence will negatively influence the richness of these communities in this and other forested ecosystems. In addition, lower heterogeneity of fire severity may act to reduce spatial turnover of plant-pollinator communities. The heterogeneity of community composition is a primary determinant of the total species diversity present in a landscape, and thus, lower pyrodiversity may

  11. Facilitative plant interactions and climate simultaneously drive alpine plant diversity.

    PubMed

    Cavieres, Lohengrin A; Brooker, Rob W; Butterfield, Bradley J; Cook, Bradley J; Kikvidze, Zaal; Lortie, Christopher J; Michalet, Richard; Pugnaire, Francisco I; Schöb, Christian; Xiao, Sa; Anthelme, Fabien; Björk, Robert G; Dickinson, Katharine J M; Cranston, Brittany H; Gavilán, Rosario; Gutiérrez-Girón, Alba; Kanka, Robert; Maalouf, Jean-Paul; Mark, Alan F; Noroozi, Jalil; Parajuli, Rabindra; Phoenix, Gareth K; Reid, Anya M; Ridenour, Wendy M; Rixen, Christian; Wipf, Sonja; Zhao, Liang; Escudero, Adrián; Zaitchik, Benjamin F; Lingua, Emanuele; Aschehoug, Erik T; Callaway, Ragan M

    2014-02-01

    Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.

  12. Functionally and phylogenetically diverse plant communities key to soil biota.

    PubMed

    Milcu, Alexandru; Allan, Eric; Roscher, Christiane; Jenkins, Tania; Meyer, Sebastian T; Flynn, Dan; Bessler, Holger; Buscot, François; Engels, Christof; Gubsch, Marlén; König, Stephan; Lipowsky, Annett; Loranger, Jessy; Renker, Carsten; Scherber, Christoph; Schmid, Bernhard; Thébault, Elisa; Wubet, Tesfaye; Weisser, Wolfgang W; Scheu, Stefan; Eisenhauer, Nico

    2013-08-01

    Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity--ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.

  13. Plant functional group diversity promotes soil protist diversity.

    PubMed

    Ledeganck, Pieter; Nijs, Ivan; Beyens, Louis

    2003-07-01

    We tested whether effects of plant diversity can propagate through food webs, down to heterotrophic protists not linked directly to plants. To this end we synthesised grassland ecosystems with varying numbers of plant functional groups (FGN) and assessed corresponding changes in testate amoebae communities. The number of plant species was kept constant. When FGN was increased from 1 to 3, species number and total community density of live testate amoebae were enhanced according to a linear and a saturating function, respectively. From FGN 1 to 2, the appearance of new testate amoebae species did not affect the presence of the resident species, whereas, from FGN 2 to 3 about one quarter of the resident testate amoebae species was replaced, without altering the total species number. Overall, density by species increased, while evenness of the testate amoebae community was not affected by FGN; although Trinema lineare, one of the most common species, became more abundant. The observed relationship between plant functional group diversity and testate amoebae diversity could shed new light on the biogeographical distribution patterns of protists.

  14. Plant functional group diversity promotes soil protist diversity.

    PubMed

    Ledeganck, Pieter; Nijs, Ivan; Beyens, Louis

    2003-07-01

    We tested whether effects of plant diversity can propagate through food webs, down to heterotrophic protists not linked directly to plants. To this end we synthesised grassland ecosystems with varying numbers of plant functional groups (FGN) and assessed corresponding changes in testate amoebae communities. The number of plant species was kept constant. When FGN was increased from 1 to 3, species number and total community density of live testate amoebae were enhanced according to a linear and a saturating function, respectively. From FGN 1 to 2, the appearance of new testate amoebae species did not affect the presence of the resident species, whereas, from FGN 2 to 3 about one quarter of the resident testate amoebae species was replaced, without altering the total species number. Overall, density by species increased, while evenness of the testate amoebae community was not affected by FGN; although Trinema lineare, one of the most common species, became more abundant. The observed relationship between plant functional group diversity and testate amoebae diversity could shed new light on the biogeographical distribution patterns of protists. PMID:13677451

  15. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  16. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    PubMed

    Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.

  17. Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata

    PubMed Central

    Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  18. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    PubMed

    Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  19. Diversity protects plant communities against generalist molluscan herbivores.

    PubMed

    Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Kehrli, Patrik; Aebi, Alexandre; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

    2012-10-01

    Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a "low plant diversity - high mollusk abundance" trajectory.

  20. Diversity protects plant communities against generalist molluscan herbivores

    PubMed Central

    Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Kehrli, Patrik; Aebi, Alexandre; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

    2012-01-01

    Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a “low plant diversity – high mollusk abundance” trajectory. PMID:23145332

  1. How does pedogenesis drive plant diversity?

    USGS Publications Warehouse

    Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.

    2013-01-01

    Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.

  2. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    PubMed

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants. PMID:27129320

  3. Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USA

    USGS Publications Warehouse

    Kalkhan, M.A.; Stafford, E.J.; Stohlgren, T.J.

    2007-01-01

    Geospatial statistical modelling and thematic maps have recently emerged as effective tools for the management of natural areas at the landscape scale. Traditional methods for the collection of field data pertaining to questions of landscape were developed without consideration for the parameters of these applications. We introduce an alternative field sampling design based on smaller unbiased random plot and subplot locations called the pixel nested plot (PNP). We demonstrate the applicability of the PNP design of 15 m x 15 m to assess patterns of plant diversity and species richness across the landscape at Rocky Mountain National Park (RMNP), Colorado, USA in a time (cost)-efficient manner for field data collection. Our results produced comparable results to a previous study in the Beaver Meadow study (BMS) area within RMNP, where there was a demonstrated focus of plant diversity. Our study used the smaller PNP sampling design for field data collection which could be linked to geospatial information data and could be used for landscape-scale analyses and assessment applications. In 2003, we established 61 PNP in the eastern region of RMNP. We present a comparison between this approach using a sub-sample of 19 PNP from this data set and 20 of Modified Whittaker nested plots (MWNP) of 20 m x 50 m that were collected in the BMS area. The PNP captured 266 unique plant species while the MWNP captured 275 unique species. Based on a comparison of PNP and MWNP in the Beaver Meadows area, RMNP, the PNP required less time and area sampled to achieve a similar number of species sampled. Using the PNP approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and therefore cost-effective manner. ?? 2007 The Authors.

  4. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  5. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    EPA Science Inventory

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  6. Effects of herbivores on grassland plant diversity.

    PubMed

    Olff, H; Ritchie, M E

    1998-07-01

    The role of herbivores in controlling plant species richness is a critical issue in the conservation and management of grassland biodiversity. Numerous field experiments in grassland plant communities show that herbivores often, but not always, increase plant diversity. Recent work suggests that the mechanisms of these effects involve alteration of local colonization of species from regional species pools or local extinction of species, and recent syntheses and models suggest that herbivore effects on plant diversity should vary across environmental gradients of soil fertility and precipitation.

  7. [Mycorrhizal diversity and its significance in plant growth and development].

    PubMed

    Shi, Zhaoyong; Chen, Yinglong; Liu, Runjin

    2003-09-01

    Mycorrhizal diversity, including morphological, species and functional diversity, is an integrative component of biodiversities. Many experiments showed that mycorrhizal diversity played an important role in the origin, evolution, distribution, survival, growth and development of plants. But, mycorrhizal diversity is dependent on plant diversity. It was suggested that mycorrhizal and plant diversities stimulated or retarded each other. The significance of mycorrhizal diversity in plant diversity was also discussed.

  8. Plant diversity effects on root decomposition in grasslands

    NASA Astrophysics Data System (ADS)

    Chen, Hongmei; Mommer, Liesje; van Ruijven, Jasper; de Kroon, Hans; Gessler, Arthur; Scherer-Lorenzen, Michael; Wirth, Christian; Weigelt, Alexandra

    2016-04-01

    understand the negative diversity-root decomposition relationship we additionally aim to unravel the true predictors of the diversity effect. We use morphological and chemical traits of community bulk roots to specify the root substrate quality effect. We use soil physical and chemical conditions as well as diversity and abundance of soil decomposers to describe the effect of the soil decomposition environment. Moreover, plant diversity is included as species richness, functional group richness and measures of functional diversity calculated with a large set of traits for all 60 species of the Jena Experiment. Using structural equation modeling (SEM) we integrate all this information to assess the individual pathways controlling the negative diversity-root decomposition relationship to promote our mechanistic understanding of increased soil C accumulation in more diverse grassland plant communities.

  9. Plant diversity accurately predicts insect diversity in two tropical landscapes.

    PubMed

    Zhang, Kai; Lin, Siliang; Ji, Yinqiu; Yang, Chenxue; Wang, Xiaoyang; Yang, Chunyan; Wang, Hesheng; Jiang, Haisheng; Harrison, Rhett D; Yu, Douglas W

    2016-09-01

    Plant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (Science, 338, 2012 and 1481) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now require a high-throughput pipeline to operationalize this result so that we can (i) test competing explanations for tropical arthropod megadiversity, (ii) improve estimates of global eukaryotic species diversity, and (iii) use plant and arthropod communities as efficient proxies for each other, thus improving the efficiency of conservation planning and of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaise-trap samples across two tropical landscapes in China. We demonstrate that plant species richness can accurately predict arthropod (mostly insect) species richness and that plant and insect community compositions are highly correlated, even in landscapes that are large, heterogeneous and anthropogenically modified. Finally, we review how metabarcoding makes feasible highly replicated tests of the major competing explanations for tropical megadiversity. PMID:27474399

  10. The evolution of plant sexual diversity.

    PubMed

    Barrett, Spencer C H

    2002-04-01

    Charles Darwin recognized that flowering plants have an unrivalled diversity of sexual systems. Determining the ecological and genetic factors that govern sexual diversification in plants is today a central problem in evolutionary biology. The integration of phylogenetic, ecological and population-genetic studies have provided new insights into the selective mechanisms that are responsible for major evolutionary transitions between reproductive modes.

  11. Relationships between Spatial Metrics and Plant Diversity in Constructed Freshwater Wetlands.

    PubMed

    Brandt, Erika C; Petersen, John E; Grossman, Jake J; Allen, George A; Benzing, David H

    2015-01-01

    The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland "cells" were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity. PMID:26296205

  12. Relationships between Spatial Metrics and Plant Diversity in Constructed Freshwater Wetlands

    PubMed Central

    Grossman, Jake J.; Allen, George A.; Benzing, David H.

    2015-01-01

    The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland “cells” were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity. PMID:26296205

  13. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.

    PubMed

    Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V

    2016-08-01

    Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.

  14. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.

    PubMed

    Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V

    2016-08-01

    Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses. PMID:27677551

  15. A hierarchical perspective of plant diversity

    USGS Publications Warehouse

    Sarr, Daniel; Hibbs, D.E.; Huston, M.

    2005-01-01

    Predictive models of plant diversity have typically focused on either a landscapea??s capacity for richness (equilibrium models), or on the processes that regulate competitive exclusion, and thus allow species to coexist (nonequilibrium models). Here, we review the concepts and purposes of a hierarchical, multiscale model of the controls of plant diversity that incorporates the equilibrium model of climatic favorability at macroscales, nonequilibrium models of competition at microscales, and a mixed model emphasizing environmental heterogeneity at mesoscales. We evaluate the conceptual model using published data from three spatially nested datasets: (1) a macroscale analysis of ecoregions in the continental and western U.S.; (2) a mesoscale study in California; and (3) a microscale study in the Siskiyou Mountains of Oregon and California. At the macroscale (areas from 3889 km2 to 638,300 km2), climate (actual evaporation) was a strong predictor of tree diversity (R2 = 0.80), as predicted by the conceptual model, but area was a better predictor for vascular plant diversity overall (R2 = 0.38), which suggests different types of plants differ in their sensitivity to climatic controls. At mesoscales (areas from 1111 km2 to 15,833 km2 ), climate was still an important predictor of richness (R2 = 0.52), but, as expected, topographic heterogeneity explained an important share of the variance (R2 = 0.19), showed positive correlations with diversity of trees, shrubs, and annual and perennial herbs, and was the primary predictor of shrub and annual plant species richness. At microscales (0.1 ha plots), spatial patterns of diversity showed a clear unimodal pattern along a climatea??driven productivity gradient and a negative relationship with soil fertility. The strong decline in understory and total diversity at the most productive sites suggests that competitive controls, as predicted, can override climatic controls at this scale. We conclude that this hierarchical

  16. Reconciling Harvest Intensity and Plant Diversity in Boreal Ecosystems: Does Intensification Influence Understory Plant Diversity?

    PubMed

    Kershaw, H Maureen; Morris, Dave M; Fleming, Robert L; Luckai, Nancy J

    2015-11-01

    Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types.

  17. Reconciling Harvest Intensity and Plant Diversity in Boreal Ecosystems: Does Intensification Influence Understory Plant Diversity?

    NASA Astrophysics Data System (ADS)

    Kershaw, H. Maureen; Morris, Dave M.; Fleming, Robert L.; Luckai, Nancy J.

    2015-11-01

    Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types.

  18. Reconciling Harvest Intensity and Plant Diversity in Boreal Ecosystems: Does Intensification Influence Understory Plant Diversity?

    PubMed

    Kershaw, H Maureen; Morris, Dave M; Fleming, Robert L; Luckai, Nancy J

    2015-11-01

    Overall demand for forest products in the boreal forest is increasing to supply growing bio-energy demands in addition to traditional forest products. As a result, there is a need to refine current forest policies to reconcile production and ecosystem function within the context of ecologically sustainable management. This study assessed understory plants' richness, evenness, and diversity in six harvested boreal black spruce-dominated stands situated on loam, sand, and peat site types 15 years after the application of four harvest treatments of increasing biomass removals. Treatments included uncut, stem-only harvest, full-tree harvest, and full-tree harvest + blading of O horizon. Following canopy removal, species richness and diversity (Shannon's and Simpson's indices) increased on all soil types. The more than doubling of slash loading on the stem-only treatment plots compared to the full-tree plots led to significantly lower species diversity on loam sites; however, the reverse was observed on peat sites where the slash provided warmer, drier microsites facilitating the establishment of a broader array of species. Preexisting ericaceous shrub and sphagnum components continued to dominate on the peat sites. Compositional shifts were most evident for the full-tree + bladed treatment on all soil types, with increases in herbaceous cover including ruderal species. The results suggest that the intensification of harvesting on plant diversity varies with soil type, and these differential results should be considered in the refinement of forest biomass-harvesting guidelines to ensure ecological sustainability and biodiversity conservation over a broad suite of soil types. PMID:26092048

  19. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity.

    PubMed

    Muller, Jonathon N; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L

    2014-01-01

    Buildings structures and surfaces are explicitly being used to grow plants, and these "urban plantings" are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant "ecological values" by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly-likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  20. Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest.

    PubMed

    Schuldt, Andreas; Assmann, Thorsten; Bruelheide, Helge; Durka, Walter; Eichenberg, David; Härdtle, Werner; Kröber, Wenzel; Michalski, Stefan G; Purschke, Oliver

    2014-05-01

    Biodiversity loss may alter ecosystem processes, such as herbivory, a key driver of ecological functions in species-rich (sub)tropical forests. However, the mechanisms underlying such biodiversity effects remain poorly explored, as mostly effects of species richness - a very basic biodiversity measure - have been studied. Here, we analyze to what extent the functional and phylogenetic diversity of woody plant communities affect herbivory along a diversity gradient in a subtropical forest. We assessed the relative effects of morphological and chemical leaf traits and of plant phylogenetic diversity on individual-level variation in herbivory of dominant woody plant species across 27 forest stands in south-east China. Individual-level variation in herbivory was best explained by multivariate, community-level diversity of leaf chemical traits, in combination with community-weighted means of single traits and species-specific phylodiversity measures. These findings deviate from those based solely on trait variation within individual species. Our results indicate a strong impact of generalist herbivores and highlight the need to assess food-web specialization to determine the direction of biodiversity effects. With increasing plant species loss, but particularly with the concomitant loss of functional and phylogenetic diversity in these forests, the impact of herbivores will probably decrease - with consequences for the herbivore-mediated regulation of ecosystem functions. PMID:24460549

  1. Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest.

    PubMed

    Schuldt, Andreas; Assmann, Thorsten; Bruelheide, Helge; Durka, Walter; Eichenberg, David; Härdtle, Werner; Kröber, Wenzel; Michalski, Stefan G; Purschke, Oliver

    2014-05-01

    Biodiversity loss may alter ecosystem processes, such as herbivory, a key driver of ecological functions in species-rich (sub)tropical forests. However, the mechanisms underlying such biodiversity effects remain poorly explored, as mostly effects of species richness - a very basic biodiversity measure - have been studied. Here, we analyze to what extent the functional and phylogenetic diversity of woody plant communities affect herbivory along a diversity gradient in a subtropical forest. We assessed the relative effects of morphological and chemical leaf traits and of plant phylogenetic diversity on individual-level variation in herbivory of dominant woody plant species across 27 forest stands in south-east China. Individual-level variation in herbivory was best explained by multivariate, community-level diversity of leaf chemical traits, in combination with community-weighted means of single traits and species-specific phylodiversity measures. These findings deviate from those based solely on trait variation within individual species. Our results indicate a strong impact of generalist herbivores and highlight the need to assess food-web specialization to determine the direction of biodiversity effects. With increasing plant species loss, but particularly with the concomitant loss of functional and phylogenetic diversity in these forests, the impact of herbivores will probably decrease - with consequences for the herbivore-mediated regulation of ecosystem functions.

  2. Plant Functional Diversity and Species Diversity in the Mongolian Steppe

    PubMed Central

    Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming

    2013-01-01

    Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to

  3. Assessment of genetic diversity and distribution of endophytic fungal communities of Alternaria solani isolates associated with the dominant Karanja plants in Sanganer Region of Rajasthan.

    PubMed

    Tiwari, Kartikeya; Chittora, Manish

    2013-12-01

    Higher plants are ubiquitously colonized with fungal endophytes that often lack readily detectable structures. Current study examines the distribution of endophytic fungal communities within Karanja plants and diversity of novel fungal endophyte Alternaria solani isolates collected from different locations of Sanganer region of Rajasthan. Results confirmed that A. solani is a major fungal endophyte consortium associated with Karanja plants. PCR Amplified fragments using random amplified polymorphic DNA (RAPD) primers were subjected to unweighted pair group method analysis (UPGMA), which clearly distinguished twelve ecologically diverse A. solani isolates. A total of 58 RAPD loci were amplified, out of which 35 (60.34%) were polymorphic and 23 were monomorphic (39.66%) in nature. These polymorphic loci were identified with an average of 2.92 bands per primer. The efficacy of RAPD markers proved as an efficient marker system with respect to detection of polymorphism and number of loci scored and can be used for the identification of a particular isolates, thereby defining core collections and strengthening their exploitation in acquiring novel products produced by them. PMID:23888281

  4. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    PubMed

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem.

  5. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    PubMed

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. PMID:26385933

  6. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    PubMed Central

    Muller, Jonathon N.; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L.

    2014-01-01

    Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context. PMID:25400642

  7. Assessing genetic structure, diversity of bacterial aerosol from aeration system in an oxidation ditch wastewater treatment plant by culture methods and bio-molecular tools.

    PubMed

    Li, Lin; Han, Yunping; Liu, Junxin

    2013-01-01

    Airborne bacteria emissions from oxidation ditch with rotating aeration brushes were investigated in a municipal wastewater treatment plant in Beijing, China. Microbial samples were collected at different distances from the rotating brushes, different heights above the water surface, and different operation state over a 3-month period (April, May, and June) in order to estimate the seasonal variation and site-related distribution characteristics of the microorganisms present. The concentration of bacterial aerosol was analyzed by culture methods, while their dominant species, genetic structure and diversity were assayed using bio-molecular tools. Results showed that total microbial concentrations were highest in June and lowest in April. The mechanical rotation caused remarkable variation in concentration and diversity of culturable airborne bacteria before and after the rotating brushes. The highest concentration was observed near the rotating brushes (931 ± 129-3,952 ± 730 CFU/m(3)), with concentration decreasing as distance and height increased. Bacterial community polymerase chain reaction and denaturing gradient gel electrophoresis indicated that diversity decreased gradually with increasing height above the water surface but remained relatively constant at the same height. All dominant bacteria identified by DNA sequence analysis belonged to Firmicutes. Pathogenic species such as Moraxella nonliquefaciens and Flavobacterium odoratum were isolated from the bioaerosols. Due to the serious health risks involved, exposure of sewage workers to airborne microorganisms caused by brush aerators should be monitored and controlled. PMID:22402990

  8. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

    USGS Publications Warehouse

    Prober, Suzanne M.; Leff, Jonathan W.; Bates, Scott T.; Borer, Elizabeth T.; Firn, Jennifer; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Bakker, Jonathan D.; Cleland, Elsa E.; DeCrappeo, Nicole; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S.; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.; Williams, Ryan J.; Fierer, Noah

    2015-01-01

    Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

  9. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide.

    PubMed

    Prober, Suzanne M; Leff, Jonathan W; Bates, Scott T; Borer, Elizabeth T; Firn, Jennifer; Harpole, W Stanley; Lind, Eric M; Seabloom, Eric W; Adler, Peter B; Bakker, Jonathan D; Cleland, Elsa E; DeCrappeo, Nicole M; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; MacDougall, Andrew S; McCulley, Rebecca L; Mitchell, Charles E; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Williams, Ryan J; Fierer, Noah

    2015-01-01

    Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m(2) plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

  10. Assessment of structural diversity in combinatorial synthesis.

    PubMed

    Fergus, Suzanne; Bender, Andreas; Spring, David R

    2005-06-01

    This article covers the combinatorial synthesis of small molecules with maximal structural diversity to generate a collection of pure compounds that are attractive for lead generation in a phenotypic, high-throughput screening approach. Nature synthesises diverse small molecules, but there are disadvantages with using natural product sources. The efficient chemical synthesis of structural diversity (and complexity) is the aim of diversity-oriented synthesis, and recent progress is reviewed. Specific highlights include a discussion of strategies to obtain structural diversity and an analysis of molecular descriptors used to classify compounds. The assessment of how successful one synthesis is versus another is subjective, therefore we test-drive software to assess structural diversity in combinatorial synthesis, which is freely available via a web interface.

  11. Characterizing variation in mycorrhiza effect among diverse plant varieties.

    PubMed

    Sawers, Ruairidh J H; Gebreselassie, Mesfin N; Janos, David P; Paszkowski, Uta

    2010-03-01

    Exploitation of arbuscular mycorrhizal fungi may be an important approach for development of reduced-input agriculture. We discuss the use of linear models to analyze variation in mycorrhiza response among diverse plant varieties in order to assess the value of mycorrhizas. Our approach allows elimination of variation linked to differences in plant performance in the absence of mycorrhizas and the selection of plant lines that might harbor genetic variation of use to improve the mycorrhizal symbiosis in agriculture. We illustrate our approach by applying it to previously published and to novel data. We suggest that in dealing with a relative trait such as mycorrhiza effect, the choice of measure used to quantify the trait greatly affects interpretation. In the plant populations under consideration, we find evidence for a greater potential to increase mycorrhiza benefit than previously suggested.

  12. Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis.

    PubMed

    Ul Haq, Shamshad; Kumar, Pradeep; Singh, R K; Verma, Kumar Sambhav; Bhatt, Ritika; Sharma, Meenakshi; Kachhwaha, Sumita; Kothari, S L

    2016-01-01

    Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks.

  13. Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis.

    PubMed

    Ul Haq, Shamshad; Kumar, Pradeep; Singh, R K; Verma, Kumar Sambhav; Bhatt, Ritika; Sharma, Meenakshi; Kachhwaha, Sumita; Kothari, S L

    2016-01-01

    Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks. PMID:27340568

  14. Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis

    PubMed Central

    Ul Haq, Shamshad; Kumar, Pradeep; Singh, R. K.; Verma, Kumar Sambhav; Bhatt, Ritika; Sharma, Meenakshi; Kachhwaha, Sumita; Kothari, S. L.

    2016-01-01

    Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks. PMID:27340568

  15. Diverse pollinator communities enhance plant reproductive success

    PubMed Central

    Albrecht, Matthias; Schmid, Bernhard; Hautier, Yann; Müller, Christine B.

    2012-01-01

    Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipulated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pollinator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship. PMID:23034701

  16. PLANT DIVERSITY OF WESTERN CHITWAN FLORISTIC APPROACH

    PubMed Central

    Dangol, D. R.; Shivakoti, G. P.

    2012-01-01

    This paper identifies and documents the plant biodiversity of western Chitwan, Nepal. Specifically, our attention was focussed on the plants of forests, grasslands and common lands based on our “Reciprocal Relation of Population and Environment Study Project” conducted during January-April 1996. This species-diversity of trees, shrubs and herbaceous flora was recorded from 117, 117, and 1049 sampling quadrats of 10×10, 3×3 and 1×1 m2, respectively. The flora of our study plots contains 236 species that belong to 191 genera and 66 families. Of 236 species of plants, 119, 113, 59, 35 and 119 species were recorded from Tikauli forest, National Park forest, forests along the Narayani river, grasslands of National Park and common lands of the western Chitwan, respectively. Dicotyledons represent 184 (77.97%) species of the total flora species followed by monocotyledons (46 spp., 19.49%) and ferns (6 spp., 2.54%), respectively. The five largest families are Leguminosae (38 spp.), Poaceae (27 spp.), Asteraceae (22 spp.), Rubiaceae (10 spp.), and Scrophulariaceae (9 spp.). Hedyotis, Grewia and Lindernia, each with 4 spp., are the most speciose genera in the flora. PMID:22899874

  17. Mechanisms Controlling the Plant Diversity Effect on Soil Microbial Community Composition and Soil Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Mellado Vázquez, P. G.; Lange, M.; Griffiths, R.; Malik, A.; Ravenek, J.; Strecker, T.; Eisenhauer, N.; Gleixner, G.

    2015-12-01

    Soil microorganisms are the main drivers of soil organic matter cycling. Organic matter input by living plants is the major energy and matter source for soil microorganisms, higher organic matter inputs are found in highly diverse plant communities. It is therefore relevant to understand how plant diversity alters the soil microbial community and soil organic matter. In a general sense, microbial biomass and microbial diversity increase with increasing plant diversity, however the mechanisms driving these interactions are not fully explored. Working with soils from a long-term biodiversity experiment (The Jena Experiment), we investigated how changes in the soil microbial dynamics related to plant diversity were explained by biotic and abiotic factors. Microbial biomass quantification and differentiation of bacterial and fungal groups was done by phospholipid fatty acid (PLFA) analysis; terminal-restriction fragment length polymorphism was used to determine the bacterial diversity. Gram negative (G-) bacteria predominated in high plant diversity; Gram positive (G+) bacteria were more abundant in low plant diversity and saprotrophic fungi were independent from plant diversity. The separation between G- and G+ bacteria in relation to plant diversity was governed by a difference in carbon-input related factors (e.g. root biomass and soil moisture) between plant diversity levels. Moreover, the bacterial diversity increased with plant diversity and the evenness of the PLFA markers decreased. Our results showed that higher plant diversity favors carbon-input related factors and this in turn favors the development of microbial communities specialized in utilizing new carbon inputs (i.e. G- bacteria), which are contributing to the export of new C from plants to soils.

  18. Exotic plant species invade hot spots of native plant diversity

    USGS Publications Warehouse

    Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

    1999-01-01

    Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and

  19. Straight Talk about Cognitive Assessment and Diversity.

    ERIC Educational Resources Information Center

    Frisby, Craig L.

    1999-01-01

    Discusses three reasons explaining heightened interest in alternative assessment in the context of diversity issues in school psychology: inadequacy of traditional test use with language populations for whom tests were not designed; the hope that alternative assessment will eliminate, reduce, or camouflage average score differences between…

  20. Environmental correlates of plant diversity in Korean temperate forests

    NASA Astrophysics Data System (ADS)

    Černý, Tomáš; Doležal, Jiří; Janeček, Štěpán; Šrůtek, Miroslav; Valachovič, Milan; Petřík, Petr; Altman, Jan; Bartoš, Michael; Song, Jong-Suk

    2013-02-01

    Mountainous areas of the Korean Peninsula are among the biodiversity hotspots of the world's temperate forests. Understanding patterns in spatial distribution of their species richness requires explicit consideration of different environmental drivers and their effects on functionally differing components. In this study, we assess the impact of both geographical and soil variables on the fine-scale (400 m2) pattern of plant diversity using field data from six national parks, spanning a 1300 m altitudinal gradient. Species richness and the slopes of species-area curves were calculated separately for the tree, shrub and herb layer and used as response variables in regression tree analyses. A cluster analysis distinguished three dominant forest communities with specific patterns in the diversity-environment relationship. The most widespread middle-altitude oak forests had the highest tree richness but the lowest richness of herbaceous plants due to a dense bamboo understory. Total richness was positively associated with soil reaction and negatively associated with soluble phosphorus and solar radiation (site dryness). Tree richness was associated mainly with soil factors, although trees are frequently assumed to be controlled mainly by factors with large-scale impact. A U-shaped relationship was found between herbaceous plant richness and altitude, caused by a distribution pattern of dwarf bamboo in understory. No correlation between the degree of canopy openness and herb layer richness was detected. Slopes of the species-area curves indicated the various origins of forest communities. Variable diversity-environment responses in different layers and communities reinforce the necessity of context-dependent differentiation for the assessment of impacts of climate and land-use changes in these diverse but intensively exploited regions.

  1. Decomposer diversity and identity influence plant diversity effects on ecosystem functioning.

    PubMed

    Eisenhauer, Nico; Reich, Peter B; Isbell, Forest

    2012-10-01

    Plant productivity and other ecosystem functions often increase with plant diversity at a local scale. Alongside various plant-centered explanations for this pattern, there is accumulating evidence that multi-trophic interactions shape this relationship. Here, we investigated for the first time if plant diversity effects on ecosystem functioning are mediated or driven by decomposer animal diversity and identity using a double-diversity microcosm experiment. We show that many ecosystem processes and ecosystem multifunctionality (herbaceous shoot biomass production, litter removal, and N uptake) were affected by both plant and decomposer diversity, with ecosystem process rates often being maximal at intermediate to high plant and decomposer diversity and minimal at both low plant and decomposer diversity. Decomposers relaxed interspecific plant competition by enlarging chemical (increased N uptake and surface-litter decomposition) and spatial (increasing deep-root biomass) habitat space and by promoting plant complementarity. Anecic earthworms and isopods functioned as key decomposers; although decomposer diversity effects did not solely rely on these two decomposer species, positive plant net biodiversity and complementarity effects only occurred in the absence of isopods and the presence of anecic earthworms. Using a structural equation model, we explained 76% of the variance in plant complementarity, identified direct and indirect effect paths, and showed that the presence of key decomposers accounted for approximately three-quarters of the explained variance. We conclude that decomposer animals have been underappreciated as contributing agents of plant diversity-ecosystem functioning relationships. Elevated decomposer performance at high plant diversity found in previous experiments likely positively feeds back to plant performance, thus contributing to the positive relationship between plant diversity and ecosystem functioning.

  2. Facilitation can increase the phylogenetic diversity of plant communities.

    PubMed

    Valiente-Banuet, Alfonso; Verdú, Miguel

    2007-11-01

    With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity. PMID:17714492

  3. Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity?

    PubMed

    Pakeman, Robin J; Stockan, Jenni A

    2014-05-01

    Understanding how community assembly is controlled by the balance of abiotic drivers (environment or management) and biotic drivers (community composition of other groups) is important in predicting the response of ecosystems to environmental change. If there are strong links between plant assemblage structure and carabid beetle functional traits and functional diversity, then it is possible to predict the impact of environmental change propagating through different functional and trophic groups. Vegetation and pitfall trap beetle surveys were carried out across twenty four sites contrasting in land use, and hence productivity and disturbance regime. Plant functional traits were very successful at explaining the distribution of carabid functional traits across the habitats studied. Key carabid response traits appeared to be body length and wing type. Carabid functional richness was significantly smaller than expected, indicating strong environmental filtering, modulated by management, soil characteristics, and by plant response traits. Carabid functional divergence was negatively related to plant functional evenness, while carabid functional evenness was positively correlated to plant functional evenness and richness. The study shows that there are clear trait linkages between the plant and the carabid assemblage that act not only through the mean traits displayed, but also via their distribution in trait space; powerful evidence that both the mean and variance of traits in one trophic group structure the assemblage of another.

  4. Language, Diversity, and Assessment in Mathematics Learning.

    ERIC Educational Resources Information Center

    Berenson, Sarah B.

    1997-01-01

    Examines the theoretical framework of psychologist Lev Vygotsky with regard to communication tools, cognition, and socio-cultural effects on these tools. Reports the results of several studies of students' word meanings of division by adapting Luria's instruments for alternative assessments. Discusses the implications of socio-cultural diversity,…

  5. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity

    PubMed Central

    Bryant, Jessica A.; Lamanna, Christine; Morlon, Hélène; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.

    2008-01-01

    The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215

  6. Power Plant Water Intake Assessment.

    ERIC Educational Resources Information Center

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  7. B Plant hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-23

    This document establishes the technical basis in support of Emergency Planning Activities for B Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific , Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  8. T Plant hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-27

    This document establishes the technical basis in support of Emergency Planning activities for the T Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  9. Plant species richness drives the density and diversity of Collembola in temperate grassland

    NASA Astrophysics Data System (ADS)

    Sabais, Alexander C. W.; Scheu, Stefan; Eisenhauer, Nico

    2011-05-01

    Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group identity. We sampled the experimental plots in spring and autumn four years after establishment of the experimental plant communities. Collembola density and diversity significantly increased with plant species and plant functional group richness highlighting the importance of the singular hypothesis for soil invertebrates. Generally, grasses and legumes beneficially affected Collembola density and diversity, whereas effects of small herbs usually were detrimental. These impacts were largely consistent in spring and autumn. By contrast, in the presence of small herbs the density of hemiedaphic Collembola and the diversity of Isotomidae increased in spring whereas they decreased in autumn. Beneficial impacts of plant diversity as well as those of grasses and legumes were likely due to increased root and microbial biomass, and elevated quantity and quality of plant residues serving as food resources for Collembola. By contrast, beneficial impacts of small herbs in spring probably reflect differences in microclimatic conditions, and detrimental effects in autumn likely were due to low quantity and quality of resources. The results point to an intimate relationship between plants and the diversity of belowground biota, even at small spatial scales, contrasting the findings of previous studies. The pronounced response of soil animals in the present study was presumably due to the fact that plant communities had established over several years. As decomposer invertebrates significantly impact plant performance, changes in soil biota density and diversity are likely

  10. Synthesis and assessment of date palm genetic diversity studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thorough assessment of genetic diversity and population differentiation of Phoenix dactylifera are critical for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on phenotypic, biochemical and molecular markers; and fruit quality tr...

  11. Positive interactions between herbivores and plant diversity shape forest regeneration.

    PubMed

    Cook-Patton, Susan C; LaForgia, Marina; Parker, John D

    2014-05-22

    The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity.

  12. Positive interactions between herbivores and plant diversity shape forest regeneration

    PubMed Central

    Cook-Patton, Susan C.; LaForgia, Marina; Parker, John D.

    2014-01-01

    The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity. PMID:24718763

  13. Plant species loss decreases arthropod diversity and shifts trophic structure.

    PubMed

    Haddad, Nick M; Crutsinger, Gregory M; Gross, Kevin; Haarstad, John; Knops, Johannes M H; Tilman, David

    2009-10-01

    Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

  14. Dosimetry for animals and plants: contending with biota diversity.

    PubMed

    Ulanovsky, A

    2016-06-01

    Diversity of living organisms and their environmental radiation exposure conditions represents a special challenge for non-human dosimetry. In order to contend with such diversity, the International Commission on Radiological Protection (ICRP) has: (a) set up points of reference by providing dose conversion coefficients (DCCs) for reference entities known as 'Reference Animals and Plants' (RAPs); and (b) used dosimetric models that pragmatically assume simple body shapes with uniform composition and density, homogeneous internal contamination, a limited set of idealised external radiation sources, and truncation of the radioactive decay chains. This pragmatic methodology has been further developed and extended systematically. Significant methodological changes include: a new extended approach for assessing doses of external exposure for terrestrial animals, transition to the contemporary ICRP radionuclide database, assessment-specific consideration of the contribution of radioactive progeny to dose coefficients of parent nuclides, and the use of generalised allometric relationships in the estimation of biokinetic or metabolic parameters. The new methodological developments resulted in a revision of the DCCs for RAPs. Tables of the dose coefficients have now been complemented by a web-based software tool, which can be used to calculate a user-specific DCC for an organism of arbitrary mass and shape, located at user-defined height above the ground, and for an arbitrary radionuclide and its radioactive progeny. PMID:26984904

  15. Technology-Enhanced Formative Assessment of Plant Identification

    ERIC Educational Resources Information Center

    Conejo, Ricardo; Garcia-Viñas, Juan Ignacio; Gastón, Aitor; Barros, Beatriz

    2016-01-01

    Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to…

  16. In the footsteps of Vavilov: plant diversity then and now

    Technology Transfer Automated Retrieval System (TEKTRAN)

    N. I. Vavilov’s theories direct present day global activities in plant science, breeding, and conservation. His expeditions around the world located centers of diversity of crop evolution. Vavilov was one of the earliest scientists to realize that wild genetic diversity could be lost, through geneti...

  17. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    PubMed

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere.

  18. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    PubMed

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere. PMID:26415663

  19. Management intensity and topography determined plant diversity in vineyards.

    PubMed

    Nascimbene, Juri; Marini, Lorenzo; Ivan, Diego; Zottini, Michela

    2013-01-01

    Vineyards are amongst the most intensive forms of agriculture often resulting in simplified landscapes where semi-natural vegetation is restricted to small scattered patches. However, a tendency toward a more sustainable management is stimulating research on biodiversity in these poorly investigated agro-ecosystems. The main aim of this study was to test the effect on plant diversity of management intensity and topography in vineyards located in a homogenous intensive hilly landscape. Specifically, this study evaluated the role of slope, mowing and herbicide treatments frequency, and nitrogen supply in shaping plant diversity and composition of life-history traits. The study was carried out in 25 vineyards located in the area of the Conegliano-Valdobbiadene DOCG (Veneto, NE Italy). In each vineyard, 10 plots were placed and the abundance of all vascular plants was recorded in each plot. Linear multiple regression was used to test the effect of management and topography on plant diversity. Management intensity and topography were both relevant drivers of plant species diversity patterns in our vineyards. The two most important factors were slope and mowing frequency that respectively yielded positive and negative effects on plant diversity. A significant interaction between these two factors was also demonstrated, warning against the detrimental effects of increasing mowing intensity on steep slope where plant communities are more diverse. The response of plant communities to mowing frequency is mediated by a process of selection of resistant growth forms, such in the case of rosulate and reptant species. The other two management-related factors tested in this study, number of herbicide treatments and N fertilization, were less influential. In general, our study corroborates the idea that some simple changes in farming activities, which are compatible with grape production, should be encouraged for improving the natural and cultural value of the landscape by

  20. Management Intensity and Topography Determined Plant Diversity in Vineyards

    PubMed Central

    Nascimbene, Juri; Marini, Lorenzo; Ivan, Diego; Zottini, Michela

    2013-01-01

    Vineyards are amongst the most intensive forms of agriculture often resulting in simplified landscapes where semi-natural vegetation is restricted to small scattered patches. However, a tendency toward a more sustainable management is stimulating research on biodiversity in these poorly investigated agro-ecosystems. The main aim of this study was to test the effect on plant diversity of management intensity and topography in vineyards located in a homogenous intensive hilly landscape. Specifically, this study evaluated the role of slope, mowing and herbicide treatments frequency, and nitrogen supply in shaping plant diversity and composition of life-history traits. The study was carried out in 25 vineyards located in the area of the Conegliano-Valdobbiadene DOCG (Veneto, NE Italy). In each vineyard, 10 plots were placed and the abundance of all vascular plants was recorded in each plot. Linear multiple regression was used to test the effect of management and topography on plant diversity. Management intensity and topography were both relevant drivers of plant species diversity patterns in our vineyards. The two most important factors were slope and mowing frequency that respectively yielded positive and negative effects on plant diversity. A significant interaction between these two factors was also demonstrated, warning against the detrimental effects of increasing mowing intensity on steep slope where plant communities are more diverse. The response of plant communities to mowing frequency is mediated by a process of selection of resistant growth forms, such in the case of rosulate and reptant species. The other two management-related factors tested in this study, number of herbicide treatments and N fertilization, were less influential. In general, our study corroborates the idea that some simple changes in farming activities, which are compatible with grape production, should be encouraged for improving the natural and cultural value of the landscape by

  1. Shrines in Central Italy conserve plant diversity and large trees.

    PubMed

    Frascaroli, Fabrizio; Bhagwat, Shonil; Guarino, Riccardo; Chiarucci, Alessandro; Schmid, Bernhard

    2016-05-01

    Sacred natural sites (SNS) are instances of biocultural landscapes protected for spiritual motives. These sites frequently host important biological values in areas of Asia and Africa, where traditional resource management is still upheld by local communities. In contrast, the biodiversity value of SNS has hardly been quantitatively tested in Western contexts, where customs and traditions have relatively lost importance due to modernization and secularization. To assess whether SNS in Western contexts retain value for biodiversity, we studied plant species composition at 30 SNS in Central Italy and compared them with a paired set of similar but not sacred reference sites. We demonstrate that SNS are important for conserving stands of large trees and habitat heterogeneity across different land-cover types. Further, SNS harbor higher plant species richness and a more valuable plant species pool, and significantly contribute to diversity at the landscape scale. We suggest that these patterns are related not only to pre-existent features, but also to traditional management. Conservation of SNS should take into account these specificities, and their cultural as well as biological values, by supporting the continuation of traditional management practices.

  2. Coevolution can explain defensive secondary metabolite diversity in plants.

    PubMed

    Speed, Michael P; Fenton, Andy; Jones, Meriel G; Ruxton, Graeme D; Brockhurst, Michael A

    2015-12-01

    Many plant species produce defensive compounds that are often highly diverse within and between populations. The genetic and cellular mechanisms by which metabolite diversity is produced are increasingly understood, but the evolutionary explanations for persistent diversification in plant secondary metabolites have received less attention. Here we consider the role of plant-herbivore coevolution in the maintenance and characteristics of diversity in plant secondary metabolites. We present a simple model in which plants can evolve to invest in a range of defensive toxins, and herbivores can evolve resistance to these toxins. We allow either single-species evolution or reciprocal coevolution. Our model shows that coevolution maintains toxin diversity within populations. Furthermore, there is a fundamental coevolutionary asymmetry between plants and their herbivores, because herbivores must resist all plant toxins, whereas plants need to challenge and nullify only one resistance trait. As a consequence, average plant fitness increases and insect fitness decreases as number of toxins increases. When costs apply, the model showed both arms race escalation and strong coevolutionary fluctuation in toxin concentrations across time. We discuss the results in the context of other evolutionary explanations for secondary metabolite diversification.

  3. Severe plant invasions can increase mycorrhizal fungal abundance and diversity.

    PubMed

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-07-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)--but not cheatgrass (Bromus tectorum)--support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.

  4. Genetic diversity assessment of summer squash landraces using molecular markers.

    PubMed

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash.

  5. Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity.

    PubMed

    Rzanny, Michael; Voigt, Winfried

    2012-05-01

    1. We studied the theoretical prediction that a loss of plant species richness has a strong impact on community interactions among all trophic levels and tested whether decreased plant species diversity results in a less complex structure and reduced interactions in ecological networks. 2. Using plant species-specific biomass and arthropod abundance data from experimental grassland plots (Jena Experiment), we constructed multitrophic functional group interaction webs to compare communities based on 4 and 16 plant species. 427 insect and spider species were classified into 13 functional groups. These functional groups represent the nodes of ecological networks. Direct and indirect interactions among them were assessed using partial Mantel tests. Interaction web complexity was quantified using three measures of network structure: connectance, interaction diversity and interaction strength. 3. Compared with high plant diversity plots, interaction webs based on low plant diversity plots showed reduced complexity in terms of total connectance, interaction diversity and mean interaction strength. Plant diversity effects obviously cascade up the food web and modify interactions across all trophic levels. The strongest effects occurred in interactions between adjacent trophic levels (i.e. predominantly trophic interactions), while significant interactions among plant and carnivore functional groups, as well as horizontal interactions (i.e. interactions between functional groups of the same trophic level), showed rather inconsistent responses and were generally rarer. 4. Reduced interaction diversity has the potential to decrease and destabilize ecosystem processes. Therefore, we conclude that the loss of basal producer species leads to more simple structured, less and more loosely connected species assemblages, which in turn are very likely to decrease ecosystem functioning, community robustness and tolerance to disturbance. Our results suggest that the functioning

  6. Is plant temporal beta diversity of field margins related to changes in management practices?

    NASA Astrophysics Data System (ADS)

    Alignier, Audrey; Baudry, Jacques

    2016-08-01

    Field margins have considerable ecological significance in agriculture-dominated landscapes by supporting biodiversity and associated services. However, agricultural changes during mid-20th century led to their drastic loss with a serious threat for biodiversity. Using time-series data, we aimed to get better insights into processes underlying plant patterns of field margins through time by i) quantifying plant temporal beta diversity components, ii) assessing whether the observed changes in plant communities can be related to changes in management practices applied to field margins. During the springs of 1994, 1998 and 2001, we surveyed plant communities and management practices of the same 116 field margins in three contrasted landscapes. We estimated temporal beta diversity in plant communities and partitioned it into its two dissimilarity resultant components, accounting for replacement of species (i.e. turnover) and for the nested gain or loss of species (i.e. nestedness). We then tested whether the observed changes in plant communities between 1994 and 1998 and, between 1998 and 2001 were related to changes in management practices using linear models. Plant communities of field margins exhibited strong temporal beta diversity dominated by turnover. Temporal turnover in plant communities was partly related to changes in management practices, i.e., a decrease of grazing concomitant to an increase of herbicide spraying. However, relationships were not consistent between all landscape contexts nor time period, suggesting that other unmeasured deterministic or stochastic processes could be driving the observed plant patterns. Taken together, our results suggest that maintaining a wide diversity of field margins with contrasted management contribute to maintaining plant diversity at a landscape scale. They underline the value of investigating plant temporal diversity patterns using time-series data and thus, the need to develop long-term studies making it possible

  7. Plant Species Diversity and Pasture Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers face many challenges in pasture management, such as evolving agri-environmental schemes to protect natural resources, and need new management techniques to remain sustainable. Ecological research indicates that increased plant biodiversity benefits ecosystem functions such as primary product...

  8. Stability of production and plant species diversity in managed grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant biodiversity theory suggests that increased plant species diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production would be beneficial. In this retrospective study, I used data from three reports from the 1930s, 1940...

  9. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.

  10. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    PubMed

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  11. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    PubMed Central

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  12. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    PubMed

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  13. Assessment of genetic diversity of sweet potato in Puerto Rico.

    PubMed

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

  14. Assessment of genetic diversity of sweet potato in Puerto Rico.

    PubMed

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied.

  15. High plant diversity in Eocene South America: Evidence from Patagonia

    USGS Publications Warehouse

    Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

    2003-01-01

    Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ???47??S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

  16. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.

    PubMed

    Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.

  17. Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods

    PubMed Central

    Ebeling, Anne; Meyer, Sebastian T.; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W.

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning. PMID:25226237

  18. Assessment of genetic diversity and relationships among caladium cultivars and species using molecular markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caladium (Caladium hortulanum Birdsey) is an important aroid widely used in the ornamental plant industry. Concerns have been raised about possible loss of genetic diversity due to a drastic decline in the number of cultivars in the last century. This study assessed genetic diversity and relationshi...

  19. Phytochrome diversity in green plants and the origin of canonical plant phytochromes.

    PubMed

    Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J; Villarreal, Juan Carlos; Stevenson, Dennis W; Graham, Sean W; Wong, Gane Ka-Shu; Pryer, Kathleen M; Mathews, Sarah

    2015-01-01

    Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. PMID:26215968

  20. Phytochrome diversity in green plants and the origin of canonical plant phytochromes

    PubMed Central

    Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J.; Villarreal, Juan Carlos; Stevenson, Dennis W.; Graham, Sean W.; Wong, Gane Ka-Shu; Pryer, Kathleen M.; Mathews, Sarah

    2015-01-01

    Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. PMID:26215968

  1. Phytochrome diversity in green plants and the origin of canonical plant phytochromes.

    PubMed

    Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J; Villarreal, Juan Carlos; Stevenson, Dennis W; Graham, Sean W; Wong, Gane Ka-Shu; Pryer, Kathleen M; Mathews, Sarah

    2015-07-28

    Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives.

  2. Accelerating global access to plant diversity information.

    PubMed

    Lughadha, Eimear Nic; Miller, Chuck

    2009-11-01

    Botanic gardens play key roles in the development and dissemination of plant information resources. Drivers for change have included progress in information technology, growing public expectations of electronic access and international conservation policy. Great advances have been made in the quantity, quality and accessibility of plant information in digital form and the extent to which information from multiple providers can be accessed through a single portal. However, significant challenges remain to be addressed in making botanic gardens resources maximally accessible and impactful, not least the overwhelming volume of material which still awaits digitisation. The year 2010 represents an opportunity for botanic gardens to showcase their collaborative achievements in delivery of electronic plant information and reinforce their relevance to pressing environmental issues.

  3. Plant genotypic diversity increases population size of a herbivorous insect

    PubMed Central

    Utsumi, Shunsuke; Ando, Yoshino; Craig, Timothy P.; Ohgushi, Takayuki

    2011-01-01

    It is critical to incorporate the process of population dynamics into community genetics studies to identify the mechanisms of the linkage between host plant genetics and associated communities. We studied the effects of plant genotypic diversity of tall goldenrod Solidago altissima on the population dynamics of the aphid Uroleucon nigrotuberculatum. We found genotypic variation in plant resistance to the aphid in our experiments. To determine the impact of plant genotypic diversity on aphid population dynamics, we compared aphid densities under conditions of three treatments: single-genotype plots, mixed-genotype plots and mixed-genotype-with-cages plots. In the latter treatment plants were individually caged to prevent natural enemy attack and aphid movement among plants. The synergistic effects of genotypes on population size were demonstrated by the greater aphid population size in the mixed-genotype treatment than expected from additive effects alone. Two non-exclusive hypotheses are proposed to explain this pattern. First, there is a source–sink relationship among plant genotypes: aphids move from plant genotypes where their reproduction is high to genotypes where their reproduction is low. Second, natural enemy mortality is reduced in mixed plots in a matrix of diverse plant genotypes. PMID:21378084

  4. Putting the Plants Back into Plant Ecology: Six Pragmatic Models for Understanding and Conserving Plant Diversity

    PubMed Central

    KEDDY, PAUL

    2005-01-01

    • Background There is a compelling need to protect natural plant communities and restore them in degraded landscapes. Activities must be guided by sound scientific principles, practical conservation tools, and clear priorities. With perhaps one-third of the world's flora facing extinction, scientists and conservation managers will need to work rapidly and collaboratively, recognizing each other's strengths and limitations. As a guide to assist managers in maintaining plant diversity, six pragmatic models are introduced that are already available. Although theoretical models continue to receive far more space and headlines in scientific journals, more managers need to understand that pragmatic, rather than theoretical, models have the most promise for yielding results that can be applied immediately to plant communities. • Six Pragmatic Models For each model, key citations and an array of examples are provided, with particular emphasis on wetlands, since ‘wet and wild’ was my assigned theme for the Botanical Society of America in 2003. My own work may seem rather prominent, but the application and refinement of these models has been a theme for me and my many students over decades. The following models are reviewed: (1) species–area: larger areas usually contain more species; (2) species–biomass: plant diversity is maximized at intermediate levels of biomass; (3) centrifugal organization: multiple intersecting environmental gradients maintain regional landscape biodiversity; (4) species–frequency: a few species are frequent while most are infrequent; (5) competitive hierarchies: in the absence of constraints, large canopy-forming species dominate patches of landscape, reducing biological diversity; and (6) intermediate disturbance: perturbations such as water level fluctuations, fire and grazing are essential for maintaining plant diversity. • Conclusions The good news is that managers faced with protecting or restoring landscapes already have this

  5. Native plant diversity increases herbivory to non-natives.

    PubMed

    Pearse, Ian S; Hipp, Andrew L

    2014-11-01

    There is often an inverse relationship between the diversity of a plant community and the invasibility of that community by non-native plants. Native herbivores that colonize novel plants may contribute to diversity-invasibility relationships by limiting the relative success of non-native plants. Here, we show that, in large collections of non-native oak trees at sites across the USA, non-native oaks introduced to regions with greater oak species richness accumulated greater leaf damage than in regions with low oak richness. Underlying this trend was the ability of herbivores to exploit non-native plants that were close relatives to their native host. In diverse oak communities, non-native trees were on average more closely related to native trees and received greater leaf damage than those in depauperate oak communities. Because insect herbivores colonize non-native plants that are similar to their native hosts, in communities with greater native plant diversity, non-natives experience greater herbivory.

  6. Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands.

    PubMed

    Binkenstein, Julia; Renoult, Julien P; Schaefer, H Martin

    2013-10-01

    To preserve biodiversity and ecosystem functions in a globally changing world it is crucial to understand the effect of land use on ecosystem processes such as pollination. Floral colouration is known to be central in plant-pollinator interactions. To date, it is still unknown whether land use affects the colouration of flowering plant communities. To assess the effect of land use on the diversity and composition of flower colours in temperate grasslands, we collected data on the number of flowering plant species, blossom cover and flower reflectance spectra from 69 plant communities in two German regions, Schwäbische Alb (SA) and Hainich-Dün (HD). We analysed reflectance data of flower colours as they are perceived by honeybees and studied floral colour diversity based upon spectral loci of each flowering plant species in the Maxwell triangle. Before the first mowing, flower colour diversity decreased with increasing land-use intensity in SA, accompanied by a shift of mean flower colours of communities towards an increasing proportion of white blossom cover in both regions. By changing colour characteristics of grasslands, we suggest that increasing land-use intensity can affect the flower visitor fauna in terms of visitor behaviour and diversity. These changes may in turn influence plant reproduction in grassland plant communities. Our results indicate that land use is likely to affect communication processes between plants and flower visitors by altering flower colour traits.

  7. Herbivores and nutrients control grassland plant diversity via light limitation

    USGS Publications Warehouse

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  8. Herbivores and nutrients control grassland plant diversity via light limitation.

    PubMed

    Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H

    2014-04-24

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  9. Herbivores and nutrients control grassland plant diversity via light limitation.

    PubMed

    Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H

    2014-04-24

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light. PMID:24670649

  10. Evolution and diversity of green plant cell walls.

    PubMed

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  11. Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests

    NASA Astrophysics Data System (ADS)

    Hakkenberg, C.

    2014-12-01

    When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high

  12. Plant diversity affects behavior of generalist root herbivores, reduces crop damage, and enhances crop yield.

    PubMed

    Staudacher, Karin; Schallhart, Nikolaus; Thalinger, Bettina; Wallinger, Corinna; Juen, Anita; Traugott, Michael

    2013-07-01

    Soil-dwelling pests inflict considerable economic damage in agriculture but are hard to control. A promising strategy to reduce pest pressure on crops is to increase the plant diversity in agroecosystems. This approach, however, demands a sound understanding of species' interactions, which is widely lacking for subterranean herbivore-plant systems. Here, we examine the effects of plant diversification on wireworms, the soil-dwelling larvae of click beetles that threaten crops worldwide. We conducted a field experiment employing plant diversification by adding either wheat or a mix of six associated plants (grasses, legumes, and forbs) between rows of maize to protect it from Agriotes wireworms. Wireworm feeding behavior, dispersal between crop and associated plants, as well as maize damage and yield were examined. The former was assessed combining molecular gut content and stable isotope analysis. The pests were strongly attracted by the associated plants in August, when the crop was most vulnerable, whereas in September, shortly before harvest, this effect occurred only in the plant mix. In maize monoculture, the larvae stayed in the principal crop throughout the season. Larval delta13C signatures revealed that maize feeding was reduced up to sevenfold in wireworms of the vegetationally diversified treatments compared to those of the maize monoculture. These findings were confirmed by molecular analysis, which additionally showed a dietary preference of wireworms for specific plants in the associated plant mix. Compared to the monoculture, maize damage was reduced by 38% and 55% in the wheat and plant mix treatment, which translated into a yield increase of 30% and 38%, respectively. The present findings demonstrate that increasing the plant diversity in agroecosystems provides an effective insurance against soil pests. The underlying mechanisms are the diversion of the pest from the principle crop and a changed feeding behavior. The deployment of diverse mixes of

  13. Plant Diversity Surpasses Plant Functional Groups and Plant Productivity as Driver of Soil Biota in the Long Term

    PubMed Central

    Eisenhauer, Nico; Milcu, Alexandru; Sabais, Alexander C. W.; Bessler, Holger; Brenner, Johanna; Engels, Christof; Klarner, Bernhard; Maraun, Mark; Partsch, Stephan; Roscher, Christiane; Schonert, Felix; Temperton, Vicky M.; Thomisch, Karolin; Weigelt, Alexandra; Weisser, Wolfgang W.; Scheu, Stefan

    2011-01-01

    Background One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments. Methodology/Principal Findings We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time. Conclusions/Significance Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning. PMID:21249208

  14. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    SciTech Connect

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T; Muhlheim, Michael David; Mullens, James Allen; Poore III, Willis P; Qualls, A L; Wilson, Thomas L; Waterman, Michael E.

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same

  15. Plant-plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies

    PubMed Central

    Soliveres, Santiago; Maestre, Fernando T.

    2015-01-01

    Previous syntheses on the effects of environmental conditions on the outcome of plant-plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities. Here we: i) test how important are facilitative interactions as a driver of community structure, ii) evaluate whether the frequency of positive plant-plant interactions across differing environmental conditions and habitats is predictable, and iii) assess whether thresholds in the response of plant-plant interactions to environmental gradients exists between “moderate” and “extreme” stress levels. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environment relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and dryland areas, illustrating the high importance of positive plant-plant interactions for the maintenance of plant diversity. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dryland communities decreased globally with water

  16. Plant diversity effects on ecosystem evapotranspiration and carbon uptake: a controlled environment (Ecotron) and modeling approach

    NASA Astrophysics Data System (ADS)

    Milcu, Alexandru; Roy, Jacques

    2016-04-01

    Effects of species and functional diversity of plants on ecosystem evapotranspiration and carbon fluxes have been rarely assessed simultaneously. Here we present the results from an experiment that combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/ monoliths originating from a long-term biodiversity experiment ("The Jena Experiment") and a modelling approach. We aimed at (1) quantifying the impact of plant species richness (4 vs. 16 species) on day- and night-time ecosystem water vapor fluxes and carbon uptake, (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model, and (3) identifying the most parsimonious predictors of water vapor vapor and CO2 fluxes using plant functional trait-based metrics such as functional diversity and community weighted means. The SW model indicated that at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while at higher species richness the proportion of ecosystem transpiration (a production-related water flux) increased. This led to an increased carbon gain per amount of water vapor loss (i.e. increased water use efficiency). While the LAI controlled the carbon and water fluxes, we also found that the diversity of plant functional traits, and in particular of leaf nitrogen concentration are potential important predictors of ecosystem transpiration and carbon uptake and consequently significantly contributed to increase in water use efficiency in communities with higher plant diversity.

  17. Plant Sterol Diversity in Pollen from Angiosperms.

    PubMed

    Villette, Claire; Berna, Anne; Compagnon, Vincent; Schaller, Hubert

    2015-08-01

    Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ(5)-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.

  18. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    PubMed Central

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems. PMID:26781165

  19. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  20. Facilitation contributes to Mediterranean woody plant diversity but does not shape the diversity-productivity relationship along aridity gradients.

    PubMed

    Rey, Pedro J; Alcántara, Julio M; Manzaneda, Antonio J; Sánchez-Lafuente, Alfonso M

    2016-07-01

    The diversity-productivity relationship (humped-back model (HBM)) and the stress-gradient (SGH) hypotheses may be connected when productivity is limited primarily by aridity. We analytically connect both hypotheses and assess the contribution of facilitation to woody plant richness along the aridity gradient of the Western Mediterranean floristic region. We monitored regeneration niches of woody plants, obtaining rarefied species richness and plant relative interaction indices in 54 forests and scrublands in a 1750-km geographical range across Spain, Morocco and the Canary Islands. We verified the monotonic increase in facilitation with aridity postulated by SGH and the humped-shape pattern of species richness expected from HBM, which became manifest after expanding the aridity gradient or crossing vegetation types. Along the gradient, interaction balance turned into facilitation earlier in forest than in scrublands. The effects of aridity and interaction balance on species diversity were additive rather than interdependent. Facilitation is an important driver of woody species richness at macroecological scales because it added up to diversity in most sites, with enhanced contribution with increased stress. The HBM was not shaped by species interactions. Results suggest that facilitation may act in Mediterranean vegetation buffering against critical transitions between states allowing woody plant communities to cope with the rise in aridity expected with global warming. PMID:26959084

  1. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  2. Diversity in Plant Breeding: A New Conceptual Framework.

    PubMed

    Litrico, Isabelle; Violle, Cyrille

    2015-10-01

    Faced with an accelerating rate of environmental change and the associated need for a more sustainable, low-input agriculture, the urgent new challenge for crop science is to find ways to introduce greater diversity to cropping systems. However, there is a dearth of generic formalism in programs seeking to diversify crops. In this opinion, we propose a new framework, derived from ecological theory, that should enable diversity targets to be incorporated into plant-breeding programs. While ecological theory provides criteria for maintaining diversity and optimizing the production of mixtures, such criteria are rarely fully realized in natural ecosystems. Conversely, crop breeding should optimize both agronomic value and the ability of plants to perform and live alongside one another. This framework represents an opportunity to develop more sustainable crops and also a radical new way to apply ecological theory to cropping systems. PMID:26440430

  3. Plant expansins: diversity and interactions with plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2015-06-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.

  4. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  5. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    NASA Astrophysics Data System (ADS)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  6. Arctic plant diversity in the Early Eocene greenhouse

    PubMed Central

    Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

    2012-01-01

    For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

  7. Plant community composition, not diversity, regulates soil respiration in grasslands.

    PubMed

    Johnson, David; Phoenix, Gareth K; Grime, J Philip

    2008-08-23

    Soil respiration is responsible for recycling considerable quantities of carbon from terrestrial ecosystems to the atmosphere. There is a growing body of evidence that suggests that the richness of plants in a community can have significant impacts on ecosystem functioning, but the specific influences of plant species richness (SR), plant functional-type richness and plant community composition on soil respiration rates are unknown. Here we use 10-year-old model plant communities, comprising mature plants transplanted into natural non-sterile soil, to determine how the diversity and composition of plant communities influence soil respiration rates. Our analysis revealed that soil respiration was driven by plant community composition and that there was no significant effect of biodiversity at the three levels tested (SR, functional group and species per functional group). Above-ground plant biomass and root density were included in the analysis as covariates and found to have no effect on soil respiration. This finding is important, because it suggests that loss of particular species will have the greatest impact on soil respiration, rather than changes in biodiversity per se.

  8. Assessing foliar ascorbate content in the rice diversity panel 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early spring plantings of rice can have poor stands due to cold temperatures. Our previous studies have shown that high vitamin C (ascorbate AsA) Arabidopsis lines are tolerant to cold stress. The rice diversity panel 1 (RDP1) represents the genetic diversity of Oryza sativa and has been extensively...

  9. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    PubMed

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  10. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    PubMed Central

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M.; Bauer, Rudolf; Berg, Gabriele

    2013-01-01

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome. PMID:24391634

  11. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    PubMed

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  12. Herbivores and nutrients control grassland plant diversity via light limitation.

    SciTech Connect

    Borer, Elizabeth T.; et al, et al

    2014-01-01

    Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  13. Macroevolution and the biological diversity of plants and herbivores

    PubMed Central

    Futuyma, Douglas J.; Agrawal, Anurag A.

    2009-01-01

    Terrestrial biodiversity is dominated by plants and the herbivores that consume them, and they are one of the major conduits of energy flow up to higher trophic levels. Here, we address the processes that have generated the spectacular diversity of flowering plants (>300,000 species) and insect herbivores (likely >1 million species). Long-standing macroevolutionary hypotheses have postulated that reciprocal evolution of adaptations and subsequent bursts of speciation have given rise to much of this biodiversity. We critically evaluate various predictions based on this coevolutionary theory. Phylogenetic reconstruction of ancestral states has revealed evidence for escalation in the potency or variety of plant lineages' chemical defenses; however, escalation of defense has been moderated by tradeoffs and alternative strategies (e.g., tolerance or defense by biotic agents). There is still surprisingly scant evidence that novel defense traits reduce herbivory and that such evolutionary novelty spurs diversification. Consistent with the coevolutionary hypothesis, there is some evidence that diversification of herbivores has lagged behind, but has nevertheless been temporally correlated with that of their host-plant clades, indicating colonization and radiation of insects on diversifying plants. However, there is still limited support for the role of host-plant shifts in insect diversification. Finally, a frontier area of research, and a general conclusion of our review, is that community ecology and the long-term evolutionary history of plant and insect diversification are inexorably intertwined. PMID:19815508

  14. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    PubMed

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  15. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    PubMed

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems. PMID:27170329

  16. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland.

    PubMed

    Zuo, Xiaoan; Wang, Shaokun; Lv, Peng; Zhou, Xin; Zhao, Xueyong; Zhang, Tonghui; Zhang, Jing

    2016-01-01

    The trait-based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community-weighted mean, CWM) and the dispersion of functional trait values (FD is). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (P < 0.05). Soil fungal richness was positively associated with plant richness, biomass, CWM plant height, and soil gradient aggregated from the principal component analysis, but SEM results showed that plant richness and CWM plant height determined by soil properties were the main factors exerting direct effects. Soil gradient increased fungal richness through indirect effect on vegetation rather than direct effect. The negative indirect effect of FDis on soil fungal richness was through its effect on plant biomass. Our final SEM model based on plant functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.

  17. Climate-driven diversity dynamics in plants and plant-feeding insects.

    PubMed

    Nyman, Tommi; Linder, Hans Peter; Peña, Carlos; Malm, Tobias; Wahlberg, Niklas

    2012-08-01

    The origin of species-rich insect-plant food webs has traditionally been explained by diversifying antagonistic coevolution between plant defences and herbivore counter-defences. However, recent studies combining paleoclimatic reconstructions with time-calibrated phylogenies suggest that variation in global climate determines the distribution, abundance and diversity of plant clades and, hence, indirectly influences the balance between speciation and extinction in associated herbivore groups. Extant insect communities tend to be richest on common plant species that have many close relatives. This could be explained either by climate-driven diffuse cospeciation between plants and insects, or by elevated speciation and reduced extinction in herbivore lineages associated with expanding host taxa (resources). Progress in paleovegetation reconstructions in combination with the rapidly increasing availability of fossil-calibrated phylogenies provide means to discern between these alternative hypotheses. In particular, the 'Diffuse cospeciation' scenario predicts closely matching main diversification periods in plants and in the insects that feed upon them, while the 'Resource abundance-dependent diversification' hypothesis predicts that both positive and negative responses of insect diversity are lagged in relation to host-plant availability. The dramatic Cenozoic changes in global climate provide multiple possibilities for studying the mechanisms by which climatic shifts may drive diversity dynamics in plants and insect herbivores.

  18. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  19. 36 CFR 219.9 - Diversity of plant and animal communities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Diversity of plant and animal... PLANNING National Forest System Land Management Planning § 219.9 Diversity of plant and animal communities... diversity of plant and animal communities and the persistence of native species in the plan area....

  20. 36 CFR 219.9 - Diversity of plant and animal communities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Diversity of plant and animal... PLANNING National Forest System Land Management Planning § 219.9 Diversity of plant and animal communities... diversity of plant and animal communities and the persistence of native species in the plan area....

  1. 36 CFR 219.9 - Diversity of plant and animal communities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Diversity of plant and animal... PLANNING National Forest System Land Management Planning § 219.9 Diversity of plant and animal communities... diversity of plant and animal communities and the persistence of native species in the plan area....

  2. Promontory Facility Plant-wide Energy Assessment

    SciTech Connect

    Weir, Roger M.; Bebb, Deanna, Brown, Herman E.

    2008-03-28

    A 1-year plant-wide assessment at the ATK Promontory manufacturing facility utilizing innovative assessment technologies to identify energy savings opportunities in: steam, water, compressed air, HVAC, utility, production, and building systems.

  3. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    PubMed

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  4. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    PubMed

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.

  5. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  6. Plant traits mediate consumer and nutrient control on plant community productivity and diversity.

    PubMed

    Eskelinen, Anu; Harrison, Susan; Tuomi, Maria

    2012-12-01

    The interactive effects of consumers and nutrients on terrestrial plant communities, and the role of plant functional traits in mediating these responses, are poorly known. We carried out a six-year full-factorial field experiment using mammalian herbivore exclusion and fertilization in two habitat types (fertile and infertile alpine tundra heaths) that differed in plant functional traits related to resource acquisition and palatability. Infertile habitats were dominated by species with traits indicative of a slow-growing strategy: high C:N ratio, low specific leaf area, and high condensed tannins. We found that herbivory counteracted the effect of fertilization on biomass, and that this response differed between the two habitats and was correlated with plant functional traits. Live biomass dominated the treatment responses in infertile habitats, whereas litter accumulation dominated the treatment responses in fertile habitats and was strongly negatively associated with resident community tannin concentration. Species richness declined under herbivore exclusion and fertilization in fertile habitats, where litter accumulation was greatest. Community means of plant C:N ratio predicted treatment effects on diversity: fertilization decreased and herbivory increased dominance in communities originally dominated by plants with high C:N, while fertilization increased and herbivory diminished dominance in communities where low C:N species were abundant. Our results highlight the close interdependence between consumer effects, soil nutrients, and plant functional traits and suggest that plant traits may provide an improved understanding of how consumers and nutrients influence plant community productivity and diversity.

  7. Diversity of endophytic enterobacteria associated with different host plants.

    PubMed

    Torres, Adalgisa Ribeiro; Araújo, Welington Luiz; Cursino, Luciana; Hungria, Mariangela; Plotegher, Fábio; Mostasso, Fábio Luís; Azevedo, João Lúcio

    2008-08-01

    Fifty-three endophytic enterobacteria isolates from citrus, cocoa, eucalyptus, soybean, and sugar cane were evaluated for susceptibility to the antibiotics ampicillin and kanamycin, and cellulase production. Susceptibility was found on both tested antibiotics. However, in the case of ampicillin susceptibility changed according to the host plant, while all isolates were susceptible to kanamycin. Cellulase production also changed according to host plants. The diversity of these isolates was estimated by employing BOX-PCR genomic fingerprints and 16S rDNA sequencing. In total, twenty-three distinct operational taxonomic units (OTUs) were identified by employing a criterion of 60% fingerprint similarity as a surrogate for an OTU. The 23 OTUs belong to the Pantoea and Enterobacter genera, while their high diversity could be an indication of paraphyletic classification. Isolates representing nine different OTUs belong to Pantoea agglomerans, P. ananatis, P. stewartii, Enterobacter sp., and E. homaechei. The results of this study suggest that plant species may select endophytic bacterial genotypes. It has also become apparent that a review of the Pantoea/Enterobacter genera may be necessary. PMID:18758726

  8. Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family.

    PubMed

    Soltani, Jalal; Moghaddam, Mahdieh S Hosseyni

    2014-09-01

    Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications. PMID:24912659

  9. Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions.

    PubMed

    Venjakob, Christine; Klein, Alexandra-Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-04-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species-rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio-temporal niche complementarity in flower visitation. PMID:27069585

  10. Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions.

    PubMed

    Venjakob, Christine; Klein, Alexandra-Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-04-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species-rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio-temporal niche complementarity in flower visitation.

  11. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.

    PubMed

    Zerbe, Philipp; Bohlmann, Jörg

    2015-07-01

    Plants produce thousands of diterpenoid natural products; some of which are of significant industrial value as biobased pharmaceuticals (taxol), fragrances (sclareol), food additives (steviosides), and commodity chemicals (diterpene resin acids). In nature, diterpene synthase (diTPS) enzymes are essential for generating diverse diterpene hydrocarbon scaffolds. While some diTPSs also form oxygenated compounds, more commonly, oxygenation is achieved by cytochrome P450-dependent mono-oxygenases. Recent genome-, transcriptome-, and metabolome-guided gene discovery and enzyme characterization identified novel diTPS functions that form the core of complex modular pathway systems. Insights into diterpene metabolism may translate into the development of new bioengineered microbial and plant-based production systems.

  12. Earthworms and legumes control litter decomposition in a plant diversity gradient.

    PubMed

    Milcu, Alexandru; Partsch, Stephan; Scherber, Christoph; Weisser, Wolfgang W; Scheu, Stefan

    2008-07-01

    The role of species and functional group diversity of primary producers for decomposers and decomposition processes is little understood. We made use of the "Jena Biodiversity Experiment" and tested the hypothesis that increasing plant species (1, 4, and 16 species) and functional group diversity (1, 2, 3, and 4 groups) beneficially affects decomposer density and activity and therefore the decomposition of plant litter material. Furthermore, by manipulating the densities of decomposers (earthworms and springtails) within the plant diversity gradient we investigated how the interactions between plant diversity and decomposer densities affect the decomposition of litter belonging to different plant functional groups (grasses, herbs, and legumes). Positive effects of increasing plant species or functional group diversity on earthworms (biomass and density) and microbial biomass were mainly due to the increased incidence of legumes with increasing diversity. Neither plant species diversity nor functional group diversity affected litter decomposition, However, litter decomposition varied with decomposer and plant functional group identity (of both living plants and plant litter). While springtail removal generally had little effect on decomposition, increased earthworm density accelerated the decomposition of nitrogen-rich legume litter, and this was more pronounced at higher plant diversity. The results suggest that earthworms (Lumbricus terrestris L.) and legumes function as keystone organisms for grassland decomposition processes and presumably contribute to the recorded increase in primary productivity with increasing plant diversity. PMID:18705374

  13. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  14. Tiger Team assessment of the Pinellas Plant

    SciTech Connect

    Not Available

    1990-05-01

    This Document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Pinellas Plant, Pinellas County, Florida. The assessment wa directed by the Department's Office of Environment, Safety, and Health (ES H) from January 15 to February 2, 1990. The Pinellas Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environment Safety and Health, and Management areas and determines the plant's compliance with applicable Federal (including DOE), State, and local regulations and requirements.

  15. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances.

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change.

  16. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances.

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. PMID:27220098

  17. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  18. How generalist herbivores exploit belowground plant diversity in temperate grasslands

    PubMed Central

    Wallinger, Corinna; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Juen, Anita; Traugott, Michael

    2014-01-01

    Belowground herbivores impact plant performance, thereby inducing changes in plant community composition, which potentially leads to cascading effects onto higher trophic levels and ecosystem processes and productivity. Among soil-living insects, external root-chewing generalist herbivores have the strongest impact on plants. However, the lack of knowledge on their feeding behaviour under field conditions considerably hampers achieving a comprehensive understanding of how they affect plant communities. Here, we address this gap of knowledge by investigating the feeding behaviour of Agriotes click beetle larvae, which are common generalist external root-chewers in temperate grassland soils. Utilizing diagnostic multiplex PCR to assess the larval diet, we examined the seasonal patterns in feeding activity, putative preferences for specific plant taxa, and whether species identity and larval instar affect food choices of the herbivores. Contrary to our hypothesis, most of the larvae were feeding-active throughout the entire vegetation period, indicating that the grassland plants are subjected to constant belowground feeding pressure. Feeding was selective, with members of Plantaginaceae and Asteraceae being preferred; Apiaceae were avoided. Poaceae, although assumed to be most preferred, had an intermediate position. The food preferences exhibited seasonal changes, indicating a fluctuation in plant traits important for wireworm feeding choice. Species- and instar-specific differences in dietary choice of the Agriotes larvae were small, suggesting that species and larval instars occupy the same trophic niche. According to the current findings, the food choice of these larvae is primarily driven by plant identity, exhibiting seasonal changes. This needs to be considered when analysing soil herbivore–plant interactions. PMID:24188592

  19. How generalist herbivores exploit belowground plant diversity in temperate grasslands.

    PubMed

    Wallinger, Corinna; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Juen, Anita; Traugott, Michael

    2014-08-01

    Belowground herbivores impact plant performance, thereby inducing changes in plant community composition, which potentially leads to cascading effects onto higher trophic levels and ecosystem processes and productivity. Among soil-living insects, external root-chewing generalist herbivores have the strongest impact on plants. However, the lack of knowledge on their feeding behaviour under field conditions considerably hampers achieving a comprehensive understanding of how they affect plant communities. Here, we address this gap of knowledge by investigating the feeding behaviour of Agriotes click beetle larvae, which are common generalist external root-chewers in temperate grassland soils. Utilizing diagnostic multiplex PCR to assess the larval diet, we examined the seasonal patterns in feeding activity, putative preferences for specific plant taxa, and whether species identity and larval instar affect food choices of the herbivores. Contrary to our hypothesis, most of the larvae were feeding-active throughout the entire vegetation period, indicating that the grassland plants are subjected to constant belowground feeding pressure. Feeding was selective, with members of Plantaginaceae and Asteraceae being preferred; Apiaceae were avoided. Poaceae, although assumed to be most preferred, had an intermediate position. The food preferences exhibited seasonal changes, indicating a fluctuation in plant traits important for wireworm feeding choice. Species- and instar-specific differences in dietary choice of the Agriotes larvae were small, suggesting that species and larval instars occupy the same trophic niche. According to the current findings, the food choice of these larvae is primarily driven by plant identity, exhibiting seasonal changes. This needs to be considered when analysing soil herbivore-plant interactions. PMID:24188592

  20. How generalist herbivores exploit belowground plant diversity in temperate grasslands.

    PubMed

    Wallinger, Corinna; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Juen, Anita; Traugott, Michael

    2014-08-01

    Belowground herbivores impact plant performance, thereby inducing changes in plant community composition, which potentially leads to cascading effects onto higher trophic levels and ecosystem processes and productivity. Among soil-living insects, external root-chewing generalist herbivores have the strongest impact on plants. However, the lack of knowledge on their feeding behaviour under field conditions considerably hampers achieving a comprehensive understanding of how they affect plant communities. Here, we address this gap of knowledge by investigating the feeding behaviour of Agriotes click beetle larvae, which are common generalist external root-chewers in temperate grassland soils. Utilizing diagnostic multiplex PCR to assess the larval diet, we examined the seasonal patterns in feeding activity, putative preferences for specific plant taxa, and whether species identity and larval instar affect food choices of the herbivores. Contrary to our hypothesis, most of the larvae were feeding-active throughout the entire vegetation period, indicating that the grassland plants are subjected to constant belowground feeding pressure. Feeding was selective, with members of Plantaginaceae and Asteraceae being preferred; Apiaceae were avoided. Poaceae, although assumed to be most preferred, had an intermediate position. The food preferences exhibited seasonal changes, indicating a fluctuation in plant traits important for wireworm feeding choice. Species- and instar-specific differences in dietary choice of the Agriotes larvae were small, suggesting that species and larval instars occupy the same trophic niche. According to the current findings, the food choice of these larvae is primarily driven by plant identity, exhibiting seasonal changes. This needs to be considered when analysing soil herbivore-plant interactions.

  1. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity.

    PubMed

    Gherardi, Laureano A; Sala, Osvaldo E

    2015-12-01

    Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump-shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance. PMID:26437913

  2. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity.

    PubMed

    Gherardi, Laureano A; Sala, Osvaldo E

    2015-12-01

    Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump-shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance.

  3. Assessing Students' Ideas about Plants.

    ERIC Educational Resources Information Center

    Barman, Charles R.; Stein, Mary; Barman, Natalie S.; McNair, Shannan

    2002-01-01

    Presents an interview protocol used to identify and evaluate students' conceptions of plants which is an invitation to participate in the third national study exploring elementary students' science conceptions. (YDS)

  4. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    NASA Astrophysics Data System (ADS)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  5. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal

    NASA Astrophysics Data System (ADS)

    Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

    2010-03-01

    Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

  6. Alpha and beta diversity of plants and animals along a tropical land-use gradient.

    PubMed

    Kessler, Michael; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Putra, Dadang Dwi; Gradstein, S Robbert; Höhn, Patrick; Kluge, Jürgen; Orend, Friederike; Pitopang, Ramadhaniel; Saleh, Shahabuddin; Schulze, Christian H; Sporn, Simone G; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S; Tscharntke, Teja

    2009-12-01

    Assessing the overall biological diversity of tropical rain forests is a seemingly insurmountable task for ecologists. Therefore, researchers frequently sample selected taxa that they believe reflect general biodiversity patterns. Usually, these studies focus on the congruence of alpha diversity (the number of species found per sampling unit) between taxa rather than on beta diversity (turnover of species assemblages between sampling units). Such approaches ignore the potential role of habitat heterogeneity that, depending on the taxonomic group considered, can greatly enhance beta diversity at local and landscape scales. We compared alpha and beta diversity of four plant groups (trees, lianas, terrestrial herbs, epiphytic liverworts) and eight animal groups (birds, butterflies, lower canopy ants, lower canopy beetles, dung beetles, bees, wasps, and the parasitoids of the latter two) at 15 sites in Sulawesi, Indonesia, that represented natural rain forest and three types of cacao agroforests differing in management intensity. In total, we recorded 863 species. Patterns of species richness per study site varied strongly between taxonomic groups. Only 13-17% of the variance in species richness of one taxonomic group could be predicted from the species richness of another, and on average 12-18% of the variance of beta diversity of a given group was predicted by that in other groups, although some taxon pairs had higher values (up to 76% for wasps and their parasitoids). The degree of congruence of patterns of alpha diversity was not influenced by sampling completeness, whereas the indicator value for beta diversity improved when using a similarity index that accounts for incomplete sampling. The indication potential of alpha diversity for beta diversity and vice versa was limited within taxa (7-20%) and virtually nil between them (0-4%). We conclude that different taxa can have largely independent patterns of alpha diversity and that patterns of beta diversity can be

  7. Diversity cascades in alfalfa fields: from plant quality to agroecosystem diversity.

    PubMed

    Pearson, Clark V; Massad, Tara J; Dyer, Lee A

    2008-08-01

    To examine top-down and bottom-up influences on managed terrestrial communities, we manipulated plant resources and arthropod abundance in alfalfa (Medicago sativa L.) fields. We modified arthropod communities using three nonfactorial manipulations: pitfall traps to remove selected arthropods, wooden crates to create habitat heterogeneity, and an arthropod removal treatment using a reversible leaf blower. These manipulations were crossed with fertilizer additions, which were applied to half of the plots. We found strong effects of fertilizer on plant quality and biomass, and these effects cascaded up to increase herbivore abundance and diversity. The predator community also exhibited a consistent positive effect on the maintenance of herbivore species richness and abundance. These top-down changes in arthropods did not cascade down to affect plant biomass; however, plant quality (saponin content) increased with higher herbivore densities. These results corroborate previous studies in alfalfa that show complex indirect effects, such as trophic cascades, can operate in agricultural systems, but the specifics of the interactions depend on the assemblages of arthropods involved.

  8. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors.

    PubMed

    Thakur, Madhav Prakash; Milcu, Alexandru; Manning, Pete; Niklaus, Pascal A; Roscher, Christiane; Power, Sally; Reich, Peter B; Scheu, Stefan; Tilman, David; Ai, Fuxun; Guo, Hongyan; Ji, Rong; Pierce, Sarah; Ramirez, Nathaly Guerrero; Richter, Annabell Nicola; Steinauer, Katja; Strecker, Tanja; Vogel, Anja; Eisenhauer, Nico

    2015-11-01

    Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2 , nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC. PMID:26118993

  9. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors.

    PubMed

    Thakur, Madhav Prakash; Milcu, Alexandru; Manning, Pete; Niklaus, Pascal A; Roscher, Christiane; Power, Sally; Reich, Peter B; Scheu, Stefan; Tilman, David; Ai, Fuxun; Guo, Hongyan; Ji, Rong; Pierce, Sarah; Ramirez, Nathaly Guerrero; Richter, Annabell Nicola; Steinauer, Katja; Strecker, Tanja; Vogel, Anja; Eisenhauer, Nico

    2015-11-01

    Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2 , nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.

  10. Soil stability and plant diversity in eco-engineering

    NASA Astrophysics Data System (ADS)

    Böll, Albert; Gerber, Werner; Rickli, Christian; Graf, Frank

    2010-05-01

    Slopes affected by superficial sliding and subsequently re-stabilised with eco-engineering measures were investigated, particularly related to soil stability and plant diversity. The sites are situated in three different areas of beech-fir-spruce forest associations of the higher montane zone of Switzerland. Climatic and site characteristics, in paraticular soil properties after the sliding event, of the three investigation areas are very similar. However, the number of species (shrubs and trees) used for the initial planting as well as the year of application of the eco-engineering measures differ substantially. In the investigation area Dallenwil-Wirzweli the biological measures taken in 1981 were restricted to one tree species, namely White Alder (Alnus incana). In Klosters, where measures were taken in 1983 as well as in the Arieschbach valley, where eco-engineering was applied in 1998, the initial planting consisted of 15 species either. Investigations in 2005/2006 revealed neither obvious differences among the three areas nor distinct correlations related to the diversity of the initial planting on the on hand and the development of the vegetation cover and soil stability on the other hand. During the available time of development, the soil aggregate stability increased by 30 to 39%. Compared to the corresponding climax association, the relative values of soil aggregate stability varied between 90 and 120%. Concurrently, the dry unit weight decreased between 1.1 and 3.1 kN/m3. The cumulative vegetation cover varied from 110 to 150%. Due to processes of soil development a distinct shift in the grain size distribution was noticed, from a well sorted gravel with clay and sand (GW-GC) to a silty gravel with sand (GM) in Dallenwil-Wirzweli and a silty to clayey gravel with sand (GC-GM) in Klosters and the Arieschbach valley. Furthermore, in all three investigation areas succession processes were observed that are comparable to average rates of natural secondary

  11. Diversity in plants and other Collembola ameliorate impacts of Sminthurus viridis on plant community structure

    NASA Astrophysics Data System (ADS)

    Barker, Gary M.

    2006-05-01

    Five experiments investigated the importance of herbivory by Sminthurus viridis in structuring botanical composition in developing grasslands, and how these effects may be modified by diversity in collembolan and plant species. Differential susceptibility to S. viridis feeding was demonstrated in 23 dicotyledonous and three monocotyledonous plants assayed as seedlings at the first true leaf stage. The composition of seedling communities developing from natural and artificially constructed soil seed banks varied with the level of S. viridis infestation, with plant species least susceptible to herbivory making the greatest contribution to plant biomass. The combined effect of herbivory by S. viridis and Bourletiella hortensis on Trifolium repens biomass was shown to be less than the effect of S. viridis alone, indicating competitive interference. The adverse effects of herbivory by S. viridis on T. repens biomass was reduced by increased diversity of plants growing in association with the legume, and the presence of four non-herbivorous arthropleonan Collembola. S. viridis was shown to reduce seedling numbers, species diversity and biomass in communities developing from the soil seed bank, but the presence of non-herbivorous arthropleonan species reduced the effect of S. viridis. The experiments demonstrate the potential for herbivory by S. viridis to significantly alter species composition in developing grassland communities. However, interactions with collembolan and plant species profoundly modified S. viridis herbivory impacts, either by reducing feeding intensity or enhancing plant growth. These results highlight the fact that data from simple, synthetic systems may be poor predictors of herbivory impacts under field conditions where more complex species interactions occur.

  12. Gene regulation networks generate diverse pigmentation patterns in plants.

    PubMed

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.

  13. Assessing Energy Use in Your Plant

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program fact sheet describes ITP resources and software that industrial plants can use for energy assessments that result in greater energy efficiency and lower costs.

  14. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.

    PubMed

    Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J

    2015-09-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity

  15. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.

    PubMed

    Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J

    2015-09-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity

  16. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management

    USGS Publications Warehouse

    Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.

    2015-01-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and

  17. Genomic diversity of Pseudomonas spp. isolated from aerial or root surfaces of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the diverse strains of Pseudomonas fluorescens and Pseudomonas chlororaphis inhabiting plant surfaces are those that protect plants from infection by pathogens. To explore the diversity of these bacteria, we derived genomic sequences of seven strains that suppress plant disease. Along with t...

  18. Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants

    PubMed Central

    Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin F.; Farjon, Aljos; Donaldson, John S.; Hilton-Taylor, Craig; Meagher, Thomas R.; Albuquerque, Sara; Aletrari, Elina; Andrews, A. Kei; Atchison, Guy; Baloch, Elisabeth; Barlozzini, Barbara; Brunazzi, Alice; Carretero, Julia; Celesti, Marco; Chadburn, Helen; Cianfoni, Eduardo; Cockel, Chris; Coldwell, Vanessa; Concetti, Benedetta; Contu, Sara; Crook, Vicki; Dyson, Philippa; Gardiner, Lauren; Ghanim, Nadia; Greene, Hannah; Groom, Alice; Harker, Ruth; Hopkins, Della; Khela, Sonia; Lakeman-Fraser, Poppy; Lindon, Heather; Lockwood, Helen; Loftus, Christine; Lombrici, Debora; Lopez-Poveda, Lucia; Lyon, James; Malcolm-Tompkins, Patricia; McGregor, Kirsty; Moreno, Laura; Murray, Linda; Nazar, Keara; Power, Emily; Quiton Tuijtelaars, Mireya; Salter, Ruth; Segrott, Robert; Thacker, Hannah; Thomas, Leighton J.; Tingvoll, Sarah; Watkinson, Gemma; Wojtaszekova, Katerina; Nic Lughadha, Eimear M.

    2015-01-01

    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed. PMID:26252495

  19. Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants.

    PubMed

    Brummitt, Neil A; Bachman, Steven P; Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin F; Farjon, Aljos; Donaldson, John S; Hilton-Taylor, Craig; Meagher, Thomas R; Albuquerque, Sara; Aletrari, Elina; Andrews, A Kei; Atchison, Guy; Baloch, Elisabeth; Barlozzini, Barbara; Brunazzi, Alice; Carretero, Julia; Celesti, Marco; Chadburn, Helen; Cianfoni, Eduardo; Cockel, Chris; Coldwell, Vanessa; Concetti, Benedetta; Contu, Sara; Crook, Vicki; Dyson, Philippa; Gardiner, Lauren; Ghanim, Nadia; Greene, Hannah; Groom, Alice; Harker, Ruth; Hopkins, Della; Khela, Sonia; Lakeman-Fraser, Poppy; Lindon, Heather; Lockwood, Helen; Loftus, Christine; Lombrici, Debora; Lopez-Poveda, Lucia; Lyon, James; Malcolm-Tompkins, Patricia; McGregor, Kirsty; Moreno, Laura; Murray, Linda; Nazar, Keara; Power, Emily; Quiton Tuijtelaars, Mireya; Salter, Ruth; Segrott, Robert; Thacker, Hannah; Thomas, Leighton J; Tingvoll, Sarah; Watkinson, Gemma; Wojtaszekova, Katerina; Nic Lughadha, Eimear M

    2015-01-01

    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question 'How threatened are plants?' is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world's plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed.

  20. Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants.

    PubMed

    Brummitt, Neil A; Bachman, Steven P; Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin F; Farjon, Aljos; Donaldson, John S; Hilton-Taylor, Craig; Meagher, Thomas R; Albuquerque, Sara; Aletrari, Elina; Andrews, A Kei; Atchison, Guy; Baloch, Elisabeth; Barlozzini, Barbara; Brunazzi, Alice; Carretero, Julia; Celesti, Marco; Chadburn, Helen; Cianfoni, Eduardo; Cockel, Chris; Coldwell, Vanessa; Concetti, Benedetta; Contu, Sara; Crook, Vicki; Dyson, Philippa; Gardiner, Lauren; Ghanim, Nadia; Greene, Hannah; Groom, Alice; Harker, Ruth; Hopkins, Della; Khela, Sonia; Lakeman-Fraser, Poppy; Lindon, Heather; Lockwood, Helen; Loftus, Christine; Lombrici, Debora; Lopez-Poveda, Lucia; Lyon, James; Malcolm-Tompkins, Patricia; McGregor, Kirsty; Moreno, Laura; Murray, Linda; Nazar, Keara; Power, Emily; Quiton Tuijtelaars, Mireya; Salter, Ruth; Segrott, Robert; Thacker, Hannah; Thomas, Leighton J; Tingvoll, Sarah; Watkinson, Gemma; Wojtaszekova, Katerina; Nic Lughadha, Eimear M

    2015-01-01

    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question 'How threatened are plants?' is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world's plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed. PMID:26252495

  1. Technology-Enhanced Formative Assessment of Plant Identification

    NASA Astrophysics Data System (ADS)

    Conejo, Ricardo; Garcia-Viñas, Juan Ignacio; Gastón, Aitor; Barros, Beatriz

    2016-04-01

    Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to pose appropriate questions according to the location of the student. A student's location can be obtained using the device position or by scanning a QR code attached to a dried plant sheet in a herbarium or to a fresh plant in an arboretum. The assessment questions are complemented with elaborated feedback that, according to the students' responses, provides indications of possible mistakes and correct answers. Three experiments were designed to measure the effectiveness of the formative assessment using dried and fresh plants. Three questionnaires were used to evaluate the system performance from the students' perspective. The results clearly indicate that formative assessment is objectively effective compared to traditional methods and that the students' attitudes towards the system were very positive.

  2. Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes.

    PubMed

    Takeuchi, Yayoi; Chaffron, Samuel; Salcher, Michaela M; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K

    2015-07-01

    Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria. PMID:26138047

  3. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought.

    PubMed

    Craven, Dylan; Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Palmborg, Cecilia; Polley, H Wayne; Reich, Peter B; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P; Tilman, David; Vogel, Anja; Eisenhauer, Nico

    2016-05-19

    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources-soil nutrients or water-to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity-ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.

  4. Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes.

    PubMed

    Takeuchi, Yayoi; Chaffron, Samuel; Salcher, Michaela M; Shimizu-Inatsugi, Rie; Kobayashi, Masaki J; Diway, Bibian; von Mering, Christian; Pernthaler, Jakob; Shimizu, Kentaro K

    2015-07-01

    Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria.

  5. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

    PubMed Central

    Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N.; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Palmborg, Cecilia; Polley, H. Wayne; Reich, Peter B.; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P.; Tilman, David; Vogel, Anja; Eisenhauer, Nico

    2016-01-01

    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function. PMID:27114579

  6. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought.

    PubMed

    Craven, Dylan; Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Palmborg, Cecilia; Polley, H Wayne; Reich, Peter B; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P; Tilman, David; Vogel, Anja; Eisenhauer, Nico

    2016-05-19

    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources-soil nutrients or water-to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity-ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function. PMID:27114579

  7. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.

  8. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. PMID:27459206

  9. Bacterial Diversity of Active Sludge in Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Ma, Mingchao; Li, Jun; Lu, Anhuai; Zhong, Zuoshen

    A bacterial 16S rDNA gene clone library was constructed to analyze the bacterial diversity of active sludge in Gaobeidian Wastewater Treatment Plant, Beijing. The results indicated that the bacterial diversity of active sludge was very high, and the clones could be divided into 5 different groups. The dominant bacterial community was proteobacteria, which accounted for 76.7%. The dominant succession of bacterial community were as follows: the β-proteobacteria (39.8%), the uncultured bacteria (22.33%), the γ-proteobacteria (20.15%), the α-proteobacteria (6.79%), and the σ-proteobacteria (4.85%). Nitrosomonas-like and Nitrospira-like bacteria, such as Nitrosomonas sp. (1.94%) and uncultured Nitrospirae bacterium (11.65%) were also detected, which have played important roles in ammonia and nitrite oxidisers in the system. However, they were only a little amount because of their slow growth and less competitive advantage than heterotrophic bacteria. Denitrifying bacteria like Thauera sp. was at a high percentage, which implies a strong denitrification ability; Roseomonas sp. was also detected in the clone library, which could be related to the degradation of organophosphorus pesticide.

  10. Does plant diversity benefit agroecosystems? A synthetic review.

    PubMed

    Letourneau, Deborah K; Armbrecht, Inge; Rivera, Beatriz Salguero; Lerma, James Montoya; Carmona, Elizabeth Jiménez; Daza, Martha Constanza; Escobar, Selene; Galindo, Victor; Gutiérrez, Catalina; López, Sebastián Duque; Mejía, Jessica López; Rangel, Aleyda Maritza Acosta; Rangel, Janine Herrera; Rivera, Leonardo; Saavedra, Carlos Arturo; Torres, Alba Marina; Trujillo, Aldemar Reyes

    2011-01-01

    Predictive theory on how plant diversity promotes herbivore suppression through movement patterns, host associations, and predation promises a potential alternative to pesticide-intensive monoculture crop production. We used meta-analysis on 552 experiments in 45 articles published over the last 10 years to test if plant diversification schemes reduce herbivores and/or increase the natural enemies of herbivores as predicted by associational resistance hypotheses, the enemies hypothesis, and attraction and repellency model applications in agriculture. We found extensive support for these models with intercropping schemes, inclusion of flowering plants, and use of plants that repel herbivores or attract them away from the crop. Overall, herbivore suppression, enemy enhancement, and crop damage suppression effects were significantly stronger on diversified crops than on crops with none or fewer associated plant species. However, a relatively small, but significantly negative, mean effect size for crop yield indicated that pest-suppressive diversification schemes interfered with production, in part because of reducing densities of the main crop by replacing it with intercrops or non-crop plants. This first use of meta-analysis to evaluate the effects of diversification schemes, a potentially more powerful tool than tallies of significant positive and negative outcomes (vote-counting), revealed stronger overall effects on all parameters measured compared to previous reviews. Our analysis of the same articles used in a recent review facilitates comparisons of vote-counting and meta-analysis, and shows that pronounced results of the meta-analysis are not well explained by a reduction in articles that met its stricter criteria. Rather, compared to outcome counts, effect sizes were rarely neutral (equal to zero), and a mean effect size value for mixed outcomes could be calculated. Problematic statistical properties of vote-counting were avoided with meta-analysis, thus

  11. Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan

    PubMed Central

    2013-01-01

    Background Due to its diverse geographical and habitat conditions, northern Pakistan harbors a wealth of medicinal plants. The plants and their traditional use are part of the natural and cultural heritage of the region. This study was carried out to document which medicinal plant species and which plant parts are used in the region of Swat, which syndrome categories are particularly concerned, and which habitat spectrum is frequented by collectors. Finally, we assessed to which extent medicinal plants are vulnerable due to collection and habitat destruction. Methods An ethnobotanical survey was undertaken in the Miandam area of Swat, North Pakistan. Data were collected through field assessment as well as from traditional healers and locals by means of personal interviews and semi-structured questionnaires. Results A total of 106 ethno-medicinal plant species belonging to 54 plant families were recorded. The most common growth forms were perennial (43%) and short-lived herbs (23%), shrubs (16%), and trees (15%). Most frequently used plant parts were leaves (24%), fruits (18%) and subterranean parts (15%). A considerable proportion of the ethno-medicinal plant species and remedies concerns gastro-intestinal disorders. The remedies were mostly prepared in the form of decoction or powder and were mainly taken orally. Eighty out of 106 ethno-medicinal plants were indigenous. Almost 50% of the plants occurred in synanthropic vegetation while slightly more than 50% were found in semi-natural, though extensively grazed, woodland and grassland vegetation. Three species (Aconitum violaceum, Colchicum luteum, Jasminum humile) must be considered vulnerable due to excessive collection. Woodlands are the main source for non-synanthropic indigenous medicinal plants. The latter include many range-restricted taxa and plants of which rhizomes and other subterranean parts are dug out for further processing as medicine. Conclusion Medicinal plants are still widely used for treatment

  12. Long-term effects of sowing high or low diverse seed mixtures on plant and gastropod diversity

    NASA Astrophysics Data System (ADS)

    Dedov, Ivailo; Stoyanov, Ivailo L.; Penev, Lyubomir; Harvey, Jeffrey A.; Van der Putten, Wim H.; Bezemer, T. Martijn

    2006-09-01

    A number of studies have reported that consumers affect a range of community-level processes, and in turn their diversity and abundance is influenced by the structure and diversity of the plant community. Although gastropods are important generalist herbivores in many environments, few studies have examined the effects of plant species richness and plant community structure on gastropods. This study investigated gastropod species richness and interactions with various above-ground parameters of the vegetation on an experimental field with four plant treatments: low and high diversity of sown later succession plant species, natural colonization at the start of the experiment and natural colonization after 3 years of continued agricultural practice. The investigated gastropod assemblage contained only seven species and was highly dominated by two of them. Both in pitfalls and with hand-sorting the number of species collected per plot was highest in plots with natural plant colonization. Multivariate analysis revealed that overall gastropod abundance was positively associated with plant height and percentage cover of plants, and negatively with percentage grass cover. The same pattern holds for one of the dominant species-complex ( Cochlicopa lubrica/ lubricella). The other dominant gastropod species ( Deroceras reticulatum) was more abundant in samples with higher percentages of moss cover and higher plant diversity, while less abundant at samples with higher plant cover, indicating that the gastropod species preferences may matter more than just their response to plant diversity. Two plant-gastropod species-level associations were observed: Senecio jacobaea with D. reticulatum and Tanacetum vulgare with Cochlicopa spp. The present study also demonstrated that pitfall-traps are suitable for collecting terrestrial gastropods, at least for species-poor grassland habitats.

  13. Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids.

    PubMed

    Ebeling, Anne; Klein, Alexandra-Maria; Weisser, Wolfgang W; Tscharntke, Teja

    2012-06-01

    Plant diversity changes can impact the abundance, diversity, and functioning of species at higher trophic levels. We used an experimental gradient in grassland plant diversity ranging from 1 to 16 plant species to study multitrophic interactions among plants, cavity-nesting bees and wasps, and their natural enemies, and analysed brood cell density, insect diversity (species richness), and bee and wasp community similarity over two consecutive years. The bee and wasp communities were more similar among the high (16 species) diversity plots than among plots of the lower diversity levels (up to 8 species), and a more similar community of bees and wasps resulted in a more similar community of their parasitoids. Plant diversity, which was closely related to flower diversity, positively and indirectly affected bee diversity and the diversity of their parasitoids via increasing brood cell density of bees. Increasing plant diversity directly led to higher wasp diversity. Parasitism rates of bees and wasps (hosts) were not affected by plant diversity, but increased with the diversity of their respective parasitoids. Decreases in parasitism rates of bees arose from increasing brood cell density of bees (hosts), whereas decreasing parasitism rates of wasps arose from increasing wasp diversity (hosts). In conclusion, decreases in plant diversity propagated through different trophic levels: from plants to insect hosts to their parasitoids, decreasing density and diversity. The positive relationship between plant diversity and the community similarity of higher trophic levels indicates a community-stabilising effect of high plant diversity.

  14. Application of diversity to regional ecological assessment: a review with recommendations

    SciTech Connect

    Levenson, J.B.; Stearns, F.W.

    1980-03-01

    Species diversity is frequently considered a primary indicator of ecosystem health, stability, and resilience. As such, species diversity is commonly the major criterion upon which environmental impact statements and ecological assessments are based. This report describes the theoretical development and refinement of the concept of ecological diversity and the various mathematical expressions of diversity. Advantages and disadvantages of each diversity expression are discussed. The application and interpretation of diversity indices for different spatial scales (e.g., specific sites and regional assessments) and variables (e.g., species diversity, habitat diversity, landscape diversity) are contrasted. Recommendations indicate the appropriate diversity indices for regional ecological assessments.

  15. Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions.

    PubMed

    Lau, Jennifer A; Strengbom, Joachim; Stone, Laurie R; Reich, Peter B; Tiffin, Peter

    2008-01-01

    Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore

  16. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass.

    PubMed

    Deraison, Hélène; Badenhausser, Isabelle; Loeuille, Nicolas; Scherber, Christoph; Gross, Nicolas

    2015-12-01

    Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre-emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait-based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning.

  17. Assessment of genetic diversity of sweet potato in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  18. Cultural Diversity, Mental Retardation, and Assessment: The Case for Nonlabeling.

    ERIC Educational Resources Information Center

    Mercer, Jane R.

    The System of Multicultural Pluralistic Assessment (SOMPA) is designed for use in a culturally diverse society. The system was developed on 700 English-speaking caucasian children (hereafter called Anglos) from the anglo core culture, 700 black children, and 700 Latino Children (90 percent were of Mexican-American heritage) five through eleven…

  19. Psychometric Evaluation of Lexical Diversity Indices: Assessing Length Effects

    ERIC Educational Resources Information Center

    Fergadiotis, Gerasimos; Wright, Heather Harris; Green, Samuel B.

    2015-01-01

    Purpose: Several novel techniques have been developed recently to assess the breadth of a speaker's vocabulary exhibited in a language sample. The specific aim of this study was to increase our understanding of the validity of the scores generated by different lexical diversity (LD) estimation techniques. Four techniques were explored: D, Maas,…

  20. Assessing Diversity among Latinos: Results from the NLAAS

    ERIC Educational Resources Information Center

    Guarnaccia, Peter J.; Pincay, Igda Martinez; Alegria, Margarita; Shrout, Patrick E.; Lewis-Fernandez, Roberto; Canino, Glorisa

    2007-01-01

    This article provides a profile of a range of important variables for assessing diversity among different Latino groups from the National Latino and Asian American Study (NLAAS). The NLAAS is a nationally representative study of the mental health needs and mental health services use of the Latino population of the United States. The NLAAS employs…

  1. Assessing genetic diversity in Valencia peanut germplasm using SSR markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Valencia peanuts (Arachis hypogaea L.ssp. fastigiata var. fastigiata) are well known for their in-shell market value. Assessment of genetic diversity of the available Valencia germplasm is key to the success of developing improved cultivars with desirable agronomic and quality traits. In the pres...

  2. Assessment of a Diversity Assignment in a PR Principles Course

    ERIC Educational Resources Information Center

    Gallicano, Tiffany Derville; Stansberry, Kathleen

    2012-01-01

    This study assesses an assignment for incorporating diversity into the principles of public relations course. The assignment is tailored to the challenges of using an active learning approach in a large lecture class. For the assignment, students write a goal, objectives, strategies, an identification of tactics, and evaluation plans for either…

  3. Using Qualitative Methods to Assess Diverse Institutional Cultures

    ERIC Educational Resources Information Center

    Museus, Samuel D.

    2007-01-01

    This article focuses on describing how institutional researchers can use qualitative cultural assessments to better understand the role that their campus cultures play in shaping individual and group behaviors and experiences. A special emphasis is given to the implications of institutional diversity in the processes of designing and conducting…

  4. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    PubMed

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  5. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  6. Plant and Soil Responses to High and Low Diversity Grassland Restoration Practices

    NASA Astrophysics Data System (ADS)

    Bach, Elizabeth M.; Baer, Sara G.; Six, Johan

    2012-02-01

    The USDA's Conservation Reserve Program (CRP) has predominantly used only a few species of dominant prairie grasses (CP2 practice) to reduce soil erosion, but recently has offered a higher diversity planting practice (CP25) to increase grassland habitat quality. We quantified plant community composition in CP25 and CP2 plantings restored for 4 or 8 years and compared belowground properties and processes among restorations and continuously cultivated soils in southeastern Nebraska, USA. Relative to cultivated soils, restoration increased soil microbial biomass ( P = 0.033), specifically fungi ( P < 0.001), and restored soils exhibited higher rates of carbon (C) mineralization ( P = 0.010). High and low diversity plantings had equally diverse plant communities; however, CP25 plantings had greater frequency of cool-season (C3) grasses ( P = 0.007). Older (8 year) high diversity restorations contained lower microbial biomass ( P = 0.026), arbuscular mycorrhizal fungi (AMF) biomass ( P = 0.003), and C mineralization rates ( P = 0.028) relative to 8 year low diversity restorations; older plantings had greater root biomass than 4 year plantings in all restorations ( P = 0.001). Low diversity 8 year plantings contained wider root C:N ratios, and higher soil microbial biomass, microbial community richness, AMF biomass, and C mineralization rate relative to 4 year restorations ( P < 0.050). Net N mineralization and nitrification rates were lower in 8 year than 4 year high diversity plantings ( P = 0.005). We attributed changes in soil C and N pools and fluxes to increased AMF associated with C4 grasses in low diversity plantings. Thus, reduced recovery of AMF in high diversity plantings restricted restoration of belowground microbial diversity and microbially-mediated soil processes over time.

  7. Overstory structure and soil nutrients effect on plant diversity in unmanaged moist tropical forest

    NASA Astrophysics Data System (ADS)

    Gautam, Mukesh Kumar; Manhas, Rajesh Kumar; Tripathi, Ashutosh Kumar

    2016-08-01

    Forests with intensive management past are kept unmanaged to restore diversity and ecosystem functioning. Before perpetuating abandonment after protracted restitution, understanding its effect on forest vegetation is desirable. We studied plant diversity and its relation with environmental variables and stand structure in northern Indian unmanaged tropical moist deciduous forest. We hypothesized that post-abandonment species richness would have increased, and the structure of contemporary forest would be heterogeneous. Vegetation structure, composition, and diversity were recorded, in forty 0.1 ha plots selected randomly in four forest ranges. Three soil samples per 0.1 ha were assessed for physicochemistry, fine sand, and clay mineralogy. Contemporary forest had less species richness than pre-abandonment reference period. Fourteen species were recorded as either seedling or sapling, suggesting reappearance or immigration. For most species, regeneration was either absent or impaired. Ordination and multiple regression results showed that exchangeable base cations and phosphorous affected maximum tree diversity and structure variables. Significant correlations between soil moisture and temperature, and shrub layer was observed, besides tree layer correspondence with shrub richness, suggesting that dense overstory resulting from abandonment through its effect on soil conditions, is responsible for dense shrub layer. Herb layer diversity was negatively associated with tree layer and shrub overgrowth (i.e. Mallotus spp.). Protracted abandonment may not reinforce species richness and heterogeneity; perhaps result in high tree and shrub density in moist deciduous forests, which can impede immigrating or reappearing plant species establishment. This can be overcome by density/basal area reduction strategies, albeit for both tree and shrub layer.

  8. Plant diversity and identity effects on predatory nematodes and their prey.

    PubMed

    Kostenko, Olga; Duyts, Henk; Grootemaat, Saskia; De Deyn, Gerlinde B; Bezemer, T Martijn

    2015-02-01

    There is considerable evidence that both plant diversity and plant identity can influence the level of predation and predator abundance aboveground. However, how the level of predation in the soil and the abundance of predatory soil fauna are related to plant diversity and identity remains largely unknown. In a biodiversity field experiment, we examined the effects of plant diversity and identity on the infectivity of entomopathogenic nematodes (EPNs, Heterorhabditis and Steinernema spp.), which prey on soil arthropods, and abundance of carnivorous non-EPNs, which are predators of other nematode groups. To obtain a comprehensive view of the potential prey/food availability, we also quantified the abundance of soil insects and nonpredatory nematodes and the root biomass in the experimental plots. We used structural equation modeling (SEM) to investigate possible pathways by which plant diversity and identity may affect EPN infectivity and the abundance of carnivorous non-EPNs. Heterorhabditis spp. infectivity and the abundance of carnivorous non-EPNs were not directly related to plant diversity or the proportion of legumes, grasses and forbs in the plant community. However, Steinernema spp. infectivity was higher in monocultures of Festuca rubra and Trifolium pratense than in monocultures of the other six plant species. SEM revealed that legumes positively affected Steinernema infectivity, whereas plant diversity indirectly affected the infectivity of HeterorhabditisEPNs via effects on the abundance of soil insects. The abundance of prey (soil insects and root-feeding, bacterivorous, and fungivorous nematodes) increased with higher plant diversity. The abundance of prey nematodes was also positively affected by legumes. These plant community effects could not be explained by changes in root biomass. Our results show that plant diversity and identity effects on belowground biota (particularly soil nematode community) can differ between organisms that belong to the

  9. Decreases in ammonia volatilization in response to greater plant diversity in microcosms of constructed wetlands

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Ge, Ying; Han, Wenjuan; Fan, Xing; Ren, Yuan; Du, Yuanyuan; Shi, Mengmeng; Chang, Jie

    2016-10-01

    Ammonia volatilization from wastewaters with a high concentration of ammonium is a serious environmental and health problem. Constructed wetlands (CWs) are widely used for treating wastewater, and plant diversity clearly improves some functions of ecosystem such as nitrogen removal. However, whether plant diversity can affect ammonia volatilization from wastewater is still unknown. In this study, we conducted a microcosm experiment with different plant diversity treatments using four plant species. Results showed that, (1) ammonia volatilization decreased with increasing plant species richness; (2) ammonia volatilization from systems containing Rumex japonicus was lower than other systems; and (3) ammonia volatilization was affected more by species composition than species richness. This paper is the first to report that ammonia volatilization is reduced by plant diversity, and that some plant species combinations are important to reduce ammonia volatilization from CWs when treating wastewater.

  10. [Effects of different years of planting Pennisetum sp. on the plant- and insect diversity in Pennisetum sp. communities].

    PubMed

    Lin, Xing-Sheng; Lin, Zhan-Xi; Lin, Dong-Mei; Lin, Hui; Luo, Hai-Ling; Hu, Ying-Ping; Lin, Chun-Mei; Zhu, Chao-Zhi

    2012-10-01

    This paper studied the effects of 1-, 2- and 3 years of planting Pennisetum sp. on the plant- and insect diversity in the Pennisetum sp. communities, taking the barren mountain land without planting Pennisetum sp. as the control (CK). Compared with CK, the plant species richness in Pennisetum sp. communities with different years of planting was lower, but the coverage was higher. The coverage in the Pennisetum sp. community having been planted for 3 years was the highest, up to 91.6%, and 75.8% higher than the CK. The insect species richness in the Pennisetum sp. communities having been planted for 1, 2 and 3 years was 3.6, 5.3 and 5.6 times of the CK, respectively. The plant- and insect diversity indices, including Simpson index, Shannon index, evenness, Brillouin index, and McIntosh index for the Pennisetum sp. communities with different years of planting were significantly higher than the CK, which indicated that the growth of Pennisetum sp. could affect the plant- and insect diversity. With the increasing year of planting, the plant- and insect diversity in Pennisetum sp. communities tended to be stable.

  11. CO2, nitrogen, and diversity differentially affect seed production of prairie plants.

    PubMed

    HilleRisLambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, P B

    2009-07-01

    Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we

  12. Are herbage yield and yield stability affected by plant species diversity in sown pasture mixtures?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A tenet of plant biodiversity theory in grasslands is that increased diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production as a result of increased plant species diversity would be beneficial. In this study, I combined ...

  13. Phylogeny and the hierarchical organization of plant diversity.

    PubMed

    Silvertown, Jonathan; Dodd, Mike; Gowing, David; Lawson, Clare; McConway, Kevin

    2006-07-01

    R. H. Whittaker's idea that plant diversity can be divided into a hierarchy of spatial components from alpha at the within-habitat scale through beta for the turnover of species between habitats to gamma along regional gradients implies the underlying existence of alpha, beta, and gamma niches. We explore the hypothesis that the evolution of alpha, beta, and gamma niches is also hierarchical, with traits that define the alpha niche being labile, while those defining beta and gamma niches are conservative. At the alpha level we find support for the hypothesis in the lack of close significant phylogenetic relationship between meadow species that have similar alpha niches. In a second test, alpha niche overlap based on a variety of traits is compared between congeners and noncongeners in several communities; here, too, there is no evidence of a correlation between alpha niche and phylogeny. To test whether beta and gamma niches evolve conservatively, we reconstructed the evolution of relevant traits on evolutionary trees for 14 different clades. Tests against null models revealed a number of instances, including some in island radiations, in which habitat (beta niche) and elevational maximum (an aspect of the gamma niche) showed evolutionary conservatism.

  14. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  15. Assessing and broadening genetic diversity of a rapeseed germplasm collection.

    PubMed

    Wu, Jinfeng; Li, Feng; Xu, Kun; Gao, Guizhen; Chen, Biyun; Yan, Guixin; Wang, Nian; Qiao, Jiangwei; Li, Jun; Li, Hao; Zhang, Tianyao; Song, Weiling; Wu, Xiaoming

    2014-12-01

    Assessing the level of genetic diversity within a germplasm collection contributes to evaluating the potential for its utilization as a gene pool to improve the performance of cultivars. In this study, 45 high-quality simple sequence repeat (SSR) markers were screened and used to estimate the genetic base of a world-wide collection of 248 rapeseed (Brassica napus) inbred lines. For the whole collection, the genetic diversity of A genome was higher than that of C genome. The genetic diversity of C genome for the semi-winter type was the lowest among the different germplasm types. Because B. oleracea is usually used to broaden the genetic diversity of C genome in rapeseed, we evaluated the potential of 25 wild B. oleracea lines. More allelic variations and a higher genetic diversity were observed in B. oleracea than in rapeseed. One B. oleracea line and one oilseed B. rapa line were used to generate a resynthesized Brassica napus line, which was then crossed with six semi-winter rapeseed cultivars to produce 7 F1 hybrids. Not only the allele introgression but also mutations were observed in the hybrids, resulting in significant improvement of the genetic base.

  16. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    PubMed

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have

  17. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    PubMed

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have

  18. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    PubMed

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  19. Plant Wide Assessment for SIFCO Industries, Inc.

    SciTech Connect

    Kelly Kissock, Arvind Thekdi et. al.

    2005-07-06

    Sifco Industries carreid out a plant wide energy assessment under a collaborative program with the U.S. Department of Energy during October 2004 to September 2005. During the year, personnel from EIS, E3M, DPS, BuyCastings.Com, and Sifco plant facilities and maintenance personnel, as a team collected energy use, construction, process, equipment and operational information about the plant. Based on this information, the team identified 13 energy savings opportunities. Near term savings opportunities have a total potential savings of about $1,329,000 per year and a combined simple payback of about 11 months. Implementation of these recommendations would reduce CO2 emissions by about 16,000,000 pounds per year, which would reduce overall plant CO2 emissions by about 45%. These totals do not include another $830,000 per year in potential savings with an estimated 9-month payback, from converting the forging hammers from steam to compressed air.

  20. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.

    PubMed

    Koutsoukas, Alexios; Paricharak, Shardul; Galloway, Warren R J D; Spring, David R; Ijzerman, Adriaan P; Glen, Robert C; Marcus, David; Bender, Andreas

    2014-01-27

    Chemical diversity is a widely applied approach to select structurally diverse subsets of molecules, often with the objective of maximizing the number of hits in biological screening. While many methods exist in the area, few systematic comparisons using current descriptors in particular with the objective of assessing diversity in bioactivity space have been published, and this shortage is what the current study is aiming to address. In this work, 13 widely used molecular descriptors were compared, including fingerprint-based descriptors (ECFP4, FCFP4, MACCS keys), pharmacophore-based descriptors (TAT, TAD, TGT, TGD, GpiDAPH3), shape-based descriptors (rapid overlay of chemical structures (ROCS) and principal moments of inertia (PMI)), a connectivity-matrix-based descriptor (BCUT), physicochemical-property-based descriptors (prop2D), and a more recently introduced molecular descriptor type (namely, "Bayes Affinity Fingerprints"). We assessed both the similar behavior of the descriptors in assessing the diversity of chemical libraries, and their ability to select compounds from libraries that are diverse in bioactivity space, which is a property of much practical relevance in screening library design. This is particularly evident, given that many future targets to be screened are not known in advance, but that the library should still maximize the likelihood of containing bioactive matter also for future screening campaigns. Overall, our results showed that descriptors based on atom topology (i.e., fingerprint-based descriptors and pharmacophore-based descriptors) correlate well in rank-ordering compounds, both within and between descriptor types. On the other hand, shape-based descriptors such as ROCS and PMI showed weak correlation with the other descriptors utilized in this study, demonstrating significantly different behavior. We then applied eight of the molecular descriptors compared in this study to sample a diverse subset of sample compounds (4%) from an

  1. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    PubMed

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. PMID:27189787

  2. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    PubMed

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models.

  3. Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities.

    PubMed

    Kivlin, Stephanie N; Hawkes, Christine V

    2011-01-01

    Exotic plant species can affect soil microbial communities with the potential for community and ecosystem feedbacks. Yet, separating the effects of exotics from confounded changes in plant community diversity still remains a challenge. We focused on how plant diversity and native or exotic life history affected root fungi because of their significant roles in community and ecosystem processes. Specifically, we examined how fungi colonizing plant roots were affected by plant richness (one, two or four species) replicated across a range of plant community mixtures (natives, exotics, native-exotic mixtures). Fungal biomass inside roots was affected independently by plant richness and mixture, while root fungal community composition was affected only by plant richness. Extraradical networks also increased in size with plant richness. By contrast, plant biomass was a function of plant mixture, with natives consistently smaller than exotics and native-exotic mixtures intermediate. Plant invasions may have an impact on the belowground community primarily through their effects on diversity, at least in the short-term. Disentangling the effects of diversity and invasion on belowground microbial communities can help us to understand both the controllers of belowground resilience and mechanisms of successful colonization and spread of exotic plants.

  4. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.

    PubMed

    van der Heijden, Marcel G A; Bardgett, Richard D; van Straalen, Nico M

    2008-03-01

    Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5-20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.

  5. Nuclear power plant security assessment technical manual.

    SciTech Connect

    O'Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  6. Differential effects of plant diversity on functional trait variation of grass species

    PubMed Central

    Gubsch, Marlén; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef; Lipowsky, Annett; Roscher, Christiane

    2011-01-01

    Background and Aims Functional trait differences and trait adjustment in response to influences of the biotic environment could reflect niche partitioning among species. In this study, we tested how variation in above-ground plant traits, chosen as indicators for light and nitrogen acquisition and use, differs among taxonomically closely related species (Poaceae) to assess their potential for niche segregation at increasing plant diversity. Methods Traits of 12 grass species were measured in experimental grasslands (Jena Experiment) of varying species richness (from 1 to 60) and presence of particular functional groups (grasses, legumes, tall herbs and small herbs). Key Results Grass species increased shoot and leaf length, investment into supporting tissue (stem mass fraction) and specific leaf area as well as reduced foliar δ13C values with increasing species richness, indicating higher efforts for light acquisition. These species-richness effects could in part be explained by a higher probability of legume presence in more diverse communities. Leaf nitrogen concentrations increased and biomas s : N ratios in shoots decreased when grasses grew with legumes, indicating an improved nitrogen nutrition. Foliar δ15N values of grasses decreased when growing with legumes suggesting the use of depleted legume-derived N, while decreasing δ15N values with increasing species richness indicated a shift in the uptake of different N sources. However, efforts to optimize light and nitrogen acquisition by plastic adjustment of traits in response to species richness and legume presence, varied significantly among grass species. It was possible to show further that trait adjustment of grass species increased niche segregation in more diverse plant communities but that complementarity through niche separation may differ between light and nutrient acquisition. Conclusions The results suggest that even among closely related species such as grasses different strategies are used to

  7. Ground layer plant species turnover and beta diversity in southern-European old-growth forests.

    PubMed

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests.

  8. Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests

    PubMed Central

    Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

    2014-01-01

    Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

  9. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities

    SciTech Connect

    Crutsinger, Greg; Reynolds, Nicholas; Classen, Aimee T; Sanders, Dr. Nathan James

    2008-01-01

    Intraspecific diversity within plant species is increasingly recognized as an important influence on the structure of associated arthropod communities, though whether there are congruent responses of above- and belowground communities to intraspecific diversity remains unclear. In this study, we compare the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak influence on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, including herbivore and predator trophic levels. In contrast, there were minimal effects of genotypic diversity in litter on microarthropods. Our study illustrates that incorporating both above- and belowground perspective into community genetics studies leads to very different conclusions about the importance of intraspecific diversity, than when considering aboveground responses in isolation.

  10. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future.

    PubMed

    Huang, Hongwen

    2011-01-01

    China is one of the richest countries for plant diversity with approximately 33 000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000–5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43 502 taxa, with a total of 24 667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21st century is of

  11. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future.

    PubMed

    Huang, Hongwen

    2011-01-01

    China is one of the richest countries for plant diversity with approximately 33 000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000–5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43 502 taxa, with a total of 24 667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21st century is of

  12. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    PubMed

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  13. Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?

    PubMed Central

    Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

    2014-01-01

    Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

  14. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands.

    PubMed

    Viketoft, Maria; Bengtsson, Janne; Sohlenius, Björn; Berg, Matty P; Petchey, Owen; Palmborg, Cecilia; Huss-Danell, Kerstin

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity anddiversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years after the establishment of experimental grassland plots at the BIODEPTH site in northern Sweden. This is a substantially longer time than most other experimental studies of plant effects on soil fauna. We address the hypotheses that (la) higher species or functional diversity of plants increases nematode diversity, as well as influences nematode community composition. Alternatively, (1b) individual plant species traits are most important for nematode diversity and community composition. (2) Plant effects on soil organisms will decrease with increasing number of trophic links between plants and soil fauna. Plant species identity was often more important than plant diversity for nematode community composition, supporting hypothesis 1b. There was a weak positive relation between plant and nematode richness;which could be attributed to the presence of the legume Trifolium pratense, but also to some other plant species, suggesting a selection or sampling effect. Several plant species in different functional groups affected nematode community composition. For example, we found that legumes increased bacterial-feeding nematodes, most notably r-selected Rhabditida, while fungal-feeding nematodes were enhanced by forbs. Other bacterial feeders and obligate root feeders were positively related to grasses. Plant effects were usually stronger on plant-, bacterial- and fungal-feeding nematodes than on omnivores/predators, which supports hypothesis 2. Our study suggests that plant identity has stronger effects than plant diversity on nematode community composition, but when comparing our results with similar previous studies the effects of particular plant species appear to vary. We

  15. Monotropa uniflora plants of eastern Massachusetts form mycorrhizae with a diversity of russulacean fungi.

    PubMed

    Yang, S; Pfister, D H

    2006-01-01

    Plant species in the subfamily Monotropoideae are mycoheterotrophs; they obtain fixed carbon from photosynthetic plants via a shared mycorrhizal network. Previous findings show mycoheterotrophic plants exhibit a high level of specificity to their mycorrhizal fungi. In this study we explore the association of mycorrhizal fungi and Monotropa uniflora (Monotropoideae: Ericaceae) in eastern North America. We collected M. uniflora roots and nearby basidiomycete sporocarps from four sites within a 100 km2 area in eastern Massachusetts. We analyzed DNA sequences of the internal transcribed spacer region (ITS) from the fungal nuclear ribosomal gene to assess the genetic diversity of fungi associating with M. uniflora roots. In this analysis we included 20 ITS sequences from Russula sporocarps collected nearby, 44 sequences of Russula or Lactarius species from GenBank and 12 GenBank sequences of fungi isolated from M. uniflora roots in previous studies. We found that all 56 sampled M. uniflora mycorrhizal fungi were members of the Russulaceae, confirming previous research. The analysis showed that most of the diversity of mycorrhizal fungi spreads across the genus Russula. ITS sequences of the mycorrhizal fungi consisted of 20 different phylotypes: 18 of the genus Russula and two of Lactarius, based on GenBank searches. Of the sampled plants, 57% associated with only three of the 20 mycorrhizal fungi detected in roots, and of the 25 sporocarp phylotypes collected three, were associated with M. uniflora. Furthermore the results indicate that the number of different fungal phylotypes associating with M. uniflora of eastern North America is higher than that of western North America but patterns of fungal species abundance might be similar between mycorrhizae from the two locations.

  16. ENVIRONMENTAL ASSESSMENT FOR OTEC PILOT PLANTS

    SciTech Connect

    Wilde, P.

    1980-06-01

    Logical and orderly progression of the OTEC program from conceptual designs through component testing to the goal of commercially viable OTEC plants require that the socio-legal requirements be met and the proper operating permits be obtained and maintained. This function is accomplished in a series of activities including: (1) Development and annual revision of a published OTEC Environmental Development Plan (EDP); (2) Compliance with NEPA/EPA and other regulatory requirements; and (3) Studies and research in support of the above. The Environmental Development Plan (EDP) lists the concerns, outlines the program to consider the effects and validity of such concerns on the OTEC program, and gives the time-table to meet the schedule, integrated with that of the engineering and design programs. The schedules of compliance activities and, to a lesser degree, research also are governed by the development progress of the technology. However, because of the lead time necessary to insure proper review the appropriate regulatory agencies, the environmental assessment program for the OTEC pilot plants (initially starting with the 10/40 MWe unit) is founded on the strategy of progressive improvement of previously accepted documentation. Based on experience with OTEC-1, the procedure for pilot plants will be: (1) Produce generic Environmental Assessment (EA) at the appropriate level of technology in advance of hardware contract; (2) Produce generic Environmental Impact Statement (EIS) at approximately the same time as the hardware procurement; (3) Monitor production of site specific supplement to the generic EIS prepared by the hardware contractor; (4) Assist pilot plant operator in applying and obtaining permits by providing current research and modeling data; (5) Monitor environmental program as required by regulatory agency; and (6) Use new site data for refining models for future pilot plant. assessments.

  17. Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests.

    PubMed

    Simonson, William D; Allen, Harriet D; Coomes, David A

    2012-10-01

    Airborne lidar is a remote-sensing tool of increasing importance in ecological and conservation research due to its ability to characterize three-dimensional vegetation structure. If different aspects of plant species diversity and composition can be related to vegetation structure, landscape-level assessments of plant communities may be possible. We examined this possibility for Mediterranean oak forests in southern Portugal, which are rich in biological diversity but also threatened. We compared data from a discrete, first-and-last return lidar data set collected for 31 plots of cork oak (Quercus suber) and Algerian oak (Quercus canariensis) forest with field data to test whether lidar can be used to predict the vertical structure of vegetation, diversity of plant species, and community type. Lidar- and field-measured structural data were significantly correlated (up to r= 0.85). Diversity of forest species was significantly associated with lidar-measured vegetation height (R(2) = 0.50, p < 0.001). Clustering and ordination of the species data pointed to the presence of 2 main forest classes that could be discriminated with an accuracy of 89% on the basis of lidar data. Lidar can be applied widely for mapping of habitat and assessments of habitat condition (e.g., in support of the European Species and Habitats Directive [92/43/EEC]). However, particular attention needs to be paid to issues of survey design: density of lidar points and geospatial accuracy of ground-truthing and its timing relative to acquisition of lidar data.

  18. Assessment of bacterial diversity during composting of agricultural byproducts

    PubMed Central

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost

  19. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    PubMed Central

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  20. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    PubMed

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  1. Plant diversity partitioning in Mediterranean croplands: effects of farming intensity, field edge, and landscape context.

    PubMed

    Concepción, Elena D; Fernández-González, Federico; Díaz, Mario

    2012-04-01

    Farmland biodiversity is affected by factors acting at various spatial scales. However, most studies to date have focused on the field or farm scales that only account for local (alpha) diversity, and these may underestimate the contribution of other diversity components (beta diversity) to total (gamma) farmland diversity. In this work, we aimed to identify the most suitable management options and the scale at which they should be implemented to maximize benefits for diversity. We used a multi-scale additive partitioning approach, with data on plant diversity from 640 plots in 32 cereal crop fields from three agricultural regions of central Spain that differed in landscape configuration. We analyzed the relative contribution to overall plant diversity of different diversity components at various spatial scales and how these diversity components responded to a set of local (application of agri-environment schemes [AES] and position within the field) and landscape (field size and landscape connectivity and composition) factors. Differences in species composition among regions and then among fields within regions contributed most to overall plant diversity. Positive edge effects were found on all diversity components at both the field- and regional scales, whereas application of AES benefited all diversity components only at the field scale. Landscape factors had strong influences on plant diversity, especially length of seminatural boundaries, which increased species richness at both the field and the regional scales. In addition, positive effects of percentage of nonproductive land-uses in the landscape were found on all diversity components at the regional scale. Results showed that components that contributed most to overall plant diversity were not benefited by current AES. We conclude that agri-environmental policies should incorporate and prioritize measures aimed at the maintenance of seminatural boundaries and patches of nonproductive habitats within

  2. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  3. Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species

    PubMed Central

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A.

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  4. Ecological effects of roads on the plant diversity of coastal wetland in the Yellow River Delta.

    PubMed

    Li, Yunzhao; Yu, Junbao; Ning, Kai; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0-20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  5. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  6. Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities.

    PubMed

    Stireman, John O; Devlin, Hilary; Doyle, Annie L

    2014-09-01

    Habitat fragmentation and invasive species are two of the most prominent threats to terrestrial ecosystems. Few studies have examined how these factors interact to influence the diversity of natural communities, particularly primary consumers. Here, we examined the effects of forest fragmentation and invasion of exotic honeysuckle (Lonicera maackii, Caprifoliaceae) on the abundance and diversity of the dominant forest herbivores: woody plant-feeding Lepidoptera. We systematically surveyed understory caterpillars along transects in 19 forest fragments over multiple years in southwestern Ohio and evaluated how fragment area, isolation, tree diversity, invasion by honeysuckle and interactions among these factors influence species richness, diversity and abundance. We found strong seasonal variation in caterpillar communities, which responded differently to fragmentation and invasion. Abundance and richness increased with fragment area, but these effects were mitigated by high levels of honeysuckle, tree diversity, landscape forest cover, and large recent changes in area. Honeysuckle infestation was generally associated with decreased caterpillar abundance and diversity, but these effects were strongly dependent on other fragment traits. Effects of honeysuckle on abundance were moderated when fragment area, landscape forest cover and tree diversity were high. In contrast, negative effects of honeysuckle invasion on caterpillar diversity were most pronounced in fragments with high tree diversity and large recent increases in area. Our results illustrate the complex interdependencies of habitat fragmentation, plant diversity and plant invasion in their effects on primary consumers and emphasize the need to consider these processes in concert to understand the consequences of anthropogenic habitat change for biodiversity. PMID:25015121

  7. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    USGS Publications Warehouse

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  8. Exploring Genetic Diversity in Plants Using High-Throughput Sequencing Techniques.

    PubMed

    Onda, Yoshihiko; Mochida, Keiichi

    2016-08-01

    Food security has emerged as an urgent concern because of the rising world population. To meet the food demands of the near future, it is required to improve the productivity of various crops, not just of staple food crops. The genetic diversity among plant populations in a given species allows the plants to adapt to various environmental conditions. Such diversity could therefore yield valuable traits that could overcome the food-security challenges. To explore genetic diversity comprehensively and to rapidly identify useful genes and/or allele, advanced high-throughput sequencing techniques, also called next-generation sequencing (NGS) technologies, have been developed. These provide practical solutions to the challenges in crop genomics. Here, we review various sources of genetic diversity in plants, newly developed genetic diversity-mining tools synergized with NGS techniques, and related genetic approaches such as quantitative trait locus analysis and genome-wide association study. PMID:27499684

  9. Microbiome interplay: plants alter microbial abundance and diversity within the built environment

    PubMed Central

    Mahnert, Alexander; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    The built indoor microbiome has importance for human health. Residents leave their microbial fingerprint but nothing is known about the transfer from plants. Our hypothesis that indoor plants contribute substantially to the microbial abundance and diversity in the built environment was experimentally confirmed as proof of principle by analyzing the microbiome of the spider plant Chlorophytum comosum in relation to their surroundings. The abundance of Archaea, Bacteria, and Eukaryota (fungi) increased on surrounding floor and wall surfaces within 6 months of plant isolation in a cleaned indoor environment, whereas the microbial abundance on plant leaves and indoor air remained stable. We observed a microbiome shift: the bacterial diversity on surfaces increased significantly but fungal diversity decreased. The majority of cells were intact at the time of samplings and thus most probably alive including diverse Archaea as yet unknown phyllosphere inhabitants. LEfSe and network analysis showed that most microbes were dispersed from plant leaves to the surrounding surfaces. This led to an increase of specific taxa including spore-forming fungi with potential allergic potential but also beneficial plant-associated bacteria, e.g., Paenibacillus. This study demonstrates for the first time that plants can alter the microbiome of a built environment, which supports the significance of plants and provides insights into the complex interplay of plants, microbiomes and human beings. PMID:26379656

  10. High plant diversity in Oregon tidal wetlands and multiple threats to its persistence

    EPA Science Inventory

    Tidal wetlands in the Pacific Northwest occur in coastal estuaries differing widely in size, relative freshwater inputs, and degree of watershed development. To better understand patterns of plant diversity in tidal wetlands across the region and potential climate change effects ...

  11. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    PubMed Central

    Bartlett, Madelaine E.; Whipple, Clinton J.

    2013-01-01

    Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420

  12. Plant metabolism, the diverse chemistry set of the future.

    PubMed

    Wurtzel, Eleanore T; Kutchan, Toni M

    2016-09-16

    New technologies are redefining how plant biology will meet societal challenges in health, nutrition, agriculture, and energy. Rapid and inexpensive genome and transcriptome sequencing is being exploited to discover biochemical pathways that provide tools needed for synthetic biology in both plant and microbial systems. Metabolite detection at the cellular and subcellular levels is complementing gene sequencing for pathway discovery and metabolic engineering. The crafting of plant and microbial metabolism for the synthetic biology platforms of tomorrow will require precise gene editing and delivery of entire complex pathways. Plants sustain life and are key to discovery and development of new medicines and agricultural resources; increased research and training in plant science will accelerate efforts to harness the chemical wealth of the plant kingdom. PMID:27634523

  13. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant trait diversity matter?

    PubMed

    Pappas, Christoforos; Fatichi, Simone; Burlando, Paolo

    2016-01-01

    Plant trait diversity in many vegetation models is crudely represented using a discrete classification of a handful of 'plant types' (named plant functional types; PFTs). The parameterization of PFTs reflects mean properties of observed plant traits over broad categories ignoring most of the inter- and intraspecific plant trait variability. Taking advantage of a multivariate leaf-trait distribution (leaf economics spectrum), as well as documented plant drought strategies, we generate an ensemble of hypothetical species with coordinated attributes, rather than using few PFTs. The behavior of these proxy species is tested using a mechanistic ecohydrological model that translates plant traits into plant performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in the European Alps. Using this framework we investigate the sensitivity of ecosystem response to plant trait diversity and compare it with the sensitivity to climate variability. Plant trait diversity leads to highly divergent vegetation carbon dynamics (fluxes and pools) and to a lesser extent water fluxes (transpiration). Abiotic variables, such as soil water content and evaporation, are only marginally affected. These results highlight the need for revising the representation of plant attributes in vegetation models. Probabilistic approaches, based on observed multivariate whole-plant trait distributions, provide a viable alternative.

  14. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant trait diversity matter?

    PubMed

    Pappas, Christoforos; Fatichi, Simone; Burlando, Paolo

    2016-01-01

    Plant trait diversity in many vegetation models is crudely represented using a discrete classification of a handful of 'plant types' (named plant functional types; PFTs). The parameterization of PFTs reflects mean properties of observed plant traits over broad categories ignoring most of the inter- and intraspecific plant trait variability. Taking advantage of a multivariate leaf-trait distribution (leaf economics spectrum), as well as documented plant drought strategies, we generate an ensemble of hypothetical species with coordinated attributes, rather than using few PFTs. The behavior of these proxy species is tested using a mechanistic ecohydrological model that translates plant traits into plant performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in the European Alps. Using this framework we investigate the sensitivity of ecosystem response to plant trait diversity and compare it with the sensitivity to climate variability. Plant trait diversity leads to highly divergent vegetation carbon dynamics (fluxes and pools) and to a lesser extent water fluxes (transpiration). Abiotic variables, such as soil water content and evaporation, are only marginally affected. These results highlight the need for revising the representation of plant attributes in vegetation models. Probabilistic approaches, based on observed multivariate whole-plant trait distributions, provide a viable alternative. PMID:26389742

  15. Psychometric Evaluation of Lexical Diversity Indices: Assessing Length Effects

    PubMed Central

    Wright, Heather Harris; Green, Samuel B.

    2015-01-01

    Purpose Several novel techniques have been developed recently to assess the breadth of a speaker's vocabulary exhibited in a language sample. The specific aim of this study was to increase our understanding of the validity of the scores generated by different lexical diversity (LD) estimation techniques. Four techniques were explored: D, Maas, measure of textual lexical diversity, and moving-average type–token ratio. Method Four LD indices were estimated for language samples on 4 discourse tasks (procedures, eventcasts, story retell, and recounts) from 442 adults who are neurologically intact. The resulting data were analyzed using structural equation modeling. Results The scores for measure of textual lexical diversity and moving-average type–token ratio were stronger indicators of the LD of the language samples. The results for the other 2 techniques were consistent with the presence of method factors representing construct-irrelevant sources. Conclusion These findings offer a deeper understanding of the relative validity of the 4 estimation techniques and should assist clinicians and researchers in the selection of LD measures of language samples that minimize construct-irrelevant sources. PMID:25766139

  16. Pathways of nutrient loading and impacts on plant diversity in a New York peatland

    USGS Publications Warehouse

    Drexler, J.Z.; Bedford, B.L.

    2002-01-01

    Nutrient loading is a subtle, yet serious threat to the preservation of high diversity wetlands such as peatlands. Pathways of nutrient loading and impacts on plant diversity in a small peatland in New York State, USA were determined by collecting and analyzing a suite of hydrogeological, hydro-chemical, soil, and vegetation data. Piezometer clusters within an intensive network constituted hydro-chemical sampling points and focal points for randomly selected vegetation quadrats and soil-coring locations. Hydrogeological data and nutrient analyses showed that P and K loading occurred chiefly by means of overland flow from an adjacent farm field, whereas N loading occurred predominantly through ground-water flow from the farm field. Redundancy analysis and polynomial regression showed that nutrients, particularly total P in peat, total K in peat, extractable NH4-N, and NO3-N flux in ground water, were strongly negatively correlated with plant diversity measures at the site. No other environmental variables except vegetation measures associated with eutrophication demonstrated such a strong relationship with plant diversity. Nitrate loading over 4 mg m -2 day-1 was associated with low plant diversity, and Ca fluxes between 80 and 130 mg m-2 day-1 were associated with high plant diversity. Areas in the site with particularly low vascular plant and bryophyte species richness and Shannon-Wiener diversity (H') occurred adjacent to the farm field and near a hillside spring. High H' and species richness of vascular plants and bryophytes occurred in areas that were further removed from agriculture, contained no highly dominant vegetation, and were situated directly along the ground-water flow paths of springs. These areas were characterized by relatively constant water levels and consistent, yet moderate fluxes of base cations and nutrients. Overall, this study demonstrates that knowledge of site hydrogeology is crucial for determining potential pathways of nutrient loading

  17. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes

    SciTech Connect

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2013-03-05

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  18. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi

    SciTech Connect

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-03-13

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  19. Plant diversity induces a shift of DOC concentration over time - results from long term and large scale experiment

    NASA Astrophysics Data System (ADS)

    Lange, Markus; Gleixner, Gerd

    2016-04-01

    Plant diversity has been demonstrated as a crucial factor for soil organic carbon (SOC) storage. The horizontal SOC formation in turn is strongly impacted by the relative small but consistent flow of dissolved organic carbon (DOC) in soils. In this process, pore water leaches plant material and already stored SOC while simultaneously these leachates are transported downwards. However, there is a big uncertainty about the drivers of DOC flux; in particular about the importance of biological processes. We investigated the impact of plant diversity and other biotic drivers on DOC concentrations and total DOC fluxes (concentration × sampled water amount). In addition, we considered abiotic factors such as weather and soil conditions to assess the relative importance of biotic and abiotic drivers and how their importance changes over time. We used a comprehensive data set, gathered in the frame of the long-term biodiversity experiment "The Jena Experiment". Permanent monitoring started directly after establishment of the field site in 2002 and is still running. This enabled us to trace the impact of plant communities with their increasing establishment over the time on DOC concentration. We found the amount of sampled pore water best explained by rainfall, while it was not related to plant associated variables. Directly after establishing the experimental site, DOC concentrations were highest and then decreasing with time. In the first period of the experiment plant diversity had no or even a slightly negative impact on DOC concentrations. The direction of the plant diversity effect on DOC concentrations changed over time; namely in later phases we observed highest DOC concentrations on plots with high plant diversity. Moreover, DOC concentrations were negatively affected by increased amounts of sampled pore water indicating a dilution effect. Even though this impact was highly significant; its effect size was even less pronounced at later time points. In summary

  20. Genomic Diversity of Biocontrol Strains of Pseudomonas spp. Isolated from Aerial or Root Surfaces of Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...

  1. On the factors that promote the diversity of herbivorous insects and plants in tropical forests.

    PubMed

    Becerra, Judith X

    2015-05-12

    Some of the most fascinating and challenging questions in ecology are why biodiversity is highest in tropical forests and whether the factors involved are unique to these habitats. I did a worldwide test of the hypotheses that plant community divergence in antiherbivore traits results in higher insect herbivore diversity, and that predominant attack by specialized herbivores promotes plant richness. I found strong correlative support for both ideas. Butterfly diversity was greatest in regions where the community average species-pairwise dissimilarity in antiherbivore traits among plant species was highest. There was also a strong positive relationship between specialized (insect) vs. generalized (mammal) herbivores and plant richness. Regions where herbivory impact by mammals was higher than that of insects tended to have lower plant diversities. In contrast, regions in which insects are the main consumers, particularly in the Central and South American tropics, had the highest plant richness. Latitude did not explain any residual variance in insect or plant richness. The strong connections found between insect specialization, plant defense divergence, and plant and insect diversities suggest that increasing our understanding of the ecology of biological communities can aid in considerations of how to preserve biodiversity in the future. PMID:25902509

  2. On the factors that promote the diversity of herbivorous insects and plants in tropical forests

    PubMed Central

    Becerra, Judith X.

    2015-01-01

    Some of the most fascinating and challenging questions in ecology are why biodiversity is highest in tropical forests and whether the factors involved are unique to these habitats. I did a worldwide test of the hypotheses that plant community divergence in antiherbivore traits results in higher insect herbivore diversity, and that predominant attack by specialized herbivores promotes plant richness. I found strong correlative support for both ideas. Butterfly diversity was greatest in regions where the community average species-pairwise dissimilarity in antiherbivore traits among plant species was highest. There was also a strong positive relationship between specialized (insect) vs. generalized (mammal) herbivores and plant richness. Regions where herbivory impact by mammals was higher than that of insects tended to have lower plant diversities. In contrast, regions in which insects are the main consumers, particularly in the Central and South American tropics, had the highest plant richness. Latitude did not explain any residual variance in insect or plant richness. The strong connections found between insect specialization, plant defense divergence, and plant and insect diversities suggest that increasing our understanding of the ecology of biological communities can aid in considerations of how to preserve biodiversity in the future. PMID:25902509

  3. On the factors that promote the diversity of herbivorous insects and plants in tropical forests.

    PubMed

    Becerra, Judith X

    2015-05-12

    Some of the most fascinating and challenging questions in ecology are why biodiversity is highest in tropical forests and whether the factors involved are unique to these habitats. I did a worldwide test of the hypotheses that plant community divergence in antiherbivore traits results in higher insect herbivore diversity, and that predominant attack by specialized herbivores promotes plant richness. I found strong correlative support for both ideas. Butterfly diversity was greatest in regions where the community average species-pairwise dissimilarity in antiherbivore traits among plant species was highest. There was also a strong positive relationship between specialized (insect) vs. generalized (mammal) herbivores and plant richness. Regions where herbivory impact by mammals was higher than that of insects tended to have lower plant diversities. In contrast, regions in which insects are the main consumers, particularly in the Central and South American tropics, had the highest plant richness. Latitude did not explain any residual variance in insect or plant richness. The strong connections found between insect specialization, plant defense divergence, and plant and insect diversities suggest that increasing our understanding of the ecology of biological communities can aid in considerations of how to preserve biodiversity in the future.

  4. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  5. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  6. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  7. Photosynthetic diversity meets biodiversity: the C4 plant example.

    PubMed

    Sage, Rowan F; Stata, Matt

    2015-01-01

    Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere.

  8. [Agrobacterium rubi strains from blueberry plants are highly diverse].

    PubMed

    Abrahamovich, Eliana; López, Ana C; Alippi, Adriana M

    2014-01-01

    The diversity of a collection of Agrobacterium rubi strains isolated from blueberries from different regions of Argentina was studied by conventional microbiological tests and molecular techniques. Results from biochemical and physiological reactions, as well as from rep-PCR and RFLP analysis of PCR-amplified 23S rDNA showed high phenotypic and genotypic intraspecific variation.

  9. Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments.

    PubMed

    Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Borin, Sara; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  10. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    PubMed Central

    Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Sorlini, Claudia; Daffonchio, Daniele

    2013-01-01

    Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

  11. Genetic diversity in populations of plants with different breeding and dispersal strategies in a free-flowing boreal river system.

    PubMed

    Lundqvist, E; Andersson, E

    2001-01-01

    We have studied the genetic diversity of three plant species: Angelica archangelica (Apiacieae), Bistorta vivipara (Polygonaceae) and Viscaria alpina (Caryophyllaceae) along the free-flowing Vindel River in northern Sweden. The plants differ in reproductive strategy. A archangelica and V. alpina are insect pollinated outbreeders while B. vivipara reproduces with apomixis through bulbils. The seeds of A. archangelica may float for over a year, while the propagules (seeds and bulbils, respectively) of V. alpina and B. vivipara float for less than two days. Genetic diversity was assessed using starch gel electrophoresis. The clonal diversity of B. vivipara measured by Simpson's index (D) ranged between 0.78 and 0.99. Only a few clones were shared between localities. The average percentages polymorphic loci and mean He based on polymorphic loci for V. alpina over all localities were 23.1 and 0.15, respectively. Wright's F-statistics showed a significant overall deficit of heterozygotes. The diversity of A. archangelica was found to increase downstream. Genetic diversity of each species is sufficiently high to be used in studies on hydrochory. Dispersal appears to be related to the floating ability of progagules. PMID:12035618

  12. Herbivores and nutrients control grassland plant diversity via light limitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human alterations to nutrient cycles and herbivore communities are dramatically altering global biodiversity. Theory predicts these changes to be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive excl...

  13. Potential benefits of plant diversity on vegetated roofs: a literature review.

    PubMed

    Cook-Patton, Susan C; Bauerle, Taryn L

    2012-09-15

    Although vegetated green roofs can be difficult to establish and maintain, they are an increasingly popular method for mitigating the negative environmental impacts of urbanization. Most green roof development has focused on maximizing green roof performance by planting one or a few drought-tolerant species. We present an alternative approach, which recognizes green roofs as dynamic ecosystems and employs a diversity of species. We draw links between the ecological and green roof literature to generate testable predictions about how increasing plant diversity could improve short- and long-term green roof functioning. Although we found few papers that experimentally manipulated diversity on green roofs, those that did revealed ecological dynamics similar to those in more natural systems. However, there are many unresolved issues. To improve overall green roof performance, we should (1) elucidate the links among plant diversity, structural complexity, and green roof performance, (2) describe feedback mechanisms between plant and animal diversity on green roofs, (3) identify species with complementary traits, and (4) determine whether diverse green roof communities are more resilient to disturbance and environmental change than less diverse green roofs.

  14. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique

  15. Diversity of use and local knowledge of wild edible plant resources in Nepal

    PubMed Central

    2012-01-01

    Background Wild edible plants (WEP) provide staple and supplement foods, as well as cash income to local communities, thus favouring food security. However, WEP are largely ignored in land use planning and implementation, economic development, and biodiversity conservation. Moreover, WEP-related traditional knowledge is rapidly eroding. Therefore, we designed this study to fulfill a part of the knowledge gap by providing data on diversity, traditional knowledge, economic potential, and conservation value of WEP from Nepal. Methods The information was collected through focus group discussions and key informant interviews. Percentage of general utility of the plants among the study communities was evaluated using the Chi-square (χ2) test of homogeneity. High priority species were identified after consultation with the local stakeholders followed by scoring based on defined criteria. Pairwise ranking was used to assess ethnoecological knowledge to identify the threats to WEP. Results We documented 81 species belonging to Angiosperms (74), Pteridophytes (5), and Fungi (2). Most of the species were used as fruits (44 species) followed by vegetables (36). Almost half of the species (47%) were also used for purposes other than food. From the species with market value (37% of the total), 10 were identified as high priority species. Pairwise ranking revealed that WEP are threatened mostly by habitat destruction, land-use change and over-harvesting. Some of these plants are crop wild relatives and could thus be used for crop improvement. Interestingly, our study also revealed that young people who spend most of the time in the forest as herdsmen are particularly knowledgeable of wild fruit plants. Conclusion We provide empirical evidence from a relatively large area of Nepal about diversity and status of WEP, as well as methodological insights about the proper knowledge holders to consult. Regarding the unique and important knowledge they have on WEP, young people should be

  16. [Diversity and tissue distribution of fungal endophytes in Alpinia officinarum: an important south-China medicinal plant].

    PubMed

    Zhou, Ren-Chao; Huang, Juan; Li, Ze-En; Li, Shu-Bin

    2014-08-01

    In the present study, terminal-restriction fragment length polymorphism (T-RFLP) technique was applied to assess the diversity and tissue distribution of the fungal endophyte communities of Alpinia officinarum collected from Longtang town in Xuwen county, Guangdong province, China, at which the pharmacological effect of the medicine plant is traditional considered to be the significantly higher than that in any other growth areas in China. A total of 28 distinct Terminal-Restriction Fragment (T-RFs) were detected with HhaI Mono-digestion targeted amplified fungal nuclear ribosomal internal transcribed spacer region sequences (rDNA ITS) from the root, rhizome, stem, and leaf internal tissues of A. officinarum plant, indicating that at least 28 distinct fungal species were able to colonize the internal tissue of the host plant. The rDNA ITS-T-RFLP profiles obtained from different tissues of the host plant were obvious distinct. And the numbers of total T-RFs, and the dominant T-RFs detected from various tissues were significantly different. Based on the obtained T-RFLP profiles, Shannon's diversity index and the Shannon's evenness index were calculated, which were significantly different among tissues (P < 0.05). Furthermore, two types of active chemicals, total volatile oils by water vapor distillation method and galangin by methanol extraction-HPLC method, were examined in the each tissue of the tested plant. Both of tested components were detected in all of the four tissues of the medicine plant with varying contents. And the highest was in rhizome tissue. Correlation analysis revealed there were significant negative correlations between both of the tested active components contents and calculated Shannon's diversity index, as well as the Shannon's evenness index of the fungal endophyte communities of the host plant (P = 0, Pearson correlation coefficient ≤ -0.962), and significant positive correlations between both of the tested active components contents and

  17. Evolutionary Relationships and Functional Diversity of Plant Sulfate Transporters

    PubMed Central

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J.; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1–SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae. PMID:22629272

  18. Revealing the structural and functional diversity of plant cell walls.

    PubMed

    Knox, J Paul

    2008-06-01

    The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.

  19. Non-native plants add to the British flora without negative consequences for native diversity.

    PubMed

    Thomas, Chris D; Palmer, G

    2015-04-01

    Plants are commonly listed as invasive species, presuming that they cause harm at both global and regional scales. Approximately 40% of all species listed as invasive within Britain are plants. However, invasive plants are rarely linked to the national or global extinction of native plant species. The possible explanation is that competitive exclusion takes place slowly and that invasive plants will eventually eliminate native species (the "time-to-exclusion hypothesis"). Using the extensive British Countryside Survey Data, we find that changes to plant occurrence and cover between 1990 and 2007 at 479 British sites do not differ between native and non-native plant species. More than 80% of the plant species that are widespread enough to be sampled are native species; hence, total cover changes have been dominated by native species (total cover increases by native species are more than nine times greater than those by non-native species). This implies that factors other than plant "invasions" are the key drivers of vegetation change. We also find that the diversity of native species is increasing in locations where the diversity of non-native species is increasing, suggesting that high diversities of native and non-native plant species are compatible with one another. We reject the time-to-exclusion hypothesis as the reason why extinctions have not been observed and suggest that non-native plant species are not a threat to floral diversity in Britain. Further research is needed in island-like environments, but we question whether it is appropriate that more than three-quarters of taxa listed globally as invasive species are plants.

  20. Non-native plants add to the British flora without negative consequences for native diversity.

    PubMed

    Thomas, Chris D; Palmer, G

    2015-04-01

    Plants are commonly listed as invasive species, presuming that they cause harm at both global and regional scales. Approximately 40% of all species listed as invasive within Britain are plants. However, invasive plants are rarely linked to the national or global extinction of native plant species. The possible explanation is that competitive exclusion takes place slowly and that invasive plants will eventually eliminate native species (the "time-to-exclusion hypothesis"). Using the extensive British Countryside Survey Data, we find that changes to plant occurrence and cover between 1990 and 2007 at 479 British sites do not differ between native and non-native plant species. More than 80% of the plant species that are widespread enough to be sampled are native species; hence, total cover changes have been dominated by native species (total cover increases by native species are more than nine times greater than those by non-native species). This implies that factors other than plant "invasions" are the key drivers of vegetation change. We also find that the diversity of native species is increasing in locations where the diversity of non-native species is increasing, suggesting that high diversities of native and non-native plant species are compatible with one another. We reject the time-to-exclusion hypothesis as the reason why extinctions have not been observed and suggest that non-native plant species are not a threat to floral diversity in Britain. Further research is needed in island-like environments, but we question whether it is appropriate that more than three-quarters of taxa listed globally as invasive species are plants. PMID:25831537

  1. Effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China.

    PubMed

    Li, Youzhi; Chen, Xinsheng; Xie, Yonghong; Li, Xu; Li, Feng; Hou, Zhiyong

    2014-09-11

    This study evaluated the effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Poplar plantations resulted in a higher species number and Shannon's diversity. Species compositions were different between areas with poplar and reed populations: a lower ratio of hygrophytes but a higher ratio of mesophytes, and a higher ratio of heliophytes but a lower ratio of neutrophilous or shade plants in poplar areas compared to reed areas. Poplar plantations supported a higher ratio of ligneous plants in the entire Dongting Lake area, but there was no difference in the monitored plots. Unlike reedy areas, poplar plantations had higher light availability but lower soil water content during the growing seasons. These data suggest that young poplar plantations generally increased species richness and plant diversity, but significantly changed species composition due to the reduced soil water and increased light availability.

  2. Emerging roles for diverse intramembrane proteases in plant biology.

    PubMed

    Adam, Zach

    2013-12-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has made its impact on plant biology as well. Although this field within plant research is still in its infancy, some interesting observations have started to emerge. Gene encoding orthologs of rhomboid proteases, site-2 proteases (S2P), presenilin/γ-secretases, and signal peptide peptidases are found in plant genomes and some of these gene products were identified in different plant cell membranes. The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development. An S2P was also implicated in the response to ER stress through cleavage of ER-membrane bZIP transcription factors, allowing their migration to the nucleus and activation of the transcription of BiP chaperones. Other membrane-bound transcription factors of the NAC and PHD families were also demonstrated to undergo RIP and relocalization to the nucleus. These and other new data are expected to shed more light on the roles of intramembrane proteases in plant biology in the future. This article is part of a Special Issue entitled: Intramembrane Proteases.

  3. Environmental Quality and Fertility: The Effects of Plant Density, Species Richness, and Plant Diversity on Fertility Limitation *

    PubMed Central

    Brauner-Otto, Sarah R.

    2013-01-01

    The relationship between the environment and population has been of concern for centuries and climate change is making this an even more pressing area of study. In poor rural areas declining environmental conditions may elicit changes in family related behaviors. This paper explores this relationship in rural Nepal looking specifically at how plant density, species richness, and plant diversity are related to women’s fertility limitation behavior. Taking advantage of a unique data set with detailed micro-level environmental measures and individual fertility behavior I link geographically weighted measures of flora at one point in time to women’s later contraceptive use as a way to examine this complex relationship. I find a significant, positive relationship between plant density, species richness, and plant diversity and the timing of contraceptive use. Women in poor environmental conditions are less likely to terminate childbearing, or do so later, and therefore more likely to have larger families. PMID:25593378

  4. Invasive stink bug favors naïve plants: Testing the role of plant geographic origin in diverse, managed environments.

    PubMed

    Martinson, Holly M; Bergmann, Erik J; Venugopal, P Dilip; Riley, Christopher B; Shrewsbury, Paula M; Raupp, Michael J

    2016-01-01

    With the introduction and establishment of exotic species, most ecosystems now contain both native and exotic plants and herbivores. Recent research identifies several factors that govern how specialist herbivores switch host plants upon introduction. Predicting the feeding ecology and impacts of introduced generalist species, however, remains difficult. Here, we examine how plant geographic origin, an indicator of shared co-evolutionary history, influences patterns of host use by a generalist, invasive herbivore, while accounting for variation in plant availability. The brown marmorated stink bug, Halyomorpha halys, is a highly polyphagous Asian herbivore and an economically important invasive pest in North America and Europe. In visual surveys of 220 plant taxa in commercial nurseries in Maryland, USA, H. halys was more abundant on non-Asian plants and selected these over Asian plants. The relationship between the relative use of plants and their availability was strongly positive but depended also on plant origin at two of our three sites, where the higher relative use of non-Asian plants was greatest for highly abundant taxa. These results highlight the importance of considering both plant origin and relative abundance in understanding the selection of host plants by invasive generalist herbivores in diverse, natural and urban forests. PMID:27581756

  5. Invasive stink bug favors naïve plants: Testing the role of plant geographic origin in diverse, managed environments

    PubMed Central

    Martinson, Holly M.; Bergmann, Erik J.; Venugopal, P. Dilip; Riley, Christopher B.; Shrewsbury, Paula M.; Raupp, Michael J.

    2016-01-01

    With the introduction and establishment of exotic species, most ecosystems now contain both native and exotic plants and herbivores. Recent research identifies several factors that govern how specialist herbivores switch host plants upon introduction. Predicting the feeding ecology and impacts of introduced generalist species, however, remains difficult. Here, we examine how plant geographic origin, an indicator of shared co-evolutionary history, influences patterns of host use by a generalist, invasive herbivore, while accounting for variation in plant availability. The brown marmorated stink bug, Halyomorpha halys, is a highly polyphagous Asian herbivore and an economically important invasive pest in North America and Europe. In visual surveys of 220 plant taxa in commercial nurseries in Maryland, USA, H. halys was more abundant on non-Asian plants and selected these over Asian plants. The relationship between the relative use of plants and their availability was strongly positive but depended also on plant origin at two of our three sites, where the higher relative use of non-Asian plants was greatest for highly abundant taxa. These results highlight the importance of considering both plant origin and relative abundance in understanding the selection of host plants by invasive generalist herbivores in diverse, natural and urban forests. PMID:27581756

  6. Invasive stink bug favors naïve plants: Testing the role of plant geographic origin in diverse, managed environments.

    PubMed

    Martinson, Holly M; Bergmann, Erik J; Venugopal, P Dilip; Riley, Christopher B; Shrewsbury, Paula M; Raupp, Michael J

    2016-09-01

    With the introduction and establishment of exotic species, most ecosystems now contain both native and exotic plants and herbivores. Recent research identifies several factors that govern how specialist herbivores switch host plants upon introduction. Predicting the feeding ecology and impacts of introduced generalist species, however, remains difficult. Here, we examine how plant geographic origin, an indicator of shared co-evolutionary history, influences patterns of host use by a generalist, invasive herbivore, while accounting for variation in plant availability. The brown marmorated stink bug, Halyomorpha halys, is a highly polyphagous Asian herbivore and an economically important invasive pest in North America and Europe. In visual surveys of 220 plant taxa in commercial nurseries in Maryland, USA, H. halys was more abundant on non-Asian plants and selected these over Asian plants. The relationship between the relative use of plants and their availability was strongly positive but depended also on plant origin at two of our three sites, where the higher relative use of non-Asian plants was greatest for highly abundant taxa. These results highlight the importance of considering both plant origin and relative abundance in understanding the selection of host plants by invasive generalist herbivores in diverse, natural and urban forests.

  7. Diversity of heterotrimeric G-protein γ subunits in plants

    PubMed Central

    2012-01-01

    Background Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. Results After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX). According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Conclusion Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species. PMID:23113884

  8. Natural diversity and adaptation in plant secondary metabolism.

    PubMed

    Kroymann, Juergen

    2011-06-01

    Technological advances in metabolomics, transcriptomics and genomics have facilitated the detection of genes that contribute to diversification in plant secondary metabolism. Statistical tools from molecular population genetics may help in evaluating whether the corresponding genes or genomic regions carry a signature of selection and answering the question of whether novel compounds are 'adaptive'. Gene duplication fuels diversification in plant secondary metabolism and the evolutionary mechanism for adaptation may follow a path of neofunctionalization subsequent to gene duplication, or gene duplication may occur subsequent to--and resolve--an adaptive conflict present in a single ancestral gene sequence.

  9. Initial assessment of natural diversity in Mexican fig landraces.

    PubMed

    García-Ruiz, M T; Mendoza-Castillo, V M; Valadez-Moctezuma, E; Muratalla-Lúa, A

    2013-09-23

    The common fig (Ficus carica L.) was introduced into Mexico by Spanish Franciscan missionaries in the 16th century. It is widely assumed that Mexican figs are the Spanish cultivar Black Mission. We collected and propagated 12 fig plants from six landraces from different states in Central Mexico that represent different climate. All of them were grown in a greenhouse at Universidad Autónoma Chapingo, in the State of Mexico. During the experimental period, the greenhouse had an average temperature and relative humidity of 29.2° ± 5.4°C (SEM) and 78.1 ± 6.7% (SEM), respectively. Morphological characterization was done following a selected set of quantitative and qualitative descriptors established by the IPGRI. DNA analysis was based on a combination of ISSR and RFLP markers. We observed great diversity mainly in fruit weight (28.1-96.2 g), fruit shape (ovoid, pyriform), and neck length (0.97-3.80 cm), which could not be explained by environmental conditions such as temperature and relative humidity. The Nei and Li/Dice similarity coefficient between landraces was determined by cluster analysis using the UPGMA method. Based on the morphological characterization and DNA fingerprinting data presented in this study, our results showed that after hundreds of years, black figs have adapted to local environmental condition in Central Mexico, yielding at least six clearly distinct landraces that represent valuable and previously undescribed genetic diversity. We also suggested names for those landraces according to their location and established a basis for further agronomic and molecular characterization of fig landraces.

  10. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities.

    PubMed

    Schooler, S S; McEvoy, P B; Hammond, P; Coombs, E M

    2009-06-01

    Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species.

  11. Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada

    USGS Publications Warehouse

    Keeley, Jon E.; Lubin, Daniel; Fotheringham, C.J.

    2003-01-01

    Patterns of native and alien plant diversity in response to disturbance were examined along an elevational gradient in blue oak savanna, chaparral, and coniferous forests. Total species richness, alien species richness, and alien cover declined with elevation, at scales from 1 to 1000 m2. We found no support for the hypothesis that community diversity inhibits alien invasion. At the 1-m2 point scale, where we would expect competitive interactions between the largely herbaceous flora to be most intense, alien species richness as well as alien cover increased with increasing native species richness in all communities. This suggests that aliens are limited not by the number of native competitors, but by resources that affect establishment of both natives and aliens.Blue oak savannas were heavily dominated by alien species and consistently had more alien than native species at the 1-m2 scale. All of these aliens are annuals, and it is widely thought that they have displaced native bunchgrasses. If true, this means that aliens have greatly increased species richness. Alternatively, there is a rich regional flora of native annual forbs that could have dominated these grasslands prior to displacement by alien grasses. On our sites, livestock grazing increased the number of alien species and alien cover only slightly over that of sites free of livestock grazing for more than a century, indicating some level of permanency to this invasion.In chaparral, both diversity and aliens increased markedly several years after fire. Invasive species are rare in undisturbed shrublands, and alien propagules fail to survive the natural crown fires in these ecosystems. Thus, aliens necessarily must colonize after fire and, as a consequence, time since fire is an important determinant of invasive presence. Blue oak savannas are an important propagule source for alien species because they maintain permanent populations of all alien species encountered in postfire chaparral, and because the

  12. Biodiversity assessment among two Nebraska prairies: a comparison between traditional and phylogenetic diversity indices

    PubMed Central

    Aust, Shelly K.; Ahrendsen, Dakota L.

    2015-01-01

    Abstract Background Conservation of the evolutionary diversity among organisms should be included in the selection of priority regions for preservation of Earth’s biodiversity. Traditionally, biodiversity has been determined from an assessment of species richness (S), abundance, evenness, rarity, etc. of organisms but not from variation in species’ evolutionary histories. Phylogenetic diversity (PD) measures evolutionary differences between taxa in a community and is gaining acceptance as a biodiversity assessment tool. However, with the increase in the number of ways to calculate PD, end-users and decision-makers are left wondering how metrics compare and what data are needed to calculate various metrics. New information In this study, we used massively parallel sequencing to generate over 65,000 DNA characters from three cellular compartments for over 60 species in the asterid clade of flowering plants. We estimated asterid phylogenies from character datasets of varying nucleotide quantities, and then assessed the effect of varying character datasets on resulting PD metric values. We also compared multiple PD metrics with traditional diversity indices (including S) among two endangered grassland prairies in Nebraska (U.S.A.). Our results revealed that PD metrics varied based on the quantity of genes used to infer the phylogenies; therefore, when comparing PD metrics between sites, it is vital to use comparable datasets. Additionally, various PD metrics and traditional diversity indices characterize biodiversity differently and should be chosen depending on the research question. Our study provides empirical results that reveal the value of measuring PD when considering sites for conservation, and it highlights the usefulness of using PD metrics in combination with other diversity indices when studying community assembly and ecosystem functioning. Ours is just one example of the types of investigations that need to be conducted across the tree of life and

  13. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    USGS Publications Warehouse

    Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. ?? 2011 The Author(s).

  14. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus.

    PubMed

    Cibichakravarthy, B; Preetha, R; Sundaram, S P; Kumar, K; Balachandar, D

    2012-02-01

    This study is aimed at assessing culturable diazotrophic bacterial diversity in the rhizosphere of Prosopis juliflora and Parthenium hysterophorus, which grow profusely in nutritionally-poor soils and environmentally-stress conditions so as to identify some novel strains for bioinoculant technology. Diazotrophic isolates from Prosopis and Parthenium rhizosphere were characterized for nitrogenase activity by Acetylene Reduction Assay (ARA) and 16S rRNA gene sequencing. Further, the culture-independent quantitative PCR (qPCR) was performed to compare the abundance of diazotrophs in rhizosphere with bulk soils. The proportion of diazotrophs in total heterotrophs was higher in rhizosphere than bulk soils and 32 putative diazotrophs from rhizosphere of two plants were identified by nifH gene amplification. The ARA activity of the isolates ranged from 40 to 95 nmol ethylene h(-1) mg protein(-1). The 16S rRNA gene analysis identified the isolates to be members of alpha, beta and gamma Proteobacteria and firmicutes. The qPCR assay also confirmed that abundance of nif gene in rhizosphere of these two plants was 10-fold higher than bulk soil.

  15. Economic valuation of plant diversity storage service provided by Brazilian rupestrian grassland ecosystems.

    PubMed

    Resende, F M; Fernandes, G W; Coelho, M S

    2013-11-01

    The rupestrian grassland ecosystems provide various goods and services to society and support a significant amount of biological diversity. Notably the rich plant diversity has high levels of endemism and a variety of uses among the local communities and general society. Despite the socio-ecological importance of these ecosystems, they are subjected to significant anthropogenic pressures. The goal of this study is to perform economic valuation of the plant diversity storage service provided by rupestrian grassland ecosystems to provide grounds for the development of conservation policies and encourage sustainable practices in these ecosystems. Given the intense human disturbances and unique flora, the Serra do Cipó (southern portion of the Espinhaço Range in southeast Brazil) was selected for the study. We estimate the monetary value related to the plant diversity storage service provided by the study area using the maintenance costs of native plants in the living collections of the botanical garden managed by the Zoobotanical Foundation - Belo Horizonte (located 97 km from Serra do Cipó). The plant diversity storage value provided by Serra do Cipó ecosystems is significant, reaching US$25.26 million year-1. This study contributes to the development of perspectives related to the conservation of rupestrian grassland ecosystems as well as others threatened tropical ecosystems with high biodiversity.

  16. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment.

    PubMed

    Scherber, Christoph; Eisenhauer, Nico; Weisser, Wolfgang W; Schmid, Bernhard; Voigt, Winfried; Fischer, Markus; Schulze, Ernst-Detlef; Roscher, Christiane; Weigelt, Alexandra; Allan, Eric; Bessler, Holger; Bonkowski, Michael; Buchmann, Nina; Buscot, François; Clement, Lars W; Ebeling, Anne; Engels, Christof; Halle, Stefan; Kertscher, Ilona; Klein, Alexandra-Maria; Koller, Robert; König, Stephan; Kowalski, Esther; Kummer, Volker; Kuu, Annely; Lange, Markus; Lauterbach, Dirk; Middelhoff, Cornelius; Migunova, Varvara D; Milcu, Alexandru; Müller, Ramona; Partsch, Stephan; Petermann, Jana S; Renker, Carsten; Rottstock, Tanja; Sabais, Alexander; Scheu, Stefan; Schumacher, Jens; Temperton, Vicky M; Tscharntke, Teja

    2010-11-25

    Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.

  17. Safety assessment of plant food supplements (PFS).

    PubMed

    van den Berg, Suzanne J P L; Serra-Majem, Lluis; Coppens, Patrick; Rietjens, Ivonne M C M

    2011-12-01

    Botanicals and botanical preparations, including plant food supplements (PFS), are widely used in Western diets. The growing use of PFS is accompanied by an increasing concern because the safety of these PFS is not generally assessed before they enter the market. Regulatory bodies have become more aware of this and are increasing their efforts to ensure the safety of PFS. The present review describes an overview of the general framework for the safety assessment of PFS, focusing on the different approaches currently in use to assess the safety of botanicals and/or botanical compounds, including their history of safe use, the tiered approach proposed by the European Food Safety Authority (EFSA), the Threshold of Toxicological Concern (TTC) and the Margin of Exposure (MOE) concept. Moreover, some examples of botanical compounds in PFS that may be of concern are discussed. Altogether, it is clear that "natural" does not equal "safe" and that PFS may contain compounds of concern at levels far above those found in the regular diet. In addition, the traditional use of a PFS compound as a herb or tea does not guarantee its safety when used as a supplement. This points at a need for stricter regulation and control of botanical containing products, especially given their expanding market volume. PMID:21804969

  18. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    PubMed

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought.

  19. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    PubMed

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  20. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  1. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  2. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization

    PubMed Central

    Nelson, Erik J.; Helmus, Matthew R.; Cavender-Bares, Jeannine; Polasky, Stephen; Lasky, Jesse R.; Zanne, Amy E.; Pearse, William D.; Kraft, Nathan J. B.; Miteva, Daniela A.; Fagan, William F.

    2016-01-01

    Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more–in terms of volume and diversity–if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country’s plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more

  3. Exploiting a wheat EST database to assess genetic diversity

    PubMed Central

    2010-01-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01. PMID:21637582

  4. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities

    PubMed Central

    Carlson, Bradley Z.; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-01-01

    Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Methods Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content. Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R2 of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics. Conclusions The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that

  5. Effects of inter-row management intensity on wild bee, plant and soil biota diversity in vineyards

    NASA Astrophysics Data System (ADS)

    Kratschmer, Sophie; Pachinger, Bärbel; Winter, Silvia; Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Strauß, Peter; Bauer, Thomas; Stiper, Katrin

    2016-04-01

    Vineyards may provide a range of essential ecosystem services, which interact with a diverse community of above- and belowground organisms. Intensive soil management like frequent tilling has resulted in the degradation of habitat quality with consequences on biodiversity and ecosystem services. This study is part of the European BiodivERsA project "VineDivers - Biodiversity-based ecosystem services in vineyards". We study the effects of different soil management intensities on above- and below-ground biodiversity (plants, insect pollinators, and soil biota), their interactions and the consequences for ecosystem services. We investigated 16 vineyards in Austria assessing the diversity of (1) wild bees using a semi-quantitative transect method, (2) earthworms by hand sorting, (3) Collembola (springtails) via pitfall trapping and soil coring, (4) plants by relevés and (5) litter decomposition (tea bag method). Management intensity differed in tillage frequency from intermediate intensity resulting in temporary vegetation cover to no tillage in permanent vegetation cover systems. First results show opposed relationships between the biodiversity of selected species groups and management intensity. We will discuss possible explanations and evaluate ecological interactions between wild bee, plant and soil biota diversity.

  6. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland

    PubMed Central

    Qu, Tong-bao; Du, Wei-chao; Yuan, Xia; Yang, Zhi-ming; Liu, Dong-bo; Wang, De-li; Yu, Li-jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha−1; and heavy grazing, 6 sheep·ha−1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  7. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe.

  8. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  9. Vascular plant abundance and diversity in an alpine heath under observed and simulated global change

    PubMed Central

    Alatalo, Juha M.; Little, Chelsea J.; Jägerbrand, Annika K.; Molau, Ulf

    2015-01-01

    Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment. PMID:25950370

  10. Vascular plant abundance and diversity in an alpine heath under observed and simulated global change.

    PubMed

    Alatalo, Juha M; Little, Chelsea J; Jägerbrand, Annika K; Molau, Ulf

    2015-05-07

    Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment.

  11. Plant Community Diversity Influences Allocation to Direct Chemical Defence in Plantago lanceolata

    PubMed Central

    Mraja, Anne; Unsicker, Sybille B.; Reichelt, Michael; Gershenzon, Jonathan; Roscher, Christiane

    2011-01-01

    Background Forecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking. Methodology/Principal Findings We used Plantago lanceolata as a model species in experimental grasslands differing in species richness and composition (Jena Experiment) to investigate foliar concentrations of the iridoid glycosides (IG), catalpol and its biosynthetic precursor aucubin. Total IG and aucubin concentrations decreased, while catalpol concentrations increased with increasing plant diversity in terms of species or functional group richness. Negative plant diversity effects on total IG and aucubin concentrations correlated with increasing specific leaf area of P. lanceolata, suggesting that greater allocation to light acquisition reduced the investment into these carbon-based defence components. In contrast, increasing leaf nitrogen concentrations best explained increasing concentrations of the biosynthetically more advanced IG, catalpol. Observed levels of leaf damage explained a significant proportion of variation in total IG and aucubin concentrations, but did not account for variance in catalpol concentrations. Conclusions/Significance Our results clearly show that plants growing in communities of varying species richness and composition differ in their defensive chemistry, which may modulate plant susceptibility to enemy attack and consequently their interactions with higher trophic level organisms. PMID:22174766

  12. Melatonin in Plants - Diversity of Levels and Multiplicity of Functions.

    PubMed

    Hardeland, Rüdiger

    2016-01-01

    Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N (1)-acetyl-N (2)-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity. PMID:26925091

  13. Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity

    PubMed Central

    Cadotte, Marc W.; Cavender-Bares, Jeannine; Tilman, David; Oakley, Todd H.

    2009-01-01

    Background Two decades of research showing that increasing plant diversity results in greater community productivity has been predicated on greater functional diversity allowing access to more of the total available resources. Thus, understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining diversity-productivity relationships. Methodology/Principal Findings Here we use data from a long-term experiment (Cedar Creek, MN) and compare the extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2) variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community members together and may be a surrogate for ecological differences. Although most of these diversity measures provided significant explanations of variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity was a better explanation of community productivity than other models. Conclusions Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic relationships provide a better measure of the diversity among species that contributes to productivity than individual or small groups of traits. PMID:19479086

  14. A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus.

    PubMed

    Yergeau, E; Filion, M; Vujanovic, V; St-Arnaud, M

    2005-02-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples. PMID:15590089

  15. Nuclear material safeguards for enrichments plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course

    SciTech Connect

    Not Available

    1988-10-01

    This publication is Part 4 of a safeguards training course in Nuclear Material Safeguards for enrichment plants. This part of the course deals with diversion scenarios and safeguards activities at gas centrifuge enrichment plants.

  16. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective.

    PubMed

    Slewinski, Thomas L

    2011-07-01

    Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.

  17. Assessing Racial Microaggression Distress in a Diverse Sample.

    PubMed

    Torres-Harding, Susan; Turner, Tasha

    2015-12-01

    Racial microaggressions are everyday subtle or ambiguous racially related insults, slights, mistreatment, or invalidations. Racial microaggressions are a type of perceived racism that may negatively impact the health and well-being of people of color in the United States. This study examined the reliability and validity of the Racial Microaggression Scale distress subscales, which measure the perceived stressfulness of six types of microaggression experiences in a racially and ethnically diverse sample. These subscales exhibited acceptable to good internal consistency. The distress subscales also evidenced good convergent validity; the distress subscales were positively correlated with additional measures of stressfulness due to experiencing microaggressions or everyday discrimination. When controlling for the frequency of one's exposure to microaggression incidents, some racial/ethnic group differences were found. Asian Americans reported comparatively lower distress and Latinos reporting comparatively higher distress in response to Foreigner, Low-Achieving, Invisibility, and Environmental microaggressions. African Americans reported higher distress than the other groups in response to Environmental microaggressions. Results suggest that the Racial Microaggressions Scale distress subscales may aid health professionals in assessing the distress elicited by different types of microaggressions. In turn, this may facilitate diagnosis and treatment planning in order to provide multiculturally competent care for African American, Latino, and Asian American clients.

  18. Assessing and understanding diversity in galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Abramson, Louis Evan

    Galaxy star formation histories (SFHs) form a central thread of the cosmological narrative. Assessing and understanding them is therefore a central mission of the study of galaxy evolution. Although an ever-better picture is emerging of the build-up of the stellar mass of the average galaxy over time, the relevance of this track to the growth of individual galaxies is unclear. Largely, this ambiguity is due to the availability of only loose, ensemble-level constraints at any redshift appreciably greater than zero. In this thesis, I outline how these constraints --- principally the cosmic star formation rate density, stellar mass function, and the star formation rate/stellar mass relation --- shape empirically based SFH models, especially in terms of the diversity of paths leading to a given end-state. Along the way, I show that three models propose very different answers to this question, corresponding (largely) to three different interpretations of the scatter in instantaneous galaxy growth rates at fixed stellar mass. I describe how these interpretations affect one's stance on the fundamental importance of so-called galaxy "bimodality" and quenching mechanisms, the influence of environment, and the role starbursts play in galaxy evolution. Ultimately, I conclude that there is insufficient evidence at present to select one interpretation over all others, but suggest that the situation might soon be resolved by upcoming observations that could clearly identify which model (or hybrid) is the most accurate description of galaxy growth.

  19. Assessing Racial Microaggression Distress in a Diverse Sample.

    PubMed

    Torres-Harding, Susan; Turner, Tasha

    2015-12-01

    Racial microaggressions are everyday subtle or ambiguous racially related insults, slights, mistreatment, or invalidations. Racial microaggressions are a type of perceived racism that may negatively impact the health and well-being of people of color in the United States. This study examined the reliability and validity of the Racial Microaggression Scale distress subscales, which measure the perceived stressfulness of six types of microaggression experiences in a racially and ethnically diverse sample. These subscales exhibited acceptable to good internal consistency. The distress subscales also evidenced good convergent validity; the distress subscales were positively correlated with additional measures of stressfulness due to experiencing microaggressions or everyday discrimination. When controlling for the frequency of one's exposure to microaggression incidents, some racial/ethnic group differences were found. Asian Americans reported comparatively lower distress and Latinos reporting comparatively higher distress in response to Foreigner, Low-Achieving, Invisibility, and Environmental microaggressions. African Americans reported higher distress than the other groups in response to Environmental microaggressions. Results suggest that the Racial Microaggressions Scale distress subscales may aid health professionals in assessing the distress elicited by different types of microaggressions. In turn, this may facilitate diagnosis and treatment planning in order to provide multiculturally competent care for African American, Latino, and Asian American clients. PMID:25237154

  20. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  1. The "hidden diversity" of medicinal plants in northeastern Brazil: diagnosis and prospects for conservation and biological prospecting.

    PubMed

    Cavalcanti, Deyvson Rodrigues; Albuquerque, Ulysses Paulino

    2013-01-01

    Increases in ethnobotanical studies and knowledge in recent decades have led to a greater and more accurate interpretation of the overall patterns related to the use of medicinal plants, allowing for a clear identification of some ecological and cultural phenomena. "Hidden diversity" of medicinal plants refers in the present study to the existence of several species of medicinal plants known by the same vernacular name in a given region. Although this phenomenon has previously been observed in a localized and sporadic manner, its full dimensions have not yet been established. In the present study, we sought to assess the hidden diversity of medicinal plants in northeastern Brazil based on the ethnospecies catalogued by local studies. The results indicate that there are an average of at least 2.78 different species per cataloged ethnospecies in the region. Phylogenetic proximity and its attendant morphological similarity favor the interchangeable use of these species, resulting in serious ecological and sanitary implications as well as a wide range of options for conservation and bioprospecting. PMID:24228056

  2. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  3. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  4. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  5. The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities.

    PubMed

    Koopman, Margaret M; Fuselier, Danielle M; Hird, Sarah; Carstens, Bryan C

    2010-03-01

    The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction.

  6. The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities.

    PubMed

    Koopman, Margaret M; Fuselier, Danielle M; Hird, Sarah; Carstens, Bryan C

    2010-03-01

    The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction. PMID:20097807

  7. The Carnivorous Pale Pitcher Plant Harbors Diverse, Distinct, and Time-Dependent Bacterial Communities▿ †

    PubMed Central

    Koopman, Margaret M.; Fuselier, Danielle M.; Hird, Sarah; Carstens, Bryan C.

    2010-01-01

    The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction. PMID:20097807

  8. The influence of tropical plant diversity and composition on soil microbial communities.

    PubMed

    Carney, Karen M; Matson, Pamela A

    2006-08-01

    There is growing interest in understanding the linkages between above- and belowground communities, and very little is known about these linkages in tropical systems. Using an experimental site at La Selva Biological Station, Costa Rica, we examined whether plant diversity, plant community composition, and season influenced microbial communities. We also determined whether soil characteristics were related to differences in microbial communities. Phospholipid fatty acid (PLFA) composition revealed that microbial community composition differed across a plant diversity gradient (plots contained 1, 3, 5, or over 25 species). Plant species identity also was a factor influencing microbial community composition; PLFA composition significantly varied among monocultures, and among three-species combinations that differed in plant species composition. Differences among treatments within each of these comparisons were apparent in all four sampling dates of the study. There was no consistent shift in microbial community composition between wet and dry seasons, although we did see significant changes over time. Of all measured soil characteristics, soil C/N was most often associated with changes in microbial community composition across treatment groups. Our findings provide evidence for human alteration of soil microbial communities via the alteration of plant community composition and diversity and that such changes are mediated in part by changes in soil carbon quality.

  9. Plant diversity in live fences and pastures, two examples from the Mexican humid tropics.

    PubMed

    Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos

    2014-09-01

    This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes.

  10. Plant Diversity in Live Fences and Pastures, Two Examples from the Mexican Humid Tropics

    NASA Astrophysics Data System (ADS)

    Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos

    2014-09-01

    This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes.

  11. Plant diversity in live fences and pastures, two examples from the Mexican humid tropics.

    PubMed

    Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos

    2014-09-01

    This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes. PMID:24981271

  12. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    PubMed

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  13. Diversity of Frankia in soil assessed by Illumina sequencing of nifH gene fragments.

    PubMed

    Rodriguez, David; Guerra, Trina M; Forstner, Michael R J; Hahn, Dittmar

    2016-09-01

    Targeted Illumina sequencing of nitrogenase reductase (nifH) gene fragments and analyses of pair-end reads through a modified QIIME pipeline were used to assess the diversity of the actinomyceteous genus Frankia in three soils. Soils were vegetated with host or non-host plants, and included locations in Illinois (ABA, host), Colorado (CoMt, non-host), and Wisconsin (FMWI, non-host). After filtering, seven unique sequences were recovered for soil ABA, six for CoMt, and four sequences for FMWI. These sequences were included in a Bayesian topology anchored by published sequence data from pure cultures of Frankia. Sequences from all three soils showed affinities to Frankia strains from both the Alnus and Elaeagnus host infection groups. Reads representing Casuarina-infective strains were not detected. Four sequences from soil CoMt and five sequences from soil ABA did not cluster, at 97% similarity, into a shared OTU that contained a cultured relative. These results demonstrate that targeted Illumina sequencing provides an efficient and economical method for assessing haplotype diversity of ecofunctional genes (e.g. nifH) at the genus level in microorganisms that perform important ecosystem functions. PMID:27485903

  14. Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was conducted to elucidate phenotypic and biochemical diversity in 60 coriander (Coriandrum sativum L.) accessions maintained at the North Central Regional Plant Introduction Station and examine relationships between amplified fragment length polymorphisms (AFLP) and patterns of phenot...

  15. Assessment of genetic diversity among faba bean genotypes using agro-morphological and molecular markers

    PubMed Central

    Ammar, Megahed H.; Alghamdi, Salem S.; Migdadi, Hussein M.; Khan, Muhammad A.; El-Harty, Ehab H.; Al-Faifi, Sulieman A.

    2015-01-01

    Forty faba bean (Vicia faba L.) genotypes were evaluated for their agro-morphological performance and molecular diversity under Central Region of Saudi Arabia conditions during 2010–11 and 2011–12 seasons. Field performance results showed that faba genotypes exhibited a significant amount of variation for their agro-morphological studied parameters. Giza40 recorded the tallest genotype (139.5 cm), highest number of seeds per plants (100.8), and the highest seed yield per plant (70.8 g). The best performing genotypes were Giza40, FLIP03-014FB, Gazira1 and Goff1. Genetic variability among genotypes was determined using Sequence Related Amplified Polymorphism (SRAP) and Amplified Fragment Length Polymorphism (AFLP) markers. A total of 183 amplified fragments (alleles) and 1758 polymorphic fragments (bands) in SRAP and 202 alleles and 716 bands in AFLP were obtained using six SRAP and four AFLP primer combinations respectively. Polymorphism information content (PIC) values for AFLP and SRAP markers were higher than 0.8, indicating the existence of a considerable amount of genetic diversity among faba tested genotypes. The UPGMA based clustering of faba genotypes was largely based on origin and/or genetic background. Result of cluster analysis based on SRAP showed weak and not significant correlation while, it was highly significant based on AFLP analysis with agro-morphological characters (r = 0.01, p > 0.54 and r = 0.26, p < 0.004 respectively). Combined SRAP and AFLP markers proved to be significantly useful for genetic diversity assessment at molecular level. They exhibited high discrimination power, and were able to distinguish the faba bean genotypes with high efficiency and accuracy levels. PMID:25972757

  16. Grazing maintains native plant diversity and promotes community stability in an annual grassland.

    PubMed

    Beck, Jared J; Hernández, Daniel L; Pasari, Jae R; Zavaleta, Erika S

    2015-07-01

    Maintaining native biodiversity in grasslands requires management and mitigation of anthropogenic changes that have altered resource availability, grazing regimes, and community composition. In California (USA), high levels of atmospheric nitrogen (N) deposition have facilitated the invasion of exotic grasses, posing a threat to the diverse plant and insect communities endemic to serpentine grasslands. Cattle grazing has been employed to mitigate the consequences of exotic grass invasion, but the ecological effects of grazing in this system are not fully understood. To characterize the effects of realistic N deposition on serpentine plant communities and to evaluate the efficacy of grazing as a management tool, we performed a factorial experiment adding N and excluding large herbivores in California's largest serpentine grassland. Although we observed significant interannual variation in community composition related to climate in our six-year study, exotic cover was consistently and negatively correlated with native plant richness. Sustained low-level N addition did not influence plant community composition, but grazing reduced grass abundance while maintaining greater native forb cover, native plant diversity, and species richness in comparison to plots excluding large herbivores. Furthermore, grazing increased the temporal stability of plant communities by decreasing year-to-year variation in native forb cover, native plant diversity, and native species richness. Taken together, our findings demonstrate that moderate-intensity cattle grazing can be used to restrict the invasive potential of exotic grasses and maintain native plant communities in serpentine grasslands. We hypothesize that the reduced temporal variability in serpentine plant communities managed by grazing may directly benefit populations of the threatened Edith's Bay checkerspot butterfly (Euphydryas editha bayensis). PMID:26485954

  17. Grazing maintains native plant diversity and promotes community stability in an annual grassland.

    PubMed

    Beck, Jared J; Hernández, Daniel L; Pasari, Jae R; Zavaleta, Erika S

    2015-07-01

    Maintaining native biodiversity in grasslands requires management and mitigation of anthropogenic changes that have altered resource availability, grazing regimes, and community composition. In California (USA), high levels of atmospheric nitrogen (N) deposition have facilitated the invasion of exotic grasses, posing a threat to the diverse plant and insect communities endemic to serpentine grasslands. Cattle grazing has been employed to mitigate the consequences of exotic grass invasion, but the ecological effects of grazing in this system are not fully understood. To characterize the effects of realistic N deposition on serpentine plant communities and to evaluate the efficacy of grazing as a management tool, we performed a factorial experiment adding N and excluding large herbivores in California's largest serpentine grassland. Although we observed significant interannual variation in community composition related to climate in our six-year study, exotic cover was consistently and negatively correlated with native plant richness. Sustained low-level N addition did not influence plant community composition, but grazing reduced grass abundance while maintaining greater native forb cover, native plant diversity, and species richness in comparison to plots excluding large herbivores. Furthermore, grazing increased the temporal stability of plant communities by decreasing year-to-year variation in native forb cover, native plant diversity, and native species richness. Taken together, our findings demonstrate that moderate-intensity cattle grazing can be used to restrict the invasive potential of exotic grasses and maintain native plant communities in serpentine grasslands. We hypothesize that the reduced temporal variability in serpentine plant communities managed by grazing may directly benefit populations of the threatened Edith's Bay checkerspot butterfly (Euphydryas editha bayensis).

  18. Assessing the Effects of Woody Plant Traits on Understory Herbaceous Cover in a Semiarid Rangeland

    NASA Astrophysics Data System (ADS)

    Belay, Tamrat A.; Moe, Stein R.

    2015-07-01

    The ecological impact of woody plant encroachment in rangeland ecosystems has traditionally been evaluated based on correlation studies between densities of dissimilar woody plants and various ecosystem properties. However, ecosystem properties respond differently to woody plant encroachment because of variations in adaptation of co-occurring woody plants. The objective of this study is to predict the impact of woody plant encroachment on understory herbaceous cover based on analysis of key traits of woody plants. We conducted a vegetation survey in 4 savanna sites in southwestern Ethiopia and compared 9 different key traits of 19 co-occurring woody plants with understory herbaceous cover. Our results show that low understory herbaceous cover is associated with evergreen leaf phenology, shrubby growth form, smaller relative crown-base height and larger relative crown diameter. However, the N2-fixing ability and density of woody plants did not influence the understory herbaceous cover. This shows that traits of individual woody plants can predict the impact of woody plant encroachment on understory herbaceous cover better than density does. The finding improves our ability to accurately predict the impact of woody plant encroachment on various ecosystem properties in highly diverse savanna systems. This plant trait-based approach could be also used as an important management exercise to assess and predict the impact of encroaching woody species in several rangeland ecosystems.

  19. Diverse functions of KNOX transcription factors in the diploid body plan of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    KNOX genes were initially found as shoot meristem regulators in angiosperms. Recent studies in diverse plant lineages however, have revealed the divergence of KNOX gene function during the evolution of diploid body plans. Using genomic approaches, class I KNOX transcription factors have been shown t...

  20. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    NASA Astrophysics Data System (ADS)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  1. Diversity and biological activities of endophytic fungi associated with micropropagated medicinal plant Echinacea purpurea (L.) Moench

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Echinacea is one of the top ten selling medicinal herbs in Europe and United States. Commercially available formulations may contain different plant parts of three species (Echinacea purpurea, E. pallida, and E. angustifolia). Our study evaluates the diversity of microbial community associated with ...

  2. Pollinating flies (Diptera): A major contribution to plant diversity and agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diptera are one of the three largest and most diverse animal groups of the world. As an often neglected, but important group of pollinators, they play a significant role in agrobiodiversity and biodiversity of plants everywhere. Flies are present in almost all habitats and biomes and for many food p...

  3. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  4. PATTERNS OF ALLOZYME DIVERSITY IN THE THREATENED PLANT ERIGERON PARISHII (ASTERACEAE). (R826102)

    EPA Science Inventory

    Thirty-one occurrences of Erigeron parishii, a narrowly endemic plant threatened by mining, were sampled for allozyme diversity. This taxon held considerable genetic variation at the [4 allozyme loci surveyed. Species (e.g., alleles per locus [A] = 4.3 and proportion of polymorph...

  5. Burning reveals cryptic plant diversity and promotes coexistence in a California prairie restoration experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grassland and prairie restoration projects in California often result in long-term establishment of only a few native plant species, even when they begin with a diverse seed palette. A likely explanation for the disappearance of certain native species over time is that they are excluded through comp...

  6. Diversity of Marine Plants. Man and the Gulf of Mexico Series.

    ERIC Educational Resources Information Center

    Irby, Bobby N., Comp.; And Others

    "Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine plants is divided into 12 sections. The first section introduces the unit by providing objectives and activities on why people classify…

  7. The contrasting roles of growth traits and architectural traits in diversity maintenance in clonal plant communities.

    PubMed

    Wildová, Radka; Goldberg, Deborah E; Herben, Tomáš

    2012-12-01

    Plant communities often exhibit high diversity, even though pairwise experiments usually result in competitive hierarchies that should result in competitive exclusion. Such experiments, however, do not typically allow expression of spatial traits, despite theoretical studies showing the potential importance of spatial mechanisms of diversity maintenance. Here we ask whether, in a clonal plant model system, spatial trait variation is more likely than growth trait variation to maintain diversity. We used a field-calibrated, spatially explicit model to simulate communities comprising sets of four simulated species differing in only one of a suite of architectural or growth traits at a time, examining their dynamics and long-term diversity. To compare trait manipulation effects across traits measured in different units, we scaled traits to have identical effects on initial productivity. We found that in communities of species differing only in an architectural trait, all species usually persist, whereas communities of species differing only in a growth trait experienced rapid competitive exclusion. To examine the roles of equalizing and stabilizing mechanisms in maintaining diversity, we conducted reciprocal invasion experiments for species pairs differing only in single traits. The results suggest that stabilizing mechanisms cannot account for the observed long-term co-occurrence. Strong positive correlations between diversity and similarity both in monoculture carrying capacity and reciprocal invasion ability suggesting equalizing mechanisms may instead be responsible.

  8. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment.

    PubMed

    Steinauer, Katja; Tilman, David; Wragg, Peter D; Cesarz, Simone; Cowles, Jane M; Pritsch, Karin; Reich, Peter B; Weisser, Wolfgang W; Eisenhauer, Nico

    2015-01-01

    Anthropogenic changes in biodiversity and atmospheric temperature significantly influence ecosystem processes. However, little is known about potential interactive effects of plant diversity and warming on essential ecosystem properties, such as soil microbial functions and element cycling. We studied the effects of orthogonal manipulations of plant diversity (one, four, and 16 species) and warming (ambient, +1.5 degrees C, and +3 degrees C) on soil microbial biomass, respiration, growth after nutrient additions, and activities of extracellular enzymes in 2011 and 2012 in the BAC (biodiversity and climate) perennial grassland experiment site at Cedar Creek, Minnesota, USA. Focal enzymes are involved in essential biogeochemical processes of the carbon, nitrogen, and phosphorus cycles. Soil microbial biomass and some enzyme activities involved in the C and N cycle increased significantly with increasing plant diversity in both years. In addition, 16-species mixtures buffered warming induced reductions in topsoil water content. We found no interactive effects of plant diversity and warming on soil microbial biomass and growth rates. However, the activity of several enzymes (1,4-beta-glucosidase, 1,4-beta-N-acetylglucosaminidase, phosphatase, peroxidase) depended on interactions between plant diversity and warming with elevated activities of enzymes involved in the C, N, and P cycles at both high plant diversity and high warming levels. Increasing plant diversity consistently decreased microbial biomass-specific enzyme activities and altered soil microbial growth responses to nutrient additions, indicating that plant diversity changed nutrient limitations and/or microbial community composition. In contrast to our expectations, higher plant diversity only buffered temperature effects on soil water content, but not on microbial functions. Temperature effects on some soil enzymes were greatest at high plant diversity. In total, our results suggest that the fundamental

  9. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment.

    PubMed

    Steinauer, Katja; Tilman, David; Wragg, Peter D; Cesarz, Simone; Cowles, Jane M; Pritsch, Karin; Reich, Peter B; Weisser, Wolfgang W; Eisenhauer, Nico

    2015-01-01

    Anthropogenic changes in biodiversity and atmospheric temperature significantly influence ecosystem processes. However, little is known about potential interactive effects of plant diversity and warming on essential ecosystem properties, such as soil microbial functions and element cycling. We studied the effects of orthogonal manipulations of plant diversity (one, four, and 16 species) and warming (ambient, +1.5 degrees C, and +3 degrees C) on soil microbial biomass, respiration, growth after nutrient additions, and activities of extracellular enzymes in 2011 and 2012 in the BAC (biodiversity and climate) perennial grassland experiment site at Cedar Creek, Minnesota, USA. Focal enzymes are involved in essential biogeochemical processes of the carbon, nitrogen, and phosphorus cycles. Soil microbial biomass and some enzyme activities involved in the C and N cycle increased significantly with increasing plant diversity in both years. In addition, 16-species mixtures buffered warming induced reductions in topsoil water content. We found no interactive effects of plant diversity and warming on soil microbial biomass and growth rates. However, the activity of several enzymes (1,4-beta-glucosidase, 1,4-beta-N-acetylglucosaminidase, phosphatase, peroxidase) depended on interactions between plant diversity and warming with elevated activities of enzymes involved in the C, N, and P cycles at both high plant diversity and high warming levels. Increasing plant diversity consistently decreased microbial biomass-specific enzyme activities and altered soil microbial growth responses to nutrient additions, indicating that plant diversity changed nutrient limitations and/or microbial community composition. In contrast to our expectations, higher plant diversity only buffered temperature effects on soil water content, but not on microbial functions. Temperature effects on some soil enzymes were greatest at high plant diversity. In total, our results suggest that the fundamental

  10. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea.

    PubMed

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho; Yoon, Hyeokjun; Kim, Jong-Guk

    2015-12-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.

  11. Plot shape effects on plant species diversity measurements

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, C.J.

    2005-01-01

    Abstract. Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies?Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA.Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire.Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1- or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale.Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean

  12. Plot shape effects on plant species diversity measurements

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.

    2005-01-01

    Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies? Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA. Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire. Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1-or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale. Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean-climate vegetation types

  13. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    We used multiscale plots to sample vascular plant diversity and soil characteristics in and adjacent to 26 long-term grazing exclosure sites in Colorado, Wyoming, Montana, and South Dakota, USA. The exclosures were 7-60 yr old (31.2 ?? 2.5 yr, mean ?? 1 SE). Plots were also randomly placed in the broader landscape in open rangeland in the same vegetation type at each site to assess spatial variation in grazed landscapes. Consistent sampling in the nine National Parks, Wildlife Refuges, and other management units yielded data from 78 1000-m2 plots and 780 1-m2 subplots. We hypothesized that native species richness would be lower in the exclosures than in grazed sites, due to competitive exclusion in the absence of grazing. We also hypothesized that grazed sites would have higher native and exotic species richness compared to ungrazed areas, due to disturbance (i.e., the intermediate-disturbance hypothesis) and the conventional wisdom that grazing may accelerate weed invasion. Both hypotheses were soundly rejected. Although native species richness in 1-m2 subplots was significantly higher (P < 0.05) in grazed sites, we found nearly identical native or exotic species richness in 1000-m2 plots in exclosures (31.5 ?? 2.5 native and 3.1 ?? 0.5 exotic species), adjacent grazed plots (32.6 ?? 2.8 native and 3.2 ?? 0.6 exotic species), and randomly selected grazed plots (31.6 ?? 2.9 native and 3.2 ?? 0.6 exotic species). We found no significant differences in species diversity (Hill's diversity indices, N1 and N2), evenness (Hill's ratio of evenness, E5), cover of various life-forms (grasses, forbs, and shrubs), soil texture, or soil percentage of N and C between grazed and ungrazed sites at the 1000-m2 plot scale. The species lists of the long-ungrazed and adjacent grazed plots overlapped just 57.9 ?? 2.8%. This difference in species composition is commonly attributed solely to the difference in grazing regimes. However, the species lists between pairs of grazed plots

  14. Rapid compositional change and significant loss of plant species diversity among Triassic-Jurassic palynofloras in East Greenland

    NASA Astrophysics Data System (ADS)

    Mander, Luke; Kürschner, Wolfram; McElwain, Jennifer

    2010-05-01

    The Triassic-Jurassic (Tr-J; 200Ma) transition coincides with the eruption of massive flood basalts associated with the opening of the Atlantic Ocean. This is thought to have lead to a fourfold increase in palaeoatmospheric carbon dioxide, a consequent rise in global temperatures of between 3 and 6 degrees Celsius, and a rise in atmospheric pollutants such as sulphur dioxide. Recent work has employed either plant macrofossils (mostly leaves) or sporomorphs (pollen and spores) to reconstruct the response of terrestrial vegetation to this episode of major environmental change. Investigations of the macrofossil record at Astartekloft in East Greenland indicate a rapid loss of plant diversity in the Late Rhaetian, culminating in an 80% species turnover at the Tr-J boundary interval. However, evidence for such catastrophic diversity loss is conspicuously absent from the sporomorph record. This fossil group indicates that the Tr-J boundary interval in central and northwest Europe is characterized by compositional change and a transient shift from gymnosperm forests to fern-dominated vegetation. In order to address this uncertainty regarding Tr-J vegetation change according to macrofossils versus sporomorphs, we present an analysis of sporomorph diversity and compositional change across the Tr-J at Astartekloft, East Greenland. Sporomorph diversity was estimated using individual and sample-based rarefaction techniques, and compositional differences between sporomorph samples were assessed using non-metric multidimensional scaling. These analyses reveal that sporomorph assemblages from the Tr-J boundary interval at Astartekloft are between 23 and 27% less taxonomically diverse than other Triassic assemblages, and that this interval is characterized by a dramatic shift in the composition of the standing vegetation. These results are statistically significant and are also unrelated to changes in the environment of deposition. These results indicate that the magnitude of

  15. Historical agriculture alters the effects of fire on understory plant beta diversity.

    PubMed

    Mattingly, W Brett; Orrock, John L; Collins, Cathy D; Brudvig, Lars A; Damschen, Ellen I; Veldman, Joseph W; Walker, Joan L

    2015-02-01

    Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on plant diversity. We address this contingency by evaluating how beta diversity (the spatial variability of species composition), an important component of regional biodiversity, is shaped by interactions between historical agriculture and prescribed fire, two prominent disturbances that are often coincident in terrestrial ecosystems. At three study locations spanning 450 km in the southeastern United States, we surveyed longleaf pine woodland understory plant communities across 232 remnant and post-agricultural sites with differing prescribed fire regimes. Our results demonstrate that agricultural legacies are a strong predictor of beta diversity, but the direction of this land-use effect differed among the three study locations. Further, although beta diversity increased with prescribed fire frequency at each study location, this effect was influenced by agricultural land-use history, such that positive fire effects were only documented among sites that lacked a history of agriculture at two of our three study locations. Our study not only highlights the role of historical agriculture in shaping beta diversity in a fire-maintained ecosystem but also illustrates how this effect can be contingent upon fire regime and geographic location. We suggest that interactions among historical and contemporary land-use activities may help to explain dissimilarities in plant communities among sites in human-dominated landscapes.

  16. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars.

    PubMed

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938-0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars. PMID:27379163

  17. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars

    PubMed Central

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938–0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars. PMID:27379163

  18. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars.

    PubMed

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938-0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars.

  19. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids.

    PubMed

    Percy, Diana M

    2003-11-01

    Island archipelagos and insect-plant associations have both independently provided many useful systems for evolutionary study. The arytainine psyllid (Sternorrhyncha: Hemiptera) radiation on broom (Fabaceae: Genisteae) in the Canary Island archipelago provides a discrete system for examining the speciation of highly host-specific phytophagous insects in an island context. Phylogenetic reconstructions based on three datasets (adult and nymph morphological characters, and two mitochondrial DNA regions: part of the small subunit rRNA, and part of cytochrome oxidase I, cytochrome oxidase II and the intervening tRNA leucine) are generally consistent. The combined molecular tree provides a well-supported estimate of psyllid relationships and shows that there have been several colonizations of the Macaronesian islands but that only one has resulted in a significant radiation. Psyllid diversification has apparently been constrained by the presence of suitable host groups within the genistoid legumes, and the diversity, distribution, and abundance of those groups. The phylogeny, by indicating pairs of sister species, allows putative mechanisms of speciation to be assessed. The most common conditions associated with psyllid speciation are geographical allopatry with a host switch to closely related hosts (six examples), or geographical allopatry on the same host (four examples). Where allopatric speciation involves a host switch, these have all been to related hosts. There is some evidence that switches between unrelated host plants may be more likely in sympatry. Only one sister pair (Aryrtainilla cytisi and A. telonicola) and the putative host races of Arytinnis modica are sympatric but on unrelated hosts, which may be a necessary condition for sympatric speciation in these insects. Where several psyllids share the same host, resources appear to be partitioned by ecological specialization and differing psyllid phenology.

  20. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil.

    PubMed

    von der Weid, I; Paiva, E; Nóbrega, A; van Elsas, J D; Seldin, L

    2000-06-01

    Paenibacillus polymyxa populations present in the rhizosphere of maize (cultivar BR-201) planted in Cerrado soil were investigated in order to assess their diversity at four stages of plant growth. A total of 67 strains were isolated and all strains were identified as P. polymyxa by classical biochemical tests, API 50CH tests and a set of species-specific primers based on the 23S rDNA sequence. To compare the isolated strains, phenotypic characteristics (utilization of different carbohydrates, resistance to antibiotics and production of antimicrobial substances) and genetic approaches (hybridization with a Klebsiella pneumoniae nifKDH probe and BOX-PCR) were used. Fermentation of glycerol, arabinose, xylose and rhamnose varied among the isolates and these data divided the strains into five groups. Fifty strains (75%) showed homology to plasmid pSA30 (containing the nifKDH genes) resulting in five different hybridization patterns. Using BOX-PCR, 18 groups were observed. Phenetic analyses were applied based on the unweighted pair group method with arithmetic means using the phenotypic and genetic data, separately. All P. polymyxa isolates could be divided into two main clusters at approximately 52% and into 18 groups at approximately 89% of similarity, when phenotypic data were used. Also, two main clusters were formed at 65% of similarity when genetic data were used. In this dendrogram, clusters were further split into 10 and 22 groups, at about 88 and 97% of similarity, respectively. Finally, all phenotypic and genetic data, or just the genetic data, were used in a multivariate analysis of variance (MANOVA) in order to address the heterogeneity among P. polymyxa populations during the different stages of maize growth. The resulting data showed that strains isolated 10, 30, 60 and 90 days after maize sowing were statistically different. PMID:10919517

  1. Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands

    PubMed Central

    Romeiras, Maria M.; Monteiro, Filipa; Duarte, M. Cristina; Schaefer, Hanno; Carine, Mark

    2015-01-01

    Conservation of plant diversity on islands relies on a good knowledge of the taxonomy, distribution and genetic diversity of species. In recent decades, a combination of morphology- and DNA-based approaches has become the standard for investigating island plant lineages and this has led, in some cases, to the discovery of previously overlooked diversity, including ‘cryptic species’. The flora of the Cape Verde archipelago in the North Atlantic is currently thought to comprise ∼740 vascular plant species, 92 of them endemics. Despite the fact that it is considered relatively well known, there has been a 12 % increase in the number of endemics in the last two decades. Relatively few of the Cape Verde plant lineages have been included in genetic studies so far and little is known about the patterns of diversification in the archipelago. Here we present an updated list for the endemic Cape Verde flora and analyse diversity patterns for three endemic plant lineages (Cynanchum, Globularia and Umbilicus) based on one nuclear (ITS) and four plastid DNA regions. In all three lineages, we find genetic variation. In Cynanchum, we find two distinct haplotypes with no clear geographical pattern, possibly reflecting different ploidy levels. In Globularia and Umbilicus, differentiation is evident between populations from northern and southern islands. Isolation and drift resulting from the small and fragmented distributions, coupled with the significant distances separating the northern and southern islands, could explain this pattern. Overall, our study suggests that the diversity in the endemic vascular flora of Cape Verde is higher than previously thought and further work is necessary to characterize the flora. PMID:25979965

  2. Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands.

    PubMed

    Romeiras, Maria M; Monteiro, Filipa; Duarte, M Cristina; Schaefer, Hanno; Carine, Mark

    2015-01-01

    Conservation of plant diversity on islands relies on a good knowledge of the taxonomy, distribution and genetic diversity of species. In recent decades, a combination of morphology- and DNA-based approaches has become the standard for investigating island plant lineages and this has led, in some cases, to the discovery of previously overlooked diversity, including 'cryptic species'. The flora of the Cape Verde archipelago in the North Atlantic is currently thought to comprise ∼740 vascular plant species, 92 of them endemics. Despite the fact that it is considered relatively well known, there has been a 12 % increase in the number of endemics in the last two decades. Relatively few of the Cape Verde plant lineages have been included in genetic studies so far and little is known about the patterns of diversification in the archipelago. Here we present an updated list for the endemic Cape Verde flora and analyse diversity patterns for three endemic plant lineages (Cynanchum, Globularia and Umbilicus) based on one nuclear (ITS) and four plastid DNA regions. In all three lineages, we find genetic variation. In Cynanchum, we find two distinct haplotypes with no clear geographical pattern, possibly reflecting different ploidy levels. In Globularia and Umbilicus, differentiation is evident between populations from northern and southern islands. Isolation and drift resulting from the small and fragmented distributions, coupled with the significant distances separating the northern and southern islands, could explain this pattern. Overall, our study suggests that the diversity in the endemic vascular flora of Cape Verde is higher than previously thought and further work is necessary to characterize the flora. PMID:25979965

  3. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  4. Predators indirectly reduce the prevalence of an insect-vectored plant pathogen independent of predator diversity.

    PubMed

    Long, Elizabeth Y; Finke, Deborah L

    2015-04-01

    A widely cited benefit of predator diversity is greater suppression of insect herbivores, with corresponding increases in plant biomass. In the context of a vector-borne pathogen system, predator species richness may also influence plant disease risk via the direct effects of predators on the abundance and behavior of herbivores that also act as pathogen vectors. Using an assemblage of generalist insect predators, we examined the relationship between predator species richness and the prevalence of the aphid-vectored cereal yellow dwarf virus in wheat. We found that increasing predator richness enhanced suppression of the vector population and that pathogen prevalence was reduced when predators were present, but the reduction in prevalence was independent of predator species richness. To determine the mechanism(s) by which predator species richness contributes to vector suppression, but not pathogen prevalence, we evaluated vector movement and host plant occupancy in response to predator treatments. We found that pathogen prevalence was unrelated to vector suppression because host plant occupancy by vectors did not vary as a function of vector abundance. However, the presence of predators reduced pathogen prevalence because predators stimulated greater plant-to-plant movement by vectors, which likely diminished vector feeding time and reduced the transmission efficiency of this persistent pathogen. We conclude that community structure (i.e., the presence of predators), but not predator diversity, is a potential factor influencing local plant infection by this insect-vectored pathogen. PMID:25561170

  5. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning

    PubMed Central

    Huang, Jihong; Huang, Jianhua; Lu, Xinghui; Ma, Keping

    2016-01-01

    Endemism is an important concept in biogeography and biodiversity conservation. China is one of the richest countries in biodiversity, with very high levels of plant endemism. In this study, we analysed the distribution patterns of diversity, the degree of differentiation, and the endemicity of Chinese endemic seed plants using the floristic unit as a basic spatial analysis unit and 11 indices. The analysis was based on distribution data of 24,951 native seed plant species (excluding subspecies and varieties) and 12,980 Chinese endemic seed plant species, which were sourced from both specimen records and published references. The distribution patterns of Chinese endemic flora were generally consistent but disproportionate across China for diversity, degree of differentiation and endemicity. The South Hengduan Mountains Subregion had the highest values for all indices. At the regional level, both the Hengduan Mountains and the Central China regions were highest in diversity and degrees of differentiation. However, both the rate of local endemic to native species and the rate of local to Chinese endemic species were highest in the Taiwan Region and the South Taiwan Region. The Hengduan Mountains Region and the Central China Region are two key conservation priority areas for Chinese endemic seed plants. PMID:27658845

  6. Sampling and Complementarity Effects of Plant Diversity on Resource Use Increases the Invasion Resistance of Communities

    PubMed Central

    Zhu, Dan H.; Wang, Ping; Zhang, Wei Z.; Yuan, Yue; Li, Bin; Wang, Jiang

    2015-01-01

    Background Although plant diversity is postulated to resist invasion, studies have not provided consistent results, most of which were ascribed to the influences of other covariate environmental factors. Methodology/Principal Findings To explore the mechanisms by which plant diversity influences community invasibility, an experiment was conducted involving grassland sites varying in their species richness (one, two, four, eight, and sixteen species). Light interception efficiency and soil resources (total N, total P, and water content) were measured. The number of species, biomass, and the number of seedlings of the invading species decreased significantly with species richness. The presence of Patrinia scabiosaefolia Fisch. ex Trev. and Mosla dianthera (Buch.-Ham. ex Roxburgh) Maxim. significantly increased the resistance of the communities to invasion. A structural equation model showed that the richness of planted species had no direct and significant effect on invasion. Light interception efficiency had a negative effect on the invasion whereas soil water content had a positive effect. In monocultures, Antenoron filiforme (Thunb.) Rob. et Vaut. showed the highest light interception efficiency and P. scabiosaefolia recorded the lowest soil water content. With increased planted-species richness, a greater percentage of pots showed light use efficiency higher than that of A. filiforme and a lower soil water content than that in P. scabiosaefolia. Conclusions/Significance The results of this study suggest that plant diversity confers resistance to invasion, which is mainly ascribed to the sampling effect of particular species and the complementarity effect among species on resources use. PMID:26556713

  7. Plant-Wide Assessment Report for Shaw Industries, Plant #78; Aiken, SC

    SciTech Connect

    Michael Brown PE, CEM; Matt Soderlund; Bill Meffert PE; Paolo Baldisserotto; Jerry Zolkowski PE, CEM

    2006-04-10

    A plant-wide energy assessment sponsored by the U.S. Department of Energy was conducted at Shaw Industries Group, plant #78 in Aiken, SC. The assessment team consisted of Georgia Tech faculty from the Energy & Environmental Management Center and Shaw personnel from plant #78 and the corporate energy group. The purpose of this assessment was to uncover as many opportunities for saving energy usage and costs using techniques that have been established as best practices in the energy engineering field. In addition, these findings are to be shared with similar plants in Shaw Industries Group to multiply the lessons learned. The findings from this assessment are included in this report.

  8. Assessment of diversity in Harpagophytum with RAPD and ISSR markers provides evidence of introgression.

    PubMed

    Muzila, Mbaki; Werlemark, Gun; Ortiz, Rodomiro; Sehic, Jasna; Fatih, Moneim; Setshogo, Moffat; Mpoloka, Wata; Nybom, Hilde

    2014-10-01

    The genus Harpagophytum has two species: H. procumbens which is an important medicinal plant in southern Africa, and H. zeyheri. Genetic diversity in 96 samples, obtained by germinating seeds collected from Botswana, was assessed using six inter-simple sequence repeat (ISSR) and 10 random amplified polymorphic DNA (RAPD) primers. These DNA markers yielded a total of 138 polymorphic bands. Polymorphism information content (PIC) ranged from 0.06 to 0.39 for ISSR primers, and from 0.09 to 0.43 for RAPD primers. Jaccard's similarity coefficients were highest when seedlings derived from the same fruit capsule were compared, while seedlings from different fruits on the same plant had intermediate values. The lowest values were recorded among seedlings from different plants. These results were consistent with an outcrossing breeding system in Harpagophytum. Analysis of molecular variance revealed significant differentiation (P<0.01) between taxonomic units within Harpagophytum. About 39% of the variability occurred between the two species, H. procumbens and H. zeyheri. Plants with an intermediate morphology, i.e. putative hybrids (PH), showed 21% differentiation when compared with H. procumbens ssp. procumbens (PP), and 19% when compared with H. procumbens ssp. transvaalense (PT) or with H. zeyheri (ZZ). In addition, a deviating variant of PT was identified, here termed 'procumbens new variety' (PN). PN showed only 9% differentiation when compared with PT, 22% when compared with PP or with PH, and 41% when compared with ZZ. Considerable differentiation between the two Harpagophytum species was revealed also by a cluster analysis. Introgression was, however, suggested by the intermediate position of the putative hybrid plants in a principal component analysis while inter-specific gene flow was shown by a Bayesian genetic structure analysis. PMID:25363276

  9. Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing.

    PubMed

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  10. Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing.

    PubMed

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  11. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    PubMed Central

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  12. Paramagnetic cellulose DNA isolation improves DNA yield and quality among diverse plant taxa1

    PubMed Central

    Moeller, Jackson R.; Moehn, Nicholas R.; Waller, Donald M.; Givnish, Thomas J.

    2014-01-01

    • Premise of the study: The chemical diversity of land plants ensures that no single DNA isolation method results in high yield and purity with little effort for all species. Here we evaluate a new technique originally developed for forensic science, based on MagnaCel paramagnetic cellulose particles (PMC), to determine its efficacy in extracting DNA from 25 plant species representing 21 families and 15 orders. • Methods and Results: Yield and purity of DNA isolated by PMC, DNeasy Plant Mini Kit (silica column), and cetyltrimethylammonium bromide (CTAB) methods were compared among four individuals for each of 25 plant species. PMC gave a twofold advantage in average yield, and the relative advantage of the PMC method was greatest for samples with the lowest DNA yields. PMC also produced more consistent sample purity based on absorbance ratios at 260:280 and 260:230 nm. • Conclusions: PMC technology is a promising alternative for plant DNA isolation. PMID:25309836

  13. Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests.

    PubMed

    Schuldt, Andreas; Baruffol, Martin; Bruelheide, Helge; Chen, Simon; Chi, Xiulian; Wall, Marcus; Assmann, Thorsten

    2014-09-01

    Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom-up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top-down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.

  14. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  15. Reproductive consequences of mate quantity versus mate diversity in a wind-pollinated plant

    NASA Astrophysics Data System (ADS)

    Vandepitte, K.; Roldán-Ruiz, I.; Honnay, O.

    2009-07-01

    Since most pollen travels limited distances in wind-pollinated plants, both the local quantity and diversity of mates may limit female reproductive success. Yet little evidence exists on their relative contribution, despite the importance of viable seed production to population dynamics. To study how variation in female reproductive success is affected by the quantity versus the diversity of surrounding mates contributing pollen, we integrated pollination experiments, data on natural seed set and seed viability, and AFLP genetic marker data in the wind-pollinated dioecious clonal forest herb Mercurialis perennis. Pollination experiments indicated weak quantitative pollen limitation effects on seed set. Among-population crosses showed reduced seed viability, suggesting outbreeding depression due to genetic divergence. Pollination with pollen from a single source did not negatively affect reproductive success. These findings were consistent with results of the survey of natural female reproductive success. Seed set decreased with the distance to males in a female plants' local neighborhood, suggesting a shortage of pollen in isolated female plants, and increased with the degree of local genetic diversity. Spatial isolation to other populations and population size did not affect seed set. None of these variables were related to seed viability. We conclude that pollen movement in M. perennis is likely very limited. Both male proximity and the local degree of genetic diversity influenced female reproductive success.

  16. An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China.

    PubMed

    Yang, Zhanbiao; Jin, Hongxi; Wang, Gang

    2010-05-01

    Using ecosystem attributes identified by the Society of Ecological Restoration International, we assessed three restoration projects in the loess plateau, northwestern China, including planting Larix principis-rupprechtii (LS) and Pinus tabulaeformis (PS) on shrubland, and planting L. principis-rupprechtii on open forest land (LO). The reestablishment of native species in LS and PS was poorer than LO because of the excessive stand density. Species diversity, seedling number, and seedling diversity were significantly higher in LO than in LS and PS. Soil nutrient was also significantly higher in the LO treatment. The vegetation composition, species diversity, and soil nutrient in LO, however, were more similar to these in the reference. Our results indicate that planting L. principis-rupprechtii on open forest land had accelerated the succession of the ecosystem for approximately 30 years. But the poor natural regeneration of L. principis-rupprechtii suggests that post-planting activities in LO are required after timber harvesting or the natural mortality of the L. principis-rupprechtii. Management operation such as selective thinning will be required in LS and PS to promote the true restoration of native species diversity in the future.

  17. An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China.

    PubMed

    Yang, Zhanbiao; Jin, Hongxi; Wang, Gang

    2010-05-01

    Using ecosystem attributes identified by the Society of Ecological Restoration International, we assessed three restoration projects in the loess plateau, northwestern China, including planting Larix principis-rupprechtii (LS) and Pinus tabulaeformis (PS) on shrubland, and planting L. principis-rupprechtii on open forest land (LO). The reestablishment of native species in LS and PS was poorer than LO because of the excessive stand density. Species diversity, seedling number, and seedling diversity were significantly higher in LO than in LS and PS. Soil nutrient was also significantly higher in the LO treatment. The vegetation composition, species diversity, and soil nutrient in LO, however, were more similar to these in the reference. Our results indicate that planting L. principis-rupprechtii on open forest land had accelerated the succession of the ecosystem for approximately 30 years. But the poor natural regeneration of L. principis-rupprechtii suggests that post-planting activities in LO are required after timber harvesting or the natural mortality of the L. principis-rupprechtii. Management operation such as selective thinning will be required in LS and PS to promote the true restoration of native species diversity in the future. PMID:19373438

  18. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  19. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  20. Terrestrial water and carbon fluxes across climatic gradients: does plant diversity matter?

    NASA Astrophysics Data System (ADS)

    Pappas, Christoforos; Fatichi, Simone; Burlando, Paolo

    2014-05-01

    Vegetation diversity in many land-surface, ecohydrological, and dynamic vegetation models is crudely represented using a discrete classification of a handful of "plant types" (named Plant Functional Types; PFTs). The parameterization of PFTs typically reflects mean properties of observed plant functional traits over broad categories (e.g., temperate broadleaf deciduous forest) ignoring most of the inter- and intra-specific trait variability. In the present study, taking advantage of well-established plant-trait cross-correlations described by the Leaf Economics Spectrum, we generated coordinated hypothetical species across a continuous spectrum of leaf traits, rather than using pre-defined categories. The behavior of these proxy species is then tested using a mechanistic ecohydrological model (T&C) that operates as a filter of their performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in Switzerland. Using this framework the following questions are addressed: (i) how sensitive are the carbon and water dynamics to species diversity? and (ii) which is the correlation between plant physiological traits, plant performance and observed trait distribution across climatic gradients?

  1. The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms

    NASA Astrophysics Data System (ADS)

    Sun, Hongying; Zhang, Chongbang; Song, Changchun; Chang, Scott X.; Gu, Baojing; Chen, Zhengxin; Peng, Changhui; Chang, Jie; Ge, Ying

    2013-10-01

    Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 μg N2O m-2 d-1, and improved nitrate removal (P < 0.001). The presence of Phalaris arundinacea within a given plant community increased the N2O emission (P < 0.001). The presence of Rumex japonicas had no influence on the N2O emissions (P > 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.

  2. Grazer exclusion alters plant spatial organization at multiple scales, increasing diversity

    PubMed Central

    Zhang, Hui; Gilbert, Benjamin; Wang, Wenbin; Liu, Junjie; Zhou, Shurong

    2013-01-01

    Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai-Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter- and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra- and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter- and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter- and intraspecific aggregation produces local spatial patterns that scale-up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing. PMID:24223294

  3. Bottom-up effects of host-plant species diversity and top-down effects of ants interactively increase plant performance.

    PubMed

    Moreira, Xoaquín; Mooney, Kailen A; Zas, Rafael; Sampedro, Luis

    2012-11-01

    While plant diversity is well known to increase primary productivity, whether these bottom-up effects are enhanced by reciprocal top-down effects from the third trophic level is unknown. We studied whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance and arthropod community structure. Plant diversity had a positive effect on aphids, but only in the presence of mutualistic ants, leading to a threefold greater number of both groups in the tri-specific cultures than in monocultures. Plant diversity increased ant abundance not only by increasing aphid number, but also by increasing ant recruitment per aphid. The positive effect of diversity on ants in turn cascaded down to increase plant performance; diversity increased plant growth (but not biomass), and this effect was stronger in the presence of ants. Consequently, bottom-up effects of diversity within the same genus and guild of plants, and top-down effects from the third trophic level (predatory ants), interactively increased plant performance.

  4. Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal

    PubMed Central

    Li, Miao; Feng, Jianmeng

    2015-01-01

    This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential

  5. Progress Towards an Interdisciplinary Science of Plant Phenology: Building Predictions Across Space, Time and Species Diversity

    NASA Technical Reports Server (NTRS)

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan

    2013-01-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  6. Progress towards an interdisciplinary science of plant phenology: building predictions across space, time and species diversity.

    PubMed

    Wolkovich, Elizabeth M; Cook, Benjamin I; Davies, T Jonathan

    2014-03-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  7. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  8. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  9. Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences

    NASA Astrophysics Data System (ADS)

    Wu, Jianping; Fan, Houbao; Liu, Wenfei; Huang, Guomin; Tang, Jianfu; Zeng, Ruijin; Huang, Jing; Liu, Zhanfeng

    2015-11-01

    Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands.

  10. Lead exposure and blood pressure among workers in diverse industrial plants in Kenya.

    PubMed

    Were, Faridah H; Moturi, M Charles; Gottesfeld, P; Wafula, Godfrey A; Kamau, Geoffrey N; Shiundu, Paul M

    2014-01-01

    The study evaluated airborne exposures and blood lead (BPb) levels in 233 production workers at six diverse industrial plants in Kenya. Blood and personal breathing zone air samples were collected and analyzed for lead (Pb) using atomic absorption spectroscopy. Blood pressure (BP) levels were measured using a standard mercury sphygmomanometer. The results indicated mean airborne Pb levels ± standard deviation (SD) as follows: 183.2 ± 53.6 μg/m(3) in battery recycling, 133.5 ± 39.6 μg/m(3) in battery manufacturing, 126.2 ± 39.9 μg/m(3) in scrap metal welding, 76.3 ± 33.2 μg/m(3) in paint manufacturing, 27.3 ± 12.1 μg/m(3) in a leather manufacturing, and 5.5 ± 3.6 μg/m(3) in a pharmaceutical plant. The mean airborne Pb levels exceeded the U.S. Occupational Safety and Health Administration (OSHA) 8-hr time-weighted average (TWA) permissible exposure limit (PEL) for Pb of 50 μg/m(3) in the battery manufacturing, battery recycling, welding, and paint manufacturing plants. Similarly, mean BPb concentrations exceeded the American Conference of Governmental Industrial Hygienists (ACGIH®) biological exposure index (BEI) for Pb of 30 μg/dl. A significant positive association was observed between BPb and breathing zone air Pb (R(2) = 0.73, P < 0.001). Approximately 30% of the production workers (N = 233) were in the hypertensive range with an average systolic and diastolic blood pressure (BP) of 134.7 ± 12.7 mmHg and 86.4 ± 8.9 mmHg, respectively. In the multivariate regression analysis, age, duration of work, airborne Pb and BPb levels were significantly associated (P < 0.05) with a change in BP. We recommend improved engineering controls, work practices, and personal hygiene to reduce Pb exposures. In addition, workers should undergo comprehensive medical surveillance to include BPb and BP testing, and airborne Pb assessments in all industries with significant lead exposures.

  11. Assessment of genetic diversity in Brazilian barley using SSR markers

    PubMed Central

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  12. Assessment of genetic diversity in Brazilian barley using SSR markers.

    PubMed

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-03-01

    Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  13. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil.

    PubMed

    Santos, Elisa S L; Cerqueira-Silva, Carlos Bernard M; Mori, Gustavo M; Ahnert, Dário; Mello, Durval L N; Pires, José Luis; Corrêa, Ronan X; de Souza, Anete P

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called 'Bahian cacao' or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide.

  14. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil.

    PubMed

    Santos, Elisa S L; Cerqueira-Silva, Carlos Bernard M; Mori, Gustavo M; Ahnert, Dário; Mello, Durval L N; Pires, José Luis; Corrêa, Ronan X; de Souza, Anete P

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called 'Bahian cacao' or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide. PMID:26675449

  15. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil

    PubMed Central

    Santos, Elisa S. L.; Cerqueira-Silva, Carlos Bernard M.; Mori, Gustavo M.; Ahnert, Dário; Mello, Durval L. N.; Pires, José Luis; Corrêa, Ronan X.; de Souza, Anete P.

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called ‘Bahian cacao’ or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide. PMID:26675449

  16. Effects of colonization processes on genetic diversity: differences between annual plants and tree species.

    PubMed Central

    Austerlitz, F; Mariette, S; Machon, N; Gouyon, P H; Godelle, B

    2000-01-01

    Tree species are striking for their high within-population diversity and low among-population differentiation for nuclear genes. In contrast, annual plants show much more differentiation for nuclear genes but much less diversity than trees. The usual explanation for this difference is that pollen flow, and therefore gene flow, is much higher for trees. This explanation is problematic because it relies on equilibrium hypotheses. Because trees have very recently recolonized temperate areas, they have experienced many foundation events, which usually reduce within-population diversity and increase differentiation. Only extremely high levels of gene flow could counterbalance these successive founder effects. We develop a model to study the impact of life cycle of forest trees, in particular of the length of their juvenile phase, on genetic diversity and differentiation during the glacial period and the following colonization period. We show that both a reasonably high level of pollen flow and the life-cycle characteristics of trees are needed to explain the observed structure of genetic diversity. We also show that gene flow and life cycle both have an impact on maternally inherited cytoplasmic genes, which are characterized both in trees and annual species by much less diversity and much more differentiation than nuclear genes. PMID:10757772

  17. Dynamic Response of Large Wind Power Plant Affected by Diverse Conditions at Individual Turbines

    SciTech Connect

    Elizondo, Marcelo A.; Lu, Shuai; Lin, Guang; Wang, Shaobu

    2014-07-31

    Diverse operating conditions at individual wind turbine generators (WTG) within wind power plants (WPPs) can affect the WPP dynamic response to system faults. For example, individual WTGs can experience diverse terminal voltage and power output caused by different wind direction and speed, affecting the response of protection and control limiters. In this paper, we present a study to investigate the dynamic response of a detailed WPP model under diverse power outputs of its individual WTGs. Wake effect is considered as the reason for diverse power outputs. The diverse WTG power output is evaluated in a test system where a large 168-machine test WPP is connected to the IEEE-39-bus system. The power output from each WTG is derived from a wake effect model that uses realistic statistical data for incoming wind speed and direction. The results show that diverse WTG output due to wake effect can affect the WPP dynamic response activating specialized control in some turbines. In addition, transient stability is affected by exhibiting uncertainty in critical clearing time calculation.

  18. Diversity of Woodland Communities and Plant Species along an Altitudinal Gradient in the Guancen Mountains, China

    PubMed Central

    Meng, Dongping; Zhang, Jin-Tun; Li, Min

    2012-01-01

    Study on plant diversity is the base of woodland conservation. The Guancen Mountains are the northern end of Luliang mountain range in North China. Fifty-three quadrats of 10 m × 20 m of woodland communities were randomly established along an altitudinal gradient. Data for species composition and environmental variables were measured and recorded in each quadrat. To investigate the variation of woodland communities, a Two-Way Indicator Species Analysis (TWINSPAN) and a Canonical Correspondence Analysis (CCA) were conducted, while species diversity indices were used to analyse the relationships between species diversity and environmental variables in this study. The results showed that there were eight communities of woodland vegetation; each of them had their own characteristics in composition, structure, and environment. The variation of woodland communities was significantly related to elevation and also related to slope, slope aspect, and litter thickness. The cumulative percentage variance of species-environment relation for the first three CCA axes was 93.5%. Elevation was revealed as the factor which most influenced community distribution and species diversity. Species diversity was negatively correlated with elevation, slope aspect, and litter thickness, but positively with slope. Species richness and heterogeneity increased first and then decreased but evenness decreased significantly with increasing elevation. Species diversity was correlated with slope, slope aspect, and litter thickness. PMID:22566768

  19. How do soil texture, plant community composition and earthworms affected the infiltration rate in a grassland plant diversity experiment depending on season?

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Britta, Merkel; Nico, Eisenhauer; Christiane, Roscher; Sabine, Attinger; Stefan, Scheu; Anke, Hildebrandt

    2013-04-01

    Background and aims: In this study we analyzed the influences of plant community characteristics, soil texture and earthworm presence on infiltration rates on a managed grassland plant diversity experiment assessing the role of biotic and abiotic factors on soil hydrology. Methods: We measured infiltration using a hood infiltrometer in subplots with ambient and reduced earthworm density (earthworm extraction) nested in plots of different plant species richness (1, 4, and 16), plant functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) in early summer (June) and autumn (September, October) 2011. Results: The presence of certain plant functional groups such as grasses and legumes influenced infiltration rates and this effect enhanced during the growing season. Infiltration was significantly higher in plots containing legumes than in plots without, and it was significantly lower in the presence of grasses than in their absence. In early summer, earthworm presence and biomass increased the infiltration rates, independently of plant species richness. In October, plant species richness only affected infiltration rates in reduced earthworm plots. At the end of the growing season earthworm populations were negatively influenced by grasses and positively by legumes. In September, infiltration rates were positive related to the proportion of finer grains. The correlation disappears when removing all plots containing legumes from the sample. For all measurements the infiltration rates decreases from early summer to autumn at the matric potentials at pressure zero and -0.02 m, but not for smaller macropores at matric potentials -0.04 and -0.06m. Conclusions: Considering infiltration rates as ecosystem function, this function will largely depend on the ecosystem composition and season, not on biodiversity per se. Our results indicate that biotic factors are of overriding influence for shaping infiltration rates mainly for larger macropores

  20. Assessing the Effect of Disturbances on Ectomycorrhiza Diversity

    PubMed Central

    Iordache, Virgil; Gherghel, Felicia; Kothe, Erika

    2009-01-01

    Ectomycorrhiza (ECM) communities can be described on a species level or on a larger scale at an ecosystem level. Here we show that the species level approach of successional processes in ECM communities is not appropriate for understanding the diversity patterns of ECM communities at contaminated sites. An ecosystem based approach improves predictability since different biotic and abiotic factors are included. However, it still does not take into account the hierarchical structure of the ecosystem. We suggest that diversity patterns of ECMs communities in forests can best be investigated at three levels. This hypothetical approach for investigation can be tested at sites of secondary succession in areas contaminated with metals. Once the diversity patterns are appropriately described by a hierarchical ecosystem approach, to the species level is used to explain these patterns by populational and ecotoxicological mechanisms. PMID:19440391

  1. Coastal plants : chemical sensitivities and risk assessments

    EPA Science Inventory

    The ability of plant-dominated ecosystems to improve water quality and provide habitat for biodiversity are important ecological services. These services are impacted by natural and anthropogenic stressors which includes contaminant toxicity. Scientific information describing the...

  2. Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system.

    PubMed

    Elias, M; Penet, L; Vindry, P; McKey, D; Panaud, O; Robert, T

    2001-08-01

    Occurrence of intervarietal or interspecific natural crosses has been reported for many crop plants in traditional farming systems, underlining the potential importance of this source of genetic exchange for the dynamics of genetic diversity of crop plants. In this study, we use microsatellite loci to investigate the role of volunteer seedlings (plants originating from unmanaged sexual reproduction) in the dynamics of genetic diversity of cassava (Manihot esculenta Crantz), a vegetatively propagated crop, in a traditional farming system in Guyana. A previous field study showed that farmers incorporate such plants into the germplasm for vegetative propagation, and that many of them are likely to be assigned by farmers to recognized varieties. Under strict vegetative propagation clonality of varieties is expected. The high proportion of polyclonal varieties observed suggests that incorporation of seedlings into the germplasm for propagation is a frequent event. The molecular variability assessed with microsatellite markers shows that there is high differentiation among heterozygous varieties, whereas populations of seedlings do not depart from the proportions expected under Hardy-Weinberg assumptions. Assignment of seedlings to a recognized variety on the basis of morphological similarity greatly increases genetic diversity within the variety. We argue that recombination and gene flow play a major role in the dynamics of genetic diversity of cassava in traditional farming systems. Documenting unmanaged sexual reproduction and its genetic consequences is a prerequisite for defining strategies of in situ conservation of crop plant genetic resources.

  3. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.

    PubMed

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C; Semple, Kirk T

    2013-02-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of (14)C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of (14)C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of (14)C-phenanthrene degradation; lag phase, maximum rates and total extents of (14)C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities.

  4. Natural Products from Plant-associated Microorganisms: Distribution, Structural Diversity, Bioactivity, and Implications of Their Occurrence⊥

    PubMed Central

    Gunatilaka, A. A. Leslie

    2012-01-01

    A growing body of evidence suggests that plant-associated microorganisms, especially endophytic and rhizosphere bacteria and fungi, represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological relevance. A diverse array of bioactive small molecule natural products has been encountered in these microorganisms. The structures of over 230 metabolites isolated and characterized from over 70 plant-associated microbial strains during the past four years are presented with information on their hosts, culture conditions, and biological activities. Some significant biological and ecological implications of their occurrence are also reviewed. PMID:16562864

  5. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    USGS Publications Warehouse

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  6. Host-plant genotypic diversity mediates the distribution of an ecosystem engineer.

    PubMed

    Crawford, Kerri M; Crutsinger, Gregory M; Sanders, Nathan J

    2007-08-01

    Ecosystem engineers affect ecological communities by physically modifying the environment. Understanding the factors determining the distribution of engineers offers a powerful predictive tool for community ecology. In this study, we examine whether the goldenrod bunch gall midge (Rhopalomyia solidaginis) functions as an ecosystem engineer in an old-field ecosystem by altering the composition of arthropod species associated with a dominant host plant, Solidago altissima. We also examine the suite of factors that could affect the distribution and abundance of this ecosystem engineer. The presence of bunch galls increased species richness and altered the structure of associated arthropod communities. The best predictors of gall abundance were host-plant genotype and plot-level genotypic diversity. We found positive, nonadditive effects of genotypic diversity on gall abundance. Our results indicate that incorporating a genetic component in studies of ecosystem engineers can help predict their distribution and abundance, and ultimately their effects on biodiversity.

  7. How does plant chemical diversity contribute to biodiversity at higher trophic levels?

    PubMed

    Schuman, Meredith C; van Dam, Nicole M; Beran, Franziska; Harpole, W Stanley

    2016-04-01

    Plants, perhaps Earth's most accomplished chemists, produce thousands of specialized metabolites having no direct role in cell division or growth. These phytochemicals vary by taxon, with many taxa producing characteristic substance classes; and within taxa, with individual variation in structural variety and production patterns. Observations of corresponding variation in herbivore metabolism, behavior, and diet breadth motivated the development of chemical ecology research. We discuss the importance of plant biodiversity in general and phytochemical diversity in particular for biodiversity and ecological interactions at higher trophic levels. We then provide an overview of the descriptive, molecular and analytical tools which allow modern biologists to investigate phytochemical diversity and its effects on higher trophic levels, from physiological mechanisms to ecological communities. PMID:27436646

  8. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea

    PubMed Central

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho

    2015-01-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus. PMID:26839496

  9. Preparing Teachers for Diverse Learners: Assessing Teacher Candidates' Dispositions

    ERIC Educational Resources Information Center

    Northington, Vera Ann

    2011-01-01

    The National Council for Accreditation for Teacher Education (NCATE) recommended teacher preparation programs measure teacher candidates' disposition toward diverse learners. The conduction of the quantitative cross-sectional survey design utilized the Quick Discrimination Index Survey (QDI), a Likert-type tool that used reversed or negatively…

  10. Growth and Diversity in Doctoral Education: Assessing the Australian Experience

    ERIC Educational Resources Information Center

    Pearson, Margot; Evans, Terry; Macauley, Peter

    2008-01-01

    The major growth of doctoral education in recent decades has attracted attention from policy makers and researchers. In this article we explore the growth of doctoral education in Australia, its impact on diversity in respect of the doctoral population, shifts in disciplinary strengths, institutional concentration and award programs. We conclude…

  11. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  12. How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?

    PubMed Central

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

  13. Characteristics of START assessments completed in mental health jail diversion programs.

    PubMed

    Desmarais, Sarah L; Van Dorn, Richard A; Telford, Robin P; Petrila, John; Coffey, Tim

    2012-01-01

    Many different instruments have been developed to assist in the assessment of risk for violence and other criminal behavior. However, there is limited evidence regarding how these instruments work in the 'real world'. Even less is known about how these instruments might work for assessing risk in jail diversion populations, whether in research or practice. To address these knowledge gaps, the present study examined the characteristics of risk assessments completed by program staff (n=10) on 96 mental health jail diversion clients (72 men and 24 women) using the Short-Term Assessment of Risk and Treatability (START). The findings provide preliminary support for the reliability and validity of START assessments completed in jail diversion programs, the first evidence of the transportability of START outside psychiatric settings, and further evidence regarding the reliability and validity of START assessments completed in the field. They additionally support the consideration of an eighth, general offending risk domain in START assessments. PMID:22807034

  14. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, A.J.; Jonas, J.L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity. ?? Society for Range

  15. An explanation for conflicting records of Triassic-Jurassic plant diversity.

    PubMed

    Mander, Luke; Kürschner, Wolfram M; McElwain, Jennifer C

    2010-08-31

    Macrofossils (mostly leaves) and sporomorphs (pollen and spores) preserve conflicting records of plant biodiversity during the end-Permian (P-Tr), Triassic-Jurassic (Tr-J), and end-Cretaceous (K-T) mass extinctions. Estimates of diversity loss based on macrofossils are typically much higher than estimates of diversity loss based on sporomorphs. Macrofossils from the Tr-J of East Greenland indicate that standing species richness declined by as much as 85% in the Late Triassic, whereas sporomorph records from the same region, and from elsewhere in Europe, reveal little evidence of such catastrophic diversity loss. To understand this major discrepancy, we have used a new high-resolution dataset of sporomorph assemblages from Astartekløft, East Greenland, to directly compare the macrofossil and sporomorph records of Tr-J plant biodiversity. Our results show that sporomorph assemblages from the Tr-J boundary interval are 10-12% less taxonomically diverse than sporomorph assemblages from the Late Triassic, and that vegetation composition changed rapidly in the boundary interval as a result of emigration and/or extirpation of taxa rather than immigration and/or origination of taxa. An analysis of the representation of different plant groups in the macrofossil and sporomorph records at Astartekløft reveals that reproductively specialized plants, including cycads, bennettites and the seed-fern Lepidopteris are almost absent from the sporomorph record. These results provide a means of reconciling the macrofossil and sporomorph records of Tr-J vegetation change, and may help to understand vegetation change during the P-Tr and K-T mass extinctions and around the Paleocene-Eocene Thermal Maximum. PMID:20713737

  16. The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    PubMed

    Lange, Bernd Markus

    2015-01-01

    Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages. PMID:25621517

  17. Effects of Previous Land-Use on Plant Species Composition and Diversity in Mediterranean Forests

    PubMed Central

    Kouba, Yacine; Martínez-García, Felipe; de Frutos, Ángel; Alados, Concepción L.

    2015-01-01

    At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical “land management” practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species’ habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species. PMID:26397707

  18. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae

    PubMed Central

    2012-01-01

    Background During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. Conclusions Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE) and binding to the serotonin reuptake transporter (SERT) are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities. PMID:22978363

  19. Effects of Previous Land-Use on Plant Species Composition and Diversity in Mediterranean Forests.

    PubMed

    Kouba, Yacine; Martínez-García, Felipe; de Frutos, Ángel; Alados, Concepción L

    2015-01-01

    At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical "land management" practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species' habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species. PMID:26397707

  20. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland.

    PubMed

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional

  1. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland

    PubMed Central

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional

  2. Frequency distribution and assessment of genetic diversity of novel endophyte Alternaria alternata accessions isolated from Pongamia pinnata L.

    PubMed

    Tiwari, Kartikeya

    2013-10-01

    Thepresent study discusses the frequency distribution and genetic diversity of novel fungal endopyte Alternaria alternata within the Pongammia pinnata plant samples. A total of ten plant samples of Pongammia pinnata, Pierre. (Karanja) were collected from specific locations of Sanganer region of Rajasthan for the isolation of fungal endophytes. Of these, maximum frequency of Alternaria alternata (22.29%) were recorded which are morphologically similar but ecologically variant. Efficacy of randomly amplified polymorphic DNA (RAPD), were assessed in seventeen individuals of the primers was GCC 180 where as 10 bands were generated by GCC 181. The similarity coefficient matrix generated for the primers was subjected to algorithm UPGMA (Unweighted Pair Group Method Analysis) and clusters were generated using NTSYS 2.02 pc program. To stabilize the level of relatedness among the seventeen ecologically variant Alternaria alternata accessions, the dendrogram was constructed, which showed that all the isolates were diversified endophytically with in the plant Pongamia pinnata. PMID:24502162

  3. Diversity as a Learning Goal: Challenges in Assessing Knowledge, Skills, and Attitudes

    ERIC Educational Resources Information Center

    Bowers, Pam

    2009-01-01

    At Oklahoma State University (OSU), faculty have defined expectations for students' learning of knowledge, skills, and attitudes about diversity, and have implemented a process to assess students' achievement of the diversity learning goal. As was done for other general education learning goals such as written communication ability and critical…

  4. Changing Attitudes over Time: Assessing the Effectiveness of a Workplace Diversity Course

    ERIC Educational Resources Information Center

    Probst, Tahira M.

    2003-01-01

    Diversity is increasing within the United States, and higher education will likely play a key role in preparing people to function in this new environment. This study assessed the effectiveness of a semester-long psychology workplace diversity course at changing student levels of ethnocentrism and attitudes regarding gender roles; the disabled;…

  5. Raising White Privilege Awareness and Reducing Racial Prejudice: Assessing Diversity Course Effectiveness

    ERIC Educational Resources Information Center

    Case, Kim A.

    2007-01-01

    Many diversity courses in psychology originally aimed to reduce student racial bias and raise their awareness of racism. However, quantitative data testing the effectiveness of such courses are lacking. This study assessed a required diversity course's effectiveness in raising awareness of White privilege and racism; increasing support for…

  6. Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps

    PubMed Central

    Thuiller, Wilfried; Guéguen, Maya; Georges, Damien; Bonet, Richard; Chalmandrier, Loïc; Garraud, Luc; Renaud, Julien; Roquet, Cristina; Van Es, Jérémie; Zimmermann, Niklaus E.; Lavergne, Sébastien

    2014-01-01

    Climate and land cover changes are important drivers of the plant species distributions and diversity patterns in mountainous regions. Although the need for a multifaceted view of diversity based on taxonomic, functional and phylogenetic dimensions is now commonly recognized, there are no complete risk assessments concerning their expected changes. In this paper, we used a range of species distribution models in an ensemble-forecasting framework together with regional climate and land cover projections by 2080 to analyze the potential threat for more than 2,500 plant species at high resolution (2.5 km × 2.5 km) in the French Alps. We also decomposed taxonomic, functional and phylogenetic diversity facets into α and β components and analyzed their expected changes by 2080. Overall, plant species threats from climate and land cover changes in the French Alps were expected to vary depending on the species’ preferred altitudinal vegetation zone, rarity, and conservation status. Indeed, rare species and species of conservation concern were the ones projected to experience less severe change, and also the ones being the most efficiently preserved by the current network of protected areas. Conversely, the three facets of plant diversity were also projected to experience drastic spatial re-shuffling by 2080. In general, the mean α-diversity of the three facets was projected to increase to the detriment of regional β-diversity, although the latter was projected to remain high at the montane-alpine transition zones. Our results show that, due to a high-altitude distribution, the current protection network is efficient for rare species, and species predicted to migrate upward. Although our modeling framework may not capture all possible mechanisms of species range shifts, our work illustrates that a comprehensive risk assessment on an entire floristic region combined with functional and phylogenetic information can help delimitate future scenarios of biodiversity and

  7. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants.

    PubMed

    Kawai, Yosuke; Ono, Eiichiro; Mizutani, Masaharu

    2014-04-01

    The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation/hydroxylation reactions. Despite their biochemical significance in metabolism, a systematic analysis of plant 2OGDs remains to be accomplished. We present a phylogenetic classification of 479 2OGDs in six plant models, ranging from green algae to angiosperms. These were classified into three classes - DOXA, DOXB and DOXC - based on amino acid sequence similarity. The DOXA class includes plant homologs of Escherichia coli AlkB, which is a prototype of 2OGD involved in the oxidative demethylation of alkylated nucleic acids and histones. The DOXB class is conserved across all plant taxa and is involved in proline 4-hydroxylation in cell wall protein synthesis. The DOXC class is involved in specialized metabolism of various phytochemicals, including phytohormones and flavonoids. The vast majority of 2OGDs from land plants were classified into the DOXC class, but only seven from Chlamydomonas, suggesting that this class has diversified during land plant evolution. Phylogenetic analysis assigned DOXC-class 2OGDs to 57 phylogenetic clades. 2OGD genes involved in gibberellin biosynthesis were conserved among vascular plants, and those involved in flavonoid and ethylene biosynthesis were shared among seed plants. Several angiosperm-specific clades were found to be involved in various lineage-specific specialized metabolisms, but 31 of the 57 DOXC-class clades were only found in a single species. Therefore, the evolution and diversification of DOXC-class 2OGDs is partly responsible for the diversity and complexity of specialized metabolites in land plants.

  8. The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities

    PubMed Central

    Lee, Yong-Jin; van Nostrand, Joy D; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; Carter, Michelle Q; He, Zhili; Wu, Liyou; Yang, Fang; Xu, Jian; Zhou, Jizhong

    2013-01-01

    Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. PMID:23765101

  9. Development and Initial Psychometric Assessment of the Plant Attitude Questionnaire

    ERIC Educational Resources Information Center

    Fancovicova, Jana; Prokop, Pavol

    2010-01-01

    Plants are integral parts of ecosystems which determine life on Earth. People's attitudes toward them are however, largely overlooked. Here we present initial psychometric assessment of self-constructed Plant Attitude Scale (PAS) that was administered to a sample of 310 Slovakian students living in rural areas aged 10-15 years. The final version…

  10. Comparative safety assessment of plant-derived foods.

    PubMed

    Kok, E J; Keijer, J; Kleter, G A; Kuiper, H A

    2008-02-01

    The second generation of genetically modified (GM) plants that are moving towards the market are characterized by modifications that may be more complex and traits that more often are to the benefit of the consumer. These developments will have implications for the safety assessment of the resulting plant products. In part of the cases the same crop plant can, however, also be obtained by 'conventional' breeding strategies. The breeder will decide on a case-by-case basis what will be the best strategy to reach the set target and whether genetic modification will form part of this strategy. This article discusses important aspects of the safety assessment of complex products derived from newly bred plant varieties obtained by different breeding strategies. On the basis of this overview, we conclude that the current process of the safety evaluation of GM versus conventionally bred plants is not well balanced. GM varieties are elaborately assessed, yet at the same time other crop plants resulting from conventional breeding strategies may warrant further food safety assessment for the benefit of the consumer. We propose to develop a general screening frame for all newly developed plant varieties to select varieties that cannot, on the basis of scientific criteria, be considered as safe as plant varieties that are already on the market.

  11. Diversity of fungi associated with hair roots of ericaceous plants is affected by land use.

    PubMed

    Hazard, Christina; Gosling, Paul; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2014-03-01

    Culture-independent molecular studies have provided new insights into the diversity of fungi associating with ericaceous plant roots. However, there is little understanding of the distribution of these fungi across landscapes, or the effects of environmental heterogeneity on ericoid mycorrhizal (ERM) fungal diversity and distribution. Terminal-restriction fragment length polymorphism and selective sequence analyses of the internal transcribed spacer regions of rDNA were used to infer fungal diversity of bait Vaccinium macrocarpon grown in soils from nine peatland sites in Ireland, representing three different land uses (bog, rough grazing and forest plantation) and the fungal communities of field-collected Calluna vulgaris for five of these nine sites. A diverse range of potential ERM fungi were found, and the sampling approach significantly affected the diversity of the fungal community. Despite significant site groupings of the fungal communities associated with V. macrocarpon and C. vulgaris, fungal communities were significantly dissimilar between sites with different land uses. Soil nitrogen content significantly explained 52% of the variation in the V. macrocarpon fungal communities. Evidence suggests that environmental heterogeneity has a role in shaping ERM fungal community composition at the landscape scale.

  12. Metlab Plant-Wide Assessment (Metlab in Wyndmoor, PA)

    SciTech Connect

    2002-08-01

    This OIT BestPractices case study describes the methods and results of a plant-wide energy assessment at Metlab's aircraft component manufacturing plant in Wyndmoor, PA. Recommendations derived from the assessment, if implemented, can save an estimated $528,400 annually, reduce natural gas use by 50,070 MMbtu per year, and reduce electrical use by 329,400 kWh per year.

  13. Genetic Structure, Diversity and Long Term Viability of a Medicinal Plant, Nothapodytes nimmoniana Graham. (Icacinaceae), in Protected and Non-Protected Areas in the Western Ghats Biodiversity Hotspot

    PubMed Central

    Shivaprakash, K. Nagaraju; Ramesha, B. Thimmappa; Uma Shaanker, Ramanan; Dayanandan, Selvadurai; Ravikanth, Gudasalamani

    2014-01-01

    Background and Question The harvesting of medicinal plants from wild sources is escalating in many parts of the world, compromising the long-term survival of natural populations of medicinally important plants and sustainability of sources of raw material to meet pharmaceutical industry needs. Although protected areas are considered to play a central role in conservation of plant genetic resources, the effectiveness of protected areas for maintaining medicinal plant populations subject to intense harvesting pressure remain largely unknown. We conducted genetic and demographic studies of Nothapodytes nimmoniana Graham, one of the extensively harvested medicinal plant species in the Western Ghats biodiversity hotspot, India to assess the effectiveness of protected areas in long-term maintenance of economically important plant species. Methodology/Principal Findings The analysis of adults and seedlings of N. nimmoniana in four protected and four non-protected areas using 7 nuclear microsatellite loci revealed that populations that are distributed within protected areas are subject to lower levels of harvesting and maintain higher genetic diversity (He = 0.816, Ho = 0.607, A = 18.857) than populations in adjoining non-protected areas (He = 0.781, Ho = 0.511, A = 15.571). Furthermore, seedlings in protected areas had significantly higher observed heterozygosity (Ho = 0.630) and private alleles as compared to seedlings in adjoining non-protected areas (Ho = 0.426). Most populations revealed signatures of recent genetic bottleneck. The prediction of long-term maintenance of genetic diversity using BOTTLESIM indicated that current population sizes of the species are not sufficient to maintain 90% of present genetic diversity for next 100 years. Conclusions/Significance Overall, these results highlight the need for establishing more protected areas encompassing a large number of adult plants in the Western Ghats to conserve genetic diversity