Sample records for assess temporal variability

  1. SPATIAL AND TEMPORAL VARIABILITY AND DRIVERS OF NET ECOSYSTEM METABOLISM IN WESTERN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Net ecosystem metabolism (NEM) is becoming a commonly used ecological indicator of estuarine ecosystem metabolic rates. Estuarine ecosystem processes are spatially and temporally variable, but the corresponding variability in NEM has not been properly assessed. Spatial and temp...

  2. Applying probabilistic temporal and multisite data quality control methods to a public health mortality registry in Spain: a systematic approach to quality control of repositories.

    PubMed

    Sáez, Carlos; Zurriaga, Oscar; Pérez-Panadés, Jordi; Melchor, Inma; Robles, Montserrat; García-Gómez, Juan M

    2016-11-01

    To assess the variability in data distributions among data sources and over time through a case study of a large multisite repository as a systematic approach to data quality (DQ). Novel probabilistic DQ control methods based on information theory and geometry are applied to the Public Health Mortality Registry of the Region of Valencia, Spain, with 512 143 entries from 2000 to 2012, disaggregated into 24 health departments. The methods provide DQ metrics and exploratory visualizations for (1) assessing the variability among multiple sources and (2) monitoring and exploring changes with time. The methods are suited to big data and multitype, multivariate, and multimodal data. The repository was partitioned into 2 probabilistically separated temporal subgroups following a change in the Spanish National Death Certificate in 2009. Punctual temporal anomalies were noticed due to a punctual increment in the missing data, along with outlying and clustered health departments due to differences in populations or in practices. Changes in protocols, differences in populations, biased practices, or other systematic DQ problems affected data variability. Even if semantic and integration aspects are addressed in data sharing infrastructures, probabilistic variability may still be present. Solutions include fixing or excluding data and analyzing different sites or time periods separately. A systematic approach to assessing temporal and multisite variability is proposed. Multisite and temporal variability in data distributions affects DQ, hindering data reuse, and an assessment of such variability should be a part of systematic DQ procedures. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Temporal auditory aspects in children with poor school performance and associated factors.

    PubMed

    Rezende, Bárbara Antunes; Lemos, Stela Maris Aguiar; Medeiros, Adriane Mesquita de

    2016-01-01

    To investigate the auditory temporal aspects in children with poor school performance aged 7-12 years and their association with behavioral aspects, health perception, school and health profiles, and sociodemographic factors. This is an observational, analytical, transversal study including 89 children with poor school performance aged 7-12 years enrolled in the municipal public schools of a municipality in Minas Gerais state, participants of Specialized Educational Assistance. The first stage of the study was conducted with the subjects' parents aiming to collect information on sociodemographic aspects, health profile, and educational records. In addition, the parents responded to the Strengths and Difficulties Questionnaire (SDQ). The second stage was conducted with the children in order to investigate their health self-perception and analyze the auditory assessment, which consisted of meatoscopy, Transient Otoacoustic Emissions, and tests that evaluated the aspects of simple auditory temporal ordering and auditory temporal resolution. Tests assessing the temporal aspects of auditory temporal processing were considered as response variables, and the explanatory variables were grouped for univariate and multivariate logistic regression analyses. The level of significance was set at 5%. Significant statistical correlation was found between the auditory temporal aspects and the variables age, gender, presence of repetition, and health self-perception. Children with poor school performance presented changes in the auditory temporal aspects. The temporal abilities assessed suggest association with different factors such as maturational process, health self-perception, and school records.

  4. Total ozone trend significance from space time variability of daily Dobson data

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.

    1981-01-01

    Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.

  5. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    PubMed Central

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  6. Increased temporal variability of striatum region facilitating the early antidepressant response in patients with major depressive disorder.

    PubMed

    Hou, Zhenghua; Kong, Youyong; He, Xiaofu; Yin, Yingying; Zhang, Yuqun; Yuan, Yonggui

    2018-07-13

    The aim of this study is to identify the difference of temporal variability among major depressive disorder (MDD) patients (with different early antidepressant responses) and healthy controls (HC), and further explore the relationship between pre-treatment temporal variability and early antidepressant response. At baseline, 77 treatment-naïve inpatients with MDD and 42 matched HC received clinical assessments and 3.0 Tesla resting-state functional magnetic resonance imaging scans. After 2 weeks' antidepressant treatment, the patients were subgrouped into responsive depression (RD, n = 40) and non-responding depression (NRD, n = 37) based on the reduction of Hamilton depression rating scale (HAMD). The temporal variability of 90 brain nodes was calculated for further analysis. Compared with the HC group, both the RD and NRD subjects showed greater baseline temporal variability (i.e., greater dynamic) in the left inferior occipital gyrus. Significantly greater temporal variability in the left pallidum was found in the RD group than the NRD and the HC groups, and the higher variability of left pallidum correlated positively with the HAMD reduction. Moreover, the pooled MDD (i.e., RD and NRD) group showed greater baseline temporal variability in the right inferior frontal gyrus, the left inferior occipital gyrus, the bilateral fusiform gyri and the left Heschl gyrus than the HC group. The distinctive pattern of dynamically reorganized networks may provide a crucial scaffold to facilitate early antidepressant response, and the temporal variability may serve as a promising indicator for the personalized therapy of MDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Sea-level rise impacts on the temporal and spatial variability of extreme water levels: A case study for St. Peter-Ording, Germany

    NASA Astrophysics Data System (ADS)

    Santamaria-Aguilar, S.; Arns, A.; Vafeidis, A. T.

    2017-04-01

    Both the temporal and spatial variability of storm surge water level (WL) curves are usually not taken into account in flood risk assessments as observational data are often scarce. In addition, sea-level rise (SLR) can further affect the variability of WLs. We analyze the temporal and spatial variability of the WL curve of 75 historical storm surge events that have been numerically simulated for St. Peter-Ording at the German North Sea coast, considering the effects induced by three SLR scenarios (RCP 4.5, RCP 8.5, and a RCP 8.5 high end scenario). We assess potential impacts of these scenarios on two parameters related to flooding: overflow volumes and fullness. Our results indicate that due to both the temporal and spatial variability of those events the resulting overflow volume can be two or even three times greater. We observe a steepening of the WL curve with an increase of the tidal range under the three SLR scenarios, although SLR induced effects are relatively higher for the RCP 4.5. The steepening of the WL curve with SLR produces a reduction of the fullness, but the changes in overflow volumes also depend on the magnitude of the storm surge event.

  8. Are there meaningful individual differences in temporal inconsistency in self-reported personality?

    PubMed

    Soubelet, Andrea; Salthouse, Timothy A; Oishi, Shigehiro

    2014-11-01

    The current project had three goals. The first was to examine whether it is meaningful to refer to across-time variability in self-reported personality as an individual differences characteristic. The second was to investigate whether negative affect was associated with variability in self-reported personality, while controlling for mean levels, and correcting for measurement errors. The third goal was to examine whether variability in self-reported personality would be larger among young adults than among older adults, and whether the relation of variability with negative affect would be stronger at older ages than at younger ages. Two moderately large samples of participants completed the International Item Pool Personality questionnaire assessing the Big Five personality dimensions either twice or thrice, in addition to several measures of negative affect. Results were consistent with the hypothesis that within-person variability in self-reported personality is a meaningful individual difference characteristic. Some people exhibited greater across-time variability than others after removing measurement error, and people who showed temporal instability in one trait also exhibited temporal instability across the other four traits. However, temporal variability was not related to negative affect, and there was no evidence that either temporal variability or its association with negative affect varied with age.

  9. Effect of trotting speed on kinematic variables measured by use of extremity-mounted inertial measurement units in nonlame horses performing controlled treadmill exercise.

    PubMed

    Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E

    2018-02-01

    OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.

  10. Extremely Low Frequency (ELF) Communications System Ecological Monitoring Program: Summary of 1986 Progress.

    DTIC Science & Technology

    1987-12-01

    assessment of data collection techniques *quantification of temporal and spatial patterns of variables *assessment of end point variability...nutrient variables are also being examined as covarlates. Development of a model to test for differences in growth patterns is continuing. At each of...condition. These variables are recorded at the end of each growing season. For evaluation of height growth patterns , a subsample of 100 seedlings per

  11. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.

  12. Habitat connectivity and in-stream vegetation control temporal variability of benthic invertebrate communities.

    PubMed

    Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T

    2017-05-03

    One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.

  13. Spatial and temporal variability in the structure of invertebrate assemblages in control stream mesocosms.

    PubMed

    Wong, Diana C L; Maltby, Lorraine; Whittle, Don; Warren, Philip; Dorn, Philip B

    2004-01-01

    Outdoor stream mesocosm studies conducted between 1992 and 1996 at two facilities enabled the investigation of structural variability in invertebrate assemblages within and between studies. Temporal variability of benthic invertebrate assemblages between eight replicate streams within a study was assessed in a 28-day mesocosm study without chemical treatment. Cluster analysis, non-metric multidimensional scaling, and principal component analysis each showed the untreated assemblages as structurally distinct groups on the three sampling days. The assemblages between the eight replicate streams showed >88% Bray-Curtis similarity at any one time during the study. In addition, pre-treatment data from a series of four studies conducted at one facility were used to examine structural variability in the starting benthic invertebrate assemblages between studies. Invertebrate assemblages were structurally distinct at the start of each mesocosm study conducted in different years at the same facility and the taxa responsible for differences in the assemblages were also different each year. The implications of temporal and spatial variability in benthic invertebrate assemblages within and between mesocosm studies with regards to species sensitivity and study repeatability should be considered when results of such studies are used in risk assessment.

  14. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  15. Speech production variability in fricatives of children and adults: Results of functional data analysis

    PubMed Central

    Koenig, Laura L.; Lucero, Jorge C.; Perlman, Elizabeth

    2008-01-01

    This study investigates token-to-token variability in fricative production of 5 year olds, 10 year olds, and adults. Previous studies have reported higher intrasubject variability in children than adults, in speech as well as nonspeech tasks, but authors have disagreed on the causes and implications of this finding. The current work assessed the characteristics of age-related variability across articulators (larynx and tongue) as well as in temporal versus spatial domains. Oral airflow signals, which reflect changes in both laryngeal and supralaryngeal apertures, were obtained for multiple productions of ∕h s z∕. The data were processed using functional data analysis, which provides a means of obtaining relatively independent indices of amplitude and temporal (phasing) variability. Consistent with past work, both temporal and amplitude variabilities were higher in children than adults, but the temporal indices were generally less adultlike than the amplitude indices for both groups of children. Quantitative and qualitative analyses showed considerable speaker- and consonant-specific patterns of variability. The data indicate that variability in ∕s∕ may represent laryngeal as well as supralaryngeal control and further that a simple random noise factor, higher in children than in adults, is insufficient to explain developmental differences in speech production variability. PMID:19045800

  16. Assessing How Water Type, Climate, and Landscape Position Correlate with Variability of Methane in Shallow Groundwater in the Marcellus Region

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Lautz, L.; Hoke, G. D.

    2017-12-01

    Prior work shows that spatial differences in naturally-occurring methane concentrations in shallow groundwater in the Marcellus Shale region are correlated with water type (e.g. Ca-HCO3 vs Na-HCO3) and landscape position (e.g. valley vs upland). However, little is known about how naturally-occurring methane in groundwater varies through time, particularly on a seasonal or monthly time scale, and how temporal variability is related to seasonal changes in climate. Extensive development of the Marcellus shale gas play in northeastern Pennsylvania limits opportunities for measuring baseline water quality through time. In contrast, a ban on hydraulic fracturing in NY affords an opportunity for characterizing baseline temporal variability in methane concentrations. The objective of this study is to characterize temporal variability of naturally-occurring methane in shallow groundwater in the Marcellus region, and how such temporal variability is correlated to other well characteristics, such as water type, landscape position, and climatic conditions. We worked with homeowners to sample 11 domestic wells monthly in the Marcellus Shale region of NY for methane concentrations and major ions for a full year. Wells were grouped according to the primary source of methane (e.g. thermogenic vs microbial) based upon δ13C-DIC, δ13C-CH4, and δD-CH4 isotopes. The full dataset and the grouped data were analyzed to assess how well climatic conditions, water type, and landscape position correlate with variability of methane concentrations through time. These data provide information on within year and between year variability of methane, as well as spatial variability between wells, which fills a data gap and can be used to inform policy regulations.

  17. Spatio-temporal variability of ichthyophagous bird assemblage around western Mediterranean open-sea cage fish farms.

    PubMed

    Aguado-Giménez, Felipe; Eguía-Martínez, Sergio; Cerezo-Valverde, Jesús; García-García, Benjamín

    2018-06-14

    Ichthyophagous birds aggregate at cage fish farms attracted by caged and associated wild fish. Spatio-temporal variability of such birds was studied for a year through seasonal visual counts at eight farms in the western Mediterranean. Correlation with farm and location descriptors was assessed. Considerable spatio-temporal variability in fish-eating bird density and assemblage structure was observed among farms and seasons. Bird density increased from autumn to winter, with the great cormorant being the most abundant species, also accounting largely for differences among farms. Grey heron and little egret were also numerous at certain farms during the coldest seasons. Cattle egret was only observed at one farm. No shags were observed during winter. During spring and summer, bird density decreased markedly and only shags and little egrets were observed at only a few farms. Season and distance from farms to bird breeding/wintering grounds helped to explain some of the spatio-temporal variability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Sensitivity of temporal heart rate variability in Poincaré plot to changes in parasympathetic nervous system activity.

    PubMed

    Karmakar, Chandan K; Khandoker, Ahsan H; Voss, Andreas; Palaniswami, Marimuthu

    2011-03-03

    A novel descriptor (Complex Correlation Measure (CCM)) for measuring the variability in the temporal structure of Poincaré plot has been developed to characterize or distinguish between Poincaré plots with similar shapes. This study was designed to assess the changes in temporal structure of the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and scopolamine administration in healthy human subjects. CCM quantifies the point-to-point variation of the signal rather than gross description of the Poincaré plot. The physiological relevance of CCM was demonstrated by comparing the changes in CCM values with autonomic perturbation during all phases of the experiment. The sensitivities of short term variability (SD1), long term variability (SD2) and variability in temporal structure (CCM) were analyzed by changing the temporal structure by shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used to show CCM as a measure of changes in temporal structure rather than random noise and sensitivity of CCM with changes in parasympathetic activity. CCM was found to be most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. The values of all descriptors decreased with decrease in parasympathetic activity during atropine infusion and 70° head-up tilt phase. In contrast, values of all descriptors increased with increase in parasympathetic activity during scopolamine administration. The concordant reduction and enhancement in CCM values with parasympathetic activity indicates that the temporal variability of Poincaré plot is modulated by the parasympathetic activity which correlates with changes in CCM values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.

  19. An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum) Collected along an Urban Gradient

    PubMed Central

    Bragg, Leslie M.; Tetreault, Gerald R.; Bahamonde, Paulina A.; Tanna, Rajiv N.; Bennett, Charles J.; McMaster, Mark E.; Servos, Mark R.

    2016-01-01

    Municipal wastewater effluent (MWWE) and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum) were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals), measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured. PMID:27776151

  20. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.

    PubMed

    Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John

    2011-01-01

    In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    NASA Astrophysics Data System (ADS)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  2. A Production Function Approach to Regional Environmental Economic Assessments

    EPA Science Inventory

    Regional-scale environmental assessments require integrating many available types of data having inconsistent spatial or temporal scales. Moreover, the relationships among the environmental variables in the assessment tend to be poorly understood, a situation made even more compl...

  3. Temporal and spatial variation in allocating annual traffic activity across an urban region and implications for air quality assessments

    PubMed Central

    Batterman, Stuart

    2015-01-01

    Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671

  4. Evaluating spatial and temporal variability in growth and mortality for recreational fisheries with limited catch data

    USGS Publications Warehouse

    Li, Yan; Wagner, Tyler; Jiao, Yan; Lorantas, Robert M.; Murphy, Cheryl

    2018-01-01

    Understanding the spatial and temporal variability in life-history traits among populations is essential for the management of recreational fisheries. However, valuable freshwater recreational fish species often suffer from a lack of catch information. In this study, we demonstrated the use of an approach to estimate the spatial and temporal variability in growth and mortality in the absence of catch data and apply the method to riverine smallmouth bass (Micropterus dolomieu) populations in Pennsylvania, USA. Our approach included a growth analysis and a length-based analysis that estimates mortality. Using a hierarchical Bayesian approach, we examined spatial variability in growth and mortality by assuming parameters vary spatially but remain constant over time and temporal variability by assuming parameters vary spatially and temporally. The estimated growth and mortality of smallmouth bass showed substantial variability over time and across rivers. We explored the relationships of the estimated growth and mortality with spring water temperature and spring flow. Growth rate was likely to be positively correlated with these two factors, while young mortality was likely to be positively correlated with spring flow. The spatially and temporally varying growth and mortality suggest that smallmouth bass populations across rivers may respond differently to management plans and disturbance such as environmental contamination and land-use change. The analytical approach can be extended to other freshwater recreational species that also lack of catch data. The approach could also be useful in developing population assessments with erroneous catch data or be used as a model sensitivity scenario to verify traditional models even when catch data are available.

  5. Spectral and Temporal Laser Fluorescence Analysis Such as for Natural Aquatic Environments

    NASA Technical Reports Server (NTRS)

    Chekalyuk, Alexander (Inventor)

    2015-01-01

    An Advanced Laser Fluorometer (ALF) can combine spectrally and temporally resolved measurements of laser-stimulated emission (LSE) for characterization of dissolved and particulate matter, including fluorescence constituents, in liquids. Spectral deconvolution (SDC) analysis of LSE spectral measurements can accurately retrieve information about individual fluorescent bands, such as can be attributed to chlorophyll-a (Chl-a), phycobiliprotein (PBP) pigments, or chromophoric dissolved organic matter (CDOM), among others. Improved physiological assessments of photosynthesizing organisms can use SDC analysis and temporal LSE measurements to assess variable fluorescence corrected for SDC-retrieved background fluorescence. Fluorescence assessments of Chl-a concentration based on LSE spectral measurements can be improved using photo-physiological information from temporal measurements. Quantitative assessments of PBP pigments, CDOM, and other fluorescent constituents, as well as basic structural characterizations of photosynthesizing populations, can be performed using SDC analysis of LSE spectral measurements.

  6. A Production Function Approach to Regional Environmental-Economic Assessments

    EPA Science Inventory

    Numerous difficulties await those creating regional-scale environmental assessments, from data having inconsistent spatial or temporal scales to poorly understood environmental processes and indicators. Including socioeconomic variables further complicates the situation. In place...

  7. Examining the relationship between motor assessments and handwriting consistency in children with and without probable developmental coordination disorder.

    PubMed

    Bo, Jin; Colbert, Alison; Lee, Chi-Mei; Schaffert, Jeffrey; Oswald, Kaitlin; Neill, Rebecca

    2014-09-01

    Children with Developmental Coordination Disorder (DCD) often experience difficulties in handwriting. The current study examined the relationships between three motor assessments and the spatial and temporal consistency of handwriting. Twelve children with probable DCD and 29 children from 7 to 12 years who were typically developing wrote the lowercase letters "e" and "l" in cursive and printed forms repetitively on a digitizing tablet. Three behavioral assessments, including the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI), the Minnesota Handwriting Assessment (MHA) and the Movement Assessment Battery for Children (MABC), were administered. Children with probable DCD had low scores on the VMI, MABC and MHA and showed high temporal, not spatial, variability in the letter-writing task. Their MABC scores related to temporal consistency in all handwriting conditions, and the Legibility scores in their MHA correlated with temporal consistency in cursive "e" and printed "l". It appears that children with probable DCD have prominent difficulties on the temporal aspect of handwriting. While the MHA is a good product-oriented assessment for measuring handwriting deficits, the MABC shows promise as a good assessment for capturing the temporal process of handwriting in children with DCD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Vegetation resurvey is robust to plot location uncertainty

    PubMed Central

    Kopecký, Martin; Macek, Martin

    2017-01-01

    Aim Resurveys of historical vegetation plots are increasingly used for the assessment of decadal changes in plant species diversity and composition. However, historical plots are usually relocated only approximately. This potentially inflates temporal changes and undermines results. Location Temperate deciduous forests in Central Europe. Methods To explore if robust conclusions can be drawn from resurvey studies despite location uncertainty, we compared temporal changes in species richness, frequency, composition and compositional heterogeneity between exactly and approximately relocated plots. We hypothesized that compositional changes should be lower and changes in species richness should be less variable on exactly relocated plots, because pseudo-turnover inflates temporal changes on approximately relocated plots. Results Temporal changes in species richness were not more variable and temporal changes in species composition and compositional heterogeneity were not higher on approximately relocated plots. Moreover, the frequency of individual species changed similarly on both plot types. Main conclusions The resurvey of historical vegetation plots is robust to uncertainty in original plot location and, when done properly, provides reliable evidence of decadal changes in plant communities. This provides important background for other resurvey studies and opens up the possibility for large-scale assessments of plant community change. PMID:28503083

  9. Environmental stochasticity controls soil erosion variability

    PubMed Central

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  10. Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy.

    PubMed

    Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T

    2012-01-01

    Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants.

  11. Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy

    PubMed Central

    Ehsan, Sheeba; Baker, Gus A.; Rogers, Timothy T.

    2012-01-01

    Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants. PMID:22287382

  12. Quantifying spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Owe, M.; Ormsby, J. P.; Chang, A. T. C.; Wang, J. R.; Goward, S. N.; Golus, R. E.

    1987-01-01

    Spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains are quantified in terms of vegetation and soil wetness. The brightness temperatures (TB) are the daytime observations from April to October for five years (1979 to 1983) obtained by the Nimbus-7 Scanning Multichannel Microwave Radiometer at 6.6 GHz frequency, horizontal polarization. The spatial and temporal variabilities of vegetation are assessed using visible and near-infrared observations by the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR), while an Antecedent Precipitation Index (API) model is used for soil wetness. The API model was able to account for more than 50 percent of the observed variability in TB, although linear correlations between TB and API were generally significant at the 1 percent level. The slope of the linear regression between TB and API is found to correlate linearly with an index for vegetation density derived from AVHRR data.

  13. Impacts of climate on shrubland fuels and fire behavior in the Owyhee Basin, Idaho

    NASA Astrophysics Data System (ADS)

    Vogelmann, J. E.; Shi, H.; Hawbaker, T.; Li, Z.

    2013-12-01

    There is evidence that wildland fire is increasing as a function of global change. However, fire activity is spatially, temporally and ecologically variable across the globe, and our understanding of fire risk and behavior in many ecosystems is limited. After a series of severe fire seasons that occurred during the late 1990's in the western United States, the LANDFIRE program was developed with the goals of providing the fire community with objective spatial fuel data for assessing wildland fire risk. Even with access to the data provided by LANDFIRE, assessing fire behavior in shrublands in sagebrush-dominated ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation, the variable influence of understory vegetation including invasive species (e.g. cheatgrass), and prior fire history events. Climate is undoubtedly playing a major role, affecting the intra- and inter-annual variability in vegetation conditions, which in turn impacts fire behavior. In order to further our understanding of climate-vegetation-fire interactions in shrublands, we initiated a study in the Owyhee Basin, which is located in southwestern Idaho and adjacent Nevada. Our goals include: (1) assessing the relationship between climate and vegetation condition, (2) quantifying the range of temporal variability in grassland and shrubland fuel loads, (3) identifying methods to operationally map the variability in fuel loads, and (4) assessing how the variability in fuel loads affect fire spread simulations. To address these goals, we are using a wide variety of geospatial data, including remotely sensed time-series data sets derived from MODIS and Landsat, and climate data from DAYMET and PRISM. Remotely-sensed information is used to characterize climate-induced temporal variability in primary productivity in the Basin, where fire spread can be extensive after senescence when dry vegetation is added to dead fuel loads. Gridded climate data indicate that this area has become warmer and dryer over the previous three decades. We have also observed that fires are especially prevalent in areas that have high Normalized Difference Vegetation Index (NDVI) values in the spring, followed by low NDVI in the summer. At present we are concentrating on the temporally rich MODIS data to map spatial and temporal variability in live fuel loads. To translate NDVI to biomass, we are scaling the range of biomass values using data from the literature. We assume that departure from maximum NDVI, typically occurring during spring, to NDVI values later in the season are related to the proportion of live biomass transferred to dead biomass, which burns more readily than green biomass. Using the FARSITE fire spread model, our initial simulations show that the conversion from live herbaceous fuel to dead fuel increases the burn area by 30% compared with using default static fuel parameters. This indicates that current fuel models underestimate fire spread and areas that could potentially burn. Our study also indicates that a combined remote sensing product with good temporal resolution (MODIS) and spatial resolution (Landsat) is necessary to provide accurate information on the fuel dynamics in shrublands.

  14. HYPOXIA-INDUCED GROWTH LIMITATION OF JUVENILE FISHES IN AN ESTUARINE NURSERY: ASSESSMENT OF SMALL-SCALE TEMPORAL DYNAMICS USING RNA:DNA

    EPA Science Inventory

    The ratio of RNA to DNA (RNA:DNA) in white muscle tissue of juvenile summer flounder (Paralichthys dentatus) and weakfish (Cynoscion regalis) was used as a proxy for recent growth rate in an estuarine nursery. Variability in RNA:DNA was examined relative to temporal changes in te...

  15. Spatio-temporal hierarchical modeling of rates and variability of Holocene sea-level changes in the western North Atlantic and the Caribbean

    NASA Astrophysics Data System (ADS)

    Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.

    2016-12-01

    Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).

  16. Interpretation of tropospheric ozone variability in data with different vertical and temporal resolution

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Disterhoft, P.; Johnson, B. J.; Rieder, H. E.; Manney, G. L.; Daffer, W.

    2012-12-01

    This work attributes tropospheric ozone variability derived from the ground-based Dobson and Brewer Umkehr measurements and from ozone sonde data to local sources and transport. It assesses capability and limitations in both types of measurements that are often used to analyze long- and short-term variability in tropospheric ozone time series. We will address the natural and instrument-related contribution to the variability found in both Umkehr and sonde data. Validation of Umkehr methods is often done by intercomparisons against independent ozone measuring techniques such as ozone sounding. We will use ozone-sounding in its original and AK-smoothed vertical profiles for assessment of ozone inter-annual variability over Boulder, CO. We will discuss possible reasons for differences between different ozone measuring techniques and its effects on the derived ozone trends. Next to standard evaluation techniques we utilize a STL-decomposition method to address temporal variability and trends in the Boulder Umkehr data. Further, we apply a statistical modeling approach to the ozone data set to attribute ozone variability to individual driving forces associated with natural and anthropogenic causes. To this aim we follow earlier work applying a backward selection method (i.e., a stepwise elimination procedure out of a set of total 44 explanatory variables) to determine those explanatory variables which contribute most significantly to the observed variability. We will present also some results associated with completeness (sampling rate) of the existing data sets. We will also use MERRA (Modern-Era Retrospective analysis for Research and Applications) re-analysis results selected for Boulder location as a transfer function in understanding of the effects that the temporal sampling and vertical resolution bring into trend and ozone variability analysis. Analyzing intra-annual variability in ozone measurements over Boulder, CO, in relation to the upper tropospheric subtropical and polar jets, we will address the stratospheric and tropospheric intrusions in the middle latitude troposphere ozone field.

  17. On the role of "internal variability" on soil erosion assessment

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  18. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    PubMed

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  19. Investigating local controls on temporal stability of soil water content using sensor network data and an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2013-12-01

    Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.

  20. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe.

    PubMed

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.

  1. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe

    PubMed Central

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044

  2. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters.

    PubMed

    Son, Yeongkwon; Osornio-Vargas, Álvaro R; O'Neill, Marie S; Hystad, Perry; Texcalac-Sangrador, José L; Ohman-Strickland, Pamela; Meng, Qingyu; Schwander, Stephan

    2018-05-17

    The Mexico City Metropolitan Area (MCMA) is one of the largest and most populated urban environments in the world and experiences high air pollution levels. To develop models that estimate pollutant concentrations at fine spatiotemporal scales and provide improved air pollution exposure assessments for health studies in Mexico City. We developed finer spatiotemporal land use regression (LUR) models for PM 2.5 , PM 10 , O 3 , NO 2 , CO and SO 2 using mixed effect models with the Least Absolute Shrinkage and Selection Operator (LASSO). Hourly traffic density was included as a temporal variable besides meteorological and holiday variables. Models of hourly, daily, monthly, 6-monthly and annual averages were developed and evaluated using traditional and novel indices. The developed spatiotemporal LUR models yielded predicted concentrations with good spatial and temporal agreements with measured pollutant levels except for the hourly PM 2.5 , PM 10 and SO 2 . Most of the LUR models met performance goals based on the standardized indices. LUR models with temporal scales greater than one hour were successfully developed using mixed effect models with LASSO and showed superior model performance compared to earlier LUR models, especially for time scales of a day or longer. The newly developed LUR models will be further refined with ongoing Mexico City air pollution sampling campaigns to improve personal exposure assessments. Copyright © 2018. Published by Elsevier B.V.

  3. Hydrothermal assessment of temporal variability in seedbed microclimate

    Treesearch

    Stuart P. Hardegree; Corey A. Moffet; Gerald N. Flerchinger; Jaepil Cho; Bruce A. Roundy; Thomas A. Jones; Jeremy J. James; Patrick E. Clark; Frederick B. Pierson

    2013-01-01

    The microclimatic requirements for successful seedling establishment are much more restrictive than those required for adult plant survival. The purpose of the current study was to use hydrothermal germination models and a soil energy and water flux model to evaluate intra- and interannual variability in seedbed microclimate relative to potential germination response...

  4. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study.

    PubMed

    Kheirbek, Iyad; Johnson, Sarah; Ross, Zev; Pezeshki, Grant; Ito, Kazuhiko; Eisl, Holger; Matte, Thomas

    2012-07-31

    Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Traffic and point source emissions cause substantial variation in street-level exposures to common toxic volatile organic compounds in New York City. Land-use regression models were successfully developed for benzene, formaldehyde, and total BTEX using spatial indicators of on-road vehicle emissions and emissions from stationary sources. These estimates will improve the understanding of health effects of individual pollutants in complex urban pollutant mixtures and inform local air quality improvement efforts that reduce disparities in exposure.

  5. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  6. Long-term integrating samplers for indoor air and sub slab soil gas at VI sites

    EPA Science Inventory

    Vapor intrusion (VI) site assessments are plagued by substantial spatial and temporal variability that makes exposure and risk assessment difficult. Most risk-based decision making for volatile organic compound (VOC) exposure in the indoor environment is based on health benchmark...

  7. Extent of resection in temporal lobectomy for epilepsy. I. Interobserver analysis and correlation with seizure outcome.

    PubMed

    Awad, I A; Katz, A; Hahn, J F; Kong, A K; Ahl, J; Lüders, H

    1989-01-01

    The extent of resection was assessed in 45 temporal lobectomies for medically intractable epilepsy with mapped temporal lobe foci. Postoperative magnetic resonance imaging (MRI) in the coronal plane was used to quantify the extent of resection of superior lateral, inferior lateral, basal, and medial structures, including the amygdalohippocampal complex. A new 20-compartment model of the temporal lobe was used for this assessment. Blinded interobserver variability was minimal. Intraoperative measurements and maps routinely overestimated the actual extent of resection, especially of medial structures. One year after surgery, 70% of patients remained seizure-free (except for auras). Seizure-free outcome was accomplished despite varying degrees of resection, but was more likely achieved with more extensive resections in all compartments. Among patients with mesiobasal foci, seizure-free outcome correlated significantly with extent of resection of amygdalohippocampal complex. We conclude that assessment of extent of resection by postoperative MRI provides an objective basis of evaluating outcome after temporal lobectomy. It allows a rational approach to understanding of operative failures and is potentially useful in comparing efficacy of various surgical approaches.

  8. Permutation entropy analysis of heart rate variability for the assessment of cardiovascular autonomic neuropathy in type 1 diabetes mellitus.

    PubMed

    Carricarte Naranjo, Claudia; Sanchez-Rodriguez, Lazaro M; Brown Martínez, Marta; Estévez Báez, Mario; Machado García, Andrés

    2017-07-01

    Heart rate variability (HRV) analysis is a relevant tool for the diagnosis of cardiovascular autonomic neuropathy (CAN). To our knowledge, no previous investigation on CAN has assessed the complexity of HRV from an ordinal perspective. Therefore, the aim of this work is to explore the potential of permutation entropy (PE) analysis of HRV complexity for the assessment of CAN. For this purpose, we performed a short-term PE analysis of HRV in healthy subjects and type 1 diabetes mellitus patients, including patients with CAN. Standard HRV indicators were also calculated in the control group. A discriminant analysis was used to select the variables combination with best discriminative power between control and CAN patients groups, as well as for classifying cases. We found that for some specific temporal scales, PE indicators were significantly lower in CAN patients than those calculated for controls. In such cases, there were ordinal patterns with high probabilities of occurrence, while others were hardly found. We posit this behavior occurs due to a decrease of HRV complexity in the diseased system. Discriminant functions based on PE measures or probabilities of occurrence of ordinal patterns provided an average of 75% and 96% classification accuracy. Correlations of PE and HRV measures showed to depend only on temporal scale, regardless of pattern length. PE analysis at some specific temporal scales, seem to provide additional information to that obtained with traditional HRV methods. We concluded that PE analysis of HRV is a promising method for the assessment of CAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Integrating data types to enhance shoreline change assessments

    NASA Astrophysics Data System (ADS)

    Long, J.; Henderson, R.; Plant, N. G.; Nelson, P. R.

    2016-12-01

    Shorelines represent the variable boundary between terrestrial and marine environments. Assessment of geographic and temporal variability in shoreline position and related variability in shoreline change rates are an important part of studies and applications related to impacts from sea-level rise and storms. The results from these assessments are used to quantify future ecosystem services and coastal resilience and guide selection of appropriate coastal restoration and protection designs. But existing assessments typically fail to incorporate all available shoreline observations because they are derived from multiple data types and have different or unknown biases and uncertainties. Shoreline-change research and assessments often focus on either the long-term trajectory using sparse data over multiple decades or shorter-term evolution using data collected more frequently but over a shorter period of time. The combination of data collected with significantly different temporal resolution is not often considered. Also, differences in the definition of the shoreline metric itself can occur, whether using a single or multiple data source(s), due to variation the signal being detected in the data (e.g. instantaneous land/water interface, swash zone, wrack line, or topographic contours). Previous studies have not explored whether more robust shoreline change assessments are possible if all available data are utilized and all uncertainties are considered. In this study, we test the hypothesis that incorporating all available shoreline data will lead to both improved historical assessments and enhance the predictive capability of shoreline-change forecasts. Using over 250 observations of shoreline position at Dauphin Island, Alabama over the last century, we compare shoreline-change rates derived from individual data sources (airborne lidar, satellite, aerial photographs) with an assessment using the combination of all available data. Biases or simple uncertainties in the shoreline metric from different data types and varying temporal/spatial resolution of the data are examined. As part of this test, we also demonstrate application of data assimilation techniques to predict shoreline position by accurately including the uncertainty in each type of data.

  10. An assessment of temporal effect on extreme rainfall estimates

    NASA Astrophysics Data System (ADS)

    Das, Samiran; Zhu, Dehua; Chi-Han, Cheng

    2018-06-01

    This study assesses the temporal behaviour in terms of inter-decadal variability of extreme daily rainfall of stated return period relevant for hydrologic risk analysis using a novel regional parametric approach. The assessment is carried out based on annual maximum daily rainfall series of 180 meteorological stations of Yangtze River Basin over a 50-year period (1961-2010). The outcomes of the analysis reveal that while there were effects present indicating higher quantile values when estimated from data of the 1990s, it is found not to be noteworthy to exclude the data of any decade from the extreme rainfall estimation process for hydrologic risk analysis.

  11. Assessing Spatial and Temporal Variability of VOCs and PM-Components in Outdoor Air during the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Exposure models for air pollutants often adjust for effects of the physical environment (e.g., season, urban vs. rural populations) in order to improve exposure and risk predictions. Yet attempts are seldom made to attribute variability in observed outdoor air measurements to spe...

  12. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    PubMed Central

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-01-01

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878

  13. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    PubMed

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  14. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    PubMed

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  15. Water availability as a driver of spatial and temporal variability in vegetation in the La Mancha plain (Spain): Implications for the land-surface energy, water and carbon budget

    NASA Astrophysics Data System (ADS)

    Los, Sietse

    2017-04-01

    Vegetation is water limited in large areas of Spain and therefore a close link exists between vegetation greenness observed from satellite and moisture availability. Here we exploit this link to infer spatial and temporal variability in moisture from MODIS NDVI data and thermal data. Discrepancies in the precipitation - vegetation relationship indicate areas with an alternative supply of water (i.e. not rainfall), this can be natural where moisture is supplied by upwelling groundwater, or can be artificial where crops are irrigated. As a result spatial and temporal variability in vegetation in the La Mancha Plain appears closely linked to topography, geology, rainfall and land use. Crop land shows large variability in year-to-year vegetation greenness; for some areas this variability is linked to variability in rainfall but in other cases this variability is linked to irrigation. The differences in irrigation treatment within one plant functional type, in this case crops, will lead to errors in land surface models when ignored. The magnitude of these effects on the energy, carbon and water balance are assessed at the scale of 250 m to 200 km. Estimating the water balance correctly is of particular important since in some areas in Spain more water is used for irrigation than is supplemented by rainfall.

  16. Hydrometeorological daily recharge assessment model (DREAM) for the Western Mountain Aquifer, Israel: Model application and effects of temporal patterns

    NASA Astrophysics Data System (ADS)

    Sheffer, N. A.; Dafny, E.; Gvirtzman, H.; Navon, S.; Frumkin, A.; Morin, E.

    2010-05-01

    Recharge is a critical issue for water management. Recharge assessment and the factors affecting recharge are of scientific and practical importance. The purpose of this study was to develop a daily recharge assessment model (DREAM) on the basis of a water balance principle with input from conventional and generally available precipitation and evaporation data and demonstrate the application of this model to recharge estimation in the Western Mountain Aquifer (WMA) in Israel. The WMA (area 13,000 km2) is a karst aquifer that supplies 360-400 Mm3 yr-1 of freshwater, which constitutes 20% of Israel's freshwater and is highly vulnerable to climate variability and change. DREAM was linked to a groundwater flow model (FEFLOW) to simulate monthly hydraulic heads and spring flows. The models were calibrated for 1987-2002 and validated for 2003-2007, yielding high agreement between calculated and measured values (R2 = 0.95; relative root-mean-square error = 4.8%; relative bias = 1.04). DREAM allows insights into the effect of intra-annual precipitation distribution factors on recharge. Although annual precipitation amount explains ˜70% of the variability in simulated recharge, analyses with DREAM indicate that the rainy season length is an important factor controlling recharge. Years with similar annual precipitation produce different recharge values as a result of temporal distribution throughout the rainy season. An experiment with a synthetic data set exhibits similar results, explaining ˜90% of the recharge variability. DREAM represents significant improvement over previous recharge estimation techniques in this region by providing near-real-time recharge estimates that can be used to predict the impact of climate variability on groundwater resources at high temporal and spatial resolution.

  17. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    NASA Astrophysics Data System (ADS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  18. Time-Lapse Geophysical Measurements targeting Spatial and Temporal Variability in Biogenic Gas Production from Peat Soils in a Hydrologically Controlled Wetland in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Wright, W. J.; Shahan, T.; Sharp, N.; Comas, X.

    2015-12-01

    Peat soils are known to release globally significant amounts of methane (CH4) and carbon dioxide (CO2) to the atmosphere. However, uncertainties still remain regarding the spatio-temporal distribution of gas accumulations and triggering mechanisms of gas releasing events. Furthermore, most research on peatland gas dynamics has traditionally been focused on high latitude peatlands. Therefore, understanding gas dynamics in low-latitude peatlands (e.g. the Florida Everglades) is key to global climate research. Recent studies in the Everglades have demonstrated that biogenic gas flux values may vary when considering different temporal and spatial scales of measurements. The work presented here targets spatial variability in gas production and release at the plot scale in an approximately 85 m2 area, and targets temporal variability with data collected during the spring months of two different years. This study is located in the Loxahatchee Impoundment Landscape Assessment (LILA), a hydrologically controlled, landscape scale (30 Ha) model of the Florida Everglades. Ground penetrating radar (GPR) has been used in the past to investigate biogenic gas dynamics in peat soils, and is used in this study to monitor changes of in situ gas storage. Each year, a grid of GPR profiles was collected to image changes in gas distribution in 2d on a weekly basis, and several flux chambers outfitted with time-lapse cameras captured high resolution (hourly) gas flux measurements inside the GPR grid. Combining these methods allows us to use a mass balance approach to estimate spatial variability in gas production rates, and capture temporal variability in gas flux rates.

  19. Spatial and temporal analysis of drought variability at several time scales in Syria during 1961-2012

    NASA Astrophysics Data System (ADS)

    Mathbout, Shifa; Lopez-Bustins, Joan A.; Martin-Vide, Javier; Bech, Joan; Rodrigo, Fernando S.

    2018-02-01

    This paper analyses the observed spatiotemporal characteristics of drought phenomenon in Syria using the Standardised Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI). Temporal variability of drought is calculated for various time scales (3, 6, 9, 12, and 24 months) for 20 weather stations over the 1961-2012 period. The spatial patterns of drought were identified by applying a Principal Component Analysis (PCA) to the SPI and SPEI values at different time scales. The results revealed three heterogeneous and spatially well-defined regions with different temporal evolution of droughts: 1) Northeastern (inland desert); 2) Southern (mountainous landscape); 3) Northwestern (Mediterranean coast). The evolutionary characteristics of drought during 1961-2012 were analysed including spatial and temporal variability of SPI and SPEI, the frequency distribution, and the drought duration. The results of the non-parametric Mann-Kendall test applied to the SPI and SPEI series indicate prevailing significant negative trends (drought) at all stations. Both drought indices have been correlated both on spatial and temporal scales and they are highly comparable, especially, over a 12 and 24 month accumulation period. We concluded that the temporal and spatial characteristics of the SPI and SPEI can be used for developing a drought intensity - areal extent - and frequency curve that assesses the variability of regional droughts in Syria. The analysis of both indices suggests that all three regions had a severe drought in the 1990s, which had never been observed before in the country. Furthermore, the 2007-2010 drought was the driest period in the instrumental record, happening just before the onset of the recent conflict in Syria.

  20. Investigating phenology of larval fishes in St. Louis River ...

    EPA Pesticide Factsheets

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages across different habitats and at multiple temporal scales. To optimize early detection monitoring we need to understand temporal and spatial patterns of larval fishes related to their development and dispersion, as well as the environmental factors that influence them. In 2016 we designed an experiment to assess the phenological variability in larval fish abundance and assemblages amongst shallow water habitats. Specifically, we sought to contrast different thermal environments and turbidity levels, as well as assess the importance of vegetation in these habitats. To evaluate phenological differences we sampled larval fish bi-weekly at nine locations from mid-May to mid-July. Sampling locations were split between upper estuary and lower estuary to contrast river versus seiche influenced habitats. To assess differences in thermal environments, temperature was monitored every 15 minutes at each sampling location throughout the study, beginning in early April. Our design also included sampling at both vegetated (or pre-vegetated) and non-vegetated stations within each sampling location throughout the study to assess the importance of this habitat variable. Hydroacoustic surveys (Biosonics) were

  1. Temporal variability patterns in solar radiation estimations

    NASA Astrophysics Data System (ADS)

    Vindel, José M.; Navarro, Ana A.; Valenzuela, Rita X.; Zarzalejo, Luis F.

    2016-06-01

    In this work, solar radiation estimations obtained from a satellite and a numerical weather prediction model in mainland Spain have been compared. Similar comparisons have been formerly carried out, but in this case, the methodology used is different: the temporal variability of both sources of estimation has been compared with the annual evolution of the radiation associated to the different study climate zones. The methodology is based on obtaining behavior patterns, using a Principal Component Analysis, following the annual evolution of solar radiation estimations. Indeed, the adjustment degree to these patterns in each point (assessed from maps of correlation) may be associated with the annual radiation variation (assessed from the interquartile range), which is associated, in turn, to different climate zones. In addition, the goodness of each estimation source has been assessed comparing it with data obtained from the radiation measurements in ground by pyranometers. For the study, radiation data from Satellite Application Facilities and data corresponding to the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts have been used.

  2. Observing and modeling dynamics in terrestrial gross primary productivity and phenology from remote sensing: An assessment using in-situ measurements

    NASA Astrophysics Data System (ADS)

    Verma, Manish K.

    Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.

  3. Why risk managers need information about spatio-temporal variability of natural hazards. Examples from practice

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas

    2013-04-01

    Integrated risk management consists of risk prevention, early warning, intervention during an event and restoration/re-construction after an event. The prevention phase consists of land use planning measures with a long-term time horizon and of structural measures that sometimes have a lifespan of more than 30-50 years. In this case, it is important to analyse the long-term evolvement of natural risks due to climate changes or land use changes. Besides of this, the spatial and temporal variability of a natural hazard process during the course of an event is also important. The shift from "static" hazard and risk assessment towards a "dynamic" assessment offers benefits for improving the intervention phase in risk management. This contribution describes some examples and points out the benefits of this shift for risk management. One example is the variable disposition of small alpine catchments for runoff and its relevance for early warning. The disposition for runoff depends on the actual status of environmental variables such as soil moisture and the snowpack characteristics. A feasibility study showed how the monitoring of soil moisture and the status of the snowpack can be incorporated into a rule base for describing the temporal variability of the disposition for high runoff in alpine catchments. The study showed that this information about the system state of alpine catchments can be used to improve the assessment of the consequences of a weather forecast for risk management. Another example is the use of snowpack and weather monitoring and traffic intensity measurements for avalanche risk management on alpine roads. Here, the information about the spatio-temporal variability of the snow avalanches and the presence of vehicles can be used for improving the procedures for road closure and re-opening. Another example is the preparation of intervention plans for fire brigades and other relief units during urban floods. The simulation of the temporal evolvement of a single flood event (time horizon of 0-24 hours) provides information for the elaboration of the intervention tactic. The following questions can be answered only by knowing the temporal and spatial evolvement during an event itself: Which intervention priorities have to be set if the resources of the relief units are limited? Which early interventions could be turn out to be unhelpful because in a later step the object to be protected will be flooded anyway? What is the time available for setting up object protection measures and other flood protection measures? The most important factor to implement the theory in practice is the focus on the interlinkages between the simulation of all possible scenarios in advance (scenario techniques, analysing the time-steps in flood simulation), the monitoring system (now-casting, real-time-data), the scenarios of intervention measures and their interdependency with the hazard scenarios. The interlinkages can be set up and described with the expert system approach.

  4. Using natural range of variation to set decision thresholds: a case study for great plains grasslands

    USGS Publications Warehouse

    Symstad, Amy J.; Jonas, Jayne L.; Edited by Guntenspergen, Glenn R.

    2014-01-01

    Natural range of variation (NRV) may be used to establish decision thresholds or action assessment points when ecological thresholds are either unknown or do not exist for attributes of interest in a managed ecosystem. The process for estimating NRV involves identifying spatial and temporal scales that adequately capture the heterogeneity of the ecosystem; compiling data for the attributes of interest via study of historic records, analysis and interpretation of proxy records, modeling, space-for-time substitutions, or analysis of long-term monitoring data; and quantifying the NRV from those data. At least 19 National Park Service (NPS) units in North America’s Great Plains are monitoring plant species richness and evenness as indicators of vegetation integrity in native grasslands, but little information on natural, temporal variability of these indicators is available. In this case study, we use six long-term vegetation monitoring datasets to quantify the temporal variability of these attributes in reference conditions for a variety of Great Plains grassland types, and then illustrate the implications of using different NRVs based on these quantities for setting management decision thresholds. Temporal variability of richness (as measured by the coefficient of variation, CV) is fairly consistent across the wide variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass sand savanna (CV 0.20–0.45) and generally less than that of production at the same sites. Temporal variability of evenness spans a greater range of CV than richness, and it is greater than that of production in some sites but less in other sites. This natural temporal variability may mask undesirable changes in Great Plains grasslands vegetation. Consequently, we suggest that managers consider using a relatively narrow NRV (interquartile range of all richness or evenness values observed in reference conditions) for designating a surveillance threshold, at which greater attention to the situation would be paid, and a broader NRV for designating management thresholds, at which action would be instigated.

  5. Application of Climate Assessment Tool (CAT) to estimate climate variability impacts on nutrient loading from local watersheds

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Gary Feng; Theodor D. Leininger; Yongshan Wan; Padmanava Dash

    2018-01-01

    A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and...

  6. New insights on historic droughts in the UK: Analysis of 200 river flow reconstructions for 1890-2015

    NASA Astrophysics Data System (ADS)

    Parry, Simon; Barker, Lucy; Hannaford, Jamie; Prudhomme, Christel; Smith, Katie; Svensson, Cecilia; Tanguy, Maliko

    2017-04-01

    Hydrological droughts of the last 50 years in the UK have been well characterised owing to a relatively dense hydrometric network. Prior to this, observed river flow data were generally limited in their spatial coverage and often subject to considerable uncertainty. Whilst qualitative records indicate the occurrence of severe droughts in the late 19th and early 20th centuries, including scenarios which may cause substantial impacts to contemporary water supply systems, existing observations are not sufficient to describe their spatio-temporal characteristics. As such, insights on drought in the UK are constrained and a range of stakeholders including water companies and regulators would benefit from a more thorough assessment of historic drought characteristics and their variability. The multi-disciplinary Historic Droughts project aims to rigorously characterise droughts in the UK to inform improved drought management and communication. Driven by rainfall and potential evapotranspiration data that have been extended using recovered records, lumped catchment hydrological models are used to reconstruct daily river flows from 1890 to 2015 for more than 200 catchments across the UK. The reconstructions are derived within a state-of-the-art modelling framework which allows a comprehensive assessment of model, structure and parameter uncertainty. Standardised and threshold-based indicators are applied to the river flow reconstructions to identify and characterise hydrological drought events. The reconstructions are most beneficial in comprehensively describing well known but poorly quantified late 19th and early 20th century droughts, placing the spatial and temporal footprint of these often extreme events within the context of modern episodes for the first time. Oscillations between drought-rich and drought-poor periods are shown not to be limited to the recent observational past, providing an increased sample size of events against which to test a range of airflow and oceanic index patterns as potential drivers of streamflow drought. The quantification of changes over time in both the mean and the variability of drought frequency, duration, severity and termination benefits from the temporal extent of the river flow reconstructions, assessing the temporal variability of drought over more prolonged timescales than previous drought trend studies. When considered alongside complimentary reconstructions of rainfall and groundwater levels, the characteristics of propagation from meteorological to hydrological drought are analysed to an extent not previously possible. The unprecedented spatio-temporal coverage of the river flow reconstructions has yielded important new insights on historic droughts in the UK. It is hoped that this more robust assessment of the historical variability of hydrological drought in the UK will underpin enhanced drought planning and management.

  7. Temporal Variability of Daily Personal Magnetic Field Exposure Metrics in Pregnant Women

    PubMed Central

    Lewis, Ryan C.; Evenson, Kelly R.; Savitz, David A.; Meeker, John D.

    2015-01-01

    Recent epidemiology studies of power-frequency magnetic fields and reproductive health have characterized exposures using data collected from personal exposure monitors over a single day, possibly resulting in exposure misclassification due to temporal variability in daily personal magnetic field exposure metrics, but relevant data in adults are limited. We assessed the temporal variability of daily central tendency (time-weighted average, median) and peak (upper percentiles, maximum) personal magnetic field exposure metrics over seven consecutive days in 100 pregnant women. When exposure was modeled as a continuous variable, central tendency metrics had substantial reliability, whereas peak metrics had fair (maximum) to moderate (upper percentiles) reliability. The predictive ability of a single day metric to accurately classify participants into exposure categories based on a weeklong metric depended on the selected exposure threshold, with sensitivity decreasing with increasing exposure threshold. Consistent with the continuous measures analysis, sensitivity was higher for central tendency metrics than for peak metrics. If there is interest in peak metrics, more than one day of measurement is needed over the window of disease susceptibility to minimize measurement error, but one day may be sufficient for central tendency metrics. PMID:24691007

  8. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    PubMed

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  9. Remotely Sensed Spatio-Temporal Variability of Snow Cover in Himalayan Region with Perspective of Climate Change

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Ojha, S.

    2017-12-01

    Climate change and its impact of water resource have gained tremendous attention among scientific committee, governments and other stakeholders since last couple of decades, especially in Himalayan region. In this study, we purpose remotely sensed measurements to monitor snow cover, both spatially and temporal, and assess climate change impact on water resource. The snow cover data from MODIS satellite (2000-2010) have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions, respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion.

  10. Spatio-temporal modelling for assessing air pollution in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Nicolis, Orietta; Camaño, Christian; Mařın, Julio C.; Sahu, Sujit K.

    2017-01-01

    In this work, we propose a space-time approach for studying the PM2.5 concentration in the city of Santiago de Chile. In particular, we apply the autoregressive hierarchical model proposed by [1] using the PM2.5 observations collected by a monitoring network as a response variable and numerical weather forecasts from the Weather Research and Forecasting (WRF) model as covariate together with spatial and temporal (periodic) components. The approach is able to provide short-term spatio-temporal predictions of PM2.5 concentrations on a fine spatial grid (at 1km × 1km horizontal resolution.)

  11. An innovative statistical approach for analysing non-continuous variables in environmental monitoring: assessing temporal trends of TBT pollution.

    PubMed

    Santos, José António; Galante-Oliveira, Susana; Barroso, Carlos

    2011-03-01

    The current work presents an innovative statistical approach to model ordinal variables in environmental monitoring studies. An ordinal variable has values that can only be compared as "less", "equal" or "greater" and it is not possible to have information about the size of the difference between two particular values. The example of ordinal variable under this study is the vas deferens sequence (VDS) used in imposex (superimposition of male sexual characters onto prosobranch females) field assessment programmes for monitoring tributyltin (TBT) pollution. The statistical methodology presented here is the ordered logit regression model. It assumes that the VDS is an ordinal variable whose values match up a process of imposex development that can be considered continuous in both biological and statistical senses and can be described by a latent non-observable continuous variable. This model was applied to the case study of Nucella lapillus imposex monitoring surveys conducted in the Portuguese coast between 2003 and 2008 to evaluate the temporal evolution of TBT pollution in this country. In order to produce more reliable conclusions, the proposed model includes covariates that may influence the imposex response besides TBT (e.g. the shell size). The model also provides an analysis of the environmental risk associated to TBT pollution by estimating the probability of the occurrence of females with VDS ≥ 2 in each year, according to OSPAR criteria. We consider that the proposed application of this statistical methodology has a great potential in environmental monitoring whenever there is the need to model variables that can only be assessed through an ordinal scale of values.

  12. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    NASA Astrophysics Data System (ADS)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  13. Complex, Dynamic Combination of Physical, Chemical and Nutritional Variables Controls Spatio-Temporal Variation of Sandy Beach Community Structure

    PubMed Central

    Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right. PMID:21858213

  14. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    PubMed

    Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right.

  15. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  16. Use of an allostatic neurotechnology by adolescents with postural orthostatic tachycardia syndrome (POTS) is associated with improvements in heart rate variability and changes in temporal lobe electrical activity.

    PubMed

    Fortunato, John E; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W; Pajewski, Nicholas M; Franco, Meghan E; Cook, Jared F; Shaltout, Hossam A; Tegeler, Charles H

    2016-03-01

    Autonomic dysregulation and heterogeneous symptoms characterize postural orthostatic tachycardia syndrome (POTS). This study evaluated the effect of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM(®)), a noninvasive, allostatic neurotechnology for relaxation and auto-calibration of neural oscillations, on heart rate variability, brain asymmetry, and autonomic symptoms, in adolescents with POTS. Seven subjects with POTS (three males, ages 15-18) underwent a median of 14 (10-16) HIRREM sessions over 13 (8-17) days. Autonomic function was assessed from 10-min continuous heart rate and blood pressure recordings, pre- and post-HIRREM. One-minute epochs of temporal high-frequency (23-36 Hz) brain electrical activity data (T3 and T4, eyes closed) were analyzed from baseline HIRREM assessment and subsequent sessions. Subjects rated autonomic symptoms before and after HIRREM. Four of seven were on fludrocortisone, which was stopped before or during their sessions. Heart rate variability in the time domain (standard deviation of the beat-to-beat interval) increased post-HIRREM (mean increase 51%, range 10-143, p = 0.03), as did baroreflex sensitivity (mean increase in high-frequency alpha 65%, range -6 to 180, p = 0.05). Baseline temporal electrical asymmetry negatively correlated with change in asymmetry from assessment to the final HIRREM session (p = 0.01). Summed high-frequency amplitudes at left and right temporal lobes decreased a median of 3.8 μV (p = 0.02). There was a trend for improvements in self-reported symptoms related to the autonomic nervous system. Use of HIRREM was associated with reduced sympathetic bias in autonomic cardiovascular regulation, greater symmetry and reduced amplitudes in temporal lobe high-frequency electrical activity, and a trend for reduced autonomic symptoms. Data suggest the potential for allostatic neurotechnology to facilitate increased flexibility in autonomic cardiovascular regulation, possibly through more balanced activity at regions of the neocortex responsible for autonomic management. Clinical trial registry "Tilt Table with Suspected postural orthostatic tachycardia syndrome (POTS) Subjects," Protocol Record: WFUBAHA01.

  17. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more importantmore » than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.« less

  18. Temporal variability of pharmaceuticals and illicit drugs in wastewater and the effects of a major sporting event.

    PubMed

    Gerrity, Daniel; Trenholm, Rebecca A; Snyder, Shane A

    2011-11-01

    Diurnal variations in wastewater flows are common phenomena related to peak water use periods. However, few studies have examined high-resolution temporal variability in trace organic contaminant (TOrC) concentrations and loadings. Even fewer have assessed the impacts of a special event or holiday. This study characterizes the temporal variability associated with a major sporting event using flow data and corresponding mass loadings of a suite of prescription pharmaceuticals, potential endocrine disrupting compounds (EDCs), and illicit drugs. Wastewater influent and finished effluent samples were collected during the National Football League's Super Bowl, which is a significant weekend for tourism in the study area. Data from a baseline weekend is also provided to illustrate flows and TOrC loadings during "normal" operational conditions. Some compounds exhibited interesting temporal variations (e.g., atenolol), and several compounds demonstrated different loading profiles during the Super Bowl and baseline weekends (e.g., the primary cocaine metabolite benzoylecgonine). Interestingly, the influent mass loadings of prescription pharmaceuticals were generally similar in magnitude to those of the illicit drugs and their metabolites. However, conventional wastewater treatment was more effective in removing the illicit drugs and their metabolites. Total influent and effluent mass loadings are also provided to summarize treatment efficacy and environmental discharges. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Using Mobile Monitoring to Assess Spatial Variability in Urban Air Pollution Levels: Opportunities and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Larson, T.

    2010-12-01

    Measuring air pollution concentrations from a moving platform is not a new idea. Historically, however, most information on the spatial variability of air pollutants have been derived from fixed site networks operating simultaneously over space. While this approach has obvious advantages from a regulatory perspective, with the increasing need to understand ever finer scales of spatial variability in urban pollution levels, the use of mobile monitoring to supplement fixed site networks has received increasing attention. Here we present examples of the use of this approach: 1) to assess existing fixed-site fine particle networks in Seattle, WA, including the establishment of new fixed-site monitoring locations; 2) to assess the effectiveness of a regulatory intervention, a wood stove burning ban, on the reduction of fine particle levels in the greater Puget Sound region; and 3) to assess spatial variability of both wood smoke and mobile source impacts in both Vancouver, B.C. and Tacoma, WA. Deducing spatial information from the inherently spatio-temporal measurements taken from a mobile platform is an area that deserves further attention. We discuss the use of “fuzzy” points to address the fine-scale spatio-temporal variability in the concentration of mobile source pollutants, specifically to deduce the broader distribution and sources of fine particle soot in the summer in Vancouver, B.C. We also discuss the use of principal component analysis to assess the spatial variability in multivariate, source-related features deduced from simultaneous measurements of light scattering, light absorption and particle-bound PAHs in Tacoma, WA. With increasing miniaturization and decreasing power requirements of air monitoring instruments, the number of simultaneous measurements that can easily be made from a mobile platform is rapidly increasing. Hopefully the methods used to design mobile monitoring experiments for differing purposes, and the methods used to interpret those measurements will keep pace.

  20. Levels of Viable Enterococci Fecal Indicator Bacteria at a Marine Subtropical Beach: Assessing Temporal and Spatial Variability

    EPA Science Inventory

    Beach water quality monitoring is an important tool to inform the public of health risks from recreational beach use, as well as to assess the impacts of land-based sources of pollution on coastal ecosystems. Many beach monitoring programs in the US currently utilize a strategy o...

  1. Assessing heterogeneity in soil nitrogen cycling: a plot-scale approach

    Treesearch

    Peter Baas; Jacqueline E. Mohan; David Markewitz; Jennifer D. Knoepp

    2014-01-01

    The high level of spatial and temporal heterogeneity in soil N cycling processes hinders our ability to develop an ecosystem-wide understanding of this cycle. This study examined how incorporating an intensive assessment of spatial variability for soil moisture, C, nutrients, and soil texture can better explain ecosystem N cycling at the plot scale. Five sites...

  2. Test-retest reliability of computer-based video analysis of general movements in healthy term-born infants.

    PubMed

    Valle, Susanne Collier; Støen, Ragnhild; Sæther, Rannei; Jensenius, Alexander Refsum; Adde, Lars

    2015-10-01

    A computer-based video analysis has recently been presented for quantitative assessment of general movements (GMs). This method's test-retest reliability, however, has not yet been evaluated. The aim of the current study was to evaluate the test-retest reliability of computer-based video analysis of GMs, and to explore the association between computer-based video analysis and the temporal organization of fidgety movements (FMs). Test-retest reliability study. 75 healthy, term-born infants were recorded twice the same day during the FMs period using a standardized video set-up. The computer-based movement variables "quantity of motion mean" (Qmean), "quantity of motion standard deviation" (QSD) and "centroid of motion standard deviation" (CSD) were analyzed, reflecting the amount of motion and the variability of the spatial center of motion of the infant, respectively. In addition, the association between the variable CSD and the temporal organization of FMs was explored. Intraclass correlation coefficients (ICC 1.1 and ICC 3.1) were calculated to assess test-retest reliability. The ICC values for the variables CSD, Qmean and QSD were 0.80, 0.80 and 0.86 for ICC (1.1), respectively; and 0.80, 0.86 and 0.90 for ICC (3.1), respectively. There were significantly lower CSD values in the recordings with continual FMs compared to the recordings with intermittent FMs (p<0.05). This study showed high test-retest reliability of computer-based video analysis of GMs, and a significant association between our computer-based video analysis and the temporal organization of FMs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Influence of temporal context on value in the multiple-chains and successive-encounters procedures.

    PubMed

    O'Daly, Matthew; Angulo, Samuel; Gipson, Cassandra; Fantino, Edmund

    2006-05-01

    This set of studies explored the influence of temporal context across multiple-chain and multiple-successive-encounters procedures. Following training with different temporal contexts, the value of stimuli sharing similar reinforcement schedules was assessed by presenting these stimuli in concurrent probes. The results for the multiple-chain schedule indicate that temporal context does impact the value of a conditioned reinforcer consistent with delay-reduction theory, such that a stimulus signaling a greater reduction in delay until reinforcement has greater value. Further, nonreinforced stimuli that are concurrently presented with the preferred terminal link also have greater value, consistent with value transfer. The effects of context on value for conditions with the multiple-successive-encounters procedure, however, appear to depend on whether the search schedule or alternate handling schedule was manipulated, as well as on whether the tested stimuli were the rich or lean schedules in their components. Overall, the results help delineate the conditions under which temporal context affects conditioned-reinforcement value (acting as a learning variable) and the conditions under which it does not (acting as a performance variable), an issue of relevance to theories of choice.

  4. Making Energy-Water Nexus Scenarios more Fit-for-Purpose through Better Characterization of Extremes

    NASA Astrophysics Data System (ADS)

    Yetman, G.; Levy, M. A.; Chen, R. S.; Schnarr, E.

    2017-12-01

    Often quantitative scenarios of future trends exhibit less variability than the historic data upon which the models that generate them are based. The problem of dampened variability, which typically also entails dampened extremes, manifests both temporally and spatially. As a result, risk assessments that rely on such scenarios are in danger of producing misleading results. This danger is pronounced in nexus issues, because of the multiple dimensions of change that are relevant. We illustrate the above problem by developing alternative joint distributions of the probability of drought and of human population totals, across U.S. counties over the period 2010-2030. For the dampened-extremes case we use drought frequencies derived from climate models used in the U.S. National Climate Assessment and the Environmental Protection Agency's population and land use projections contained in its Integrated Climate and Land Use Scenarios (ICLUS). For the elevated extremes case we use an alternative spatial drought frequency estimate based on tree-ring data, covering a 555-year period (Ho et al 2017); and we introduce greater temporal and spatial extremes in the ICLUS socioeconomic projections so that they conform to observed extremes in the historical U.S. spatial census data 1790-present (National Historical Geographic Information System). We use spatial and temporal coincidence of high population and extreme drought as a proxy for energy-water nexus risk. We compare the representation of risk in the dampened-extreme and elevated-extreme scenario analysis. We identify areas of the country where using more realistic portrayals of extremes makes the biggest difference in estimate risk and suggest implications for future risk assessments. References: Michelle Ho, Upmanu Lall, Xun Sun, Edward R. Cook. 2017. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resources Research. . doi: 10.1002/2016WR019632

  5. Multi-regional synthesis of temporal trends in biotic assemblages in streams and rivers of the continental United States

    USGS Publications Warehouse

    Miller, Matthew P.; Brasher, Anne M.D.; Keenen, Jonathan G.

    2013-01-01

    Biotic assemblages in aquatic ecosystems are excellent integrators and indicators of changing environmental conditions within a watershed. Therefore, temporal changes in abiotic environmental variables often can be inferred from temporal changes in biotic assemblages. Algae, macroinvertebrate, and fish assemblage data were collected from 91 sampling sites in 4 geographic regions (northeastern/north-central, southeastern, south-central, and western), collectively encompassing the continental United States, from 1993 to 2009 as part of the U.S. Geological Survey National Water-Quality Assessment Program. This report uses a multivariate approach to synthesize temporal trends in biotic assemblages and correlations with relevant abiotic parameters as a function of biotic assemblage, geographic region, and land use. Of the three groups of biota, algal assemblages had temporal trends at the greatest percentage of sites. Of the regions, a greater percentage of sites in the northeastern/north-central and western regions had temporal trends in biotic assemblages. In terms of land use, a greater percentage of watersheds draining agricultural, urban, and undeveloped areas had significant temporal changes in biota, as compared to watersheds with mixed use. Correlations between biotic assemblages and abiotic variables indicate that, in general, macroinvertebrate assemblages correlated with water quality and fish assemblages correlated with physical habitat. Taken together, results indicate that there are regional differences in how individual biotic assemblages (algae, macroinvertebrates, and fish) respond to different abiotic drivers of change.

  6. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  7. Facial Expressions of Emotion and the Assessment of Performance

    DTIC Science & Technology

    2010-07-01

    changes and the temporal duration of muscle contraction were used as dependent variables in a 2-way analysis of variance. Factors were gender...risky options [R 2 = .75]. Temporal duration of facial muscle contraction predicted the ability to inhibit high bets, to react faster (AU 23; R 2...60), and to place greater stakes on safe bets [AU 7, AU 16, AU 23, and AU 26]. It is important to note that facial muscle contraction was

  8. A Hybrid Model for Spatially and Temporally Resolved Ozone Exposures in the Continental United States

    PubMed Central

    Di, Qian; Rowland, Sebastian; Koutrakis, Petros; Schwartz, Joel

    2017-01-01

    Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. We propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. We used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. We trained the model with AQS 8-hour daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km×1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. PMID:27332675

  9. Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Zhang, Tianjiao; Godara, Pooja; Blanco, Ernesto R.; Griffin, Russell L; Wang, Xiaolin; Curcio, Christine A.; Zhang, Yuhua

    2015-01-01

    Purpose To assess between- and within-individual variability of macular cone topography in the eyes of young adults. Design Observational case series. Methods Cone photoreceptors in 40 eyes of 20 subjects aged 19–29 years with normal maculae were imaged using a research adaptive optics scanning laser ophthalmoscope. Refractive errors ranged from −3.0 D to 0.63 D and differed by <0.50 D in fellow eyes. Cone density was assessed on a two-dimensional sampling grid over the central 2.4 mm × 2.4 mm. Between-individual variability was evaluated by coefficient of variation (CV). Within-individual variability was quantified by maximum difference and root-mean-square (RMS). Cones were cumulated over increasing eccentricity. Results Peak densities of foveal cones are 168,162 ± 23,529 cones/mm2 (mean ± SD) (CV = 0.14). The number of cones within the cone-dominated foveola (0.8–0.9 mm diameter) is 38,311 ± 2,319 (CV = 0.06). The RMS cone density difference between fellow eyes is 6.78%, and the maximum difference is 23.6%. Mixed model statistical analysis found no difference in the association between eccentricity and cone density in the superior/nasal (p=0.8503), superior/temporal (p=0.1551), inferior/nasal (p=0.8609), and inferior/temporal (p=0.6662) quadrants of fellow eyes. Conclusions New instrumentation imaged the smallest foveal cones, thus allowing accurate assignment of foveal centers and assessment of variability in macular cone density in a large sample of eyes. Though cone densities vary significantly in the fovea, the total number of foveolar cones are very similar both between- and within-subjects. Thus, the total number of foveolar cones may be an important measure of cone degeneration and loss. PMID:25935100

  10. Effective and efficient analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongnan

    Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen very soon. This dissertation is composed of three parts: an introduction, some basic knowledges and relative works, and my own three contributions to the development of approaches for spatio-temporal data mining: DYSTAL algorithm, STARSI algorithm, and COSTCOP+ algorithm.

  11. Evidence of Physiological Decoupling from Grassland Ecosystem Drivers by an Encroaching Woody Shrub

    PubMed Central

    Nippert, Jesse B.; Ocheltree, Troy W.; Orozco, Graciela L.; Ratajczak, Zak; Ling, Bohua; Skibbe, Adam M.

    2013-01-01

    Shrub encroachment of grasslands is a transformative ecological process by which native woody species increase in cover and frequency and replace the herbaceous community. Mechanisms of encroachment are typically assessed using temporal data or experimental manipulations, with few large spatial assessments of shrub physiology. In a mesic grassland in North America, we measured inter- and intra-annual variability in leaf δ13C in Cornus drummondii across a grassland landscape with varying fire frequency, presence of large grazers and topographic variability. This assessment of changes in individual shrub physiology is the largest spatial and temporal assessment recorded to date. Despite a doubling of annual rainfall (in 2008 versus 2011), leaf δ13C was statistically similar among and within years from 2008-11 (range of −28 to −27‰). A topography*grazing interaction was present, with higher leaf δ13C in locations that typically have more bare soil and higher sensible heat in the growing season (upland topographic positions and grazed grasslands). Leaf δ13C from slopes varied among grazing contrasts, with upland and slope leaf δ13C more similar in ungrazed locations, while slopes and lowlands were more similar in grazed locations. In 2011, canopy greenness (normalized difference vegetation index – NDVI) was assessed at the centroid of individual shrubs using high-resolution hyperspectral imagery. Canopy greenness was highest mid-summer, likely reflecting temporal periods when C assimilation rates were highest. Similar to patterns seen in leaf δ13C, NDVI was highest in locations that typically experience lowest sensible heat (lowlands and ungrazed). The ability of Cornus drummondii to decouple leaf physiological responses from climate variability and fire frequency is a likely contributor to the increase in cover and frequency of this shrub species in mesic grassland and may be generalizable to other grasslands undergoing woody encroachment. PMID:24339950

  12. Scavenging rate ecoassay: a potential indicator of estuary condition.

    PubMed

    Porter, Augustine G; Scanes, Peter R

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress.

  13. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds

    PubMed Central

    Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France

    2015-01-01

    When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910

  14. Protection Enhances Community and Habitat Stability: Evidence from a Mediterranean Marine Protected Area

    PubMed Central

    Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando

    2013-01-01

    Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135

  15. Spatio-Temporal Process Variability in Watershed Scale Wetland Restoration Planning

    NASA Astrophysics Data System (ADS)

    Evenson, G. R.

    2012-12-01

    Watershed scale restoration decision making processes are increasingly informed by quantitative methodologies providing site-specific restoration recommendations - sometimes referred to as "systematic planning." The more advanced of these methodologies are characterized by a coupling of search algorithms and ecological models to discover restoration plans that optimize environmental outcomes. Yet while these methods have exhibited clear utility as decision support toolsets, they may be critiqued for flawed evaluations of spatio-temporally variable processes fundamental to watershed scale restoration. Hydrologic and non-hydrologic mediated process connectivity along with post-restoration habitat dynamics, for example, are commonly ignored yet known to appreciably affect restoration outcomes. This talk will present a methodology to evaluate such spatio-temporally complex processes in the production of watershed scale wetland restoration plans. Using the Tuscarawas Watershed in Eastern Ohio as a case study, a genetic algorithm will be coupled with the Soil and Water Assessment Tool (SWAT) to reveal optimal wetland restoration plans as measured by their capacity to maximize nutrient reductions. Then, a so-called "graphical" representation of the optimization problem will be implemented in-parallel to promote hydrologic and non-hydrologic mediated connectivity amongst existing wetlands and sites selected for restoration. Further, various search algorithm mechanisms will be discussed as a means of accounting for temporal complexities such as post-restoration habitat dynamics. Finally, generalized patterns of restoration plan optimality will be discussed as an alternative and possibly superior decision support toolset given the complexity and stochastic nature of spatio-temporal process variability.

  16. The role of visual representations during the lexical access of spoken words

    PubMed Central

    Lewis, Gwyneth; Poeppel, David

    2015-01-01

    Do visual representations contribute to spoken word recognition? We examine, using MEG, the effects of sublexical and lexical variables at superior temporal (ST) areas and the posterior middle temporal gyrus (pMTG) compared with that of word imageability at visual cortices. Embodied accounts predict early modulation of visual areas by imageability - concurrently with or prior to modulation of pMTG by lexical variables. Participants responded to speech stimuli varying continuously in imageability during lexical decision with simultaneous MEG recording. We employed the linguistic variables in a new type of correlational time course analysis to assess trial-by-trial activation in occipital, ST, and pMTG regions of interest (ROIs). The linguistic variables modulated the ROIs during different time windows. Critically, visual regions reflected an imageability effect prior to effects of lexicality on pMTG. This surprising effect supports a view on which sensory aspects of a lexical item are not a consequence of lexical activation. PMID:24814579

  17. The role of visual representations during the lexical access of spoken words.

    PubMed

    Lewis, Gwyneth; Poeppel, David

    2014-07-01

    Do visual representations contribute to spoken word recognition? We examine, using MEG, the effects of sublexical and lexical variables at superior temporal (ST) areas and the posterior middle temporal gyrus (pMTG) compared with that of word imageability at visual cortices. Embodied accounts predict early modulation of visual areas by imageability--concurrently with or prior to modulation of pMTG by lexical variables. Participants responded to speech stimuli varying continuously in imageability during lexical decision with simultaneous MEG recording. We employed the linguistic variables in a new type of correlational time course analysis to assess trial-by-trial activation in occipital, ST, and pMTG regions of interest (ROIs). The linguistic variables modulated the ROIs during different time windows. Critically, visual regions reflected an imageability effect prior to effects of lexicality on pMTG. This surprising effect supports a view on which sensory aspects of a lexical item are not a consequence of lexical activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Exposure Classification and Temporal Variability in Urinary Bisphenol A Concentrations among Couples in Utah--The HOPE Study.

    PubMed

    Cox, Kyley J; Porucznik, Christina A; Anderson, David J; Brozek, Eric M; Szczotka, Kathryn M; Bailey, Nicole M; Wilkins, Diana G; Stanford, Joseph B

    2016-04-01

    Bisphenol A (BPA) is an endocrine disruptor and potential reproductive toxicant, but results of epidemiologic studies have been mixed and have been criticized for inadequate exposure assessment that often relies on a single measurement. Our goal was to describe the distribution of BPA concentrations in serial urinary specimens, assess temporal variability, and provide estimates of exposure classification when randomly selected samples are used to predict average exposure. We collected and analyzed 2,614 urine specimens from 83 Utah couples beginning in 2012. Female participants collected daily first-morning urine specimens during one to two menstrual cycles and male partners collected specimens during the woman's fertile window for each cycle. We measured urinary BPA concentrations and calculated geometric means (GM) for each cycle, characterized the distribution of observed values and temporal variability using intraclass correlation coefficients, and performed surrogate category analyses to determine how well repeat samples could classify exposure. The GM urine BPA concentration was 2.78 ng/mL among males and 2.44 ng/mL among females. BPA had a high degree of variability among both males (ICC = 0.18; 95% CI: 0.11, 0.26) and females (ICC = 0.11; 95% CI: 0.08, 0.16). Based on our more stringent surrogate category analysis, to reach proportions ≥ 0.80 for sensitivity, specificity, and positive predictive value (PPV) among females, 6 and 10 repeat samples for the high and low tertiles, respectively, were required. For the medium tertile, specificity reached 0.87 with 10 repeat samples, but even with 11 samples, sensitivity and PPV did not exceed 0.36. Five repeat samples, among males, yielded sensitivity and PPV values ≥ 0.75 for the high and low tertiles, but, similar to females, classification for the medium tertile was less accurate. Repeated urinary specimens are required to characterize typical BPA exposure. Cox KJ, Porucznik CA, Anderson DJ, Brozek EM, Szczotka KM, Bailey NM, Wilkins DG, Stanford JB. 2016. Exposure classification and temporal variability in urinary bisphenol A concentrations among couples in Utah-the HOPE study. Environ Health Perspect 124:498-506; http://dx.doi.org/10.1289/ehp.1509752.

  19. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.

    PubMed

    Christel, Isadora; Certain, Grégoire; Cama, Albert; Vieites, David R; Ferrer, Xavier

    2013-01-15

    The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIAs) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor's power law coupled with mixed effect models, the spatio-temporal variability of species' distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Treating pre-instrumental data as "missing" data: using a tree-ring-based paleoclimate record and imputations to reconstruct streamflow in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Lall, U.; Cook, E. R.

    2015-12-01

    Advances in paleoclimatology in the past few decades have provided opportunities to expand the temporal perspective of the hydrological and climatological variability across the world. The North American region is particularly fortunate in this respect where a relatively dense network of high resolution paleoclimate proxy records have been assembled. One such network is the annually-resolved Living Blended Drought Atlas (LBDA): a paleoclimate reconstruction of the Palmer Drought Severity Index (PDSI) that covers North America on a 0.5° × 0.5° grid based on tree-ring chronologies. However, the use of the LBDA to assess North American streamflow variability requires a model by which streamflow may be reconstructed. Paleoclimate reconstructions have typically used models that first seek to quantify the relationship between the paleoclimate variable and the environmental variable of interest before extrapolating the relationship back in time. In contrast, the pre-instrumental streamflow is here considered as "missing" data. A method of imputing the "missing" streamflow data, prior to the instrumental record, is applied through multiple imputation using chained equations for streamflow in the Missouri River Basin. In this method, the distribution of the instrumental streamflow and LBDA is used to estimate sets of plausible values for the "missing" streamflow data resulting in a ~600 year-long streamflow reconstruction. Past research into external climate forcings, oceanic-atmospheric variability and its teleconnections, and assessments of rare multi-centennial instrumental records demonstrate that large temporal oscillations in hydrological conditions are unlikely to be captured in most instrumental records. The reconstruction of multi-centennial records of streamflow will enable comprehensive assessments of current and future water resource infrastructure and operations under the existing scope of natural climate variability.

  1. Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana

    Treesearch

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein

    2011-01-01

    Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...

  2. Improving the Retention of First-Year College Students: A Temporal Model of Assessment and Intervention

    ERIC Educational Resources Information Center

    Beck, Hall P.; Davidson, William B.

    2015-01-01

    This investigation sought to determine when colleges should conduct assessments to identify first-year students at risk of dropping out. Thirty-five variables were used to predict the persistence of 2,024 first-year students from four universities in the southeastern United States. The predictors were subdivided into groups according to when they…

  3. Near-Port Air Quality Assessment Utilizing a Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  4. Hydrothermal assessment of temporal variability in seedbed microclimate

    USDA-ARS?s Scientific Manuscript database

    The microclimatic requirements for successful establishment of rangeland species are much more restrictive than those required for maintenance of mature plant communities. We used a 44-year weather record to parameterize a seedbed-microclimate model for estimation of hourly temperature and moisture...

  5. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data

    PubMed Central

    Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard

    2016-01-01

    To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable. PMID:26872333

  6. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data.

    PubMed

    Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard

    2016-01-01

    To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable.

  7. Habitat assessment, Missouri River at Hermann, Missouri

    USGS Publications Warehouse

    Jacobson, Robert B.; Laustrup, Mark S.; Reuter, Joanna M.

    2002-01-01

    This report documents methods and results of aquatic habitat assessment in the Missouri River near Hermann, Missouri. The assessment is intended to improve understanding of spatial and temporal variability of aquatic habitat, including habitats thought to be critical for the endangered pallid sturgeon (Scaphirhynchus albus). Physical aquatic habitat - depth, velocity, and substrate - was assessed around 9 wing dikes and adjacent to the U.S. Route 19 bridge, at discharges varying from 44,000 cubic feet per second (cfs) to 146, 000 cfs during August 2000-May, 2001. For the river as a whole, velocities are bi-modally distributed with distinct peaks relating to navigation channel and wing-dike environments. Velocities predictably showed an increasing trend with increasing discharge. Substrate within wing dikes was dominated by mud at low discharges, whereas the navigation channel had patches of transporting sand, rippled sand, and coarse sand. Discharges that overtopped the wing dikes (about 93,000 cfs, March 2001) were associated with increases of patchy sand, rippled sand, and coarse sand within the wing dikes. When flows were substantially over the wing dikes (146,000 cfs, May 2001) substrates within most wing dikes showed substantial reorganization and coarsening. The habitat assessment provides a geospatial database that can be used to query wing dikes for distributions of depth, velocity, and substrate for comparison with fish samples collected by US Fish and Wildlife Service biologists (Grady and others, 2001). In addition, the assessment documented spatial and temporal variation in habitat within the Hermann reach and over a range of discharges. Measurable geomorphic change--alteration of substrate conditions plus substantial erosion and deposition--was associated with flows equaled or exceeded 12-40% of the time (40-140 days per year). Documented geomorphic change associated with high-frequency flows underscores the natural temporal variability of physical habitat in the Lower Missouri River.

  8. Impact of sampling techniques on measured stormwater quality data for small streams

    USGS Publications Warehouse

    Harmel, R.D.; Slade, R.M.; Haney, R.L.

    2010-01-01

    Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  9. Characteristics of attention-related body sensations. Temporal stability and associations with measures of body focus, affect, sustained attention, and heart rate variability.

    PubMed

    Tihanyi, Benedek T; Ferentzi, Eszter; Köteles, Ferenc

    2017-09-01

    This study investigated the temporal stability and correlates of attention-related body sensations that emerge without external stimulation during rest and due to focused attention on a body part. To assess attention-related body sensations, participants were asked to focus on a freely chosen body area with closed eyes, and had to report whether the sensation of that area had changed. Self-report questionnaires were used to assess various aspects of body focus (body awareness, body responsiveness, somatosensory amplification, subjective somatic symptoms), and positive and negative affectivity. Previous experiences in body-mind therapies were also measured. PEBL Continuous Performance Test was used to assess sustained attention. Heart rate variability scores were based on a 3-minute long resting heart rate measurement. Fifty-eight university students (22.3 ± 3.95 years; 34 females) participated in the study. The stability of attention-related body sensations was measured 8 weeks later on a randomly chosen sub-group (n = 28). Attention-related body sensations showed a mediocre temporal stability (r ρ  = 0.47, p = 0.012). People reporting attention-related body sensations showed significantly higher body awareness, somatosensory amplification, and resting heart rate; and marginally higher somatic symptoms. No relation was found with body-mind practice, body responsiveness, positive and negative affect, the vagal component of heart rate variability, and performance in the sustained attention task. Attention-related sensations are relatively stable over time. They are connected to some, but not to all of the aspects of body focus. Further studies are needed to elaborate the influencing stable and situational factors.

  10. Spatio-temporal gait disorder and gait fatigue index in a six-minute walk test in women with fibromyalgia.

    PubMed

    Heredia-Jimenez, Jose; Latorre-Roman, Pedro; Santos-Campos, Maria; Orantes-Gonzalez, Eva; Soto-Hermoso, Victor M

    2016-03-01

    Gait disorders in fibromyalgia patients affect several gait parameters and different muscle recruitment patterns. The aim of this study was to assess the gait differences observed during a six-minute walk test between fibromyalgia patients and healthy controls. Forty-eight women with fibromyalgia and 15 healthy women were evaluated. Fibromyalgia patients met the American College of Rheumatology criteria for fibromyalgia selected of an ambulatory care. Both patients and controls had a negative history of musculoskeletal disease, neurological disorders, and gait abnormalities. The 15 controls were healthy women matched to the patients in age, height and body weight. Spatio-temporal gait variables and the rate of perceived exertion during the six-minute walk test (all subjects) and Fibromyalgia Impact Questionnaire (fibromyalgia subjects) were evaluated. All walking sets on the GaitRITE were collected and the gait variables were selected at three stages during the six-minute walk test: two sets at the beginning, two sets at 3 min and two sets at the end of the test. In addition, the Fibromyalgia Impact Questionnaire was used for the fibromyalgia patients. Fibromyalgia patients showed a significant decrease in all spatio-temporal gait variables at each of the three stages and had a lower walk distance covered in the six-minute walk test and higher rate of perceived exertion. No correlations were found between the Fibromyalgia Impact Questionnaire and gait variables. The fibromyalgia and control subjects showed lower gait fatigue indices between the middle and last stages. Gait analysis during a six-minute walk test is a good tool to assess the fatigue and physical symptoms of patients with fibromyalgia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Needs Assessment for the Use of NASA Remote Sensing Data in the Development and Implementation of Estuarine and Coastal Water Quality Standards

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake

    2010-01-01

    The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.

  12. Temporal trends of mercury concentrations in Wisconsin walleye (Sander vitreus), 1982-2005.

    PubMed

    Rasmussen, Paul W; Schrank, Candy S; Campfield, Patrick A

    2007-11-01

    The Wisconsin Department of Natural Resources has monitored mercury (Hg) in several species of fish since the early 1970s primarily for fish consumption advisory purposes. We selected skin-on fillets of walleye (Sander vitreus) from inland lakes collected over the years 1982-2005 to assess temporal trends of Hg concentrations. While individual lakes are of interest, sample sizes, and unbalanced collections across fish lengths, seasons, or years prevent estimates of temporal trends of walleye Hg concentrations within most lakes. We evaluated temporal trends over all lakes using mixed effects models (3,024 records from 421 lakes). Relationships between Hg concentrations and a suite of lake chemistry, morphometry, and other variables were also explored. Hg concentrations generally increased with walleye length but the relationship varied among lakes. The best-fitting mixed effects models suggested that the overall rate of change in walleye Hg across all lakes in the dataset varied with latitude. Hg in walleye decreased 0.5% per year in northern lakes, increased 0.8% in southern lakes, and remained constant in middle latitude lakes over the period of 1982-2005. Season of collection was also an important predictor variable. Hg concentrations were highest in walleye captured in the spring and lowest in the fall. Other variables such as gender, lake area, and total alkalinity were also important predictors.

  13. Temporal uncertainty analysis of human errors based on interrelationships among multiple factors: a case of Minuteman III missile accident.

    PubMed

    Rong, Hao; Tian, Jin; Zhao, Tingdi

    2016-01-01

    In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  15. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  16. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.

    PubMed

    Fetterly, Kenneth A; Favazza, Christopher P

    2016-08-07

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the presence of bias in Hotelling model observers due to temporally variable non-stationary noise and correct this bias when the temporally variable non-stationary noise is independent and additive with respect to the test object signal.

  17. Hydrochemical buffer assessment in agricultural landscapes: from local to catchment scale.

    PubMed

    Viaud, Valérie; Merot, Philippe; Baudry, Jacques

    2004-10-01

    Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question. The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow-outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.

  18. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.

  19. Community temporal variability increases with fluctuating resource availability

    PubMed Central

    Li, Wei; Stevens, M. Henry H.

    2017-01-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs. PMID:28345592

  20. Community temporal variability increases with fluctuating resource availability

    NASA Astrophysics Data System (ADS)

    Li, Wei; Stevens, M. Henry H.

    2017-03-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs.

  1. Spatial and Temporal Variability of Elemental Signautres in Juvenile Winter Flounder (Psuedopleuronectes americanus): Implications for Natal Connectivity

    EPA Science Inventory

    Elemental signatures in otoliths (fish ear-stones) have become a powerful tool in fisheries science for identifying fish migration patterns, reconstructing environmental histories, and for delineating the nursery origins of adult fish populations. Assessing connectivity between a...

  2. Spatial and temporal variability in the water column nutrients and pesticides of Jobos Bay

    USDA-ARS?s Scientific Manuscript database

    The Conservation Effects Assessment Project (CEAP) is a national, multi-agency effort to quantify the environmental benefits of best management practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs, including programs such as t...

  3. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of partic...

  4. Visitor Behavior at Melbourne Zoo.

    ERIC Educational Resources Information Center

    Churchman, David

    The potential educational impact of the Melbourne Zoo (Australia) for recreational visitors was examined in this study using time as the major dependent variable. Specific goals included: (1) assessment of the potential cognitive and affective educational impact of zoos on recreational visitors; (2) determination of the temporal and spatial…

  5. Satellite remote sensing assessment of climate impact on forest vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2009-04-01

    Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  6. Addressing variability in the acoustic startle reflex for accurate gap detection assessment.

    PubMed

    Longenecker, Ryan J; Kristaponyte, Inga; Nelson, Gregg L; Young, Jesse W; Galazyuk, Alexander V

    2018-06-01

    The acoustic startle reflex (ASR) is subject to substantial variability. This inherent variability consequently shapes the conclusions drawn from gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) assessments. Recent studies have cast doubt as to the efficacy of this methodology as it pertains to tinnitus assessment, partially, due to variability in and between data sets. The goal of this study was to examine the variance associated with several common data collection variables and data analyses with the aim to improve GPIAS reliability. To study this the GPIAS tests were conducted in adult male and female CBA/CaJ mice. Factors such as inter-trial interval, circadian rhythm, sex differences, and sensory adaptation were each evaluated. We then examined various data analysis factors which influence GPIAS assessment. Gap-induced facilitation, data processing options, and assessments of tinnitus were studied. We found that the startle reflex is highly variable in CBA/CaJ mice, but this can be minimized by certain data collection factors. We also found that careful consideration of temporal fluctuations of the ASR and controlling for facilitation can lead to more accurate GPIAS results. This study provides a guide for reducing variance in the GPIAS methodology - thereby improving the diagnostic power of the test. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Temporal data mining for the quality assessment of hemodialysis services.

    PubMed

    Bellazzi, Riccardo; Larizza, Cristiana; Magni, Paolo; Bellazzi, Roberto

    2005-05-01

    This paper describes the temporal data mining aspects of a research project that deals with the definition of methods and tools for the assessment of the clinical performance of hemodialysis (HD) services, on the basis of the time series automatically collected during hemodialysis sessions. Intelligent data analysis and temporal data mining techniques are applied to gain insight and to discover knowledge on the causes of unsatisfactory clinical results. In particular, two new methods for association rule discovery and temporal rule discovery are applied to the time series. Such methods exploit several pre-processing techniques, comprising data reduction, multi-scale filtering and temporal abstractions. We have analyzed the data of more than 5800 dialysis sessions coming from 43 different patients monitored for 19 months. The qualitative rules associating the outcome parameters and the measured variables were examined by the domain experts, which were able to distinguish between rules confirming available background knowledge and unexpected but plausible rules. The new methods proposed in the paper are suitable tools for knowledge discovery in clinical time series. Their use in the context of an auditing system for dialysis management helped clinicians to improve their understanding of the patients' behavior.

  8. Scavenging Rate Ecoassay: A Potential Indicator of Estuary Condition

    PubMed Central

    Porter, Augustine G.; Scanes, Peter R.

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress. PMID:26024225

  9. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes.

    PubMed

    Humphrey, Vincent; Gudmundsson, Lukas; Seneviratne, Sonia I

    Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.

  10. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    PubMed

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  11. Structure and function in patients with glaucomatous defects near fixation.

    PubMed

    Shafi, Asifa; Swanson, William H; Dul, Mitchell W

    2011-01-01

    To assess relations between perimetric sensitivity and neuroretinal rim area using high-resolution perimetric mapping in patients with glaucomatous defects within 10° of fixation. One eye was tested in each of 31 patients with open-angle glaucoma enrolled in a prospective study of perimetric defects within 10° of fixation. Norms were derived from 110 control subjects free of eye disease, aged 21 to 81 years. Perimetric sensitivity was measured using the 10-2 test pattern with the Swedish Interactive Threshold Algorithm (SITA) standard algorithm on the Humphrey Field Analyzer (HFA) II-i; Carl Zeiss Meditec), stimulus size III. Area of the temporal neuroretinal rim was measured using the Heidelberg retina tomograph 3. Decibel values were converted into linear units of contrast sensitivity averaged across locations corresponding to the temporal rim sector. Both measures were expressed as percent of mean normal, and the Bland-Altman method was used to assess agreement. Perimetric locations corresponding to the temporal sector were determined for six different optic nerve maps. Contrast sensitivity was moderately correlated with temporal rim area (r2 >30%, p < 0.005). For all six optic nerve maps, Bland-Altman analysis found good agreement between perimetric sensitivity and rim area with both measures expressed as fraction of mean normal and confidence limits for agreement that were consistent with normal between-subject variability in control eyes. By using high-resolution perimetric mapping in patients with scotomas within 10° of fixation, we confirmed findings of linear relations between perimetric sensitivity and area of temporal neuroretinal rim and showed that the confidence limits for agreement in patients with glaucoma were consistent with normal between-subject variability.

  12. Structure and Function in Patients with Glaucomatous Defects Near Fixation

    PubMed Central

    Shafi, Asifa; Swanson, William H.; Dul, Mitchell W.

    2010-01-01

    Purpose To assess relations between perimetric sensitivity and neuroretinal rim area using high-resolution perimetric mapping in patients with glaucomatous defects within 10 degrees of fixation. Methods One eye was tested in each of 31 patients with open angle glaucoma enrolled in a prospective study of perimetric defects within 10 degrees of fixation. Norms were derived from 110 control subjects free of eye disease ages 21 – 81. Perimetric sensitivity was measured using the 10-2 test pattern with the SITA Standard algorithm (HFAII-i, Carl Zeiss Meditec), stimulus size III. Area of the temporal neuroretinal rim was measured using the Heidelberg Retinal Tomograph (HRT III). Decibel (dB) values were converted into linear units of contrast sensitivity averaged across locations corresponding to the temporal rim sector. Both measures were expressed as percent of mean normal and the Bland-Altman method was used to assess agreement. Perimetric locations corresponding to the temporal sector were determined for six different optic nerve maps. Results Contrast sensitivity was moderately correlated with temporal rim area (r2 > 30%, p < 0.005). For all six optic nerve maps, Bland-Altman analysis found good agreement between perimetric sensitivity and rim area with both measures expressed as fraction of mean normal, and confidence limits for agreement that were consistent with normal between-subject variability in control eyes. Conclusions Using high-resolution perimetric mapping in patients with scotomas within 10° of fixation, we confirmed findings of linear relations between perimetric sensitivity and area of temporal neuroretinal rim, and showed that the confidence limits for agreement in patients with glaucoma were consistent with normal between-subject variability. PMID:20935585

  13. Hydrologic index development and application to selected Coastwide Reference Monitoring System sites and Coastal Wetlands Planning, Protection and Restoration Act projects

    USGS Publications Warehouse

    Snedden, Gregg A.; Swenson, Erick M.

    2012-01-01

    Hourly time-series salinity and water-level data are collected at all stations within the Coastwide Reference Monitoring System (CRMS) network across coastal Louisiana. These data, in addition to vegetation and soils data collected as part of CRMS, are used to develop a suite of metrics and indices to assess wetland condition in coastal Louisiana. This document addresses the primary objectives of the CRMS hydrologic analytical team, which were to (1) adopt standard time-series analytical techniques that could effectively assess spatial and temporal variability in hydrologic characteristics across the Louisiana coastal zone on site, project, basin, and coastwide scales and (2) develop and apply an index based on wetland hydrology that can describe the suitability of local hydrology in the context of maximizing the productivity of wetland plant communities. Approaches to quantifying tidal variability (least squares harmonic analysis) and partitioning variability of time-series data to various time scales (spectral analysis) are presented. The relation between marsh elevation and the tidal frame of a given hydrograph is described. A hydrologic index that integrates water-level and salinity data, which are collected hourly, with vegetation data that are collected annually is developed. To demonstrate its utility, the hydrologic index is applied to 173 CRMS sites across the coast, and variability in index scores across marsh vegetation types (fresh, intermediate, brackish, and saline) is assessed. The index is also applied to 11 sites located in three Coastal Wetlands Planning, Protection and Restoration Act projects, and the ability of the index to convey temporal hydrologic variability in response to climatic stressors and restoration measures, as well as the effect that this community may have on wetland plant productivity, is illustrated.

  14. Validation of a Self-Administered Computerized System to Detect Cognitive Impairment in Older Adults

    PubMed Central

    Brinkman, Samuel D.; Reese, Robert J.; Norsworthy, Larry A.; Dellaria, Donna K.; Kinkade, Jacob W.; Benge, Jared; Brown, Kimberly; Ratka, Anna; Simpkins, James W.

    2015-01-01

    There is increasing interest in the development of economical and accurate approaches to identifying persons in the community who have mild, undetected cognitive impairments. Computerized assessment systems have been suggested as a viable approach to identifying these persons. The validity of a computerized assessment system for identification of memory and executive deficits in older individuals was evaluated in the current study. Volunteers (N = 235) completed a 3-hr battery of neuropsychological tests and a computerized cognitive assessment system. Participants were classified as impaired (n = 78) or unimpaired (n = 157) on the basis of the Mini Mental State Exam, Wechsler Memory Scale-III and the Trail Making Test (TMT), Part B. All six variables (three memory variables and three executive variables) derived from the computerized assessment differed significantly between groups in the expected direction. There was also evidence of temporal stability and concurrent validity. Application of computerized assessment systems for clinical practice and for identification of research participants is discussed in this article. PMID:25332303

  15. Long-term variability of importance of brain regions in evolving epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Geier, Christian; Lehnertz, Klaus

    2017-04-01

    We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

  16. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    NASA Astrophysics Data System (ADS)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  17. Prospects and pitfalls of occupational hazard mapping: 'between these lines there be dragons'.

    PubMed

    Koehler, Kirsten A; Volckens, John

    2011-10-01

    Hazard data mapping is a promising new technique that can enhance the process of occupational exposure assessment and risk communication. Hazard maps have the potential to improve worker health by providing key input for the design of hazard intervention and control strategies. Hazard maps are developed with aid from direct-reading instruments, which can collect highly spatially and temporally resolved data in a relatively short period of time. However, quantifying spatial-temporal variability in the occupational environment is not a straightforward process, and our lack of understanding of how to ascertain and model spatial and temporal variability is a limiting factor in the use and interpretation of workplace hazard maps. We provide an example of how sources of and exposures to workplace hazards may be mischaracterized in a hazard map due to a lack of completeness and representativeness of collected measurement data. Based on this example, we believe that a major priority for research in this emerging area should focus on the development of a statistical framework to quantify uncertainty in spatially and temporally varying data. In conjunction with this need is one for the development of guidelines and procedures for the proper sampling, generation, and evaluation of workplace hazard maps.

  18. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management

    USGS Publications Warehouse

    Jonas, Jayne L.; Buhl, Deborah A.; Symstad, Amy J.

    2015-01-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess 1) the portion of interannual variability of richness and diversity explained by weather, 2) how relationships between these metrics and weather vary among plant assemblages, and 3) which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six datasets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.Read More: http://www.esajournals.org/doi/abs/10.1890/14-1989.1

  19. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.

    PubMed

    Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J

    2015-09-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.

  20. An Overview of OCTAV-UTLS (Observed Composition Trends and Variability in the UTLS), a SPARC Emerging Activity

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Manney, G. L.; Hoor, P. M.; Bourassa, A. E.; Braathen, G.; Chang, K. L.; Hegglin, M. I.; Kramarova, N. A.; Kunkel, D.; Lawrence, Z. D.; Leblanc, T.; Livesey, N. J.; Millan Valle, L. F.; Stiller, G. P.; Tegtmeier, S.; Thouret, V.; Voigt, C.; Walker, K. A.

    2017-12-01

    The distribution of tracers in the upper troposphere and lower stratosphere (UTLS) shows large spatial and temporal variability because of interactions of transport, chemical, and mixing processes near the tropopause, as well as variations in the location of the tropopause itself. This strongly affects quantitative estimates of the impact of radiatively active substances, including ozone and water vapour, on surface temperatures, and complicates diagnosis of dynamical processes such as stratosphere troposphere exchange (STE). The Stratosphere-troposphere Processes And their Role in Climate (SPARC) emerging activity OCTAV-UTLS (Observed Composition Trends and Variability in the UTLS) aims to reduce the uncertainties in trend estimates by accounting for these dynamically induced sources of variability. Achieving these goals by using existing UTLS trace gas observations from aircraft, ground-based, balloon and satellite platforms requires a consistent analysis of these different data with respect to the tropopause or the jets. As a central task for OCTAV-UTLS, we are developing and applying common metrics, calculated using the same reanalysis datasets, to compare UTLS data using geophysically-based coordinate systems including tropopause and upper tropospheric jet relative coordinates. In addition to assessing present day measurement capabilities, OCTAV-UTLS will assess gaps in current geographical / temporal sampling of the UTLS that limit our ability to determine atmospheric composition variability and trends. This talk will provide an overview of the OCTAV-UTLS activity and some examples of initial calculations of geophysically-based coordinates and comparisons of remapped data.

  1. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. GOLF COURSES AS A SOURCE OF COASTAL CONTAMINATION AND TOXICITY: A FLORIDA EXPERIENCE

    EPA Science Inventory

    The chemical and biological impacts of two coastal golf courses that receive wastewater spray irrigation were determined during a two-year period. A variety of techniques were used to assess the spatial and temporal variability of contaminant levels and their bioavailability in t...

  3. ALTERNATIVE EXPOSURE MEASUREMENT DESIGNS TO IMPROVE EPIDEMIOLOGICAL STUDY DESIGNS: DETERMINANTS OF TEMPORAL VARIABILITY IN ENVIRONMENTAL CONCENTRATIONS, EXPOSURES, AND BIOMARKERS

    EPA Science Inventory

    The National Human Exposure Assessment Survey in Maryland (NHEXAS-MD) was a longitudinal study of multimedia exposure to metals, pesticides, and polycyclic aromatic compounds (PAHs). Measurements were made and questionnaires were concurrently administered to identify sources o...

  4. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  5. Assessment of the Interactions Among Tropospheric Aerosol Loading, Radiative Balance and Clouds Through Examination of Their Multi-decadal Trends

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of aerosol radiative forcing has remained challenging. Anthropogenic emissions of prima...

  6. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing a Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  7. Assessment of near-source air pollution at a fine spatial scale utilizing a mobile measurement platform approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous poll...

  8. NETWORK DESIGN FACTORS FOR ASSESSING TEMPORAL VARIABILITY IN GROUND-WATER QUALITY

    EPA Science Inventory

    A 1.5 year benchmark data Set was collected at biweekly frequency from two siteS in shallow sand and gravel deposits in West Central Illinois. ne site was near a hog-processing facility and the other represented uncontaminated conditions. onsistent sampling and analytical protoco...

  9. Multi-level emulation of complex climate model responses to boundary forcing data

    NASA Astrophysics Data System (ADS)

    Tran, Giang T.; Oliver, Kevin I. C.; Holden, Philip B.; Edwards, Neil R.; Sóbester, András; Challenor, Peter

    2018-04-01

    Climate model components involve both high-dimensional input and output fields. It is desirable to efficiently generate spatio-temporal outputs of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for efficiency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1's energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM's spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of different types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components.

  10. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M. Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-01-01

    Abstract Objective: The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Study sample: Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. Design: LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. Results: The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R2 = 0.40). Conclusions: All LEVEL 2 factors are important theoretically as well as for clinical assessment. PMID:27589015

  11. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study.

    PubMed

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-11-01

    The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R(2) = 0.40). All LEVEL 2 factors are important theoretically as well as for clinical assessment.

  12. Earth Observation for monitoring phenology for european land use and ecosystems over 1998-2011

    NASA Astrophysics Data System (ADS)

    Ceccherini, Guido; Gobron, Nadine

    2013-04-01

    Long-term measurements of plant phenology have been used to track vegetation responses to climate change but are often limited to particular species and locations and may not represent synoptic patterns. Given the limitations of working directly with in-situ data, many researchers have instead used available satellite remote sensing. Remote sensing extends the possible spatial coverage and temporal range of phenological assessments of environmental change due to the greater availability of observations. Variations and trends of vegetation dynamics are important because they alter the surface carbon, water and energy balance. For example, the net ecosystem CO2 exchange of vegetation is strongly linked to length of the growing season: extentions and decreases in length of growing season modify carbon uptake and the amount of CO2 in the atmosphere. Advances and delays in starting of growing season also affect the surface energy balance and consequently transpiration. The Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) is a key climate variable identified by Global Terrestrial Observing System (GTOS) that can be monitored from space. This dimensionless variable - varying between 0 and 1- is directly linked to the photosynthetic activity of vegetation, and therefore, can monitor changes in phenology. In this study, we identify the spatio/temporal patterns of vegetation dynamics using a long-term remotely sensed FAPAR dataset over Europe. Our aim is to provide a quantitative analysis of vegetation dynamics relevant to climate studies in Europe. As part of this analysis, six vegetation phenological metrics have been defined and made routinely in Europe. Over time, such metrics can track simple, yet critical, impacts of climate change on ecosystems. Validation has been performed through a direct comparison against ground-based data over ecological sites. Subsequently, using the spatio/temporal variability of this suite of metrics, we classify areas with similar vegetation dynamics. This permits assessment of variations and trends of vegetation dynamics over Europe. Statistical tests to assess the significance of temporal changes are used to evaluate trends in the metrics derived from the recorded time series of the FAPAR.

  13. Required temporal resolution for accurate thoracic aortic pulse wave velocity measurements by phase-contrast magnetic resonance imaging and comparison with clinical standard applanation tonometry.

    PubMed

    Dorniak, Karolina; Heiberg, Einar; Hellmann, Marcin; Rawicz-Zegrzda, Dorota; Wesierska, Maria; Galaska, Rafal; Sabisz, Agnieszka; Szurowska, Edyta; Dudziak, Maria; Hedström, Erik

    2016-05-26

    Pulse wave velocity (PWV) is a biomarker for arterial stiffness, clinically assessed by applanation tonometry (AT). Increased use of phase-contrast cardiac magnetic resonance (CMR) imaging allows for PWV assessment with minor routine protocol additions. The aims were to investigate the acquired temporal resolution needed for accurate and precise measurements of CMR-PWV, and develop a tool for CMR-PWV measurements. Computer phantoms were generated for PWV = 2-20 m/s based on human CMR-PWV data. The PWV measurements were performed in 13 healthy young subjects and 13 patients at risk for cardiovascular disease. The CMR-PWV was measured by through-plane phase-contrast CMR in the ascending aorta and at the diaphragm level. Centre-line aortic distance was determined between flow planes. The AT-PWV was assessed within 2 h after CMR. Three observers (CMR experience: 15, 4, and <1 year) determined CMR-PWV. The developed tool was based on the flow-curve foot transit time for PWV quantification. Computer phantoms showed bias 0.27 ± 0.32 m/s for a temporal resolution of at least 30 ms. Intraobserver variability for CMR-PWV were: 0 ± 0.03 m/s (15 years), -0.04 ± 0.33 m/s (4 years), and -0.02 ± 0.30 m/s (<1 year). Interobserver variability for CMR-PWV was below 0.02 ± 0.38 m/s. The AT-PWV overestimated CMR-PWV by 1.1 ± 0.7 m/s in healthy young subjects and 1.6 ± 2.7 m/s in patients. An acquired temporal resolution of at least 30 ms should be used to obtain accurate and precise thoracic aortic phase-contrast CMR-PWV. A new freely available research tool was used to measure PWV in healthy young subjects and in patients, showing low intra- and interobserver variability also for less experienced CMR observers.

  14. Temporal Variability and Stability in Infant-Directed Sung Speech: Evidence for Language-Specific Patterns

    ERIC Educational Resources Information Center

    Falk, Simone

    2011-01-01

    In this paper, sung speech is used as a methodological tool to explore temporal variability in the timing of word-internal consonants and vowels. It is hypothesized that temporal variability/stability becomes clearer under the varying rhythmical conditions induced by song. This is explored cross-linguistically in German--a language that exhibits a…

  15. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental variable subsets that were significantly correlated with temporal change in the macroinvertebrate and fish community structure. Other important environmental variables related to temporal change in the biological community structure included those describing channel form (streambank height) and streamflow (normalized annual mean daily flow, high flood-pulse count). Site-specific results from this study were derived from a relatively small number of observations (6 or 8 years of data); therefore, additional years of data may reveal other sites with temporal change in biological community structure, or could define stronger and more consistent linkages between environmental variables and observed temporal change. Likewise current variable subsets could become weaker. Nonetheless, there were several sites where temporal change was detected in this study that could not be explained by the available environmental variables studied herein. Modification of current data-collection activities may be necessary to better understand site-specific temporal relations between biological communities and environmental variables.

  16. Effects of temporal averaging on short-term irradiance variability under mixed sky conditions

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerald M.; Monahan, Adam H.

    2018-05-01

    Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.

  17. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.

  18. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  19. Variability of tornado occurrence over the continental United States since 1950

    NASA Astrophysics Data System (ADS)

    Guo, Li; Wang, Kaicun; Bluestein, Howard B.

    2016-06-01

    The United States experiences the most tornadoes of any country in the world. Given the catastrophic impact of tornadoes, concern has arisen regarding the variation in climatology of U.S. tornadoes under the changing climate. A recent study claimed that the temporal variability of tornado occurrence over the continental U.S. has increased since the 1970s. However, that study ignored the highly regionalized climatology of U.S. tornadoes. To address this issue, we examined the long-term trend of tornado temporal variability in each continental U.S. state. Based on the 64 year tornado records (1950-2013), we found that the trends in tornado temporal variability varied across the U.S., with only one third of the continental area or three out of 10 contiguous states (mostly from the Great Plains and Southeast, but where the frequency of occurrence of tornadoes is greater) displaying a significantly increasing trend. The other two-thirds area, where 60% of the U.S. tornadoes were reported (but the frequency of occurrence of tornadoes is less), however, showed a decreasing or a near-zero trend in tornado temporal variability. Furthermore, unlike the temporal variability alone, the combined spatial-temporal variability of U.S. tornado occurrence has remained nearly constant since 1950. Such detailed information on the climatological variability of U.S. tornadoes refines the claim of previous study and can be helpful for local mitigation efforts toward future tornado risks.

  20. Spatio-temporal Variability of Stemflow Volume in a Beech-Yellow Poplar Forest in Relation to Tree Species and Size

    NASA Astrophysics Data System (ADS)

    Levia, D. F.; van Stan, J. T.; Mage, S.; Hauske, P. W.

    2009-05-01

    Stemflow is a localized point input at the base of trees that can account for more than 10% of the incident gross precipitation in deciduous forests. Despite the fact that stemflow has been documented to be of hydropedological importance, affecting soil moisture patterns, soil erosion, soil chemistry, and the distribution of understory vegetation, our current understanding of the temporal variability of stemflow yield is poor. The aim of the present study, conducted in a beech-yellow poplar forest in northeastern Maryland (39°42'N, 75°50'W), was to better understand the temporal and variability of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to meteorological conditions and season in order to better assess its importance to canopy-soil interactions. The experimental plot had a stand density of 225 trees/ha, a stand basal area of 36.8 sq. m/ha, a mean dbh of 40.8 cm, and a mean tree height of 27.8 m. The stand leaf area index (LAI) is 5.3. Yellow poplar and beech constitute three- quarters of the stand basal area. Using a high resolution (5 min) sequential stemflow sampling network, consisting of tipping-bucket gauges interfaced with a Campbell CR1000 datalogger, the temporal variability of stemflow yield was examined. Beech produced significantly larger stemflow amounts than yellow poplar. The amount of stemflow produced by individual beech trees in 5 minute intervals reached three liters. Stemflow yield and funneling ratios decreased with increasing rain intensity. Temporal variability of stemflow inputs were affected by the nature of incident gross rainfall, season, tree species, tree size, and bark water storage capacity. Stemflow was greater during the leafless period than full leaf period. Stemflow yield was greater for larger beech trees and smaller yellow poplar trees, owing to differences in bark water storage capacity. The findings of this study indicate that stemflow has a detectable affect on soil moisture patterning and the hydraulic conductivity of forest soils.

  1. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  2. Satellite Analysis of Ocean Biogeochemistry and Mesoscale Variability in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Micheals, A. F.; Nelson, N. B.

    1997-01-01

    The objective of this study was to analyze the impact of spatial variability on the time-series of biogeochemical measurements made at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Originally the study was planned to use SeaWiFS as well as AVHRR high-resolution data. Despite the SeaWiFS delays we were able to make progress on the following fronts: (1) Operational acquisition, processing, and archive of HRPT data from a ground station located in Bermuda; (2) Validation of AVHRR SST data using BATS time-series and spatial validation cruise CTD data; (3) Use of AVHRR sea surface temperature imagery and ancillary data to assess the impact of mesoscale spatial variability on P(CO2) and carbon flux in the Sargasso Sea; (4) Spatial and temporal extent of tropical cyclone induced surface modifications; and (5) Assessment of eddy variability using TOPEX/Poseidon data.

  3. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.

  4. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  5. Countermovement jump height: gender and sport-specific differences in the force-time variables.

    PubMed

    Laffaye, Guillaume; Wagner, Phillip P; Tombleson, Tom I L

    2014-04-01

    The goal of this study was to assess (a) the eccentric rate of force development, the concentric force, and selected time variables on vertical performance during countermovement jump, (b) the existence of gender differences in these variables, and (c) the sport-specific differences. The sample was composed of 189 males and 84 females, all elite athletes involved in college and professional sports (primarily football, basketball, baseball, and volleyball). The subjects performed a series of 6 countermovement jumps on a force plate (500 Hz). Average eccentric rate of force development (ECC-RFD), total time (TIME), eccentric time (ECC-T), Ratio between eccentric and total time (ECC-T:T) and average force (CON-F) were extracted from force-time curves and the vertical jumping performance, measured by impulse momentum. Results show that CON-F (r = 0.57; p < 0.001) and ECC-RFD (r = 0.52, p < 0.001) are strongly correlated with the jump height (JH), whereas the time variables are slightly and negatively correlated (r = -0.21-0.23, p < 0.01). Force variables differ between both sexes (p < 0.01), whereas time variables did not differ, showing a similar temporal structure. The best way to jump high is to increase CON-F and ECC-RFD thus minimizing the ECC-T. Principal component analysis (PCA) accounted for 76.8% of the JH variance and revealed that JH is predicted by a temporal and a force component. Furthermore, the PCA comparison made among athletes revealed sport-specific signatures: volleyball players revealed a temporal-prevailing profile, a weak-force with large ECC-T:T for basketball players and explosive and powerful profiles for football and baseball players.

  6. Monitoring biological diversity: strategies, tools, limitations, and challenges.

    Treesearch

    Erik A. Beever

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity...

  7. TEMPORAL MOISTURE CONTENT VARIABILITY BENEATH AND EXTERNAL TO A BUILDING AND THE POTENTIAL EFFECTS ON VAPOR INTRUSION RISK ASSESSMENT

    EPA Science Inventory

    Migration of vapors from organic chemicals residing in the subsurface into overlying buildings is known as vapor intrusion. Because of the difficulty in evaluating vapor intrusion by indoor air sampling, models are often employed to determine if a potential indoor inhalation exp...

  8. RESEARCH: Conceptualizing Environmental Stress: A Stress-Response Model of Coastal Sandy Barriers.

    PubMed

    Gabriel; Kreutzwiser

    2000-01-01

    / The purpose of this paper is to develop and apply a conceptual framework of environmental stress-response for a geomorphic system. Constructs and methods generated from the literature were applied in the development of an integrative stress-response framework using existing environmental assessment techniques: interaction matrices and a systems diagram. Emphasis is on the interaction between environmental stress and the geomorphic environment of a sandy barrier system. The model illustrates a number of stress concepts pertinent to modeling environmental stress-response, including those related to stress-dependency, frequency-recovery relationships, environmental heterogeneity, spatial hierarchies and linkages, and temporal change. Sandy barrier stress-response and recovery are greatly impacted by fluctuating water levels, stress intensity and frequency, as well as environmental gradients such as differences in sediment storage and supply. Aspects of these stress-response variables are articulated in terms of three main challenges to management: dynamic stability, spatial integrity, and temporal variability. These in turn form the framework for evaluative principles that may be applied to assess how policies and management practices reflect key biophysical processes and human stresses identified by the model.

  9. Interannual Variation in Phytoplankton Concentration and Community in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, C. S.; Gregg, W. W.

    2011-01-01

    Climate events such as El Nino have been shown to have an effect on the biology of our ocean. Because of the lack of data, we still have very little knowledge about the spatial and temporal effect these climate events may have on biological marine systems. In this study, we used the NASA Ocean Biogeochemical Model (NOBM) to assess the interannual variability in phytoplankton community in the Pacific Ocean between 1998 and 2005. In the North Central and Equatorial Pacific Ocean, changes in the Multivariate El Nino Index were associated with changes in phytoplankton composition. The model identified an increase in diatoms of approx.33 % in the equatorial Pacific in 1999 during a La Nina event. This increase in diatoms coincided with a decrease of approx.11 % in cyanobacteria concentration. The inverse relationship between cyanobacteria and diatoms concentration was significant (p<0.05) throughout the period of study. The use of a numerical model allows us to assess the impact climate variability has on key phytoplankton groups known to lead to contrasting food chain at a spatial and temporal resolution unachievable when relying solely on in-situ observations.

  10. Mechanisms of impulsive choice: II. Time-based interventions to improve self-control

    PubMed Central

    Smith, Aaron P.; Marshall, Andrew T.; Kirkpatrick, Kimberly

    2014-01-01

    Impulsive choice behavior has been proposed as a primary risk factor for other maladaptive behaviors (e.g., gambling, substance abuse). Recent research has suggested that timing processes may play a key role in impulsive choice behavior, and could provide an avenue for altering impulsive choice. Accordingly, the current experiments assessed a set of time-based behavioral interventions to increase self-control while simultaneously assessing effects on timing processes within the impulsive choice task. Three experiments assessed temporal interventions using a differential reinforcement of low rates task (Experiment 1) and exposure to either a variable or fixed interval schedule (Experiments 2–3). The efficacy of the interventions was assessed in Sprague-Dawley (Experiments 1–2) and Lewis (Experiment 3) rat strains. Impulsive choice behavior was assessed by measuring preferences of a smaller-sooner (SS) versus a larger-later (LL) reward, while timing of the SS and LL durations was measured during peak trials within the impulsive choice procedure. The rats showed an increased preference for the LL following all three time-based interventions and also displayed increased temporal precision. These results add to the increasing evidence that supports a possible role for temporal processing in impulsive choice behavior and supply novel behavioral interventions to decrease impulsive behavior. PMID:25444771

  11. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  12. Urban noise functional stratification for estimating average annual sound level.

    PubMed

    Rey Gozalo, Guillermo; Barrigón Morillas, Juan Miguel; Prieto Gajardo, Carlos

    2015-06-01

    Road traffic noise causes many health problems and the deterioration of the quality of urban life; thus, adequate spatial noise and temporal assessment methods are required. Different methods have been proposed for the spatial evaluation of noise in cities, including the categorization method. Until now, this method has only been applied for the study of spatial variability with measurements taken over a week. In this work, continuous measurements of 1 year carried out in 21 different locations in Madrid (Spain), which has more than three million inhabitants, were analyzed. The annual average sound levels and the temporal variability were studied in the proposed categories. The results show that the three proposed categories highlight the spatial noise stratification of the studied city in each period of the day (day, evening, and night) and in the overall indicators (L(And), L(Aden), and L(A24)). Also, significant differences between the diurnal and nocturnal sound levels show functional stratification in these categories. Therefore, this functional stratification offers advantages from both spatial and temporal perspectives by reducing the sampling points and the measurement time.

  13. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less

  14. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  15. Seasonal variability of multiple leaf traits captured by leaf spectroscopy at two temperate deciduous forests

    DOE PAGES

    Yang, Xi; Tang, Jianwu; Mustard, John F.; ...

    2016-04-02

    Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon, water, and energy fluxes. However, we lack robust and efficient ways to monitor the temporal dynamics of leaf traits. Here we assessed the potential of leaf spectroscopy to predict and monitor leaf traits across their entire life cycle at different forest sites and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. In addition, the dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyllmore » a and b), carotenoids, mass-based nitrogen concentration (N mass), mass-based carbon concentration (C mass), and leaf mass per area (LMA)]. All leaf traits varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) modeling approach to estimate leaf traits from spectra, and found that PLSR was able to capture the variability across time, sites, and light environments of all leaf traits investigated (R 2 = 0.6–0.8 for temporal variability; R 2 = 0.3–0.7 for cross-site variability; R 2 = 0.4–0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the seasonal patterns. Compared with the estimation of foliar pigments, the performance of N mass, C mass and LMA PLSR models improved more significantly with sampling frequency. Our results demonstrate that leaf spectra-trait relationships vary with time, and thus tracking the seasonality of leaf traits requires statistical models calibrated with data sampled throughout the growing season. In conclusion, our results have broad implications for future research that use vegetation spectra to infer leaf traits at different growing stages.« less

  16. Assessing site-specific spatio-temporal variations in hydrogen and oxygen stable isotopes of human drinking water

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.; Bowen, G. J.; Ehleringer, J. R.

    2008-12-01

    Stable isotope ratios of hydrogen and oxygen (δ2H and δ18O) are environmental forensic tracers that can be used to constrain the origin and movement of animals, people, and products. The fundamental assumption underlying this method is that water resources at different geographic locations have distinct and characteristic isotopic signatures that are assimilated into organic tissues. Although much is known about regional-scale spatio-temporal variability in δ2H and δ18O of water, few studies have addressed the question of how distinct these geographic and seasonal patterns are for any given site. To address this question, a 2-year survey of δ2H and δ18O in tap water from across the contiguous U.S. and Canada was conducted. The data show that seasonal variability in δ2H and δ18O of tap water is generally low (<10 ‰ for δ2H), and those with the highest variability can be classified as: a) cities or towns in areas of high climate seasonality, or b) large cities in arid or seasonally arid regions which access and switch among multiple water sources throughout the year. The data suggest that inter-annual variation in tap water isotope ratios is typically low, with a median difference for month-month pairs during the 2 sampling years of 2.7 (δ2H). The results from this study confirm the existence of temporal variability in δ2H and δ18O of tap water, but suggest that this variability in human-managed systems is highly damped and may be amenable to classification, modeling, and prediction. In all, the data provide the foundation for incorporating temporal variation in predictive models of water and organic δ2H and δ18O, leading to more robust and statistically defensible tests of geographic origin.

  17. Optimizing a Sensor Network with Data from Hazard Mapping Demonstrated in a Heavy-Vehicle Manufacturing Facility.

    PubMed

    Berman, Jesse D; Peters, Thomas M; Koehler, Kirsten A

    2018-05-28

    To design a method that uses preliminary hazard mapping data to optimize the number and location of sensors within a network for a long-term assessment of occupational concentrations, while preserving temporal variability, accuracy, and precision of predicted hazards. Particle number concentrations (PNCs) and respirable mass concentrations (RMCs) were measured with direct-reading instruments in a large heavy-vehicle manufacturing facility at 80-82 locations during 7 mapping events, stratified by day and season. Using kriged hazard mapping, a statistical approach identified optimal orders for removing locations to capture temporal variability and high prediction precision of PNC and RMC concentrations. We compared optimal-removal, random-removal, and least-optimal-removal orders to bound prediction performance. The temporal variability of PNC was found to be higher than RMC with low correlation between the two particulate metrics (ρ = 0.30). Optimal-removal orders resulted in more accurate PNC kriged estimates (root mean square error [RMSE] = 49.2) at sample locations compared with random-removal order (RMSE = 55.7). For estimates at locations having concentrations in the upper 10th percentile, the optimal-removal order preserved average estimated concentrations better than random- or least-optimal-removal orders (P < 0.01). However, estimated average concentrations using an optimal-removal were not statistically different than random-removal when averaged over the entire facility. No statistical difference was observed for optimal- and random-removal methods for RMCs that were less variable in time and space than PNCs. Optimized removal performed better than random-removal in preserving high temporal variability and accuracy of hazard map for PNC, but not for the more spatially homogeneous RMC. These results can be used to reduce the number of locations used in a network of static sensors for long-term monitoring of hazards in the workplace, without sacrificing prediction performance.

  18. Masking Period Patterns and Forward Masking for Speech-Shaped Noise: Age-Related Effects.

    PubMed

    Grose, John H; Menezes, Denise C; Porter, Heather L; Griz, Silvana

    2016-01-01

    The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to nonsimultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Participants included younger (n = 11), middle-age (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions and assessed how well the temporal window fits accounted for these data. The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. This study demonstrated an age-related increase in susceptibility to nonsimultaneous masking, supporting the hypothesis that exacerbated nonsimultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data, suggesting an association between susceptibility to forward masking and speech understanding in modulated noise.

  19. Dynamics and spatio-temporal variability of environmental factors in Eastern Australia using functional principal component analysis

    USGS Publications Warehouse

    Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.

    2010-01-01

    This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.

  20. Assessing locomotor skills development in childhood using wearable inertial sensor devices: the running paradigm.

    PubMed

    Masci, Ilaria; Vannozzi, Giuseppe; Bergamini, Elena; Pesce, Caterina; Getchell, Nancy; Cappozzo, Aurelio

    2013-04-01

    Objective quantitative evaluation of motor skill development is of increasing importance to carefully drive physical exercise programs in childhood. Running is a fundamental motor skill humans adopt to accomplish locomotion, which is linked to physical activity levels, although the assessment is traditionally carried out using qualitative evaluation tests. The present study aimed at investigating the feasibility of using inertial sensors to quantify developmental differences in the running pattern of young children. Qualitative and quantitative assessment tools were adopted to identify a skill-sensitive set of biomechanical parameters for running and to further our understanding of the factors that determine progression to skilled running performance. Running performances of 54 children between the ages of 2 and 12 years were submitted to both qualitative and quantitative analysis, the former using sequences of developmental level, the latter estimating temporal and kinematic parameters from inertial sensor measurements. Discriminant analysis with running developmental level as dependent variable allowed to identify a set of temporal and kinematic parameters, within those obtained with the sensor, that best classified children into the qualitative developmental levels (accuracy higher than 67%). Multivariate analysis of variance with the quantitative parameters as dependent variables allowed to identify whether and which specific parameters or parameter subsets were differentially sensitive to specific transitions between contiguous developmental levels. The findings showed that different sets of temporal and kinematic parameters are able to tap all steps of the transitional process in running skill described through qualitative observation and can be prospectively used for applied diagnostic and sport training purposes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2010-01-01

    Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.

  2. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors.

    PubMed

    Keller, Virginie D J; Williams, Richard J; Lofthouse, Caryn; Johnson, Andrew C

    2014-02-01

    Dilution factors are a critical component in estimating concentrations of so-called "down-the-drain" chemicals (e.g., pharmaceuticals) in rivers. The present study estimated the temporal and spatial variability of dilution factors around the world using geographically referenced data sets at 0.5° × 0.5° resolution. Domestic wastewater effluents were derived from national per capita domestic water use estimates and gridded population. Monthly and annual river flows were estimated by accumulating runoff estimates using topographically derived flow directions. National statistics, including the median and interquartile range, were generated to quantify dilution factors. Spatial variability of the dilution factor was found to be considerable; for example, there are 4 orders of magnitude in annual median dilution factor between Canada and Morocco. Temporal variability within a country can also be substantial; in India, there are up to 9 orders of magnitude between median monthly dilution factors. These national statistics provide a global picture of the temporal and spatial variability of dilution factors and, hence, of the potential exposure to down-the-drain chemicals. The present methodology has potential for a wide international community (including decision makers and pharmaceutical companies) to assess relative exposure to down-the-drain chemicals released by human pollution in rivers and, thus, target areas of potentially high risk. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  3. EFFECT OF INTENSE FUNCTIONAL TASK TRAINING UPON TEMPORAL STRUCTURE OF VARIABILITY OF UPPER EXTREMITY POST STROKE

    PubMed Central

    Sethi, Amit; Davis, Sandra; McGuirk, Theresa; Patterson, Tara S.; Richards, Lorie G.

    2012-01-01

    Study Design Quasi-experimental design Introduction Although the effectiveness of constraint induced movement therapy (CIMT) in upper extremity (UE) rehabilitation post stroke is well known, the efficacy of CIMT to enhance the temporal structure of variability in upper extremity movement is not known. Purpose The purpose of this study was to investigate whether CIMT could enhance temporal structure of variability in upper extremity movement in individuals with chronic stroke. Methods Six participants with chronic stroke underwent CIMT for 4 hours/day for 2 weeks. Participants performed three trials of functional reach-to-grasp before and after CIMT. Temporal structure of variability was determined by calculating approximate entropy (ApEn) in shoulder, elbow and wrist flexion/extension joint angles. Results ApEn increased post CIMT, however, statistical significance was not achieved (p > 0.0167). Conclusion Future studies with larger sample size are warranted to investigate the effect of CIMT upon temporal structure of variability in UE movement. PMID:23084461

  4. Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  5. Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes

    USGS Publications Warehouse

    Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.

    2009-01-01

    1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

  6. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest

    USGS Publications Warehouse

    Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.

    2012-01-01

    Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.

  7. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000-2013)

    NASA Astrophysics Data System (ADS)

    Alexander, P. M.; Tedesco, M.; Fettweis, X.; van de Wal, R. S. W.; Smeets, C. J. P. P.; van den Broeke, M. R.

    2014-12-01

    Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July, and August (JJA) for the period 2000-2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatio-temporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare ice albedo. MODIS albedo, RCM outputs, and in situ observations consistently indicate a decrease in albedo of -0.03 to -0.06 per decade over the period 2003-2013 for the GrIS ablation area. Nevertheless, satellite products show a decline in JJA albedo of -0.03 to -0.04 per decade for regions within the accumulation area that is not confirmed by either the model or in situ observations. These findings appear to contradict a previous study that found an agreement between in situ and MODIS trends for individual months. The results indicate a need for further evaluation of high elevation albedo trends, a reconciliation of MODIS mean albedo at high latitudes, and the importance of accurately simulating bare ice albedo in RCMs.

  8. Uncertainty in recharge estimation: impact on groundwater vulnerability assessments for the Pearl Harbor Basin, O'ahu, Hawai'i, U.S.A.

    NASA Astrophysics Data System (ADS)

    Giambelluca, Thomas W.; Loague, Keith; Green, Richard E.; Nullet, Michael A.

    1996-06-01

    In this paper, uncertainty in recharge estimates is investigated relative to its impact on assessments of groundwater contamination vulnerability using a relatively simple pesticide mobility index, attenuation factor (AF). We employ a combination of first-order uncertainty analysis (FOUA) and sensitivity analysis to investigate recharge uncertainties for agricultural land on the island of O'ahu, Hawai'i, that is currently, or has been in the past, under sugarcane or pineapple cultivation. Uncertainty in recharge due to recharge component uncertainties is 49% of the mean for sugarcane and 58% of the mean for pineapple. The components contributing the largest amounts of uncertainty to the recharge estimate are irrigation in the case of sugarcane and precipitation in the case of pineapple. For a suite of pesticides formerly or currently used in the region, the contribution to AF uncertainty of recharge uncertainty was compared with the contributions of other AF components: retardation factor (RF), a measure of the effects of sorption; soil-water content at field capacity (ΘFC); and pesticide half-life (t1/2). Depending upon the pesticide, the contribution of recharge to uncertainty ranks second or third among the four AF components tested. The natural temporal variability of recharge is another source of uncertainty in AF, because the index is calculated using the time-averaged recharge rate. Relative to the mean, recharge variability is 10%, 44%, and 176% for the annual, monthly, and daily time scales, respectively, under sugarcane, and 31%, 112%, and 344%, respectively, under pineapple. In general, uncertainty in AF associated with temporal variability in recharge at all time scales exceeds AF. For chemicals such as atrazine or diuron under sugarcane, and atrazine or bromacil under pineapple, the range of AF uncertainty due to temporal variability in recharge encompasses significantly higher levels of leaching potential at some locations than that indicated by the AF estimate.

  9. Temporal and spatial variability of soil biological activity at European scale

    NASA Astrophysics Data System (ADS)

    Mallast, Janine; Rühlmann, Jörg

    2015-04-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. Soil biological activity was investigated using two model concepts: a) Re_clim parameter within the ICBM (Introductory Carbon Balance Model) (Andrén & Kätterer 1997) states a climatic factor summarizing soil water storage and soil temperature and its influence on soil biological activity. b) BAT (biological active time) approach derived from model CANDY (CArbon and Nitrogen Dynamic) (Franko & Oelschlägel 1995) expresses the variation of soil moisture, soil temperature and soil aeration as a time scale and an indicator of biological activity for soil organic matter (SOM) turnover. During an earlier stage both model concepts, Re_clim and BAT, were applied based on a monthly data to assess spatial variability of turnover conditions across Europe. This hampers the investigation of temporal variability (e.g. intra-annual). The improved stage integrates daily data of more than 350 weather stations across Europe presented by Klein Tank et al. (2002). All time series data (temperature, precipitation and potential evapotranspiration and soil texture derived from the European Soil Database (JRC 2006)), are used to calculate soil biological activity in the arable layer. The resulting BAT and Re_clim values were spatio-temporal investigated. While "temporal" refers to a long-term trend analysis, "spatial" includes the investigation of soil biological activity variability per environmental zone (ENZ, Metzger et al. 2005 representing similar conditions for precipitation, temperature and relief) to identify ranges and hence turnover conditions for each ENZ. We will discuss the analyzed results of both concepts to assess SOM turnover conditions across Europe for historical weather data and for Spain focusing on climate scenarios. Both concepts help to separate different turnover activities and to indicate organic matter input in order to maintain the given SOM. The assessment could provide recommendations for adaptations of soil management practices. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food (Grant Agreement N° 289782).

  10. Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric.

    PubMed

    Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M

    2016-06-01

    This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.

  11. Understanding the Spatiotemporal Variability of Inherent Water Use Efficiency

    NASA Astrophysics Data System (ADS)

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus

    2015-04-01

    The global carbon and water cycles are coupled via plant physiology. However, the resulting spatial and temporal covariability of both fluxes on a global scale lacks sufficient understanding. This is required to estimate the impact of atmospheric drought on photosynthesis in water-limited ecosystems. Water use efficiency (WUE) is an essential ecosystem diagnostic defined as the ratio between gross primary productivity (GPP) and transpiration (T). WUE is known to vary with vapour-pressure deficit (VPD) and therefore also in time. The inherent water use efficiency (iWUE) accounts for the VPD effect on WUE and aims at representing a largely time-invariant ecosystem property. However, different ways of describing the functional response of iWUE to VPD are found in the literature. One established iWUE definition was proposed by Beer et al. (2009) and takes the form of iWUE = GPP--VPD- . T (1) A similar definition can be derived from stomatal conductance theories such as Katul et al. (2010) and takes the form of √ -- GPP---VPD- iWUE = T . (2) Here, we use eddy covariance measurements from the FLUXNET database to evaluate both approaches for a globally representative set of biomes including tropical, temperate and semi-arid ecosystems. Testing both definitions in a model-data fusion setup indicated that (2) is more consistent with FLUXNET observations than (1). However, there still remains considerable temporal variability of iWUE which is linked to seasonal changes in VPD. To explore up to which extent the temporal variability of iWUE may be related to the prescribed functional responses to VPD, we treated the exponent of VPD as a global parameter, here termed γ. When γ = 1 the functional response is equivalent to (1), while when γ = 0.5 it corresponds to formulation of model (2)). The global estimate was found to be significantly lower than 0.5, which would have been expected from stomatal conductance theory at leaf level. We assessed whether adding γ as site-specific parameter could be justified. The additional model complexity was warranted by an increased goodness-of-fit as quantified by the Akaike information criterion. However, temporal variations in iWUE persist. The structural adequacy of the models was assessed via the correlation structure of the residuals. Ultimately, changing γ in the definition impacts the between-site variability of iWUE. The iWUE estimates with γ = 1.0 were only weakly correlated with those with γ = 0.5. This has crucial implications for spatial analyses on the drought response of water-limited ecosystems. We discuss uncertainties involved in the analysis and highlight possible mechanisms responsible for the remaining temporal variability of iWUE. The consequences of differing iWUE definitions for the analysis of global carbon and water cycles are explored.

  12. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom.

    PubMed

    Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio

    2018-04-01

    To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  14. The need to consider temporal variability when modelling exchange at the sediment-water interface

    USGS Publications Warehouse

    Rosenberry, Donald O.

    2011-01-01

    Most conceptual or numerical models of flows and processes at the sediment-water interface assume steady-state conditions and do not consider temporal variability. The steady-state assumption is required because temporal variability, if quantified at all, is usually determined on a seasonal or inter-annual scale. In order to design models that can incorporate finer-scale temporal resolution we first need to measure variability at a finer scale. Automated seepage meters that can measure flow across the sediment-water interface with temporal resolution of seconds to minutes were used in a variety of settings to characterize seepage response to rainfall, wind, and evapotranspiration. Results indicate that instantaneous seepage fluxes can be much larger than values commonly reported in the literature, although seepage does not always respond to hydrological processes. Additional study is needed to understand the reasons for the wide range and types of responses to these hydrologic and atmospheric events.

  15. Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2017-04-01

    Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.

  16. Response of Bacterioplankton Communities to Cadmium Exposure in Coastal Water Microcosms with High Temporal Variability

    PubMed Central

    Wang, Kai; Xiong, Jinbo; Chen, Xinxin; Zheng, Jialai; Hu, Changju; Yang, Yina; Zhu, Jianlin

    2014-01-01

    Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter−1 of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter−1). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3−-N, NO2−-N, PO43−-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern. PMID:25326310

  17. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    PubMed

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  18. Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data

    NASA Astrophysics Data System (ADS)

    Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline

    2011-11-01

    In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.

  19. A Fast Track approach to deal with the temporal dimension of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2017-07-01

    Population growth, socio-economic development and climate changes are placing increasing pressure on water resources. Crop water footprint is a key indicator in the quantification of such pressure. It is determined by crop evapotranspiration and crop yield, which can be highly variable in space and time. While the spatial variability of crop water footprint has been the objective of several investigations, the temporal variability remains poorly studied. In particular, some studies approached this issue by associating the time variability of crop water footprint only to yield changes, while considering evapotranspiration patterns as marginal. Validation of this Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a comprehensive validation, an assessment of its uncertainty, and an example of application. Our results show that the water footprint changes are mainly driven by yield trends, while evapotranspiration plays a minor role. The error due to considering constant evapotranspiration is three times smaller than the uncertainty of the model used to compute the crop water footprint. These results confirm the suitability of the Fast Track approach and enable a simple, yet appropriate, evaluation of time-varying crop water footprint.

  20. Wavelet principal component analysis of fetal movement counting data preceding hospital examinations due to decreased fetal movement: a prospective cohort study

    PubMed Central

    2013-01-01

    Background Fetal movement (FM) counting is a simple and widely used method of assessing fetal well-being. However, little is known about what women perceive as decreased fetal movement (DFM) and how maternally perceived DFM is reflected in FM charts. Methods We analyzed FM counting data from 148 DFM events occurring in 137 pregnancies. The women counted FM daily from pregnancy week 24 until birth using a modified count-to-ten procedure. Common temporal patterns for the two weeks preceding hospital examination due to DFM were extracted from the FM charts using wavelet principal component analysis; a statistical methodology particularly developed for modeling temporal data with sudden changes, i.e. spikes that are frequently found in FM data. The association of the extracted temporal patterns with fetal complications was assessed by including the individuals’ scores on the wavelet principal components as explanatory variables in multivariable logistic regression analyses for two outcome measures: (i) complications identified during DFM-related consultations (n = 148) and (ii) fetal compromise at the time of consultation (including relevant information about birth outcome and placental pathology). The latter outcome variable was restricted to the DFM events occurring within 21 days before birth (n = 76). Results Analyzing the 148 and 76 DFM events, the first three main temporal FM counting patterns explained 87.2% and 87.4%, respectively, of all temporal variation in the FM charts. These three temporal patterns represented overall counting times, sudden spikes around the time of DFM events, and an inverted U-shaped pattern, explaining 75.3%, 8.6%, and 3.3% and 72.5%, 9.6%, and 5.3% of variation in the total cohort and subsample, respectively. Neither of the temporal patterns was significantly associated with the two outcome measures. Conclusions Acknowledging that sudden, large changes in fetal activity may be underreported in FM charts, our study showed that the temporal FM counting patterns in the two weeks preceding DFM-related consultation contributed little to identify clinically important changes in perceived FM. It thus provides insufficient information for giving detailed advice to women on when to contact health care providers. The importance of qualitative features of maternally perceived DFM should be further explored. PMID:24007565

  1. Wavelet principal component analysis of fetal movement counting data preceding hospital examinations due to decreased fetal movement: a prospective cohort study.

    PubMed

    Winje, Brita Askeland; Røislien, Jo; Saastad, Eli; Eide, Jorid; Riley, Christopher Finne; Stray-Pedersen, Babill; Frøen, J Frederik

    2013-09-05

    Fetal movement (FM) counting is a simple and widely used method of assessing fetal well-being. However, little is known about what women perceive as decreased fetal movement (DFM) and how maternally perceived DFM is reflected in FM charts. We analyzed FM counting data from 148 DFM events occurring in 137 pregnancies. The women counted FM daily from pregnancy week 24 until birth using a modified count-to-ten procedure. Common temporal patterns for the two weeks preceding hospital examination due to DFM were extracted from the FM charts using wavelet principal component analysis; a statistical methodology particularly developed for modeling temporal data with sudden changes, i.e. spikes that are frequently found in FM data. The association of the extracted temporal patterns with fetal complications was assessed by including the individuals' scores on the wavelet principal components as explanatory variables in multivariable logistic regression analyses for two outcome measures: (i) complications identified during DFM-related consultations (n = 148) and (ii) fetal compromise at the time of consultation (including relevant information about birth outcome and placental pathology). The latter outcome variable was restricted to the DFM events occurring within 21 days before birth (n = 76). Analyzing the 148 and 76 DFM events, the first three main temporal FM counting patterns explained 87.2% and 87.4%, respectively, of all temporal variation in the FM charts. These three temporal patterns represented overall counting times, sudden spikes around the time of DFM events, and an inverted U-shaped pattern, explaining 75.3%, 8.6%, and 3.3% and 72.5%, 9.6%, and 5.3% of variation in the total cohort and subsample, respectively. Neither of the temporal patterns was significantly associated with the two outcome measures. Acknowledging that sudden, large changes in fetal activity may be underreported in FM charts, our study showed that the temporal FM counting patterns in the two weeks preceding DFM-related consultation contributed little to identify clinically important changes in perceived FM. It thus provides insufficient information for giving detailed advice to women on when to contact health care providers. The importance of qualitative features of maternally perceived DFM should be further explored.

  2. Spatio-temporal response of maize yield to edaphic and meteorological conditions in a saline farmland

    USDA-ARS?s Scientific Manuscript database

    Spatio-temporal variability of crop production strongly depends on soil heterogeneity, meteorological conditions, and their interaction. Canopy reflectance can be used to describe crop status and yield spatial variability. The objectives of this work were to understand the spatio-temporal variabilit...

  3. Spatial and temporal patterns in fish assemblages of upper coastal plain streams, Mississippi, USA

    Treesearch

    Susan B. Adams; Melvin L. Warren; Wendell R. Haag

    2004-01-01

    We assessed spatial, seasonal, and annual variation in fish assemblages over 17 months in three small- to medium-sized, incised streams characteristic of northwestern Mississippi streams. We sampled 17 962 fish representing 52 species and compared assemblages within and among streams. Although annual and seasonal variability inassemblage structure was high, fish...

  4. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  5. Simulating spatial and temporally related fire weather

    Treesearch

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  6. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Treesearch

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  7. Spatio-Temporal Variability of Groundwater Storage in India

    NASA Technical Reports Server (NTRS)

    Bhanja, Soumendra; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2016-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Ground water storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent).In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  8. Spatio-temporal variability of groundwater storage in India.

    PubMed

    Bhanja, Soumendra N; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2017-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  9. Final Technical Report for DOE Award SC0006616

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Andrew

    2015-08-01

    This report summarizes research carried out by the project "Collaborative Research, Type 1: Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoonal Asia. This collaborative project brought together climate dynamicists (UCLA, IRI), dendroclimatologists (LDEO Tree Ring Laboratory), computer scientists (UCI), and hydrologists (Columbia Water Center, CWC), together with applied scientists in climate risk management (IRI) to create new scientific approaches to quantify and exploit the role of climate variability and change in the growing water crisis across southern and eastern Asia. This project developed new tree-ring based streamflow reconstructions for rivers in monsoonal Asia; improved understanding of hydrologic spatio-temporal modesmore » of variability over monsoonal Asia on interannual-to-centennial time scales; assessed decadal predictability of hydrologic spatio-temporal modes; developed stochastic simulation tools for creating downscaled future climate scenarios based on historical/proxy data and GCM climate change; and developed stochastic reservoir simulation and optimization for scheduling hydropower, irrigation and navigation releases.« less

  10. Incorporation of varying types of temporal data in a neural network

    NASA Technical Reports Server (NTRS)

    Cohen, M. E.; Hudson, D. L.

    1992-01-01

    Most neural network models do not specifically deal with temporal data. Handling of these variables is complicated by the different uses to which temporal data are put, depending on the application. Even within the same application, temporal variables are often used in a number of different ways. In this paper, types of temporal data are discussed, along with their implications for approximate reasoning. Methods for integrating approximate temporal reasoning into existing neural network structures are presented. These methods are illustrated in a medical application for diagnosis of graft-versus-host disease which requires the use of several types of temporal data.

  11. Temporal variability of green and blue water footprint worldwide

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania; Lomurno, Marianna; Tuninetti, Marta; Laio, Francesco; Ridolfi, Luca

    2016-04-01

    Water footprint assessment is becoming widely used in the scientific literature and it is proving useful in a number of multidisciplinary contexts. Given this increasing popularity, measures of green and blue water footprint (or virtual water content, VWC) require evaluations of uncertainty and variability to quantify the reliability of proposed analyses. As of today, no studies are known to assess the temporal variability of crop VWC at the global scale; the present contribution aims at filling this gap. We use a global high-resolution distributed model to compute the VWC of staple crops (wheat and maize), basing on the soil water balance, forced by hydroclimatic imputs, and on the total crop evapotranspiration in multiple growing seasons. Crop actual yield is estimated using country-based yield data, adjusted to account for spatial variability, allowing for the analysis of the different role played by climatic and management factors in the definition of crop yield. The model is then run using hydroclimatic data, i.e., precipitation and potential evapotranspiration, for the period 1961-2013 as taken from the CRU database (CRU TS v. 3.23) and using the corresponding country-based yield data from FAOSTAT. Results provide the time series of total evapotranspiration, actual yield and VWC, with separation between green and blue VWC, and the overall volume of water used for crop production, both at the cell scale (5x5 arc-min) and aggregated at the country scale. Preliminary results indicate that total (green+blue) VWC is, in general, weekly dependent on hydroclimatic forcings if water for irrigation is unlimited, because irrigated agriculture allows to compensate temporary water shortage. Conversely, most part of the VWC variability is found to be determined by the temporal evolution of crop yield. At the country scale, the total water used by countries for agricultural production has seen a limited change in time, but the marked increase in the water-use efficiency expressed by VWC has determined an increase of production. Such increase has helped to meet the increasing global food demand in the past 50 years.

  12. A new approach for the assessment of temporal clustering of extratropical wind storms

    NASA Astrophysics Data System (ADS)

    Schuster, Mareike; Eddounia, Fadoua; Kuhnel, Ivan; Ulbrich, Uwe

    2017-04-01

    A widely-used methodology to assess the clustering of storms in a region is based on dispersion statistics of a simple homogeneous Poisson process. This clustering measure is determined by the ratio of the variance and the mean of the local storm statistics per grid point. Resulting values larger than 1, i.e. when the variance is larger than the mean, indicate clustering; while values lower than 1 indicate a sequencing of storms that is more regular than a random process. However, a disadvantage of this methodology is that the characteristics are valid for a pre-defined climatological time period, and it is not possible to identify a temporal variability of clustering. Also, the absolute value of the dispersion statistics is not particularly intuitive. We have developed an approach to describe temporal clustering of storms which offers a more intuitive comprehension, and at the same time allows to assess temporal variations. The approach is based on the local distribution of waiting times between the occurrence of two individual storm events, the former being computed through the post-processing of individual windstorm tracks which in turn are obtained by an objective tracking algorithm. Based on this distribution a threshold can be set, either by the waiting time expected from a random process or by a quantile of the observed distribution. Thus, it can be determined if two consecutive wind storm events count as part of a (temporal) cluster. We analyze extratropical wind storms in a reanalysis dataset and compare the results of the traditional clustering measure with our new methodology. We assess what range of clustering events (in terms of duration and frequency) is covered and identify if the historically known clustered seasons are detectable by the new clustering measure in the reanalysis.

  13. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.

  14. Variability of human corticospinal excitability tracks the state of action preparation.

    PubMed

    Klein-Flügge, Miriam C; Nobbs, David; Pitcher, Julia B; Bestmann, Sven

    2013-03-27

    Task-evoked trial-by-trial variability is a ubiquitous property of neural responses, yet its functional role remains largely unclear. Recent work in nonhuman primates shows that the temporal structure of neural variability in several brain regions is task-related. For example, trial-by-trial variability in premotor cortex tracks motor preparation with increasingly consistent firing rates and thus a decline in variability before movement onset. However, whether noninvasive measures of the variability of population activity available from humans can similarly track the preparation of actions remains unknown. We tested this by using single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) to measure corticospinal excitability (CSE) at different times during action preparation. First, we established the basic properties of intrinsic CSE variability at rest. Then, during the task, responses (left or right button presses) were either directly instructed (forced choice) or resulted from a value decision (choice). Before movement onset, we observed a temporally specific task-related decline in CSE variability contralateral to the responding hand. This decline was stronger in fast-response compared with slow-response trials, consistent with data in nonhuman primates. For the nonresponding hand, CSE variability also decreased, but only in choice trials, and earlier compared with the responding hand, possibly reflecting choice-specific suppression of unselected actions. These findings suggest that human CSE variability measured by TMS over M1 tracks the state of motor preparation, and may reflect the optimization of preparatory population activity. This provides novel avenues in humans to assess the dynamics of action preparation but also more complex processes, such as choice-to-action transformations.

  15. Temporal variability of urinary cadmium in spot urine samples and first morning voids.

    PubMed

    Vacchi-Suzzi, Caterina; Porucznik, Christina A; Cox, Kyley J; Zhao, Yuan; Ahn, Hongshik; Harrington, James M; Levine, Keith E; Demple, Bruce; Marsit, Carmen J; Gonzalez, Adam; Luft, Benjamin; Meliker, Jaymie R

    2017-05-01

    Cadmium is a carcinogenic heavy metal. Urinary levels of cadmium are considered to be an indicator of long-term body burden, as cadmium accumulates in the kidneys and has a half-life of at least 10 years. However, the temporal stability of the biomarker in urine samples from a non-occupationally exposed population has not been rigorously established. We used repeated measurements of urinary cadmium (U-Cd) in spot urine samples and first morning voids from two separate cohorts, to assess the temporal stability of the samples. Urine samples from two cohorts including individuals of both sexes were measured for cadmium and creatinine. The first cohort (Home Observation of Perinatal Exposure (HOPE)) consisted of 21 never-smokers, who provided four first morning urine samples 2-5 days apart, and one additional sample roughly 1 month later. The second cohort (World Trade Center-Health Program (WTC-HP)) consisted of 78 individuals, including 52 never-smokers, 22 former smokers and 4 current smokers, who provided 2 spot urine samples 6 months apart, on average. Intra-class correlation was computed for groups of replicates from each individual to assess temporal variability. The median creatinine-adjusted U-Cd level (0.19 and 0.21 μg/g in the HOPE and WTC-HP, respectively) was similar to levels recorded in the United States by the National Health and Nutrition Examination Survey. The intra-class correlation (ICC) was high (0.76 and 0.78 for HOPE and WTC-HP, respectively) and similar between cohorts, irrespective of whether samples were collected days or months apart. Both single spot or first morning urine cadmium samples show good to excellent reproducibility in low-exposure populations.

  16. Temporal changes in aquatic-invertebrate and fish assemblages in streams of the north-central and northeastern U.S.

    USGS Publications Warehouse

    Kennen, Jonathan G.; Sullivan, Daniel J.; May, Jason T.; Bell, Amanda H.; Beaulieu, Karen M.; Rice, Donald E.

    2012-01-01

    Many management agencies seek to evaluate temporal changes in aquatic assemblages at monitoring sites, but few have sites with ecological time series that are long enough for this purpose. Trends in aquatic-invertebrate and fish assemblage composition were assessed at 27 long-term monitoring sites in the north-central and northeastern United States. Temporal changes were identified using serial trend analysis. Sites with significant serial trends were further evaluated by relating explanatory environmental variables (e.g., streamflow, habitat, and water chemistry) to changes in assemblage composition. Significant trends were found at 19 of 27 study sites; however, differences in the sensitivity of the aquatic fauna to environmental stressors were identified. For example, significant trends in fish assemblages were found at more sites (15 of 27) than for aquatic-invertebrate assemblages (10 of 27 sites). In addition, trends in the invertebrate assemblage were most often explained by changes in streamflow processes (e.g., duration and magnitude of low- and high-flows, streamflow variability, and annual rates of change), whereas trends in the fish assemblage were more related to changes in water chemistry. Results illustrate the value of long-term monitoring for the purpose of assessing temporal trends in aquatic assemblages. The ability to detect trends in assemblage composition and to attribute these changes to environmental factors is necessary to understand mechanistic pathways and to further our understanding of how incremental anthropogenic alterations modify aquatic assemblages over time. Finally, this study's approach to trends analysis can be used to better inform the design of monitoring programs as well as support the ongoing management needs of stakeholders, water-resource agencies, and policy makers.

  17. Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio

    2017-04-01

    Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging) algorithms. The available LiDAR databases will be used. LiDAR statistics (which describe the LiDAR cloud point data to calculate forest stand parameters) will be correlated with different canopy cover variables. The regression models applied to the total area will produce a continuous geo-information map to each canopy variable. The CO2 estimation will be calculated by dry-mass conversion factors for each forest species (C kg-CO2 kg equivalent). The result is the organic carbon modelling at spatio-temporal scale with different levels of uncertainty associated to the predictive models and diverse detailed scales. However, one of the main expected problems is due to the heterogeneous spatial distribution of the soil information, which influences on the prediction of the models at different spatial scales and, consequently, at SOC map scale. Besides this, the variability and mixture of the forest species of the aerial biomass decrease the accuracy assessment of the organic carbon.

  18. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests

    NASA Astrophysics Data System (ADS)

    Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.

    2015-05-01

    The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.

  19. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  20. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  1. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.

    PubMed

    Ulanowski, T A; Branfireun, B A

    2013-06-01

    The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in northern peatland environments could lead to erroneous conclusions concerning the abundance and distribution of natural elements and pollutants alike. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Changes in temporal variability of precipitation over land due to anthropogenic forcings

    DOE PAGES

    Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby

    2017-02-02

    This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less

  3. Developing priority variables ("ecosystem Essential Ocean Variables" - eEOVs) for observing dynamics and change in Southern Ocean ecosystems

    NASA Astrophysics Data System (ADS)

    Constable, Andrew J.; Costa, Daniel P.; Schofield, Oscar; Newman, Louise; Urban, Edward R.; Fulton, Elizabeth A.; Melbourne-Thomas, Jessica; Ballerini, Tosca; Boyd, Philip W.; Brandt, Angelika; de la Mare, Willaim K.; Edwards, Martin; Eléaume, Marc; Emmerson, Louise; Fennel, Katja; Fielding, Sophie; Griffiths, Huw; Gutt, Julian; Hindell, Mark A.; Hofmann, Eileen E.; Jennings, Simon; La, Hyoung Sul; McCurdy, Andrea; Mitchell, B. Greg; Moltmann, Tim; Muelbert, Monica; Murphy, Eugene; Press, Anthony J.; Raymond, Ben; Reid, Keith; Reiss, Christian; Rice, Jake; Salter, Ian; Smith, David C.; Song, Sun; Southwell, Colin; Swadling, Kerrie M.; Van de Putte, Anton; Willis, Zdenka

    2016-09-01

    Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator-prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region - the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term. Regional boundary: south of 30°S.

  4. Ocean time-series near Bermuda: Hydrostation S and the US JGOFS Bermuda Atlantic time-series study

    NASA Technical Reports Server (NTRS)

    Michaels, Anthony F.; Knap, Anthony H.

    1992-01-01

    Bermuda is the site of two ocean time-series programs. At Hydrostation S, the ongoing biweekly profiles of temperature, salinity and oxygen now span 37 years. This is one of the longest open-ocean time-series data sets and provides a view of decadal scale variability in ocean processes. In 1988, the U.S. JGOFS Bermuda Atlantic Time-series Study began a wide range of measurements at a frequency of 14-18 cruises each year to understand temporal variability in ocean biogeochemistry. On each cruise, the data range from chemical analyses of discrete water samples to data from electronic packages of hydrographic and optics sensors. In addition, a range of biological and geochemical rate measurements are conducted that integrate over time-periods of minutes to days. This sampling strategy yields a reasonable resolution of the major seasonal patterns and of decadal scale variability. The Sargasso Sea also has a variety of episodic production events on scales of days to weeks and these are only poorly resolved. In addition, there is a substantial amount of mesoscale variability in this region and some of the perceived temporal patterns are caused by the intersection of the biweekly sampling with the natural spatial variability. In the Bermuda time-series programs, we have added a series of additional cruises to begin to assess these other sources of variation and their impacts on the interpretation of the main time-series record. However, the adequate resolution of higher frequency temporal patterns will probably require the introduction of new sampling strategies and some emerging technologies such as biogeochemical moorings and autonomous underwater vehicles.

  5. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.

    PubMed

    Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J

    Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.

  6. Hydrogeomorphological variability and ecological impacts in straight and restored river reach sections

    NASA Astrophysics Data System (ADS)

    Schäppi, B.; Molnar, P.; Perona, P.; Tockner, K.; Burlando, P.

    2009-04-01

    Healthy floodplain ecosystems are characterized by high habitat diversity which tends to be lost in straightened channelized rivers. River restoration projects aim to increase habitat heterogeneity by re-establishing natural flow conditions and/or re-activating geomorphic processes in straightened reaches. The success of such projects is usually measured by means of structural and functional hydrogeomorphic and ecological indicators. Important indicators include flow variables and morphological features such as flow depth, velocity, shore line length, exposed gravel area and wetted river width. Also important are the rates at which these variables and features change under varying streamflow. A high spatial variability in the indicators is generally connected with high habitat diversity. The temporal availability and spatial distribution of both aquatic and riparian habitats control the composition and diversity of benthic organisms, fish, and riparian communities. Spatial heterogeneity provides refugia, i.e. areas from which recolonization after a disturbance event may occur. In addition, it facilitates the transfer of organisms and matter across the aquatic and terrestrial interface, thereby increasing the overall functional performance of coupled river-riparian ecosystems. However the habitat diversity can be maintained over time only if there are frequent disturbances such as periodic floods that reset the system and create new germination sites for pioneer vegetation and rework the channel bed to form new aquatic habitat. Therefore the flow and morphology indicators need to be investigated on spatial as well as on temporal scales. Traditionally, these indicators are measured in the field albeit most measurements can be carried out only at low flow conditions. We propose that flow simulations with a 2d hydrodynamic model may be used for a fast and convenient assessment of indicators of flow variables and morphological features with relatively little calibration required and we illustrate an example thereof. The advantage of using computer simulations as compared to field observations is that a range of discharges can be investigated. Using a flood frequency analysis the return period of simulated flows can be estimated and translated into frequency-dependent habitat types. In order to investigate how flow variables change, we conducted a series of 2d flow simulations at different flow rates along the prealpine Thur River (Switzerland) consisting of both restored and straight reaches. Restoration basically consisted of widening the river cross-section and allowing a natural morphology to form. The simulated flow variables (flow depth and velocity) were then analyzed separately for the two reaches. The distributions of the both variables for the restored reach were significantly different from the straight reach, most notably an increase in the variance was observed. In order to analyze the temporal variability we investigated the development of the riverbed morphology over time using different digital elevation models combined with cross section data measured at annual intervals. Spatially explicit erosion and deposition patterns were derived from this analysis. The riverbed topography at different dates was then used to analyze the temporal evolution of the flow indicators for the different flow conditions. Comparisons between the restored and straight reaches allow us to assess the success of river restoration in terms of flow variability and morphological complexity.

  7. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef

    PubMed Central

    Luter, Heidi M.; Duckworth, Alan R.; Wolff, Carsten W.; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  8. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  9. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    USGS Publications Warehouse

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  10. Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast

    NASA Astrophysics Data System (ADS)

    Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.

    2017-08-01

    Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.

  11. Temporal and spatial variability in North Carolina piedmont stream temperature

    Treesearch

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  12. Spatial versus Day-To-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions – Developing Optimized Approaches to Representative Flux Measurements

    PubMed Central

    Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David

    2015-01-01

    Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229

  13. Validation of prediction models: examining temporal and geographic stability of baseline risk and estimated covariate effects

    PubMed Central

    Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.

    2018-01-01

    Background Stability in baseline risk and estimated predictor effects both geographically and temporally is a desirable property of clinical prediction models. However, this issue has received little attention in the methodological literature. Our objective was to examine methods for assessing temporal and geographic heterogeneity in baseline risk and predictor effects in prediction models. Methods We studied 14,857 patients hospitalized with heart failure at 90 hospitals in Ontario, Canada, in two time periods. We focussed on geographic and temporal variation in baseline risk (intercept) and predictor effects (regression coefficients) of the EFFECT-HF mortality model for predicting 1-year mortality in patients hospitalized for heart failure. We used random effects logistic regression models for the 14,857 patients. Results The baseline risk of mortality displayed moderate geographic variation, with the hospital-specific probability of 1-year mortality for a reference patient lying between 0.168 and 0.290 for 95% of hospitals. Furthermore, the odds of death were 11% lower in the second period than in the first period. However, we found minimal geographic or temporal variation in predictor effects. Among 11 tests of differences in time for predictor variables, only one had a modestly significant P value (0.03). Conclusions This study illustrates how temporal and geographic heterogeneity of prediction models can be assessed in settings with a large sample of patients from a large number of centers at different time periods. PMID:29350215

  14. Identification of functional parameters for the classification of older female fallers and prediction of ‘first-time’ fallers

    PubMed Central

    König, N.; Taylor, W. R.; Armbrecht, G.; Dietzel, R.; Singh, N. B.

    2014-01-01

    Falls remain a challenge for ageing societies. Strong evidence indicates that a previous fall is the strongest single screening indicator for a subsequent fall and the need for assessing fall risk without accounting for fall history is therefore imperative. Testing in three functional domains (using a total 92 measures) were completed in 84 older women (60–85 years of age), including muscular control, standing balance, and mean and variability of gait. Participants were retrospectively classified as fallers (n = 38) or non-fallers (n = 42) and additionally in a prospective manner to identify first-time fallers (FTFs) (n = 6) within a 12-month follow-up period. Principal component analysis revealed that seven components derived from the 92 functional measures are sufficient to depict the spectrum of functional performance. Inclusion of only three components, related to mean and temporal variability of walking, allowed classification of fallers and non-fallers with a sensitivity and specificity of 74% and 76%, respectively. Furthermore, the results indicate that FTFs show a tendency towards the performance of fallers, even before their first fall occurs. This study suggests that temporal variability and mean spatial parameters of gait are the only functional components among the 92 measures tested that differentiate fallers from non-fallers, and could therefore show efficacy in clinical screening programmes for assessing risk of first-time falling. PMID:24898021

  15. A change in temporal organization of fidgety movements during the fidgety movement period is common among high risk infants.

    PubMed

    Sæther, Rannei; Støen, Ragnhild; Vik, Torstein; Fjørtoft, Toril; Vågen, Randi Tynes; Silberg, Inger Elisabeth; Loennecken, Marianne; Møinichen, Unn Inger; Lydersen, Stian; Adde, Lars

    2016-07-01

    General movement assessment (GMA) at 9-20 weeks post-term, can effectively predict cerebral palsy. Our aim was to evaluate intra-individual variability of the temporal organization of fidgety movements (FMs) in high risk infants. 104 High risk infants (66 males) with at least two video recordings from the FMs period participated. 45 of the infants had GA <28 weeks and/or BW ≤800 g. Mean post-term age at first and second assessments was 11.0 (8-16) and 14.0 (11-17) weeks, respectively, and median time-difference between the assessments was 2.0 (range: three days to six weeks) weeks. Video recordings were analyzed according to Prechtl's GMA. 33 (32%) Infants were classified differently at first and second assessments. Six infants (6%) changed from normal to abnormal, and 10 (10%) changed from abnormal to normal FMs. Seven of the ten who changed classification from abnormal to normal were born before GA 26 weeks. A change between intermittent and continual, which are both considered normal, was observed in 17 (16%) infants. A change in temporal organization of FMs is common in high risk infants. Especially in extremely preterm infants with abnormal FMs, more than one assessment should be performed before long-term prognosis is considered. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  16. Anger as a predictor of psychological distress and self-harm ideation in inmates: a structured self-assessment diary study.

    PubMed

    Humber, Naomi; Emsley, Richard; Pratt, Daniel; Tarrier, Nicholas

    2013-11-30

    Suicidal ideation and behaviour are common among inmates. Anger is found at exaggerated levels and has been associated with suicidal ideation and behaviour in inmate samples suggesting its possible salience in the prediction of suicide. The study investigated relationships between anger, psychological distress, and self-harm/suicidal ideation among inmates. The principles of Ecological Momentary Assessment were considered and a structured self-assessment diary was utilised to examine relationships between the variables of interest. Participants completed a structured self-assessment diary for six consecutive days which included momentary ratings of items describing psychological states of concurrent affects, thoughts, and appraisals related to anger, psychological distress, and self-harm/suicidal ideation. Psychometric assessment measures were also conducted. Temporal associations between predictors and outcomes were investigated. Multilevel modelling analyses were performed. Increased anger was significantly associated with concurrent high levels of self-harm ideation in inmates, when controlling for depression and hopelessness. Temporal analyses also revealed that anger at one time point did not predict suicidal ideation at the next time point. Elucidating the temporal nature of the relationship between anger, psychological distress, and self-harm/suicidal ideation has advanced understanding of the mechanisms of suicidal behaviour, by demonstrating an increased risk of suicide when a male inmate is angry. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Strontium isotopes in otoliths of a non-migratory fish (slimy sculpin): Implications for provenance studies

    USGS Publications Warehouse

    Brennan, Sean R.; Fernandez, Diego P.; Zimmerman, Christian E.; Cerling, Thure E.; Brown, Randy J.; Wooller, Matthew J.

    2015-01-01

    Heterogeneity in 87Sr/86Sr ratios of river-dissolved strontium (Sr) across geologically diverse environments provides a useful tool for investigating provenance, connectivity and movement patterns of various organisms and materials. Evaluation of site-specific 87Sr/86Sr temporal variability throughout study regions is a prerequisite for provenance research, but the dynamics driving temporal variability are generally system-dependent and not accurately predictable. We used the time-keeping properties of otoliths from non-migratory slimy sculpin (Cottus cognatus) to evaluate multi-scale 87Sr/86Sr temporal variability of river waters throughout the Nushagak River, a large (34,700 km2) remote watershed in Alaska, USA. Slimy sculpin otoliths incorporated site-specific temporal variation at sub-annual resolution and were able to record on the order of 0.0001 changes in the 87Sr/86Sr ratio. 87Sr/86Sr profiles of slimy sculpin collected in tributaries and main-stem channels of the upper watershed indicated that these regions were temporally stable, whereas the Lower Nushagak River exhibited some spatio-teporal variability. This study illustrates how the behavioral ecology of a non-migratory organism can be used to evaluate sub-annual 87Sr/86Sr temporal variability and has broad implications for provenance studies employing this tracer.

  18. Multiple Types of Memory and Everyday Functional Assessment in Older Adults

    PubMed Central

    Beaver, Jenna

    2017-01-01

    Abstract Objective Current proxy measures for assessing everyday functioning (e.g., questionnaires, performance-based measures, and direct observation) show discrepancies in their rating of functional status. The present study investigated the relationship between multiple proxy measures of functional status and content memory (i.e., memory for information), temporal order memory, and prospective memory in an older adult sample. Method A total of 197 community-dwelling older adults who did (n = 45) or did not meet (n = 152) criteria for mild cognitive impairment (MCI), completed six different assessments of functional status (two questionnaires, two performance-based tasks, and two direct observation tasks) as well as experimental measures of content memory, prospective memory, and temporal order memory. Results After controlling for demographics and content memory, the temporal order and prospective memory measures explained a significant amount of variance in all proxy functional status measures. When all variables were entered into the regression analyses, content memory and prospective memory were found to be significant predictors of all measures of functional status, whereas temporal order memory was a significant predictor for the questionnaire and direct observation measures, but not performance-based measures. Conclusion The results suggest that direct observation and questionnaire measures may be able to capture components of everyday functioning that require context and temporal sequencing abilities, such as multi-tasking, that are not as well captured in many current laboratory performance-based measures of functional status. Future research should aim to inform the development and use of maximally effective and valid proxy measures of functional ability. PMID:28334170

  19. Culicidae Community Composition and Temporal Dynamics in Guapiaçu Ecological Reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil

    PubMed Central

    Alencar, Jeronimo; de Mello, Cecilia Ferreira; Guimarães, Anthony Érico; Gil-Santana, Hélcio R.; Silva, Júlia dos Santos; Santos- Mallet, Jacenir R.; Gleiser, Raquel M.

    2015-01-01

    A temporal observational study was conducted of the Culicidae fauna in a remnant area of Atlantic Forest within a private reserve (Guapiaçu Ecological Reserve-REGUA) presenting typical vegetation cover of dense rain forest, with some patches recovering a floristic composition similar to that of the original community. Research was carried out to analyze the influence of climatic factors (mean monthly temperature, rainfall, and air relative humidity) on the temporal dynamics of the mosquito communities that occur in the reserve. The completeness of the mosquito inventory was assessed with individual-based rarefaction-extrapolation curves. Differences in species composition between sites and months were tested with PERMANOVA. True diversities of orders 0, 1, and 2 (effective numbers) were estimated and compared between sites, months, and years. Multiple stepwise regressions were used to assess relationships between climatic variables, measures of diversity, and abundances of the most common species. There were significant interactive effects between year and site on measures of diversity. However, diversity estimates showed little variation among months, and these were weakly correlated with climatic variables. Abundances of the most common species were significantly related to temperature or relative humidity, but not rainfall. The presence of mosquito species known to be vectors of human diseases combined with an intermittent flow of visitors to the study area suggests there is a risk of disease transmission that warrants further monitoring. PMID:25815724

  20. Hygienic food handling behaviors: attempting to bridge the intention-behavior gap using aspects from temporal self-regulation theory.

    PubMed

    Fulham, Elizabeth; Mullan, Barbara

    2011-06-01

    An estimated 25% of the populations of both the United States and Australia suffer from foodborne illness every year, generally as a result of incorrect food handling practices. The aim of the current study was to determine through the application of the theory of planned behavior what motivates these behaviors and to supplement the model with two aspects of temporal self-regulation theory--behavioral prepotency and executive function--in an attempt to bridge the "intention-behavior gap." A prospective 1-week design was utilized to investigate the prediction of food hygiene using the theory of planned behavior with the additional variables of behavioral prepotency and executive function. One hundred forty-nine undergraduate psychology students completed two neurocognitive executive function tasks and a self-report questionnaire assessing theory of planned behavior variables, behavioral prepotency, and intentions to perform hygienic food handling behaviors. A week later, behavior was assessed via a follow-up self-report questionnaire. It was found that subjective norm and perceived behavioral control predicted intentions and intentions predicted behavior. However, behavioral prepotency was found to be the strongest predictor of behavior, over and above intentions, suggesting that food hygiene behavior is habitual. Neither executive function measure of self-regulation predicted any additional variance. These results provide support for the utility of the theory of planned behavior in this health domain, but the augmentation of the theory with two aspects of temporal self-regulation theory was only partially successful.

  1. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines.

    PubMed

    Carvajal, Thaddeus M; Viacrusis, Katherine M; Hernandez, Lara Fides T; Ho, Howell T; Amalin, Divina M; Watanabe, Kozo

    2018-04-17

    Several studies have applied ecological factors such as meteorological variables to develop models and accurately predict the temporal pattern of dengue incidence or occurrence. With the vast amount of studies that investigated this premise, the modeling approaches differ from each study and only use a single statistical technique. It raises the question of whether which technique would be robust and reliable. Hence, our study aims to compare the predictive accuracy of the temporal pattern of Dengue incidence in Metropolitan Manila as influenced by meteorological factors from four modeling techniques, (a) General Additive Modeling, (b) Seasonal Autoregressive Integrated Moving Average with exogenous variables (c) Random Forest and (d) Gradient Boosting. Dengue incidence and meteorological data (flood, precipitation, temperature, southern oscillation index, relative humidity, wind speed and direction) of Metropolitan Manila from January 1, 2009 - December 31, 2013 were obtained from respective government agencies. Two types of datasets were used in the analysis; observed meteorological factors (MF) and its corresponding delayed or lagged effect (LG). After which, these datasets were subjected to the four modeling techniques. The predictive accuracy and variable importance of each modeling technique were calculated and evaluated. Among the statistical modeling techniques, Random Forest showed the best predictive accuracy. Moreover, the delayed or lag effects of the meteorological variables was shown to be the best dataset to use for such purpose. Thus, the model of Random Forest with delayed meteorological effects (RF-LG) was deemed the best among all assessed models. Relative humidity was shown to be the top-most important meteorological factor in the best model. The study exhibited that there are indeed different predictive outcomes generated from each statistical modeling technique and it further revealed that the Random forest model with delayed meteorological effects to be the best in predicting the temporal pattern of Dengue incidence in Metropolitan Manila. It is also noteworthy that the study also identified relative humidity as an important meteorological factor along with rainfall and temperature that can influence this temporal pattern.

  2. On the Comparison of the Global Surface Soil Moisture product and Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Delorme, B., Jr.; Ottlé, C.; Peylin, P.; Polcher, J.

    2016-12-01

    Thanks to its large spatio-temporal coverage, the new ESA CCI multi-instruments dataset offers a good opportunity to assess and improve land surface models parametrization. In this study, the ESA CCI surface soil moisture (SSM) combined product (v2.2) has been compared to the simulated top first layers of the ORCHIDEE LSM (the continental part of the IPSL earth system model), in order to evaluate its potential of improvements with data assimilation techniques. The ambition of the work was to develop a comprehensive comparison methodology by analyzing simultaneously the temporal and spatial structures of both datasets. We analyzed the SSM synoptic, seasonal, and inter-annual variations by decomposing the signals into fast and slow components. ORCHIDEE was shown to adequately reproduce the observed SSM dynamics in terms of temporal correlation. However, these correlation scores are supposed to be strongly influenced by SSM seasonal variability and the quality of the model input forcing. Autocorrelation and spectral analyses brought out disagreements in the temporal inertia of the upper soil moisture reservoirs. By linking our results to land cover maps, we found that ORCHIDEE is more dependent on rainfall events compared to the observations in regions with sparse vegetation cover. These diflerences might be due to a wrong partition of rainfall between soil evaporation, transpiration, runofl and drainage in ORCHIDEE. To refine this analysis, a single value decomposition (SVD) of the co-variability between rainfall provided by WFDEI and soil moisture was pursued over Central Europe and South Africa. It showed that spatio-temporal co-varying patterns between ORCHIDEE and rainfall and the ESA-CCI product and rainfall are in relatively good agreement. However, the leading SVD pattern, which exhibits a strong annual cycle and explains the same portion of covariance for both datasets, explains a much larger fraction of variance for ORCHIDEE than for the ESA-CCI product. These results highlight that the role of other surface variables presenting a strong seasonal variability (like vegetation cover, possibly irrigation) is not accounted for similarly in both the model and the product, and that further work is needed to explore these discrepancies.

  3. Masking Period Patterns & Forward Masking for Speech-Shaped Noise: Age-related effects

    PubMed Central

    Grose, John H.; Menezes, Denise C.; Porter, Heather L.; Griz, Silvana

    2015-01-01

    Objective The purpose of this study was to assess age-related changes in temporal resolution in listeners with relatively normal audiograms. The hypothesis was that increased susceptibility to non-simultaneous masking contributes to the hearing difficulties experienced by older listeners in complex fluctuating backgrounds. Design Participants included younger (n = 11), middle-aged (n = 12), and older (n = 11) listeners with relatively normal audiograms. The first phase of the study measured masking period patterns for speech-shaped noise maskers and signals. From these data, temporal window shapes were derived. The second phase measured forward-masking functions, and assessed how well the temporal window fits accounted for these data. Results The masking period patterns demonstrated increased susceptibility to backward masking in the older listeners, compatible with a more symmetric temporal window in this group. The forward-masking functions exhibited an age-related decline in recovery to baseline thresholds, and there was also an increase in the variability of the temporal window fits to these data. Conclusions This study demonstrated an age-related increase in susceptibility to non-simultaneous masking, supporting the hypothesis that exacerbated non-simultaneous masking contributes to age-related difficulties understanding speech in fluctuating noise. Further support for this hypothesis comes from limited speech-in-noise data suggesting an association between susceptibility to forward masking and speech understanding in modulated noise. PMID:26230495

  4. Fine scale climatic and soil variability effects on plant species cover along the Front Range of Colorado, USA

    NASA Astrophysics Data System (ADS)

    Cumming, William Frank Preston

    Fine scale studies are rarely performed to address landscape level responses to microclimatic variability. Is it the timing, distribution, and magnitude of soil temperature and moisture that affects what species emerge each season and, in turn, their resilience to fluctuations in microclimate. For this dissertation research, I evaluated the response of vegetation change to microclimatic variability within two communities over a three year period (2009-2012) utilizing 25 meter transects at two locations along the Front Range of Colorado near Boulder, CO and Golden, CO respectively. To assess microclimatic variability, spatial and temporal autocorrelation analyses were performed with soil temperature and moisture. Species cover was assessed along several line transects and correlated with microclimatic variability. Spatial and temporal autocorrelograms are useful tools in identifying the degree of dependency of soil temperature and moisture on the distance and time between pairs of measurements. With this analysis I found that a meter spatial resolution and two-hour measurements are sufficient to capture the fine scale variability in soil properties throughout the year. By comparing this to in situ measurements of soil properties and species percent cover I found that there are several plant functional types and/or species origin in particular that are more sensitive to variations in temperature and moisture than others. When all seasons, locations, correlations, and regional climate are looked at, it is the month of March that stands out in terms of significance. Additionally, of all of the vegetation types represented at these two sites C4, C3, native, non-native, and forb species seem to be the most sensitive to fluctuations in soil temperature, moisture, and regional climate in the spring season. The steady decline in percent species cover the study period and subsequent decrease in percent species cover and size at both locations may indicate that certain are unable to respond to continually higher temperatures and lower moisture availability that is inevitable with future climatic variability.

  5. Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations.

    PubMed

    Irrmischer, Mona; van der Wal, C Natalie; Mansvelder, Huibert D; Linkenkaer-Hansen, Klaus

    2018-01-01

    There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability.

  6. Negative mood and mind wandering increase long-range temporal correlations in attention fluctuations

    PubMed Central

    van der Wal, C. Natalie; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus

    2018-01-01

    There is growing evidence that the intermittent nature of mind wandering episodes and mood have a pronounced influence on trial-to-trial variability in performance. Nevertheless, the temporal dynamics and significance of such lapses in attention remains inadequately understood. Here, we hypothesize that the dynamics of fluctuations in sustained attention between external and internal sources of information obey so-called critical-state dynamics, characterized by trial-to-trial dependencies with long-range temporal correlations. To test this, we performed behavioral investigations measuring reaction times in a visual sustained attention task and cued introspection in probe-caught reports of mind wandering. We show that trial-to-trial variability in reaction times exhibit long-range temporal correlations in agreement with the criticality hypothesis. Interestingly, we observed the fastest responses in subjects with the weakest long-range temporal correlations and show the vital effect of mind wandering and bad mood on this response variability. The implications of these results stress the importance of future research to increase focus on behavioral variability. PMID:29746529

  7. Challenges to Progress in Studies of Climate-Tectonic-Erosion Interactions

    NASA Astrophysics Data System (ADS)

    Burbank, D. W.

    2016-12-01

    Attempts to unravel the relative importance of climate and tectonics in modulating topography and erosion should compare relevant data sets at comparable temporal and spatial scales. Given that such data are uncommonly available, how can we compare diverse data sets in a robust fashion? Many erosion-rate studies rely on detrital cosmogenic nuclides. What time scales can such data address, and what landscape conditions do they require to provide accurate representations of long-term erosion rates? To what extent do large-scale, but infrequent erosional events impact long-term rates? Commonly, long-term erosion rates are deduced from thermochronologic data. What types of data are needed to test for consistency of rates across a given interval or change in rates through time? Similarly, spatial and temporal variability in precipitation or tectonics requires averaging across appropriate scales. How are such data obtained in deforming mountain belts, and how do we assess their reliability? This study describes the character and temporal duration of key variables that are needed to examine climate-tectonic-erosion interactions, explores the strengths and weaknesses of several study areas, and suggests the types of data requirements that will underpin enlightening "tests" of hypotheses related to the mutual impacts of climate, tectonics, and erosion.

  8. A generalized baleen whale call detection and classification system.

    PubMed

    Baumgartner, Mark F; Mussoline, Sarah E

    2011-05-01

    Passive acoustic monitoring allows the assessment of marine mammal occurrence and distribution at greater temporal and spatial scales than is now possible with traditional visual surveys. However, the large volume of acoustic data and the lengthy and laborious task of manually analyzing these data have hindered broad application of this technique. To overcome these limitations, a generalized automated detection and classification system (DCS) was developed to efficiently and accurately identify low-frequency baleen whale calls. The DCS (1) accounts for persistent narrowband and transient broadband noise, (2) characterizes temporal variation of dominant call frequencies via pitch-tracking, and (3) classifies calls based on attributes of the resulting pitch tracks using quadratic discriminant function analysis (QDFA). Automated detections of sei whale (Balaenoptera borealis) downsweep calls and North Atlantic right whale (Eubalaena glacialis) upcalls were evaluated using recordings collected in the southwestern Gulf of Maine during the spring seasons of 2006 and 2007. The accuracy of the DCS was similar to that of a human analyst: variability in differences between the DCS and an analyst was similar to that between independent analysts, and temporal variability in call rates was similar among the DCS and several analysts.

  9. Variability of Upper-Tropospheric Precipitable from Satellite and Model Reanalysis Datasets

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Iwai, Hisaki

    1999-01-01

    Numerous datasets have been used to quantify water vapor and its variability in the upper-troposphere from satellite and model reanalysis data. These investigations have shown some usefulness in monitoring seasonal and inter-annual variations in moisture either globally, with polar orbiting satellite data or global model output analysis, or regionally, with the higher spatial and temporal resolution geostationary measurements. The datasets are not without limitations, however, due to coverage or limited temporal sampling, and may also contain bias in their representation of moisture processes. The research presented in this conference paper inter-compares the NVAP, NCEP/NCAR and DAO reanalysis models, and GOES satellite measurements of upper-tropospheric,precipitable water for the period from 1988-1994. This period captures several dramatic swings in climate events associated with ENSO events. The data are evaluated for temporal and spatial continuity, inter-compared to assess reliability and potential bias, and analyzed in light of expected trends due to changes in precipitation and synoptic-scale weather features. This work is the follow-on to previous research which evaluated total precipitable water over the same period. The relationship between total and upper-level precipitable water in the datasets will be discussed as well.

  10. Precipitation data in a mountainous catchment in Honduras: quality assessment and spatiotemporal characteristics

    NASA Astrophysics Data System (ADS)

    Westerberg, I.; Walther, A.; Guerrero, J.-L.; Coello, Z.; Halldin, S.; Xu, C.-Y.; Chen, D.; Lundin, L.-C.

    2010-08-01

    An accurate description of temporal and spatial precipitation variability in Central America is important for local farming, water supply and flood management. Data quality problems and lack of consistent precipitation data impede hydrometeorological analysis in the 7,500 km2 Choluteca River basin in central Honduras, encompassing the capital Tegucigalpa. We used precipitation data from 60 daily and 13 monthly stations in 1913-2006 from five local authorities and NOAA's Global Historical Climatology Network. Quality control routines were developed to tackle the specific data quality problems. The quality-controlled data were characterised spatially and temporally, and compared with regional and larger-scale studies. Two gap-filling methods for daily data and three interpolation methods for monthly and mean annual precipitation were compared. The coefficient-of-correlation-weighting method provided the best results for gap-filling and the universal kriging method for spatial interpolation. In-homogeneity in the time series was the main quality problem, and 22% of the daily precipitation data were too poor to be used. Spatial autocorrelation for monthly precipitation was low during the dry season, and correlation increased markedly when data were temporally aggregated from a daily time scale to 4-5 days. The analysis manifested the high spatial and temporal variability caused by the diverse precipitation-generating mechanisms and the need for an improved monitoring network.

  11. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users

    PubMed Central

    Zheng, Yi; Escabí, Monty; Litovsky, Ruth Y.

    2018-01-01

    Although speech understanding is highly variable amongst cochlear implants (CIs) subjects, the remarkably high speech recognition performance of many CI users is unexpected and not well understood. Numerous factors, including neural health and degradation of the spectral information in the speech signal of CIs, likely contribute to speech understanding. We studied the ability to use spectro-temporal modulations, which may be critical for speech understanding and discrimination, and hypothesize that CI users adopt a different perceptual strategy than normal-hearing (NH) individuals, whereby they rely more heavily on joint spectro-temporal cues to enhance detection of auditory cues. Modulation detection sensitivity was studied in CI users and NH subjects using broadband “ripple” stimuli that were modulated spectrally, temporally, or jointly, i.e., spectro-temporally. The spectro-temporal modulation transfer functions of CI users and NH subjects was decomposed into spectral and temporal dimensions and compared to those subjects’ spectral-only and temporal-only modulation transfer functions. In CI users, the joint spectro-temporal sensitivity was better than that predicted by spectral-only and temporal-only sensitivity, indicating a heightened spectro-temporal sensitivity. Such an enhancement through the combined integration of spectral and temporal cues was not observed in NH subjects. The unique use of spectro-temporal cues by CI patients can yield benefits for use of cues that are important for speech understanding. This finding has implications for developing sound processing strategies that may rely on joint spectro-temporal modulations to improve speech comprehension of CI users, and the findings of this study may be valuable for developing clinical assessment tools to optimize CI processor performance. PMID:28601530

  12. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders.

    PubMed

    Zhang, Jie; Cheng, Wei; Liu, Zhaowen; Zhang, Kai; Lei, Xu; Yao, Ye; Becker, Benjamin; Liu, Yicen; Kendrick, Keith M; Lu, Guangming; Feng, Jianfeng

    2016-08-01

    SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.

    2014-12-01

    Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.

  14. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.

  15. Wisconsin Card Sorting Test performance and impulsivity in patients with temporal lobe epilepsy: suicidal risk and suicide attempts.

    PubMed

    Garcia Espinosa, Arlety; Andrade Machado, René; Borges González, Susana; García González, María Eugenia; Pérez Montoto, Ariadna; Toledo Sotomayor, Guillermo

    2010-01-01

    The goal of the study described here was to determine if executive dysfunction and impulsivity are related to risk for suicide and suicide attempts in patients with temporal lobe epilepsy. Forty-two patients with temporal lobe epilepsy were recruited. A detailed medical history, neurological examination, serial EEGs, Mini-International Neuropsychiatric Interview, executive function, and MRI were assessed. Multiple regression analysis was carried out to examine predictive associations between clinical variables and Wisconsin Card Sorting Test measures. Patients' scores on the Risk for Suicide Scale (n=24) were greater than 7, which means they had the highest relative risk for suicide attempts. Family history of psychiatric disease, current major depressive episode, left temporal lobe epilepsy, and perseverative responses and total errors on the Wisconsin Card Sorting Test increased by 6.3 and 7.5 suicide risk and suicide attempts, respectively. Executive dysfunction (specifically perseverative responses and more total errors) contributed greatly to suicide risk. Executive performance has a major impact on suicide risk and suicide attempts in patients with temporal lobe epilepsy. 2009 Elsevier Inc. All rights reserved.

  16. Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols.

    PubMed

    Strömberg, Tomas; Sjöberg, Folke; Bergstrand, Sara

    2017-09-01

    Forearm skin hyperemia during release after brachial occlusion has been proposed for evaluating peripheral arterial disease and endothelial dysfunction. We used a novel fiberoptic system integrating Laser Doppler Flowmetry and Diffuse Reflectance Spectroscopy for a comprehensive pointwise model based microcirculation characterization. The aim was to evaluate and compare the temporal and the spatiotemporal variabilities in forearm skin microcirculation parameters (speed resolved perfusion; low speed <1mm/s, Perf SR, <1 ; mid-speed 1-10mm/s, high speed >10mm/s, and total perfusion (Perf SR, tot ); the concentration and oxygenation of red blood cells, C RBC and S O2 ). Ten healthy subjects underwent arterial and venous forearm occlusions (AO, VO), repeated within one week. The repeatability was calculated as the coefficient of variation (CV) and the agreement as the intra-class correlation coefficient (ICC). The temporal CVs for conventional perfusion, Perf conv , Perf SR, tot , C RBC and S O2 were 14%, 12%, 9% and 9%, respectively, while the ICC were >0.75 (excellent). The perfusion measures generally had a higher spatiotemporal than temporal variability, which was not the case for S O2 and C RBC . The corresponding spatiotemporal CVs were 33%, 32%, 18% and 15%, respectively. During VO, C RBC had a CV<35% and ICC>0.40 (fair-good), and after release this was the case for C RBC (AO and VO), S O2 (VO) and Perf SR, <1 (VO). In conclusion, the skin microcirculation parameters showed excellent temporal repeatability, while the spatiotemporal repeatability especially for perfusion was poorer. The parameters with acceptable repeatability and fair-good agreement were: C RBC during and after release of VO, the Perf SR, <1 after release of VO, the S O2 and the C RBC after release of AO. However, the value of these parameters in discriminating endothelial function remains to be studied. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing

    NASA Astrophysics Data System (ADS)

    Pleijel, Håkan; Grundström, Maria; Karlsson, Gunilla Pihl; Karlsson, Per Erik; Chen, Deliang

    2016-02-01

    Annual anomalies in air pollutant concentrations, and deposition (bulk and throughfall) of sulphate, nitrate and ammonium, in the Gothenburg region, south-west Sweden, were correlated with optimized linear combinations of the yearly frequency of Lamb Weather Types (LWTs) to determine the extent to which the year-to-year variation in pollution exposure can be partly explained by weather related variability. Air concentrations of urban NO2, CO, PM10, as well as O3 at both an urban and a rural monitoring site, and the deposition of sulphate, nitrate and ammonium for the period 1997-2010 were included in the analysis. Linear detrending of the time series was performed to estimate trend-independent anomalies. These estimated anomalies were subtracted from observed annual values. Then the statistical significance of temporal trends with and without LWT adjustment was tested. For the pollutants studied, the annual anomaly was well correlated with the annual LWT combination (R2 in the range 0.52-0.90). Some negative (annual average [NO2], ammonia bulk deposition) or positive (average urban [O3]) temporal trends became statistically significant (p < 0.05) when the LWT adjustment was applied. In all the cases but one (NH4 throughfall, for which no temporal trend existed) the significance of temporal trends became stronger with LWT adjustment. For nitrate and ammonium, the LWT based adjustment explained a larger fraction of the inter-annual variation for bulk deposition than for throughfall. This is probably linked to the longer time scale of canopy related dry deposition processes influencing throughfall being explained to a lesser extent by LWTs than the meteorological factors controlling bulk deposition. The proposed novel methodology can be used by authorities responsible for air pollution management, and by researchers studying temporal trends in pollution, to evaluate e.g. the relative importance of changes in emissions and weather variability in annual air pollution exposure.

  18. How innate is locomotion in precocial animals? A study on the early development of spatio-temporal gait variables and gait symmetry in piglets.

    PubMed

    Vanden Hole, Charlotte; Goyens, Jana; Prims, Sara; Fransen, Erik; Ayuso Hernando, Miriam; Van Cruchten, Steven; Aerts, Peter; Van Ginneken, Chris

    2017-08-01

    Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0 h to 96 h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4 h of birth, with most of them showing little change after the age of 2 h. Most asymmetry indices showed stable values, hovering around 10%, within 8 h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals. © 2017. Published by The Company of Biologists Ltd.

  19. Adaptive social learning strategies in temporally and spatially varying environments : how temporal vs. spatial variation, number of cultural traits, and costs of learning influence the evolution of conformist-biased transmission, payoff-biased transmission, and individual learning.

    PubMed

    Nakahashi, Wataru; Wakano, Joe Yuichiro; Henrich, Joseph

    2012-12-01

    Long before the origins of agriculture human ancestors had expanded across the globe into an immense variety of environments, from Australian deserts to Siberian tundra. Survival in these environments did not principally depend on genetic adaptations, but instead on evolved learning strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop hypotheses about these learning strategies, we have modeled the evolution of learning strategies to assess what conditions and constraints favor which kinds of strategies. To build on prior work, we focus on clarifying how spatial variability, temporal variability, and the number of cultural traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a combination of analytic and simulation methods, we show that spatial-but not temporal-variation strongly favors the emergence of conformist transmission. This effect intensifies when migration rates are relatively high and individual learning is costly. We also show that increasing the number of cultural traits above two favors the evolution of conformist transmission, which suggests that the assumption of only two traits in many models has been conservative. We close by discussing how (1) spatial variability represents only one way of introducing the low-level, nonadaptive phenotypic trait variation that so favors conformist transmission, the other obvious way being learning errors, and (2) our findings apply to the evolution of conformist transmission in social interactions. Throughout we emphasize how our models generate empirical predictions suitable for laboratory testing.

  20. Upscaling Ameriflux observations to assess drought impacts on gross primary productivity across the Southwest

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Moore, D. J.; Scott, R. L.; MacBean, N.; Ponce-Campos, G. E.; Breshears, D. D.

    2017-12-01

    Both satellite observations and eddy covariance estimates provide crucial information about the Earth's carbon, water and energy cycles. Continuous measurements from flux towers facilitate exploration of the exchange of carbon dioxide, water and energy between the land surface and the atmosphere at fine temporal and spatial scales, while satellite observations can fill in the large spatial gaps of in-situ measurements and provide long-term temporal continuity. The Southwest (Southwest United States and Northwest Mexico) and other semi-arid regions represent a key uncertainty in interannual variability in carbon uptake. Comparisons of existing global upscaled gross primary production (GPP) products with flux tower data at sites across the Southwest show widespread mischaracterization of seasonality in vegetation carbon uptake, resulting in large (up to 200%) errors in annual carbon uptake estimates. Here, remotely sensed and distributed meteorological inputs are used to upscale GPP estimates from 25 Ameriflux towers across the Southwest to the regional scale using a machine learning approach. Our random forest model incorporates two novel features that improve the spatial and temporal variability in GPP. First, we incorporate a multi-scalar drought index at multiple timescales to account for differential seasonality between ecosystem types. Second, our machine learning algorithm was trained on twenty five ecologically diverse sites to optimize both the monthly variability in and the seasonal cycle of GPP. The product and its components will be used to examine drought impacts on terrestrial carbon cycling across the Southwest including the effects of drought seasonality and on carbon uptake. Our spatially and temporally continuous upscaled GPP product drawing from both ground and satellite data over the Southwest region helps us understand linkages between the carbon and water cycles in semi-arid ecosystems and informs predictions of vegetation response to future climate conditions.

  1. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.

  2. Temporal Variability in the Deglutition Literature

    PubMed Central

    Molfenter, Sonja M.; Steele, Catriona M.

    2013-01-01

    A literature review was conducted on temporal measures of swallowing in healthy individuals with the purpose of determining the degree of variability present in such measures within the literature. A total of 46 studies that met inclusion criteria were reviewed. The definitions and descriptive statistics for all reported temporal parameters were compiled for meta-analysis. In total, 119 different temporal parameters were found in the literature. The three most-frequently occurring durational measures were: UES opening, laryngeal closure and hyoid movement. The three most-frequently occurring interval measures were: stage transition duration, pharyngeal transit time and duration from laryngeal closure to UES opening. Subtle variations in operational definitions across studies were noted, making the comparison of data challenging. Analysis of forest plots compiling descriptive statistical data (means and 95% confidence intervals) across studies revealed differing degrees of variability across durations and intervals. Two parameters (UES opening duration and the laryngeal-closure-to-UES-opening interval) demonstrated the least variability, reflected by small ranges for mean values and tight confidence intervals. Trends emerged for factors of bolus size and participant age for some variables. Other potential sources of variability are discussed. PMID:22366761

  3. Relating brain signal variability to knowledge representation.

    PubMed

    Heisz, Jennifer J; Shedden, Judith M; McIntosh, Anthony R

    2012-11-15

    We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  4. On representation of temporal variability in electricity capacity planning models

    DOE PAGES

    Merrick, James H.

    2016-08-23

    This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less

  5. On representation of temporal variability in electricity capacity planning models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrick, James H.

    This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less

  6. Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels

    NASA Astrophysics Data System (ADS)

    Doran, K. S.; Stockdon, H. F.; Long, J.

    2014-12-01

    The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup,swash, and runup. Coastal engineering, 53(7), 573-588.

  7. Development, implementation and evaluation of satellite-aided agricultural monitoring systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. (Principal Investigator); Crist, E.; Metzler, M.; Parris, T.

    1982-01-01

    Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure.

  8. Soil internal drainage: temporal stability and spatial variability in succession bean-black oat

    NASA Astrophysics Data System (ADS)

    Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.

    2012-04-01

    There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.

  9. Assessment of restoration measures efficiency for soil contamination in Mediterranean Ecosystem. The case study of Guadiamar Green Corridor in the context of RECARE project

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, Maria; José Blanco-Velázquez, Francisco; Muñoz-Vallés, Sara

    2017-04-01

    Restoration of soil ecosystems contaminated by heavy metals requires their characterization and the assessment of measures for risk reduction. Particular soil traits and history define different levels of resilience, so soil contamination assessment needs to take into account a site-by-site approach, which considers both the particular environmental characteristics of soils and the human activities. Nevertheless, current approaches for soil contamination assessment developed as academy and market solutions continue to be rather qualitative, and they do not allow as far the selection of efficient remediation measures to solve soil contamination at the long-term and extensively over larger áreas. In this context, under the framework of RECARE (Preventing and Remediating degradation of Soils in Europe through Land Care) project, we are designing a Decision Support System (DSS) which automatically assess soil contamination values by heavy metals in the topsoil and evaluate the efficiency of soil remediation measures under scenarios of climate and land-use change. The DSS works by simulating the spatio-temporal efficiency of three widely applied remediation measures (compost, sugar beet lime and iron-rich clayey materials). Input variables are divided into: (I) climate variables (mainly precipitation and temperature), (II) site variables (elevation, slope and erodibility), (III) soil (heavy metal content, pH, sand/clay content, soil organic carbon and bulk density), (IV) land use and (V) remediation measures. The predictor variables are related to soil functions expressed by % of change of heavy metal content (Currently the DSS consider cadmium dynamics due to the worldwide distribution in agricultural system and toxicity impact on health and plants), soil carbon and erosion dynamics. The pilot study area is the Guadiamar valley (SW Spain) where the main threat is soil contamination, after a mine spill occurred on April 1998. Since that time, a huge soil databse of more than 30 Gbytes, has been produced by different stakeholders (administration, scientist and private sector), which covered the spatial-temporal evolution of soil contamination by specific soil remediation measures, so the affected area has become the "virtual lab" to develop and test the DSS. Further development of the DSS tool includes its validation/calibration in other European climate zones, such as Copsa Mica in Romania, and the inclusion of new input and output variables to improve the accurancy of results.

  10. Assessing the temporal aspects of attention and its correlates in aging and chronic stroke patients.

    PubMed

    Shalev, Nir; Humphreys, Glyn; Demeyere, Nele

    2016-11-01

    Temporal dynamics of attention have been in the spotlight of research since the earliest days of cognitive psychology. Typically, researchers describe two different aspects of the temporal fluctuations of attention: one is in intervals of milliseconds (phasic alertness), and the other over minutes or even hours (tonic alertness or sustained attention). In order to evaluate individual capacities for sustained attention and phasic alertness, most studies rely on variations of the Continuous Performance Task (CPT). Indices of sustained attention and phasic alertness are typically based on reaction times to targets; phasic alertness is related to the change in reaction times following a cue, and sustained attention is related to variability of reaction times during the task. In the following study, we attempted to establish a new approach for studying sustained attention and phasic alertness, not reliant solely on reaction time measures. We developed a new variation of the CPT with conjunctive feature targets and forward and backward masking to induce a higher variability in accuracy. This allowed us to assess an individual's ability to maintain the same level of sensitivity to targets (d-prime) across a ten minute period on the task as an index for sustained attention. We also assessed reaction times as a function of previous trial type, and suggest previous trial RT benefit might be a marker for an individual's phasic alertness. We demonstrated the use of this task with healthy aging controls and stroke survivors. As a demonstration of external validity of the novel paradigm, we present a correlation between how individual performance drops over time and individual reports of distractibility in everyday life on the Cognitive Failures Questionnaire. In addition, we found significant differences between the patient and control groups in our proposed marker of phasic alertness. We discuss the implications of our study for current assessment tools, as well as general differences in phasic alertness between clinical and neurologically unimpaired groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.

    PubMed

    Striano, Pasquale; Serioli, Elena; Santulli, Lia; Manna, Ida; Labate, Angelo; Dazzo, Emanuela; Pasini, Elena; Gambardella, Antonio; Michelucci, Roberto; Striano, Salvatore; Nobile, Carlo

    2015-10-01

    Mutations in the DEPDC5 (DEP domain-containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12-37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies. © 2015 The Authors. Epilepsia published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy.

  12. Mind the gap: temporal discrimination and dystonia.

    PubMed

    Sadnicka, A; Daum, C; Cordivari, C; Bhatia, K P; Rothwell, J C; Manohar, S; Edwards, M J

    2017-06-01

    One of the most widely studied perceptual measures of sensory dysfunction in dystonia is the temporal discrimination threshold (TDT) (the shortest interval at which subjects can perceive that there are two stimuli rather than one). However the elevated thresholds described may be due to a number of potential mechanisms as current paradigms test not only temporal discrimination but also extraneous sensory and decision-making parameters. In this study two paradigms designed to better quantify temporal processing are presented and a decision-making model is used to assess the influence of decision strategy. 22 patients with cervical dystonia and 22 age-matched controls completed two tasks (i) temporal resolution (a randomized, automated version of existing TDT paradigms) and (ii) interval discrimination (rating the length of two consecutive intervals). In the temporal resolution task patients had delayed (P = 0.021) and more variable (P = 0.013) response times but equivalent discrimination thresholds. Modelling these effects suggested this was due to an increased perceptual decision boundary in dystonia with patients requiring greater evidence before committing to decisions (P = 0.020). Patient performance on the interval discrimination task was normal. Our work suggests that previously observed abnormalities in TDT may not be due to a selective sensory deficit of temporal processing as decision-making itself is abnormal in cervical dystonia. © 2017 EAN.

  13. Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation.

    PubMed

    King, Andrew J; Preheim, Sarah P; Bailey, Kathryn L; Robeson, Michael S; Roy Chowdhury, Taniya; Crable, Bryan R; Hurt, Richard A; Mehlhorn, Tonia; Lowe, Kenneth A; Phelps, Tommy J; Palumbo, Anthony V; Brandt, Craig C; Brown, Steven D; Podar, Mircea; Zhang, Ping; Lancaster, W Andrew; Poole, Farris; Watson, David B; W Fields, Matthew; Chandonia, John-Marc; Alm, Eric J; Zhou, Jizhong; Adams, Michael W W; Hazen, Terry C; Arkin, Adam P; Elias, Dwayne A

    2017-03-07

    Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.

  14. Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation

    DOE PAGES

    King, Andrew J.; Preheim, Sarah P.; Bailey, Kathryn L.; ...

    2017-01-23

    Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in-situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads) and biogeochemical parameters monitored by quantifying 53 metals, 12 organic acids, 14 anions and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community, and responded to DO. This also directly influenced the pH and so the biotic impacts ofmore » DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.« less

  15. Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Andrew J.; Preheim, Sarah P.; Bailey, Kathryn L.

    Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in-situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads) and biogeochemical parameters monitored by quantifying 53 metals, 12 organic acids, 14 anions and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community, and responded to DO. This also directly influenced the pH and so the biotic impacts ofmore » DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.« less

  16. Transport induced by mean-eddy interaction: II. Analysis of transport processes

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-03-01

    We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.

  17. Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles

    PubMed Central

    Lane, Kevin J; Levy, Jonathan I; Scammell, Madeleine Kangsen; Patton, Allison P; Durant, John L; Mwamburi, Mkaya; Zamore, Wig; Brugge, Doug

    2015-01-01

    Exposures to ultrafine particles (<100 nm, estimated as particle number concentration, PNC) differ from ambient concentrations because of the spatial and temporal variability of both PNC and people. Our goal was to evaluate the influence of time-activity adjustment on exposure assignment and associations with blood biomarkers for a near-highway population. A regression model based on mobile monitoring and spatial and temporal variables was used to generate hourly ambient residential PNC for a full year for a subset of participants (n=140) in the Community Assessment of Freeway Exposure and Health study. We modified the ambient estimates for each hour using personal estimates of hourly time spent in five micro-environments (inside home, outside home, at work, commuting, other) as well as particle infiltration. Time-activity adjusted (TAA)-PNC values differed from residential ambient annual average (RAA)-PNC, with lower exposures predicted for participants who spent more time away from home. Employment status and distance to highway had a differential effect on TAA-PNC. We found associations of RAA-PNC with high sensitivity C-reactive protein and Interleukin-6, although exposure-response functions were non-monotonic. TAA-PNC associations had larger effect estimates and linear exposure-response functions. Our findings suggest that time-activity adjustment improves exposure assessment for air pollutants that vary greatly in space and time. PMID:25827314

  18. Gait functional assessment: Spatio-temporal analysis and classification of barefoot plantar pressure in a group of 11-12-year-old children.

    PubMed

    Latour, Ewa; Latour, Marek; Arlet, Jarosław; Adach, Zdzisław; Bohatyrewicz, Andrzej

    2011-07-01

    Analysis of pedobarographical data requires geometric identification of specific anatomical areas extracted from recorded plantar pressures. This approach has led to ambiguity in measurements that may underlie the inconsistency of conclusions reported in pedobarographical studies. The goal of this study was to design a new analysis method less susceptible to the projection accuracy of anthropometric points and distance estimation, based on rarely used spatio-temporal indices. Six pedobarographic records per person (three per foot) from a group of 60 children aged 11-12 years were obtained and analyzed. The basis of the analysis was a mutual relationship between two spatio-temporal indices created by excursion of the peak pressure point and the center-of-pressure point on the dynamic pedobarogram. Classification of weight-shift patterns was elaborated and performed, and their frequencies of occurrence were assessed. This new method allows an assessment of body weight shift through the plantar pressure surface based on distribution analysis of spatio-temporal indices not affected by the shape of this surface. Analysis of the distribution of the created index confirmed the existence of typical ways of weight shifting through the plantar surface of the foot during gait, as well as large variability of the intrasubject occurrence. This method may serve as the basis for interpretation of foot functional features and may extend the clinical usefulness of pedobarography. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task.

    PubMed

    Samani, Afshin; Srinivasan, Divya; Mathiassen, Svend Erik; Madeleine, Pascal

    2017-02-01

    The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants' rating of perceived exertion reached 8 on Borg's CR-10 scale. We collected high-density surface electromyogram (HD-EMG) over the upper trapezius, as well as bipolar EMG from biceps brachii, triceps brachii, deltoideus anterior, serratus anterior, upper and lower trapezius from 21 healthy women. Root-mean-square (RMS) and mean power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10 % of task performance was not associated with the time to task termination. Our results suggest that the considerable variability in force and posture contained in the dynamic task per se masks any possible effects of differences between subjects in initial motor variability on the rate of fatigue development.

  20. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA

    Treesearch

    Bernard R. Parresol; John I. Blake; Andrew J. Thompson

    2012-01-01

    In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...

  1. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    NASA Astrophysics Data System (ADS)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.

  2. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.

  3. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  4. Biomonitoring approach with mussel Mytilus galloprovincialis (Lmk) and clam Ruditapes philippinarum (Adams and Reeve, 1850) in the Lagoon of Venice.

    PubMed

    Moschino, Vanessa; Delaney, Eugenia; Meneghetti, Francesca; Ros, Luisa Da

    2011-06-01

    Transplanted Mytilus galloprovincialis and native Ruditapes philippinarum were deployed in 10 sampling stations with different pollution impact within the Lagoon of Venice to evaluate the temporal variations and the suitability of the following cytochemical and histochemical biomarkers just as indicators of environmental stress: lysosomal membrane stability, lipofuscins, neutral lipids and lysosome to cytoplasm volume ratio. The physiological status of the organisms was also investigated by determining the survival in air capability and the reburrowing rate (clams). The biological parameters were assessed in June and October. Furthermore, for a better definition of the environmental aspects of the study sites, heavy metal, PAH and PCB concentrations were also evaluated in the sediments. As a whole, the biological responses examined in both species from all the sampling sites showed significant differences between the two seasonal campaigns, only lysosomal membrane stability exhibited less variability. Pollutants in sediments generally showed low-intermediate contamination levels, few hotspots persisting mostly in the inner areas of the lagoon, the most influenced by the industrial zone. Transplanted mussels were more responsive than native clams and the biological responses of both species varied temporally. The range of the spatial variability was always narrow and reflected only partially the broader variability shown by the chemical content in the sediments. In this sense, biological responses seemed to be particularly influenced by the high temporal and spatial heterogeneity that characterise the Lagoon of Venice, as well as most of the transitional environments.

  5. Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region

    NASA Astrophysics Data System (ADS)

    Pastor, M. A.; Casado, M. J.

    2012-10-01

    This paper presents an evaluation of the multi-model simulations for the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) in terms of their ability to simulate the ERA40 circulation types over the Euro-Atlantic region in winter season. Two classification schemes, k-means and SANDRA, have been considered to test the sensitivity of the evaluation results to the classification procedure. The assessment allows establishing different rankings attending spatial and temporal features of the circulation types. Regarding temporal characteristics, in general, all AR4 models tend to underestimate the frequency of occurrence. The best model simulating spatial characteristics is the UKMO-HadGEM1 whereas CCSM3, UKMO-HadGEM1 and CGCM3.1(T63) are the best simulating the temporal features, for both classification schemes. This result agrees with the AR4 models ranking obtained when having analysed the ability of the same AR4 models to simulate Euro-Atlantic variability modes. This study has proved the utility of applying such a synoptic climatology approach as a diagnostic tool for models' assessment. The ability of the models to properly reproduce the position of ridges and troughs and the frequency of synoptic patterns, will therefore improve our confidence in the response of models to future climate changes.

  6. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  7. Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow. PMID:25853707

  8. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  9. Multiple Types of Memory and Everyday Functional Assessment in Older Adults.

    PubMed

    Beaver, Jenna; Schmitter-Edgecombe, Maureen

    2017-06-01

    Current proxy measures for assessing everyday functioning (e.g., questionnaires, performance-based measures, and direct observation) show discrepancies in their rating of functional status. The present study investigated the relationship between multiple proxy measures of functional status and content memory (i.e., memory for information), temporal order memory, and prospective memory in an older adult sample. A total of 197 community-dwelling older adults who did (n = 45) or did not meet (n = 152) criteria for mild cognitive impairment (MCI), completed six different assessments of functional status (two questionnaires, two performance-based tasks, and two direct observation tasks) as well as experimental measures of content memory, prospective memory, and temporal order memory. After controlling for demographics and content memory, the temporal order and prospective memory measures explained a significant amount of variance in all proxy functional status measures. When all variables were entered into the regression analyses, content memory and prospective memory were found to be significant predictors of all measures of functional status, whereas temporal order memory was a significant predictor for the questionnaire and direct observation measures, but not performance-based measures. The results suggest that direct observation and questionnaire measures may be able to capture components of everyday functioning that require context and temporal sequencing abilities, such as multi-tasking, that are not as well captured in many current laboratory performance-based measures of functional status. Future research should aim to inform the development and use of maximally effective and valid proxy measures of functional ability. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  11. Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany.

    PubMed

    Li, Fengxia; Schnelle-Kreis, Jürgen; Cyrys, Josef; Wolf, Kathrin; Karg, Erwin; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2018-08-01

    to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. 24h quasi-UFP (particulate matter <0.36μm in this study) was sampled at a reference site continuously and at one of 5 other sites (T1, T2, T3, T4 and B1) in parallel in Augsburg, Germany from April 11th, 2014 to February 22nd, 2015, attempting to conduct 2-week campaigns at each site in 3 different seasons. Positive matrix factorization (PMF) was applied to measured organic tracers for source apportionment analyses. Pearson correlation coefficient r and coefficient of divergence (COD) were calculated to investigate spatial temporal variation of source contributions. 5 sources were identified comprising biomass burning (BB), traffic emissions (Traffic), biogenic secondary organic aerosol (bioSOA), isoprene originated secondary organic aerosol (isoSOA) and biomass burning related secondary organic aerosol (bbSOA). In general, good temporal correlation and uniform distribution within the study area are found for bioSOA and bbSOA, probably resulting from regional formation/transport. Lower temporal correlation and spatial heterogeneity of isoSOA were found at the city background site with local influence from green space and less traffic impact. BB demonstrated very good temporal correlation, but higher contributions at sites influenced by local residential heating emissions were observed. Traffic showed the least seasonality and lower correlation over time among the sources. However, it demonstrated low spatial heterogeneity of absolute contribution, and only a few days of elevated contribution was found at T3 when wind came directly from the street nearby. temporal correlation and spatial variability of sources contributing to the organic fraction of quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.

  13. SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.

    2017-12-01

    SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be demonstrated by results obtained while developing the methodology for assessing collective significance of trends in multi-site weather series. The performance of the proposed test statistics is assessed based on large number of realisations of synthetic series produced by WG assuming a given statistical structure and trend of the weather series.

  14. Water clarity in the Florida Keys, USA, as observed from space (1984-2002)

    NASA Astrophysics Data System (ADS)

    Palandro, D. A.; Hu, C.; Andrefouet, S.; Muller-Karger, F. E.; Hallock, P.

    2007-12-01

    Landsat TM and ETM+ satellite data were used to derive the diffuse attenuation coefficient (Kd, m-1), a measure of water clarity, for 29 sites throughout the Florida Keys Reef Tract. A total of 28 individual Landsat images between 1984 and 2002 were used, with imagery gathered every two years for spring seasons and every six years for fall seasons. Useful information was obtained by Landsat bands 1 (blue) and 2 (green), except when sites were covered by clouds or showed turbid water. Landsat band 3 (red) provided no consistent data due to the high absorption of red light by water. Because image sampling represented only one or two samples per year on specific days, and because water turbidity may change over short time scales, it was not possible to assess temporal trends at the sites with the Landsat data. Kd values in band 1 were higher in the spring (mean spring = 0.034 m-1, mean fall = 0.031 m-1) and band 2 were higher in the fall (mean spring = 0.056 m-1, mean fall = 0.058 m-1), but the differences were not statistically significant. Spatial variability was high between sites and between regions (Upper, Middle and Lower Keys), with band 1 ranges of 0.019 m-1 - 0.060 m-1 and band 2 ranges of 0.036 m-1 - 0.076 m-1. The highest Kd values were found in the Upper Keys, followed by the Middle Keys and Lower Keys, respectively. This result must be taken in context however, two Middle Keys sites were found to be inconsistent due to high turbidity, obscuring the benthos and altering our assumption of a visible seafloor, which the algorithm is dependent upon. If all Middle Keys data were valid it is likely that this region would have the highest Kd values for both bands. The Landsat-derived Kd values, and inherent variability, may be influenced by the dominant water mass associated with each Florida Keys region, as well as localized oceanic variables. The methodology used here may be applied to other reef areas and used with satellites that offer higher temporal resolution to assess temporal change and variability.

  15. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.

    PubMed

    Zheng, Yi; Escabí, Monty; Litovsky, Ruth Y

    2017-08-01

    Although speech understanding is highly variable amongst cochlear implants (CIs) subjects, the remarkably high speech recognition performance of many CI users is unexpected and not well understood. Numerous factors, including neural health and degradation of the spectral information in the speech signal of CIs, likely contribute to speech understanding. We studied the ability to use spectro-temporal modulations, which may be critical for speech understanding and discrimination, and hypothesize that CI users adopt a different perceptual strategy than normal-hearing (NH) individuals, whereby they rely more heavily on joint spectro-temporal cues to enhance detection of auditory cues. Modulation detection sensitivity was studied in CI users and NH subjects using broadband "ripple" stimuli that were modulated spectrally, temporally, or jointly, i.e., spectro-temporally. The spectro-temporal modulation transfer functions of CI users and NH subjects was decomposed into spectral and temporal dimensions and compared to those subjects' spectral-only and temporal-only modulation transfer functions. In CI users, the joint spectro-temporal sensitivity was better than that predicted by spectral-only and temporal-only sensitivity, indicating a heightened spectro-temporal sensitivity. Such an enhancement through the combined integration of spectral and temporal cues was not observed in NH subjects. The unique use of spectro-temporal cues by CI patients can yield benefits for use of cues that are important for speech understanding. This finding has implications for developing sound processing strategies that may rely on joint spectro-temporal modulations to improve speech comprehension of CI users, and the findings of this study may be valuable for developing clinical assessment tools to optimize CI processor performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    NASA Astrophysics Data System (ADS)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  17. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Characterising meso-marine ecosystems of the North Pacific

    NASA Astrophysics Data System (ADS)

    Batten, Sonia D.; David Hyrenbach, K.; Sydeman, William J.; Morgan, Ken H.; Henry, Michael F.; Yen, Peggy P. Y.; Welch, David W.

    2006-02-01

    To delineate mesoscale variability in marine ecosystems of the subarctic North Pacific and identify "hotspots" of biological activity, we conducted contemporaneous surveys of plankton and avifaunal communites in 2000-2003. Plankton samples were collected with a continuous plankton recorder (CPR) towed by a commercial vessel while a trained observer recorded marine bird distributions using strip-transect techniques. Near- and sub-surface physical oceanographic properties and productivity patterns were measured using a temperature data logger and satellite-derived chlorophyll a concentrations. We identified 10 distinct biological communities across the North Pacific, which we refer to as 'meso-marine ecosystems' (MME). We examined the characteristics of MME over multiple years to assess temporal persistence. MME were associated with different bathymetric domains and current systems. MME differed in the overall abundance and species composition of their fauna and, therefore, almost certainly in productivity. Regular monitoring of the spatial and temporal variability of MME will enhance our ability to detect and understand coupled climate-ecosystem responses, and, in turn, help guide ecosystem-based fisheries and wildlife management.

  19. Improving spatio-temporal model estimation of satellite-derived PM2.5 concentrations: Implications for public health

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Al-Hamdan, M. Z.; Crosson, W. L.; Yang, C. A.; Coffield, S. R.

    2017-12-01

    Satellite-derived environmental data, available in a range of spatio-temporal scales, are contributing to the growing use of health impact assessments of air pollution in the public health sector. Models developed using correlation of Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD) with ground measurements of fine particulate matter less than 2.5 microns (PM2.5) are widely applied to measure PM2.5 spatial and temporal variability. In the public health sector, associations of PM2.5 with respiratory and cardiovascular diseases are often investigated to quantify air quality impacts on these health concerns. In order to improve predictability of PM2.5 estimation using correlation models, we have included meteorological variables, higher-resolution AOD products and instantaneous PM2.5 observations into statistical estimation models. Our results showed that incorporation of high-resolution (1-km) Multi-Angle Implementation of Atmospheric Correction (MAIAC)-generated MODIS AOD, meteorological variables and instantaneous PM2.5 observations improved model performance in various parts of California (CA), USA, where single variable AOD-based models showed relatively weak performance. In this study, we further asked whether these improved models actually would be more successful for exploring associations of public health outcomes with estimated PM2.5. To answer this question, we geospatially investigated model-estimated PM2.5's relationship with respiratory and cardiovascular diseases such as asthma, high blood pressure, coronary heart disease, heart attack and stroke in CA using health data from the Centers for Disease Control and Prevention (CDC)'s Wide-ranging Online Data for Epidemiologic Research (WONDER) and the Behavioral Risk Factor Surveillance System (BRFSS). PM2.5 estimation from these improved models have the potential to improve our understanding of associations between public health concerns and air quality.

  20. Spatio-temporal Variability of Stratified Snowpack Cold Content Observed in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Schmidt, J. S.; Sexstone, G. A.; Serreze, M. C.

    2017-12-01

    Snowpack cold content (CCsnow) is the energy required to bring a snowpack to an isothermal temperature of 0.0°C. The spatio-temporal variability of CCsnow is complex as it is a measure that integrates the response of a snowpack to each component of the snow-cover energy balance. Snow and ice at high elevation is climate sensitive water storage for the Western U.S. Therefore, an improved understanding of the spatio-temporal variability of CCsnow may provide insight into snowpack dynamics and sensitivity to climate change. In this study, stratified snowpit observations of snow water equivalent (SWE) and snow temperature (Tsnow) from the USGS Rocky Mountain Snowpack network (USGS RMS) were used to evaluate vertical CCsnow profiles over a 16-year period in Montana, Idaho, Wyoming, Colorado and New Mexico. Since 1993, USGS RMS has collected snow chemistry, snow temperature, and SWE data throughout the Rocky Mountain region, making it well positioned for Anthropocene cryosphere benchmarking and climate change interpretation. Spatial grouping of locations based on similar CCsnow characteristics was evaluated and trend analyses were performed. Additionally, we evaluated the regional relation of CCsnow to snowmelt timing. CCsnow was more precisely calculated and more representative using vertically stratified field observed values than bulk values, which highlights the utility of the snowpack dataset presented here. Location specific annual and 16 year mean stratified snowpit profiles of SWE, Tsnow, and CCsnow well represent the physical geography and past weather patterns acting on the snowpack. Observed trends and spatial variability of CCsnow profiles explored by this study provides an improved understanding of changing snowpack behavior in the western U.S., and will be useful for assessing the regional sensitivity of snowpacks to future climate change.

  1. Seasonal variability of light availability and utilization in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; Michaels, Anthony F.; Sorensen, Jens C.; O'Brein, Margaret C.; Hammer, Melodie A.

    1995-01-01

    A 2 year time series of optical, biogeochemical, and physical parameters, taken near the island of Bermuda, is used to evaluate the sources of temporal variability in light avaliability and utilization in the Sargasso Sea. Integrated assessments of light availability are made by examining the depth of constant percent incident photosynthetically available radiation (% PAR) isolumes. To first order, changes in the depth %PAR isolumes were caused by physical processes: deep convection mixing in the winter which led to the spring bloom and concurrent shallowing of %PAR depths and the occurrence of anomalous thermohaline water masses during the summer and fall seasons. Spectral light availability variations are assessed using determinations of diffuse attenuation coefficient spectra which illustrates a significant seasonal cycle in colored detrital particulate and/or dissolved materials that is unrelated to changes in chlorophyll pigment concentrations. Temporal variations in the photosynthetic light utilization index Psi are used to assess vertically intergrated light utilization variations. Values of Psi are highly variable and show no apparent seasonal pattern which indicates that Psi is not simply a 'biogeochemical constant.' Determinations of in situ primary production rates and daily mean PAR fluxes are used to diagnose the relative role of light limitation in determining vertically integrated rates of primary production integral PP. The mean depth of the light-saturated zone (the vertical region where the daily mean PAR flux was greater than or equal to the saturation irradiance) is only approximately 40 m, although more than one half of interal PP occurred within this zone. Production model results illustrate that accurate predictions of integral PP are dependent upon rates of light-saturated production rather than upon indices of light limitation. It seems unlikely that significant improvements in simple primary production models will come from the partitioning of the Earth's seas into biogeochemical provinces.

  2. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    NASA Astrophysics Data System (ADS)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  3. Enhanced presurgical pain temporal summation response predicts post-thoracotomy pain intensity during the acute postoperative phase.

    PubMed

    Weissman-Fogel, Irit; Granovsky, Yelena; Crispel, Yonathan; Ben-Nun, Alon; Best, Lael Anson; Yarnitsky, David; Granot, Michal

    2009-06-01

    Recent evidence points to an association between experimental pain measures obtained preoperatively and acute postoperative pain (POP). We hypothesized that pain temporal summation (TS) might be an additional predictor for POP insofar as it represents the neuroplastic changes that occur in the central nervous system following surgery. Therefore, a wide range of psychophysical tests (TS to heat and mechanical repetitive stimuli, pain threshold, and suprathreshold pain estimation) and personality tests (pain catastrophizing and anxiety levels) were administered prior to thoracotomy in 84 patients. POP ratings were evaluated on the 2nd and 5th days after surgery at rest (spontaneous pain) and in response to activity (provoked pain). Linear regression models revealed that among all assessed variables, enhanced TS and higher pain scores for mechanical stimulation were significantly associated with greater provoked POP intensity (overall r2 = 0.225, P = .008). Patients who did not demonstrate TS to both modalities reported lower scores of provoked POP as compared with patients who demonstrated TS in response to at least 1 modality (F = 4.59 P = .013). Despite the moderate association between pain catastrophizing and rest POP, none of the variables predicted the spontaneous POP intensity. These findings suggest that individual susceptibility toward a greater summation response may characterize patients who are potentially vulnerable to augmented POP. This study proposed the role of pain temporal summation assessed preoperatively as a significant psychophysical predictor for acute postoperative pain intensity. The individual profile of enhanced pain summation is associated with the greater likelihood of higher postoperative pain scores.

  4. Reconstruction from EOF analysis of SMOS salinity data in Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Parard, Gaelle; Alvera-Azcárate, Aida; Barth, Alexander; Olmedo, Estrella; Turiel, Antonio; Becker, Jean-Marie

    2017-04-01

    Sea Surface Salinity (SSS) data from the Soil Moisture and Ocean Salinity (SMOS) mission is reconstructed in the North Atlantic and the Mediterranean Sea using DINEOF (Data Interpolating Empirical Orthogonal Functions). We used the satellite data Level 2 from SMOS Barcelona Expert Centre between 2011 and 2015. DINEOF is a technique that reconstructs missing data and removes noise by retaining only an optimal set of EOFs. DINEOF analysis is used to detect and remove outliers from the SMOS SSS daily field. The gain obtained with DINEOF method and L2 SMOS data give a higher spatial and temporal resolution between 2011 and 2015, allow to study the SSS variability from daily to seasonal resolution. In order to improve the SMOS salinity data reconstruction we combine with other parameters measured from satellite such chlorophyll, sea surface temperature, precipitation and CDOM variability. After a validation of the SMOS satellite data reconstruction with in situ data (CTD, Argo float salinity measurement) in the North Atlantic and Mediterranean Sea, the main SSS processes and their variability are studied. The gain obtained with the higher spatial and temporal resolution with SMOS salinity data give assess to study the characteristics of oceanic structures in North Atlantic and Mediterranean Sea.

  5. Statistical downscaling of precipitation using long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra

    2017-11-01

    Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.

  6. DETERMINANTS OF TEMPORAL VARIABILITY IN NHEXAS-MARYLAND ENVIRONMENTAL CONCENTRATIONS, EXPOSURES, AND BIOMARKERS

    EPA Science Inventory

    The longitudinal NHEXAS-Maryland study measured metals, PAHs, and pesticides in several media to capture temporal variability. Questionnaires were concurrently administered to identify factors that influenced changes in contaminant levels over time. We constructed mixed-effects...

  7. Role of Updraft Velocity in Temporal Variability of Global Cloud Hydrometeor Number

    NASA Technical Reports Server (NTRS)

    Sullivan, Sylvia C.; Lee, Dong Min; Oreopoulos, Lazaros; Nenes, Athanasios

    2016-01-01

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby

    This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less

  9. Prompt optical emission from gamma-ray bursts with multiple timescale variability of central engine activities

    NASA Astrophysics Data System (ADS)

    Xu, Si-Yao; Li, Zhuo

    2014-04-01

    Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.

  10. Role of updraft velocity in temporal variability of global cloud hydrometeor number

    DOE PAGES

    Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; ...

    2016-05-16

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Communitymore » Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Finally, coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.« less

  11. Role of updraft velocity in temporal variability of global cloud hydrometeor number

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; Nenes, Athanasios

    2016-05-01

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.

  12. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  13. Spatial and temporal variability of guinea grass (Megathyrsus maximus) fuel loads and moisture on Oahu, Hawaii

    Treesearch

    Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman

    2013-01-01

    Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...

  14. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive tomore » alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the validity of an innovative multi–resolution information theory approach, and the ability of the RCM modeling framework to represent the low-frequency modulation of extreme climate events. Once the skill of the modeling and analysis methodology has been established, we will apply the same approach for the AR5 (IPCC Fifth Assessment Report) climate change scenarios in order to assess how climate extremes and the the influence of lowfrequency variability on climate extremes might vary under changing climate. The research specifically addresses the DOE focus area 2. Simulation of climate extremes under a changing climate. Specific results will include (1) a better understanding of the spatial and temporal structure of extreme events, (2) a thorough quantification of how extreme values are impacted by low-frequency climate teleconnections, (3) increased knowledge of current regional climate models ability to ascertain these influences, and (4) a detailed examination of the how the distribution of extreme events are likely to change under different climate change scenarios. In addition, this research will assess the ability of the innovative wavelet information theory approach to characterize extreme events. Any and all of these results will greatly enhance society’s ability to understand and mitigate the regional ramifications of future global climate change.« less

  15. Temporal Variation and Scaling of Hydrological Variables in a Typical Watershed

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.; Liu, J.

    2016-12-01

    Temporal variations of the main hydrological variables over 16 years were systematically investigated based on the results from an integrated hydrological modeling at the Sagehen Creek Watershed in northern Sierra Nevada. Temporal scaling of these variables and damping effects of the hydrological system as well as its subsystems, i.e., the land surface, unsaturated zone, and saturated zone, were analyzed with spectral analyses. It was found that the hydrological system may act as a cascade of hierarchical fractal filters which sequentially transfer a non-fractal or less correlated fractal hydrological signal to a more correlated fractal signal. Temporal scaling of infiltration (I), actual evapotraspiration (ET), recharge (R), baseflow (BF), streamflow (SF) exist and the temporal autocorrelation of these variables increase as water moves through the system. The degree of the damping effect of the subsystems is different and is strongest in the unsaturated zone compared with that of the land surface and saturated zone. The temporal scaling of the groundwater levels (h) also exists and is strongly affected by the river: the temporal autocorrelation of h near the river is similar to that of the river stage fluctuations and increases away from the river. There is a break in the temporal scaling of h near the river at low frequencies due to the effect of the river. Temporal variations of the soil moisture (θ) is more complicated: the value of the scaling exponent (β) for θ increases with depth as water moves downwards and its high-frequency fluctuations are damped by the unsaturated zone. The temporal fluctuations of precipitation (P) and I are fractional Gauss noise (fGn), those of ET, R, BF, and SF are fractional Brownian motion (fBm), and those of h away from the river are 2nd-order fBm based on the values of β obtained in this study. Keywords: Temporal variations, Scaling, Damping effect, Hydrological system.

  16. Within-patient temporal variance in MELD score and impact on survival prediction after TIPS creation.

    PubMed

    Gaba, Ron C; Shah, Kruti D; Couture, Patrick M; Parvinian, Ahmad; Minocha, Jeet; Knuttinen, M Grace; Bui, James T

    2013-01-01

    To assess within-patient temporal variability in Model for End Stage Liver Disease (MELD) scores and impact on outcome prognostication after transjugular intrahepatic portosystemic shunt (TIPS) creation. In this single institution retrospective study, MELD score was calculated in 68 patients (M:F = 42:26, mean age 55 years) at 4 pre-procedure time points (1, 2-6, 7-14, and 15-35 days) before TIPS creation. Medical record review was used to identify 30- and 90-day clinical outcomes. Within-patient variability in pre-procedure MELD scores was assessed using repeated measures analysis of variance, and the ability of MELD scores at different time points to predict post-TIPS mortality was evaluated by comparing area under receiver operating characteristic (AUROC) curves. TIPS were successfully created for ascites (n = 30), variceal hemorrhage (n = 29), hepatic hydrothorax (n = 8), and portal vein thrombosis (n = 1). Pre-TIPS MELD scores showed significant (P = 0.032) within-subject variance that approached ± 18.5%. Higher MELD scores demonstrated greater variability in sequential scores as compared to lower MELD scores. Overall 30- and 90-day patient mortality was 22% (15/67) and 38% (24/64). AUROC curves showed that most recent MELD scores performed on the day of TIPS had superior predictive capacity for 30- (0.876, P = 0.037) and 90-day (0.805 P = 0.020) mortality compared to MELD scores performed 2-6 or 7-14 days prior. In conclusion, MELD scores show within-patient variability over time, and scores calculated on the day of TIPS most accurately predict risk and should be used for patient selection and counseling.

  17. Interannual variability of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L.

    2016-12-01

    The crop water footprint, CWF, is a useful tool to investigate the water-food nexus, since it measures the water requirement for crop production. Heterogeneous spatial patterns of climatic conditions and agricultural practices have inspired a flourishing literature on the geographic assessment of CWF, mostly referred to a fixed (time-averaged) period. However, given that both climatic conditions and crop yield may vary substantially over time, also the CWF temporal dynamics need to be addressed. As other studies have done, we base the CWF variability on yield, while keeping the crop evapotranspiration constant over time. As a new contribution, we prove the feasibility of this approach by comparing these CWF estimates with the results obtained with a full model considering variations of crop evapotranspiration: overall, the estimates compare well showing high coefficients of determination that read 0.98 for wheat, 0.97 for rice, 0.97 for maize, and 0.91 for soybean. From this comparison, we derive also the precision of the method, which is around ±10% that is higher than the precision of the model used to evaluate the crop evapotranspiration (i.e., ±30%). Over the period between 1961 and 2013, the CWF of the most cultivated grains has sharply decreased on a global basis (i.e., -68% for wheat, -62% for rice, -66% for maize, and -52% for soybean), mainly driven by enhanced yield values. The higher water use efficiency in crop production implies a reduced virtual displacement of embedded water per ton of traded crop and as a result, the temporal variability of virtual water trade is different if considering constant or time-varying CWF. The proposed yield-based approach to estimate the CWF variability implies low computational costs and requires limited input data, thus, it represents a promising tool for time-dependent water footprint assessments.

  18. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    NASA Astrophysics Data System (ADS)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the southernmost parts of EM Sea, affected by frequent Saharan dust export. The mean regional annual AODs range from 0.17±0.05 to 0.23±0.06. The corresponding regional annual DREs at surface range from -14±3 to -18±4 W/m2 (surface radiative cooling), while in the atmosphere they vary between 7±2 and 10±2 W/m2 (atmospheric heating), yielding a planetary cooling above the EM Sea between -6±1 and -8±2 W/m2. However, these AOD and DRE values vary depending on the criteria of data spatial and temporal availability applied in the AOD and DRE calculation, because of the limited availability of retrieved AVHRR AOD over specific areas and in specific days. The DREs reach larger magnitudes at pixel-level; for example the surface DREs slightly exceed -30 W/m2, whereas they take larger values (magnitudes larger than -50 W/m2 in summer) when computed on a monthly basis, and even larger values on daily basis. The model results underline the high spatial and temporal variability of aerosol DREs, and the care that must be taken when averaging over space and time. It also points to the need for availability of aerosol data with concurrent high spatial and temporal coverage and resolution, which should be sought in ongoing and future satellite missions.

  19. From stage to age in variable environments: life expectancy and survivorship.

    PubMed

    Tuljapurkar, Shripad; Horvitz, Carol C

    2006-06-01

    Stage-based demographic data are now available on many species of plants and some animals, and they often display temporal and spatial variability. We provide exact formulas to compute age-specific life expectancy and survivorship from stage-based data for three models of temporal variability: cycles, serially independent random variation, and a Markov chain. These models provide a comprehensive description of patterns of temporal variation. Our formulas describe the effects of cohort (birth) environmental condition on mortality at all ages, and of the effects on survivorship of environmental variability experienced over the course of life. This paper complements existing methods for time-invariant stage-based data, and adds to the information on population growth and dynamics available from stochastic demography.

  20. The hydroclimatology of UK droughts: evidence from newly recovered and reconstructed datasets from the late 19th century to present

    NASA Astrophysics Data System (ADS)

    Smith, K. A.; Hannaford, J.; Bloomfield, J.; McCarthy, M.; Parry, S.; Barker, L. J.; Svensson, C.; Tanguy, M.; Marchant, B.; McKenzie, A.; Legg, T.; Prudhomme, C.

    2017-12-01

    While the UK is regarded as a wet country, it has periodically suffered from major droughts which have caused serious environmental and societal impacts. Parts of the UK are water stressed and, in a warming world, changes to supply/demand balances could have major implications. There is a pressing need for improved tools for drought risk assessment, which is contingent on a proper understanding of past occurrence of droughts. However, our understanding of hydrological drought occurrence is grounded in the post-1960 period when most UK river flow and groundwater records commenced. As such, water resources planners would benefit from a more thorough assessment of historical drought characteristics and their variability. The multi-disciplinary `Historic Droughts' project thus aims to rigorously characterise droughts in the UK back to the 1890s to inform improved drought management. The foundation of this is a comprehensive characterisation of the hydroclimatology of UK droughts. Here, we present the results of this initiative, based on a hydrological reconstruction campaign of unparalleled scope and detail. Driven by rainfall and potential evapotranspiration data, extended in time using newly recovered observational records, hydro(geo)logical models are used to reconstruct, back to 1890, river flows for >300 catchments across the UK, and groundwater levels from >50 boreholes. The reconstructions are derived within a state-of-the-art modelling framework which allows a comprehensive assessment of uncertainty. A suite of indicators are then applied to these datasets to identify and characterise drought events, integrating precipitation, evapotranspiration, streamflow and groundwater. The work provides new insights into the spatial and temporal dynamics of hitherto poorly quantified late 19th and early 20th century droughts. Similarly, the assessment of temporal variability of drought characteristics benefits from the long timescale of the reconstructions, in turn allowing improved assessment of the large-scale climate drivers of UK droughts. The propagation of UK drought is analysed comprehensively for the first time, highlighting the differential spatio-temporal expression of meteorological, streamflow and groundwater droughts, with important implications for water resources management.

  1. Temporal Changes in Community Resilience to Drought Hazard

    NASA Astrophysics Data System (ADS)

    Mihunov, V.

    2017-12-01

    The threat of droughts and their associated impacts on the landscape and human communities have long been recognized. While considerable research on the climatological aspect of droughts has been conducted, studies on the resilience of human communities to the effects of drought remain limited. Understanding how different communities respond to and recover from the drought hazard, i.e. their community resilience, should inform the development of better strategies to cope with the hazard. This research assesses community resilience to drought hazard in South-Central U.S. and captures the temporal changes of community resilience in the region facing the climate change. First, the study applies the Resilience Inference Measurement (RIM) framework using the existing drought incidence, crop damage, socio-economic and food-water-energy nexus variables, which allows to assign county-level resilience scores in the study region and derive variables contributing to the resilience. Second, it captures the temporal changes in community resilience by using the model extracted from the RIM study and socio-economic data from several consecutive time periods. The resilience measurement study should help understand the complex process underlying communities' response to the drought impacts. The results identify gaps in resilience planning and help the improvement of the community resilience to the droughts of increasing frequency and intensity.

  2. Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling

    PubMed Central

    Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.

    2014-01-01

    Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130

  3. Fine-temporal forecasting of outbreak probability and severity: Ross River virus in Western Australia.

    PubMed

    Koolhof, I S; Bettiol, S; Carver, S

    2017-10-01

    Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991-2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007-2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r 2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.

  4. Community-wide assessment of pollen limitation in hummingbird-pollinated plants of a tropical montane rain forest

    PubMed Central

    Wolowski, Marina; Ashman, Tia-Lynn; Freitas, Leandro

    2013-01-01

    Background and Aims Although pollen limitation of reproduction (PL) has been widely studied, our understanding of its occurrence in tropical communities, especially for bird-pollinated plants, is underdeveloped. In addition, inclusion of both quantity and quality aspects in studies of PL are generally lacking. Within hummingbird-pollinated plants, a prediction was made for higher PL for the quality than quantity aspects and a minor effect of temporal variation because hummingbirds are constant and efficient pollen vectors but they may transfer low quality pollen. Methods Field hand and open pollination experiments were conducted on 21 species in a tropical montane rain forest over 2 years. The quantity (fruit set and seeds per fruit) and quality (seed weight and germination) aspects of reproduction were assessed as the response to open pollination relative to outcross hand pollination. The relationships between the effect size of quantity and quality aspects of reproduction and predictive plant features (self-incompatibility, autogamy, density and pollinator specialization level) were assessed with phylogenetic generalized linear models. Key Results Just over half of all the species expressed PL for one or more response variables. On average, the severity of PL was strong for one quality variable (seed germination; 0·83), but insignificant for another (seed weight; –0·03), and low to moderate for quantity variables (0·31 for seeds per fruit and 0·39 for fruit set). There was only a minor contribution of temporal variation to PL within the studied species. Common predictors of PL, i.e. phylogenetic relatedness, self-incompatibility, autogamy, plant density and pollinator specialization level, did not adequately explain variation in PL within this community. Conclusions Despite the measurable degree of PL within these hummingbird-pollinated plants, the causes of pollen quality and quantity insufficiency are not clear. Variables other than those tested may contribute to PL or causes of PL may vary among species and cannot adequately be accounted for when assessed from the within-community perspective. PMID:23845434

  5. Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region

    NASA Astrophysics Data System (ADS)

    Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg

    2015-04-01

    Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.

  6. Temporal Variability of Canopy Light Use Efficiency and its Environmental Controls in a Subtropical Mangrove Wetland

    NASA Astrophysics Data System (ADS)

    Zhu, X.

    2016-12-01

    Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.

  7. Spatial and temporal variability in rates of landsliding in seismically active mountain ranges

    NASA Astrophysics Data System (ADS)

    Parker, R.; Petley, D.; Rosser, N.; Densmore, A.; Gunasekera, R.; Brain, M.

    2012-04-01

    Where earthquake and precipitation driven disasters occur in steep, mountainous regions, landslides often account for a large proportion of the associated damage and losses. This research addresses spatial and temporal variability in rates of landslide occurrence in seismically active mountain ranges as a step towards developing better regional scale prediction of losses in such events. In the first part of this paper we attempt to explain reductively the variability in spatial rates of landslide occurrence, using data from five major earthquakes. This is achieved by fitting a regression-based conditional probability model to spatial probabilities of landslide occurrence, using as predictor variables proxies for spatial patterns of seismic ground motion and modelled hillslope stability. A combined model for all earthquakes performs well in hindcasting spatial probabilities of landslide occurrence as a function of readily-attainable spatial variables. We present validation of the model and demonstrate the extent to which it may be applied globally to derive landslide probabilities for future earthquakes. In part two we examine the temporal behaviour of rates of landslide occurrence. This is achieved through numerical modelling to simulate the behaviour of a hypothetical landscape. The model landscape is composed of hillslopes that continually weaken, fail and reset in response to temporally-discrete forcing events that represent earthquakes. Hillslopes with different geometries require different amounts of weakening to fail, such that they fail and reset at different temporal rates. Our results suggest that probabilities of landslide occurrence are not temporally constant, but rather vary with time, irrespective of changes in forcing event magnitudes or environmental conditions. Various parameters influencing the magnitude and temporal patterns of this variability are identified, highlighting areas where future research is needed. This model has important implications for landslide hazard and risk analysis in mountain areas as existing techniques usually assume that susceptibility to failure does not change with time.

  8. Exploring the Variability of the Fermi LAT Blazar Population

    NASA Astrophysics Data System (ADS)

    Macomb, Daryl J.; Shrader, C. R.

    2014-01-01

    The flux variability of the approximately 2000 point sources cataloged by the Fermi Gamma-Ray Space Telescope provide important clues to population characteristics. This is particularly true of the more than 1100 source that are likely AGN. By characterizing the intrinsic flux variability and distinguishing this variability from flaring behavior, we can better address questions of flare amplitudes, durations, recurrence times, and temporal profiles. A better understanding of the responsible physical environments, such as the scale and location of jet structures responsible for the high-energy emission, may emerge from such studies. Assessing these characteristics as a function of blazar sub-class is a further goal in order to address questions about the fundamentals of blazar AGN physics. Here we report on progress made in categorizing blazar flare behavior, and correlate these behaviors with blazar sub-type and other source parameters.

  9. Geochemical and physical drivers of microbial community structure in hot spring ecosystems

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.

    2012-12-01

    Microbial communities in natural systems are typically characterized using samples collected from a single time point, thereby neglecting the temporal dynamics that characterize natural systems. The composition of these communities obtained from single point samples is then related to the geochemistry and physical parameters of the environment. Since most microbial life is adapted to a relatively narrow ecological niche (multiplicity of physical and chemical parameters that characterize a local habitat), these assessments provide only modest insight into the controls on community composition. Temporal variation in temperature or geochemical composition would be expected to add another dimension to the complexity of niche space available to support microbial diversity, with systems that experience greater variation supporting a greater biodiversity until a point where the variability is too extreme. . Hot springs often exhibit significant temporal variation, both in physical as well as chemical characteristics. This is a result of subsurface processes including boiling, phase separation, and differential mixing of liquid and vapor phase constituents. These characteristics of geothermal systems, which vary significantly over short periods of time, provide ideal natural laboratories for investigating how i) the extent of microbial community biodiversity and ii) the composition of those communities are shaped by temporal fluctuations in geochemistry. Geochemical and molecular samples were collected from 17 temporally variable hot springs across Yellowstone National Park, Wyoming. Temperature measurements using data-logging thermocouples, allowing accurate determination of temperature maximums, minimums, and ranges for each collection site, were collected in parallel, along with multiple geochemical characterizations as conditions varied. There were significant variations in temperature maxima (54.5 to 90.5°C), minima (12.5 to 82.5°C), and range (3.5 to 77.5°C) for the hot spring environments that spanned ranges of pH values (2.2 to 9.0) and geochemical compositions. We characterized the abundance, composition, and phylogenetic diversity of bacterial and archaeal 16S rRNA gene assemblages in sediment/biofilm samples collected from each site. 16S data can be used as proxy for metabolic dissimilarity. We predict that temporally fluctuating environments should provide additional complexity to the system (additional niche space) capable of supporting additional taxa, which should lead to greater 16S rRNA gene diversity. However, systems with too much variability should collapse the diversity. Thus, one would expect an optimal system for variability, with respect to 16S phylogenetic diversity. Community ecology tools were then applied to model the relative influence of physical and chemical characteristics (including temperature dynamics) on the local biodiversity. The results reveal unique insight into the role of temporal environmental variation in the development of biodiverse communities and provide a platform for predicting the response of an ecosystem to temperature perturbation.

  10. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  11. Impact of spatial and temporal aggregation of input parameters on the assessment of irrigation scheme performance

    NASA Astrophysics Data System (ADS)

    Lorite, I. J.; Mateos, L.; Fereres, E.

    2005-01-01

    SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results within 1% of those obtained by providing spatially specific values for about 800 parcels.

  12. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    PubMed

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Temporal variability in sung productions of adolescents who stutter.

    PubMed

    Falk, Simone; Maslow, Elena; Thum, Georg; Hoole, Philip

    2016-01-01

    Singing has long been used as a technique to enhance and reeducate temporal aspects of articulation in speech disorders. In the present study, differences in temporal structure of sung versus spoken speech were investigated in stuttering. In particular, the question was examined if singing helps to reduce VOT variability of voiceless plosives, which would indicate enhanced temporal coordination of oral and laryngeal processes. Eight German adolescents who stutter and eight typically fluent peers repeatedly spoke and sang a simple German congratulation formula in which a disyllabic target word (e.g., /'ki:ta/) was repeated five times. Every trial, the first syllable of the word was varied starting equally often with one of the three voiceless German stops /p/, /t/, /k/. Acoustic analyses showed that mean VOT and stop gap duration reduced during singing compared to speaking while mean vowel and utterance duration was prolonged in singing in both groups. Importantly, adolescents who stutter significantly reduced VOT variability (measured as the Coefficient of Variation) during sung productions compared to speaking in word-initial stressed positions while the control group showed a slight increase in VOT variability. However, in unstressed syllables, VOT variability increased in both adolescents who do and do not stutter from speech to song. In addition, vowel and utterance durational variability decreased in both groups, yet, adolescents who stutter were still more variable in utterance duration independent of the form of vocalization. These findings shed new light on how singing alters temporal structure and in particular, the coordination of laryngeal-oral timing in stuttering. Future perspectives for investigating how rhythmic aspects could aid the management of fluent speech in stuttering are discussed. Readers will be able to describe (1) current perspectives on singing and its effects on articulation and fluency in stuttering and (2) acoustic parameters such as VOT variability which indicate the efficiency of control and coordination of laryngeal-oral movements. They will understand and be able to discuss (3) how singing reduces temporal variability in the productions of adolescents who do and do not stutter and 4) how this is linked to altered articulatory patterns in singing as well as to its rhythmic structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    PubMed

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  15. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems

    PubMed Central

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-01-01

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers’ taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies. PMID:28282914

  16. Determinants of fish assemblage structure in Northwestern Great Plains streams

    USGS Publications Warehouse

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.

  17. TEMPORAL VARIABILITY OF ENTEROCOCCI SPECIES IN STREAMS IMPACTED BY CATTLE FECAL CONTAMINATION

    EPA Science Inventory

    Temporal variability in the gastrointestinal flora of animals impacting water resources with fecal material can be one of the factors producing low source identification rates when applying microbial source tracking (MST) methods. Our objective is to identify and compare the temp...

  18. EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES

    EPA Science Inventory

    This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...

  19. Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.

    PubMed

    Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M

    2016-10-20

    Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Effects of the addition of functional electrical stimulation to ground level gait training with body weight support after chronic stroke.

    PubMed

    Prado-Medeiros, Christiane L; Sousa, Catarina O; Souza, Andréa S; Soares, Márcio R; Barela, Ana M F; Salvini, Tania F

    2011-01-01

    The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface. To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function. Twelve people with chronic hemiparesis participated in the study. An A1-B-A2 design was applied. A1 and A2 corresponded to ground level gait training using BWS, and B corresponded to the same training with the addition of FES. The assessments were performed using the Modified Ashworth Scale (MAS), Functional Ambulation Category (FAC), Rivermead Motor Assessment (RMA), and filming. The kinematics analyzed variables were mean walking speed of locomotion; step length; stride length, speed and duration; initial and final double support duration; single-limb support duration; swing period; range of motion (ROM), maximum and minimum angles of foot, leg, thigh, and trunk segments. There were not changes between phases for the functional assessment of RMA, for the spatial-temporal gait variables and segmental angles, no changes were observed after the addition of FES. The use of FES on ground level gait training with BWS did not provide additional benefits for all assessed parameters.

  1. Quantifying drivers of wild pig movement across multiple spatial and temporal scales.

    PubMed

    Kay, Shannon L; Fischer, Justin W; Monaghan, Andrew J; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S; Hartley, Steve B; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; VerCauteren, Kurt C; Pepin, Kim M

    2017-01-01

    The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management. We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season. We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales. The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.

  2. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  3. Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure.

    PubMed

    Aerts, Sam; Wiart, Joe; Martens, Luc; Joseph, Wout

    2018-02-01

    As both the environment and telecommunications networks are inherently dynamic, our exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at an arbitrary location is not at all constant in time. In this study, more than a year's worth of measurement data collected in a fixed low-cost exposimeter network distributed over an urban environment was analysed and used to build, for the first time, a full spatio-temporal surrogate model of outdoor exposure to downlink Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) signals. Though no global trend was discovered over the measuring period, the difference in measured exposure between two instances could reach up to 42dB (a factor 12,000 in power density). Furthermore, it was found that, taking into account the hour and day of the measurement, the accuracy of the surrogate model in the area under study was improved by up to 50% compared to models that neglect the daily temporal variability of the RF signals. However, further study is required to assess the extent to which the results obtained in the considered environment can be extrapolated to other geographic locations. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Temporal, Spatial, and Spectral Variability at Ivanpah Playa Vicarious Calibration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Aleman, E.

    2003-01-07

    The Savannah River Technology Center (SRTC) conducted four reflectance vicarious calibrations at Ivanpah Playa, California since July 2000 in support of the MTI satellite. The multi-year study shows temporal, spatial and spectral variability at the playa. The temporal variability in the wavelength dependent reflectance and emissivity across the playa suggests a dependency with precipitation during the winter and early spring seasons. Satellite imagery acquired on September and November 2000, May 2001 and March 2002 in conjunction with ground truth during the September, May and March campaigns and water precipitation records were used to demonstrate the correlation observed at the playa

  5. Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns

    PubMed Central

    Ramírez, Alonso; Pringle, Catherine M.

    2018-01-01

    Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548

  6. Integrating satellite remote sensing data and field data to predict rangeland structural indicators at the continental scale

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Okin, G.

    2016-12-01

    Rangelands provide a variety of important ecosystem goods and services across drylands globally. They are also the most important emitters of dust across the globe. Field data collection based on points does not represent spatially continuous information about surface variables and, given the vast size of the world's rangelands, cannot cover even a small fraction of their area. Remote sensing is potentially a labor- and time-saving method to observe important rangeland vegetation variables at both temporal and spatial scales. Information on vegetation cover, bare gap size, and plant height provide key rangeland vegetation variables in arid and semiarid rangelands, in part because they strongly impact dust emission and determine wildlife habitat characteristics. This study reports on relationships between remote sensing in the reflected solar spectrum and field measures related to these three variables, and shows how these relationships can be extended to produce spatially and temporally continuous datasets coupled with quantitative estimates of error. Field data for this study included over 3,800 Assessment, Inventory, and Monitoring (AIM) measurements on Bureau of Land Management (BLM) lands throughout the western US. Remote sensing data were derived from MODIS nadir BRDF-adjusted reflectance (NBAR) and Landsat 8 OLI surface reflectance. Normalized bare gap size, total foliar cover, herbaceous cover and herbaceous height exhibit the greatest predictability from remote sensing variables with physically-reasonable relationships between remote sensing variables and field measures. Data fields produced using these relationships across the western US exhibit good agreement with independent high-resolution imagery.

  7. Phytoplankton plasticity drives large variability in carbon fixation efficiency

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier

    2014-12-01

    Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.

  8. A big data approach to macrofaunal baseline assessment, monitoring and sustainable exploitation of the seabed.

    PubMed

    Cooper, K M; Barry, J

    2017-09-29

    In this study we produce a standardised dataset for benthic macrofauna and sediments through integration of data (33,198 samples) from 777 grab surveys. The resulting dataset is used to identify spatial and temporal patterns in faunal distribution around the UK, and the role of sediment composition and other explanatory variables in determining such patterns. We show how insight into natural variability afforded by the dataset can be used to improve the sustainability of activities which affect sediment composition, by identifying conditions which should remain favourable for faunal recolonisation. Other big data applications and uses of the dataset are discussed.

  9. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  10. GeoProMT: A Collaborative Platform Supporting Natural Hazards Project Management From Assessment to Resilience

    NASA Astrophysics Data System (ADS)

    Renschler, C.; Sheridan, M. F.; Patra, A. K.

    2008-05-01

    The impact and consequences of extreme geophysical events (hurricanes, floods, wildfires, volcanic flows, mudflows, etc.) on properties and processes should be continuously assessed by a well-coordinated interdisciplinary research and outreach approach addressing risk assessment and resilience. Communication between various involved disciplines and stakeholders is the key to a successful implementation of an integrated risk management plan. These issues become apparent at the level of decision support tools for extreme events/disaster management in natural and managed environments. The Geospatial Project Management Tool (GeoProMT) is a collaborative platform for research and training to document and communicate the fundamental steps in transforming information for extreme events at various scales for analysis and management. GeoProMT is an internet-based interface for the management of shared geo-spatial and multi-temporal information such as measurements, remotely sensed images, and other GIS data. This tool enhances collaborative research activities and the ability to assimilate data from diverse sources by integrating information management. This facilitates a better understanding of natural processes and enhances the integrated assessment of resilience against both the slow and fast onset of hazard risks. Fundamental to understanding and communicating complex natural processes are: (a) representation of spatiotemporal variability, extremes, and uncertainty of environmental properties and processes in the digital domain, (b) transformation of their spatiotemporal representation across scales (e.g. interpolation, aggregation, disaggregation.) during data processing and modeling in the digital domain, and designing and developing tools for (c) geo-spatial data management, and (d) geo-spatial process modeling and effective implementation, and (e) supporting decision- and policy-making in natural resources and hazard management at various spatial and temporal scales of interest. GeoProMT is useful for researchers, practitioners, and decision-makers, because it provides an integrated environmental system assessment and data management approach that considers the spatial and temporal scales and variability in natural processes. Particularly in the occurrence or onset of extreme events it can utilize the latest data sources that are available at variable scales, combine them with existing information, and update assessment products such as risk and vulnerability assessment maps. Because integrated geo-spatial assessment requires careful consideration of all the steps in utilizing data, modeling and decision-making formats, each step in the sequence must be assessed in terms of how information is being scaled. At the process scale various geophysical models (e.g. TITAN, LAHARZ, or many other examples) are appropriate for incorporation in the tool. Some examples that illustrate our approach include: 1) coastal parishes impacted by Hurricane Rita (Southwestern Louisiana), 2) a watershed affected by extreme rainfall induced debris-flows (Madison County, Virginia; Panabaj, Guatemala; Casita, Nicaragua), and 3) the potential for pyroclastic flows to threaten a city (Tungurahua, Ecuador). This research was supported by the National Science Foundation.

  11. X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2005-12-01

    We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.

  12. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  13. Spatio-temporal variation of urban ultrafine particle number concentrations

    NASA Astrophysics Data System (ADS)

    Ragettli, Martina S.; Ducret-Stich, Regina E.; Foraster, Maria; Morelli, Xavier; Aguilera, Inmaculada; Basagaña, Xavier; Corradi, Elisabetta; Ineichen, Alex; Tsai, Ming-Yi; Probst-Hensch, Nicole; Rivera, Marcela; Slama, Rémy; Künzli, Nino; Phuleria, Harish C.

    2014-10-01

    Methods are needed to characterize short-term exposure to ultrafine particle number concentrations (UFP) for epidemiological studies on the health effects of traffic-related UFP. Our aims were to assess season-specific spatial variation of short-term (20-min) UFP within the city of Basel, Switzerland, and to develop hybrid models for predicting short-term median and mean UFP levels on sidewalks. We collected measurements of UFP for periods of 20 min (MiniDiSC particle counter) and determined traffic volume along sidewalks at 60 locations across the city, during non-rush hours in three seasons. For each monitoring location, detailed spatial characteristics were locally recorded and potential predictor variables were derived from geographic information systems (GIS). We built multivariate regression models to predict local UFP, using concurrent UFP levels measured at a suburban background station, and combinations of meteorological, temporal, GIS and observed site characteristic variables. For a subset of sites, we assessed the relationship between UFP measured on the sidewalk and at the nearby residence (i.e., home outdoor exposure on e.g. balconies). The average median 20-min UFP levels at street and urban background sites were 14,700 ± 9100 particles cm-3 and 9900 ± 8600 particles cm-3, respectively, with the highest levels occurring in winter and the lowest in summer. The most important predictor for all models was the suburban background UFP concentration, explaining 50% and 38% of the variability of the median and mean, respectively. While the models with GIS-derived variables (R2 = 0.61) or observed site characteristics (R2 = 0.63) predicted median UFP levels equally well, mean UFP predictions using only site characteristic variables (R2 = 0.62) showed a better fit than models using only GIS variables (R2 = 0.55). The best model performance was obtained by using a combination of GIS-derived variables and locally observed site characteristics (median: R2 = 0.66; mean: R2 = 0.65). The 20-min UFP concentrations measured at the sidewalk were strongly related (R2 = 0.8) to the concurrent 20-min residential UFP levels nearby. Our results indicate that median UFP can be moderately predicted by means of a suburban background site and GIS-derived traffic and land use variables. In areas and regions where large-scale GIS data are not available, the spatial distribution of traffic-related UFP may be assessed reasonably well by collecting on-site short-term traffic and land-use data.

  14. Difference infiltrometer: a method to measure temporally variable infiltration rates during rainstorms

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2012-01-01

    We developed a difference infiltrometer to measure time series of non-steady infiltration rates during rainstorms at the point scale. The infiltrometer uses two, tipping bucket rain gages. One gage measures rainfall onto, and the other measures runoff from, a small circular plot about 0.5-m in diameter. The small size allows the infiltration rate to be computed as the difference of the cumulative rainfall and cumulative runoff without having to route water through a large plot. Difference infiltrometers were deployed in an area burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado, USA, and data were collected during the summer of 2011. The difference infiltrometer demonstrated the capability to capture different magnitudes of infiltration rates and temporal variability associated with convective (high intensity, short duration) and cyclonic (low intensity, long duration) rainstorms. Data from the difference infiltrometer were used to estimate saturated hydraulic conductivity of soil affected by the heat from a wildfire. The difference infiltrometer is portable and can be deployed in rugged, steep terrain and does not require the transport of water, as many rainfall simulators require, because it uses natural rainfall. It can be used to assess infiltration models, determine runoff coefficients, identify rainfall depth or rainfall intensity thresholds to initiate runoff, estimate parameters for infiltration models, and compare remediation treatments on disturbed landscapes. The difference infiltrometer can be linked with other types of soil monitoring equipment in long-term studies for detecting temporal and spatial variability at multiple time scales and in nested designs where it can be linked to hillslope and basin-scale runoff responses.

  15. Assessing spatial and temporal variability of acid-extractable organics in oil sands process-affected waters.

    PubMed

    Frank, Richard A; Milestone, Craig B; Rowland, Steve J; Headley, John V; Kavanagh, Richard J; Lengger, Sabine K; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Hewitt, L Mark

    2016-10-01

    The acid-extractable organic compounds (AEOs), including naphthenic acids (NAs), present within oil sands process-affected water (OSPW) receive great attention due to their known toxicity. While recent progress in advanced separation and analytical methodologies for AEOs has improved our understanding of the composition of these mixtures, little is known regarding any variability (i.e., spatial, temporal) inherent within, or between, tailings ponds. In this study, 5 samples were collected from the same location of one tailings pond over a 2-week period. In addition, 5 samples were collected simultaneously from different locations within a tailings pond from a different mine site, as well as its associated recycling pond. In both cases, the AEOs were analyzed using SFS, ESI-MS, HRMS, GC×GC-ToF/MS, and GC- & LC-QToF/MS (GC analyses following conversion to methyl esters). Principal component analysis of HRMS data was able to distinguish the ponds from each other, while data from GC×GC-ToF/MS, and LC- and GC-QToF/MS were used to differentiate samples from within the temporal and spatial sample sets, with the greater variability associated with the latter. Spatial differences could be attributed to pond dynamics, including differences in inputs of tailings and surface run-off. Application of novel chemometric data analyses of unknown compounds detected by LC- and GC-QToF/MS allowed further differentiation of samples both within and between data sets, providing an innovative approach for future fingerprinting studies. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Cell type- and activity-dependent extracellular correlates of intracellular spiking

    PubMed Central

    Perin, Rodrigo; Buzsáki, György; Markram, Henry; Koch, Christof

    2015-01-01

    Despite decades of extracellular action potential (EAP) recordings monitoring brain activity, the biophysical origin and inherent variability of these signals remain enigmatic. We performed whole cell patch recordings of excitatory and inhibitory neurons in rat somatosensory cortex slice while positioning a silicon probe in their vicinity to concurrently record intra- and extracellular voltages for spike frequencies under 20 Hz. We characterize biophysical events and properties (intracellular spiking, extracellular resistivity, temporal jitter, etc.) related to EAP recordings at the single-neuron level in a layer-specific manner. Notably, EAP amplitude was found to decay as the inverse of distance between the soma and the recording electrode with similar (but not identical) resistivity across layers. Furthermore, we assessed a number of EAP features and their variability with spike activity: amplitude (but not temporal) features varied substantially (∼30–50% compared with mean) and nonmonotonically as a function of spike frequency and spike order. Such EAP variation only partly reflects intracellular somatic spike variability and points to the plethora of processes contributing to the EAP. Also, we show that the shape of the EAP waveform is qualitatively similar to the negative of the temporal derivative to the intracellular somatic voltage, as expected from theory. Finally, we tested to what extent EAPs can impact the lowpass-filtered part of extracellular recordings, the local field potential (LFP), typically associated with synaptic activity. We found that spiking of excitatory neurons can significantly impact the LFP at frequencies as low as 20 Hz. Our results question the common assertion that the LFP acts as proxy for synaptic activity. PMID:25995352

  17. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Doelling, David R.; Wu, Aisheng; Xiong, Xiaoxiong (Jack); Scarino, Benjamin R.; Haney, Conor O.; Gopalan, Arun

    2014-01-01

    The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.

  18. Methane Seeps in the Gulf of Mexico: repeat acoustic surveying shows highly temporally and spatially variable venting

    NASA Astrophysics Data System (ADS)

    Beaumont, B. C.; Raineault, N.

    2016-02-01

    Scientists have recognized that natural seeps account for a large amount of methane emissions. Despite their widespread occurrence in areas like the Gulf of Mexico, little is known about the temporal variability and site-scale spatial variability of venting over time. We used repeat acoustic surveys to compare multiple days of seep activity and determine the changes in the locus of methane emission and plume height. The Sleeping Dragon site was surveyed with an EM302 multibeam sonar on three consecutive days in 2014 and 4 days within one week in 2015. The data revealed three distinctive plume regions. The locus of venting varied by 10-60 meters at each site. The plume that exhibited the least spatial variability in venting, was also the most temporally variable. This seep was present in one-third of survey dates in 2014 and three quarters of survey dates in 2015, showing high day-to-day variability. The plume height was very consistent for this plume, whereas the other plumes were more consistent temporally, but varied in maximum plume height detection by 25-85 m. The single locus of emission at the site that had high day-to-day variability may be due to a single conduit for methane release, which is sometimes closed off by carbonate or clathrate hydrate formation. In addition to day-to-day temporal variability, the locus of emission at one site was observed to shift from a point-source in 2014 to a diffuse source in 2015 at a nearby location. ROV observations showed that one of the seep sites that closed off temporarily, experienced an explosive breakthrough of gas, releasing confined methane and blowing out rock. The mechanism that causes on/off behavior of certain plumes, combined with the spatial variability of the locus of methane release shown in this study may point to carbonate or hydrate formation in the seep plumbing system and should be further investigated.

  19. Variability of Soil Temperature: A Spatial and Temporal Analysis.

    ERIC Educational Resources Information Center

    Walsh, Stephen J.; And Others

    1991-01-01

    Discusses an analysis of the relationship of soil temperatures at 3 depths to various climatic variables along a 200-kilometer transect in west-central Oklahoma. Reports that temperature readings increased from east to west. Concludes that temperature variations were explained by a combination of spatial, temporal, and biophysical factors. (SG)

  20. Yield response to landscape position under variable N for irrigated corn

    USDA-ARS?s Scientific Manuscript database

    Variable nutrient and water supply can result in spatial and temporal variation in crop yield within a given agricultural field. For the western Corn Belt, irrigated corn accounts for 58% of total annual corn production with the majority grown in Nebraska. Although irrigation decreases temporal yi...

  1. TEMPORAL AND SPATIAL VARIABILITY OF FECAL INDICATOR BACTERIA: IMPLICATIONS FOR THE APPLICATION OF MST METHODOLOGIES TO DIFFERENTIATE SOURCES OF FECAL CONTAMINATION

    EPA Science Inventory

    Temporal variability in the gastrointestinal flora of animals impacting water resources with fecal material can be one of the factors producing low source identification rates when applying microbial source tracking (MST) methods. Understanding how bacterial species and genotype...

  2. Analysis of the spatial and temporal variability of terrestrial water storage and snowpack in the Pacific Northwestern United States

    EPA Science Inventory

    The spatial and temporal variability of terrestrial water storage and snowpack in the Pacific Northwest (PNW) was analyzed for water years 2001–2010 using measurements from the Gravity Recovery and Climate Experiment (GRACE) instrument. GRACE provides remotely-sensed measurements...

  3. Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  4. Factors Affecting Temporal Variability of Arsenic in Groundwater Used for Drinking Water Supply in the United States

    EPA Science Inventory

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently recei...

  5. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  6. Quantifying spatiotemporal variability of fine particles in an urban environment using combined fixed and mobile measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Pryor, S. C.

    2014-06-01

    Spatiotemporal variability of fine particle concentrations in Indianapolis, Indiana is quantified using a combination of high temporal resolution measurements at four fixed sites and mobile measurements with instruments attached to bicycles during transects of the city. Average urban PM2.5 concentrations are an average of ˜3.9-5.1 μg m-3 above the regional background. The influence of atmospheric conditions on ambient PM2.5 concentrations is evident with the greatest temporal variability occurring at periods of one day and 5-10 days corresponding to diurnal and synoptic meteorological processes, and lower mean wind speeds are associated with episodes of high PM2.5 concentrations. An anthropogenic signal is also evident. Higher PM2.5 concentrations coincide with morning rush hour, the frequencies of PM2.5 variability co-occur with those for carbon monoxide, and higher extreme concentrations were observed mid-week compared to weekends. On shorter time scales (

  7. Cognitive and Anatomical Underpinnings of the Conceptual Knowledge for Common Objects and Familiar People: A Repetitive Transcranial Magnetic Stimulation Study

    PubMed Central

    Campanella, Fabio; Fabbro, Franco; Urgesi, Cosimo

    2013-01-01

    Several studies have addressed the issue of how knowledge of common objects is organized in the brain, whereas the cognitive and anatomical underpinnings of familiar people knowledge have been less explored. Here we applied repetitive transcranial magnetic stimulation (rTMS) over the left and right temporal poles before asking healthy individuals to perform a speeded word-to-picture matching task using familiar people and common objects as stimuli. We manipulated two widely used semantic variables, namely the semantic distance and the familiarity of stimuli, to assess whether the semantic organization of familiar people knowledge is similar to that of common objects. For both objects and faces we reliably found semantic distance and familiarity effects, with less accurate and slower responses for stimulus pairs that were more closely related and less familiar. However, the effects of semantic variables differed across categories, with semantic distance effects larger for objects and familiarity effects larger for faces, suggesting that objects and faces might share a partially comparable organization of their semantic representations. The application of rTMS to the left temporal pole modulated, for both categories, semantic distance, but not familiarity effects, revealing that accessing object and face concepts might rely on overlapping processes within left anterior temporal regions. Crucially, rTMS of the left temporal pole affected only the recognition of pairs of stimuli that could be discriminated at specific levels of categorization (e.g., two kitchen tools or two famous persons), with no effect for discriminations at either superordinate or individual levels. Conversely, rTMS of the right temporal pole induced an overall slowing of reaction times that positively correlated with the visual similarity of the stimuli, suggesting a more perceptual rather than semantic role of the right anterior temporal regions. Results are discussed in the light of current models of face and object semantic representations in the brain. PMID:23704999

  8. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests.

    PubMed

    Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R

    2012-10-07

    The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.

  9. Memory for performed and observed activities following traumatic brain injury

    PubMed Central

    Wright, Matthew J.; Wong, Andrew L.; Obermeit, Lisa C.; Woo, Ellen; Schmitter-Edgecombe, Maureen; Fuster, Joaquín M.

    2014-01-01

    Traumatic brain injury (TBI) is associated with deficits in memory for the content of completed activities. However, TBI groups have shown variable memory for the temporal order of activities. We sought to clarify the conditions under which temporal order memory for activities is intact following TBI. Additionally, we evaluated activity source memory and the relationship between activity memory and functional outcome in TBI participants. Thus, we completed a study of activity memory with 18 severe TBI survivors and 18 healthy age- and education-matched comparison participants. Both groups performed eight activities and observed eight activities that were fashioned after routine daily tasks. Incidental encoding conditions for activities were utilized. The activities were drawn from two counterbalanced lists, and both performance and observation were randomly determined and interspersed. After all of the activities were completed, content memory (recall and recognition), source memory (conditional source identification), and temporal order memory (correlation between order reconstruction and actual order) for the activities were assessed. Functional ability was assessed via the Community Integration Questionnaire (CIQ). In terms of content memory, TBI participants recalled and recognized fewer activities than comparison participants. Recognition of performed and observed activities was strongly associated with social integration on the CIQ. There were no between- or within-group differences in temporal order or source memory, although source memory performances were near ceiling. The findings were interpreted as suggesting that temporal order memory following TBI is intact under conditions of both purposeful activity completion and incidental encoding, and that activity memory is related to functional outcomes following TBI. PMID:24524393

  10. Assessing knowledge ambiguity in the creation of a model based on expert knowledge and comparison with the results of a landscape succession model in central Labrador. Chapter 10.

    Treesearch

    Frederik Doyon; Brian Sturtevant; Michael J. Papaik; Andrew Fall; Brian Miranda; Daniel D. Kneeshaw; Christian Messier; Marie-Josee Fortin; Patrick M.A. James

    2012-01-01

    Sustainable forest management (SFM) recognizes that the spatial and temporal patterns generated at different scales by natural landscape and stand dynamics processes should serve as a guide for managing the forest within its range of natural variability. Landscape simulation modeling is a powerful tool that can help encompass such complexity and support SFM planning....

  11. Mussels as Bioindicators: A Case Study of Tributyltin Effects in San Diego Bay.

    DTIC Science & Technology

    As part of a Navy research program to evaluate the environmental effects of tributyltin ( TBT ) antifouling coatings and develop in-situ field...documented temporal and spatial variability in TBT and the effects of TBT on growth, bioaccumulation and survival that have not been previously...the mussel bioidicator for assessing TBT effects in San Diego Bay and establishes a significant refinement in the use of mussels as biological

  12. Physical and temporal characteristics of under 19, under 21 and senior male beach volleyball players.

    PubMed

    Medeiros, Alexandre; Marcelino, Rui; Mesquita, Isabel; Palao, José Manuel

    2014-09-01

    This study aimed to assess the effects of age groups and players' role (blocker vs. defender specialist) in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19), 933 rallies from Under 21 (U21), and 1480 rallies from senior (senior) (Men's Swatch World Championships, 2010-2011) were observed using video match analysis. Cluster analysis was used to set teams' competitive levels and establish quality of opposition as "balanced", "moderate balanced" and "unbalanced" games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies) and physical (number of jumps and number of hits done by defenders and blockers) characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player's role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a) balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19) and U21; b) moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c) unbalanced games, no significant findings were shown. This study suggests differences in players' performances according to age group and players' role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics. Key PointsPlayer roles, quality of opposition, and competitive level of the teams influence physical and temporal characteristics, and they may be taken into consideration during the training by strength and conditioning coaches and coaches.More experienced players adopt strategies to better manage their effort and rest time between rallies.The game strategy affects the physical actions done by players (e.g. tendency to serve more to one player of the team affects the number of jumps performed by this player).

  13. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    PubMed

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  14. Temporal Patterns and Environmental Correlates of Macroinvertebrate Communities in Temporary Streams.

    PubMed

    Botwe, Paul K; Barmuta, Leon A; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott

    2015-01-01

    Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments.

  15. Temporal Patterns and Environmental Correlates of Macroinvertebrate Communities in Temporary Streams

    PubMed Central

    Botwe, Paul K.; Barmuta, Leon A.; Magierowski, Regina; McEvoy, Paul; Goonan, Peter; Carver, Scott

    2015-01-01

    Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments. PMID:26556711

  16. Spatio-temporal dynamics of species richness in coastal fish communities

    USGS Publications Warehouse

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  17. A Prediction Algorithm for Drug Response in Patients with Mesial Temporal Lobe Epilepsy Based on Clinical and Genetic Information

    PubMed Central

    Carvalho, Benilton S.; Bilevicius, Elizabeth; Alvim, Marina K. M.; Lopes-Cendes, Iscia

    2017-01-01

    Mesial temporal lobe epilepsy is the most common form of adult epilepsy in surgical series. Currently, the only characteristic used to predict poor response to clinical treatment in this syndrome is the presence of hippocampal sclerosis. Single nucleotide polymorphisms (SNPs) located in genes encoding drug transporter and metabolism proteins could influence response to therapy. Therefore, we aimed to evaluate whether combining information from clinical variables as well as SNPs in candidate genes could improve the accuracy of predicting response to drug therapy in patients with mesial temporal lobe epilepsy. For this, we divided 237 patients into two groups: 75 responsive and 162 refractory to antiepileptic drug therapy. We genotyped 119 SNPs in ABCB1, ABCC2, CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 genes. We used 98 additional SNPs to evaluate population stratification. We assessed a first scenario using only clinical variables and a second one including SNP information. The random forests algorithm combined with leave-one-out cross-validation was used to identify the best predictive model in each scenario and compared their accuracies using the area under the curve statistic. Additionally, we built a variable importance plot to present the set of most relevant predictors on the best model. The selected best model included the presence of hippocampal sclerosis and 56 SNPs. Furthermore, including SNPs in the model improved accuracy from 0.4568 to 0.8177. Our findings suggest that adding genetic information provided by SNPs, located on drug transport and metabolism genes, can improve the accuracy for predicting which patients with mesial temporal lobe epilepsy are likely to be refractory to drug treatment, making it possible to identify patients who may benefit from epilepsy surgery sooner. PMID:28052106

  18. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.

  19. Automatic Methods and Tools for the Verification of Real Time Systems

    DTIC Science & Technology

    1997-07-31

    real - time systems . This was accomplished by extending techniques, based on automata theory and temporal logic, that have been successful for the verification of time-independent reactive systems. As system specification lanmaage for embedded real - time systems , we introduced hybrid automata, which equip traditional discrete automata with real-numbered clock variables and continuous environment variables. As requirements specification languages, we introduced temporal logics with clock variables for expressing timing constraints.

  20. Variability of hazardous air pollutants in an urban area

    NASA Astrophysics Data System (ADS)

    Spicer, Chester W.; Buxton, Bruce E.; Holdren, Michael W.; Smith, Deborah L.; Kelly, Thomas J.; Rust, Steven W.; Pate, Alan D.; Sverdrup, George M.; Chuang, Jane C.

    The variability of hazardous air pollutants (HAPs) is an important factor in determining human exposure to such chemicals, and in designing HAP measurement programs. This study has investigated the factors which contribute to HAP variability in an urban area. Six measurement sites separated by up to 12 km collected data with 3 h time resolution to examine spatial variability within neighborhoods and between neighborhoods. The measurements were made in Columbus, OH. The 3 h results also were used to study temporal variability, and duplicate samples collected at each site were used to determine the component of variability attributable to the measurement process. Hourly samples collected over 10 days at one site provided further insight into the temporal resolution needed to capture short-term peak concentrations. Measurements at the 6 spatial sites focused on 78 chemicals. Twenty-three of these species were found in at least 95% of the 3 h samples, and 39 chemicals were present at least 60% of the time. The relative standard deviations for most of these 39 frequently detected chemicals was 1.0 or lower. Variability was segmented into temporal, spatial, and measurement components. Temporal variation was the major contributor to HAP variability for 19 of the 39 frequently detected compounds, based on the 3 h data. Measurement imprecision contributed less than 25% for most of the volatile organic species, but 30% or more of the variability for carbonyl compounds, trace elements, and particle-bound extractable organic mass. Interestingly, the spatial component contributed less than 20% of the total variability for all the chemicals except sulfur. Based on the data with hourly resolution, peak to median ratios (hourly peak to 24 h median) averaged between 2 and 4 for most of the volatile organic compounds, but there were two species with peak to median ratios of about 10.

  1. Nutrient fluctuations in the Quatipuru river: A macrotidal estuarine mangrove system in the Brazilian Amazonian basin

    NASA Astrophysics Data System (ADS)

    Pamplona, Fábio Campos; Paes, Eduardo Tavares; Nepomuceno, Aguinaldo

    2013-11-01

    The temporal and spatial variability of dissolved inorganic nutrients (NO3-, NO2-, NH4+, PO43- and DSi), total nitrogen (TN), total phosphorus (TP), nutrient ratios, suspended particulate matter (SPM) and Chlorophyll-a (Chl-a) were evaluated for the macrotidal estuarine mangrove system of the Quatipuru river (QUATIES), east Amazon coast, North Brazil. Temporal variability was assessed by fortnightly sampling at a fixed station within the middle portion of the estuary, from November 2009 to November 2010. Spatial variability was investigated from two field surveys conducted in November 2009 (dry season) and May 2010 (rainy season), along the salinity gradient of the system. The average DIN (NO3- + NO2- + NH4+) concentration of 9 μM in the dry season was approximately threefold greater in comparison to the rainy season. NH4+ was the main form of DIN in the dry season, while NO3- predominated in the rainy season. The NH4+ concentrations in the water column during the dry season are largely attributed to release by tidal wash-out of the anoxic interstitial waters of the surficial mangrove sediments. On the other hand, the higher NO3- levels during the wet season, suggested that both freshwater inputs and nitrification processes in the water column acted in concert. The river PO43- concentrations (DIP < 1 μM) were low and similar throughout the year. DIN was thus responsible for the major temporal and spatial variability of the dissolved DIN:DIP (N:P) molar ratios and nitrogen corresponded, in general, to the prime limiting nutrient for the sustenance of phytoplankton biomass in the estuary. During the dry season, P-limitation was detected in the upper estuary. PO43- adsorption to SPM was detected during the rainy season and desorption during the dry season along the salinity gradient. In general, the average Chl-a level (14.8 μg L-1) was 2.5 times higher in the rainy season than in the dry season (5.9 μg L-1). On average levels reached maxima at about 14 km from the estuaries' mouth, but shifts of the maximum Chl-a zone were subject to a dynamic displacement influenced by the tidal regime and seasonality of freshwater input. Our results showed that the potential phytoplankton productivity in QUATIES was subject to temporal and spatial variability between N and P limitation. The mangrove forests also played a relevant role as a nutrient source as established by the high variability of the nutrient behaviour along the estuarine gradient, consequently affecting the productivity in QUATIES.

  2. Brain volume change and cognitive trajectories in aging.

    PubMed

    Fletcher, Evan; Gavett, Brandon; Harvey, Danielle; Farias, Sarah Tomaszewski; Olichney, John; Beckett, Laurel; DeCarli, Charles; Mungas, Dan

    2018-05-01

    Examine how longitudinal cognitive trajectories relate to brain baseline measures and change in lobar volumes in a racially/ethnically and cognitively diverse sample of older adults. Participants were 460 older adults enrolled in a longitudinal aging study. Cognitive outcomes were measures of episodic memory, semantic memory, executive function, and spatial ability derived from the Spanish and English Neuropsychological Assessment Scales (SENAS). Latent variable multilevel modeling of the four cognitive outcomes as parallel longitudinal processes identified intercepts for each outcome and a second order global change factor explaining covariance among the highly correlated slopes. We examined how baseline brain volumes (lobar gray matter, hippocampus, and white matter hyperintensity) and change in brain volumes (lobar gray matter) were associated with cognitive intercepts and global cognitive change. Lobar volumes were dissociated into global and specific components using latent variable methods. Cognitive change was most strongly associated with brain gray matter volume change, with strong independent effects of global gray matter change and specific temporal lobe gray matter change. Baseline white matter hyperintensity and hippocampal volumes had significant incremental effects on cognitive decline beyond gray matter change. Baseline lobar gray matter was related to cognitive decline, but did not contribute beyond gray matter change. Cognitive decline was strongly influenced by gray matter volume change and, especially, temporal lobe change. The strong influence of temporal lobe gray matter change on cognitive decline may reflect involvement of temporal lobe structures that are critical for late life cognitive health but also are vulnerable to diseases of aging. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2008-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  4. Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  5. Space Technology 5 Multi-point Observations of Field-aligned Currents: Temporal Variability of Meso-Scale Structures

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  6. Space Technology 5 (ST-5) Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  7. Quantifying the Temporal Inequality of Nutrient Loads with a Novel Metric

    NASA Astrophysics Data System (ADS)

    Gall, H. E.; Schultz, D.; Rao, P. S.; Jawitz, J. W.; Royer, M.

    2015-12-01

    Inequality is an emergent property of many complex systems. For a given series of stochastic events, some events generate a disproportionately large contribution to system responses compared to other events. In catchments, such responses cause streamflow and solute loads to exhibit strong temporal inequality, with the vast majority of discharge and solute loads exported during short periods of time during which high-flow events occur. These periods of time are commonly referred to as "hot moments". Although this temporal inequality is widely recognized, there is currently no uniform metric for assessing it. We used a novel application of Lorenz Inequality, a method commonly used in economics to quantify income inequality, to quantify the spatial and temporal inequality of streamflow and nutrient (nitrogen and phosphorus) loads exported to the Chesapeake Bay. Lorenz Inequality and the corresponding Gini Coefficient provide an analytical tool for quantifying inequality that can be applied at any temporal or spatial scale. The Gini coefficient (G) is a formal measure of inequality that varies from 0 to 1, with a value of 0 indicating perfect equality (i.e., fluxes and loads are constant in time) and 1 indicating perfect inequality (i.e., all of the discharge and solute loads are exported during one instant in time). Therefore, G is a simple yet powerful tool for providing insight into the temporal inequality of nutrient transport. We will present the results of our detailed analysis of streamflow and nutrient time series data collected since the early 1980's at 30 USGS gauging stations in the Chesapeake Bay watershed. The analysis is conducted at an annual time scale, enabling trends and patterns to be assessed both temporally (over time at each station) and spatially (for the same period of time across stations). The results of this analysis have the potential to create a transformative new framework for identifying "hot moments", improving our ability to temporally and spatially target implementation of best management practices to ultimately improve water quality in the Chesapeake Bay. This method also provides insight into the temporal scales at which hydrologic and biogeochemical variability dominate nutrient export dynamics.

  8. Temporal variability of pyrethroid metabolite levels in bedtime, morning, and 24-hr urine samples for 50 adults in North Carolina

    EPA Science Inventory

    Pyrethroid insecticides are widely used to control insects in both agricultural and residential settings worldwide. Few data are available on the temporal variability of pyrethroid metabolites in the urine of non-occupationally exposed adults. In this work, we describe the study ...

  9. Spatio-Temporal Analysis of Surface Soil Moisture in Evaluating Ground Truth Monitoring Sites for Remotely Sensed Observations

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...

  10. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  11. Spatio-Temporal Variability of Water Vapor in the Free Troposphere Investigated by Dial and Ftir Vertical Soundings

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2016-06-01

    We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].

  12. On the objective identification of flood seasons

    NASA Astrophysics Data System (ADS)

    Cunderlik, Juraj M.; Ouarda, Taha B. M. J.; BobéE, Bernard

    2004-01-01

    The determination of seasons of high and low probability of flood occurrence is a task with many practical applications in contemporary hydrology and water resources management. Flood seasons are generally identified subjectively by visually assessing the temporal distribution of flood occurrences and, then at a regional scale, verified by comparing the temporal distribution with distributions obtained at hydrologically similar neighboring sites. This approach is subjective, time consuming, and potentially unreliable. The main objective of this study is therefore to introduce a new, objective, and systematic method for the identification of flood seasons. The proposed method tests the significance of flood seasons by comparing the observed variability of flood occurrences with the theoretical flood variability in a nonseasonal model. The method also addresses the uncertainty resulting from sampling variability by quantifying the probability associated with the identified flood seasons. The performance of the method was tested on an extensive number of samples with different record lengths generated from several theoretical models of flood seasonality. The proposed approach was then applied on real data from a large set of sites with different flood regimes across Great Britain. The results show that the method can efficiently identify flood seasons from both theoretical and observed distributions of flood occurrence. The results were used for the determination of the main flood seasonality types in Great Britain.

  13. Body Dissatisfaction Among Sexual Minority Men: Psychological and Sexual Health Outcomes.

    PubMed

    Blashill, Aaron J; Tomassilli, Julia; Biello, Katie; O'Cleirigh, Conall; Safren, Steven A; Mayer, Kenneth H

    2016-07-01

    Body dissatisfaction is common among sexual minority (i.e., gay and bisexual) men; however, few studies have investigated the relationship between body dissatisfaction and psychosexual health variables among this population. The data that do exist are exclusively cross-sectional, casting uncertainty regarding temporal associations. Thus, the aims of the current study were to assess the prospective relationship between body dissatisfaction and psychological and sexual health outcomes. Participants were 131 gay and bisexual men who completed a battery of self-report measures across two time points (baseline and 3-month follow-up), including assessment of body dissatisfaction, depressive symptoms, and sexual health variables (sexual self-efficacy and sexual anxiety). Generalized linear modeling was employed to assess the prospective relationship between body dissatisfaction and outcomes variables, accounting for non-normal distributions. Body dissatisfaction significantly predicted elevated depressive symptoms (B = .21, p = .01), lower sexual self-efficacy (B = -.22, p = .04), and elevated sexual anxiety (B = .05, p = .03). Elevated body dissatisfaction is prospectively associated with negative psychological and sexual health outcomes. Given the high prevalence of body image concerns in sexual minority men, depression and/or HIV/STI prevention programs may benefit from routinely assessing for body dissatisfaction among this population, and addressing those who report concerns.

  14. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  15. Algal Supply System Design - Harmonized Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abodeely, Jared; Stevens, Daniel; Ray, Allison

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logisticsmore » Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.« less

  16. Spatio-temporal error growth in the multi-scale Lorenz'96 model

    NASA Astrophysics Data System (ADS)

    Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.

    2010-07-01

    The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.

  17. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  18. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  19. Temporal Variation of Chemical Persistence in a Swedish Lake Assessed by Benchmarking.

    PubMed

    Zou, Hongyan; Radke, Michael; Kierkegaard, Amelie; McLachlan, Michael S

    2015-08-18

    Chemical benchmarking was used to investigate the temporal variation of the persistence of chemical contaminants in a Swedish lake. The chemicals studied included 12 pharmaceuticals, an artificial sweetener, and an X-ray contrast agent. Measurements were conducted in late spring, late autumn, and winter. The transformation half-life in the lake could be quantified for 7 of the chemicals. It ranged from several days to hundreds of days. For 5 of the chemicals (bezafibrate, climbazole, diclofenac, furosemide, and hydrochlorothiazide), the measured persistence was lower in late spring than in late autumn. This may have been caused by lower temperatures and/or less irradiation during late autumn. The seasonality in chemical persistence contributed to changes in chemical concentrations in the lake during the year. The impact of seasonality of persistence was compared with the impact of other important variables determining concentrations in the lake: chemical inputs and water flow/dilution. The strongest seasonal variability in chemical concentration in lake water was observed for hydrochlorothiazide (over a factor of 10), and this was attributable to the seasonality in its persistence.

  20. The use of time-series data in the assessment of macrobenthic community change after the cessation of sewage-sludge disposal in Liverpool Bay (UK).

    PubMed

    Whomersley, P; Schratzberger, M; Huxham, M; Bates, H; Rees, H

    2007-01-01

    Sewage sludge was disposed of in Liverpool Bay for over 100 years. Annual amounts increased from 0.5 million tonnes per annum in 1900 to approximately 2 million tonnes per annum by 1995. Macrofauna and a suite of environmental variables were collected at a station adjacent to, and a reference station distant from, the disposal site over 13 years, spanning a pre- (1990-1998) and post- (1999-2003) cessation period. Univariate and multivariate analyses of the time-series data showed significant community differences between reference and disposal site stations and multivariate analyses revealed station-specific community development post-disposal. Temporal variability of communities collected at the disposal station post-cessation was higher than during years of disposal, when temporally stable dominance patterns of disturbance-tolerant species had established. Alterations of community structure post-disturbance reflected successional changes possibly driven by facilitation. Subtle faunistic changes at the Liverpool Bay disposal site indicate that the near-field effects of the disposal of sewage sludge were small and therefore could be considered environmentally acceptable.

  1. Capturing temporal and spatial variability in the chemistry of shallow permafrost ponds

    NASA Astrophysics Data System (ADS)

    Morison, Matthew Q.; Macrae, Merrin L.; Petrone, Richard M.; Fishback, LeeAnn

    2017-12-01

    Across the circumpolar north, the fate of small freshwater ponds and lakes (< 1 km2) has been the subject of scientific interest due to their ubiquity in the landscape, capacity to exchange carbon and energy with the atmosphere, and their potential to inform researchers about past climates through sediment records. A changing climate has implications for the capacity of ponds and lakes to support organisms and store carbon, which in turn has important feedbacks to climate change. Thus, an improved understanding of pond biogeochemistry is needed. To characterize spatial and temporal patterns in water column chemistry, a suite of tundra ponds were examined to answer the following research questions: (1) does temporal variability exceed spatial variability? (2) If temporal variability exists, do all ponds (or groups of ponds) behave in a similar temporal pattern, linked to seasonal hydrologic drivers or precipitation events? Six shallow ponds located in the Hudson Bay Lowlands region were monitored between May and October 2015 (inclusive, spanning the entire open-water period). The ponds span a range of biophysical conditions including pond area, perimeter, depth, and shoreline development. Water samples were collected regularly, both bimonthly over the ice-free season and intensively during and following a large summer storm event. Samples were analysed for nitrogen speciation (NO3-, NH4+, dissolved organic nitrogen) and major ions (Cl-, SO42-, K+, Ca2+, Mg2+, Na+). Across all ponds, temporal variability (across the season and within a single rain event) exceeded spatial variability (variation among ponds) in concentrations of several major species (Cl-, SO42-, K+, Ca2+, Na+). Evapoconcentration and dilution of pond water with precipitation and runoff inputs were the dominant processes influencing a set of chemical species which are hydrologically driven (Cl-, Na+, K+, Mg2+, dissolved organic nitrogen), whereas the dissolved inorganic nitrogen species were likely mediated by processes within ponds. This work demonstrates the importance of understanding hydrologically driven chemodynamics in permafrost ponds on multiple scales (seasonal and event scale).

  2. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    NASA Astrophysics Data System (ADS)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.

  3. Climate and anthropogenic impacts on forest vegetation derived from satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, M.; Savastru, R.; Savastru, D.; Tautan, M.; Miclos, S.; Baschir, L.

    2010-09-01

    Vegetation and climate interact through a series of complex feedbacks, which are not very well understood. The patterns of forest vegetation are largely determined by temperature, precipitation, solar irradiance, soil conditions and CO2 concentration. Vegetation impacts climate directly through moisture, energy, and momentum exchanges with the atmosphere and indirectly through biogeochemical processes that alter atmospheric CO2 concentration. Changes in forest vegetation land cover/use alter the surface albedo and radiation fluxes, leading to a local temperature change and eventually a vegetation response. This albedo (energy) feedback is particularly important when forests mask snow cover. Forest vegetation-climate feedback regimes are designated based on the temporal correlations between the vegetation and the surface temperature and precipitation. The different feedback regimes are linked to the relative importance of vegetation and soil moisture in determining land-atmosphere interactions. Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modeling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal forest vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images over 1989 - 2009 period for a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, from IKONOS and LANDSAT TM and ETM satellite images and meteorological data. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. For investigated test area, considerable NDVI decline was observed for drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation .

  4. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    PubMed

    Rohr, Jason R; Raffel, Thomas R

    2010-05-04

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  5. The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation

    NASA Astrophysics Data System (ADS)

    Olvera Alvarez, Hector A.; Myers, Orrin B.; Weigel, Margaret; Armijos, Rodrigo X.

    2018-06-01

    A yearlong air monitoring campaign was conducted to assess the impact of local temperature, relative humidity, and wind speed on the temporal and spatial variability of PM2.5 in El Paso, Texas. Monitoring was conducted at four sites purposely selected to capture the local traffic variability. Effects of meteorological events on seasonal PM2.5 variability were identified. For instance, in winter low-wind and low-temperature conditions were associated with high PM2.5 events that contributed to elevated seasonal PM2.5 levels. Similarly, in spring, high PM2.5 events were associated with high-wind and low-relative humidity conditions. Correlation coefficients between meteorological variables and PM2.5 fluctuated drastically across seasons. Specifically, it was observed that for most sites correlations between PM2.5 and meteorological variables either changed from positive to negative or dissolved depending on the season. Overall, the results suggest that mixed effects analysis with season and site as fixed factors and meteorological variables as covariates could increase the explanatory value of LUR models for PM2.5.

  6. The effects of context and musical training on auditory temporal-interval discrimination.

    PubMed

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Temporal Dynamics of Cognitive Performance and Anxiety Across Older Adulthood

    PubMed Central

    Petkus, Andrew J.; Reynolds, Chandra A.; Wetherell, Julie Loebach; Kremen, William S.; Gatz, Margaret

    2017-01-01

    Cognitive decline and anxiety symptoms commonly co-occur in later life, but the temporal order of changes on these two attributes is unclear. Specifically, it is unknown if greater anxiety leads to subsequent declines in cognitive performance or if worse cognitive performance leads to increased anxiety. In this study, we sought to elucidate the temporal dynamics between anxiety symptoms and cognitive performance across old age, that is, the extent to which level and change in one variable influence subsequent changes in a second variable. We examined data from 721 non-demented participants from the Swedish Adoption/Twin Study of Aging. Participants completed as many as eight assessments of cognitive performance and anxiety over a 26-year period. Bivariate dual change score models were fit to examine the dynamic association between anxiety and cognitive performance. Bidirectional associations between anxiety and cognitive performance were found among measures of processing speed, attention, and memory, but not visuospatial abilities. Higher anxiety was associated with greater declines in processing speed over the duration of six years and worsening attention over a span of three years. The reverse direction was also significant in that slower processing speed, worse attention, and poorer nonverbal and working memory performance were associated with larger increases in anxiety three years later. These findings highlight that in cognitively intact older adults, the association between anxiety and worse cognitive performance is bidirectional and complex. PMID:28333502

  8. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  9. Processes governing transient responses of the deep ocean buoyancy budget to a doubling of CO2

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Griffies, S. M.; Hunter Samuels, B. L.; Galbraith, E. D.; Gnanadesikan, A.

    2012-12-01

    Recent observational analyses suggest there is a temporal trend and high-frequency variability in deep ocean buoyancy in the last twenty years, a phenomenon reproduced even in low-mixing models. Here we use an earth system model (GFDL's ESM2M) to evaluate physical processes that influence buoyancy (and thus steric sea level) budget of the deep ocean in quasi-steady state and under a doubling of CO2. A new suite of model diagnostics allows us to quantitatively assess every process that influences the buoyancy budget and its temporal evolution, revealing surprising dynamics governing both the equilibrium budget and its transient response to climate change. The results suggest that the temporal evolution of the deep ocean contribution to sea level rise is due to a diversity of processes at high latitudes, whose net effect is then advected in the Eulerian mean flow to mid and low latitudes. In the Southern Ocean, a slowdown in convection and spin up of the residual mean advection are approximately equal players in the deep steric sea level rise. In the North Atlantic, the region of greatest deep steric sea level variability in our simulations, a decrease in mixing of cold, dense waters from the marginal seas and a reduction in open ocean convection causes an accumulation of buoyancy in the deep subpolar gyre, which is then advected equatorward.

  10. Trend Assessment of Spatio-Temporal Change of Tehran Heat Island Using Satellite Images

    NASA Astrophysics Data System (ADS)

    Saradjian, M. R.; Sherafati, Sh.

    2015-12-01

    Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.

  11. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological stations. The proposed model will be validated by using the (National Centers for Environmental Prediction / National Center for Atmospheric Research) NCEP/NCAR predictors for the period of 1960-1990 and validated for 1990-2000. To investigate the efficiency of the proposed model, it will be compared with the multivariate multiple regression model and with dynamical downscaling climate models by using different climate indices that describe the frequency, intensity and duration of the variables of interest. KEY WORDS: Climate change, Copula, Monsoon, Quantile regression, Spatio-temporal distribution.

  12. Monitoring biological diversity: strategies, tools, limitations, and challenges

    USGS Publications Warehouse

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  13. The Tölz Temporal Topography Study: mapping the visual field across the life span. Part II: cognitive factors shaping visual field maps.

    PubMed

    Poggel, Dorothe A; Treutwein, Bernhard; Calmanti, Claudia; Strasburger, Hans

    2012-08-01

    Part I described the topography of visual performance over the life span. Performance decline was explained only partly by deterioration of the optical apparatus. Part II therefore examines the influence of higher visual and cognitive functions. Visual field maps for 95 healthy observers of static perimetry, double-pulse resolution (DPR), reaction times, and contrast thresholds, were correlated with measures of visual attention (alertness, divided attention, spatial cueing), visual search, and the size of the attention focus. Correlations with the attentional variables were substantial, particularly for variables of temporal processing. DPR thresholds depended on the size of the attention focus. The extraction of cognitive variables from the correlations between topographical variables and participant age substantially reduced those correlations. There is a systematic top-down influence on the aging of visual functions, particularly of temporal variables, that largely explains performance decline and the change of the topography over the life span.

  14. On the Temporal Variability of Low-Mode Internal Tides in the Deep Ocean

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Zaron, E. D.

    2010-01-01

    In situ measurements of internal tides are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal tides detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal tides in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-tide signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal tide signals is critical for observing non-tidal submesoscale phenomena.

  15. Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris

    2016-09-01

    Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.

  16. Maximum-likelihood estimation of channel-dependent trial-to-trial variability of auditory evoked brain responses in MEG

    PubMed Central

    2014-01-01

    Background We propose a mathematical model for multichannel assessment of the trial-to-trial variability of auditory evoked brain responses in magnetoencephalography (MEG). Methods Following the work of de Munck et al., our approach is based on the maximum likelihood estimation and involves an approximation of the spatio-temporal covariance of the contaminating background noise by means of the Kronecker product of its spatial and temporal covariance matrices. Extending the work of de Munck et al., where the trial-to-trial variability of the responses was considered identical to all channels, we evaluate it for each individual channel. Results Simulations with two equivalent current dipoles (ECDs) with different trial-to-trial variability, one seeded in each of the auditory cortices, were used to study the applicability of the proposed methodology on the sensor level and revealed spatial selectivity of the trial-to-trial estimates. In addition, we simulated a scenario with neighboring ECDs, to show limitations of the method. We also present an illustrative example of the application of this methodology to real MEG data taken from an auditory experimental paradigm, where we found hemispheric lateralization of the habituation effect to multiple stimulus presentation. Conclusions The proposed algorithm is capable of reconstructing lateralization effects of the trial-to-trial variability of evoked responses, i.e. when an ECD of only one hemisphere habituates, whereas the activity of the other hemisphere is not subject to habituation. Hence, it may be a useful tool in paradigms that assume lateralization effects, like, e.g., those involving language processing. PMID:24939398

  17. Searching for the right scale in catchment hydrology: the effect of soil spatial variability in simulated states and fluxes

    NASA Astrophysics Data System (ADS)

    Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-04-01

    The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e.g., finer resolution input. For this reason, the integration in this analysis of all the relevant input factors (e.g., precipitation, vegetation, geology) could provide a strong support for the definition of the right scale for each specific model application. In this context, however, the main challenge for a proper model assessment will be the correct characterization of the spatio- temporal variability of each input factor. Refsgaard, J.C., Højberg, A.L., He, X., Hansen, A.L., Rasmussen, S.H., Stisen, S., 2016. Where are the limits of model predictive capabilities?: Representative Elementary Scale - RES. Hydrol. Process. doi:10.1002/hyp.11029

  18. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity

    NASA Astrophysics Data System (ADS)

    Pal, S.; Xueref-Remy, I.; Ammoura, L.; Chazette, P.; Gibert, F.; Royer, P.; Dieudonné, E.; Dupont, J.-C.; Haeffelin, M.; Lac, C.; Lopez, M.; Morille, Y.; Ravetta, F.

    2012-12-01

    Within the framework of a French nationally funded project (CO2-MEGAPARIS) for quantifying the CO2 emissions of the Paris area, a lidar-based experimental investigation of the variability of the atmospheric boundary layer (ABL) depths was performed over four days in March 2011 under clear sky conditions. The prevailing synoptic settings were mainly characterized by anti-cyclonic situations with low wind. The key aim of this paper is to assess the impact of the urban heat island intensity (UHII) on the spatio-temporal variability of the ABL depths over the Paris megacity. A network of fixed aerosol lidars was deployed inside the city and in the vicinity of sub-urban and rural areas. Additionally, the spatial heterogeneity of the nocturnal boundary layer (NBL) depths over greater Paris area is addressed, thanks in particular, to the deployment of a 355-nm elastic lidar in a mobile van to measure the aerosol distributions. Radiosonde-derived profiles (twice a day) of thermodynamic variables over the sub-urban site helped investigate the temperature inversion above ground and hence to compare the lidar-derived ABL depths. Comparing these two results, an excellent concordance was found with a correlation coefficient of 0.994. Five important factors closely related to the ABL circulation, namely, spatio-temporal variability of the ABL depths, growth rate of the ABL depths, entrainment zone thickness, and near-surface temperature fields including resultant UHII were considered to infer the urban-rural contrasts. The mean NBL depth over the urban area was on average 63 m (45%) higher than its adjacent sub-urban area which was, on occasion, as much as (74 m) 58% higher mainly due to the effect of UHII. Daytime well-mixed convective boundary layer and associated strong turbulent mixing near its top over the urban area showed higher entrainment zone thickness (326 m) than over sub-urban (234 m) and rural (200 m) areas. Temperature growth rates during sunrise increased up to more than 3 °C h-1 over the sub-urban area while over the urban region it was 2.5 °C h-1 or even less. The ABL depths over the urban site decayed more slowly (500 m h-1) than over the sub-urban area (600 m h-1) during the late afternoon transition period suggesting an impact of the UHII on the ABL dynamics over the urban area.

  19. Assessing Spatiotemporal Variability in NO2 and O3 Along the Korean Peninsula Using Remote Sensing and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Li, C. Y. R.; Parker, O.; Tzortziou, M.

    2017-12-01

    Our research sought to use ground-based and satellite products to study the spatiotemporal variability of NO2 and O­3 in urban and coastal South Korea. Our data set was derived from direct-sun irradiance measurements of TCNO2 and TCO3 using Pandora spectrometers located at 8 ground sites and 1 boat-mounted sensor, as well as satellite observations from the Ozone Monitoring Instrument (OMI) on the Aura satellite. Our analysis focuses on the dates of the KORUSA campaign, which took place between May 18, 2016 through June 2, 2016, and provided our off-shore measurements. The Pandora instrument offered us continuous coverage of the local area, providing a detailed understanding of NO2 and O3 temporal variability. Ground stations allowed us to compare small-scale diurnal variability in urban and near-urban environments, while the Pandora mounted on the Onnuri research vessel permitted us to gain valuable insight into off-shore behavior of trace gases. By overlaying and comparing these measurements with TCO3/TCNO2 products from the Aura-OMI sensor, we were able to form a relatively complete picture of trace gas behavior above, and off-shore from, the Korean Peninsula. Our data was then subjected to statistical and GIS (Geographic Information System) analysis, quantifying and mapping (respectively) the spatial and temporal variability of total column amounts of NO2 and O3 along the Korean Peninsula. Results are shown for the eight sites where different Pandora instruments were used. There was a notable difference in TCNO2 variability which correlates with population and land use.

  20. Towards the dynamic prediction of wildfire danger. Modeling temporal scenarios of fire-occurrence in Northeast Spain

    NASA Astrophysics Data System (ADS)

    Martín, Yago; Rodrigues, Marcos

    2017-04-01

    Up to date models of human-caused ignition probability have commonly been developed from a static or structural point of view, regardless of the time cycles that drive human behavior or environmental conditions. However, human drivers mostly have a temporal dimension, and fuel conditions are subjected to temporal changes as well, which is why a historical/temporal perspective is often required. Previous studies in the region suggest that human driving factors of wildfires have undergone significant shifts in inter-annual occurrence probability models, thus varying over time. On the other hand, an increasing role of environmental conditions has also been reported. This research comprehensively analyzes the intra-annual dimension of fire occurrence and fire-triggering factors using NW Spain as a test area, moving one-step forward towards achieving more accurate predictions, to ultimately develop dynamic predictive models. To this end, several intra-annual presence-only models have been calibrated, exploring seasonal variations of environmental conditions and short-term cycles of human activity (working- vs non-working days). Models were developed from accurately geolocated fire data in the 2008-2012 period, and GIS and remote sensing (MOD1A2 and MOD16) information . Specifically, 8 occurrence data subsets (scenarios) were constructed by splitting fire records into 4 seasons (winter, spring, summer and autumn) then separating each season into 2 new categories (working and non-working days). This allows analyzing the temporal variation of socioeconomic (urban- and agricultural-interfaces, transport and road networks, and human settlements) and environmental (fuel conditions) factors associated with occurrence. Models were calibrated applying the Maximum Entropy algorithm (MaxEnt). The MaxEnt algorithm was selected as it is the most widespread approach to deal with presence-only data, as may be the case of fire occurrence. The dependent variable for each scenario was created on a conceptual framework which assumed that there were no true cases of fire absence. Model accuracy was assessed using a cross-validation k-fold procedure, whereas variable importance was addressed using a jacknife approach combined with AUC estimation. Results reported model performances around 0.8 AUC in all temporal scenarios. In addition, large variability was observed in the contribution of explanatory factors, with accessibility variables and fuel conditions as key factors along models. Overall, we believe our approach is reliable enough to derive dynamic predictions of human-caused fire occurrence probability. To our knowledge, this is the first attempt to combine presence-only models based on XY located fire data, with remote sensing information and intra-annual scenarios also including cycles of human activity.

  1. Impacts of cattle grazing on spatio-temporal variability of soil moisture and above-ground live plant biomass in mixed grasslands

    NASA Astrophysics Data System (ADS)

    Virk, Ravinder

    Areas with relatively high spatial heterogeneity generally have more biodiversity than spatially homogeneous areas due to increased potential habitat. Management practices such as controlled grazing also affect the biodiversity in grasslands, but the nature of this impact is not well understood. Therefore this thesis studies the impacts of variation in grazing on soil moisture and biomass heterogeneity. These are not only important in terms of management of protected grasslands, but also for designing an effective grazing system from a livestock management point of view. This research is a part of the cattle grazing experiment underway in Grasslands National Park (GNP) of Canada since 2006, as part of the adaptive management process for restoring ecological integrity of the northern mixed-grass prairie region. An experimental approach using field measurements and remote sensing (Landsat) was combined with modelling (CENTURY) to examine and predict the impacts of grazing intensity on the spatial heterogeneity and patterns of above-ground live plant biomass (ALB) in experimental pastures in a mixed grassland ecosystem. The field-based research quantified the temporal patterns and spatial variability in both soil moisture (SM) and ALB, and the influence of local intra-seasonal weather variability and slope location on the spatio-temporal variability of SM and ALB at field plot scales. Significant impacts of intra-seasonal weather variability, slope position and grazing pressure on SM and ALB across a range of scales (plot and local (within pasture)) were found. Grazing intensity significantly affected the ALB even after controlling for the effect of slope position. Satellite-based analysis extended the scale of interest to full pastures and the surrounding region to assess the effects of grazing intensity on the spatio-temporal pattern of ALB in mixed grasslands. Overall, low to moderate grazing intensity showed increase in ALB heterogeneity whereas no change in ALB heterogeneity over time was observed for heavy grazing intensity. All grazing intensities showed decrease in spatial range (patch size) over time indicating that grazing is a patchy process. The study demonstrates that cattle grazing with variable intensity can maintain and change the spatial patterns of vegetation in the studied region. Using a modelling approach, the relative degrees to which grazing intensity and soil properties affect grassland productivity and carbon dynamics at longer time-periods were investigated. Both grass productivity and carbon dynamics are sensitive to variability in soil texture and grazing intensity. Moderate grazing is predicted to be the best option in terms of maintaining sufficient heterogeneity to support species diversity, as well as for carbon management in the mixed grassland ecosystem.

  2. African hydroclimatic variability during the last 2000 years

    NASA Astrophysics Data System (ADS)

    Nash, David J.; De Cort, Gijs; Chase, Brian M.; Verschuren, Dirk; Nicholson, Sharon E.; Shanahan, Timothy M.; Asrat, Asfawossen; Lézine, Anne-Marie; Grab, Stefan W.

    2016-12-01

    The African continent is characterised by a wide range of hydroclimate regimes, ranging from humid equatorial West Africa to the arid deserts in the northern and southern subtropics. The livelihoods of much of its population are also vulnerable to future climate change, mainly through variability in rainfall affecting water resource availability. A growing number of data sources indicate that such hydroclimatic variability is an intrinsic component of Africa's natural environment. This paper, co-authored by members of the PAGES Africa 2k Working Group, presents an extensive assessment and discussion of proxy, historical and instrumental evidence for hydroclimatic variability across the African continent, spanning the last two millennia. While the African palaeoenvironmental record is characterised by spatially disjunctive datasets, with often less-than-optimal temporal resolution and chronological control, the available evidence allows the assessment of prominent spatial patterns of palaeomoisture variability through time. In this study, we focus sequentially on data for six major time windows: the first millennium CE, the Medieval Climate Anomaly (900-1250 CE), the Little Ice Age (1250-1750 CE), the end of the LIA (1750-1850 CE), the Early Modern Period (1850-1950), and the period of recent warming (1950 onwards). This results in a continent-wide synthesis of regional moisture-balance trends through history, allowing consideration of possible driving mechanisms, and suggestions for future research.

  3. Mind wandering at the fingertips: automatic parsing of subjective states based on response time variability

    PubMed Central

    Bastian, Mikaël; Sackur, Jérôme

    2013-01-01

    Research from the last decade has successfully used two kinds of thought reports in order to assess whether the mind is wandering: random thought-probes and spontaneous reports. However, none of these two methods allows any assessment of the subjective state of the participant between two reports. In this paper, we present a step by step elaboration and testing of a continuous index, based on response time variability within Sustained Attention to Response Tasks (N = 106, for a total of 10 conditions). We first show that increased response time variability predicts mind wandering. We then compute a continuous index of response time variability throughout full experiments and show that the temporal position of a probe relative to the nearest local peak of the continuous index is predictive of mind wandering. This suggests that our index carries information about the subjective state of the subject even when he or she is not probed, and opens the way for on-line tracking of mind wandering. Finally we proceed a step further and infer the internal attentional states on the basis of the variability of response times. To this end we use the Hidden Markov Model framework, which allows us to estimate the durations of on-task and off-task episodes. PMID:24046753

  4. A descriptive analysis of temporal and spatial patterns of variability in Puget Sound oceanographic properties

    Treesearch

    Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg

    2008-01-01

    Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...

  5. The value of long-term stream invertebrate data collected by citizen scientists

    Treesearch

    Patrick M. Edwards; Stefano Goffredo

    2016-01-01

    The purpose of this investigation was to systematically examine the variability associated with temporally-oriented invertebrate data collected by citizen scientists and consider the value of such data for use in stream management. Variability in invertebrate data was estimated for three sources of variation: sampling, within-reach spatial and long-term temporal. Long-...

  6. Spatio-temporal variability of hyporheic exchange through a pool-riffle-pool sequence

    Treesearch

    Frank P. Gariglio; Daniele Tonina; Charles H. Luce

    2013-01-01

    Stream water enters and exits the streambed sediment due to hyporheic fluxes, which stem primarily from the interaction between surface water hydraulics and streambed morphology. These fluxes sustain a rich ecotone, whose habitat quality depends on their direction and magnitude. The spatio-temporal variability of hyporheic fluxes is not well understood over several...

  7. On the temporal and spatial variability of near-surface soil moisture for the identification of representative in situ soil moisture monitoring stations

    USDA-ARS?s Scientific Manuscript database

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...

  8. Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

    DOE PAGES

    Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon

    2015-09-22

    In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less

  9. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time series analysis of the PC scores using techniques such as Singular Spectrum Analysis (SSA) and Multichannel SSA will provide information about the temporal variability of the dominant variables. Quantitative comparison techniques can evaluate how well the OSSE reproduces the temporal variability observed by SCIAMACHY spectral reflectance measurements during the first decade of the 21st century. PCA of OSSE-simulated reflectance can also be used to study how the dominant spectral variables change on centennial scales for forced and unforced climate change scenarios. To have confidence in OSSE predictions of the spectral variability of hyperspectral reflectance, it is first necessary for us to evaluate the degree to which the OSSE simulations are able to reproduce the Earth?s present-day spectral variability.

  10. Reliability and validity of an accele-rometric system for assessing vertical jumping performance.

    PubMed

    Choukou, M-A; Laffaye, G; Taiar, R

    2014-03-01

    The validity of an accelerometric system (Myotest©) for assessing vertical jump height, vertical force and power, leg stiffness and reactivity index was examined. 20 healthy males performed 3×"5 hops in place", 3×"1 squat jump" and 3× "1 countermovement jump" during 2 test-retest sessions. The variables were simultaneously assessed using an accelerometer and a force platform at a frequency of 0.5 and 1 kHz, respectively. Both reliability and validity of the accelerometric system were studied. No significant differences between test and retest data were found (p < 0.05), showing a high level of reliability. Besides, moderate to high intraclass correlation coefficients (ICCs) (from 0.74 to 0.96) were obtained for all variables whereas weak to moderate ICCs (from 0.29 to 0.79) were obtained for force and power during the countermovement jump. With regards to validity, the difference between the two devices was not significant for 5 hops in place height (1.8 cm), force during squat (-1.4 N · kg(-1)) and countermovement (0.1 N · kg(-1)) jumps, leg stiffness (7.8 kN · m(-1)) and reactivity index (0.4). So, the measurements of these variables with this accelerometer are valid, which is not the case for the other variables. The main causes of non-validity for velocity, power and contact time assessment are temporal biases of the takeoff and touchdown moments detection.

  11. RELIABILITY AND VALIDITY OF AN ACCELEROMETRIC SYSTEM FOR ASSESSING VERTICAL JUMPING PERFORMANCE

    PubMed Central

    Laffaye, G.; Taiar, R.

    2014-01-01

    The validity of an accelerometric system (Myotest©) for assessing vertical jump height, vertical force and power, leg stiffness and reactivity index was examined. 20 healthy males performed 3ד5 hops in place”, 3ד1 squat jump” and 3× “1 countermovement jump” during 2 test-retest sessions. The variables were simultaneously assessed using an accelerometer and a force platform at a frequency of 0.5 and 1 kHz, respectively. Both reliability and validity of the accelerometric system were studied. No significant differences between test and retest data were found (p < 0.05), showing a high level of reliability. Besides, moderate to high intraclass correlation coefficients (ICCs) (from 0.74 to 0.96) were obtained for all variables whereas weak to moderate ICCs (from 0.29 to 0.79) were obtained for force and power during the countermovement jump. With regards to validity, the difference between the two devices was not significant for 5 hops in place height (1.8 cm), force during squat (-1.4 N · kg−1) and countermovement (0.1 N · kg−1) jumps, leg stiffness (7.8 kN · m−1) and reactivity index (0.4). So, the measurements of these variables with this accelerometer are valid, which is not the case for the other variables. The main causes of non-validity for velocity, power and contact time assessment are temporal biases of the takeoff and touchdown moments detection. PMID:24917690

  12. Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage

    DOE Data Explorer

    Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

    2014-08-01

    Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

  13. Automatic right ventricle (RV) segmentation by propagating a basal spatio-temporal characterization

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, María. A.; Martínez, Fabio; Romero, Eduardo

    2015-12-01

    An accurate right ventricular (RV) function quantification is important to support the evaluation, diagnosis and prognosis of several cardiac pathologies and to complement the left ventricular function assessment. However, expert RV delineation is a time consuming task with high inter-and-intra observer variability. In this paper we present an automatic segmentation method of the RV in MR-cardiac sequences. Unlike atlas or multi-atlas methods, this approach estimates the RV using exclusively information from the sequence itself. For so doing, a spatio-temporal analysis segments the heart at the basal slice, segmentation that is then propagated to the apex by using a non-rigid-registration strategy. The proposed approach achieves an average Dice Score of 0:79 evaluated with a set of 48 patients.

  14. The use of genetics for the management of a recovering population: temporal assessment of migratory peregrine falcons in North America

    USGS Publications Warehouse

    Johnson, Jeff A.; Talbot, Sandra L.; Sage, George K.; Burnham, Kurt K.; Brown, Joseph W.; Maechtle, Tom L.; Seegar, William S.; Yates, Michael A.; Anderson, Bud; Mindell, David P.

    2010-01-01

    Background:Our ability to monitor populations or species that were once threatened or endangered and in the process of recovery is enhanced by using genetic methods to assess overall population stability and size over time. This can be accomplished most directly by obtaining genetic measures from temporally-spaced samples that reflect the overall stability of the population as given by changes in genetic diversity levels (allelic richness and heterozygosity), degree of population differentiation (FST and DEST), and effective population size (Ne). The primary goal of any recovery effort is to produce a long-term self-sustaining population, and these measures provide a metric by which we can gauge our progress and help make important management decisions. Methodology/Principal Findings:The peregrine falcon in North America (Falco peregrinus tundrius and anatum) was delisted in 1994 and 1999, respectively, and its abundance will be monitored by the species Recovery Team every three years until 2015. Although the United States Fish and Wildlife Service makes a distinction between tundrius and anatum subspecies, our genetic results based on eleven microsatellite loci, including those from Brown et al. (2007), suggest no differentiation and warrant delineation of a subspecies in its northern latitudinal distribution from Alaska through Canada into Greenland. Using temporal samples collected at Padre Island, Texas during migration (seven temporal time periods between 1985-2007), no significant differences in genetic diversity or significant population differentiation in allele frequencies between time periods were observed and were indistinguishable from those obtained from tundrius/anatum breeding locations throughout their northern distribution. Estimates of harmonic mean Ne were variable and imprecise, but always greater than 500 when employing multiple temporal genetic methods. These results, including those from simulations to assess the power of each method to estimate Ne, suggest a stable population consistent with data from field-based monitoring indicating that this species is stable or continuing to increase in abundance. Therefore, historic and continuing efforts to prevent the extinction of the peregrine falcon in North America appear successful, further highlighting the importance of archiving samples for continual assessment of population recovery and long-term viability.

  15. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions support the hypothesis that cholinergic augmentation results in enhanced neural efficiency. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention

    PubMed Central

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L.

    2012-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. Previous findings by our group strongly suggested that the changes in neural activity observed during increased cholinergic function may reflect an increase in neural efficiency that leads to improved task performance. The current study was designed to assess the effects of cholinergic enhancement on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study. Following an infusion of physostigmine (1mg/hr) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions was reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Cholinergic enhancement also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions provide further support to the hypothesis that cholinergic augmentation results in enhanced neural efficiency. PMID:22906685

  17. Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira

    NASA Astrophysics Data System (ADS)

    Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís

    2017-04-01

    Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.

  18. Thinner cortex in patients with subjective cognitive decline is associated with steeper decline of memory.

    PubMed

    Verfaillie, Sander C J; Slot, Rosalinde E; Tijms, Betty M; Bouwman, Femke; Benedictus, Marije R; Overbeek, Jozefien M; Koene, Teddy; Vrenken, Hugo; Scheltens, Philip; Barkhof, Frederik; van der Flier, Wiesje M

    2018-01-01

    We aimed to investigate associations between regional cortical thickness and rate of decline over time in 4 cognitive domains in patients with subjective cognitive decline (SCD). We included 233 SCD patients with the total number of 654 neuropsychological assessments (median = 3, range = 2-8) and available baseline magnetic resonance imaging from the Amsterdam Dementia Cohort (125 males, age: 63 ± 9, Mini-Mental State Examination score: 28 ± 2). We assessed longitudinal cognitive functioning at baseline and follow-up in 4 cognitive domains (composite Z-scores): memory, attention, executive function, and language. Thickness (millimeter) was estimated using FreeSurfer for frontal, temporal, parietal, cingulate, and occipital cortices. We used linear mixed models to estimate effects of cortical thickness on cognitive performance (dependent variables). There were no associations between cortical thickness and baseline cognition, but a faster subsequent rate of memory loss was associated with thinner cortex of the frontal [β (SE) = 0.20 (0.07)], temporal [β (SE) = 0.18 (0.07)], and occipital [β (SE) = 0.22 (0.09)] cortices (all p < 0.05 FDR ). These findings illustrate that early cortical changes, particularly in the temporal cortex, herald incipient cognitive decline related to neurodegenerative diseases, most prominently Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. How People Use Social Information to Find out What to Want in the Paradigmatic Case of Inter-temporal Preferences

    PubMed Central

    Dolan, Raymond J.

    2016-01-01

    The weight with which a specific outcome feature contributes to preference quantifies a person’s ‘taste’ for that feature. However, far from being fixed personality characteristics, tastes are plastic. They tend to align, for example, with those of others even if such conformity is not rewarded. We hypothesised that people can be uncertain about their tastes. Personal tastes are therefore uncertain beliefs. People can thus learn about them by considering evidence, such as the preferences of relevant others, and then performing Bayesian updating. If a person’s choice variability reflects uncertainty, as in random-preference models, then a signature of Bayesian updating is that the degree of taste change should correlate with that person’s choice variability. Temporal discounting coefficients are an important example of taste–for patience. These coefficients quantify impulsivity, have good psychometric properties and can change upon observing others’ choices. We examined discounting preferences in a novel, large community study of 14–24 year olds. We assessed discounting behaviour, including decision variability, before and after participants observed another person’s choices. We found good evidence for taste uncertainty and for Bayesian taste updating. First, participants displayed decision variability which was better accounted for by a random-taste than by a response-noise model. Second, apparent taste shifts were well described by a Bayesian model taking into account taste uncertainty and the relevance of social information. Our findings have important neuroscientific, clinical and developmental significance. PMID:27447491

  20. Temporal relationships of emotional avoidance in a patient with anorexia nervosa--a time series analysis.

    PubMed

    Stroe-Kunold, Esther; Wesche, Daniela; Friederich, Hans-Christoph; Herzog, Wolfgang; Zastrow, Arne; Wild, Beate

    2012-01-01

    Anorexia nervosa (AN) is a serious eating disorder marked by self-induced underweight. In patients with AN, the avoidance of emotions appears to be a central feature that is reinforced during the acute state of the disorder. This single case study investigated the role of emotional avoidance of a 25-year-old patient with AN during her inpatient treatment. Throughout the course of 96 days, the patient answered questions daily about her emotional avoidance, pro-anorectic beliefs, perfectionism, and further variables on an electronic diary. The patient's daily self-assessment of emotional avoidance was described in terms of mean value, range, and variability for the various treatment phases. Temporal relationships between emotional avoidance and further variables were determined using a time series approach (vector autoregressive (VAR) modelling). Diary data reflect that the patient's ability to tolerate unpleasant emotions appeared to undergo a process of change during inpatient treatment. Results of the time series analysis indicate that the more the patient was able to deal with negative emotions on any one day (t-1), the less she would be socially avoidant, cognitively confined to food and eating, as well as feeling less secure with her AN, and less depressive on the following day (t). The findings show that for this patient emotional avoidance plays a central role in the interacting system of various psychosocial variables. Replication of these results in other patients with AN would support the recommendation to focus more on emotional regulation in the treatment of AN.

  1. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    DOE PAGES

    Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.; ...

    2017-11-22

    Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less

  2. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study.

    PubMed

    Lucareli, P R; Lima, M O; Lima, F P S; de Almeida, J G; Brech, G C; D'Andréa Greve, J M

    2011-09-01

    Single-blind randomized, controlled clinical study. To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30 min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries.

  3. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.

    Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less

  4. Using generalized additive mixed models to assess spatial, temporal, and hydrologic controls on bacteria and nitrate in a vulnerable agricultural aquifer.

    PubMed

    Mellor, Andrea F P; Cey, Edwin E

    2015-11-01

    The Abbotsford-Sumas aquifer (ASA) has a history of nitrate contamination from agricultural land use and manure application to soils, yet little is known about its microbial groundwater quality. The goal of this study was to investigate the spatiotemporal distribution of pathogen indicators (Escherichia coli [E. coli] and total coliform [TC]) and nitrate in groundwater, and their potential relation to hydrologic drivers. Sampling of 46 wells over an 11-month period confirmed elevated nitrate concentrations, with more than 50% of samples exceeding 10 mg-N/L. E. coli detections in groundwater were infrequent (4 of 385 total samples) and attributed mainly to surface water-groundwater connections along Fishtrap Creek, which tested positive for E. coli in every sampling event. TC was detected frequently in groundwater (70% of samples) across the ASA. Generalized additive mixed models (GAMMs) yielded valuable insights into relationships between TC or nitrate and a range of spatial, temporal, and hydrologic explanatory variables. Increased TC values over the wetter fall and winter period were most strongly related to groundwater temperatures and levels, while precipitation and well location were weaker (but still significant) predictors. In contrast, the moderate temporal variability in nitrate concentrations was not significantly related to hydrologic forcings. TC was relatively widespread across the ASA and spatial patterns could not be attributed solely to surface water connectivity. Varying nitrate concentrations across the ASA were significantly related to both well location and depth, likely due to spatially variable nitrogen loading and localized geochemical attenuation (i.e., denitrification). Vulnerability of the ASA to bacteria was clearly linked to hydrologic conditions, and was distinct from nitrate, such that a groundwater management strategy specifically for bacterial contaminants is warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biodiversity of suprabenthic peracarid assemblages from the Blanes Canyon region (NW Mediterranean Sea) in relation to natural disturbance and trawling pressure

    NASA Astrophysics Data System (ADS)

    Almeida, Mariana; Frutos, Inmaculada; Company, Joan B.; Martin, Daniel; Romano, Chiara; Cunha, Marina R.

    2017-03-01

    Blanes Canyon and its adjacent margin are important fishery areas (mainly by bottom trawling) located in a highly energetic oceanographic setting in the NW Mediterranean Sea. Here we assess the spatial and temporal variability in abundance, diversity and community structure of the suprabenthic peracarid assemblages in this region and examine this variability in relation to the natural and anthropogenic (trawling fisheries) disturbance regimes. The sampling was conducted between March 2003 and May 2004 in three main fishing grounds, the canyon head (average depth: 490 m), the canyon wall (average depth: 550 m) and the eastern adjacent slope (average depth: 820 m), as well as in two non-exploited areas in the western (at 900 m depth) and eastern (at 1500 m depth) slope near the canyon mouth. A total of 138 species were identified, with amphipods being the most speciose and abundant group, followed by mysids in terms of abundance. Our results show high spatial and temporal variability in suprabenthic assemblages. Densities were higher in the canyon head and western slope, which appear to be the preferential routes for water masses and particle fluxes in months of flood events, and other energetic processes. In the canyon head, where periodic erosion processes are more active, low diversity, high dominance and higher turnover (β-diversity) were observed, apparently coupled with significant temporal fluctuations in the densities of the highly motile component of suprabenthos (mysids, predatory and scavenging amphipods). In the sedimentary more stable eastern slope, high diversity values were observed, accompanied by a higher relative contribution of the less motile groups (i.e. amphipods, most isopods, cumaceans). These groups have a closer interaction with the sediment where they exploit different food sources and are more susceptible to physical disturbance. Temporal variability in their diversity may be related to changes in food quality rather than quantity. In the canyon wall, temporal fluctuations in diversity indices were only revealed in relation to the overall higher and more continued fishing pressure observed in the canyon wall fishing ground (Cara Norte/Sot site). Here, species richness and abundance declined with increasing fishing pressure but the lowest trophic and taxonomic diversities were observed under intermediate levels of disturbance. These findings underline (i) the differences between relatively low and highly motile taxa in terms of response to disturbance events; (ii) the differences between assemblages subjected to different levels of natural disturbance and trawling pressure, which modify the common bathymetric patterns of abundance and diversity often described from continental margins.

  6. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  7. Assessing the spatial and temporal variability of fAPAR 2-flux estimates in a temperate mixed coniferous forest

    NASA Astrophysics Data System (ADS)

    Putzenlechner, Birgitta; Sanchez-Azofeifa, Arturo; Ludwig, Ralf

    2016-04-01

    The fraction of absorbed photosynthetically active radiation (fAPAR) is recognized as one of the essential climate variables as it characterizes activity and dynamics of the Earth's terrestrial biosphere (GCOS, 2010). By linking photosynthetic active radiation (PAR) to the absorption of plants, fAPAR represents a crucial variable for describing land surface and atmosphere interactions considered in global circulation models as well as in production efficiency models for estimating terrestrial carbon balances. Recent studies report discrepancies between global fAPAR satellite products regarding both absolute values and uncertainty representation, thereby stressing the need for independent ground measurements (D'Odrico et al., 2014; Picket-Heaps et al., 2014; Tao et al., 2015). However, there is a lack of basic information to better understand the spatial and temporal bias of PAR field observations, particularly in forest ecosystems. In theory, it is known that fAPAR estimates are affected by e.g. illumination conditions, leaf area index, leaf color, background brightness, which in turn may lead to considerable bias of field measurements. However, theoretical findings lack validation in the field as well as practical recommendations for field protocols. In this study, the variability of two-flux fAPAR estimates with regards to different illumination conditions (solar zenith angles, diffuse radiation conditions) are investigated. Measurements of PAR are carried out at Graswang environmental monitoring site in Southern Germany within a temperate mixed coniferous forest. A relatively new environmental monitoring technology based on Wireless Sensor Networks (WSN) is applied, allowing for permanent synchronized measurements of transmitted PAR, thereby reducing temporal sampling bias. Transmitted PAR is obtained from 16 photon flux sensors, 1.3 m above the surface. With a reference sensor outside the forest measuring incoming PAR, a two-flux estimate based on the ratio of transmitted PAR and incoming PAR can be calculated for each 10-min timestep during daytime hours. The fAPAR time series exhibit seasonal variability (mean=0.7, sd=0.4 for the average of all PAR sensors calculated for each 10-min timestep) according to phenological development, but also considerable inter-sensor variability between single days. Standard deviations for fAPAR in mid-summer vary between 0.26 for days with overcast sky and 0.19 for clear sky conditions. Diurnal cycles of fAPAR under clear sky conditions show a sharp increase of fAPAR with increasing solar zenith angles, suggesting for an underestimation of fAPAR with low solar zenith angles as it has also been found in studies based on radiative transfer modeling (Widlowski et al., 2010). The experiences gained from the field observations contribute to a bias assessment for ground measurements as demanded by authors of recent studies on comparing global fAPAR satellite products.

  8. Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination.

    PubMed

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Ayad, Omar; Bonifazi, Marco; Dalla Vedova, Dario; Seifert, Ludovic

    2017-10-01

    This study assessed perception-action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35ms -1 . The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers' perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the characteristics of the flume used in the present study (or a similar one), and generalization is subject to additional investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Electrophysiological Correlates of Individual Differences in Perception of Audiovisual Temporal Asynchrony

    PubMed Central

    Kaganovich, Natalya; Schumaker, Jennifer

    2016-01-01

    Sensitivity to the temporal relationship between auditory and visual stimuli is key to efficient audiovisual integration. However, even adults vary greatly in their ability to detect audiovisual temporal asynchrony. What underlies this variability is currently unknown. We recorded event-related potentials (ERPs) while participants performed a simultaneity judgment task on a range of audiovisual (AV) and visual-auditory (VA) stimulus onset asynchronies (SOAs) and compared ERP responses in good and poor performers to the 200 ms SOA, which showed the largest individual variability in the number of synchronous perceptions. Analysis of ERPs to the VA200 stimulus yielded no significant results. However, those individuals who were more sensitive to the AV200 SOA had significantly more positive voltage between 210 and 270 ms following the sound onset. In a follow-up analysis, we showed that the mean voltage within this window predicted approximately 36% of variability in sensitivity to AV temporal asynchrony in a larger group of participants. The relationship between the ERP measure in the 210-270 ms window and accuracy on the simultaneity judgment task also held for two other AV SOAs with significant individual variability - 100 and 300 ms. Because the identified window was time-locked to the onset of sound in the AV stimulus, we conclude that sensitivity to AV temporal asynchrony is shaped to a large extent by the efficiency in the neural encoding of sound onsets. PMID:27094850

  10. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.

    PubMed

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-06-14

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably.

  11. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa

    PubMed Central

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-01-01

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably. PMID:27314369

  12. Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands.

    PubMed

    Rouissi, Maya; Boix, Dani; Muller, Serge D; Gascón, Stéphanie; Ruhí, Albert; Sala, Jordi; Bouattour, Ali; Ben Haj Jilani, Imtinen; Ghrabi-Gammar, Zeineb; Ben Saad-Limam, Samia; Daoud-Bouattour, Amina

    2014-12-01

    Six temporary wetlands in the region of Sejenane (Mogods, NW Tunisia) were studied in order to characterize the aquatic flora and fauna and to quantify their spatio-temporal variability. Samplings of aquatic fauna, phytosociological relevés, and measurements of the physicochemical parameters of water were taken during four different field visits carried out during the four seasons of the year (November 2009-July 2010). Despite the strong anthropic pressures on them, these temporary wetlands are home to rich and diversified biodiversity, including rare and endangered species. Spatial and temporal variations affect fauna and flora differently, as temporal variability influences the fauna rather more than the plants, which are relatively more dependent on spatial factors. These results demonstrate the interest of small water bodies for maintaining biodiversity at the regional level, and thus underscore the conservation issues of Mediterranean temporary wetlands that are declining on an ongoing basis currently. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward R.

    2017-04-01

    The development of paleoclimate streamflow reconstructions in the conterminous United States (CONUS) has provided water resource managers with improved insights into multidecadal and centennial scale variability that cannot be reliably detected using shorter instrumental records. Paleoclimate streamflow reconstructions have largely focused on individual catchments limiting the ability to quantify variability across the CONUS. The Living Blended Drought Atlas (LBDA), a spatially and temporally complete 555 year long paleoclimate record of summer drought across the CONUS, provides an opportunity to reconstruct and characterize streamflow variability at a continental scale. We explore the validity of the first paleoreconstructions of streamflow that span the CONUS informed by the LBDA targeting a set of U.S. Geological Survey streamflow sites. The reconstructions are skillful under cross validation across most of the country, but the variance explained is generally low. Spatial and temporal structures of streamflow variability are analyzed using hierarchical clustering, principal component analysis, and wavelet analyses. Nine spatially coherent clusters are identified. The reconstructions show signals of contemporary droughts such as the Dust Bowl (1930s) and 1950s droughts. Decadal-scale variability was detected in the late 1900s in the western U.S., however, similar modes of temporal variability were rarely present prior to the 1950s. The twentieth century featured longer wet spells and shorter dry spells compared with the preceding 450 years. Streamflows in the Pacific Northwest and Northeast are negatively correlated with the central U.S. suggesting the potential to mitigate some drought impacts by balancing economic activities and insurance pools across these regions during major droughts.

  14. Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms.

    PubMed

    Caliman, A; Carneiro, L S; Santangelo, J M; Guariento, R D; Pires, A P F; Suhett, A L; Quesado, L B; Scofield, V; Fonte, E S; Lopes, P M; Sanches, L F; Azevedo, F D; Marinho, C C; Bozelli, R L; Esteves, F A; Farjalla, V F

    2010-10-01

    Temporal coherence (i.e., the degree of synchronicity of a given variable among ecological units within a predefined space) has been shown for several limnological features among temperate lakes, allowing predictions about the structure and function of ecosystems. However, there is little evidence of temporal coherence among tropical aquatic systems, where the climatic variability among seasons is less pronounced. Here, we used data from long-term monitoring of physical, chemical and biological variables to test the degree of temporal coherence among 18 tropical coastal lagoons. The water temperature and chlorophyll-a concentration had the highest and lowest temporal coherence among the lagoons, respectively, whereas the salinity and water colour had intermediate temporal coherence. The regional climactic factors were the main factors responsible for the coherence patterns in the water temperature and water colour, whereas the landscape position and morphometric characteristics explained much of the variation of the salinity and water colour among the lagoons. These results indicate that both local (lagoon morphometry) and regional (precipitation, air temperature) factors regulate the physical and chemical conditions of coastal lagoons by adjusting the terrestrial and marine subsidies at a landscape-scale. On the other hand, the chlorophyll-a concentration appears to be primarily regulated by specific local conditions resulting in a weak temporal coherence among the ecosystems. We concluded that temporal coherence in tropical ecosystems is possible, at least for some environmental features, and should be evaluated for other tropical ecosystems. Our results also reinforce that aquatic ecosystems should be studied more broadly to accomplish a full understanding of their structure and function.

  15. Understanding the relationships among phytoplankton, benthic macroinvertebrates, and water quality variables in peri-urban river systems.

    PubMed

    Pinto, Uthpala; Maheshwari, Basant L; Morris, E Charles

    2014-12-01

    In this article, using the Hawkesbury-Nepean River as a case study, the spatial and temporal trends of water quality variables over three sampling surveys in a peri-urban situation are examined for their effect on benthic macroinvertebrate communities and phytoplankton communities and whether phytoplankton and benthic macroinvertebrate species can be used as indicators for river health assessment. For this, the authors monitored the spatial and temporal difference of 10 water quality parameters: temperature, turbidity, pH, dissolved oxygen, electrical conductivity, oxidation reduction potential, total nitrogen, total phosphorus, manganese, and suspended solids. The variability in water quality parameters clearly indicated a complex pattern, depending on the season (interaction p = 0.001), which highlighted how the river condition is stressed at multiple points as a result of anthropogenic effects. In particular, the downstream locations indicated an accumulation of nutrients, the presence of increased sediments, and phytoplankton related variables such as total counts, bio-volumes, chlorophyll-a, and total phosphorus. The patterns of phytoplankton communities varied in a complex way depending on the season (interaction p = 0.001). Abundances of phytoplankton were also found in low concentrations where the water column is not severely disturbed by flow and tide. However, when the water clarity drops resulting from tidal cycles, inflows from tributaries, and intense boating activities, the phytoplankton abundances also increased considerably. On the other hand, benthic macroinvertebrates compositions were significantly different between locations (p = 0.001) with increased abundances associated with upstream sites. Aphanocapsa holsatica and chironomid larvae appeared as the important indicators for upstream and downstream site differences in water quality. Water temperature influenced the phytoplankton community pattern (ρ(w) = 0.408), whereas pH influenced the benthic macroinvertebrate community pattern (ρ(w) = 0.437). The findings of this study provide valuable insights into the interactions of water quality parameters on biotic assemblages and to the extent that benthic macroinvertebrates and phytoplankton assemblages are suitable as indicators for monitoring and assessing peri-urban river health.

  16. Weighing the Evidence of Ecological Risk From Chemical Contamination in the Estuarine Environment Adjacent to the Portsmouth Naval Shipyard, Kittery, Maine, USA

    DTIC Science & Technology

    2001-05-30

    for mussel growth and sea urchin toxicity were medium, we seasonal variations of AVS- SEM in sediments and the degree concluded medium weight of...and phaeopigments), toxicity to fertilization of sea iment (Table 3). Conversely, the measures used for the pelagic urchin (Arbacia punctulata...account for temporal and spatial variability. fidence level (C) for each assessment endpoint were assigned For toxicity to sea urchins , data quality

  17. Regional flood-frequency relations for streams with many years of no flow

    USGS Publications Warehouse

    Hjalmarson, Hjalmar W.; Thomas, Blakemore E.; ,

    1990-01-01

    In the southwestern United States, flood-frequency relations for streams that drain small arid basins are difficult to estimate, largely because of the extreme temporal and spatial variability of floods and the many years of no flow. A method is proposed that is based on the station-year method. The new method produces regional flood-frequency relations using all available annual peak-discharge data. The prediction errors for the relations are directly assessed using randomly selected subsamples of the annual peak discharges.

  18. A national perspective on paleoclimate streamflow and water storage infrastructure in the conterminous United States

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward

    2017-04-01

    Large-scale water storage infrastructure in the Conterminous United States (CONUS) provides a means of regulating the temporal variability in water supply with storage capacities ranging from seasonal storage in the wetter east to multi-annual and decadal-scale storage in the drier west. Regional differences in water availability across the CONUS provides opportunities for optimizing water dependent economic activities, such as food and energy production, through storage and transportation. However, the ability to sufficiently regulate water supplies into the future is compromised by inadequate monitoring of non-federally-owned dams that make up around 97% of all dams. Furthermore, many of these dams are reaching or have exceeded their economic design life. Understanding the role of dams in the current and future landscape of water requirements in the CONUS is needed to prioritize dam safety remediation or identify where redundant dams may be removed. A national water assessment and planning process is needed for addressing water requirements, accounting for regional differences in water supply and demand, and the role of dams in such a landscape. Most dams in the CONUS were designed without knowledge of devastating floods and prolonged droughts detected in multi-centennial paleoclimate records, consideration of projected climate change, nor consideration of optimal operation across large-scale regions. As a step towards informing water supply across the CONUS we present a paleoclimate reconstruction of annual streamflow across the CONUS over the past 555 years using a spatially and temporally complete paleoclimate record of summer drought across the CONUS targeting a set of US Geological Survey streamflow sites. The spatial and temporal structures of national streamflow variability are analyzed using hierarchical clustering, principal component analysis, and wavelet analyses. The reconstructions show signals of contemporary droughts such as the Dust Bowl (1930s) and 1950s droughts. Decadal-scale variability was detected in the late 1900s in the western US, however, similar modes of temporal variability were rarely present prior to the 1950s. The 20th century featured longer wet spells and shorter dry spells compared with the preceding 450 years. Streamflow in the Pacific Northwest and Northeast are negatively correlated with the central US suggesting the potential to mitigate some drought impacts by balancing economic activities and insurance pools across these regions during major droughts. The converging issues of a slowly growing US population, evolving demands for food, energy, and water, aging dams, and reduced water storage capacity through decommissioning and sedimentation highlights the pressing need for a national water assessment and a subsequent national water plan. There are many factors that need to be understood in order to appropriately assess dam and reservoir requirements across the CONUS and to improve water use and flood protection efficiency. In addition to historical and paleoclimate-informed surface water supply, factors requiring consideration in planning for future dam and reservoir infrastructure include: -the role of conjunctive surface and groundwater storage and use; -basin-scale operational strategies to balance sectoral water demand; -projections of surface water supply; -projections of regional water demands; -impacts of water conservation; and -the influence of water policy and financial instruments.

  19. Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses.

    PubMed

    Agawin, N S.R.; Duarte, C M.; Fortes, M D.; Uri, J S.; Vermaat, J E.

    2001-06-01

    The analysis of the temporal changes in shoot density, areal leaf biomass, leaf growth and parameters of the photosynthesis-irradiance relationship of three tropical seagrass species (Enhalus acoroides, Thalassia hemprichii and Cymodocea rotundata), co-existing in a shallow subtidal meadow in Cape Bolinao, Philippines, shows that species-specific traits are significant sources of temporal variability, and indicates that these seagrass species respond differently to a common environmental forcing. Species-specific differences are much less important as source of variability of the temporal change in chlorophyll concentration of seagrass leaves. The results indicate that the temporal changes in photosynthetic performance of these seagrasses were driven by environmental forcing and their specific responses to it mostly, but the temporal change in their abundance and leaf growth was also controlled by other factors. The significant contribution of species-specific factors in the temporal changes of biomass, growth and photosynthetic performance of co-occurring seagrass species in Cape Bolinao should contribute to the maintenance of the multispecific, highly productive meadows characteristic of pristine coastal ecosystems in Southeast (SE) Asia.

  20. Visualizing geographic and temporal trends in rotavirus activity in the United States, 1991 to 1996. National Respiratory and Enteric Virus Surveillance System Collaborating Laboratories.

    PubMed

    Török, T J; Kilgore, P E; Clarke, M J; Holman, R C; Bresee, J S; Glass, R I

    1997-10-01

    Rotavirus is the leading cause of severe pediatric gastroenteritis worldwide. A vaccine may soon be licensed for use in the United States to prevent this disease. To characterize US geographic and temporal trends in rotavirus activity, we made contour maps showing the timing of peak rotavirus activity. From July, 1991, through June, 1996, 79 laboratories participating in the National Respiratory and Enteric Virus Surveillance System reported on a weekly basis the number of stool specimens that tested positive for rotavirus. The peak weeks in rotavirus detections from each laboratory were mapped using kriging, a modeling technique originally developed for geostatistics. During the 5-year period 118,716 fecal specimens were examined, of which 27,616 (23%) were positive for rotavirus. Timing of rotavirus activity varied by geographic location in a characteristic pattern in which peak activity occurred first in the Southwest from October through December and last in the Northeast in April or May. The Northwest exhibited considerable year-to-year variability (range, December to May) in the timing of peak activity, whereas the temporal pattern in the remainder of the contiguous 48 states was relatively constant. Kriging is a useful method for visualizing geographic and temporal trends in rotavirus activity in the United States. This analysis confirmed trends reported in previous years, and it also identified unexpected variability in the timing of peak rotavirus activity in the Northwest. The causes of the seasonal differences in rotavirus activity by region are unknown. Tracking of laboratory detections of rotavirus may provide an effective surveillance tool to assess the impact of a rotavirus vaccination campaign in the United States.

  1. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change, whereas those changes are likely to be greater in contiguous and unfragmented habitats. © 2015 John Wiley & Sons Ltd.

  2. Enhancing Remotely Sensed TIR Data for Public Health Applications: Is West Nile Virus Heat-Related?

    NASA Astrophysics Data System (ADS)

    Weng, Q.; Liu, H.; Jiang, Y.

    2014-12-01

    Public health studies often require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. This technological limitation prevents the wide usage of remote sensing data in epidemiological studies. To solve this issue, we have developed a few image fusion techniques to generate high temporally-resolved image data. We downscaled GOES LST data to 15-minute 1-km resolution to assess community-based heat-related risk in Los Angeles County, California and simulated ASTER datasets by fusing ASTER and MODIS data to derive biophysical variables, including LST, NDVI, and normalized difference water index, to examine the effects of those environmental characteristics on WNV outbreak and dissemination. A spatio-temporal analysis of WNV outbreak and dissemination was conducted by synthesizing the remote sensing variables and mosquito surveillance data, and by focusing on WNV risk areas in July through September due to data sufficiency of mosquito pools. Moderate- and high-risk areas of WNV infections in mosquitoes were identified for five epidemiological weeks. These identified WNV-risk areas were then collocated in GIS with heat hazard, exposure, and vulnerability maps to answer the question of whether WNV is a heat related virus. The results show that elevation and built-up conditions were negatively associated with the WNV propagation, while LST positively correlated with the viral transmission. NDVI was not significantly associated with WNV transmission. San Fernando Valley was found to be the most vulnerable to mosquito infections of WNV. This research provides important insights into how high temporal resolution remote sensing imagery may be used to study time-dependant events in public health, especially in the operational surveillance and control of vector-borne, water-borne, or other epidemic diseases.

  3. Assessing agricultural management effects on structure related soil hydraulic properties by tension infiltrometry

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Loiskandl, W.; Kaul, H.-P.

    2009-04-01

    Soil structure is a dynamic property subject to numerous natural and human influences. It is recognized as fundamental for sustainable functioning of soil. Therefore knowledge of management impacts on the sensitive structural states of soil is decisive in order to avoid soil degradation. The stabilization of the soil's (macro)pore system and eventually the improvement of its infiltrability are essential to avoid runoff and soil erosion, particularly in view of an increasing probability of intense rainfall events. However structure-related soil properties generally have a high natural spatiotemporal variability that interacts with the potential influence of agricultural land use. This complicates a clear determination of management vs. environmental effects and requires adequate measurement methods, allowing a sufficient spatiotemporal resolution to estimate the impact of the targeted management factors within the natural dynamics of soil structure. A common method to assess structure-related soil hydraulic properties is tension infiltrometry. A major advantage of tension infiltrometer measurements is that no or only minimum soil disturbance is necessary and several structure-controlled water transmission properties can readily be derived. The method is more time- and cost-efficient compared to laboratory measurements of soil hydraulic properties, thus enabling more replications. Furthermore in situ measurements of hydraulic properties generally allow a more accurate reproduction of field soil water dynamics. The present study analyses the impact of two common agricultural management options on structure related hydraulic properties based on tension infiltrometer measurements. Its focus is the identification of the role of management within the natural spatiotemporal variability, particularly in respect to seasonal temporal dynamics. Two management approaches are analysed, (i) cover cropping as a "plant-based" agro-environmental measure, and (ii) tillage with different intensities including conventional tillage with a mouldboard plough, reduced tillage with a chisel plough and no-tillage. The results showed that the plant-based management measure of cover cropping had only minor influence on near-saturated hydraulic conductivity (kh) and flow weighted mean pore radius (λm). Substantial over-winter changes were found with a significant increase in kh and a reduction in the pore radius. A spatial trend in soil texture along the cover cropped slope resulted in a higher kh at lower pressure heads at the summit with higher fractions of coarse particles, while kh tended to be highest at the toeslope towards saturation. Cover crop management accounted for a maximum of 9.7% of the total variability in kh, with a decreasing impact towards the unsaturated range. A substantial difference to bare soil in the cover cropped treatments could be identified in relation to a stabilization of macro-pores over winter. The different tillage treatments had a substantial impact on near-saturated kh and pore radius. Although conventional tillage showed the highest values in kh and λm, settling of the soil after the ploughing event tended to reduce differences over time compared to the other tillage methods. The long-term no-tillage (10 years) however had the lowest values of kh at all measurement dates. The high contents of silt and fine sand probably resulted in soil densification that was not counterbalanced sufficiently by biological structure forming agents. The study could show that soil structure related hydraulic properties are subject to a substantial seasonal variability. A comprehensive assessment of agricultural measures such as tillage or cover cropping requires an estimate of these temporal dynamics and their interaction with the management strategies. Particularly for plant-based management measures such as cover cropping, which represent a less intense intervention in the structural states of the soil compared to tillage, this was evident, as the main mechanism revealed for this measure was structure stabilization over time. While spatial variability is mostly controlled in designed experiments, the role of temporal variability is often underestimated. From our study we concluded that (i) a proper understanding of processes involved in management effects on soil structure must take into consideration the dynamic nature of the respective soil properties, (ii) experimental planning for studies regarding management impacts on soil structure should allow an estimation of temporal variability, and (iii) for this purpose tension infiltrometry provides an efficient measurement tool to assess structure related soil hydraulic properties.

  4. Using diatom assemblages to assess urban stream conditions

    USGS Publications Warehouse

    Walker, C.E.; Pan, Y.

    2006-01-01

    We characterized changes in diatom assemblages along an urban-to-rural gradient to assess impacts of urbanization on stream conditions. Diatoms, water chemistry, and physical variables of riffles at 19 urban and 28 rural stream sites were sampled and assessed during the summer base flow period. Near stream land use was characterized using GIS. In addition, one urban and one rural site were sampled monthly throughout a year to assess temporal variation of diatom assemblages between the urban and rural stream sites. Canonical correspondence analysis (CCA) showed that the 1st ordination axis distinctly separated rural and urban sites. This axis was correlated with conductivity (r = 0.75) and % near-stream commercial/industrial land use (r = 0.55). TWINSPAN classified all sites into four groups based on diatom assemblages. These diatom-based site groups were significantly different in water chemistry (e.g., conductivity, dissolved nutrients), physical habitat (e.g., % stream substrate as fines), and near-stream land use. CCA on the temporal diatom data set showed that diatom assemblages had high seasonal variation along the 2nd axis in both urban and rural sites, however, rural and urban sites were well separated along the 1st ordination axis. Our results suggest that changes in diatom assemblages respond to urban impacts on stream conditions. ?? Springer 2006.

  5. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities

    PubMed Central

    Jiddawi, Narriman S.; Eklöf, Johan S.

    2017-01-01

    Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231

  6. Spatio-Temporal Variability in Accretion and Erosion of Coastal Foredunes in the Netherlands: Regional Climate and Local Topography

    PubMed Central

    Keijsers, Joep G. S.; Poortinga, Ate; Riksen, Michel J. P. M.; Maroulis, Jerry

    2014-01-01

    Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed. PMID:24603812

  7. Spatio-temporal variability in accretion and erosion of coastal foredunes in the Netherlands: regional climate and local topography.

    PubMed

    Keijsers, Joep G S; Poortinga, Ate; Riksen, Michel J P M; Maroulis, Jerry

    2014-01-01

    Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed.

  8. Temporal variability of glucocorticoid receptor activity is functionally important for the therapeutic action of fluoxetine in the hippocampus.

    PubMed

    Lee, M-S; Kim, Y-H; Park, W-S; Park, O-K; Kwon, S-H; Hong, K S; Rhim, H; Shim, I; Morita, K; Wong, D L; Patel, P D; Lyons, D M; Schatzberg, A F; Her, S

    2016-02-01

    Previous studies have shown inconsistent results regarding the actions of antidepressants on glucocorticoid receptor (GR) signalling. To resolve these inconsistencies, we used a lentiviral-based reporter system to directly monitor rat hippocampal GR activity during stress adaptation. Temporal GR activation was induced significantly by acute stress, as demonstrated by an increase in the intra-individual variability of the acute stress group compared with the variability of the non-stress group. However, the increased intra-individual variability was dampened by exposure to chronic stress, which was partly restored by fluoxetine treatment without affecting glucocorticoid secretion. Immobility in the forced-swim test was negatively correlated with the intra-individual variability, but was not correlated with the quantitative GR activity during fluoxetine therapy; this highlights the temporal variability in the neurobiological links between GR signalling and the therapeutic action of fluoxetine. Furthermore, we demonstrated sequential phosphorylation between GR (S224) and (S232) following fluoxetine treatment, showing a molecular basis for hormone-independent nuclear translocation and transcriptional enhancement. Collectively, these results suggest a neurobiological mechanism by which fluoxetine treatment confers resilience to the chronic stress-mediated attenuation of hypothalamic-pituitary-adrenal axis activity.

  9. From hydrological regimes to water use regimes: influence of the type of habitat on drinking water demand dynamics in alpine tourist resorts.

    NASA Astrophysics Data System (ADS)

    Calianno, Martin

    2017-04-01

    In the last decades, integrated water resources management studies produced integrated models that focus mainly on the assessment of water resources and water stress in the future. In some cases, socioeconomic development results to cause more impacts on the evolution of water systems than climate (Reynard et al., 2014). There is thus a need to develop demand-side approaches in the observation and modeling of human-influenced hydrological systems (Grouillet et al., 2015). We define the notion of water use cycle to differentiate water volumes that are withdrawn from the hydrological system and that circulate through anthropic hydro-systems along various steps: withdrawals, distribution, demands, consumption, restitution (Calianno et al., submitted). To address the spatial distribution and the temporal dynamics of the water use cycle, we define the concepts of water use basins and water use regimes (Calianno et al., submitted). The assessment of the temporal variability of water demands is important at thin time steps in touristic areas, where water resource regimes and water demands are highly variable. This is the case for are alpine ski resorts, where the high touristic season (winter) takes place during the low flow period in nival and glacio-nival basins. In this work, a monitoring of drinking water demands was undergone, at high temporal resolution, on different types of buildings in the ski resort of Megève (France). A dataset was created, from which a typology of water demand regimes was extracted. The analysis of these temporal signatures highlighted the factors influencing the volumes and the dynamics of drinking water demand. The main factors are the type of habitat (single family, collective, house, apartment blocks), the presence of a garden or an infrastructure linked to high standing chalets (pool, spa), the proportion of permanent and temporary habitat, the presence of snow in the ski resort. Also, temporalities linked to weekends and weekly tourism are observed. This typology of water demand regimes is at tool that can be developed to reproduce the temporal dynamics of water demands, when knowing the characteristics of habitat in a given region. References: Calianno M, Reynard E, Milano M (in prep). Water use cycle in tourist mountain territories: water demand basins and regimes. To be submitted to Water Resources Management. Calianno M, Reynard E, Milano M, Buchs A (submitted). Quantifier les usages de l'eau : concepts, terminologie et confusions. Submitted to VertigO. Grouillet B, Fabre J, Ruelland D, Dezetter A (2015) Historical reconstruction and 2050 projections of water demand under anthropogenic and climate changes in two contrasted mediterranean catchments. J Hydrol 522:684-696. Reynard E, Bonriposi M, Graefe O, Homewood C, Huss M, Kauzlaric M, Liniger H, Rey E, Rist S, Schädler B, Schneider F, Weingartner R (2014) Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. WIREs Water 1(4):413-426.

  10. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  11. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein

    2002-11-01

    A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal variability from the influence of the westerly flow regime (local-scale loss of influence). This study corroborates an increasing number of similar investigations that find that vegetation does react in a sensitive way to variations of its atmospheric environment across various temporal and spatial scales.

  12. Use of a handheld low-cost sensor to explore the effect of urban design features on local-scale spatial and temporal air quality variability.

    PubMed

    Miskell, Georgia; Salmond, Jennifer A; Williams, David E

    2018-04-01

    Portable low-cost instruments have been validated and used to measure ambient nitrogen dioxide (NO 2 ) at multiple sites over a small urban area with 20min time resolution. We use these results combined with land use regression (LUR) and rank correlation methods to explore the effects of traffic, urban design features, and local meteorology and atmosphere chemistry on small-scale spatio-temporal variations. We measured NO 2 at 45 sites around the downtown area of Vancouver, BC, in spring 2016, and constructed four different models: i) a model based on averaging concentrations observed at each site over the whole measurement period, and separate temporal models for ii) morning, iii) midday, and iv) afternoon. Redesign of the temporal models using the average model predictors as constants gave three 'hybrid' models that used both spatial and temporal variables. These accounted for approximately 50% of the total variation with mean absolute error±5ppb. Ranking sites by concentration and by change in concentration across the day showed a shift of high NO 2 concentrations across the central city from morning to afternoon. Locations could be identified in which NO 2 concentration was determined by the geography of the site, and others as ones in which the concentration changed markedly from morning to afternoon indicating the importance of temporal controls. Rank correlation results complemented LUR in identifying significant urban design variables that impacted NO 2 concentration. High variability across a relatively small space was partially described by predictor variables related to traffic (bus stop density, speed limits, traffic counts, distance to traffic lights), atmospheric chemistry (ozone, dew point), and environment (land use, trees). A high-density network recording continuously would be needed fully to capture local variations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Treesearch

    Vincent Jerald Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  14. Assessing Changes in Precipitation and Impacts on Groundwater in Southeastern Brazil using Regional Hydroclimate Reconstruction

    NASA Astrophysics Data System (ADS)

    Nunes, A.; Fernandes, M.; Silva, G. C., Jr.

    2017-12-01

    Aquifers can be key players in regional water resources. Precipitation infiltration is the most relevant process in recharging the aquifers. In that regard, understanding precipitation changes and impacts on the hydrological cycle helps in the assessment of groundwater availability from the aquifers. Regional modeling systems can provide precipitation, near-surface air temperature, together with soil moisture at different ground levels from coupled land-surface schemes. More accurate those variables are better the evaluation of the precipitation impact on the groundwater. Downscaling of global reanalysis very often employs regional modeling systems, in order to give more detailed information for impact assessment studies at regional scales. In particular, the regional modeling system, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), might improve the accuracy of hydrometeorological variables in regions with spatial and temporal scarcity of in-situ observations. SRDAS combines assimilation of precipitation estimates from gauge-corrected satellite-based products with spectral nudging technique. The SRDAS hourly outputs provide monthly means of atmospheric and land-surface variables, including precipitation, used in the calculations of the hydrological budget terms. Results show the impact of changes in precipitation on groundwater in the aquifer located near the southeastern coastline of Brazil, through the assessment of the water-cycle terms, using a hydrological model during dry and rainy periods found in the 15-year numerical integration of SRDAS.

  15. Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe

    USGS Publications Warehouse

    Lü, Xiao-Tao; Reed, Sasha C.; Hou, Shuang-Li; Hu, Yan-Yu; Wei, Hai-Wei; Lü, Fu-Mei; Cui, Qiang; Han, Xing Guo

    2017-01-01

    Plant nutrient concentrations and stoichiometry drive fundamental ecosystem processes, with important implications for primary production, diversity, and ecosystem sustainability. While a range of evidence exists regarding how plant nutrients vary across spatial scales, our understanding of their temporal variation remains less well understood. Nevertheless, we know nutrients regulate plant function across time, and that important temporal controls could strongly interact with environmental change. Here, we report results from a 3-year assessment of inter-annual changes of foliar nitrogen (N) and phosphorus (P) concentrations and stoichiometry in three dominant grasses in response to N deposition and prescribed fire in a temperate steppe of northern China. Foliar N and P concentrations and their ratios varied greatly among years, with this temporal variation strongly related to inter-annual variation in precipitation. Nitrogen deposition significantly increased foliar N concentrations and N:P ratios in all species, while fire significantly altered foliar N and P concentrations but had no significant impacts on N:P ratios. Generally, N addition enhanced the temporal stability of foliar N and decreased that of foliar P and of N:P ratios. Our results indicate that plant nutrient status and response to environmental change are temporally dynamic and that there are differential effects on the interactions between environmental change drivers and timing for different nutrients. These responses have important implications for consideration of global change effects on plant community structure and function, management strategies, and the modeling of biogeochemical cycles under global change scenarios.

  16. Variability in Spatially and Temporally Resolved Emissions and Hydrocarbon Source Fingerprints for Oil and Gas Sources in Shale Gas Production Regions.

    PubMed

    Allen, David T; Cardoso-Saldaña, Felipe J; Kimura, Yosuke

    2017-10-17

    A gridded inventory for emissions of methane, ethane, propane, and butanes from oil and gas sources in the Barnett Shale production region has been developed. This inventory extends previous spatially resolved inventories of emissions by characterizing the overall variability in emission magnitudes and the composition of emissions at an hourly time resolution. The inventory is divided into continuous and intermittent emission sources. Sources are defined as continuous if hourly averaged emissions are greater than zero in every hour; otherwise, they are classified as intermittent. In the Barnett Shale, intermittent sources accounted for 14-30% of the mean emissions for methane and 10-34% for ethane, leading to spatial and temporal variability in the location of hourly emissions. The combined variability due to intermittent sources and variability in emission factors can lead to wide confidence intervals in the magnitude and composition of time and location-specific emission inventories; therefore, including temporal and spatial variability in emission inventories is important when reconciling inventories and observations. Comparisons of individual aircraft measurement flights conducted in the Barnett Shale region versus the estimated emission rates for each flight from the emission inventory indicate agreement within the expected variability of the emission inventory for all flights for methane and for all but one flight for ethane.

  17. Review of fall risk assessment in geriatric populations using inertial sensors

    PubMed Central

    2013-01-01

    Background Falls are a prevalent issue in the geriatric population and can result in damaging physical and psychological consequences. Fall risk assessment can provide information to enable appropriate interventions for those at risk of falling. Wearable inertial-sensor-based systems can provide quantitative measures indicative of fall risk in the geriatric population. Methods Forty studies that used inertial sensors to evaluate geriatric fall risk were reviewed and pertinent methodological features were extracted; including, sensor placement, derived parameters used to assess fall risk, fall risk classification method, and fall risk classification model outcomes. Results Inertial sensors were placed only on the lower back in the majority of papers (65%). One hundred and thirty distinct variables were assessed, which were categorized as position and angle (7.7%), angular velocity (11.5%), linear acceleration (20%), spatial (3.8%), temporal (23.1%), energy (3.8%), frequency (15.4%), and other (14.6%). Fallers were classified using retrospective fall history (30%), prospective fall occurrence (15%), and clinical assessment (32.5%), with 22.5% using a combination of retrospective fall occurrence and clinical assessments. Half of the studies derived models for fall risk prediction, which reached high levels of accuracy (62-100%), specificity (35-100%), and sensitivity (55-99%). Conclusions Inertial sensors are promising sensors for fall risk assessment. Future studies should identify fallers using prospective techniques and focus on determining the most promising sensor sites, in conjunction with determination of optimally predictive variables. Further research should also attempt to link predictive variables to specific fall risk factors and investigate disease populations that are at high risk of falls. PMID:23927446

  18. Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment

    NASA Technical Reports Server (NTRS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.

    2000-01-01

    In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.

  19. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    NASA Astrophysics Data System (ADS)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  20. The gait standard deviation, a single measure of kinematic variability.

    PubMed

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Gielen, B.; Göckede, M.; Papale, D.; Bouriaud, O.; Granier, A.

    2011-09-01

    The allocation of carbon (C) taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years) and seasonal (for 1 year) scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique. The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr-1, 29% yr-1 and 39% yr-1, respectively) was significant among years with up to 12% yr-1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the contribution of previous-year reserves to stem growth, as well as reduction of data uncertainty, will be of relevance to increase the accuracy of the seasonal assessment of the NPP-GPP ratio in forests.

  2. Absolute spike frequency as a predictor of surgical outcome in temporal lobe epilepsy.

    PubMed

    Ngo, Ly; Sperling, Michael R; Skidmore, Christopher; Mintzer, Scott; Nei, Maromi

    2017-04-01

    Frequent interictal epileptiform abnormalities may correlate with poor prognosis after temporal lobe resection for refractory epilepsy. To date, studies have focused on limited resections such as selective amygdalohippocampectomy and apical temporal lobectomy without hippocampectomy. However, it is unclear whether the frequency of spikes predicts outcome after standard anterior temporal lobectomy. Preoperative scalp video-EEG monitoring data from patients who subsequently underwent anterior temporal lobectomy over a three year period and were followed for at least one year were reviewed for the frequency of interictal epileptiform abnormalities. Surgical outcome for those patients with frequent spikes (>60/h) was compared with those with less frequent spikes. Additionally, spike frequency was evaluated as a continuous variable and correlated with outcome to determine if increased spike frequency correlated with worse outcome, as assessed by modified Engel Class outcome. Forty-seven patients (18 men, 29 women; mean age 40 years at surgery) were included. Forty-six patients had standard anterior temporal lobectomy (24 right, 22 left) and one had a modified left temporal lobectomy. There was no significant difference in seizure outcome between those with frequent (57% Class I) vs. those with less frequent (58% Class I) spikes. Increased spike frequency did not correlate with worse outcome. Greater than 20 complex partial seizures/month and generalized tonic-clonic seizures within one year of surgery correlated with worse outcome. This study suggests that absolute spike frequency does not predict seizure outcome after anterior temporal lobectomy unlike in selective procedures, and should not be used as a prognostic factor in this population. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils

    PubMed Central

    Chiri, Eleonora; Nauer, Philipp A.; Rainer, Edda-Marie; Zeyer, Josef

    2017-01-01

    ABSTRACT Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from −3.7 to −0.03 mg CH4 m−2 day−1. Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories. IMPORTANCE Oxidation of methane (CH4) in well-drained, “upland” soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories. PMID:28687652

  4. High temporal and spatial variability of atmospheric-methane oxidation in Alpine glacier-forefield soils.

    PubMed

    Chiri, Eleonora; Nauer, Philipp A; Rainer, Edda-Marie; Zeyer, Josef; Schroth, Martin H

    2017-07-07

    Glacier-forefield soils can provide a substantial sink for atmospheric CH 4 , facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, location in different forefield landforms, and temporal fluctuations in soil-physical parameters. We assessed spatial and temporal variability of atmospheric CH 4 oxidation in an Alpine glacier forefield during the snow-free season 2013. We quantified CH 4 flux in soils of increasing age and in different landforms (sandhill, terrace, floodplain) using soil-gas-profile and static flux-chamber methods. To determine MOB abundance and community structure, we employed pmoA -gene-based quantitative PCR and targeted-amplicon sequencing. Uptake of CH 4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH 4 uptake ranging from -0.03- -3.7 mg CH 4 m -2 d -1 Floodplain and terrace soils exhibited smaller uptake and even intermittent CH 4 emissions. Linear mixed-effect models indicated that soil age and landform were dominating factors shaping CH 4 flux, followed by cumulative rainfall (weighted sum ≤ 4 d prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with Upland Soil Clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical, but differed significantly from highly variable sandhill-soil communities. We conclude that soil age and landform modulate the soil CH 4 sink strength in glacier forefields, and recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH 4 inventories. Importance Oxidation of methane (CH 4 ) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric CH 4 oxidation in mature upland soils, little is known about this important function in young, developing soils such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat.In this field-based study we investigated spatial and temporal variability of atmospheric CH 4 oxidation and associated MOB communities in Alpine glacier-forefield soils, aiming at better understanding factors that shape the sink for atmospheric CH 4 in this young soil ecosystem. The study contributes to the knowledge on the dynamics of atmospheric CH 4 oxidation in developing upland soils, and represents a further step towards the inclusion of Alpine glacier-forefield soils in global CH 4 inventories. Copyright © 2017 American Society for Microbiology.

  5. Predicting non-stationary algal dynamics following changes in hydrometeorological conditions using data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Kim, S.; Seo, D. J.

    2017-12-01

    When water temperature (TW) increases due to changes in hydrometeorological conditions, the overall ecological conditions change in the aquatic system. The changes can be harmful to human health and potentially fatal to fish habitat. Therefore, it is important to assess the impacts of thermal disturbances on in-stream processes of water quality variables and be able to predict effectiveness of possible actions that may be taken for water quality protection. For skillful prediction of in-stream water quality processes, it is necessary for the watershed water quality models to be able to reflect such changes. Most of the currently available models, however, assume static parameters for the biophysiochemical processes and hence are not able to capture nonstationaries seen in water quality observations. In this work, we assess the performance of the Hydrological Simulation Program-Fortran (HSPF) in predicting algal dynamics following TW increase. The study area is located in the Republic of Korea where waterway change due to weir construction and drought concurrently occurred around 2012. In this work we use data assimilation (DA) techniques to update model parameters as well as the initial condition of selected state variables for in-stream processes relevant to algal growth. For assessment of model performance and characterization of temporal variability, various goodness-of-fit measures and wavelet analysis are used.

  6. Global trends in visibility: Implications for dust sources

    USGS Publications Warehouse

    Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.

    2007-01-01

    There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 359 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility derived variables and AERONET optical depths indicate a moderate correlation (???0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with visibility, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974-2003.

  7. Multi-platform validation of a high-resolution model in the Western Mediterranean Sea: insight into spatial-temporal variability

    NASA Astrophysics Data System (ADS)

    Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.

  8. Quantitative variability of renewable energy resources in Norway

    NASA Astrophysics Data System (ADS)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  9. Temporal Coordination and Adaptation to Rate Change in Music Performance

    ERIC Educational Resources Information Center

    Loehr, Janeen D.; Large, Edward W.; Palmer, Caroline

    2011-01-01

    People often coordinate their actions with sequences that exhibit temporal variability and unfold at multiple periodicities. We compared oscillator- and timekeeper-based accounts of temporal coordination by examining musicians' coordination of rhythmic musical sequences with a metronome that gradually changed rate at the end of a musical phrase…

  10. Temporal and Statistical Information in Causal Structure Learning

    ERIC Educational Resources Information Center

    McCormack, Teresa; Frosch, Caren; Patrick, Fiona; Lagnado, David

    2015-01-01

    Three experiments examined children's and adults' abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a 3-variable mechanical…

  11. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  12. Recent results on modelling the spatial and temporal structure of the Earth's gravity field.

    PubMed

    Moore, P; Zhang, Q; Alothman, A

    2006-04-15

    The Earth's gravity field plays a central role in sea-level change. In the simplest application a precise gravity field will enable oceanographers to capitalize fully on the altimetric datasets collected over the past decade or more by providing a geoid from which absolute sea-level topography can be recovered. However, the concept of a static gravity field is now redundant as we can observe temporal variability in the geoid due to mass redistribution in or on the total Earth system. Temporal variability, associated with interactions between the land, oceans and atmosphere, can be investigated through mass redistributions with, for example, flow of water from the land being balanced by an increase in ocean mass. Furthermore, as ocean transport is an important contributor to the mass redistribution the time varying gravity field can also be used to validate Global Ocean Circulation models. This paper will review the recent history of static and temporal gravity field recovery, from the 1980s to the present day. In particular, mention will be made of the role of satellite laser ranging and other space tracking techniques, satellite altimetry and in situ gravity which formed the basis of gravity field determination until the last few years. With the launch of Challenging Microsatellite Payload and Gravity and Circulation Experiment (GRACE) our knowledge of the spatial distribution of the Earth's gravity field is taking a leap forward. Furthermore, GRACE is now providing insight into temporal variability through 'monthly' gravity field solutions. Prior to this data we relied on satellite tracking, Global Positioning System and geophysical models to give us insight into the temporal variability. We will consider results from these methodologies and compare them to preliminary results from the GRACE mission.

  13. Modeling sea-surface temperature and its variability

    NASA Technical Reports Server (NTRS)

    Sarachik, E. S.

    1985-01-01

    A brief review is presented of the temporal scales of sea surface temperature variability. Progress in modeling sea surface temperature, and remaining obstacles to the understanding of the variability is discussed.

  14. Coordination of precision grip in 2–6 years-old children with autism spectrum disorders compared to children developing typically and children with developmental disabilities

    PubMed Central

    David, Fabian J.; Baranek, Grace T.; Wiesen, Chris; Miao, Adrienne F.; Thorpe, Deborah E.

    2012-01-01

    Impaired motor coordination is prevalent in children with Autism Spectrum Disorders (ASD) and affects adaptive skills. Little is known about the development of motor patterns in young children with ASD between 2 and 6 years of age. The purpose of the current study was threefold: (1) to describe developmental correlates of motor coordination in children with ASD, (2) to identify the extent to which motor coordination deficits are unique to ASD by using a control group of children with other developmental disabilities (DD), and (3) to determine the association between motor coordination variables and functional fine motor skills. Twenty-four children with ASD were compared to 30 children with typical development (TD) and 11 children with DD. A precision grip task was used to quantify and analyze motor coordination. The motor coordination variables were two temporal variables (grip to load force onset latency and time to peak grip force) and two force variables (grip force at onset of load force and peak grip force). Functional motor skills were assessed using the Fine Motor Age Equivalents of the Vineland Adaptive Behavior Scale and the Mullen Scales of Early Learning. Mixed regression models were used for all analyses. Children with ASD presented with significant motor coordination deficits only on the two temporal variables, and these variables differentiated children with ASD from the children with TD, but not from children with DD. Fine motor functional skills had no statistically significant associations with any of the motor coordination variables. These findings suggest that subtle problems in the timing of motor actions, possibly related to maturational delays in anticipatory feed-forward mechanisms, may underlie some motor deficits reported in children with ASD, but that these issues are not unique to this population. Further research is needed to investigate how children with ASD or DD compensate for motor control deficits to establish functional skills. PMID:23293589

  15. Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis.

    PubMed

    Lessels, Jason S; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris

    2016-01-01

    Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.

  16. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.

    PubMed

    Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-11-03

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  17. Estuarine water quality in parks of the Northeast Coastal and Barrier Network: Development and early implementation of vital signs estuarine nutrient-enrichment monitoring, 2003-06

    USGS Publications Warehouse

    Kopp, Blaine S.; Nielsen, Martha; Glisic, Dejan; Neckles, Hilary A.

    2009-01-01

    This report documents results of pilot tests of a protocol for monitoring estuarine nutrient enrichment for the Vital Signs Monitoring Program of the National Park Service Northeast Coastal and Barrier Network. Data collected from four parks during protocol development in 2003-06 are presented: Gateway National Recreation Area, Colonial National Historic Park, Fire Island National Seashore, and Assateague Island National Seashore. The monitoring approach incorporates several spatial and temporal designs to address questions at a hierarchy of scales. Indicators of estuarine response to nutrient enrichment were sampled using a probability design within park estuaries during a late-summer index period. Monitoring variables consisted of dissolved-oxygen concentration, chlorophyll a concentration, water temperature, salinity, attenuation of downwelling photosynthetically available radiation (PAR), and turbidity. The statistical sampling design allowed the condition of unsampled locations to be inferred from the distribution of data from a set of randomly positioned "probability" stations. A subset of sampling stations was sampled repeatedly during the index period, and stations were not rerandomized in subsequent years. These "trend stations" allowed us to examine temporal variability within the index period, and to improve the sensitivity of the monitoring protocol to detecting change through time. Additionally, one index site in each park was equipped for continuous monitoring throughout the index period. Thus, the protocol includes elements of probabilistic and targeted spatial sampling, and the temporal intensity ranges from snapshot assessments to continuous monitoring.

  18. Monitoring snow cover variability (2000-2014) in the Hengduan Mountains based on cloud-removed MODIS products with an adaptive spatio-temporal weighted method

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei

    2017-08-01

    Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.

  19. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  20. Variability of pesticide exposure in a stream mesocosm system: macrophyte-dominated vs. non-vegetated sections.

    PubMed

    Beketov, Mikhail A; Liess, Matthias

    2008-12-01

    For flowing water bodies no information is available about patterns of contaminant distribution in flowing water compared to macrophyte-dominated structures. The aim of the study was to examine temporal dynamic and spatial cross-channel variability of pulse exposure of the insecticide thiacloprid in outdoor stream mesocosms. Two distinct cross-channel sections have been considered: macrophyte-dominated littoral and non-vegetated midstream. Median disappearance time ranged from 17 to 43 h (water phase, midstream). We showed that during the exposure pulse (10h) thiacloprid concentrations in the macrophyte-dominated section were 20-60% lower than those in the non-vegetated section. This suggests that spatial variability in contaminant concentrations, particularly in streams containing macrophytes, should be taken into account to enable a more realistic assessment of (i) exposure and associated effects and (ii) mass transport of pesticides and other chemicals into river systems (e.g. losses with surface runoff).

Top