1995-06-01
include leachate collection systems and some form of aeration. The reactor is set up on an impermeable liner to prevent contaminant migration. Treatment...Bioremediation Microbial Mats Phytoremediation /construc- ted wetlands White Rot Fungus Full scale commercial technology for treatment of hydro...validation Phytoremediation / Constructed Wetlands Some scaled up batch demonstrations. Primarily laboratory scale. White Rot Fungus Pilot scale
NASA Astrophysics Data System (ADS)
Wyman, M. T.; Kavet, R.; Klimley, A. P.
2016-02-01
There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.
Spatial and temporal migration of a landfill leachate plume in alluvium
Masoner, Jason R.; Cozzarelli, Isabelle M.
2015-01-01
Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic conditions provides increased understanding of plume behavior and migration potential and may be applied at less monitored landfill sites to evaluate potential risks of contamination to downgradient receptors.
A Geophysical Model for the Origin of Volcano Vent Clusters in a Colorado Plateau Volcanic Field
NASA Astrophysics Data System (ADS)
Deng, Fanghui; Connor, Charles B.; Malservisi, Rocco; Connor, Laura J.; White, Jeremy T.; Germa, Aurelie; Wetmore, Paul H.
2017-11-01
Variation in spatial density of Quaternary volcanic vents, and the occurrence of vent clusters, correlates with boundaries in Proterozoic crust in the Springerville volcanic field (SVF), Arizona, USA. Inverse modeling using 538 gravity measurements shows that vent clusters correlate with gradients in the gravity field due to lateral variation in crustal density. These lateral discontinuities in the crustal density can be explained by boundaries in the North American crust formed during Proterozoic accretion. Spatial density of volcanic vents is low in regions of high-density Proterozoic crust, high in areas of relatively low density Proterozoic crust, and is greatest adjacent to crustal boundaries. Vent alignments parallel these boundaries. We have developed 2-D and 3-D numerical models of magma ascent through the crust to simulate long-term, average magma migration that led to the development of vent clusters in the SVF, assuming that a viscous fluid flow through a porous media is statistically equivalent to magma migration averaged over geological time in the full field scale. The location and flux from the uniform magma source region are boundary conditions of the model. Changes in model diffusivity, associated with changes in the bulk properties of the lithosphere, can simulate preferential magma migration paths and alter estimated magma flux at the surface, implying that large-scale crustal structures, such as inherited tectonic block boundaries, influence magma ascent and clustering of volcanic vents. Probabilistic models of volcanic hazard for distributed volcanic fields can be improved by identifying crustal structures and assessing their impact on volcano distribution with the use of numerical models.
Timescale bias in measuring river migration rate
NASA Astrophysics Data System (ADS)
Donovan, M.; Belmont, P.; Notebaert, B.
2016-12-01
River channel migration plays an important role in sediment routing, water quality, riverine ecology, and infrastructure risk assessment. Migration rates may change in time and space due to systematic changes in hydrology, sediment supply, vegetation, and/or human land and water management actions. The ability to make detailed measurements of lateral migration over a wide range of temporal and spatial scales has been enhanced from increased availability of historical landscape-scale aerial photography and high-resolution topography (HRT). Despite a surge in the use of historical and contemporary aerial photograph sequences in conjunction with evolving methods to analyze such data for channel change, we found no research considering the biases that may be introduced as a function of the temporal scales of measurement. Unsteady processes (e.g.; sedimentation, channel migration, width changes) exhibit extreme discontinuities over time and space, resulting in distortion when measurements are averaged over longer temporal scales, referred to as `Sadler effects' (Sadler, 1981; Gardner et al., 1987). Using 12 sets of aerial photographs for the Root River (Minnesota), we measure lateral migration over space (110 km) and time (1937-2013) assess whether bias arises from different measurement scales and whether rates shift systematically with increased discharge over time. Results indicate that measurement-scale biases indeed arise from the time elapsed between measurements. We parsed the study reach into three distinct reaches and examine if/how recent increases in river discharge translate into changes in migration rate.
Scattering and; Delay, Scale, and Sum Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S K
How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes anmore » object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.« less
Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.
Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Subramanian, R. S.
1996-01-01
The migration of an isolated gas bubble in an immiscible liquid possessing a temperature gradient is analyzed in the absence of gravity. The driving force for the bubble motion is the shear stress at the interface which is a consequence of the temperature dependence of the surface tension. The analysis is performed under conditions for which the Marangoni number is large, i.e. energy is transferred predominantly by convection. Velocity fields in the limit of both small and large Reynolds numbers are used. The thermal problem is treated by standard boundary layer theory. The outer temperature field is obtained in the vicinity of the bubble. A similarity solution is obtained for the inner temperature field. For both small and large Reynolds numbers, the asymptotic values of the scaled migration velocity of the bubble in the limit of large Marangoni numbers are calculated. The results show that the migration velocity has the same scaling for both low and large Reynolds numbers, but with a different coefficient. Higher order thermal boundary layers are analyzed for the large Reynolds number flow field and the higher order corrections to the migration velocity are obtained. Results are also presented for the momentum boundary layer and the thermal wake behind the bubble, for large Reynolds number conditions.
Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery
NASA Astrophysics Data System (ADS)
Girardi, James D.; Davis, Dan M.
2010-02-01
Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.
Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment
NASA Astrophysics Data System (ADS)
Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.
2016-12-01
Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.
NASA Astrophysics Data System (ADS)
Felzenberg, J. A.; Ward, L. G.; Rzhanov, Y.; Irish, J. D.; Mayer, L. A.
2008-12-01
Multibeam echosounder (MBES) systems have enjoyed recent popularity as a tool in bedform-migration studies due to their ability to produce high-resolution seafloor imagery with complete bottom coverage. Although shallow-water MBES systems may achieve decimeter-scale data resolution, the use of MBES to successfully detect and quantify bedform migration on short time-scales (days to weeks) where the migration distance is relatively small (< 1 m) remains limited by positioning uncertainty. In this study we evaluate short-term bedform migration and sediment transport in a bedform field at the entrance to Portsmouth Harbor, New Hampshire, USA. Bedform dynamics over 24-hour and multi-day periods were determined from high-resolution bathymetry (0.25 m grid resolution) acquired with a Kongsberg EM3002D MBES system. Position, heading and attitude data were acquired with an Applanix POS/MV system with integrated real-time kinematic GPS correctors, providing a horizontal positioning uncertainty of < 0.1 m at the GPS receiver. MBES surveys were conducted on June 8, 14 and 15 in 2007 and July 3 and 9 in 2008. Acoustic current meters were deployed at two stations within the survey area in 2008 to provide simultaneous observations of current velocities at a height of 1 m above the bottom. A new approach was developed and used for detecting and quantifying bedform migration from the bathymetry. Our approach utilizes a ridge-extraction algorithm to derive a binary map of dune-crest positions from the bathymetric surface, and then calculates the displacements of small (6.25 m2) subsets of dune crest. Preliminary results indicate that bedform migrations of ≥ 0.1 m were successfully resolved. Morphology of the bedform field is dominated by medium and large, two-dimensional, asymmetrical subaqueous dunes (0.4 to 0.8 m height, 8 to 16 m wavelength). Small, two-dimensional, ebb-oriented subaqueous dunes (0.3 m height, 5 m wavelength) line the eastern margin of the bedform field, which is adjacent to the channel thalweg. Initial analysis indicates that bedforms are active on 24-hour and multi-day cycles, with migrations of > 1.2 m observed on multi-day cycles. The highest bedform-migration rates are observed along the eastern margin where smaller dunes occur. In 2007 we observed a reciprocal pattern of bedform migration, in which dunes in the western half of the bedform field migrated in a net flood (northward) direction and dunes in the eastern half migrated in a net ebb (southward) direction. In 2008, the eastern dune population was still active and southward-migrating, though the western half of the bedform field appeared to be inactive. The observed pattern of bedform migration is supported by current-meter data from six tidal cycles (spring tidal conditions) during the 2008 experiment, which reveal a strong cross-channel difference in the flood and ebb currents. The data indicate ebb-current dominance in the eastern half of the study area and flood-current dominance in the western half of the study area. Individual bedforms cannot be tracked over the annual period (2007 to 2008) without a higher survey-repetition rate, suggesting that annual migration distances are comparable with or greater than the bedform wavelength, and/or that bedform morphology changes significantly over time-scales shorter than one year.
Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling
Ruggiero, P.; Walstra, D.-J.R.; Gelfenbaum, G.; van, Ormondt M.
2009-01-01
A coupled waves-currents-bathymetric evolution model (DELFT-3D) is compared with field measurements to test hypotheses regarding the processes responsible for alongshore varying nearshore morphological changes at seasonal time scales. A 2001 field experiment, along the beaches adjacent to Grays Harbor, Washington, USA, captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 10-20 m and on average approximately 70 m of onshore sandbar migration during a four-month period. Significant alongshore variability was observed in the morphological response of the sandbar over a 4 km reach of coast with sandbar movement ranging from 20 m of offshore migration to over 175 m of onshore bar migration, the largest seasonal-scale onshore migration event observed in a natural setting. Both observations and model results suggest that, in the case investigated here, alongshore variations in initial bathymetry are primarily responsible for the observed alongshore variable morphological changes. Alongshore varying incident hydrodynamic forcing, occasionally significant in this region due to a tidal inlet and associated ebb-tidal delta, was relatively minor during the study period and appears to play an insignificant role in the observed alongshore variability in sandbar behavior at kilometer-scale. The role of fully three-dimensional cell circulation patterns in explaining the observed morphological variability also appears to be minor, at least in the case investigated here. ?? 2009 Elsevier B.V.
Gygi, Jasmin T.; Fux, Elodie; Grob, Alexander; Hagmann-von Arx, Priska
2016-01-01
This study examined measurement invariance and latent mean differences in the German version of the Reynolds Intellectual Assessment Scales (RIAS) for 316 individuals with a migration background (defined as speaking German as a second language) and 316 sex- and age-matched natives. The RIAS measures general intelligence (single-factor structure) and its two components, verbal and nonverbal intelligence (two-factor structure). Results of a multi-group confirmatory factor analysis showed scalar invariance for the two-factor and partial scalar invariance for the single-factor structure. We conclude that the two-factor structure of the RIAS is comparable across groups. Hence, verbal and nonverbal intelligence but not general intelligence should be considered when comparing RIAS test results of individuals with and without a migration background. Further, latent mean differences especially on the verbal, but also on the nonverbal intelligence index indicate language barriers for individuals with a migration background, as subtests corresponding to verbal intelligence require higher skills in German language. Moreover, cultural, environmental, and social factors that have to be taken into account when assessing individuals with a migration background are discussed. PMID:27846270
Resolving ultrafast exciton migration in organic solids at the nanoscale
NASA Astrophysics Data System (ADS)
Ginsberg, Naomi
The migration of Frenkel excitons, tightly-bound electron-hole pairs, in photosynthesis and in organic semiconducting films is critical to the efficiency of natural and artificial light harvesting. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton migration lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore. By combining the ultrafast super-resolved measurements with exciton hopping simulations we furthermore specify the nature (in addition to the extent) of exciton migration as a function of the intrinsic and ensemble chromophore energy scales that determine a spatio-energetic landscape for migration. In collaboration with: Samuel Penwell, Lucas Ginsberg, University of California, Berkeley and Rodrigo Noriega University of Utah.
Artificial light at night confounds broad-scale habitat use by migrating birds
McLaren, James D.; Buler, Jeffrey J.; Schreckengost, Tim; Smolinsky, Jaclyn A.; Boone, Matthew; van Loon, E. Emiel; Dawson, Deanna K.; Walters, Eric L.
2018-01-01
With many of the world's migratory bird populations in alarming decline, broad-scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light-polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi-year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly-lit sources. This finding implies broad-scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high-quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations.
The dynamics of an experimental gravel bed meander with constant discharge and sediment supply
NASA Astrophysics Data System (ADS)
Braudrick, C. A.; Dietrich, W.; Sklar, L. S.
2012-12-01
As rivers meander, channel migration and cutoffs introduce continuous and episodic changes, respectively, in local boundary shear stress and bedload flux. These changes must affect the local and reach scale channel dynamics, but assessing their influence is limited by complications associated with varying discharge as well as challenging spatial and time scales. Here we explore the dynamics of a scaled-down gravel bed meandering river with constant discharge and sediment supply in a 6.1 m by 17 m long experimental flume at UC Berkeley's Richmond Field Station. The experiments are similar to Braudrick et al. (2009), but with constant rather than varying sediment supply. The flume was filled with a sorted sand with D50 of 0.85 mm, and had an initial 40 cm wide channel with a sinuosity of 1.1. Alfalfa sprouts provided bank and floodplain strength. The alfalfa was seeded by hand throughout the floodplain while a low flow provided irrigation during the 7-day alfalfa growth period. Sand (model gravel) and a lightweight plastic sediment (model sand) were fed independently from the upstream end of the flume at constant rates of 1.8 and 5 kg/hr, respectively. Despite the steady input conditions the experimental channel was quite dynamic as channel migration and bend morphology varied spatially and temporally. The sinuosity in the downstream 10 m of the flume (away from the inlet condition) increased from 1.1 to about 1.6 over the first 75 hours of the experiment, when 3 cutoffs in 29 hours decreased the sinuosity back to just over the initial value. Bank erosion was fastest when curvature was low at the beginning of the experiment and following cutoffs, and slowed once sinuosity increased. Once curvature increased the bends became asymmetric as bank erosion occurred almost exclusively at the bend apex. As the channel migrated, the local sinuosity increased, which decreasing the water surface slope and hence shear stress. The lower shear stress caused subsequent channel migration and also sediment transport to decrease. Consequently, the channel aggraded, forcing water onto the floodplain and further reducing the shear stress in the channel. While the channel was aggrading, most of the sediment flux out the bottom of the flume was the suspended model sand. Cutoffs occurred when the overbank flow was sufficient to alter floodplain strength either by eroding a path around alfalfa, or by limiting alfalfa growth in floodplain areas inundated during the low flow used to irrigate the alfalfa between the runs. Comparing the duration of these experiments to time in the field strongly depends on whether the timescale of interest is set by the flow or by sediment transport. Assuming a scaling factor between 0.01 and 0.02 and that flood flows occur approximately 8 days/year, this 120 hour experiments represent 4-6 years of field time using Froude similarity to scale time from the laboratory to the field, or 220-622 years assuming sediment transport similarity. This experiment showed decreased shear stress due to channel migration limited sediment transport, and that cutoffs were a function of both in-channel and floodplain processes.
Out-migration and depopulation of the Russian North during the 1990s.
Heleniak, T
1999-01-01
The large-scale out-migration from Russia's northern regions that has taken place over the course of the 1990s is analyzed. "The study is based on unpublished oblast-level migration data compiled by the Russian Government, field work by the author, as well as two extensive 1998 surveys of recent and potential migrants, respectively. Age, gender, and educational level of migrants are analyzed to determine the extent of change in Northern population structure attributable to migration. A concluding section presents Russian Government projections of the North's population to 2010." excerpt
Pos, Edwin; Guevara Andino, Juan Ernesto; Sabatier, Daniel; Molino, Jean-François; Pitman, Nigel; Mogollón, Hugo; Neill, David; Cerón, Carlos; Rivas-Torres, Gonzalo; Di Fiore, Anthony; Thomas, Raquel; Tirado, Milton; Young, Kenneth R; Wang, Ophelia; Sierra, Rodrigo; García-Villacorta, Roosevelt; Zagt, Roderick; Palacios Cuenca, Walter; Aulestia, Milton; Ter Steege, Hans
2017-06-01
With many sophisticated methods available for estimating migration, ecologists face the difficult decision of choosing for their specific line of work. Here we test and compare several methods, performing sanity and robustness tests, applying to large-scale data and discussing the results and interpretation. Five methods were selected to compare for their ability to estimate migration from spatially implicit and semi-explicit simulations based on three large-scale field datasets from South America (Guyana, Suriname, French Guiana and Ecuador). Space was incorporated semi-explicitly by a discrete probability mass function for local recruitment, migration from adjacent plots or from a metacommunity. Most methods were able to accurately estimate migration from spatially implicit simulations. For spatially semi-explicit simulations, estimation was shown to be the additive effect of migration from adjacent plots and the metacommunity. It was only accurate when migration from the metacommunity outweighed that of adjacent plots, discrimination, however, proved to be impossible. We show that migration should be considered more an approximation of the resemblance between communities and the summed regional species pool. Application of migration estimates to simulate field datasets did show reasonably good fits and indicated consistent differences between sets in comparison with earlier studies. We conclude that estimates of migration using these methods are more an approximation of the homogenization among local communities over time rather than a direct measurement of migration and hence have a direct relationship with beta diversity. As betadiversity is the result of many (non)-neutral processes, we have to admit that migration as estimated in a spatial explicit world encompasses not only direct migration but is an ecological aggregate of these processes. The parameter m of neutral models then appears more as an emerging property revealed by neutral theory instead of being an effective mechanistic parameter and spatially implicit models should be rejected as an approximation of forest dynamics.
Kinetics of a Migration-Driven Aggregation-Fragmentation Process
NASA Astrophysics Data System (ADS)
Zhuang, You-Yi; Lin, Zhen-Quan; Ke, Jian-Hong
2003-08-01
We propose a reversible model of the migration-driven aggregation-fragmentation process with the symmetric migration rate kernels K(k;j)=K^'(k;j)=λ kj^v and the constant aggregation rates I1, I2 and fragmentation rates J1, J2. Based on the mean-field theory, we investigate the evolution behavior of the aggregate size distributions in several cases with different values of index υ. We find that the fragmentation reaction plays a more important role in the kinetic behaviors of the system than the aggregation and migration. When J1=0 and J2 =0, the aggregate size distributions ak(t) and bk(t) obey the conventional scaling law, while when J1>0 and J2>0, they obey the modified scaling law with an exponential scaling function. The total mass of either species remains conserved. The project supported by National Natural Science Foundation of China under Grant Nos. 10275048 and 10175008, and Natural Science Foundation of Zhejiang Province of China under Grant No. 102067
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2016-12-27
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
NASA Astrophysics Data System (ADS)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.
2017-01-01
The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).
Low mass planet migration in magnetically torqued dead zones - I. Static migration torque
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir
2017-12-01
Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.
Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Zhou, Q.
Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2}more » per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.« less
Physicians' Migration: Perceptions of Pakistani Medical Students.
Hossain, Nazli; Shah, Nusrat; Shah, Tahira; Lateef, Sidra Binte
2016-08-01
To study the perceptions of medical students about factors responsible for physicians'migration. Cross-sectional survey. Dow Medical College and Civil Hospital, Karachi, from April to May 2015. Aself-administered structured questionnaire was used including demographic details, attitudes about push and pull factors of migration, and reasons for migrating or not migrating abroad. Final year students and interns were included. Likert scale from 1 to 4 (1=strongly disagree to 4=strongly agree) was used to assess attitudes. Data was analyzed by SPSS version 16. Atotal of 240 medical students, mostly females (n=181, 75%) (60% final year and 40% interns), participated in the study. Majority wished to go abroad (n=127; 54%) with United States being the favourite destination (n=80; 66.1%) and internal medicine fields being the preferred choice for specialization (n=126; 54%). The major pull factors were better quality of postgraduate education abroad (n=110; 48.2%) and economic prospects (80; 35.2%); while the push factors were a weak healthcare system (n=219; 94.3%), inadequate salary structure (n=205; 88.3%), insecurity (n=219; 93.9%) and increasing religious intolerance in Pakistan (n=183; 78.5%). This survey highlights the continuing trend of physician migration from Pakistan owing to an interplay of various push and pull factors. Majority of our medical students wish to migrate, mainly due to low salaries, poor job structure, and insecurity. Urgent interventions are required to reverse this trend of medical brain-drain.
MacDonald, Cristin; Barbee, Kenneth; Polyak, Boris
2012-05-01
To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.
Fayet, Annette L; Freeman, Robin; Anker-Nilssen, Tycho; Diamond, Antony; Erikstad, Kjell E; Fifield, Dave; Fitzsimmons, Michelle G; Hansen, Erpur S; Harris, Mike P; Jessopp, Mark; Kouwenberg, Amy-Lee; Kress, Steve; Mowat, Stephen; Perrins, Chris M; Petersen, Aevar; Petersen, Ib K; Reiertsen, Tone K; Robertson, Gregory J; Shannon, Paula; Sigurðsson, Ingvar A; Shoji, Akiko; Wanless, Sarah; Guilford, Tim
2017-12-18
Which factors shape animals' migration movements across large geographical scales, how different migratory strategies emerge between populations, and how these may affect population dynamics are central questions in the field of animal migration [1] that only large-scale studies of migration patterns across a species' range can answer [2]. To address these questions, we track the migration of 270 Atlantic puffins Fratercula arctica, a red-listed, declining seabird, across their entire breeding range. We investigate the role of demographic, geographical, and environmental variables in driving spatial and behavioral differences on an ocean-basin scale by measuring puffins' among-colony differences in migratory routes and day-to-day behavior (estimated with individual daily activity budgets and energy expenditure). We show that competition and local winter resource availability are important drivers of migratory movements, with birds from larger colonies or with poorer local winter conditions migrating further and visiting less-productive waters; this in turn led to differences in flight activity and energy expenditure. Other behavioral differences emerge with latitude, with foraging effort and energy expenditure increasing when birds winter further north in colder waters. Importantly, these ocean-wide migration patterns can ultimately be linked with breeding performance: colony productivity is negatively associated with wintering latitude, population size, and migration distance, which demonstrates the cost of competition and migration on future breeding and the link between non-breeding and breeding periods. Our results help us to understand the drivers of animal migration and have important implications for population dynamics and the conservation of migratory species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluating methods to visualize patterns of genetic differentiation on a landscape.
House, Geoffrey L; Hahn, Matthew W
2018-05-01
With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.
Becker, M.W.; Reimus, P.W.; Vilks, P.
1999-01-01
Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimley, A. P.; Wyman, M. T.; Kavet, Rob
The US Department of Energy and US Department of the Interior, Bureau of Ocean Energy Management commissioned this study to address the limited scientific data on the impacts of high voltage direct current cables on aquatic biota, in particular migratory species within the San Francisco Bay. Empirical evidence exists that marine animals perceive and orient to local distortions in the earth’s main geomagnetic field magnetic field. The electromagnetic fields (EMF) generated by the cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concern exists that animals thatmore » migrate along the continental shelves might orient to the EMF from the cables, and move either inshore or offshore away from their normal path. The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) through the San Francisco Bay. The study addresses the following specific questions based on measurements and projections of the EMF produced by an existing marine cable, the TBC, in San Francisco Bay. Specifically, does the presence of EMF from an operating power cable alter the behavior and path of bony fishes and sharks along a migratory corridor? Does the EMF from an operating power cable guide migratory movements or pose an obstacle to movement? To meet the main study objectives several activities needed to be carried out: 1) modeling of the magnetic fields produced by the TBC, 2) assessing the migratory impacts on Chinook salmon smolts (Oncorhynchus tshawytscha) and green sturgeon (Acipenser medirostris) as a result of local magnetic field distortions produced by bridge structures and 3) analyzing behavioral responses by migratory Chinook salmon and green sturgeon to a high-voltage power cable. To meet the first objective, magnetic field measurements were made using two submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles crossing the cable path. We applied basic formulas to describe magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable not immediately or otherwise observable. The magnetic field profiles of 76 survey lines were regressed against the measured fields, representing eight days of measurement. Many profiles were dominated by field distortions caused by bridge structures or other submerged objects, and the cable contribution to the field was not detectable. The regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations. For the second objective, detailed gradiometer survey were examined. Distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the TBC. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. Finally, to assess the behavioral responses by migratory Chinook salmon and green sturgeon to a high- voltage power cable - the potential impacts effect of the TBC on fishes migrating through the San Francisco Estuary were examined. These included late-fall run Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Our results indicate Chinook salmon smolts may be attracted to the cable after activation (more cable location crossings, more detections at Bay Bridge, high importance of distance to cable in predicting fish location), but are not impeded from successfully migrating through the San Francisco Bay (similar proportions of successful exits, faster transit rates). Cable activity had opposite effects on outbound and inbound green sturgeon migrations: outbound migrations had significantly longer transit times while inbound migrations had significantly shorter migration times. However, the proportion of green sturgeon that successfully migrated through the San Francisco Bay was not strongly impacted after cable activation for either migration type. Based on the work, we provide the following conclusions: 1) calculations of magnetic fields for assessment of marine life can be performed; however, local anomalies in the fields resulting from submerged structures require validation of such calculations through collection of ambient DC magnetic field data, 2) the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon and 3) Chinook salmon smolts may be attracted to the activated cable based on analysis of cable crossing, misdirections, and first presence at the array data, however, the cable activation does not appear to change the proportion of smolts that successfully migrate through the San Francisco Bay. Cable activation impacts inbound and outbound migrating adult green sturgeon: travel time was increased for outbound migrations but decreased for inbound migrations. However, cable activation did not appear to impact the success of either migration type in this species.« less
NASA Technical Reports Server (NTRS)
Howard, R.
1972-01-01
Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.
A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress
Tanimoto, Hirokazu; Sano, Masaki
2014-01-01
For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. PMID:24411233
Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo
NASA Astrophysics Data System (ADS)
Augustson, Kyle C.; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri
2015-08-01
The 3-D magnetohydrodynamic (MHD) Anelastic Spherical Harmonic (ASH) code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo generated magnetic fields possesses many time scales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulations relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The time scales that appear to be relevant to the magnetic polarity reversal are also identified.
Assessment of brine migration along vertical pathways due to CO2 injection
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Class, Holger
2016-04-01
Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems which may create conflicts with essential public interests such as water supply from aquifers. For example, brine migration into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is perceived as a potential threat resulting from the Carbon Capture and Storage Technology (CCS). In this work, we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. We consider a realistic (but not real) on-shore site in the North German Basin with characteristic geological features. In contrast to modeling on the reservoir scale, the spatial scale in this work is much larger in both vertical and lateral direction, since the regional hydrogeology is considered as well. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt wall flanks are considered as potential pathways for displaced fluids into shallow systems and their influence needs to be taken into account. Simulations on this scale always require a compromise between the accuracy of the description of the relevant physical processes, data availability and computational resources. Therefore, we test different model simplifications and discuss them with respect to the relevant physical processes and the expected data availability. The simplifications in the models are concerned with the role of salt-induced density differences on the flow, with injection of brine (into brine) instead of CO2 into brine, and with simplifying the geometry of the site.
MacDonald, Cristin; Barbee, Kenneth
2015-01-01
Purpose To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. Methods MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. Results MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Conclusions Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems. PMID:22234617
Walvoord, Michelle Ann; Andraski, Brian J.; Green, Christopher T.; Stonestrom, David A.; Striegl, Robert G.
2014-01-01
A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.
Space-based ornithology: studying bird migration and environmental change in North America
NASA Astrophysics Data System (ADS)
Smith, James A.; Deppe, Jill L.
2008-10-01
Natural fluctuations in the availability of critical stopover sites coupled with anthropogenic destruction of wetlands, land-use change, and anticipated losses due to climate change present migratory birds with a formidable challenge. Space based technology in concert with bird migration modeling and geographical information analysis yields new opportunities to shed light on the distribution and movement of organisms on the planet and their sensitivity to human disturbances and environmental changes. At the NASA Goddard Space Flight Center, we are creating ecological forecasting tools for science and application users to address the consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration. We use an individual-based bird biophysical migration model, driven by remotely sensed land surface data, climate and hydrologic data, and biological field observations to study migratory bird responses to environmental change in North America. Simulation allows us to study bird migration across multiple scales and can be linked to mechanistic processes describing the time and energy budget states of migrating birds. We illustrate our approach by simulating the spring migration of pectoral sandpipers from the Gulf of Mexico to Alaska. Mean stopover length and trajectory patterns are consistent with field observations.
Space-Based Ornithology - Studying Bird Migration and Environmental Change in North America
NASA Technical Reports Server (NTRS)
Smith, James A.; Deppe, Jill L.
2008-01-01
Natural fluctuations in the availability of critical stopover sites coupled with anthropogenic destruction of wetlands, land-use change, and anticipated losses due to climate change present migratory birds with a formidable challenge. Space based technology in concert with bird migration modeling and geographical information analysis yields new opportunities to shed light on the distribution and movement of organisms on the planet and their sensitivity to human disturbances and environmental changes. At the NASA Goddard Space Flight Center, we are creating ecological forecasting tools for science and application users to address the consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration. We use an individual-based bird biophysical migration model, driven by remotely sensed land surface data, climate and hydrologic data, and biological field observations to study migratory bird responses to environmental change in North America. Simulation allows us to study bird migration across multiple scales and can be linked to mechanistic processes describing the time and energy budget states of migrating birds. We illustrate our approach by simulating the spring migration of pectoral sandpipers from the Gulf of Mexico to Alaska. Mean stopover length and trajectory patterns are consistent with field observations.
Müller, Matthias J; Zink, Sabrina; Koch, Eckhardt
2017-09-01
Assessment of stressors related to migration and acculturation in patients with psychiatric disorder and migration background could help improve culturally sensitive concepts of psychiatry and psychotherapy for diagnosis and treatment. The present overview delineates development and psychometric properties of an instrument (MIGSTR10) for assessment of stressors related to migration and acculturation, particularly for application in patients with psychiatric disorders. Ten migration-related stressors were derived from a qualitative content analysis of case histories of patients with psychiatric disorder and migration background and put into a suitable interview and questionnaire format (MIGSTR10; 10 questions, answer format: categorical yes/no, and dimensional 0-10) for self-assessment and observer ratings in several languages. Reliability (interrater agreement, internal consistency) and dimensionality (multi-dimensional scaling, MDS) were investigated in n = 235 patients with migration background and n = 612 indigenous German patients. Interrater agreement (ICC) for MIGSTR10 single items and sum scores (categorical and dimensional) was sufficiently high (≥.58); internal consistency (Cronbach's α) reached medium to high values (.56-.73). MDS revealed a two-dimensional solution with two item clusters (A: communication, migration history, forced marriage, homesickness, discrimination, other stressors; B: family conflicts, loss of status, feelings of shame, guilt feelings). The MIGSTR10 is a rationally developed, straightforward 10-item screening instrument with satisfactory psychometric properties for the assessment of individual and specific stressors related to migration and acculturation.
Creating self-formed meandering channels in laboratory flumes (Invited)
NASA Astrophysics Data System (ADS)
Braudrick, C. A.
2009-12-01
Our ability to construct predictive numerical models for meandering rivers is hampered by the inability to create meandering channels in the laboratory where individual variables can be isolated and controlled. Typically, experimental channels braid, straighten, or cease migration once they develop curvature. By using alfalfa sprouts to provide bank strength and fine sediment to attach point bars to the floodplain, we have successfully created and maintained meandering morphology in a laboratory flume. The 6.1 by 17 m flume has a floodplain slope of approximately 0.005 with a sandy bed and banks that scales as a gravel bed river. The alfalfa sprouts slow bank erosion allowing time for the bars to create new floodplain deposits. The sprouts also increase floodplain roughness, armor new bar deposits, and promote deposition of overbank sediment. The fine sediment, a lightweight plastic that scaled as sand, was crucial for blocking chutes formed between the bar and the floodplain, isolating cut-off channels from the main flow, and creating levees. During this 136-hour long experiment, the channel width stabilized as the channel migrated across the floodplain, and the curvature was recreated following cutoffs. Although the sinuosity (about 1.2) was low relative to meandering channels observed in the field, the spacing of bends was within the upper bounds of field examples. Subsequent experiments with higher bank strength had more limited chute development were able to generate a sinuosity of about 1.4. Scaling analysis indicates that the bank migration rates in the lower sinuosity experiment were approximately 10 times faster than migration rates in the field. A particular challenge in these experiments is maintaining a healthy alfalfa crop. After 15-20 hours of flood flows, the alfalfa begins to die off and new emergent bars need to be seeded. It then takes about 7 days for the alfalfa to grow to the size used in these experiments. The 15-20 hours scale to about one year of flood flows in the field. Therefore experiments that replicate the long-term evolution of meandering rivers would be prohibitively long with alfalfa. Future experiments should therefore focus on developing and testing models that to examine longer-term channel evolution.
Slater, P B
1985-08-01
Two distinct approaches to assessing the effect of geographic scale on spatial interactions are modeled. In the first, the question of whether a distance deterrence function, which explains interactions for one system of zones, can also succeed on a more aggregate scale, is examined. Only the two-parameter function for which it is found that distances between macrozones are weighted averaged of distances between component zones is satisfactory in this regard. Estimation of continuous (point-to-point) functions--in the form of quadrivariate cubic polynomials--for US interstate migration streams, is then undertaken. Upon numerical integration, these higher order surfaces yield predictions of interzonal and intrazonal movements at any scale of interest. Test of spatial stationarity, isotropy, and symmetry of interstate migration are conducted in this framework.
NASA Astrophysics Data System (ADS)
Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.
NASA Astrophysics Data System (ADS)
Naftz, D. L.; Walton-Day, K. E.; Fuller, C.; Dam, W. L.; Briggs, M. A.; Snyder, T.
2015-12-01
Legacy uranium (U) mining and processing activities have resulted in soil and water contamination on Federal, state, and tribal lands in the western United States. Sites include legacy mill sites associated with U extraction now managed by the Department of Energy and thousands of waste dumps associated with U exploration, mining, and processing. Recently (2012), over 400,000 hectares of federally managed land in northern Arizona was withdrawn from consideration of mining for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. Ore from active and recently active U mines in the Colorado Plateau, the Henry Mountains Complex, and the Arizona Strip is transported to the only currently (2015) active conventional mill site in the western United States, located in Utah. Previous and ongoing U.S. Geological Survey assessments to examine U mobility at a variety of legacy and active sites associated with ore exploration, extraction, and processing will be presented as field-scale examples. Topics associated with site investigations will include: (1) offsite migration of radionuclides associated with the operation of the White Mesa U mill; (2) long-term contaminant transport from legacy U waste dumps on Bureau of Land Management regulated land in Utah; (3) application of incremental soil sampling techniques to determine pre- and post-mining radionuclide levels associated with planned and operating U mines in northern Arizona; (4) application of fiber optic digital temperature sensing equipment to identify areas where shallow groundwater containing elevated U levels may be discharging to a river adjacent to a reclaimed mill site in central Wyoming; and (5) field-scale manipulation of groundwater chemistry to limit U migration from a legacy upgrader site in southeastern Utah.
Charge migration and charge transfer in molecular systems
Wörner, Hans Jakob; Arrell, Christopher A.; Banerji, Natalie; Cannizzo, Andrea; Chergui, Majed; Das, Akshaya K.; Hamm, Peter; Keller, Ursula; Kraus, Peter M.; Liberatore, Elisa; Lopez-Tarifa, Pablo; Lucchini, Matteo; Meuwly, Markus; Milne, Chris; Moser, Jacques-E.; Rothlisberger, Ursula; Smolentsev, Grigory; Teuscher, Joël; van Bokhoven, Jeroen A.; Wenger, Oliver
2017-01-01
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review. PMID:29333473
NASA Astrophysics Data System (ADS)
Hayes, A. G.; Ewing, R. C.; Cassini Radar Science Team, T.
2011-12-01
Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity between and among patterns, extracting information about climate and environment from these patterns is a challenge. For example, crest orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune-field patterns with modeled and expected wind regimes. We propose that thinking about the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the re-orientation model presented by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well organized patterns have the longest reorientation time scales (~10^5 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~10^3 migration timescales). In addition, comparisons between spacing and defect density of Titan's dunes and some of the largest fields observed on Earth and Mars reveal that dune patterns on all three planets are geometrically similar, suggesting that growth and organization share common pattern dynamics. Our results suggest that Titan's dunes may react to gross bedform transport averaged over orbital timescales, relaxing the requirement that a single modern wind regime is required to produce the observed pattern.
Tanimoto, Hirokazu; Sano, Masaki
2014-01-07
For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Measurements of fluid transport by controllable vertical migrations of plankton
NASA Astrophysics Data System (ADS)
Houghton, Isabel A.; Dabiri, John O.
2016-11-01
Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.
Flow induced migration in polymer melts – Theory and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorgan, John Robert, E-mail: jdorgan@mines.edu; Rorrer, Nicholas Andrew, E-mail: nrorrer@mines.edu
2015-04-28
Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibitmore » similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.« less
Pocewicz, Amy; Estes-Zumpf, Wendy A.; Andersen, Mark D.; Copeland, Holly E.; Keinath, Douglas A.; Griscom, Hannah R.
2013-01-01
Conservation of migratory birds requires understanding the distribution of and potential threats to their migratory habitats. However, although migratory birds are protected under international treaties, few maps have been available to represent migration at a landscape scale useful to target conservation efforts or inform the siting of wind energy developments that may affect migratory birds. To fill this gap, we developed models that predict where four groups of birds concentrate or stopover during their migration through the state of Wyoming, USA: raptors, wetland, riparian and sparse grassland birds. The models were based on existing literature and expert knowledge concerning bird migration behavior and ecology and validated using expert ratings and known occurrences. There was significant agreement between migratory occurrence data and migration models for all groups except raptors, and all models ranked well with experts. We measured the overlap between the migration concentration models and a predictive model of wind energy development to assess the potential exposure of migratory birds to wind development and illustrate the utility of migratory concentration models for landscape-scale planning. Wind development potential is high across 15% of Wyoming, and 73% of this high potential area intersects important migration concentration areas. From 5.2% to 18.8% of each group’s important migration areas was represented within this high wind potential area, with the highest exposures for sparse grassland birds and the lowest for riparian birds. Our approach could be replicated elsewhere to fill critical data gaps and better inform conservation priorities and landscape-scale planning for migratory birds. PMID:24098379
Noninvasive electromagnetic fields on keratinocyte growth and migration.
Huo, Ran; Ma, Qianli; Wu, James J; Chin-Nuke, Kayla; Jing, Yuqi; Chen, Juan; Miyar, Maria E; Davis, Stephen C; Li, Jie
2010-08-01
Although evidence has shown that very small electrical currents produce a beneficial therapeutic result for wounds, noninvasive electromagnetic field (EMF) therapy has consisted mostly of anecdotal clinical reports, with very few well-controlled laboratory mechanistic studies. In this study, we evaluate the effects and potential mechanisms of a noninvasive EMF device on skin wound repair. The effects of noninvasive EMF on keratinocytes and fibroblasts were assessed via proliferation and incisional wound model migration assays. cDNA microarray and RT-PCR were utilized to assess genetic expression changes in keratinocytes after noninvasive EMF treatment. In vitro analyses with human skin keratinocyte cultures demonstrated that noninvasive EMFs have a strong effect on accelerating keratinocyte migration and a relatively weaker effect on promoting keratinocyte proliferation. The positive effects of noninvasive EMFs on cell migration and proliferation seem keratinocyte-specific without such effects seen on dermal fibroblasts. cDNA microarray and RT-PCR performed revealed increased expression of CRK7 and HOXC8 genes in treated keratinocytes. This study suggests that a noninvasive EMF accelerates wound re-epithelialization through a mechanism of promoting keratinocyte migration and proliferation, possibly due to upregulation of CRK7 and HOXC8 genes. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sanjay
2014-09-30
In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models thatmore » reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO₂ plume, the effect of CO₂-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.« less
Migration, urban growth, and development: Pakistan's experience.
Shah, N M; Karim, M S
1982-11-01
The authors "focus primarily on voluntary, peacetime migration [in Pakistan], both internal and international, and attempt to analyze some of its possible socioeconomic consequences." The importance of the role of migration in urban population growth is discussed, with attention to implications for social and economic development. The impact of large-scale emigration of workers to the Middle East is also assessed. The analysis is based on data from the 1951, 1961, 1972, and 1981 censuses as well as from secondary sources. excerpt
Evidence for Enhanced Matrix Diffusion in Geological Environment
NASA Astrophysics Data System (ADS)
Sato, Kiminori; Fujimoto, Koichiro; Nakata, Masataka; Shikazono, Naotatsu
2013-01-01
Molecular diffusion in rock matrix, called as matrix diffusion, has been appreciated as a static process for elemental migration in geological environment that has been acknowledged in the context of geological disposal of radioactive waste. However, incomprehensible enhancement of matrix diffusion has been reported at a number of field test sites. Here, the matrix diffusion of saline water at Horonobe, Hokkaido, Japan is highlighted directly probing angstrom-scale pores on a field scale up to 1 km by positron--positronium annihilation spectroscopy. The first application of positron--positronium annihilation spectroscopy to field-scale geophysical research reveals the slight variation of angstrom-scale pores influenced by saline water diffusion with complete accuracy. We found widely interconnected 3 Å pores, which offer the pathway of saline water diffusion with the highly enhanced effective matrix diffusion coefficient of 4× 10-6 cm2 s-1. The present findings provide unambiguous evidence that the angstrom-scale pores enhance effective matrix diffusion on a field scale in geological environment.
A Cosserat crystal plasticity and phase field theory for grain boundary migration
NASA Astrophysics Data System (ADS)
Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut
2018-06-01
The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.
Morphodynamics of Migration Surveyed at Large Spatial and Temporal Scales
NASA Astrophysics Data System (ADS)
Aalto, R.; Schwendel, A.; Nicholas, A. P.
2012-04-01
The controls on rivers migration are diverse and often complex. One way forwards is to select study rivers that meet certain simplifying conditions: near-pristine (no anthropogenic complications), large size and rapid mobility (resulting in significant change viewable in Landsat imagery), limited geological complexity (no bedrock), steady hydrology (relatively little variation in discharge and sediment load), and simplified base level control (no tides or other substantial perturbations). Such systems could then be measured at appropriate spatial and temporal scales to extract the reach-scale dynamics while averaging out the more stochastic behaviour of individual meander bends. Such an approach requires both special rivers and novel techniques, which we have investigated and present here. The two explored examples are the near-pristine Beni River basin in northern Bolivia (800 km channel length) and the similarly natural Fly-Strickland River basin in Papua New Guinea (400 km channel length) - large, tropical sand-bedded rivers that meet the above criteria. First, we conducted a GIS analysis of migration using image collections that include 1950s military aerial reconnaissance -- this allowed us to characterize mobility decades before the first Landsat satellite was launched. Following this approach, we characterized migration rate, sinuosity, and other parameters at the reach scale of 10km and the temporal scale of 50+ years, with clear patterns of rate and morphology emerging as a function of location within the systems. We conducted extensive fieldwork to explore potential controls on these patterns, with the focus of this talk being the results from DGPS surveys of river and valley slope. The length scale of these rivers, the density of the forested floodplains, and the hostility of the environments precluded the use of standard RTK-DGPS methods. Instead, we employed three novel techniques for long baseline (100s of km) DGPS surveys: OmniStar HP/XP GLONASS kinematic RT-DGPS (sub-decimetre), filtered static RT-DGPS using OmniStar VBS (sub-metre), and post-processed DGPS using newly available Precise Point Positioning methods (sub-metre). We compare these novel DGPS techniques simultaneously (recent 2011 and 2010 surveys) and over time (our 2004, 2001, and 1999 surveys), presenting an assessment of their utility for long baseline surveys of large rivers. Additionally, we present a comparison to water surface profiles developed from the raw version of the 2001 SRTM DEM, with the water elevations determined from MINIMUM 1-arc-second values (not the average 3-arc-second values previously released) - this is the first evaluation of such 'minimum' data of which we are aware. The field surveys ultimately produced quality elevation profiles that allow us to characterize and investigate the strong relationships of both reach-scale migration rate and sinuosity to water surface slope - empirical results realized over time and length scales that serve to average out stochastic noise at the bend scale.
Del Raye, Gen; Jorgensen, Salvador J.; Krumhansl, Kira; Ezcurra, Juan M.; Block, Barbara A.
2013-01-01
Many species undertake long-distance annual migrations between foraging and reproductive areas. Such migrants depend on the efficient packaging, storage and utilization of energy to succeed. A diverse assemblage of organisms accomplishes this through the use of lipid reserves; yet, it remains unclear whether the migrations of elasmobranchs, which include the largest gill breathers on Earth, depend on such a mechanism. We examine depth records from pop-up satellite archival tags to discern changes in buoyancy as a proxy for energy storage in Eastern Pacific white sharks, and assess whether lipid depletion fuels long-distance (approx. 4000 km) migrations. We develop new algorithms to assess body condition, buoyancy and drift rate during drift dives and validate the techniques using a captive white shark. In the wild, we document a consistent increase in drift rate over the course of all migrations, indicating a decrease in buoyancy caused by the depletion of lipid reserves. These results comprise, to our knowledge, the first assessment of energy storage and budgeting in migrating sharks. The methods provide a basis for further insights into using electronic tags to reveal the energetic strategies of a wide range of elasmobranchs. PMID:23864595
Cumulative trauma, PTSD and dissociation among Ethiopian refugees in Israel.
Finklestein, Michal; Solomon, Zahava
2009-01-01
The aim of this study was to examine the exposure of Ethiopian refugees to pre-, peri- and post-migration stressful events and their implications for both posttraumatic stress disorder (PTSD) and dissociation. A random sample (N = 478) of three groups of refugees took part in the research ("Moses" immigrants, 1984, n = 165; "Solomon" immigrants, 1991, n = 169; "Family Reunification" immigrants, 1995, n = 144). Exposure to stressful events and posttraumatic symptoms were assessed via the Harvard Trauma Questionnaire (HTQ). Post-migration difficulties were assessed via the Post Migration Living Difficulties (PMLD) scale. Dissociation was evaluated using the Dissociation Experience Scale (DES). Significant differences were found among the groups in the rates of PTSD (27%, 15%, and 26%, respectively), but no differences were found in dissociation. A significant relationship was found between PTSD symptoms and cumulative trauma among the three groups, but no such relationship was found between dissociation and cumulative trauma. The differences among the groups were discussed in light of the unique characteristics of cumulative trauma, PTSD and dissociation among Ethiopian refugees.
Mechanisms of ripple migration on a natural sand bed under waves
NASA Astrophysics Data System (ADS)
Carlson, E.; Foster, D. L.
2016-02-01
In nearshore environments, the wave bottom boundary layer is of particular importance to bedform migration and evolution as it is the location of energy transfer from the water column to the bed. This effort examines the mechanisms responsible for bedform evolution and migration. In a field scale laboratory study, sand ripple dynamics were measured using particle image velocimetry. Both monotonic (T = 4 s, 8 s), bimodal (wave pair T = 3.7, 4.3 s), and solitary wave cases were examined. Bedform states included orbital and anorbital rippled beds with wavelengths ranging from 5 to 15 cm. During cases of moderately high energy, time series of instantaneous ripple migration rates oscillated with the same frequency as the surface waves. The oscillatory ripple migration signature was asymmetric, with higher amplitudes during onshore directed movement. This asymmetry leads to a net onshore migration, ranging from 0.1 to 0.6 cm/min in the wave conditions mentioned. The cyclic motion of the ripple field was compared to concomitant transfer mechanisms affecting the boundary layer dynamics including: bed shear stress, coherent structure generation, and free stream velocity. Coherent structures were identified using the swirling strength criterion, and were present during each half wave developing in the ripple troughs. Two estimates of bed shear stress were made: 1) Meyer-Peter Muller method using the bed migration to determine the necessary stress and 2) double averaging of the velocity field and partitioning into components of stress, following the methods of Rodriguez-Abudo and Foster (2014). Peak ripple migration rates occurred during strengthening onshore flow, which coincides with peak bed shear stresses and the onset of coherent structure formation. Higher energy bimodal wave groups caused periods of high suspension which were coincident with peak onshore migrations, during the low velocity periods of the bimodal forcing the bed did not migrate.
Steelman, Colby M; Klazinga, Dylan R; Cahill, Aaron G; Endres, Anthony L; Parker, Beth L
2017-10-01
Fugitive methane (CH 4 ) leakage associated with conventional and unconventional petroleum development (e.g., shale gas) may pose significant risks to shallow groundwater. While the potential threat of stray (CH 4 ) gas in aquifers has been acknowledged, few studies have examined the nature of its migration and fate in a shallow groundwater flow system. This study examines the geophysical responses observed from surface during a 72day field-scale simulated CH 4 leak in an unconfined sandy aquifer at Canadian Forces Base Borden, Canada, to better understand the transient behaviour of fugitive CH 4 gas in the subsurface. Time-lapse ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) were used to monitor the distribution and migration of the gas-phase and assess any impacts to groundwater hydrochemistry. Geophysical measurements captured the transient formation of a CH 4 gas plume emanating from the injector, which was accompanied by an increase in total dissolved gas pressure (P TDG ). Subsequent reductions in P TDG were accompanied by reduced bulk resistivity around the injector along with an increase in the GPR reflectivity along horizontal bedding reflectors farther downgradient. Repeat temporal GPR reflection profiling identified three events with major peaks in reflectivity, interpreted to represent episodic lateral CH 4 gas release events into the aquifer. Here, a gradual increase in P TDG near the injector caused a sudden lateral breakthrough of gas in the direction of groundwater flow, causing free-phase CH 4 to migrate much farther than anticipated based on groundwater advection. CH 4 accumulated along subtle permeability boundaries demarcated by grain-scale bedding within the aquifer characteristic of numerous Borden-aquifer multi-phase flow experiments. Diminishing reflectivity over a period of days to weeks suggests buoyancy-driven migration to the vadose zone and/or CH 4 dissolution into groundwater. Lateral and vertical CH 4 migration was primarily governed by subtle, yet measurable heterogeneity and anisotropy in the aquifer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Brownian escape and force-driven transport through entropic barriers: Particle size effect.
Cheng, Kuang-Ling; Sheng, Yu-Jane; Tsao, Heng-Kwong
2008-11-14
Brownian escape from a spherical cavity through small holes and force-driven transport through periodic spherical cavities for finite-size particles have been investigated by Brownian dynamic simulations and scaling analysis. The mean first passage time and force-driven mobility are obtained as a function of particle diameter a, hole radius R(H), cavity radius R(C), and external field strength. In the absence of external field, the escape rate is proportional to the exit effect, (R(H)R(C))(1-a2R(H))(32). In weak fields, Brownian diffusion is still dominant and the migration is controlled by the exit effect. Therefore, smaller particles migrate faster than larger ones. In this limit the relation between Brownian escape and force-driven transport can be established by the generalized Einstein-Smoluchowski relation. As the field strength is strong enough, the mobility becomes field dependent and grows with increasing field strength. As a result, the size selectivity diminishes.
Freshwater mussel response to bedform movement: experimental stream studies
NASA Astrophysics Data System (ADS)
Kozarek, J. L.; MacGregor, K. R.; Hornbach, D.; Hove, M.
2017-12-01
Freshwater mussels are intrinsically linked to near-bed sediment dynamics, but it remains unclear how mussels respond to changing sediment loads across spatial and temporal scales. The interactions between mussels and sediment transport are complex and often involve feedback loops. Mussels are filter feeders removing suspended particles from the water column and the physical presence of mussels can have significant impacts on the structure of riverbed habitat. We investigated the feedbacks between mussels, flow, and migrating bedforms during flood experiments in the St. Anthony Falls Laboratory Outdoor StreamLab (OSL) at the University of Minnesota. The OSL is a field-scale sand-bed meandering stream channel with independent control over sediment feed (recirculated) and water flow (diverted from the Mississippi River). Mussel location, orientation to flow, and protrusion from sediment was surveyed immediately before, after, and one and two days after each flood event. Flow fields, bed shear stress, bedform migration, and bar topography were measured during each flooding event with and without mussels present (density = 4/m2 and 8/m2) to quantify the influence of mussels on channel morphology and bedform migration. Mobile bedforms (up to 14 cm high) were present for all flood events with quasi-equilibrium, aggrading, and degrading bed conditions. Mussels moved little horizontally during all flood events, but were shown to move quickly to deeper water after the flood receded. However, mussels moved vertically, burrowing or being buried under mobile bedforms, during each flood event. The research presented here will focus on feedbacks between three mussel species with different shell sculptures, flow conditions, and migrating bedforms during flooding events. These results reveal how freshwater mussels respond to and affect flow and sediment transport during flood events that are difficult to observe in the field.
Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing
Theoretical analysis using a trajectory approach indicated that in the presence of an external electric field, charged waterborne particles are subject to an additional migration velocity which increases their deposition on the surface of collectors (e.g. sand filter). In this st...
Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo
NASA Astrophysics Data System (ADS)
Augustson, Kyle; Brun, Allan Sacha; Miesch, Mark; Toomre, Juri
2015-08-01
The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.
GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustson, Kyle; Miesch, Mark; Brun, Allan Sacha
2015-08-20
The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of themore » magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.« less
Climate change as a driver for future human migration
NASA Astrophysics Data System (ADS)
Chen, M.; Ricke, K.; Caldeira, K.
2016-12-01
Human migration is driven by a multitude of factors, both socioeconomic and environmental. However, as impacts of anthropogenic climate change emerge and grow, it is widely conjectured that climate change will induce migration of human populations from areas that are adversely affected by climate change to areas that are less adversely or positively affected by climate change. Both low- and high-frequency climate changes have been empirically linked to migration in areas across the globe, but there has been little global-scale quantitative analysis projecting the scale and geography of climate-motivated migration. Considering temperature and precipitation in isolation from all other factors, here we project climate-driven impacts on the areal-density of human population. From this, we infer potential destinations and origins for the climate-motivated migration. Our results indicate that tropical and sub-tropical countries are the largest likely sources of migrants, with India being the country with the greatest number of potential climate emigrants. Global warming has the potential to motivate hundreds of millions of people to migrate in the coming decades, largely from warm tropical and subtropical countries to cooler temperate countries. Migration decisions will depend on many factors beyond climate; nevertheless our work establishes a foundation for quantifying future climate-motivated migration that can act as a starting point of more comprehensive assessments. The large number of potential climate migrants indicated by our analyses provides additional incentive to reduce greenhouse gas emissions, take adaptive measures, and carefully consider migration policy.
The formation of low-angle eolian stratification through the migration of protodunes
NASA Astrophysics Data System (ADS)
Ewing, R. C.; Phillips, J. D.; Weymer, B. A.; Barrineaux, P.; Bowling, R.; Nittrouer, J. A.
2017-12-01
Protodunes are low-relief, slipfaceless migrating bed forms that represent the emergent form of eolian sand dunes. Protodunes develop as cm-scale topography out of a flat bed of sand and evolve spatially and temporally into dunes with angle-of-repose slipfaces. Protodunes at White Sands Dune Field in New Mexico form at the upwind, trailing margin of the field, on dune stoss slopes, and in interdune areas. Here we analyze protodunes at the upwind margin of White Sands by coupling 200 mHz ground penetrating radar (GPR) with time-series high-resolution topography to characterize the origin and evolution of protodune stratification and the stratigraphic transition into fully developed dunes. We surveyed a 780m transect in the resultant transport direction of the dune field from SW to NE from sand patches through protodunes and into the first dune. We used airborne lidar surveys and structure-from-motion photogrammetry from 2007, 2008, 2009, 2010, 2015, and 2016. We find that protodune stratification forms at angles between 0-10 degrees by protodune migration. Dip angles increase as protodune amplitude increases along the transect. Accumulation of low-angle stratification increases across the first 650m and ranges from none to subcritical. Nearly aggradational accumulation of low-angle stratification occurs over the last 100m and is a precursor to angle-of-repose slipface formation. The origins of the aggradation and slipface development appear to be linked to protodune merging, dune interactions, and possibly to the development of a dune field-scale boundary layer. Protodunes and the formation of low-angle stratification at the upwind margin of White Sands are a good analog to the initiation of dune field development from sand sheets and the formation of low-angle stratification found at the base of eolian successions in the stratigraphic record.
Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data
NASA Astrophysics Data System (ADS)
Panet, Isabelle; Bonvalot, Sylvain; Narteau, Clément; Remy, Dominique; Lemoine, Jean-Michel
2018-05-01
Understanding how and when far-field continuous motions lead to giant subduction earthquakes remains a challenge. An important limitation comes from an incomplete description of aseismic mass fluxes at depth along plate boundaries. Here we analyse Earth's gravity field variations derived from GRACE satellite data in a wide space-time domain surrounding the Mw 9.0 2011 Tohoku-Oki earthquake. We show that this earthquake is the extreme expression of initially silent deformation migrating from depth to the surface across the entire subduction system. Our analysis indeed reveals large-scale gravity and mass changes throughout three tectonic plates and connected slabs, starting a few months before March 2011. Before the Tohoku-Oki earthquake rupture, the gravity variations can be explained by aseismic extension of the Pacific plate slab at mid-upper mantle depth, concomitant with increasing seismicity in the shallower slab. For more than two years after the rupture, the deformation propagated far into the Pacific and Philippine Sea plate interiors, suggesting that subduction accelerated along 2,000 km of the plate boundaries in March 2011. This gravitational image of the earthquake's long-term dynamics provides unique information on deep and crustal processes over intermediate timescales, which could be used in seismic hazard assessment.
NASA Astrophysics Data System (ADS)
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.
2017-12-01
To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; ...
2017-11-15
In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.
In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@harbor.kobe-u.ac.jp, E-mail: sano@ile.osaka-u.ac.jp
2014-10-10
The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, canmore » be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.« less
Stochastic simulation of uranium migration at the Hanford 300 Area.
Hammond, Glenn E; Lichtner, Peter C; Rockhold, Mark L
2011-03-01
This work focuses on the quantification of groundwater flow and subsequent U(VI) transport uncertainty due to heterogeneity in the sediment permeability at the Hanford 300 Area. U(VI) migration at the site is simulated with multiple realizations of stochastically-generated high resolution permeability fields and comparisons are made of cumulative water and U(VI) flux to the Columbia River. The massively parallel reactive flow and transport code PFLOTRAN is employed utilizing 40,960 processor cores on DOE's petascale Jaguar supercomputer to simultaneously execute 10 transient, variably-saturated groundwater flow and U(VI) transport simulations within 3D heterogeneous permeability fields using the code's multi-realization simulation capability. Simulation results demonstrate that the cumulative U(VI) flux to the Columbia River is less responsive to fine scale heterogeneity in permeability and more sensitive to the distribution of permeability within the river hyporheic zone and mean permeability of larger-scale geologic structures at the site. Copyright © 2010 Elsevier B.V. All rights reserved.
Participatory modeling - engineering and social sciences in tandem
NASA Astrophysics Data System (ADS)
Class, Holger; Kissinger, Alexander; Knopf, Stefan; Konrad, Wilfried; Noack, Vera; Scheer, Dirk
2017-04-01
The modeling of flow and transport processes in the context of engineering in the subsurface often takes place within a field of conflict from different interests, where societal issues are touched or involved. Carbon Capture and Storage, Fracking, or nuclear waste disposal are just a few prominent examples, where engineering (or: natural sciences) and social sciences have a common field of research. It is only consequent for both disciplines to explore methods and tools to achieve best possible mutual benefits. Participatory modeling (PM) is such an idea, where so-called stakeholders can be involved during different phases of the modeling process. This can be accomplished by very different methods of participation and for different reasons (public acceptance, public awareness, transparency, improved understanding through collective learning, etc). Therefore, PM is a generic approach, open for different methods to be used in order to facilitate early expert and stakeholder integration in science development. We have used PM recently in two examples, both in the context of Carbon Capture and Storage. The first one addressed the development and evaluation (by stakeholders) of a screening criterion for site selection. The second one deals with a regional-scale brine migration scenario where stakeholders have been involved in evaluating the general importance of brine migration, the design of a representative geological model for a case study and in the definition of scenarios to be simulated. This contribution aims at summarizing our experiences and share it with the modeling community. References: A Kissinger, V Noack, S Knopf, D Scheer, W Konrad, H Class Characterization of reservoir conditions for CO2 storage using a dimensionless gravitational number applied to the North German Basin, Sustainable Energy Technologies and Assessments 7, 209-220, 2014 D Scheer, W Konrad, H Class, A Kissinger, S Knopf, V Noack Expert involvement in science development: (re-) evaluation of an early screening tool for carbon storage site characterization, International Journal of Greenhouse Gas Control 37, 228-236, 2015 D Scheer, W Konrad, H Class, A Kissinger, S Knopf, V Noack Regional-scale brine migration along vertical pathways due to CO2 injection - Part 1: the participatory modeling approach, currently under review in Hydrology and Earth System Sciences A Kissinger, V Noack, S Knopf, W Konrad, D Scheer, H Class Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: a simulated case study in the North German Basin, currently under review in Hydrology and Earth System Sciences Schrader, C.: 13. October 2014. Expressfahrstuhl für Salzwasser, Süddeutsche Zeitung, p. 16
Mapping Gender and Migration in Sociological Scholarship: Is It Segregation or Integration?
Curran, Sara R.; Shafer, Steven; Donato, Katharine M.; Garip, Filiz
2016-01-01
A review of the sociological research about gender and migration shows the substantial ways in which gender fundamentally organizes the social relations and structures influencing the causes and consequences of migration. Yet, although a significant sociological research has emerged on gender and migration in the last three decades, studies are not evenly distributed across the discipline. In this article, we map the recent intellectual history of gender and migration in the field of sociology and then systematically assess the extent to which studies on engendering migration have appeared in four widely read journals of sociology (American Journal of Sociology, American Sociological Review, Demography, and Social Forces). We follow with a discussion of these studies, and in our conclusions, we consider how future gender and migration scholarship in sociology might evolve more equitably. PMID:27478289
Dionne, Phillip E.; Zydlewski, Gayle B.; Kinnison, Michael T.; Zydlewski, Joseph D.; Wippelhauser, Gail S.
2013-01-01
Efforts to conserve endangered species usually involve attempts to define and manage threats at the appropriate scale of population processes. In some species that scale is localized; in others, dispersal and migration link demic units within larger metapopulations. Current conservation strategies for endangered shortnose sturgeon (Acipenser brevirostrum) assume the species is river resident, with little to no movement between rivers. However we have found that shortnose sturgeon travel more than 130 km through coastal waters between the largest rivers in Maine. Indeed, acoustic telemetry shows that shortnose sturgeon enter six out of the seven acoustically monitored rivers we have monitored, with over 70% of tagged individuals undertaking coastal migrations between river systems. Four migration patterns were identified for shortnose sturgeon inhabiting the Penobscot River, Maine: river resident (28%), spring coastal emigrant (24%), fall coastal emigrant (33%), and summer coastal emigrant (15%). No shortnose sturgeon classified as maturing female exhibited a resident pattern, indicating differential migration. Traditional river-specific assessment and management of shortnose sturgeon could be better characterized using a broader metapopulation scale, at least in the Gulf of Maine, that accounts for diverse migratory strategies and the importance of migratory corridors as critical habitat.
Do swimming animals mix the ocean?
NASA Astrophysics Data System (ADS)
Dabiri, John
2013-11-01
Perhaps. The oceans are teeming with billions of swimming organisms, from bacteria to blue whales. Current research efforts in biological oceanography typically focus on the impact of the marine environment on the organisms within. We ask the opposite question: can organisms in the ocean, especially those that migrate vertically every day and regionally every year, change the physical structure of the water column? The answer has potentially important implications for ecological models at local scale and climate modeling at global scales. This talk will introduce the still-controversial prospect of biogenic ocean mixing, beginning with evidence from measurements in the field. More recent laboratory-scale experiments, in which we create controlled vertical migrations of plankton aggregations using laser signaling, provide initial clues toward a mechanism to achieve efficient mixing at scales larger than the individual organisms. These results are compared and contrasted with theoretical models, and they highlight promising avenues for future research in this area. Funding from the Office of Naval Research and the National Science Foundation is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.
1997-02-01
Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.
A new scheme for velocity analysis and imaging of diffractions
NASA Astrophysics Data System (ADS)
Lin, Peng; Peng, Suping; Zhao, Jingtao; Cui, Xiaoqin; Du, Wenfeng
2018-06-01
Seismic diffractions are the responses of small-scale inhomogeneities or discontinuous geological features, which play a vital role in the exploitation and development of oil and gas reservoirs. However, diffractions are generally ignored and considered as interference noise in conventional data processing. In this paper, a new scheme for velocity analysis and imaging of seismic diffractions is proposed. Two steps compose of this scheme in our application. First, the plane-wave destruction method is used to separate diffractions from specular reflections in the prestack domain. Second, in order to accurately estimate migration velocity of the diffractions, the time-domain dip-angle gathers are derived from a Kirchhoff-based angle prestack time migration using separated diffractions. Diffraction events appear flat in the dip-angle gathers when imaged above the diffraction point with selected accurate migration velocity for diffractions. The selected migration velocity helps to produce the desired prestack imaging of diffractions. Synthetic and field examples are applied to test the validity of the new scheme. The diffraction imaging results indicate that the proposed scheme for velocity analysis and imaging of diffractions can provide more detailed information about small-scale geologic features for seismic interpretation.
Nanocomposites in food packaging applications and their risk assessment for health.
Honarvar, Zohreh; Hadian, Zahra; Mashayekh, Morteza
2016-06-01
Nanotechnology has shown many advantages in different fields. As the uses of nanotechnology have progressed, it has been found to be a promising technology for the food packaging industry in the global market. It has proven capabilities that are valuable in packaging foods, including improved barriers; mechanical, thermal, and biodegradable properties; and applications in active and intelligent food packaging. Examples of the latter are anti-microbial agents and nanosensors, respectively. However, the use of nanocomposites in food packaging might be challenging due to the reduced particle size of nanomaterials and the fact that the chemical and physical characteristics of such tiny materials may be quite different from those of their macro-scale counterparts. In order to discuss the potential risks of nanoparticles for consumers, in addition to the quantification of data, a thorough investigation of their characteristics is required. Migration studies must be conducted to determine the amounts of nanomaterials released into the food matrices. In this article, different applications of nanocomposites in food packaging, migration issues, analyzing techniques, and the main concerns about their usage are discussed briefly.
Nanocomposites in food packaging applications and their risk assessment for health
Honarvar, Zohreh; Hadian, Zahra; Mashayekh, Morteza
2016-01-01
Nanotechnology has shown many advantages in different fields. As the uses of nanotechnology have progressed, it has been found to be a promising technology for the food packaging industry in the global market. It has proven capabilities that are valuable in packaging foods, including improved barriers; mechanical, thermal, and biodegradable properties; and applications in active and intelligent food packaging. Examples of the latter are anti-microbial agents and nanosensors, respectively. However, the use of nanocomposites in food packaging might be challenging due to the reduced particle size of nanomaterials and the fact that the chemical and physical characteristics of such tiny materials may be quite different from those of their macro-scale counterparts. In order to discuss the potential risks of nanoparticles for consumers, in addition to the quantification of data, a thorough investigation of their characteristics is required. Migration studies must be conducted to determine the amounts of nanomaterials released into the food matrices. In this article, different applications of nanocomposites in food packaging, migration issues, analyzing techniques, and the main concerns about their usage are discussed briefly. PMID:27504168
Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam
NASA Astrophysics Data System (ADS)
Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.
2016-12-01
The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.
Monitoring shifts in plant diversity in response to climate change: A method for landscapes
Stohlgren, T.J.; Owen, A.J.; Lee, M.
2000-01-01
Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.
Quantitative methods for analysing cumulative effects on fish migration success: a review.
Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G
2012-07-01
It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Yoon, Hongkyu; Major, Jonathan; Dewers, Thomas; ...
2017-01-05
Dissolved CO 2 in the subsurface resulting from geological CO 2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This paper is motivated by observations of CO 2 seeps from a natural CO 2 sequestration analog, Crystal Geyser, Utah. Observations alongmore » the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO 2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO 2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. Finally, the functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO 2 seeps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.S.; Shone, M.G.T.
ABS>Experimental results are given of a long term study on the migration and fixation of strontium and cesium in several types of soil The investigations were designed to approximate to field conditions in which the soil remained undisturbed by cultivation. The effects of the addition of nutrients and of a permanent crop of ryegrass grown on the artificially contaminated soils were also examined. The relevance of processes of migration and fixation to assessments of the uptake of strontium and cesium by crop plants is considered in the light of field experiments. (auth)
Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon
Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.
2015-01-01
Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation.
Daly, Ryan; Smale, Malcolm J.; Cowley, Paul D.; Froneman, Pierre W.
2014-01-01
Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean = 533 km) with eight of these sharks returning to the study site. During migration, individuals exhibited rates of movement between 2 and 59 km.d−1 (mean = 17.58 km.d−1) and were recorded travelling annual distances of between 450 and 3760 km (mean = 1163 km). Migration towards lower latitudes primarily took place in austral spring and winter and there was a significant negative correlation between residency and mean monthly sea temperature at the study site. This suggested that seasonal change is the primary driver behind migration events but further investigation is required to assess how foraging and reproductive activity may influence residency patterns and migration. Results from this study highlight the need for further understanding of bull shark migration dynamics and suggest that effective conservation strategies for this vulnerable species necessitate the incorporation of congruent trans-boundary policies over large spatial scales. PMID:25295972
Collisions of deformable cells lead to collective migration
NASA Astrophysics Data System (ADS)
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
2015-03-01
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.
Do Plot Scale Studies Yield Useful Data When Assessing Field Scale Practices?
USDA-ARS?s Scientific Manuscript database
Plot scale data has been used to develop models used to assess field and watershed scale nutrient losses. The objective of this study was to determine if phosphorus (P) loss results from plot scale rainfall simulation studies are “directionally correct” when compared to field scale P losses. Two fie...
NASA Astrophysics Data System (ADS)
Korotenko, K. A.; Sentchev, A. V.
2008-10-01
Using a combined model that couples a three-dimensional ocean circulation model, a model for tidal currents, and a model for particle transport, the structure of the velocity field of the tidal current and the transport of particles migrating over the vertical were studied in the zone of the influence of the riverine runoff in the eastern part of the English Channel. It was found that the interaction between the tidal current and the baroclinic flow formed by the riverine runoff off the northeastern coast of France generates a steady-state intensive (˜0.3 m/s) residual current in the zone of the effect of the riverine runoff. In order to assess the influence of different types of particle migration (which simulate ichthyoplankton) on the processes of their transport in the region under consideration, we performed numerical experiments with particle clusters, for which parameterization of their migration was implemented on the basis of the field observations over the proper vertical movements of different types of ichthyoplankton. The experiments showed that the distribution of the fields of the particle concentrations and the velocities of their movements depend not only on the background hydrophysical conditions but also on the character of the vertical migration of the particles. In this paper, a comparison between the results of the modeling and those of the field observations in the region under consideration are presented.
Singha, Kamini; Gorelick, Steven M.
2005-01-01
Cross-well electrical resistivity tomography (ERT) was used to monitor the migration of a saline tracer in a two-well pumping-injection experiment conducted at the Massachusetts Military Reservation in Cape Cod, Massachusetts. After injecting 2200 mg/L of sodium chloride for 9 hours, ERT data sets were collected from four wells every 6 hours for 20 days. More than 180,000 resistance measurements were collected during the tracer test. Each ERT data set was inverted to produce a sequence of 3-D snapshot maps that track the plume. In addition to the ERT experiment a pumping test and an infiltration test were conducted to estimate horizontal and vertical hydraulic conductivity values. Using modified moment analysis of the electrical conductivity tomograms, the mass, center of mass, and spatial variance of the imaged tracer plume were estimated. Although the tomograms provide valuable insights into field-scale tracer migration behavior and aquifer heterogeneity, standard tomographic inversion and application of Archie's law to convert electrical conductivities to solute concentration results in underestimation of tracer mass. Such underestimation is attributed to (1) reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and (2) spatial smoothing (regularization) from tomographic inversion. The center of mass estimated from the ERT inversions coincided with that given by migration of the tracer plume using 3-D advective-dispersion simulation. The 3-D plumes seen using ERT exhibit greater apparent dispersion than the simulated plumes and greater temporal spreading than observed in field data of concentration breakthrough at the pumping well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hongkyu; Major, Jonathan; Dewers, Thomas
Dissolved CO 2 in the subsurface resulting from geological CO 2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This paper is motivated by observations of CO 2 seeps from a natural CO 2 sequestration analog, Crystal Geyser, Utah. Observations alongmore » the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO 2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO 2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. Finally, the functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO 2 seeps.« less
Torney, Colin J; Hopcraft, J Grant C; Morrison, Thomas A; Couzin, Iain D; Levin, Simon A
2018-05-19
A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan
2018-04-01
We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan
2018-07-01
We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.
NASA Astrophysics Data System (ADS)
Barberá, J. A.; Mudarra, M.; Andreo, B.; De la Torre, B.
2018-02-01
Tracer concentration data from field experiments conducted in several carbonate aquifers (Malaga province, southern Spain) were analyzed following a dual approach based on the graphical evaluation method (GEM) and solute transport modeling to decipher flow mechanisms in karst systems at regional scale. The results show that conduit system geometry and flow conditions are the principal factors influencing tracer migration through the examined karst flow routes. Solute transport is mainly controlled by longitudinal advection and dispersion throughout the conduit length, but also by flow partitioning between mobile and immobile fluid phases, while the matrix diffusion process appears to be less relevant. The simulation of tracer breakthrough curves (BTCs) suggests that diffuse and concentrated flow through the unsaturated zone can have equivalent transport properties under extreme recharge, with high flow velocities and efficient mixing due to the high hydraulic gradients generated. Tracer mobilization within the saturated zone under low flow conditions mainly depends on the hydrodynamics (rather than on the karst conduit development), which promote a lower longitudinal advection and retardation in the tracer migration, resulting in a marked tailing effect of BTCs. The analytical advection-dispersion equation better approximates the effective flow velocity and longitudinal dispersion estimations provided by the GEM, while the non-equilibrium transport model achieves a better adjustment of most asymmetric and long-tailed BTCs. The assessment of karst underground flow properties from tracing tests at regional scale can aid design of groundwater management and protection strategies, particularly in large hydrogeological systems (i.e. transboundary carbonate aquifers) and/or in poorly investigated ones.
Balasubramanian, Madhan; Spencer, A. John; Short, Stephanie D.; Watkins, Keith; Chrisopoulos, Sergio; Brennan, David S.
2017-01-01
Background: The migration of dentists is a major policy challenge facing both developing and developed countries. Dentists from over 120 countries migrate to Australia, and a large proportion are from developing countries. The aim of the study was to assess the life story experience (LSE) of migrant dentists in Australia, in order to address key policy challenges facing dentist migration. Methods: A national survey of all migrant dentists resident in Australia was conducted in 2013. Migrant experiences were assessed through a suite of LSE scales, developed through a qualitative-quantitative study. Respondents rated experiences using a five-point Likert scale. Results: A total of 1022 migrant dentists responded to the survey (response rate = 54.5%). LSE1 (health system and general lifestyle concerns in home country), LSE2 (appreciation towards Australian way of life) and LSE3 (settlement concerns in Australia) scales varied by migrant dentist groups, sex, and years since arrival to Australia (chi-square, P < .05). In a logistic regression model, migrants mainly from developing countries (ie, the examination pathway group) faced greater health system and general lifestyle concerns in their home countries (9.32; 3.51-24.72) and greater settlement challenges in Australia (5.39; 3.51-8.28), compared to migrants from well-developed countries, who obtained direct recognition of qualifications. Migrants also are more appreciative towards the Australian way of life if they had lived at least ten years in Australia (1.97; 1.27-3.05), compared to migrants who have lived for less than ten years. Conclusion: Migrant dentists, mainly from developing countries, face challenges both in their home countries and in Australia. Our study offers evidence for multi-level health workforce governance and calls for greater consensus towards an international agenda to address dentist migration. Better integration of dentist migration with the mainstream health workforce governance is a viable and opportunistic way forward. PMID:28812824
Samsudin, Hayati; Auras, Rafael; Mishra, Dharmendra; Dolan, Kirk; Burgess, Gary; Rubino, Maria; Selke, Susan; Soto-Valdez, Herlinda
2018-01-01
Migration studies of chemicals from contact materials have been widely conducted due to their importance in determining the safety and shelf life of a food product in their packages. The US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA) require this safety assessment for food contact materials. So, migration experiments are theoretically designed and experimentally conducted to obtain data that can be used to assess the kinetics of chemical release. In this work, a parameter estimation approach was used to review and to determine the mass transfer partition and diffusion coefficients governing the migration process of eight antioxidants from poly(lactic acid), PLA, based films into water/ethanol solutions at temperatures between 20 and 50°C. Scaled sensitivity coefficients were calculated to assess simultaneously estimation of a number of mass transfer parameters. An optimal experimental design approach was performed to show the importance of properly designing a migration experiment. Additional parameters also provide better insights on migration of the antioxidants. For example, the partition coefficients could be better estimated using data from the early part of the experiment instead at the end. Experiments could be conducted for shorter periods of time saving time and resources. Diffusion coefficients of the eight antioxidants from PLA films were between 0.2 and 19×10 -14 m 2 /s at ~40°C. The use of parameter estimation approach provided additional and useful insights about the migration of antioxidants from PLA films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thorne, M C; Degnan, P; Ewen, J; Parkin, G
2000-12-01
The physically based river catchment modelling system SHETRAN incorporates components representing water flow, sediment transport and radionuclide transport both in solution and bound to sediments. The system has been applied to simulate hypothetical future catchments in the context of post-closure radiological safety assessments of a potential site for a deep geological disposal facility for intermediate and certain low-level radioactive wastes at Sellafield, west Cumbria. In order to have confidence in the application of SHETRAN for this purpose, various blind validation studies have been undertaken. In earlier studies, the validation was undertaken against uncertainty bounds in model output predictions set by the modelling team on the basis of how well they expected the model to perform. However, validation can also be carried out with bounds set on the basis of how well the model is required to perform in order to constitute a useful assessment tool. Herein, such an assessment-based validation exercise is reported. This exercise related to a field plot experiment conducted at Calder Hollow, west Cumbria, in which the migration of strontium and lanthanum in subsurface Quaternary deposits was studied on a length scale of a few metres. Blind predictions of tracer migration were compared with experimental results using bounds set by a small group of assessment experts independent of the modelling team. Overall, the SHETRAN system performed well, failing only two out of seven of the imposed tests. Furthermore, of the five tests that were not failed, three were positively passed even when a pessimistic view was taken as to how measurement errors should be taken into account. It is concluded that the SHETRAN system, which is still being developed further, is a powerful tool for application in post-closure radiological safety assessments.
Assessment of brine migration risks along vertical pathways due to CO2 injection
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Class, Holger
2015-04-01
Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the displaced brine due to CO2 injection and compare it to the natural fluid exchange between shallow and deep aquifers in order to asses possible damage.
Penka, Simone; Faißt, Hanna; Vardar, Azra; Borde, Theda; Mösko, Mike Oliver; Dingoyan, Demet; Schulz, Holger; Koch, Uwe; Kluge, Ulrike; Heinz, Andreas
2015-09-01
The need for intercultural opening of supply facilities for improving access and treatment of people with migration background is acknowledged in Germany. The purpose of the survey was to determine the current state of intercultural opening of psychosocial services in one Berlin district. 127 representatives of institutions were interviewed using a semi-structured assessment tool. The response rate was very high. The cross-cultural opening was implemented on a small scale. Staff as well as users with migration background were underrepresented. Varying and missing standardized documentation as well as problems in assessing users with migration background might be responsible for their low utilization rates. The use of professional interpreters was often not implemented. To judge the low level of implementation of cross-cultural opening in the psychosocial supply system in general, a review of responsible causes is required. © Georg Thieme Verlag KG Stuttgart · New York.
Numerical Simulation of nZVI at the Field Scale
NASA Astrophysics Data System (ADS)
Chowdhury, A. I.; Krol, M.; Sleep, B. E.; O'Carroll, D. M.
2014-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI mobility at the field-scale. In this study a three dimensional, three phase, finite difference numerical simulator (CompSim) was used to simulate nZVI and polymer transport in a variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the amount of nZVI delivered to the saturated and unsaturated zones as well as the phase of nZVI (i.e., attached or aqueous phase). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity as well as viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher volume of nZVI delivered more iron particles at a given distance; however, not necessarily to a greater distance proportionate to the increase in volume. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and the numerical simulator can be a valuable tool for optimum design of nZVI applications.
Basin-scale hydrogeologic modeling
NASA Astrophysics Data System (ADS)
Person, Mark; Raffensperger, Jeff P.; Ge, Shemin; Garven, Grant
1996-02-01
Mathematical modeling of coupled groundwater flow, heat transfer, and chemical mass transport at the sedimentary basin scale has been increasingly used by Earth scientists studying a wide range of geologic processes including the formation of excess pore pressures, infiltration-driven metamorphism, heat flow anomalies, nuclear waste isolation, hydrothermal ore genesis, sediment diagenesis, basin tectonics, and petroleum generation and migration. These models have provided important insights into the rates and pathways of groundwater migration through basins, the relative importance of different driving mechanisms for fluid flow, and the nature of coupling between the hydraulic, thermal, chemical, and stress regimes. The mathematical descriptions of basin transport processes, the analytical and numerical solution methods employed, and the application of modeling to sedimentary basins around the world are the subject of this review paper. The special considerations made to represent coupled transport processes at the basin scale are emphasized. Future modeling efforts will probably utilize three-dimensional descriptions of transport processes, incorporate greater information regarding natural geological heterogeneity, further explore coupled processes, and involve greater field applications.
NASA Astrophysics Data System (ADS)
Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.
2018-05-01
The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.
NASA Astrophysics Data System (ADS)
Ortland, David A.
2017-04-01
Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.
Kinetic behaviours of aggregate growth driven by time-dependent migration, birth and death
NASA Astrophysics Data System (ADS)
Zhu, Sheng-Qing; Yang, Shun-You; Ke, Jianhong; Lin, Zhenquan
2008-12-01
We propose a dynamic growth model to mimic some social phenomena, such as the evolution of cities' population, in which monomer migrations occur between any two aggregates and monomer birth/death can simultaneously occur in each aggregate. Considering the fact that the rate kernels of migration, birth and death processes may change with time, we assume that the migration rate kernel is ijf(t), and the self-birth and death rate kernels are ig1(t) and ig2(t), respectively. Based on the mean-field rate equation, we obtain the exact solution of this model and then discuss semi-quantitatively the scaling behaviour of the aggregate size distribution at large times. The results show that in the long-time limit, (i) if ∫t0g1(t') dt'/∫t0g2(t') dt' >= 1 or exp{∫t0[g2(t') - g1(t')] dt'}/∫t0f(t') dt' → 0, the aggregate size distribution ak(t) can obey a generalized scaling form; (ii) if ∫t0g1(t') dt'/∫t0g2(t') dt' → 0 and exp ∫t0[g2(t') - g1(t') dt'/∫t0f(t') dt' → ∞, ak(t) can take a scale-free form and decay exponentially in size k; (iii) ak(t) will satisfy a modified scaling law in the remaining cases. Moreover, the total mass of aggregates depends strongly on the net birth rate g1(t) - g2(t) and evolves exponentially as exp{∫t0[g1(t') - g2(t')] dt'}, which is in qualitative agreement with the evolution of the total population of a country in real world.
NASA Astrophysics Data System (ADS)
Chojnacki, Matthew; Burr, Devon M.; Moersch, Jeffrey E.
2014-02-01
Planetary dune field properties and their bulk bedform morphologies relate to regional wind patterns, sediment supply, climate, and topography. On Mars, major occurrences of spatially contiguous low-albedo sand dunes are primarily found in three major topographic settings: impact craters, high-latitude basins, and linear troughs or valleys, the largest being the Valles Marineris (VM) rift system. As one of the primary present day martian sediment sinks, VM holds nearly a third of the non-polar dune area on Mars. Moreover, VM differs from other regions due to its unusual geologic, topographic, and atmospheric setting. Herein, we test the overarching hypothesis that VM dune fields are compositionally, morphologically, and thermophysically distinct from other low- and mid-latitude (50°N-50°S latitude) dune fields. Topographic measurements of dune fields and their underlying terrains indicate slopes, roughnesses, and reliefs to be notably greater for those in VM. Variable VM dune morphologies are shown with topographically-related duneforms (climbing, falling, and echo dunes) located among spur-and-gully wall, landslide, and chaotic terrains, contrasting most martian dunes found in more topographically benign locations (e.g., craters, basins). VM dune fields superposed on Late Amazonian landslides are constrained to have formed and/or migrated over >10s of kilometers in the last 50 My to 1 Gy. Diversity of detected dune sand compositions, including unaltered ultramafic minerals and glasses (e.g., high and low-calcium pyroxene, olivine, Fe-bearing glass), and alteration products (hydrated sulfates, weathered Fe-bearing glass), is more pronounced in VM. Observations show heterogeneous sand compositions exist at the regional-, basinal-, dune field-, and dune-scales. Although not substantially greater than elsewhere, unambiguous evidence for recent dune activity in VM is indicated from pairs of high-resolution images that include: dune deflation, dune migration, slip face modification (e.g., alcoves), and ripple modification or migration, at varying scales (10s-100s m2). We conclude that VM dune fields are qualitatively and quantitatively distinct from other low- and mid-latitude dune fields, most readily attributable to the rift's unusual setting. Moreover, results imply dune field properties and aeolian processes on Mars can be largely influenced by regional environment, which may have their own distinctive set of boundary conditions, rather than a globally homogenous collection of aeolian sediment and bedforms.
Bastille-Rousseau, Guillaume; Gibbs, James P.; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Fredy; Rousseau, Louis-Philippe
2016-01-01
Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad-scale spatial-temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter-annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi-scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter-annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re-locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio-temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non-migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large-scale predictions for movement strategies, based on environmental structuring, with finer-scale analysis of space-use. Integrating different organizational levels of analysis provides a deeper understanding of the eco-evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.
NASA Astrophysics Data System (ADS)
Ewing, R. C.; Hayes, A. G.; McCormick, C.; Ballard, C.; Troy, S. A.
2012-04-01
Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity among bedform patterns, extracting information about climate and environment from these patterns is a challenge. For example, crestline orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune crestline orientation with modeled and expected wind regimes. We propose that thinking about the time-scale of the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the crestline re-orientation model developed by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We use Cassini Synthetic Aperture Radar images processed through a de-noising algorithm recently developed by Lucas et al. [LPSC, 2012] to measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well-organized patterns have the longest reorientation time scales (~105 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~103 migration timescales). In addition, comparisons between spacing and defect density reveal that the well-organized patterns plot along an expected trend with Earth and Mars' largest, well-organized fields. Patterns on Earth and Mars that have been degraded and broken by environmental change fall off this trend and similarly, so do the isolated dune patterns on Titan fall suggesting changing environmental conditions such as wind regime and/or sediment availability have influenced the dunes on Titan. Crestline orientations in these areas suggest star and crescentic (barchans) morphologies in addition to linear dunes. Our results suggest that Titan's dunes may react to gross bedform transport averaged over orbital timescales, relaxing the requirement that a single modern wind regime is necessary to produce the observed well-organized dune patterns. We find signals of environmental change within the smallest patterns suggesting that the dunes may be recently reoriented or are reorienting to one component of a longer timescale wind regime with a duty cycle that persists over many seasonal cycles.
Horton, Kyle G; Shriver, W Gregory; Buler, Jeffrey J
2016-01-01
Daily magnitudes and fluxes of landbird migration are often measured via nocturnal traffic rates aloft or diurnal densities within terrestrial habitats during stopover. However, these measures are not consistently correlated and at times reveal opposing trends. For this reason we sought to determine how comparison methods (daily magnitude or daily flux), nocturnal monitoring tools (weather surveillance radar, WSR; thermal imaging, TI), and temporal scale (preceding or following diurnal sampling) influenced correlation strength from stopover densities estimated by daily transect counts. We quantified nocturnal traffic rates at two temporal scales; averaged across the entire night and within individual decile periods of the night, and at two spatial scales; within 1 km of airspace surrounding the site via WSR and directly overhead within the narrow beam of a TI. Overall, the magnitude of daily bird density during stopover was positively related to the magnitude of broad-scale radar traffic rates of migrants on preceding and following nights during both the spring and fall. These relationships were strongest on the following night, and particularly from measures early in the night. Only during the spring on the following nights did we find positive correlations between the daily flux of transect counts and migration traffic rates (both WSR and TI). This indicates that our site likely had a more consistent daily turnover of migrants compared to the fall. The lack of general correlations between seasonal trends or daily flux in fine-scale TI traffic rates and stopover densities across or within nights was unexpected and likely due to poor sampling of traffic rates due to the camera's narrow beam. The order (preceding or following day) and metric of comparisons (magnitude or flux), as well as the tool (WSR or TI) used for monitoring nocturnal migration traffic can have dramatic impacts when compared with ground-based estimates of migrant density. WSR provided measures of the magnitude and daily flux in nocturnal migration traffic rates that related to daily stopover counts of migrants during spring and fall. Relationships among migrating bird flux measures are more complex than simple measures of magnitude of migration. Care should be given to address these complexities when comparing data among methods.
De Haene, Lucia; Dalgaard, Nina Thorup; Montgomery, Edith; Grietens, Hans; Verschueren, Karine
2013-06-01
Although forced migration research on refugee family functioning clearly points to the potential breakdown of parental availability and responsiveness in the context of cumulative migration stressors, studies exploring attachment security in refugee children are surprisingly lacking so far. The authors report their findings from a 2-site, small-scale administration of an attachment measure, adapted for use with refugee children aged between 4 and 9 years from a reliable and validated doll-play procedure. We evaluated interrater reliability and conducted a qualitative analysis of refugee children's narrative response to identify migration-specific representational markers of attachment quality. The level of agreement among 3 independent coders ranged between .54 to 1.00 for both study samples, providing initial psychometric evidence of the measure's value in assessing child attachment security in this population. The exploratory analysis of migration-related narrative markers pointed to specific parameters to be used in parent-child observational assessments in future validation of the attachment measure, such as parental withdrawal or trauma-communication within the parent-child dyad. Copyright © 2013 International Society for Traumatic Stress Studies.
Aurbach, Annika; Schmid, Baptiste; Liechti, Felix; Chokani, Ndaona; Abhari, Reza
2018-06-03
Crossing of large ecological barriers, such as mountains, is in terms of energy considered to be a demanding and critical step during bird migration. Besides forming a geographical barrier, mountains have a profound impact on the resulting wind flow. We use a novel framework of mathematical models to investigate the influences of wind and topography on nocturnal passerine bird behaviour, and to assess the energy costs for different flight strategies for crossing the Jura Mountains. The mathematical models include three biological models of bird behaviour: i) wind drift compensation; ii) adaptation of flight height for favourable winds; and, iii) avoidance of obstacles (cross over and/or circumvention of an obstacle following a minimum energy expenditure strategy), which are assessed separately and in combination. Further, we use a mesoscale weather model for high-resolution predictions of the wind fields. We simulate the broad front nocturnal passerine migration for autumn nights with peak migration intensities. The bird densities retrieved from a weather radar are used as the initial intensities and to specify the vertical distributions of the simulated birds. It is shown that migration over complex terrain represents the most expensive flight option in terms of energy expenditure, and wind is seen to be the main factor that influences the energy expenditure in the bird's preferred flight direction. Further, the combined effects of wind and orography lead to a high concentration of migratory birds within the favourable wind conditions of the Swiss lowlands and north of the Jura Mountains. Copyright © 2018 Elsevier Ltd. All rights reserved.
Defect detection around rebars in concrete using focused ultrasound and reverse time migration.
Beniwal, Surendra; Ganguli, Abhijit
2015-09-01
Experimental and numerical investigations have been performed to assess the feasibility of damage detection around rebars in concrete using focused ultrasound and a Reverse Time Migration (RTM) based subsurface imaging algorithm. Since concrete is heterogeneous, an unfocused ultrasonic field will be randomly scattered by the aggregates, thereby masking information about damage(s). A focused ultrasonic field, on the other hand, increases the possibility of detection of an anomaly due to enhanced amplitude of the incident field in the focal region. Further, the RTM based reconstruction using scattered focused field data is capable of creating clear images of the inspected region of interest. Since scattering of a focused field by a damaged rebar differs qualitatively from that of an undamaged rebar, distinct images of damaged and undamaged situations are obtained in the RTM generated images. This is demonstrated with both numerical and experimental investigations. The total scattered field, acquired on the surface of the concrete medium, is used as input for the RTM algorithm to generate the subsurface image that helps to identify the damage. The proposed technique, therefore, has some advantage since knowledge about the undamaged scenario for the concrete medium is not necessary to assess its integrity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Klusman, R. W.
2002-12-01
Large-scale CO2 dioxide injection for purposes of enhanced oil recovery (EOR) has been operational at Rangely, Colorado since 1986. The Rangely field serves as an onshore prototype for CO2 sequestration in depleted fields by production of a valuable commodity which partially offsets infrastructure costs. The injection is at pressures considerably above hydrostatic pressure, enhancing the possibility for migration of buoyant gases toward the surface. Methane and CO2 were measured in shallow soil gas, deep soil gas, and as fluxes into the atmosphere in both winter and summer seasons. There were large seasonal variations in surface biological noise. The direct measurement of CH4 flux to the atmosphere gave an estimate of 400 metric tonnes per year over the 78 km2 area, and carbon dioxide flux was between 170 and 3800 metric tonnes per year. Both stable carbon isotopes and carbon-14 were used in constructing these estimates. Computer modeling of the unsaturated zone migration, and of methanotrophic oxidation rates suggests a large portion of the CH4 is oxidized in the summer, and at a much lower rate in the winter. However, deep-sourced CH4 makes a larger contribution to the atmosphere than CO2, in terms of GWP. The 23+ million tonnes of carbon dioxide that have been injected at Rangely are largely stored as dissolved CO2 and a lesser amount as bicarbonate. Scaling problems, as a result of acid gas dissolution of carbonate cement, and subsequent precipitation of CaSO4 will be an increasing problem as the system matures. Evidence for mineral sequestration was not found in the scales. Ultimate injector and field capacities will be determined by mineral precipitation in the formation as it affects porosity and permeability.
Collisions of deformable cells lead to collective migration
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
2015-03-17
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less
Collisions of deformable cells lead to collective migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob; Ziebert, Falko; Aranson, Igor S.
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less
Castro-Santos, Theodore R.; Haro, Alex
2015-01-01
This paper describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon (N=75) and upstream migrating adult American shad (N=208). Controlled studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded by the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine to what extent these effects are likely to influence free-swimming fish.
Intra-seasonal Scale Variability of Asian Summer Monsoon Anticyclone from Satellite Data
NASA Astrophysics Data System (ADS)
Luo, Jiali; Pan, Laura; Honomichl, Shawn; Bergman, John; Randel, William; Francis, Gene; George, Maya; Clerbaux, Cathy; Liu, Xiong
2017-04-01
Intra-seasonal variability of chemical species in the Upper Troposphere Lower Stratosphere (UTLS) associated with the Asian Summer Monsoon (ASM) is investigated using satellite observations. Day-to-day behavior of CO (a tropospheric tracer) and O3 (a stratospheric tracer) in the UTLS from both nadir viewing (IASI and OMI) and limb viewing (MLS) instruments are analyzed to: determine whether the intra-seasonal scale variability that is evident in dynamical fields is also evident in chemical species, analyze the response of chemical distributions to dynamical processes, and assess the capability of satellite data to resolve the characteristics of the ASM anticyclone in the UTLS. Both nadir and limb viewing instruments agree on the location of a CO maximum and an O3 minimum within the anticyclone, indicating the presence of tropospheric air. According to MLS, sub-seasonal anomalies of CO at 150 hPa and 100 hPa, as well as O3 at 100 hPa migrate westward from the eastern mode of the anticyclone, mimicking similar behavior found in anomalies of geopotential height. The enhanced CO within ASM anticyclone and eastern shedding of CO in UTLS is well captured in IASI data while the westward migration is weak. Both O3 data sets exhibit westward propagating anomalies at 100 hPa and neither exhibits the eastern shedding. Vertical profiles of CO from IASI indicate that the relatively high CO in the ASM anticyclone is associated with the upward transport in troposphere.
NASA Astrophysics Data System (ADS)
Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.
2014-12-01
In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.
Alber, Adrien; Piégay, Hervé
2017-11-01
An increased awareness by river managers of the importance of river channel migration to sediment dynamics, habitat complexity and other ecosystem functions has led to an advance in the science and practice of identifying, protecting or restoring specific erodible corridors across which rivers are free to migrate. One current challenge is the application of these watershed-specific goals at the regional planning scales (e.g., the European Water Framework Directive). This study provides a GIS-based spatial analysis of the channel migration rates at the regional-scale. As a case study, 99 reaches were sampled in the French part of the Rhône Basin and nearby tributaries of the Mediterranean Sea (111,300 km 2 ). We explored the spatial correlation between the channel migration rate and a set of simple variables (e.g., watershed area, channel slope, stream power, active channel width). We found that the spatial variability of the channel migration rates was primary explained by the gross stream power (R 2 = 0.48) and more surprisingly by the active channel width scaled by the watershed area. The relationship between the absolute migration rate and the gross stream power is generally consistent with the published empirical models for freely meandering rivers, whereas it is less significant for the multi-thread reaches. The discussion focused on methodological constraints for a regional-scale modelling of the migration rates, and the interpretation of the empirical models. We hypothesize that the active channel width scaled by the watershed area is a surrogate for the sediment supply which may be a more critical factor than the bank resistance for explaining the regional-scale variability of the migration rates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hettige, Nuwan C; Bani-Fatemi, Ali; Kennedy, James L; De Luca, Vincenzo
2017-02-09
Suicide is a leading cause of mortality among those afflicted by schizophrenia. Previous studies demonstrated that the stressors associated with immigration may lead to an onset of schizophrenia and suicide separately in susceptible individuals. However, no studies have shown whether immigration may lead to suicidal behaviour for individuals with schizophrenia. Our study proposes that an individual's geographical ancestry, ethnicity or migration status may be predictive of suicide risk in schizophrenia. In a sample of 276 participants with schizophrenia spectrum disorders, we conducted cross-sectional assessments to collect clinical information. Self-identified ethnicity and suicide history were collected through self-report questionnaires and interview-based scales. Ancestry was identified using 292 genetic markers from HapMap. Migrants were classified as those who immigrated to Canada during their lifetime. Using a regression analysis, we tested whether a history of migration, ethnicity or geographical ancestry were predictive of a history of suicide attempts. Our analysis failed to demonstrate a significant relationship between suicide history and migration, ethnicity or ancestry. However, ethnicity appears to be significantly associated with the number of psychiatric hospitalizations in our sample. Ethnicity and migration history are not predictive of previous suicide attempts. Ethnicity may be an important demographic factor affecting access to mental health resources and frequency of hospitalizations.
Pitman, Janet K.; Steinshouer, D.; Lewan, M.D.
2004-01-01
A regional 3-D total petroleum-system model was developed to evaluate petroleum generation and migration histories in the Mesopotamian Basin and Zagros fold belt in Iraq. The modeling was undertaken in conjunction with Middle East petroleum assessment studies conducted by the USGS. Regional structure maps, isopach and facies maps, and thermal maturity data were used as input to the model. The oil-generation potential of Jurassic source-rocks, the principal known source of the petroleum in Jurassic, Cretaceous, and Tertiary reservoirs in these regions, was modeled using hydrous pyrolysis (Type II-S) kerogen kinetics. Results showed that oil generation in source rocks commenced in the Late Cretaceous in intrashelf basins, peak expulsion took place in the late Miocene and Pliocene when these depocenters had expanded along the Zagros foredeep trend, and generation ended in the Holocene when deposition in the foredeep ceased. The model indicates that, at present, the majority of Jurassic source rocks in Iraq have reached or exceeded peak oil generation and most rocks have completed oil generation and expulsion. Flow-path simulations demonstrate that virtually all oil and gas fields in the Mesopotamian Basin and Zagros fold belt overlie mature Jurassic source rocks (vertical migration dominated) and are situated on, or close to, modeled migration pathways. Fields closest to modeled pathways associated with source rocks in local intrashelf basins were charged earliest from Late Cretaceous through the middle Miocene, and other fields filled later when compression-related traps were being formed. Model results confirm petroleum migration along major, northwest-trending folds and faults, and oil migration loss at the surface.
Zhang, Yingchi; Yan, Jiyuan; Xu, Haoran; Yang, Yong; Li, Wenkai; Wu, Hua; Liu, Chaoxu
2018-05-21
The ability of mesenchymal stem cells (MSCs) to migrate to the desired tissues or lesions is crucial for stem cell-based regenerative medicine and tissue engineering. Optimal therapeutics for promoting MSC migration are expected to become an effective means for tissue regeneration. Electromagnetic fields (EMF), as a noninvasive therapy, can cause a lot of biological changes in MSCs. However, whether EMF can promote MSC migration has not yet been reported. We evaluated the effects of EMF on cell migration in human bone marrow-derived MSCs. With the use of Helmholtz coils and an EMF stimulator, 7.5, 15, 30, 50, and 70 Hz/1 mT EMF was generated. Additionally, we employed the L-type calcium channel blocker verapamil and the focal adhesion kinase (FAK) inhibitor PF-573228 to investigate the role of intracellular calcium content, cell adhesion proteins, and the Rho GTPase protein family (RhoA, Rac1, and Cdc42) in EMF-mediated MSC migration. Cell adhesion proteins (FAK, talin, and vinculin) were detected by Western blot analysis. The Rho GTPase protein family activities were assessed by G-LISA, and F-actin levels, which reflect actin cytoskeletal organization, were detected using immunofluorescence. All the 7.5, 15, 30, 50, and 70 Hz/1 mT EMF promoted MSC migration. EMF increased MSC migration in an intracellular calcium-dependent manner. Notably, EMF-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased talin and vinculin expression. Moreover, RhoA, Rac1, and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. EMF promoted MSC migration by increasing intracellular calcium and activating the FAK/Rho GTPase signaling pathways. This study provides insights into the mechanisms of MSC migration and will enable the rational design of targeted therapies to improve MSC engraftment.
Nocturnal field use by fall migrating American woodcock in the Delta of Arkansas
Krementz, David G.; Crossett, Richard; Lehnen, Sarah E.
2014-01-01
The American woodcock (Scolopax minor) population has declined since the late 1960s across its range and is now considered a species of special concern. Research on woodcock habitat use during migration and migratory routes through the Central Flyway has been limited. We assessed woodcock phenology, estimated density, and nocturnal habitat use in fields on public lands in the lower Mississippi Alluvial Valley portion of Arkansas during November and December of 2010 and 2011. We used all-terrain vehicles to survey woodcock along transects in 67 fields of 8 field types. We analyzed data using hierarchical distance sampling. We detected woodcock from the first week in November through the third week in December but in low numbers. We did not detect woodcock in millet or rice fields, whereas woodcock had the highest estimated densities in unharvested soybeans. All other crop type-post-harvest management combinations had low woodcock densities. We did not detect woodcock in fields <8 ha or >40 ha. Woodcock in the lower Mississippi Alluvial Valley may benefit from management for unharvested soybean fields of moderate size (approx. 8-40ha).
NASA Astrophysics Data System (ADS)
Ben, R.; Chalaturnyk, R.; Gardner, C.; Hawkes, C.; Johnson, J.; White, D.; Whittaker, S.
2008-12-01
In July 2000, a major research project was initiated to study the geological storage of CO2 as part of a 5000 tonnes/day EOR project planned for the Weyburn Field in Saskatchewan, Canada. Major objectives of the IEA GHG Weyburn CO2 monitoring and storage project included: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone (approximately 1500 metres depth) to the surface. Over the period 2000-2004, a diverse group of 80+ researchers worked on: geological, geophysical, and hydrogeological characterizations at both the regional (100 km beyond the field) and detailed scale (10 km around the field); conducted time-lapse geophysical surveys; carried out surface and subsurface geochemical surveys; and undertook numerical reservoir simulations. Results of the characterization were used for a performance assessment that concluded the risk of CO2 movement to the biosphere was very small. By September 2007, more than 14 Mtonnes of CO2 had been injected into the Weyburn reservoir, including approximately 3 Mtonnes recycled from oil production. A "Final Phase" research project was initiated (2007- 2011) to contribute to a "Best Practices" guide for long-term CO2 storage in EOR settings. Research objectives include: improving the geoscience characterization; further detailed analysis and data collection on the role of wellbores; additional geochemical and geophysical monitoring activities; and an emphasis on quantitative risk assessments using multiple analysis techniques. In this talk a review of results from Phase I will be presented followed by plans and initial results for the Final Phase.
NASA Astrophysics Data System (ADS)
Jiao, J.; Trautz, A.; Zhang, Y.; Illangasekera, T.
2017-12-01
Subsurface flow and transport characterization under data-sparse condition is addressed by a new and computationally efficient inverse theory that simultaneously estimates parameters, state variables, and boundary conditions. Uncertainty in static data can be accounted for while parameter structure can be complex due to process uncertainty. The approach has been successfully extended to inverting transient and unsaturated flows as well as contaminant source identification under unknown initial and boundary conditions. In one example, by sampling numerical experiments simulating two-dimensional steady-state flow in which tracer migrates, a sequential inversion scheme first estimates the flow field and permeability structure before the evolution of tracer plume and dispersivities are jointly estimated. Compared to traditional inversion techniques, the theory does not use forward simulations to assess model-data misfits, thus the knowledge of the difficult-to-determine site boundary condition is not required. To test the general applicability of the theory, data generated during high-precision intermediate-scale experiments (i.e., a scale intermediary to the field and column scales) in large synthetic aquifers can be used. The design of such experiments is not trivial as laboratory conditions have to be selected to mimic natural systems in order to provide useful data, thus requiring a variety of sensors and data collection strategies. This paper presents the design of such an experiment in a synthetic, multi-layered aquifer with dimensions of 242.7 x 119.3 x 7.7 cm3. Different experimental scenarios that will generate data to validate the theory are presented.
Can small zooplankton enhance turbulence in a lake during vertical migration?
NASA Astrophysics Data System (ADS)
Wain, D.; Simoncelli, S.; Thackeray, S.
2016-02-01
Recent research in both oceanic and freshwater systems suggests that the Diel Vertical Migration (DVM), a predator-avoidance mechanism adopted by many zooplankton, may be an underrepresented source of turbulence and mixing. In particular, the migration can play a crucial role when organisms cross the thermocline; this could be particularly important in enhancing the mixing in lakes, where the pelagic zone is often quiescent, with a consequent impact on lake ecosystem functioning. A field experiment was performed to directly measure the temperature fluctuations and kinetic energy dissipation rate generated by DVM of Daphnia spp., a 1 mm crustacean zooplankton genus. Profiles of turbulence were acquired with a temperature microstructure profiler in Vobster Quay (UK), a small quarry with small wind fetch, steep sides, and with a maximum depth of approximately 25 m. Sixteen profiles were measured over the course of two hours during sunset on 16 July 2015, during which there was no wind. Backscatter strength from bottom-mounted ADCP was used as a proxy to assess DVM. Zooplankton vertical distribution was also quantified by sampling with a 100 μm mesh net before and after the turbulence profiling in 8 layers to verify the distribution of Daphnia spp. before and after the migration. Zooplankton tows show higher abundance (450 ind./L) of Daphnia at 9m and near the bottom before sunset (8PM). Samples after dusk (11.20PM) showed an increase in the surface layer, from 0 up to 250 ind./L. However, migration also appears to happen horizontally. Ensemble-averaged profiles show a great variation of the dissipation rates over the course of the time series with a peak of 10-7 W/kg between 6m and 12m where the DVM is happening and with respect to profiles before sunset. Given the uncertainty in measuring the length scales of turbulence associated with small zooplankton, further analysis is required to determine if the observed turbulence during the time of migration was due the migration or due to other causes, such as the onset of penetrative convection associated with night-time cooling. Three further datasets were collected during sunset in August and September 2015 and will be used to determine if turbulence is always present during the migrations.
Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall
Mukherjee, Swarnajay; Sarkar, Kausik
2014-01-01
Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-steady state where the lateral velocity only depends on the instantaneous distance from the wall. The drop migration velocity and the deformation scale inversely with the square and the cube of the distance from the wall, respectively. The migration velocity varies non-monotonically with increasing viscoelasticity (increasing Deborah number); initially increasing and then decreasing. An analytical explanation has been given of the effects by computing the migration velocity as arising from an image stresslet field due to the drop. The semi-analytical expression matches well with the simulated migration velocity away from the wall. It contains a viscoelastic stresslet component apart from those arising from interfacial tension and viscosity ratio. The migration dynamics is a result of the competition between the viscous (interfacial tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet contribution towards the migration velocity steadily increases. But the interfacial stresslet—arising purely from the drop shape—first increases and then decreases with rising Deborah number causing the migration velocity to be non-monotonic. The geometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic variation of the drop inclination. High viscosity ratio is briefly considered to show that the drop viscoelasticity could stabilize a drop against breakup, and the increase in migration velocity due to viscoelasticity is larger compared to the viscosity-matched case. PMID:25378894
Upscaling of reaction rates in reactive transport using pore-scale reactive transport model
NASA Astrophysics Data System (ADS)
Yoon, H.; Dewers, T. A.; Arnold, B. W.; Major, J. R.; Eichhubl, P.; Srinivasan, S.
2013-12-01
Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at the (sub) pore-scale. In this research pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reaction at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by the observed CO2 seeps from a natural analog to geologic CO2 sequestration at Crystal Geyser, Utah. A key observation is the lateral migration of CO2 seep sites at a scale of ~ 100 meters over time. A pore-scale model provides fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging under different geochemical compositions and pore configurations. In addition, response function of reaction rates will be constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Damkohler and Peclet numbers. Newly developed response functions will be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps. Comparison of field observations and simulations results will provide mechanistic explanations of the lateral migration and enhance our understanding of subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Do Plot Studies Generate “Directionally” Correct Assessments of Field Level Phosphorus Losses?
USDA-ARS?s Scientific Manuscript database
The National P Research Project (NPRP) coordinated a tremendous amount of research at the plot scale to assess the influence of nutrient management on P transport at the fields scale. The objectives of this research were to determine of plot scale rainfall simulations could be used to assess P trans...
Innovative Visualizations Shed Light on Avian Nocturnal Migration
Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A.; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M.; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F.; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans
2016-01-01
Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals’ life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human–wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement. PMID:27557096
Innovative Visualizations Shed Light on Avian Nocturnal Migration.
Shamoun-Baranes, Judy; Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans
2016-01-01
Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.
NASA Astrophysics Data System (ADS)
Zhang, Zhihong
2017-02-01
Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.
Optimum swimming pathways of fish spawning migrations in rivers
McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert
2012-01-01
Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.
Understanding the stopover of migratory birds: a scale dependent approach
Frank R. Moore; Mark S. Woodrey; Jeffrey J. Buler; Stefan Woltmann; Ted R. Simons
2005-01-01
The development of comprehensive conservation strategies and management plans for migratory birds depends on understanding migrant-habitat relations throughout the annual cycle, including the time when migrants stopover en route. Yet, the complexity of migration makes the assessment of habitat requirements and development of a comprehensive...
ERIC Educational Resources Information Center
Mu, Guanglun Michael; Jia, Ning
2016-01-01
The rapid pace of urbanisation in China has seen a massive increase in the movement of the rural population to work and live in urban regions. In this large-scale migration context, the educational, health, and psychological problems of floating children are becoming increasingly visible. Different from extant studies, we focus our investigation…
Siah, Ali; Bomble, Myriam; Tisserant, Benoit; Cadalen, Thierry; Holvoet, Maxime; Hilbert, Jean-Louis; Halama, Patrice; Reignault, Philippe Lucien
2018-04-16
Population genetic structure of the worldwide-distributed wheat pathogen Zymoseptoria tritici has been extensively studied at large geographical scales, but to a much less extent at small or local spatial scales. A total of 627 single-conidial fungal isolates were sampled from several locations in northern France (Hauts-de-France Region) to assess fungal genetic structure at region, field, plant and leaf layer scales, using highly polymorphic microsatellite markers and mating type idiomorphs. Important and overall similar levels of both gene and genotype diversities (gene diversity values ≥ 0.44 and haplotype frequencies ≥ 94 %) were found at all the examined scales. Such rates of diversity are likely due to an active sexual recombination in the investigated areas, as revealed by equal proportions of the two mating types scored in all sampled populations. Interestingly, a rare occurrence of clones among lesions from a same leaf, as well as among leaves from different plant leaf layers (e.g. upper vs lower leaves), was highlighted, indicating that ascospores contribute much more than expected to Z. tritci epidemics, compared to pycnidiospores. Population structure and AMOVA analyses revealed significant genetic differentiation at the regional scale (GST = 0.23) and, as expected, not at the other more local scales (GST ≤ 0.01). Further analyses using Bayesian and unweighted neighbor-joining statistical methods detected six genetic clusters within the regional population, overall distributed according to the locations from which the isolates were sampled. Neither clear directional relative migration linked to the geographical distribution of the locations, nor isolation by distance, were observed. Separate evolutionary trajectories caused by selection and adaptations to habitat heterogeneity could be the main forces shaping such structuration. This study provides new insights into the epidemiology and the genetic structure of Z. tritici at small local and, for the first time, at single plant and leaf layer scales. Such findings would be helpful in implementing effective control strategies.
NASA Astrophysics Data System (ADS)
Beasley, B.; Georgiou, I. Y.; Miner, M. D.
2017-12-01
In Louisiana barrier islands are undergoing rapid morphological change due to shoreface retreat and increasing bay tidal prism driven by high rates of relative sea-level rise (RSLR) (1 cm/yr) and interior wetland loss, respectively. Previous works utilized historical region-scale bathymetry change and shoreline change analyses to assess large-scale coastal evolution. However, more localized assessments considering the role of sediment transport processes in regional evolution are lacking. This is essential to predicting coastal change trajectories and allocating limited sand resources for nourishment. Using historic bathymetric and shoreline data dating to the 1890s for the Louisiana coast, 100-m spaced shore-normal transects were created to track meter-scale elevation change for 1890, 1930, 1980, 2006, and 2015. An automated framework was used to quantify and track barrier island evolution parameters such as shoreline change, area, width, bathymetric contour migration, and shoreface slope. During the 125 yr analysis period, shoreline erosion mean rates slowed from 12 to 6 m/yr while lower shoreface migration mean rates increased from 5 to 25 m/yr. Locally, retreat rates for the Caminada Headland upper shoreface slowed from 18 to 8 m/yr while lower shoreface retreat rates increased from 8 to 14m/yr. The Timbalier Islands experienced increased migration rates along the entire shoreface, while the lower shoreface of the Isles Dernieres transitioned from progradational to erosional (-5 m/yr in 1890 to 20 m/yr in 2006). Our analysis suggests that although shoreline erosion rates decreased, overall landward migration of the barrier system increased as the shoreface steepened. Our results illustrate that monitoring subaerial island erosion rates are insufficient for evaluating regional dynamics of transgressive coastal systems. The longevity of barriers appears diminished due to a reduction in the shoreface sediment available and further corroborates the role of the shoreface on barrier island evolution. Advances in understanding these processes will facilitate more informed planning, management, and mitigation of transgressive barrier islands.
Shorebird Migration Patterns in Response to Climate Change: A Modeling Approach
NASA Technical Reports Server (NTRS)
Smith, James A.
2010-01-01
The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies offer new opportunities for the application of mechanistic models to predict how continental scale bird migration patterns may change in response to environmental change. In earlier studies, we explored the phenotypic plasticity of a migratory population of Pectoral sandpipers by simulating the movement patterns of an ensemble of 10,000 individual birds in response to changes in stopover locations as an indicator of the impacts of wetland loss and inter-annual variability on the fitness of migratory shorebirds. We used an individual based, biophysical migration model, driven by remotely sensed land surface data, climate data, and biological field data. Mean stop-over durations and stop-over frequency with latitude predicted from our model for nominal cases were consistent with results reported in the literature and available field data. In this study, we take advantage of new computing capabilities enabled by recent GP-GPU computing paradigms and commodity hardware (general purchase computing on graphics processing units). Several aspects of our individual based (agent modeling) approach lend themselves well to GP-GPU computing. We have been able to allocate compute-intensive tasks to the graphics processing units, and now simulate ensembles of 400,000 birds at varying spatial resolutions along the central North American flyway. We are incorporating additional, species specific, mechanistic processes to better reflect the processes underlying bird phenotypic plasticity responses to different climate change scenarios in the central U.S.
A high-frequency sonar for profiling small-scale subaqueous bedforms
Dingler, J.R.; Boylls, J.C.; Lowe, R.L.
1977-01-01
A high-resolution ultrasonic profiler has been developed which permits both laboratory and field studies of small-scale subaqueous bedforms. The device uses a 2.5-cm diameter piezoelectric ceramic crystal pulsed at a frequency of 4.5 MHz to obtain vertical accuracy and resolution of at least 1 mm. Compared to other small-scale profiling methods, this ultrasonic technique profiles the bottom more accurately and more rapidly without disturbing the bedforms. These characteristics are vital in wave-dominated nearshore zones where oscillatory flow and low visibility for the most part have stymied detailed bedform studies. In the laboratory the transducer is mounted directly to an instrument carriage. For field work the transducer housing is mounted in a 2 m long aluminum frame which is situated and operated by scuba divers. Observations using the device include ripple geometry and migration, the suspension height of sand during sheet flow, and long-term erosion/deposition at a point. ?? 1977.
Unmanned Aerial Remote Sensing Facility of Wageningen UR: Overview of Activities
NASA Astrophysics Data System (ADS)
Masselink, Rens; Keesstra, Saskia; Baartman, Jantiene; Bartholomeus, Harm; Kooistra, Lammert
2017-04-01
The term nature-based solutions (NBS) refers to the sustainable management and use of nature for tackling societal challenges. The objectives of implementation of NBS are to provide a solution for environmental issues that affect the human economy and welfare, and simultaneously increase sustainability and biodiversity. Some primary goals for the implantation of NBS include flood protection by river restoration, erosion control and limiting nutrient transport from agricultural fields into surface waters. For the NBS to have a real effect for these issues, they need to be integrated over relatively large areas. Unmanned aerial systems (UASs) provide a platform to view and assess relatively large areas in a short amount of time at short time intervals. This allows for UAS data to be employed for the assessment of the functioning of certain NBS. Examples where UAS can be used are to look at the extent of inundated area during flooding or the migration of river meanders after (several) large events. Repeat surveys shed light on the evolution of the NBS, both at small and large scales. In this project, we are looking for effective ways to integrate UAS data and field-based measurements to obtain knowledge on the functioning of NBS. Several methods for using UAS to assess NBS implementation, measure NBS effectiveness and study the impact of NBS will be presented.
Identifying impediments to long-distance mammal migrations.
Seidler, Renee G; Long, Ryan A; Berger, Joel; Bergen, Scott; Beckmann, Jon P
2015-02-01
In much of the world, the persistence of long-distance migrations by mammals is threatened by development. Even where human population density is relatively low, there are roads, fencing, and energy development that present barriers to animal movement. If we are to conserve species that rely on long-distance migration, then it is critical that we identify existing migration impediments. To delineate stopover sites associated with anthropogenic development, we applied Brownian bridge movement models to high-frequency locations of pronghorn (Antilocapra americana) in the Greater Yellowstone Ecosystem. We then used resource utilization functions to assess the threats to long-distance migration of pronghorn that were due to fences and highways. Migrating pronghorn avoided dense developments of natural gas fields. Highways with relatively high volumes of traffic and woven-wire sheep fence acted as complete barriers. At crossings with known migration bottlenecks, use of high-quality forage and shrub habitat by pronghorn as they approached the highway was lower than expected based on availability of those resources. In contrast, pronghorn consistently utilized high-quality forage close to the highway at crossings with no known migration bottlenecks. Our findings demonstrate the importance of minimizing development in migration corridors in the future and of mitigating existing pressure on migratory animals by removing barriers, reducing the development footprint, or installing crossing structures. © 2014 Society for Conservation Biology.
An analysis of neural receptive field plasticity by point process adaptive filtering
Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor
2001-01-01
Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043
Origins and mechanisms of hysteresis in organometal halide perovskites
NASA Astrophysics Data System (ADS)
Li, Cheng; Guerrero, Antonio; Zhong, Yu; Huettner, Sven
2017-05-01
Inorganic-organic halide organometal perovskites, such as CH3NH3PbI3 and CsPbI3, etc, have been an unprecedented rising star in the field of photovoltaics since 2009, owing to their exceptionally high power conversion efficiency and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material; these have ranged from crystal structure analysis and photophysical characterization to performance optimization and device integration, etc. Yet, when applied in photovoltaic devices, this material suffers from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede its large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping, and (3) ion migration. Among them, recent evidence consistently supports the idea that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSCs). Hence, this Review will summarize the recent results on ion migration such as the migrating ion species, activation energy measurement, capacitive characterization, and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large-size grains or phenyl-C61-butyric acid methyl ester molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining these three possible mechanisms, it is concluded that the origin of hysteresis in PSCs is associated with a combination of effects, but mainly limited by ion/defect migration. This strong interaction between ion motion and free charge carrier transport can be modulated by the prevalent crystalline structure, chemical passivation, and an external photo/electrical field.
Stratigraphic Architecture of Aeolian Dune Interactions
NASA Astrophysics Data System (ADS)
Brothers, S. C.; Kocurek, G.
2015-12-01
Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.
The effects of a magnetic field on planetary migration in laminar and turbulent discs
NASA Astrophysics Data System (ADS)
Comins, Megan L.; Romanova, Marina M.; Koldoba, Alexander V.; Ustyugova, Galina V.; Blinova, Alisa A.; Lovelace, Richard V. E.
2016-07-01
We investigate the migration of low-mass planets (1, 5 and 20 M⊕) in accretion discs threaded with a magnetic field using 2D magnetohydrodynamic code in polar coordinates. We observed that, in the case of a strong azimuthal magnetic field where the plasma parameter is β ˜ 2-4, density waves at the magnetic resonances exert a positive torque on the planet and may slow down or reverse its migration. However, when the magnetic field is weaker (I.e. the plasma parameter β is relatively large), then non-axisymmetric density waves excited by the planet lead to growth of the radial component of the field and, subsequently, to development of the magnetorotational instability, such that the disc becomes turbulent. Migration in a turbulent disc is stochastic, and the migration direction may change as such. To understand migration in a turbulent disc, both the interaction between a planet and individual turbulent cells, as well as the interaction between a planet and ordered density waves, have been investigated.
Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs
Bott, Johannes; Störmer, Angela; Franz, Roland
2014-01-01
Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg−1, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material. PMID:25105506
Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs.
Bott, Johannes; Störmer, Angela; Franz, Roland
2014-01-01
Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg⁻¹, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material.
Experiments shed new light on nickel-fluorine reactions
NASA Technical Reports Server (NTRS)
Fischer, J.; Gunther, W.; Jarry, R. L.
1967-01-01
Isotopic tracer experiments and scale-impingement experiments show fluorine to be the migrating species through the nickel fluoride scale formed during the fluorination of nickel. This is in contrast to nickel oxide scales, where nickel is the migrating species.
NASA Astrophysics Data System (ADS)
Nicholas, A. P.; Ashworth, P. J.; Best, J.; Lane, S. N.; Parsons, D. R.; Sambrook Smith, G.; Simpson, C.; Strick, R. J. P.; Unsworth, C. A.
2017-12-01
Recent years have seen significant advances in the development and application of morphodynamic models to simulate river evolution. Despite this progress, significant challenges remain to be overcome before such models can provide realistic simulations of river response to environmental change, or be used to determine the controls on alluvial channel patterns and deposits with confidence. This impasse reflects a wide range of factors, not least the fact that many of the processes that control river behaviour operate at spatial scales that cannot be resolved by such models. For example, sand-bed rivers are characterised by multiple scales of topography (e.g., dunes, bars, channels), the finest of which must often by parameterized, rather than represented explicitly in morphodynamic models. We examine these issues using a combination of numerical modeling and field observations. High-resolution aerial imagery and Digital Elevation Models obtained for the sandy braided South Saskatchewan River in Canada are used to quantify dune, bar and channel morphology and their response to changing flow discharge. Numerical simulations are carried out using an existing morphodynamic model based on the 2D shallow water equations, coupled with new parameterisations of the evolution and influence of alluvial bedforms. We quantify the spatial patterns of sediment flux using repeat images of dune migration and bar evolution. These data are used to evaluate model predictions of sediment transport and morphological change, and to assess the degree to which model performance is controlled by the parametrization of roughness and sediment transport phenomena linked to subgrid-scale bedforms (dunes). The capacity of such models to replicate the characteristic multi-scale morphology of bars in sand-bed rivers, and the contrasting morphodynamic signatures of braiding during low and high flow conditions, is also assessed.
nZVI injection into variably saturated soils: Field and modeling study
NASA Astrophysics Data System (ADS)
Chowdhury, Ahmed I. A.; Krol, Magdalena M.; Kocur, Christopher M.; Boparai, Hardiljeet K.; Weber, Kela P.; Sleep, Brent E.; O'Carroll, Denis M.
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142 L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications.
Agrawal, Sutapa; Taylor, Fiona C; Moser, Kath; Narayanan, Gitanjali; Kinra, Sanjay; Prabhakaran, Dorairaj; Reddy, Kolli Srinath; Davey Smith, George; Ebrahim, Shah
2015-01-01
Migration is suspected to increase the risk for psychological distress for those who enter a new cultural environment. We investigated the association between sociodemographic characteristics, premigratory and migratory factors and psychological distress in rural-to-urban migrants just after migration and after resettlement. Data from the cross-sectional sib-pair designed Indian Migration Study (IMS, 2005-2007) were used. The analysis focused on 2112 participants aged ≥18 years from the total IMS sample ( n = 7067) who reported being migrant. Psychological distress was assessed based on the responses of the 7-questions in a five-point scale, where the respondents were asked to report about their feelings now and also asked to recall these feelings when they first migrated. The associations were analyzed using multiple logistic regression models. High prevalence of psychological distress was found just after migration (7.3%; 95% confidence interval [CI]: 6.2-8.4) than after settlement (4.7%; 95% CI: 3.8-5.6). Push factors as a reason behind migration and not being able to adjust in the new environment were the main correlates of psychological distress among both the male and female migrants, just after migration. Rural-urban migration is a major phenomenon in India and given the impact of premigratory and migratory related stressors on mental health, early intervention could prevent the development of psychological distress among the migrants.
Agrawal, Sutapa; Taylor, Fiona C; Moser, Kath; Narayanan, Gitanjali; Kinra, Sanjay; Prabhakaran, Dorairaj; Reddy, Kolli Srinath; Davey Smith, George; Ebrahim, Shah
2017-01-01
Background/Objectives Migration is suspected to increase the risk for psychological distress for those who enter a new cultural environment. We investigated the association between sociodemographic characteristics, premigratory and migratory factors and psychological distress in rural-to-urban migrants just after migration and after resettlement. Methods Data from the cross-sectional sib-pair designed Indian Migration Study (IMS, 2005–2007) were used. The analysis focused on 2112 participants aged ≥18 years from the total IMS sample (n = 7067) who reported being migrant. Psychological distress was assessed based on the responses of the 7-questions in a five-point scale, where the respondents were asked to report about their feelings now and also asked to recall these feelings when they first migrated. The associations were analyzed using multiple logistic regression models. Results High prevalence of psychological distress was found just after migration (7.3%; 95% confidence interval [CI]: 6.2–8.4) than after settlement (4.7%; 95% CI: 3.8–5.6). Push factors as a reason behind migration and not being able to adjust in the new environment were the main correlates of psychological distress among both the male and female migrants, just after migration. Conclusions Rural-urban migration is a major phenomenon in India and given the impact of premigratory and migratory related stressors on mental health, early intervention could prevent the development of psychological distress among the migrants. PMID:28856341
Yamaguchi, Noriyuki M.; Hupp, Jerry W.; Flint, Paul L.; Pearce, John M.; Shigeta, Yusuke; Shimada, Tetsuo; Hiraoka, Emiko N.; Higuchi, Hiroyoshi
2012-01-01
From 2006 to 2009, we marked 198 Northern Pintails (Anas acuta) with satellite transmitters on their wintering areas in Japan to study their migration routes and habitat use in spring staging areas. We hypothesized that the distribution of pintails during spring staging was influenced by patterns of land use and expected that the most frequently used areas would have more agricultural habitat than lesser-used areas. We obtained 3031 daily locations from 163 migrant pintails marked with satellite transmitters and identified 524 stopover sites. Based on a fixed kernel home range analysis of stopover utilization distribution (UD), core staging areas (areas within the 50% UD) were identified in northern Honshu and western Hokkaido, and were used by 71% of marked pintails. Core staging areas had a greater proportion of rice fields than peripheral (51–95% UD) and rarely used (outside the 95% UD) staging areas. Stopover sites also contained more rice fields and other agricultural land than were available at regional scales, indicating that pintails selected rice and other agricultural habitats at regional and local scales. Pintails remained at spring staging areas an average of 51 d. Prolonged staging in agricultural habitats of northern Japan was likely necessary for pintails to prepare for transoceanic migration to Arctic nesting areas in eastern Russia.
Quantitative and qualitative approaches to identifying migration chronology in a continental migrant
Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.
2013-01-01
The degree to which extrinsic factors influence migration chronology in North American waterfowl has not been quantified, particularly for dabbling ducks. Previous studies have examined waterfowl migration using various methods, however, quantitative approaches to define avian migration chronology over broad spatio-temporal scales are limited, and the implications for using different approaches have not been assessed. We used movement data from 19 female adult mallards (Anas platyrhynchos) equipped with solar-powered global positioning system satellite transmitters to evaluate two individual level approaches for quantifying migration chronology. The first approach defined migration based on individual movements among geopolitical boundaries (state, provincial, international), whereas the second method modeled net displacement as a function of time using nonlinear models. Differences in migration chronologies identified by each of the approaches were examined with analysis of variance. The geopolitical method identified mean autumn migration midpoints at 15 November 2010 and 13 November 2011, whereas the net displacement method identified midpoints at 15 November 2010 and 14 November 2011. The mean midpoints for spring migration were 3 April 2011 and 20 March 2012 using the geopolitical method and 31 March 2011 and 22 March 2012 using the net displacement method. The duration, initiation date, midpoint, and termination date for both autumn and spring migration did not differ between the two individual level approaches. Although we did not detect differences in migration parameters between the different approaches, the net displacement metric offers broad potential to address questions in movement ecology for migrating species. Ultimately, an objective definition of migration chronology will allow researchers to obtain a comprehensive understanding of the extrinsic factors that drive migration at the individual and population levels. As a result, targeted conservation plans can be developed to support planning for habitat management and evaluation of long-term climate effects.
Beatty, William S; Kesler, Dylan C; Webb, Elisabeth B; Raedeke, Andrew H; Naylor, Luke W; Humburg, Dale D
2013-01-01
The degree to which extrinsic factors influence migration chronology in North American waterfowl has not been quantified, particularly for dabbling ducks. Previous studies have examined waterfowl migration using various methods, however, quantitative approaches to define avian migration chronology over broad spatio-temporal scales are limited, and the implications for using different approaches have not been assessed. We used movement data from 19 female adult mallards (Anas platyrhynchos) equipped with solar-powered global positioning system satellite transmitters to evaluate two individual level approaches for quantifying migration chronology. The first approach defined migration based on individual movements among geopolitical boundaries (state, provincial, international), whereas the second method modeled net displacement as a function of time using nonlinear models. Differences in migration chronologies identified by each of the approaches were examined with analysis of variance. The geopolitical method identified mean autumn migration midpoints at 15 November 2010 and 13 November 2011, whereas the net displacement method identified midpoints at 15 November 2010 and 14 November 2011. The mean midpoints for spring migration were 3 April 2011 and 20 March 2012 using the geopolitical method and 31 March 2011 and 22 March 2012 using the net displacement method. The duration, initiation date, midpoint, and termination date for both autumn and spring migration did not differ between the two individual level approaches. Although we did not detect differences in migration parameters between the different approaches, the net displacement metric offers broad potential to address questions in movement ecology for migrating species. Ultimately, an objective definition of migration chronology will allow researchers to obtain a comprehensive understanding of the extrinsic factors that drive migration at the individual and population levels. As a result, targeted conservation plans can be developed to support planning for habitat management and evaluation of long-term climate effects.
Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.
2009-01-01
While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.
Influence of local capillary trapping on containment system effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, Steven
2014-03-31
Immobilization of CO 2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO 2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO 2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence ofmore » injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO 2 migration can be represented as a single value of “critical capillary entry pressure” P c,entry crit, such that cells with capillary entry pressure greater/less than P c,entry crit act as barriers/potential traps during CO 2 migration. At intermediate values of P c,entry crit, the barrier regions become more laterally extensive in the reservoir, approaching a percolation threshold while non-barrier regions remain numerous. The maximum possible extent of LCT thus occurs at P c,entry crit near this threshold. Testing predictions of this simple algorithm against full-physics simulations of buoyancy-driven CO 2 migration support the concept of critical capillary entry pressure. However, further research is needed to determine whether a single value of critical capillary entry pressure always applies and how that value can be determined a priori. Simulations of injection into high-resolution (cells 0.3 m on a side) 2D and 3D heterogeneous domains show two characteristic behaviors. At small gravity numbers (vertical flow velocity much less than horizontal flow velocity) the CO 2 fills local traps as well as regions that would act as local barriers if CO 2 were moving only due to buoyancy. When injection ceases, the CO 2 migrates vertically to establish large saturations within local traps and residual saturation elsewhere. At large gravity numbers, the CO 2 invades a smaller portion of the perforated interval. Within this smaller swept zone the local barriers are not invaded, but local traps are filled to large saturation during injection and remain during post-injection gravity-driven migration. The small gravity number behavior is expected in the region within 100 m of a vertical injection well at anticipated rates of injection for commercial GCS. Simulations of leakage scenarios (through-going region of large permeability imposed in overlying seal) indicate that LCT persists (i.e. CO 2 remains held in a large fraction of the local iv traps) and the persistence is independent of injection rate during storage. Simulations of leakage for the limiting case of CO 2 migrating vertically from an areally extensive emplacement in the lower portion of a reservoir showed similar strong persistence of LCT. This research has two broad implications for GCS. The first is that LCT can retain a significant fraction of the CO 2 stored in a reservoir – above and beyond the residual saturation -- if the overlying seal were to fail. Thus frameworks for risk assessment should be extended to account for LCT. The second implication is that compared to pressure driven flow in reservoirs, CO 2 migration and trapping behave in a qualitatively different manner in heterogeneous reservoirs when buoyancy is the dominant driving force for flow. Thus simulations of GCS that neglect capillary heterogeneity will fail to capture important features of the CO 2 plume. While commercial reservoir simulation software can account for fine scale capillary heterogeneity, it has not been designed to work efficiently with such domains, and no simulators can handle fine-scale resolution throughout the reservoir. A possible way to upscale the migration and trapping is to apply an “effective residual saturation” to coarse-scale grids. While the extent of overall immobilization can be correlated in this way, all coarser grids failed to capture the distance traveled by the migrating CO 2 for large gravity number. Thus it remains unclear how best to account for LCT in the routine simulation work-flow that will be needed for large-scale GCS. Alternatives meriting investigation include streamline methods, reduced-physics proxies (e.g. particle tracking), and biased invasion percolation algorithms, which are based on precisely the capillary heterogeneity essential for LCT.« less
Module-oriented modeling of reactive transport with HYTEC
NASA Astrophysics Data System (ADS)
van der Lee, Jan; De Windt, Laurent; Lagneau, Vincent; Goblet, Patrick
2003-04-01
The paper introduces HYTEC, a coupled reactive transport code currently used for groundwater pollution studies, safety assessment of nuclear waste disposals, geochemical studies and interpretation of laboratory column experiments. Based on a known permeability field, HYTEC evaluates the groundwater flow paths, and simulates the migration of mobile matter (ions, organics, colloids) subject to geochemical reactions. The code forms part of a module-oriented structure which facilitates maintenance and improves coding flexibility. In particular, using the geochemical module CHESS as a common denominator for several reactive transport models significantly facilitates the development of new geochemical features which become automatically available to all models. A first example shows how the model can be used to assess migration of uranium from a sub-surface source under the effect of an oxidation front. The model also accounts for alteration of hydrodynamic parameters (local porosity, permeability) due to precipitation and dissolution of mineral phases, which potentially modifies the migration properties in general. The second example illustrates this feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
In this project, in situ remediation technologies are being tested and evaluated for both source control and mass removal of dense, non-aqueous phase liquid (DNAPL) compounds in low permeability media (LPM). This effort is focused on chlorinated solvents (e.g., trichloroethylene and perchloroethylene) in the vadose and saturated zones of low permeability, massive deposits, and stratified deposits with inter-bedded clay lenses. The project includes technology evaluation and screening analyses and field-scale testing at both clean and contaminated sites in the US and Canada. Throughout this project, activities have been directed at understanding the processes that influence DNPAL compound migration and treatmentmore » in LPM and to assessing the operation and performance of the remediation technologies developed and tested. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Harrington, Brian A.; Brown, S.; Corven, James; Bart, Jonathan
2002-01-01
Shorebirds are among the most highly migratory creatures on earth. Both the study of their ecology and ongoing efforts to conserve their populations must reflect this central aspect of their biology. Many species of shorebirds use migration and staging sites scattered throughout the hemisphere to complete their annual migrations between breeding areas and nonbreeding habitats (Morrison 1984). The vast distances between habitats they use pose significant challenges for studying their migration ecology. At the same time, the large number of political boundaries shorebirds cross during their epic migrations create parallel challenges for organizations working on their management and conservation.Nebel et al. (2002) represent a collaborative effort to understand the conservation implications of Western Sandpiper (Calidris mauri) migration ecology on a scale worthy of this highly migratory species. The data sets involved in the analysis come from four U.S. states, two Canadian provinces, and a total of five nations. Only by collaborating on this historic scale were the authors able to assemble the information necessary to understand important aspects of the migration ecology of this species, and the implications for conservation of the patterns they discovered.Collaborative approaches to shorebird migration ecology developed slowly over several decades. The same period also saw the creation of large-scale efforts to monitor and conserve shorebirds. This overview first traces the history of the study of migration ecology of shorebirds during that fertile period, and then describes the monitoring and protection efforts that have been developed in an attempt to address the enormous issues of scale posed by shorebird migration ecology and conservation.
Hughes Clarke, John E.
2016-01-01
Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503
Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing
Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.
2014-01-01
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecologica...
Vitrac, Olivier; Challe, Blandine; Leblanc, Jean-Charles; Feigenbaum, Alexandre
2007-01-01
The contamination risk in 12 packaged foods by substances released from the plastic contact layer has been evaluated using a novel modeling technique, which predicts the migration that accounts for (i) possible variations in the time of contact between foodstuffs and packaging and (ii) uncertainty in physico-chemical parameters used to predict migration. Contamination data, which are subject to variability and uncertainty, are derived through a stochastic resolution of transport equations, which control the migration into food. Distributions of contact times between packaging materials and foodstuffs were reconstructed from the volumes and frequencies of purchases of a given panel of 6422 households, making assumptions about household storage behaviour. The risk of contamination of the packaged foods was estimated for styrene (a monomer found in polystyrene yogurt pots) and 2,6-di-tert-butyl-4-hydroxytoluene (a representative of the widely used phenolic antioxidants). The results are analysed and discussed regarding sensitivity of the model to the set parameters and chosen assumptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan Lu; CHI Zhang; Hai Hanag
2014-04-01
Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less
NASA Astrophysics Data System (ADS)
Menant, Armel; Jolivet, Laurent; Sternai, Pietro; Ducoux, Maxime; Augier, Romain; Rabillard, Aurélien; Gerya, Taras; Guillou-Frottier, Laurent
2014-05-01
In subduction environment, magmatic-hydrothermal processes, responsible for the emplacement of magmatic bodies and related mineralization, are strongly controlled by slab dynamics. This 3D dynamics is often complex, resulting notably in spatial evolution through time of mineralization and magmatism types and in fast kinematic changes at the surface. Study at different scales of the distribution of these magmatic and hydrothermal products is useful to better constrain subduction dynamics. This work is focused on the eastern Mediterranean, where the complex dynamics of the Tethyan active margin since the upper Cretaceous is still largely debated. We propose new kinematic reconstructions of the region also showing the distribution of magmatic products and mineralization in space and time. Three main periods have thus been identified with a general southward migration of magmatic and ore bodies. (1) From late Cretaceous to lower Paleocene, calc-alkaline magmatism and porphyry Cu deposits emplaced notably in the Balkans, along a long linear cordillera. (2) From late Paleocene to Eocene, a barren period occurred while the Pelagonian microcontinent was buried within the subduction zone. (3) Since the Oligocene, Au-rich deposits and related K-rich magmatism emplaced in the Rhodopes, the Aegean and western Anatolian extensional domains in response to fast slab retreat and related mantle flow inducing the partial melting of the lithospheric mantle or the base of the upper crust where Au was previously stored. The emplacement at shallow level of this mineralization was largely controlled by large-scale structures that drained the magmatic-hydrothermal fluids. In the Cyclades for instance, field studies show that Au-rich but also base metal-rich ore deposits are syn-extensional and spatially related to large-scale detachment systems (e.g. on Tinos, Mykonos, Serifos islands), which are recognized as subduction-related structures. These results highlight the importance at different scales of subduction dynamics and related mantle flow on the emplacement of mineralization and magmatic bodies. Indeed, besides a general southward migration of the magmatic-hydrothermal activity since the upper Cretaceous from the Balkans to the present-day Aegean volcanic arc, a secondary westward migration is observed during the Miocene from the Menderes massif to the Cyclades. This feature is a possible consequence of a slab tearing event and related mantle flow, as suggested notably by tomographic models below western Anatolia. To further test the effects of slab retreat and tearing on the flow and temperature field within the mantle, we performed 3D thermo-mechanical numerical modeling. Models suggest that the asthenospheric flow induced by the development of a slab tear controls the migration of magmatic products stored at the base of the crust, influencing the distribution of potentially fertile magmas within the upper crust.
Size-selective sorting in bubble streaming flows: Particle migration on fast time scales
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2015-11-01
Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.
Balasubramanian, Madhan; Spencer, A John; Short, Stephanie D; Watkins, Keith; Chrisopoulos, Sergio; Brennan, David S
2016-10-10
The migration of dentists is a major policy challenge facing both developing and developed countries. Dentists from over 120 countries migrate to Australia, and a large proportion are from developing countries. The aim of the study was to assess the life story experience (LSE) of migrant dentists in Australia, in order to address key policy challenges facing dentist migration. A national survey of all migrant dentists resident in Australia was conducted in 2013. Migrant experiences were assessed through a suite of LSE scales, developed through a qualitative-quantitative study. Respondents rated experiences using a five-point Likert scale. A total of 1022 migrant dentists responded to the survey (response rate = 54.5%). LSE1 (health system and general lifestyle concerns in home country), LSE2 (appreciation towards Australian way of life) and LSE3 (settlement concerns in Australia) scales varied by migrant dentist groups, sex, and years since arrival to Australia (chi-square, P < .05). In a logistic regression model, migrants mainly from developing countries (ie, the examination pathway group) faced greater health system and general lifestyle concerns in their home countries (9.32; 3.51-24.72) and greater settlement challenges in Australia (5.39; 3.51-8.28), compared to migrants from well-developed countries, who obtained direct recognition of qualifications. Migrants also are more appreciative towards the Australian way of life if they had lived at least ten years in Australia (1.97; 1.27-3.05), compared to migrants who have lived for less than ten years. Migrant dentists, mainly from developing countries, face challenges both in their home countries and in Australia. Our study offers evidence for multi-level health workforce governance and calls for greater consensus towards an international agenda to address dentist migration. Better integration of dentist migration with the mainstream health workforce governance is a viable and opportunistic way forward. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Desland, Fiona A; Afzal, Aqeela; Warraich, Zuha; Mocco, J
2014-01-01
Animal models of stroke have been crucial in advancing our understanding of the pathophysiology of cerebral ischemia. Currently, the standards for determining neurological deficit in rodents are the Bederson and Garcia scales, manual assessments scoring animals based on parameters ranked on a narrow scale of severity. Automated open field analysis of a live-video tracking system that analyzes animal behavior may provide a more sensitive test. Results obtained from the manual Bederson and Garcia scales did not show significant differences between pre- and post-stroke animals in a small cohort. When using the same cohort, however, post-stroke data obtained from automated open field analysis showed significant differences in several parameters. Furthermore, large cohort analysis also demonstrated increased sensitivity with automated open field analysis versus the Bederson and Garcia scales. These early data indicate use of automated open field analysis software may provide a more sensitive assessment when compared to traditional Bederson and Garcia scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng
2017-01-25
This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less
Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.
2018-01-01
Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.
The Demographic Crisis and Global Migration - Selected Issues
NASA Astrophysics Data System (ADS)
Frątczak, Ewa Zofia
2016-01-01
Currently the world is undergoing a serious demographic shift, characterised by slowing population growth in developed countries. However, the population in certain less-developed regions of the world is still increasing. According to UN data, as of 2015, (World...2015), 244 million people (or 3.3% of the global population) lived outside their country of birth. While most of these migrants travel abroad looking for better economic and social conditions, there are also those forced to move by political crises, revolutions and war. Such migration is being experienced currently in Europe, a continent which is thus going through both a demographic crisis related to the low fertility rate and population ageing, and a migration crisis. Global migrations link up inseparably with demographic transformation processes taking place globally and resulting in the changing tempo of population growth. Attracting and discouraging migration factors are changing at the same time, as is the scale and range of global migration, and with these also the global consequences. The focus of work addressed in this paper is on global population, the demographic transformation and the role of global migrations, as well as the range and scale of international migration, and selected aspects of global migrations including participation in the global labour market, the scale of monetary transfers (remittances) and the place of global migration in the UN 2030 Agenda for Sustainable Development (Transforming...2015) and the Europe of two crises (Domeny 2016).
Barrow, Wylie C.; Baldwin, Michael J.; Randall, Lori A.; Pitre, John; Dudley, Kyle J.
2013-01-01
This project was initiated to assess migrating and wintering bird use of lands enrolled in the Natural Resources Conservation Service’s (NRCS) Migratory Bird Habitat Initiative (MBHI). The MBHI program was developed in response to the Deepwater Horizon oil spill in 2010, with the goal of improving/creating habitat for waterbirds affected by the spill. In collaboration with the University of Delaware (UDEL), we used weather surveillance radar data (Sieges 2014), portable marine radar data, thermal infrared images, and visual observations to assess bird use of MBHI easements. Migrating and wintering birds routinely make synchronous flights near dusk (e.g., departure during migration, feeding flights during winter). Weather radars readily detect birds at the onset of these flights and have proven to be useful remote sensing tools for assessing bird-habitat relations during migration and determining the response of wintering waterfowl to wetland restoration (e.g., Wetlands Reserve Program lands). However, ground-truthing is required to identify radar echoes to species or species group. We designed a field study to ground-truth a larger-scale, weather radar assessment of bird use of MBHI sites in southwest Louisiana. We examined seasonal bird use of MBHI fields in fall, winter, and spring of 2011-2012. To assess diurnal use, we conducted total area surveys of MBHI sites in the afternoon, collecting data on bird species composition, abundance, behavior, and habitat use. In the evenings, we quantified bird activity at the MBHI easements and described flight behavior (i.e., birds landing in, departing from, circling, or flying over the MBHI tract). Our field sampling captured the onset of evening flights and spanned the period of collection of the weather radar data analyzed. Pre- and post-dusk surveys were conducted using a portable radar system and a thermal infrared camera. Landbirds, shorebirds, and wading birds were commonly found on MBHI fields during diurnal surveys in the fall. Ducks (breeding and early migrating species) were also detected on diurnal surveys, but were less abundant than the previously mentioned taxa. Wading birds were the most abundant taxa observed during evening surveys up to 5 min before dusk when their numbers declined and duck densities increased. Ducks accounted for 64.0% of all birds detected from 0-5 min before dusk. Most ducks observed at that time were flyovers (71.4%), but circling (9.2%), departing (12.1%), and landing birds (7.4%) were also detected. In fall, the portable radar system detected two peaks in bird movement: one shortly before sunset and a second shortly after dusk. The later movement began just before dusk, peaked approximately 9 min after dusk, and concluded within 20 min after dusk. The flight headings of birds changed in relation to time from dusk. In general, the majority of targets flew towards the southwest before dusk and towards the northeast after dusk. The change in flight direction pre- and post-dusk may be related to movements dominated by migratory versus local flight. In winter, ducks, shorebirds, wading birds, and landbirds were the most abundant taxa in diurnal surveys. Geese were abundant at times, but their frequency of occurrence and densities were highly variable. The majority of ducks, shorebirds, and wading birds were observed feeding in MBHI fields. Landbirds and geese were more commonly seen resting. Overwintering ducks and geese dominated the movements near dusk (95.9% of all birds ≤ 5 min pre-dusk). Ducks were more frequently observed landing in (40.8%) and flying over (33.5%) MBHI fields while geese were mainly observed circling (54.7%) and flying over (38.9%) sites. Most of the shorebirds detected Shorebirds, ducks, and wading birds were the most abundant taxa during diurnal surveys of MBHI fields in spring, and the majority of individuals were observed actively foraging rather than resting. Breeding, overwintering, and transient migrant species were all detected on MBHI fields. Near dusk, the majority of birds in flight were ducks (67.7% of all birds) that were flying over (38.2%), departing from (34.2%), or landing in (22.9%) MBHI fields. These results contrast with our winter observations when 40.8% of ducks landed in MBHI fields and 9.1% departed from fields. Portable radar and thermal camera data documented a peak in bird movements shortly after dusk, however, the peak was of lower magnitude than observed in the winter. Thermal camera data identified the birds as mostly shorebirds (57.3%) and waterfowl (40.4%). Flight headings were more variable than winter and lacked an undirectional flow. After the post-dusk movement had concluded, bird activity remained low throughout the night until approximately 30 min before dawn when a small peck in activity was observed. Flight headings during the pre-dawn were variable and multidirectional. We compared bird abundance data collected by each of our three sampling techniques (portable radar, thermal infrared camera, and direct visual observation) for the 45-min observation period immediately preceding dusk; the period when all three survey methods were used simultaneously. Abundance data from the three methods were significantly correlated at P ≤ 0.05. We documented diurnal and nocturnal bird use of MBHI fields. Most observations near dusk in winter, when weather radar data were sampled, were of ducks and geese, and in spring, shorebirds and ducks. Our winter observations show large synchronous movements of waterfowl occurring near dusk. These birds were moving to the NE and feeding in agricultural fields at night. Portable radar data suggest that birds stay in these fields through the night and make return flights near dawn.
Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans
Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan
2015-01-01
Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001 PMID:26083711
The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales
Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.
2013-01-01
Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367
Esposito, Francesca; Ornelas, José; Arcidiacono, Caterina
2015-06-06
In recent years, border control and migration-related detention have become increasingly widespread practices affecting the lives of undocumented migrants, their families, and communities at large. In spite of the concern within academia, few studies have directly witnessed the life and experiences of people confined to migration-related detention centers. In the medical and psychological fields, a considerable body of research has demonstrated the pathogenic nature of detention in terms of mental health, showing an association between length of detention and severity of distress. Nevertheless, it was limited to the assessment of individuals' clinical consequences, mainly focusing on asylum seekers. There currently exists a need to adopt an ecological perspective from which to study detained migrants' experiences as context-dependent, and influenced by power inequalities. This paper addresses this gap. Drawing upon advances in community psychology, we illustrate an ecological framework for the study of migration-related detention contexts, and their effects on the lives of detained migrants and all people exposed to them. Making use of existing literature, Kelly's four principles (interdependence, cycling of resources, adaptation, succession) are analyzed at multiple ecological levels (personal, interpersonal, organizational, communal), highlighting implications for future research in this field. A focus on justice, as a key-dimension of analysis, is also discussed. Wellbeing is acknowledged as a multilevel, dynamic, and value-dependent phenomenon. In presenting this alternative framework, the potential for studying migration-related detention through an ecological lens is highlighted, pointing the way for future fields of study. We argue that ecological multilevel analyses, conceptualized in terms of interdependent systems and with a focus on justice, can enhance the comprehension of the dynamics at play in migration-related detention centers, providing an effective tool to address the multi-level challenges of doing research within them. Furthermore, they can contribute to the development of policies and practices concerned with health, equality, and human rights of all people exposed to migration-related detention. Consistent with these assumptions, empirical studies adopting such a framework are strongly encouraged. These studies should use mixed and multi-method culturally situated designs, based on the development of collaborative and empowering relationships with participants. Ethnographic approaches are recommended.
Plutonium Particle Migration in the Shallow Vadose Zone: The Nevada Test Site as an Analog Site
NASA Astrophysics Data System (ADS)
Hunt, J. R.; Smith, D. K.
2004-12-01
The upper meter of the vadose zone in desert environments is the horizon where wastes have been released and human exposure is determined through dermal, inhalation, and food uptake pathways. This region is also characterized by numerous coupled processes that determine contaminant transport, including precipitation infiltration, evapotranspiration, daily and annual temperature cycling, dust resuspension, animal burrowing, and geochemical weathering reactions. While there is considerable interest in colloidal transport of minerals, pathogenic organisms, and contaminants in the vadose zone, there are limited field sites where the actual occurrence of contaminant migration can be quantified over the appropriate spatial and temporal scales of interest. At the US Department of Energy Nevada Test Site, there have been numerous releases of radionuclides since the 1950's that have become field-scale tracer tests. One series of tests was the four safety shots conducted in an alluvial valley of Area 11 in the 1950's. These experiments tested the ability of nuclear materials to survive chemical explosions without initiating fission reactions. Four above-ground tests were conducted and they released plutonium and uranium on the desert valley floor with only one of the tests undergoing some fission. Shortly after the tests, the sites were surveyed for radionuclide distribution on the land surface using aerial surveys and with depth. Additional studies were conducted in the 1970's to better understand the fate of plutonium in the desert that included studies of depth distribution and dust resuspension. More recently, plutonium particle distribution in the soil profile was detected using autoradiography. The results to date demonstrate the vertical migration of plutonium particles to depths in excess of 30 cm in this arid vadose zone. While plutonium migration at the Nevada Test Site has been and continues to be a concern, these field experiments have become analog sites for the release of radiological materials potentially important to consequence management investigations. In particular, these 50-year old experiments with long and detailed site investigations under relative undisturbed conditions offer insights into transport pathways that must be represented in simulation models that evaluate responses to radiological dispersal devices (RDDs). A compilation of the available site characterization data suggests additional experimental and modeling programs that can ultimately quantify the fate of contaminant particles released at the soil surface.
Tempo-spatial analysis of Fennoscandian intraplate seismicity
NASA Astrophysics Data System (ADS)
Roberts, Roland; Lund, Björn
2017-04-01
Coupled spatial-temporal patterns of the occurrence of earthquakes in Fennoscandia are analysed using non-parametric methods. The occurrence of larger events is unambiguously and very strongly temporally clustered, with major implications for the assessment of seismic hazard in areas such as Fennoscandia. In addition, there is a clear pattern of geographical migration of activity. Data from the Swedish National Seismic Network and a collated international catalogue are analysed. Results show consistent patterns on different spatial and temporal scales. We are currently investigating these patterns in order to assess the statistical significance of the tempo-spatial patterns, and to what extent these may be consistent with stress transfer mechanism such as coulomb stress and pore fluid migration. Indications are that some further mechanism is necessary in order to explain the data, perhaps related to post-glacial uplift, which is up to 1cm/year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit
The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report,more » we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.« less
[Radar as imaging tool in ecology and conservation biology].
Matyjasiak, Piotr
2017-01-01
Migrations and dispersal are among the most important ecological processes that shape ecosystems and influence our economy, health and safety. Movements of birds, bats and insects occur in a large spatial scale - regional, continental, or intercontinental. However, studies of these phenomena using classic methods are usually local. Breakthrough came with the development of radar technology, which enabled researchers to study animal movements in the atmosphere in a large spatial and temporal scale. The aim of this article was to present the radar imaging methods used in the research of aerial movements of birds, bats and insects. The types of radars used in research are described, and examples of the use of radar in basic research and in conservation biology are discussed. Radar visualizations are used in studies on the effect of meteorological conditions on bird migration, on spatial and temporal dynamics of movements of birds, bats and insects, and on the mechanism of orientation of migrating birds and insects. In conservation biology research radars are used in the monitoring of endangered species of birds and bats, to monitor bird activity at airports, as well as in assessing the impact of high constructions on flying birds and bats.
Texture sensing of cytoskeletal dynamics in cell migration
NASA Astrophysics Data System (ADS)
Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang
Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.
Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain.
Khlghatyan, Jivan; Saghatelyan, Armen
2012-09-12
There is a substantial body of evidence indicating that new functional neurons are constitutively generated from an endogenous pool of neural stem cells in restricted areas of the adult mammalian brain. Newborn neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) to their final destination in the olfactory bulb (OB). In the RMS, neuroblasts migrate tangentially in chains ensheathed by astrocytic processes using blood vessels as a structural support and a source of molecular factors required for migration. In the OB, neuroblasts detach from the chains and migrate radially into the different bulbar layers where they differentiate into interneurons and integrate into the existing network. In this manuscript we describe the procedure for monitoring cell migration in acute slices of the rodent brain. The use of acute slices allows the assessment of cell migration in the microenvironment that closely resembling to in vivo conditions and in brain regions that are difficult to access for in vivo imaging. In addition, it avoids long culturing condition as in the case of organotypic and cell cultures that may eventually alter the migration properties of the cells. Neuronal precursors in acute slices can be visualized using DIC optics or fluorescent proteins. Viral labeling of neuronal precursors in the SVZ, grafting neuroblasts from reporter mice into the SVZ of wild-type mice, and using transgenic mice that express fluorescent protein in neuroblasts are all suitable methods for visualizing neuroblasts and following their migration. The later method, however, does not allow individual cells to be tracked for long periods of time because of the high density of labeled cells. We used a wide-field fluorescent upright microscope equipped with a CCD camera to achieve a relatively rapid acquisition interval (one image every 15 or 30 sec) to reliably identify the stationary and migratory phases. A precise identification of the duration of the stationary and migratory phases is crucial for the unambiguous interpretation of results. We also performed multiple z-step acquisitions to monitor neuroblasts migration in 3D. Wide-field fluorescent imaging has been used extensively to visualize neuronal migration. Here, we describe detailed protocol for labeling neuroblasts, performing real-time video-imaging of neuroblast migration in acute slices of the adult mouse forebrain, and analyzing cell migration. While the described protocol exemplified the migration of neuroblasts in the adult RMS, it can also be used to follow cell migration in embryonic and early postnatal brains.
Collisions of deformable cells lead to collective migration
NASA Astrophysics Data System (ADS)
Aranson, Igor; Löber, Jakob; Ziebert, Falko
2015-03-01
Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - actomyosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. J. L. acknowledges funding from the German Science Foundation (DFG) within the GRK 1558. F. Z. acknowledges funding from the German Science Foundation (DFG) via Project ZI 1232/2-1. I. S. A. was supported by the US Department of Energy (DOE), Office of.
Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd
2015-04-01
The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.
NASA Astrophysics Data System (ADS)
Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare
2016-04-01
Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts) affected by large scale fracture (semblance image) and seem consistent with a suspended mud/sand mixture non-fluidized fluid flow. Near-Middle-Far offsets amplitude analysis confirms that most of the amplitude anomalies within the pipes conduit and terminus are only partly related to gas. An interpretation of the possible texture observed is proposed with a discussion of the noise and artefact induced by resolution and migration problems. Possible hypothetical formation mechanisms for those Pipes are discussed.
Torques Induced by Scattered Pebble-flow in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Pessah, Martin E.
2018-03-01
Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.
Hayamizu, Kikuko; Seki, Shiro; Haishi, Tomoyuki
2018-06-21
The migration behaviours of Li+ in three garnet- and one NASICON-type solid oxide electrolytes were studied on the micrometre scale by pulsed-gradient spin-echo (PGSE) 7Li NMR diffusion spectroscopy to clarify common and specific characteristics of each electrolyte. In these solid electrolytes, clear evidences of grain boundary effects in the diffusion of Li+ were not observed. The Li+ diffusion constants were dependent on parameters such as observation time (Δ) and pulsed field gradient (PFG) strength (g) for all the studied inorganic solid electrolytes. For low Δ values, Li+ ions underwent collisions and diffractions with diffraction distance Rdiffraction [μm]. The apparent Li+ diffusion constants (Dapparent [m2 s-1]) exhibited distributions in a wide range. In this paper, we introduced the apparent diffusion radius, rradius [μm], and compared it with Rdiffraction and mean square displacement (MSD) [μm]; the lengths of these distances were of the micrometre order (10-6 m). The relations between the values of rradius, Rdiffraction and MSD suggested that the migration behaviours of Li+ on the micrometre scale were complicated. Using high Δ and high g values, we obtained an equilibrated value of DLi. The temperature dependences of the number of carrier ions were estimated from the DLi values and ionic conductivities in the four solid oxide electrolytes. For simple comparison and reference, the data of DLi and ionic conductivity of LiPF6 in 1 M solution of propylene carbonate were added.
Plant-based plume-scale mapping of tritium contamination in desert soils
Andraski, Brian J.; Stonestrom, David A.; Michel, R.L.; Halford, K.J.; Radyk, J.C.
2005-01-01
Plant-based techniques were tested for field-scale evaluation of tritium contamination adjacent to a low-level radioactive waste (LLRW) facility in the Amargosa Desert, Nevada. Objectives were to (i) characterize and map the spatial variability of tritium in plant water, (ii) develop empirical relations to predict and map subsurface contamination from plant-water concentrations, and (iii) gain insight into tritium migration pathways and processes. Plant sampling [creosote bush, Larrea tridentata (Sessé & Moc. ex DC.) Coville] required one-fifth the time of soil water vapor sampling. Plant concentrations were spatially correlated to a separation distance of 380 m; measurement uncertainty accounted for <0.1% of the total variability in the data. Regression equations based on plant tritium explained 96 and 90% of the variation in root-zone and sub-root-zone soil water vapor concentrations, respectively. The equations were combined with kriged plant-water concentrations to map subsurface contamination. Mapping showed preferential lateral movement of tritium through a dry, coarse-textured layer beneath the root zone, with concurrent upward movement through the root zone. Analysis of subsurface fluxes along a transect perpendicular to the LLRW facility showed that upward diffusive-vapor transport dominates other transport modes beneath native vegetation. Downward advective-liquid transport dominates at one endpoint of the transect, beneath a devegetated road immediately adjacent to the facility. To our knowledge, this study is the first to document large-scale subsurface vapor-phase tritium migration from a LLRW facility. Plant-based methods provide a noninvasive, cost-effective approach to mapping subsurface tritium migration in desert areas.
Holocene Development and Progression of Aeolian Blowouts on Padre Island National Seashore
NASA Astrophysics Data System (ADS)
Jewell, M. E.; Houser, C.
2012-12-01
Recent evidence suggests that development of dune blowouts along Padre Island National Seashore, Texas, and migration of the parabolic dunes to the backbarrier shoreline are the primary mechanisms by which the island transgresses in response to relative sea level rise. This study characterizes the development and migration of dune blowouts at decadal and century scales in order to understand these changes. An initial breach, caused by the removal of vegetation, develops along the dune line allowing sediment to be funneled into the dune field. The entrance of the blowout focuses the wind velocity, allowing sediment to be transported into the dune field, covering any vegetation that is present. This process continues as sediment is eroded from the foredune increasing the size of the blowout until the foredune is rebuilt and vegetation stabilizes the entrance. With the front stabilized, the blowout begins its movement across the island. Aerial photographs, LIDAR data, ground penetrating radar, and optically stimulated luminescence were used to track and date the migration of these blowouts. Photographs and satellite images, taken at least twice a decade since the 1940s, were used to track blowouts from their initial conception to their final stabilization by vegetation. Each consecutive blowout was digitized to understand the surface characteristics of the feature. For a greater understanding of the system at the decadal scale, LIDAR data collected by the USGS and other agencies was used to create an elevation model in order compute the volumetric changes within the northern portion of the National Seashore. Within the larger study area, three smaller sites: a young blowout that had just begun to close as the foredune is reestablished, a "middle age" blowout that was detached from the foredune and become an active dune field, and a former blowout now stabilized by vegetation, were selected for geophysical analysis . A Trimble GX 3-D scanner was used to determine the current volume of the blowouts and to create an end point for the elevation model at the smaller scale. Then a ground penetrating radar survey was completed at both dune normal and the average direction of travel for each blowout to show the bounding layers, cross stratification, and bedding planes of the migrating blowout without physical disruption. Vibracoring and optically stimulated luminescence provided a physical comparison of the stratigraphy to the data returned in the GPR survey. By using this comparison, sediment type, structures, and burial age are compared to geomorphic properties to determine the abundance of storms, sediment budget, and vegetation extent, which are key characteristics in understanding blowouts. These factors are integral in understanding how the blowouts have changed over the past 70 years and how these variables will affect evolution and spatial distribution of the shoreline.
Depressive Mood Among Within-Country Migrants in Periurban Shantytowns of Lima, Peru.
Ruiz-Grosso, Paulo; Bernabe-Ortiz, Antonio; Diez-Canseco, Francisco; Gilman, Robert H; Checkley, William; Bennett, Ian M; Miranda, J Jaime
2015-12-01
In low- and middle-income countries, migration to urban settings has reshaped the sprawl and socio demographic profiles of major cities. Depressive episodes make up a large portion of the burden of disease worldwide and are related to socio-demographic disruptions. As a result of terrorism, political upheaval, followed by economic development, Peru has undergone major demographic transitions over the previous three decades including large migrations within the country. We aimed to determine the prevalence of current depressive mood and its relationship with parameters of internal migration, i.e. region of origin, age at migration, and years since migration. A community-wide census was carried out between January and June 2010 within a shantytown immigrant receiving community in Lima, Peru. One male or female adult per household completed a survey. Depressive mood was assessed with a 2-item Center for Epidemiologic Studies Depression (CESD) scale. Migration-related variables included place of birth, duration of residence in Lima, and age at migration. Prevalence ratios (PR) and 95% confidence intervals (95% CI) were calculated. A total of 8,551 out of 9,561 participants, response rate 89%, participated in the census. Of these, 8,091 records were analyzed: 71.8% were women [average age 39.4 (SD 13.9 years)] and 59.3% were immigrants. The overall prevalence of individuals with current depressive mood was 17.1% (95% CI 16.2-17.9%) and varied significantly by all socio-demographic and migration variables assessed. On unadjusted analyses, immigrants to Lima had higher prevalence of depressive mood if they originated in other costal or Andean areas, had lived in Lima for more than 20 years, or were <30 years of age when they out-migrated. When controlling for age, gender and socio-demographic variables the association was no longer significant, the only exception being a 20% lower prevalence of current depressive mood among those who out-migrated aged ≥30 years old (PR = 0.79; 95% CI 0.63-0.98). In conclusion, these results suggest that current depressive mood is very prevalent in this immigrant receiving community. Among all proxies for internal migration explored, in fully adjusted models, there was evidence of an association between age at migration (≥30 years old) and a lower probability of current depressive mood compared to non-migrants.
NASA Astrophysics Data System (ADS)
Eustes, A. W.; Fleckenstein, W. W.; Stone, C.; Howell, P.
2015-12-01
The United States National Science Foundation, engaging 29 researchers at nine institutions, has funded a Sustainability Research Network (SRN) focused on natural gas development. The mission of this Sustainability Research Network is to provide a logical, science-based framework for evaluating the environmental, economic, and social trade-offs between development of natural gas resources and protection of water and air resources and to convey the results of these evaluations to the public in a way that improves the development of policies and regulations governing natural gas and oil development. Currently, there are a wide range of estimates of the probability of shallow aquifer contamination. There are a series of independent events that must occur to allow hydrocarbon migration and estimates were made of these probabilities. An analysis of data from drilling in the Wattenberg field, CO was made to quantify the probability of contamination. It has been determined that there are five events that must each independently happen to allow the migration of fracturing fluids, and there are three events that must occur independently for the migration of hydrocarbons. The lower number of independent events, which must arise for hydrocarbon migration to occur, explains the infrequent, but well publicized natural gas migrations in poorly constructed wellbores, and the lack of such publicized events of hydraulic fracturing fluid contamination, which was confirmed by our analysis. The significance of these results is to help quantify the risks associated with natural gas development, as related to the contamination of surface aquifers. These results will help shape the discussion of the risks of natural gas development and will assist in identifying areas of improved well construction and hydraulic fracturing practices to minimize risk.
NASA Astrophysics Data System (ADS)
Cordier, P.; Sun, X.; Taupin, V.; Fressengeas, C.
2016-12-01
Grain boundaries (GBs) are thin material layers where the lattice rotates from one orientation to the next one within a few nanometers. Because they treat these layers as infinitely thin interfaces, large-scale polycrystalline representations fail to describe their structure. Conversely, atomistic representations provide a detailed description of the GBs, but their character remains discrete and not prone to coarse-graining procedures. Continuum descriptions based on kinematic and crystal defect fields defined at interatomic scale are appealing because they can provide smooth and thorough descriptions of GBs, recovering in some sense the atomistic description and potentially serving as a basis for coarse-grained polycrystalline representations. In this work, a crossover between atomistic description and continuous representation of a MgO tilt boundary in polycrystals is set-up to model the periodic arrays of structural units by using dislocation and disclination dipole arrays along GBs. The strain, rotation, curvature, disclination and dislocation density fields are determined in the boundary area by using the discrete atomic positions generated by molecular dynamics simulations. Then, this continuous disclination/dislocation model is used as part of the initial conditions in elasto-plastic continuum mechanics simulations to investigate the shear-coupled boundary migration of tilt boundaries. The present study leads to better understanding of the structure and mechanical architecture of grain boundaries.
Merrill, Matthew D.
2016-03-11
U.S. Geological Survey National Oil and Gas Assessments (NOGA) of Albian aged clastic reservoirs in the U.S. Gulf Coast region indicate a relatively low prospectivity for undiscovered hydrocarbon resources due to high levels of past production and exploration. Evaluation of two assessment units (AUs), (1) the Albian Clastic AU 50490125, and (2) the Updip Albian Clastic AU 50490126, were based on a geologic model incorporating consideration of source rock, thermal maturity, migration, events timing, depositional environments, reservoir rock characteristics, and production analyses built on well and field-level production histories. The Albian Clastic AU is a mature conventional hydrocarbon prospect with undiscovered accumulations probably restricted to small faulted and salt-associated structural traps that could be revealed using high resolution subsurface imaging and from targeting structures at increased drilling depths that were unproductive at shallower intervals. Mean undiscovered accumulation volumes from the probabilistic assessment are 37 million barrels of oil (MMBO), 152 billion cubic feet of gas (BCFG), and 4 million barrels of natural gas liquids (MMBNGL). Limited exploration of the Updip Albian Clastic AU reflects a paucity of hydrocarbon discoveries updip of the periphery fault zones in the northern Gulf Coastal region. Restricted migration across fault zones is a major factor behind the small discovered fields and estimation of undiscovered resources in the AU. Mean undiscovered accumulation volumes from the probabilistic assessment are 1 MMBO and 5 BCFG for the Updip Albian Clastic AU.
Breaking barriers through collaboration: the example of the Cell Migration Consortium.
Horwitz, Alan Rick; Watson, Nikki; Parsons, J Thomas
2002-10-15
Understanding complex integrated biological processes, such as cell migration, requires interdisciplinary approaches. The Cell Migration Consortium, funded by a Large-Scale Collaborative Project Award from the National Institute of General Medical Science, develops and disseminates new technologies, data, reagents, and shared information to a wide audience. The development and operation of this Consortium may provide useful insights for those who plan similarly large-scale, interdisciplinary approaches.
NASA Astrophysics Data System (ADS)
Lu, C.; Zhang, C.; Huang, H.; Johnson, T.
2012-12-01
Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.
Geovisualization of Local and Regional Migration Using Web-mined Demographics
NASA Astrophysics Data System (ADS)
Schuermann, R. T.; Chow, T. E.
2014-11-01
The intent of this research was to augment and facilitate analyses, which gauges the feasibility of web-mined demographics to study spatio-temporal dynamics of migration. As a case study, we explored the spatio-temporal dynamics of Vietnamese Americans (VA) in Texas through geovisualization of mined demographic microdata from the World Wide Web. Based on string matching across all demographic attributes, including full name, address, date of birth, age and phone number, multiple records of the same entity (i.e. person) over time were resolved and reconciled into a database. Migration trajectories were geovisualized through animated sprites by connecting the different addresses associated with the same person and segmenting the trajectory into small fragments. Intra-metropolitan migration patterns appeared at the local scale within many metropolitan areas. At the scale of metropolitan area, varying degrees of immigration and emigration manifest different types of migration clusters. This paper presents a methodology incorporating GIS methods and cartographic design to produce geovisualization animation, enabling the cognitive identification of migration patterns at multiple scales. Identification of spatio-temporal patterns often stimulates further research to better understand the phenomenon and enhance subsequent modeling.
Convergence of broad-scale migration strategies in terrestrial birds.
La Sorte, Frank A; Fink, Daniel; Hochachka, Wesley M; Kelling, Steve
2016-01-27
Migration is a common strategy used by birds that breed in seasonal environments. Selection for greater migration efficiency is likely to be stronger for terrestrial species whose migration strategies require non-stop transoceanic crossings. If multiple species use the same transoceanic flyway, then we expect the migration strategies of these species to converge geographically towards the most optimal solution. We test this by examining population-level migration trajectories within the Western Hemisphere for 118 migratory species using occurrence information from eBird. Geographical convergence of migration strategies was evident within specific terrestrial regions where geomorphological features such as mountains or isthmuses constrained overland migration. Convergence was also evident for transoceanic migrants that crossed the Gulf of Mexico or Atlantic Ocean. Here, annual population-level movements were characterized by clockwise looped trajectories, which resulted in faster but more circuitous journeys in the spring and more direct journeys in the autumn. These findings suggest that the unique constraints and requirements associated with transoceanic migration have promoted the spatial convergence of migration strategies. The combination of seasonal atmospheric and environmental conditions that has facilitated the use of similar broad-scale migration strategies may be especially prone to disruption under climate and land-use change. © 2016 The Author(s).
nZVI injection into variably saturated soils: Field and modeling study.
Chowdhury, Ahmed I A; Krol, Magdalena M; Kocur, Christopher M; Boparai, Hardiljeet K; Weber, Kela P; Sleep, Brent E; O'Carroll, Denis M
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamic reorganization of river basins.
Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu
2014-03-07
River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.
Numerical Investigation of Force-Free Magnetophoresis of Nonspherical Microparticles
NASA Astrophysics Data System (ADS)
Zhang, Jie; Wang, Cheng
2017-11-01
Our group recently demonstrated novel force-free magnetophoresis to separate nonspherical particles by shape. In this approach, a uniform magnetic field is used to generate a magnetic torque, which breaks the rotational symmetry of the particles and leads to shape-dependent lateral migration of the particles. We use direct numerical simulations to gain a better understanding of this magnetophoresis mechanism by focusing on ellipsoidal microparticles - a representative type of nonspherical particles encountered in biomedical engineering. We study key effects that influence the rotational and translational behaviors, including particle-wall separation distance, direction and strength of the magnetic field, particle aspect ratio and size. The numerical results show that the lateral migration is negligible in the absence of the magnetic field. When the magnetic field is applied, the particles migrate laterally. The migration direction depends on the direction of external magnetic fields, which controls the symmetry property of the particle rotation. These findings agree well with experiments. Our numerical simulations yield a comprehensive understanding of particle migration mechanism, and provide useful guidelines on design of separating devices for non-spherical micro-particles.
NASA Astrophysics Data System (ADS)
Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook
2013-04-01
Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution difference between them. Moreover, assuming a similar reservoir situation to the CO2 storage site in Nagaoka, Japan, we generate time-lapse tomographic data sets for the corresponding CO2 injection process, and make a preliminary interpretation of the data sets.
Modeling nearshore morphological evolution at seasonal scale
Walstra, D.-J.R.; Ruggiero, P.; Lesser, G.; Gelfenbaum, G.
2006-01-01
A process-based model is compared with field measurements to test and improve our ability to predict nearshore morphological change at seasonal time scales. The field experiment, along the dissipative beaches adjacent to Grays Harbor, Washington USA, successfully captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 20 m and as much as 175 m of onshore bar migration. Significant alongshore variability was observed in the morphological response of the sandbars over a 4 km reach of coast. A detailed sensitivity analysis suggests that the model results are more sensitive to adjusting the sediment transport associated with asymmetric oscillatory wave motions than to adjusting the transport due to mean currents. Initial results suggest that alongshore variations in the initial bathymetry are partially responsible for the observed alongshore variable morphological response during the experiment. Copyright ASCE 2006.
Tang, Jing; Tang, Lin; Zhang, Chang; Zeng, Guangming; Deng, Yaocheng; Dong, Haoran; Wang, Jingjing; Wu, Yanan
2015-10-01
Semi-volatile organic compounds (SVOCs) derived from plastic pipes widely used in water distribution definitely influence our daily drinking water quality. There are still few scientific or integrated studies on the release and degradation of the migrating chemicals in pipelines. This investigation was carried out at field sites along a pipeline in Changsha, China. Two chemicals, 2, 4-tert-buthylphenol and 1, 3-diphenylguanidine, were found to be migrating from high density polyethylene (HDPE) pipe material. New pipes released more of these two compounds than older pipes, and microorganisms living in older pipes tended to degrade them faster, indicating that the aged pipes were safer for water transmission. Microorganism degradation in water plays a dominant role in the control of these substances. To minimize the potential harm to human, a more detailed study incorporating assessment of their risk should be carried out, along with seeking safer drinking pipes.
Killgrove, Kristina; Montgomery, Janet
2016-01-01
Migration within the Roman Empire occurred at multiple scales and was engaged in both voluntarily and involuntarily. Because of the lengthy tradition of classical studies, bioarchaeological analyses must be fully contextualized within the bounds of history, material culture, and epigraphy. In order to assess migration to Rome within an updated contextual framework, strontium isotope analysis was performed on 105 individuals from two cemeteries associated with Imperial Rome—Casal Bertone and Castellaccio Europarco—and oxygen and carbon isotope analyses were performed on a subset of 55 individuals. Statistical analysis and comparisons with expected local ranges found several outliers who likely immigrated to Rome from elsewhere. Demographics of the immigrants show men and children migrated, and a comparison of carbon isotopes from teeth and bone samples suggests the immigrants may have significantly changed their diet. These data represent the first physical evidence of individual migrants to Imperial Rome. This case study demonstrates the importance of employing bioarchaeology to generate a deeper understanding of a complex ancient urban center. PMID:26863610
Killgrove, Kristina; Montgomery, Janet
2016-01-01
Migration within the Roman Empire occurred at multiple scales and was engaged in both voluntarily and involuntarily. Because of the lengthy tradition of classical studies, bioarchaeological analyses must be fully contextualized within the bounds of history, material culture, and epigraphy. In order to assess migration to Rome within an updated contextual framework, strontium isotope analysis was performed on 105 individuals from two cemeteries associated with Imperial Rome-Casal Bertone and Castellaccio Europarco-and oxygen and carbon isotope analyses were performed on a subset of 55 individuals. Statistical analysis and comparisons with expected local ranges found several outliers who likely immigrated to Rome from elsewhere. Demographics of the immigrants show men and children migrated, and a comparison of carbon isotopes from teeth and bone samples suggests the immigrants may have significantly changed their diet. These data represent the first physical evidence of individual migrants to Imperial Rome. This case study demonstrates the importance of employing bioarchaeology to generate a deeper understanding of a complex ancient urban center.
The effect of the solar field reversal on the modulation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Thomas, B. T.; Goldstein, B. E.
1983-01-01
There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given.
Effects of direct current electric-field using ITO plate on breast cancer cell migration.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul
2014-01-01
Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
In vitro effects of direct current electric fields on adipose-derived stromal cells.
Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B
2010-06-18
Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.
The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks
NASA Astrophysics Data System (ADS)
Morrison, Sarah Jane
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
Utilizing Lidar Data for Detection of Channel Migration: Taylor Valley, Antarctica
NASA Astrophysics Data System (ADS)
Barlow, M. C.; Telling, J. W.; Glennie, C.; Fountain, A.
2017-12-01
The McMurdo Dry Valleys is the largest ice-free expanse in Antarctica and one of the most studied regions on the continent. The valleys are a hyper-arid, cold-polar desert that receives little precipitation (<50 mm weq yr-1). The valley bottoms are covered in a sandy-gravel, dotted with ice-covered lakes and ponds, and alpine glaciers that descend from the surrounding mountains. Glacial melt feeds the lakes via ephemeral streams that flow 6 - 10 weeks each summer. Field observations indicate that the valley floors, particularly in Taylor Valley, contain numerous abandoned stream channels but, given the modest stream flows, channel migration is rarely observed. Only a few channels have been surveyed in the field due to the slow pace of manual methods. Here we present a method to assess channel migration over a broad region in order to study the pattern of channel migration as a function of climatic and/or geologic gradients in Taylor Valley. Raster images of high-resolution topography were created from two lidar (Light Detection and Ranging) datasets and were used to analyze channel migration in Taylor Valley. The first lidar dataset was collected in 2001 by NASA's Airborne Topographic Mapper (ATM) and the second was collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 with an Optech Titan Sensor. The channels were extracted for each dataset using GeoNet, which is an open source tool used for the automatic extraction of channel networks. Channel migration was found to range from 0 to 50 cm per year depending upon the location. Channel complexity was determined based on the change in the number of channel branches and their length. We present the results for various regions in Taylor Valley with differing degrees of stream complexity. Further research is being done to determine factors that drive channel migration rates in this unique environment.
Response of pumas (Puma concolor) to migration of their primary prey in Patagonia.
Gelin, Maria L; Branch, Lyn C; Thornton, Daniel H; Novaro, Andrés J; Gould, Matthew J; Caragiulo, Anthony
2017-01-01
Large-scale ungulate migrations result in changes in prey availability for top predators and, as a consequence, can alter predator behavior. Migration may include entire populations of prey species, but often prey populations exhibit partial migration with some individuals remaining resident and others migrating. Interactions of migratory prey and predators have been documented in North America and some other parts of the world, but are poorly studied in South America. We examined the response of pumas (Puma concolor) to seasonal migration of guanacos (Lama guanicoe) in La Payunia Reserve in northern Patagonia Argentina, which is the site of the longest known ungulate migration in South America. More than 15,000 guanacos migrate seasonally in this landscape, and some guanacos also are resident year-round. We hypothesized that pumas would respond to the guanaco migration by consuming more alternative prey rather than migrating with guanacos because of the territoriality of pumas and availability of alternative prey throughout the year at this site. To determine whether pumas moved seasonally with the guanacos, we conducted camera trapping in the summer and winter range of guanacos across both seasons and estimated density of pumas with spatial mark-resight (SMR) models. Also, we analyzed puma scats to assess changes in prey consumption in response to guanaco migration. Density estimates of pumas did not change significantly in the winter and summer range of guanacos when guanacos migrated to and from these areas, indicating that pumas do not follow the migration of guanacos. Pumas also did not consume more alternative native prey or livestock when guanaco availability was lower, but rather fed primarily on guanacos and some alternative prey during all seasons. Alternative prey were most common in the diet during summer when guanacos also were abundant on the summer range. The response of pumas to the migration of guanacos differs from sites in the western North America where entire prey populations migrate and pumas migrate with their prey or switch to more abundant prey when their primary prey migrates.
Response of pumas (Puma concolor) to migration of their primary prey in Patagonia
Gelin, Maria L.; Thornton, Daniel H.; Novaro, Andrés J.; Gould, Matthew J.; Caragiulo, Anthony
2017-01-01
Large-scale ungulate migrations result in changes in prey availability for top predators and, as a consequence, can alter predator behavior. Migration may include entire populations of prey species, but often prey populations exhibit partial migration with some individuals remaining resident and others migrating. Interactions of migratory prey and predators have been documented in North America and some other parts of the world, but are poorly studied in South America. We examined the response of pumas (Puma concolor) to seasonal migration of guanacos (Lama guanicoe) in La Payunia Reserve in northern Patagonia Argentina, which is the site of the longest known ungulate migration in South America. More than 15,000 guanacos migrate seasonally in this landscape, and some guanacos also are resident year-round. We hypothesized that pumas would respond to the guanaco migration by consuming more alternative prey rather than migrating with guanacos because of the territoriality of pumas and availability of alternative prey throughout the year at this site. To determine whether pumas moved seasonally with the guanacos, we conducted camera trapping in the summer and winter range of guanacos across both seasons and estimated density of pumas with spatial mark–resight (SMR) models. Also, we analyzed puma scats to assess changes in prey consumption in response to guanaco migration. Density estimates of pumas did not change significantly in the winter and summer range of guanacos when guanacos migrated to and from these areas, indicating that pumas do not follow the migration of guanacos. Pumas also did not consume more alternative native prey or livestock when guanaco availability was lower, but rather fed primarily on guanacos and some alternative prey during all seasons. Alternative prey were most common in the diet during summer when guanacos also were abundant on the summer range. The response of pumas to the migration of guanacos differs from sites in the western North America where entire prey populations migrate and pumas migrate with their prey or switch to more abundant prey when their primary prey migrates. PMID:29211753
Migration und Flucht als Forschungsthemen der Geographie. Eine Standortbestimmung
NASA Astrophysics Data System (ADS)
Pott, Andreas; Schmiz, Antonie
2018-04-01
The contribution at hand argues that migration, especially of refugees, has received growing recognition in public and academic debates in the past few years. It traces the reciprocal references to a highly dynamic research subject within migration scholarship, public discourse, and politics. It thereby highlights the value and risks of a space-related perspective. In addition to an outline of established and newly emerging research fields within geographic migration research, the contribution opens the debate on practical implications of the addressed topical challenges within the field.
Migration und Flucht als Forschungsthemen der Geographie - Eine Standortbestimmung
NASA Astrophysics Data System (ADS)
Pott, Andreas; Schmiz, Antonie
2018-03-01
The contribution at hand argues that migration, especially of refugees, has received growing recognition in public and academic debates in the past few years. It traces the reciprocal references to a highly dynamic research subject within migration scholarship, public discourse, and politics. It thereby highlights the value and risks of a space-related perspective. In addition to an outline of established and newly emerging research fields within geographic migration research, the contribution opens the debate on practical implications of the addressed topical challenges within the field.
A multi-scale examination of stopover habitat use by birds
Buler, J.J.; Moore, F.R.; Woltmann, S.
2007-01-01
Most of our understanding of habitat use by migrating land birds comes from studies conducted at single, small spatial scales, which may overemphasize the importance of intrinsic habitat factors, such as food availability, in shaping migrant distributions. We believe that a multi-scale approach is essential to assess the influence of factors that control en route habitat use. We determined the relative importance of eight variables, each operating at a habitat-patch, landscape, or regional spatial scale, in explaining the differential use of hardwood forests by Nearctic-Neotropical land birds during migration. We estimated bird densities through transect surveys at sites near the Mississippi coast during spring and autumn migration within landscapes with variable amounts of hardwood forest cover. At a regional scale, migrant density increased with proximity to the coast, which was of moderate importance in explaining bird densities, probably due to constraints imposed on migrants when negotiating the Gulf of Mexico. The amount of hardwood forest cover at a landscape scale was positively correlated with arthropod abundance and had the greatest importance in explaining densities of all migrants, as a group, during spring, and of insectivorous migrants during autumn. Among landscape scales ranging from 500 m to 10 km radius, the densities of migrants were, on average, most strongly and positively related to the amount of hardwood forest cover within a 5 km radius. We suggest that hardwood forest cover at this scale may be an indicator of habitat quality that migrants use as a cue when landing at the end of a migratory flight. At the patch scale, direct measures of arthropod abundance and plant community composition were also important in explaining migrant densities, whereas habitat structure was of little importance. The relative amount of fleshy-fruited trees was positively related and was the most important variable explaining frugivorous migrant density during autumn. Although constraints extrinsic to habitat had a moderate role in explaining migrant distributions, our results are consistent with the view that food availability is the ultimate factor shaping the distributions of birds during stopover. ?? 2007 by the Ecological Society of America.
Electro-migration of impurities in TlBr
NASA Astrophysics Data System (ADS)
Kim, Ki Hyun; Kim, Eunlim; Kim, H.; Tappero, R.; Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Cirignano, L.; James, R. B.
2013-10-01
We observed the electro-migration of Cu, Ag, and Au impurities that exist in positive-ion states in TlBr detectors under electric field strengths typically used for device operation. The migration occurred predominantly through bulk- and specific-channels, which are presumed to be a network of grain and sub-grain boundaries. The electro-migration velocity of Cu, Ag, and Au in TlBr is about 4-8 × 10-8 cm/s at room temperature under an electric field of 500-800 V/mm. The instability and polarization effects of TlBr detectors might well be correlated with the electro-migration of residual impurities in TlBr, which alters the internal electric field over time. The effect may also have been due to migration of the electrode material itself, which would allow for the possibility of a better choice for contact material and for depositing an effective diffusion barrier. From our findings, we suggest that applying our electro-migration technique for purifying material is a promising new way to remove electrically active metallic impurities in TlBr crystals, as well as other materials.
Wang, Xiaoyu; Gao, Yuxuan; Shi, Haigang; Liu, Na; Zhang, Wei; Li, Hongbo
2016-09-01
Exogenic electric fields can effectively accelerate bone healing and remodeling through the enhanced migration of bone marrow mesenchymal stem cells (BMSCs) toward the injured area. This study aimed to determine the following: (1) the direction of rat BMSC (rBMSC) migration upon exposure to a direct current electric field (DCEF), (2) the optimal DCEF intensity and duration, and (3) the possible regulatory role of SDF-1/CXCR4 axis in rBMSC migration as induced by DCEF. Results showed that rBMSCs migrated to the positive electrode of the DCEF, and that the DCEF of 200 mV/mm for 4 h was found to be optimal in enhancing rBMSC migration. This DCEF strength and duration also upregulated the expression of osteoblastic genes, including ALP and OCN, and upregulated the expression of ALP and Runx2 proteins. Moreover, when CXCR4 was inhibited, rBMSC migration due to DCEF was partially blocked. These findings indicated that DCEF can effectively induce rBMSC migration. A DCEF of 200 mV/mm for 4 h was recommended because of its ability to promote rBMSC migration, proliferation, and osteogenic differentiation. The SDF-1/CXCR4 signaling pathway may play an important role in regulating the DCEF-induced migration of rBMSCs.
Wang, Jianlong; Zhang, Pingping; Yang, Liqiong; Huang, Tao
2016-01-01
Bioretention technology, a low-impact development stormwater management measure, was evaluated for its ability to remove heavy metals (specifically cadmium, Cd) from urban stormwater runoff. Fine sand, zeolite, sand and quartz sand were selected as composite bioretention media. The effects of these materials on the removal efficiency, chemical forms, and accumulation and migration characteristics of Cd were examined in laboratory scale bioretention columns. Heretofore, few studies have examined the removal of Cd by bioretention. A five-step sequential extraction method, a single-contamination index method, and an empirical migration equation were used in the experiments. The average Cd removal efficiency of quartz sand approached 99%, and removal by the other media all exceeded 90%. The media types markedly affected the forms of Cd found in the columns as well as its vertical migration rate. The Cd accumulated in the four media was mainly in residual form; moreover, accumulation of Cd occurred mainly in the surface layer of the bioretention column. The migration depth of Cd in the four media increased with elapsed time, in the following sequence: zeolite>quartz sand>fine sand>sand. In contrast, the migration rate decreased with elapsed time, and the migration rate of Cd was lowest in sand (0.015 m per annum over the first ten years). The comprehensive risk index analysis indicated that the risk arising from Cd discharge to surface water was "intermediate", and that the degree of risk was lowest in sand, then quartz sand, zeolite, and fine sand in sequence. These results indicate that the adsorption and accumulation of Cd in the four media are more significant than the migration of Cd. In addition, the results of Cd risk assessment for the effluent indicate that each of the four media can serve as long-term adsorption material in a bioretention facility for purifying stormwater runoff. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue
2017-10-01
In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.
Crowe, A S; Booty, W G
1995-05-01
A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.
Warne, Robin W; Proudfoot, Glenn A; Crespi, Erica J
2015-02-01
Diverse biomarkers including stable isotope, hormonal, and ecoimmunological assays are powerful tools to assess animal condition. However, an integrative approach is necessary to provide the context essential to understanding how biomarkers reveal animal health in varied ecological conditions. A barrier to such integration is a general lack of awareness of how shared extraction methods from across fields can provide material from the same animal tissues for diverse biomarker assays. In addition, the use of shared methods for extracting differing tissue fractions can also provide biomarkers for how animal health varies across time. Specifically, no study has explicitly illustrated the depth and breadth of spacial and temporal information that can be derived from coupled biomarker assessments on two easily collected tissues: blood and feathers or hair. This study used integrated measures of glucocorticoids, stable isotopes, and parasite loads in the feathers and blood of fall-migrating Northern saw-whet owls (Aegolius acadicus) to illustrate the wealth of knowledge about animal health and ecology across both time and space. In feathers, we assayed deuterium (δD) isotope and corticosterone (CORT) profiles, while in blood we measured CORT and blood parasite levels. We found that while earlier migrating owls had elevated CORT levels relative to later migrating birds, there was also a disassociation between plasma and feather CORT, and blood parasite loads. These results demonstrate how these tissues integrate time periods from weeks to seasons and reflect energetic demands during differing life stages. Taken together, these findings illustrate the potential for integrating diverse biomarkers to assess interactions between environmental factors and animal health across varied time periods without the necessity of continually recapturing and tracking individuals. Combining biomarkers from diverse research fields into an integrated framework hold great promise for advancing our understanding of environmental effects on animal health.
NASA Astrophysics Data System (ADS)
Prasad, Suraj; Sen, Anjan
2017-04-01
River bank erosion is one of the major natural hazards in India. Basically it is a natural phenomenon, but the role of anthropogenic factor to trigger the problem is undeniable. In West Bengal, river bank erosion in Ganga River has become an acute problem in Malda and Murshidabad districts. In Musrshidabad district alone, more than 350 Km2 land has been lost in the past four decades and more than 80000 persons have been displaced in the entire state of West Bengal. The trigger for such large scale erosional work has been both natural as well as anthropogenic. Ganga River in West Bengal flows through an underdeveloped river channel, leading to frequent changes in the course of the river that further cause riverbank erosion along the riparian zones of the river. The construction of Farakka Barrage in Malda district in 1975 has only exacerbated the problem, causing siltation and associated erosional processes. The present work deals with the social impacts of the physical process of erosion, and primarily focuses on the migration pattern of uprooted communities of Malda and Murshidabad districts. The study uses Landsat Images and SRTM DEM to assess the changes in the course of Ganga River and primary survey to discern the present and future trends of migration in the affected areas, and concludes with an assessment of the social-ecological-landscape relationships in a region undergoing large scale physical as well as demographic change. Keywords: River Bank Erosion, Ganga River, Farakka Barrage, Landsat, SRTM DEM, Migration
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul
2015-05-01
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.
Lonsdorf, Eric V.; Thogmartin, Wayne E.; Jacobi, Sarah; Coppen, Jorge; Davis, Amélie Y.; Fox, Timothy J.; Heglund, Patricia J.; Johnson, Rex; Jones, Tim; Kenow, Kevin P.; Lyons, James E.; Luke, Kirsten E.; Still, Shannon; Tavernia, Brian G.
2016-01-01
Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations. This model moves a mallard-like bird (Anas platyrhynchos), through spring and fall migration as a function of caloric gains and losses across a continental scale energy landscape. We predicted with this model that fall migration, where birds moved from breeding to wintering habitat, took a mean of 27.5 days of flight with a mean seasonal survivorship of 90.5% (95% CI = 89.2%, 91.9%) whereas spring migration took a mean of 23.5 days of flight with mean seasonal survivorship of 93.6% (95% CI = 92.5%, 94.7%). Sensitivity analyses suggested that survival during migration was sensitive to flight speed, flight cost, the amount of energy the animal could carry and the spatial pattern of energy availability, but generally insensitive to total energy availability per se. Nevertheless, continental patterns in the bird-use days occurred principally in relation to wetland cover and agricultural habitat in the fall. Bird-use days were highest in both spring and fall in the Mississippi Alluvial Valley and along the coast and near-shore environments of South Carolina. Spatial sensitivity analyses suggested that locations nearer to migratory endpoints were less important to survivorship; for instance, removing energy from a 1,036 km2 stopover site at a time from the Atlantic Flyway suggested coastal areas between New Jersey and North Carolina, including Chesapeake Bay and the North Carolina piedmont, are essential locations for efficient migration and increasing survivorship during spring migration but not locations in Ontario and Massachusetts. This sort of spatially explicit information may allow decision-makers to prioritize their conservation actions toward locations most influential to migratory success. Thus, this mechanistic model of avian migration provides a decision-analytic medium integrating the potential consequences of local actions to flyway-scale phenomena.
Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.
Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie
2017-10-01
The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.
Mead, Reginald; Paxton, John; Sojda, Richard S.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.
2010-01-01
Radar ornithology has provided tools for studying the movement of birds, especially related to migration. Researchers have presented qualitative evidence suggesting that birds, or at least migration events, can be identified using large broad scale radars such as the WSR-88D used in the NEXRAD weather surveillance system. This is potentially a boon for ornithologists because such data cover a large portion of the United States, are constantly being produced, are freely available, and have been archived since the early 1990s. A major obstacle to this research, however, has been that identifying birds in NEXRAD data has required a trained technician to manually inspect a graphically rendered radar sweep. A single site completes one volume scan every five to ten minutes, producing over 52,000 volume scans in one year. This is an immense amount of data, and manual classification is infeasible. We have developed a system that identifies biological echoes using machine learning techniques. This approach begins with training data using scans that have been classified by experts, or uses bird data collected in the field. The data are preprocessed to ensure quality and to emphasize relevant features. A classifier is then trained using this data and cross validation is used to measure performance. We compared neural networks, naive Bayes, and k-nearest neighbor classifiers. Empirical evidence is provided showing that this system can achieve classification accuracies in the 80th to 90th percentile. We propose to apply these methods to studying bird migration phenology and how it is affected by climate variability and change over multiple temporal scales.
Improving International Assessment through Evaluation
ERIC Educational Resources Information Center
Rutkowski, David
2018-01-01
In this article I advocate for a new discussion in the field of international large-scale assessments; one that calls for a reexamination of international large-scale assessments (ILSAs) and their use. Expanding on the high-quality work in this special issue I focus on three inherent limitations to international large-scale assessments noted by…
NASA Astrophysics Data System (ADS)
Liang, Chao; Cao, Yingchang; Liu, Keyu; Jiang, Zaixing; Wu, Jing; Hao, Fang
2018-05-01
Lacustrine carbonate-rich shales are well developed within the Mesozoic-Cenozoic strata of the Bohai Bay Basin (BBB) of eastern China and across southeast Asia. Developing an understanding of the diagenesis of these shales is essential to research on mass balance, diagenetic fluid transport and exchange, and organic-inorganic interactions in black shales. This study investigates the origin and distribution of authigenic minerals and their diagenetic characteristics, processes, and pathways at the scale of lacustrine laminae within the Es4s-Es3x shale sequence of the BBB. The research presented in this study is based on thin sections, field emission scanning electron microscope (FESEM) and SEM-catholuminescence (CL) observations of well core samples combined with the use of X-ray diffraction (XRD), energy dispersive spectroscopy, electron microprobe analysis, and carbon and oxygen isotope analyses performed using a laser microprobe mass spectrometer. The dominant lithofacies within the Es4s-Es3x sequence are a laminated calcareous shale (LCS-1) and a laminated clay shale (LCS-2). The results of this study show that calcite recrystallization1 is the overarching diagenetic process affecting the LCS-1, related to acid generation from organic matter (OM) thermal evolution. This evolutionary transition is the key factor driving the diagenesis of this lithofacies, while the transformation of clay minerals is the main diagenetic attribute of the LCS-2. Diagenetic differences occur within different laminae and at variable locations within the same lamina level, controlled by variations in mineral composition and the properties of laminae interfaces. The diagenetic fluid migration scale is vertical and responses (dissolution and replacement) are limited to individual laminae, between zero and 100 μm in width. In contrast, the dominant migration pathway for diagenetic fluid is lateral, along the abrupt interfaces between laminae boundaries, which leads to the vertical transmission of diagenetic responses. The recrystallization boundaries between calcite laminae act as the main migration pathways for the expulsion of hydrocarbons from these carbonate-rich lacustrine shales. However, because the interaction between diagenetic fluids and the shales themselves is limited to the scale of individual lamina, this system is normally closed. The occurrence of abnormal pressure fractures can open the diagenetic system, however, and cause interactions to occur throughout laminae; in particular, the closed-open (C-O) diagenetic process at this scale is critical to this shale interval. Multi-scale C-O systems are ubiquitous and episodic ranging from the scale of laminae to the whole basin. Observations show that such small-scale systems are often superimposed onto larger ones to constitute the complex diagenetic system seen within the BBB combining fluid transport, material and energy exchange, and solid-liquid and organic-inorganic interactions.
Ecologic Immunology of Avian Influenza (H5N1) in Migratory Birds
Stilianakis, Nikolaos I.
2007-01-01
The claim that migratory birds are responsible for the long-distance spread of highly pathogenic avian influenza viruses of subtype H5N1 rests on the assumption that infected wild birds can remain asymptomatic and migrate long distances unhampered. We critically assess this claim from the perspective of ecologic immunology, a research field that analyzes immune function in an ecologic, physiologic, and evolutionary context. Long-distance migration is one of the most demanding activities in the animal world. We show that several studies demonstrate that such prolonged, intense exercise leads to immunosuppression and that migratory performance is negatively affected by infections. These findings make it unlikely that wild birds can spread the virus along established long-distance migration pathways. However, infected, symptomatic wild birds may act as vectors over shorter distances, as appears to have occurred in Europe in early 2006. PMID:17953082
A new fish scale-derived scaffold for corneal regeneration.
Lin, Chien Chen; Ritch, Robert; Lin, Shang Ming; Ni, Mei-Hui; Chang, Yu-Chung; Lu, Yi Lung; Lai, Hong Ji; Lin, Feng-Huei
2010-02-26
The purpose of this study is to develop a novel scaffold, derived from fish scales, as an alternative functional material with sufficient mechanical strength for corneal regenerative applications. Fish scales, which are usually considered as marine wastes, were acellularized, decalcified and fabricated into collagen scaffolds. The microstructure of the acellularized scaffold was imaged by scanning electron microscopy (SEM). The acellularization and decalcification treatments did not affect the naturally 3-dimentional, highly centrally-oriented micropatterned structure of the material. To assess the cytocompatibility of the scaffold with corneal cells, rabbit corneal cells were cultured on the scaffold and examined under SEM and confocal microscopy at different time periods. Rapid cell proliferation and migration on the scaffold were observed under SEM and confocal microscopy. The highly centrally-oriented micropatterned structure of the scaffold was beneficial for efficient nutrient and oxygen supply to the cells cultured in the three-dimensional matrices, and therefore it is useful for high-density cell seeding and spreading. Collectively, we demonstrate the superior cellular conductivity of the newly developed material. We provide evidences for the feasibility of the scaffold as a template for corneal cells growth and migration, and thus the fish scale-derived scaffold can be developed as a promising material for tissue-engineering of cornea.
Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska
Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.
2011-01-01
Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.
Tompkins, Adrian M; Ermert, Volker
2013-02-18
The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.
2013-01-01
Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Results Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. Conclusions A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions. PMID:23419192
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
NASA Astrophysics Data System (ADS)
Yang, Yunlai; Arouri, Khaled
2016-03-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
Yang, Yunlai; Arouri, Khaled
2016-01-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways.
Yang, Yunlai; Arouri, Khaled
2016-03-11
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
The Environmental Dimensions of Migration
Hunter, Lori M.; Luna, Jessie K.; Norton, Rachel M.
2017-01-01
Research on the environmental dimensions of human migration has made important strides in recent years. However, findings have been spread across multiple disciplines with wide ranging methodologies and limited theoretical development. This article reviews key findings of the field and identifies future directions for sociological research. We contend that the field has moved beyond linear environmental “push” theories towards a greater integration of context, including micro-, meso-, and macro-level interactions. We highlight findings that migration is often a household strategy to diversify risk (NELM), interacting with household composition, individual characteristics, social networks, and historical, political and economic contexts. We highlight promising developments in the field, including the recognition that migration is a long-standing form of environmental adaptation and yet only one among many forms of adaptation. Finally, we argue that sociologists could contribute significantly to migration-environment inquiry through attention to issues of inequality, perceptions, and agency vis-à-vis structure. PMID:29861536
Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2012-09-30
right whales and sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel...vertical migration of copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at...depth during the day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable
Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2013-09-30
sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel vertical migration of... copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at depth during the...day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable over time (days to
Hooley-Underwood, Zachary; Mandeville, Elizabeth G.; Gerrity, Paul C.; Deromedi, J. W.; Johnson, Kevin; Walters, Annika W.
2018-01-01
Dams and water diversions fragment habitat, entrain fish, and alter fish movement. Many Burbot Lota lota populations are declining, with dams and water diversions thought to be a major threat. We used multiple methods to identify Burbot movement patterns and assess entrainment into an irrigation system in the Wind River, Wyoming. We assessed seasonal movement of Burbot with a mark–recapture (PIT tagging) study, natal origins of entrained fish with otolith microchemistry, and historic movement with genotyping by sequencing. We found limited evidence of entrainment in irrigation waters across all approaches. The mark–recapture study indicated that out‐migration from potential source populations could be influenced by flow regime but was generally low. Otolith and genomic results suggested the presence of a self‐sustaining population within the irrigation network. We conclude that emigration from natural tributary populations is not the current source of the majority of Burbot found in irrigation waters. Instead, reservoir and irrigation canal construction has created novel habitat in which Burbot have established a population. Using a multi‐scale approach increased our inferential abilities and mechanistic understanding of movement patterns between natural and managed systems.
Reinventing US Internal Migration Studies in the Age of International Migration
Ellis, Mark
2014-01-01
I argue that researchers have sidelined attention to issues raised by US internal migration as they shifted focus to the questions posed by the post-1960s rise in US immigration. In this paper, I offer some reasons about why immigration has garnered more attention and why there needs to be greater consideration of US internal migration and its significant and myriad social, economic, political, and cultural impacts. I offer three ideas for motivating more research into US internal geographic mobility that would foreground its empirical and conceptual connections to international migration. First, there should be more work on linked migration systems investigating the connections between internal and international flows. Second, the questions asked about immigrant social, cultural, and economic impacts and adaptations in host societies should also be asked about internal migrants. Third, and more generally, migration researchers should jettison the assumption that the national scale is the pre-eminent delimiter of migration types and processes. Some groups can move easily across borders; others are constrained in their moves within countries. These subnational scales and constraints will become more visible if migration research decentres the national from its theory and empirics. PMID:24839406
Reinventing US Internal Migration Studies in the Age of International Migration.
Ellis, Mark
2012-03-01
I argue that researchers have sidelined attention to issues raised by US internal migration as they shifted focus to the questions posed by the post-1960s rise in US immigration. In this paper, I offer some reasons about why immigration has garnered more attention and why there needs to be greater consideration of US internal migration and its significant and myriad social, economic, political, and cultural impacts. I offer three ideas for motivating more research into US internal geographic mobility that would foreground its empirical and conceptual connections to international migration. First, there should be more work on linked migration systems investigating the connections between internal and international flows. Second, the questions asked about immigrant social, cultural, and economic impacts and adaptations in host societies should also be asked about internal migrants. Third, and more generally, migration researchers should jettison the assumption that the national scale is the pre-eminent delimiter of migration types and processes. Some groups can move easily across borders; others are constrained in their moves within countries. These subnational scales and constraints will become more visible if migration research decentres the national from its theory and empirics.
ERIC Educational Resources Information Center
Walters, William H.
2011-01-01
This study evaluates the effectiveness of simple and expert searches in Google Scholar (GS), EconLit, GEOBASE, PAIS, POPLINE, PubMed, Social Sciences Citation Index, Social Sciences Full Text, and Sociological Abstracts. It assesses the recall and precision of 32 searches in the field of later-life migration: nine simple keyword searches and 23…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchio, A.; Meduri, D.; Carbone, V.
2012-04-10
The spatio-temporal dynamics of the solar magnetic field has been investigated by using NSO/Kitt Peak magnetic synoptic maps covering the period 1976 August-2003 September. The field radial component, for each heliographic latitude, has been decomposed in intrinsic mode functions through the Empirical Mode Decomposition in order to investigate the time evolution of the various characteristic oscillating modes at different latitudes. The same technique has also been applied on synoptic maps of the meridional and east-west components, which were derived from the observed line-of-sight projection of the field by using the differential rotation. Results obtained for the {approx}22 yr cycle, relatedmore » to the polarity inversions of the large-scale dipolar field, show an antisymmetric behavior with respect to the equator in all the field components and a marked poleward flux migration in the radial and meridional components (from about -35 Degree-Sign and +35 Degree-Sign in the southern and northern hemispheres, respectively). The quasi-biennial oscillations (QBOs) are also identified as a fundamental timescale of variability of the magnetic field and associated with poleward magnetic flux migration from low latitudes around the maximum and descending phase of the solar cycle. Moreover, signs of an equatorward drift, at a {approx}2 yr rate, seem to appear in the radial and toroidal components. Hence, the QBO patterns suggest a link to a dynamo action. Finally, the high-frequency component of the magnetic field, at timescales less than 1 yr, provides the most energetic contribution and it is associated with the outbreaks of the bipolar regions on the solar surface.« less
Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma.
Danan, Deepa; Lehman, Christine E; Mendez, Rolando E; Langford, Brian; Koors, Paul D; Dougherty, Michael I; Peirce, Shayn M; Gioeli, Daniel G; Jameson, Mark J
2018-05-01
Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.
Landscape associations of birds during migratory stopover
NASA Astrophysics Data System (ADS)
Diehl, Robert Howard
The challenge for migratory bird conservation is habitat preservation that sustains breeding, migration, and non-breeding biological processes. In choosing an appropriately scaled conservation arena for habitat preservation, a conservative and thorough examination of stopover habitat use patterns by migrants works back from the larger scales at which such relationships may occur. Because the use of stopover habitats by migrating birds occurs at spatial scales larger than traditional field techniques can easily accommodate, I quantify these relationship using the United States system of weather surveillance radars (popularly known as NEXRAD). To provide perspective on use of this system for biologists, I first describe the technical challenges as well as some of the biological potential of these radars for ornithological research. Using data from these radars, I then examined the influence of Lake Michigan and the distribution of woodland habitat on migrant concentrations in northeastern Illinois habitats during stopover. Lake Michigan exerted less influence on migrant abundance and density than the distribution and availability of habitat for stopover. There was evidence of post-migratory movement resulting in habitats within suburban landscapes experiencing higher migrant abundance but lower migrant density than habitats within nearby urban and agricultural landscapes. Finally, in the context of hierarchy theory, I examined the influence of landscape ecological and behavioral processes on bird density during migratory stopover. Migrant abundance did not vary across landscapes that differed considerably in the amount of habitat available for stopover. As a result, smaller, more isolated patches held higher densities of birds. Spatial models of migrant habitat selection based on migrant proximity to a patch explained nearly as much variance in the number of migrants occupying patches (R2 = 0.88) as selection models based on migrant interception of patches during flight (R2 = 0.90). Because migrant densities in specific patches were the consequence of biological processes operating at larger spatial scales, sound conservation strategies for migrating landbirds should consider the landscape context of stopover habitats that are potential targets for preservation.
ERIC Educational Resources Information Center
Moore, Richard W.
The project described in this report is an attempt to develop scales to assess teachers' attitudes toward teaching elementary school science. The instrument produced, Science Teaching Attitude Scales, consists of six scales, each of which has a statement of the attitude to be assessed and five statements to determine the extent to which the…
Non-contact method for directing electrotaxis
NASA Astrophysics Data System (ADS)
Ahirwar, Dinesh K.; Nasser, Mohd W.; Jones, Travis H.; Sequin, Emily K.; West, Joseph D.; Henthorne, Timothy L.; Javor, Joshua; Kaushik, Aniruddha M.; Ganju, Ramesh K.; Subramaniam, Vish V.
2015-06-01
We present a method to induce electric fields and drive electrotaxis (galvanotaxis) without the need for electrodes to be in contact with the media containing the cell cultures. We report experimental results using a modification of the transmembrane assay, demonstrating the hindrance of migration of breast cancer cells (SCP2) when an induced a.c. electric field is present in the appropriate direction (i.e. in the direction of migration). Of significance is that migration of these cells is hindered at electric field strengths many orders of magnitude (5 to 6) below those previously reported for d.c. electrotaxis, and even in the presence of a chemokine (SDF-1α) or a growth factor (EGF). Induced a.c. electric fields applied in the direction of migration are also shown to hinder motility of non-transformed human mammary epithelial cells (MCF10A) in the presence of the growth factor EGF. In addition, we also show how our method can be applied to other cell migration assays (scratch assay), and by changing the coil design and holder, that it is also compatible with commercially available multi-well culture plates.
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.
2010-01-01
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
Cao, Wenlong; Vaddella, Venkata; Biswas, Sagor; Perkins, Katherine; Clay, Cameron; Wu, Tong; Zheng, Yawen; Ndegwa, Pius; Pandey, Pramod
2016-11-01
Vermicomposting (VC) has proven to be a promising method for treating garden, household, and municipal wastes. Although the VC has been used extensively for converting wastes into fertilizers, pathogens such as Escherichia coli (E. coli) survival during this process is not well documented. In this study, both lab and field scale experiments were conducted assessing the impacts of earthworms in reducing E. coli concentration during VC of food waste. In addition, other pertinent parameters such as temperature, carbon and nitrogen content, moisture content, pH, volatile solids, micronutrients (P, K, Ca, Mg, and S), and heavy metals (Zn, Mn, Fe, and Cu) were monitored during the study. The lab and field scale experiments were conducted for 107 and 103 days, respectively. The carbon to nitrogen ratio (C/N) decreased by 54 % in the lab scale study and by 36 % in the field study. Results showed that VC was not significantly effective in reducing E. coli levels in food waste under both lab and field scale settings. The carbon to nitrogen ratio (C/N) decreased by 54 % in the lab scale study and by 36 % in the field study.
Modeling Rip Channel and Mega-Cusp Migration With XBeach
NASA Astrophysics Data System (ADS)
Orzech, M.; Thornton, E.; Reniers, A.; Macmahan, J.; O'Reilly, B.
2008-12-01
The relationship between alongshore rip channel migration and sediment transport is investigated using XBeach, a recently developed 2DH coastal erosion model. XBeach solves the nonlinear shallow water equations and accounts for the effects of breaking waves, wind, turbulent dispersion, and nonlinear bottom friction. It is similar to the more widely used Delft3D but focuses on morphological change to the beach and dune and includes the action of swash on a moving shoreline. Numerics have been simplified to increase model speed and ensure stability in shallow water. XBeach is first validated by recreating a three-year time series of alongshore rip migration patterns measured with video at Fort Ord, near Monterey, CA. The model is initialized with wave spectral data at 15m depth, provided by the Coastal Data Information Program (CDIP). Flow fields and transport patterns are then examined in detail over a single rip channel and mega-cusp to better understand the small scale processes associated with migration, and a range of simulations are conducted to quantify the effects on migration rates of varying wave height, incident angle, or tidal elevation. Results are presented from a four-month period of carefully monitored, accelerated shoreline erosion at the Fort Ord site, which followed the removal of a longstanding riprap barrier that had created a sand dune peninsula extending to the water's edge. Model-predicted erosion rates along the 300m stretch of shoreline are compared with dune retreat measurements for the period.
River morphodynamics from space: the Landsat frontier
NASA Astrophysics Data System (ADS)
Schwenk, Jon; Khandelwal, Ankush; Fratkin, Mulu; Kumar, Vipin; Foufoula-Georgiou, Efi
2017-04-01
NASA's Landsat family of satellites have been observing the entire globe since 1984, providing over 30 years of snapshots with an 18 day frequency and 30 meter resolution. These publicly-available Landsat data are particularly exciting to researchers interested in river morphodynamics, who are often limited to use of historical maps, aerial photography, and field surveys with poor and irregular time resolutions and limited spatial extents. Landsat archives show potential for overcoming these limitations, but techniques and tools for accurately and efficiently mining the vault of scenes must first be developed. In this PICO presentation, we detail the problems we encountered while mapping and quantifying planform dynamics of over 1,300 km of the actively-migrating, meandering Ucayali River in Peru from Landsat imagery. We also present methods to overcome these obstacles and introduce the Matlab-based RivMAP (River Morphodynamics from Analysis of Planforms) toolbox that we developed to extract banklines and centerlines, compute widths, curvatures, and angles, identify cutoffs, and quantify planform changes via centerline migration and erosion/accretion over large spatial domains with high temporal resolution. Measurement uncertainties were estimated by analyzing immobile, abandoned oxbow lakes. Our results identify hotspots of planform changes, and combined with limited precipitation, stage, and topography data, we parse three simultaneous controls on river migration: climate, sediment, and meander cutoff. Overall, this study demonstrates the vast potential locked within Landsat archives to identify multi-scale controls on river migration, observe the co-evolution of width, curvature, discharge, and migration, and discover and develop new geomorphic insights.
Farnsworth, Andrew; Van DOREN, Benjamin M; Hochachka, Wesley M; Sheldon, Daniel; Winner, Kevin; Irvine, Jed; Geevarghese, Jeffrey; Kelling, Steve
2016-04-01
Billions of birds migrate at night over North America each year. However, few studies have described the phenology of these movements, such as magnitudes, directions, and speeds, for more than one migration season and at regional scales. In this study, we characterize density, direction, and speed of nocturnally migrating birds using data from 13 weather surveillance radars in the autumns of 2010 and 2011 in the northeastern USA. After screening radar data to remove precipitation, we applied a recently developed algorithm for characterizing velocity profiles with previously developed methods to document bird migration. Many hourly radar scans contained windborne "contamination," and these scans also exhibited generally low overall reflectivities. Hourly scans dominated by birds showed nightly and seasonal patterns that differed markedly from those of low reflectivity scans. Bird migration occurred during many nights, but a smaller number of nights with large movements of birds defined regional nocturnal migration. Densities varied by date, time, and location but peaked in the second and third deciles of night during the autumn period when the most birds were migrating. Migration track (the direction to which birds moved) shifted within nights from south-southwesterly to southwesterly during the seasonal migration peaks; this shift was not consistent with a similar shift in wind direction. Migration speeds varied within nights, although not closely with wind speed. Airspeeds increased during the night; groundspeeds were highest between the second and third deciles of night, when the greatest density of birds was migrating. Airspeeds and groundspeeds increased during the fall season, although groundspeeds fluctuated considerably with prevailing winds. Significant positive correlations characterized relationships among bird densities at southern coastal radar stations and northern inland radar stations. The quantitative descriptions of broadscale nocturnal migration patterns presented here will be essential for biological and conservation applications. These descriptions help to define migration phenology in time and space, fill knowledge gaps in avian annual cycles, and are useful for monitoring long-term population trends of migrants. Furthermore, these descriptions will aid in assessing potential risks to migrants, particularly from structures with which birds collide and artificial lighting that disorients migrants.
Rural Education and Out-Migration: The Case of a Coastal Community
ERIC Educational Resources Information Center
Corbett, Michael
2005-01-01
In this article, I report on findings from a case study examining the relationship between formal education and out-migration in a Canadian coastal community from the early 1960s to the late 1990s. Although high rates of village-level out-migration were chronic, most migration trajectories were short-range. Contrary to large-scale quantitative…
ASSESSING THE IMPORTANCE OF THERMAL REFUGE ...
Salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. The importance of cold water refuges for migrating adult salmon and steelhead may seem intuitive, and refuges are clearly used by fish during warm water episodes. But quantifying the value of both small and large scale thermal features to salmon populations has been challenging due to the difficulty of mapping thermal regimes at sufficient spatial and temporal resolutions, and integrating thermal regimes into population models. We attempt to address these challenges by using newly-available datasets and modeling approaches to link thermal regimes to salmon populations across scales. We discuss the challenges and opportunities to simulating fish behaviors and linking exposures to migratory and reproductive fitness. In this talk and companion poster, we describe an individual-based modeling approach for assessing sufficiency of thermal refuges for migrating salmon and steelhead in the Columbia River. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effects of warm waters include impacts to salmon and steelhead populations that may already be stressed by habitat alteration, disease, predation, and fishing pressures. Much effort is being expended to improve conditions for salmon and steelhea
Law, Jessica Ka Yan; Susloparova, Anna; Vu, Xuan Thang; Zhou, Xiao; Hempel, Felix; Qu, Bin; Hoth, Markus; Ingebrandt, Sven
2015-05-15
Cytotoxic T lymphocytes (CTLs) play an important role in the immune system by recognizing and eliminating pathogen-infected and tumorigenic cells. In order to achieve their function, T cells have to migrate throughout the whole body and identify the respective targets. In conventional immunology studies, interactions between CTLs and targets are usually investigated using tedious and time-consuming immunofluorescence imaging. However, there is currently no straightforward measurement tool available to examine the interaction strengths. In the present study, adhesion strengths and migration of single human CD8(+) T cells on pre-coated field-effect transistor (FET) devices (i.e. fibronectin, anti-CD3 antibody, and anti-LFA-1 antibody) were measured using impedance spectroscopy. Adhesion strengths to different protein and antibody coatings were compared. By fitting the data to an electronically equivalent circuit model, cell-related parameters (cell membrane capacitance referring to cell morphology and seal resistance referring to adhesion strength) were obtained. This electronically-assessed adhesion strength provides a novel, fast, and important index describing the interaction efficiency. Furthermore, the size of our detection transistor gates as well as their sensitivity reaches down to single cell resolution. Real-time motions of individually migrating T cells can be traced using our FET devices. The in-house fabricated FETs used in the present study are providing a novel and very efficient insight to individual cell interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Growing magma chambers control the distribution of small-scale flood basalts.
Yu, Xun; Chen, Li-Hui; Zeng, Gang
2015-11-19
Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.
Recent progress of particle migration in viscoelastic fluids.
Yuan, Dan; Zhao, Qianbin; Yan, Sheng; Tang, Shi-Yang; Alici, Gursel; Zhang, Jun; Li, Weihua
2018-02-13
Recently, research on particle migration in non-Newtonian viscoelastic fluids has gained considerable attention. In a viscoelastic fluid, three dimensional (3D) particle focusing can be easily realized in simple channels without the need for any external force fields or complex microchannel structures compared with that in a Newtonian fluid. Due to its promising properties for particle precise focusing and manipulation, this field has been developed rapidly, and research on the field has been shifted from fundamentals to applications. This review will elaborate the recent progress of particle migration in viscoelastic fluids, especially on the aspect of applications. The hydrodynamic forces on the micro/nano particles in viscoelastic fluids are discussed. Next, we elaborate the basic particle migration in viscoelasticity-dominant fluids and elasto-inertial fluids in straight channels. After that, a comprehensive review on the applications of viscoelasticity-induced particle migration (particle separation, cell deformability measurement and alignment, particle solution exchange, rheometry-on-a-chip and others) is presented; finally, we thrash out some perspectives on the future directions of particle migration in viscoelastic fluids.
Muehlhausen, Willie; Byrom, Bill; Skerritt, Barbara; McCarthy, Marie; McDowell, Bryan; Sohn, Jeremy
2018-01-01
To synthesize the findings of cognitive interview and usability studies performed to assess the measurement equivalence of patient-reported outcome (PRO) instruments migrated from paper to electronic formats (ePRO), and make recommendations regarding future migration validation requirements and ePRO design best practice. We synthesized findings from all cognitive interview and usability studies performed by a contract research organization between 2012 and 2015: 53 studies comprising 68 unique instruments and 101 instrument evaluations. We summarized study findings to make recommendations for best practice and future validation requirements. Five studies (9%) identified minor findings during cognitive interview that may possibly affect instrument measurement properties. All findings could be addressed by application of ePRO best practice, such as eliminating scrolling, ensuring appropriate font size, ensuring suitable thickness of visual analogue scale lines, and providing suitable instructions. Similarly, regarding solution usability, 49 of the 53 studies (92%) recommended no changes in display clarity, navigation, operation, and completion without help. Reported usability findings could be eliminated by following good product design such as the size, location, and responsiveness of navigation buttons. With the benefit of accumulating evidence, it is possible to relax the need to routinely conduct cognitive interview and usability studies when implementing minor changes during instrument migration. Application of design best practice and selecting vendor solutions with good user interface and user experience properties that have been assessed in a representative group may enable many instrument migrations to be accepted without formal validation studies by instead conducting a structured expert screen review. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D
2013-09-30
Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamics of prey moving through a predator field: a model of migrating juvenile salmon
Petersen, J.H.; DeAngelis, D.L.
2000-01-01
The migration of a patch of prey through a field of relatively stationary predators is a situation that occurs frequently in nature. Making quantitative predictions concerning such phenomena may be difficult, however, because factors such as the number of the prey in the patch, the spatial length and velocity of the patch, and the feeding rate and satiation of the predators all interact in a complex way. However, such problems are of great practical importance in many management situations; e.g., calculating the mortality of juvenile salmon (smolts) swimming down a river or reservoir containing many predators. Salmon smolts often move downstream in patches short compared with the length of the reservoir. To take into account the spatial dependence of the interaction, we used a spatially-explicit, individual-based modeling approach. We found that the mortality of prey depends strongly on the number of prey in the patch, the downstream velocity of prey in the patch, and the dispersion or spread of the patch in size through time. Some counterintuitive phenomena are predicted, such as predators downstrean capturing more prey per predator than those upstream, even though the number of prey may be greatly depleted by the time the prey patch reaches the downstream predators. Individual-based models may be necessary for complex spatial situations, such as salmonid migration, where processes such as schooling occur at fine scales and affect system predictions. We compare some results to predictions from other salmonid models. (C) 2000 Elsevier Science Inc.
Magnetic Control of Lateral Migration of Ellipsoidal Microparticles in Microscale Flows
NASA Astrophysics Data System (ADS)
Zhou, Ran; Sobecki, Christopher A.; Zhang, Jie; Zhang, Yanzhi; Wang, Cheng
2017-08-01
Precise manipulations of nonspherical microparticles by shape have diverse applications in biology and biomedical engineering. Here, we study lateral migration of ellipsoidal paramagnetic microparticles in low-Reynolds-number flows under uniform magnetic fields. We show that magnetically induced torque alters the rotation dynamics of the particle and results in shape-dependent lateral migration. By adjusting the direction of the magnetic field, we demonstrate versatile control of the symmetric and asymmetric rotation of the particles, thereby controlling the direction of the particle's lateral migration. The particle rotations are experimentally measured, and their symmetry or asymmetry characteristics agree well with the prediction from a simple theory. The lateral migration mechanism is found to be valid for nonmagnetic particles suspended in a ferrofluid. Finally, we demonstrate shape-based sorting of microparticles by exploiting the proposed migration mechanism.
Interplay of plate convergence and arc migration in the central Mediterranean (Sicily and Calabria)
NASA Astrophysics Data System (ADS)
Nijholt, Nicolai; Govers, Rob; Wortel, Rinus
2016-04-01
Key components in the current geodynamic setting of the central Mediterranean are continuous, slow Africa-Eurasia plate convergence (~5 mm/yr) and arc migration. This combination encompasses roll-back, tearing and detachment of slabs, and leads to back-arc opening and orogeny. Since ~30 Ma the Apennnines-Calabrian and Gibraltar subduction zones have shaped the western-central Mediterranean region. Lithospheric tearing near slab edges and the accompanying surface expressions (STEP faults) are key in explaining surface dynamics as observed in geologic, geophysical and geodetic data. In the central Mediterranean, both the narrow Calabrian subduction zone and the Sicily-Tyrrhenian offshore thrust front show convergence, with a transfer (shear) zone connecting the distinct SW edge of the former with the less distinct, eastern limit of the latter (similar, albeit on a smaller scale, to the situation in New Zealand with oppositely verging subduction zones and the Alpine fault as the transfer shear zone). The ~NNW-SSE oriented transfer zone (Aeolian-Sisifo-Tindari(-Ionian) fault system) shows transtensive-to-strike slip motion. Recent seismicity, geological data and GPS vectors in the central Mediterranean indicate that the region can be subdivided into several distinct domains, both on- and offshore, delineated by deformation zones and faults. However, there is discussion about the (relative) importance of some of these faults on the lithospheric scale. We focus on finding the best-fitting assembly of faults for the transfer zone connecting subduction beneath Calabria and convergence north of Sicily in the Sicily-Tyrrhenian offshore thrust front. This includes determining whether the Alfeo-Etna fault, Malta Escarpment and/or Ionian fault, which have all been suggested to represent the STEP fault of the Calabrian subduction zone, are key in describing the observed deformation patterns. We first focus on the present-day. We use geodynamic models to reproduce observed GPS velocities in the Sicily-Calabria region. In these models, we combine far-field velocity boundary conditions, GPE-related body forces, and slab pull/trench suction at the subduction contacts. The location and nature of model faults are based on geological and seismicity observations, and as these faults do not fully enclose blocks our models require both fault slip and distributed strain. We vary fault friction in the models. Extrapolating the (short term) model results to geological time scales, we are able to make a first-order assessment of the regional strain and block rotations resulting from the interplay of arc migration and plate convergence during the evolution of this complex region.
A Novel Actinic Keratosis Field Assessment Scale for Grading Actinic Keratosis Disease Severity.
Dréno, Brigitte; Cerio, Rino; Dirschka, Thomas; Nart, Ignasi Figueras; Lear, John T; Peris, Ketty; de Casas, Andrés Ruiz; Kaleci, Shaniko; Pellacani, Giovanni
2017-10-02
Actinic keratosis (AK) lesions are surrounded by field cancerization (areas of subclinical, non-visible sun damage). Existing AK grading tools rely on AK counts, which are not reproducible. An Actinic Keratosis Field Assessment Scale (AK-FAS) for grading the severity of AK/field was developed. Standardized photographs of patients representing the full range of AK severity were collected. Six investigators independently rated each photograph according to 3 criteria: AK area (total skin area affected by AK lesions), hyperkeratosis and sun damage. Inter-rater reproducibility was good for all 3 criteria. Validation of the AK-FAS showed good reproducibility for AK area and hyperkeratosis, even for dermatologists untrained on use of the scale. In conclusion, the AK-FAS is objective, easy to use and implement, and reproducible. It incorporates assessment of the entire field affected by AK instead of relying on lesion counts. Use of the AK-FAS may standardize AK diagnosis, making it relevant to routine clinical practice.
Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng
2015-01-01
Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lianjie; Chen, Ting; Tan, Sirui
Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less
Stability of giant sand waves in eastern Long Island Sound, U.S.A.
Fenster, M.S.; FitzGerald, D.M.; Bohlen, W.F.; Lewis, R.S.; Baldwin, C.T.
1990-01-01
A combination of a highly accurate bathymetric surveying technique and in-situ submersible observations and measurements were used to assess the migrational trends and morphological changes of large sand waves (Ht ??? 17 m) in eastern Long Island Sound. Although residing in a high-energy tidal environment characterized by a net westward sediment flux, the large bedforms are relatively stable over the short term. Over a 7 month period, 55.1% of a total 2942 m of sand wave crestline lengths migrated less than the horizontal accuracy limits of navigation (2 m). Approximately 35% of the remaining sand wave crests migrated less than 4 m. Net migration of the sand wave crests in the study area was 0.2 m. In addition, the bulk form (center of area in profile view) or the base of the sand waves showed little, if any, movement. These data, in conjunction with flow data within the sand wave field, suggest that net migration rates are greater than the time span of this study and/or the sand waves move in response to large residual flows created by high-energy, aperiodic storm events. The latter scenerio suggests that day to day processes only serve to rework and modify the sand waves. ?? 1990.
Environmental factors influence lesser scaup migration chronology and population monitoring
Finger, Taylor A.; Afton, Alan D.; Schummer, Michael L.; Petrie, Scott A.; Badzinski, Shannon S.; Johnson, Michael A.; Szymanski, Michael L.; Jacobs, Kevin J.; Olsen, Glenn H.; Mitchell, Mark
2016-01-01
Identifying environmental metrics specific to lesser scaup (Aythya affinis; scaup) spring migration chronology may help inform development of conservation, management and population monitoring. Our objective was to determine how environmental conditions influence spring migration of lesser scaup to assess the effectiveness of the Waterfowl Breeding Population and Habitat Survey in accurately estimating scaup populations. We first compared peak timing of mallard (Anas platyrhynchos) and scaup migration from weekly ground surveys in North Dakota, USA because the Waterfowl Breeding Population and Habitat Survey is designed to capture annual mallard migration. As predicted, we detected that peak timing of scaup and mallard migrations differed in 25 of 36 years investigated (1980–2010). We marked scaup with satellite transmitters (n = 78; 7,403 locations) at Long Point, Lake Erie, Ontario, Canada; Pool 19 of the Mississippi River, Iowa and Illinois, USA; and Presque Isle Bay, Lake Erie, Pennsylvania, USA. We tested the assumption that our marked scaup were representative of the continental population using the traditional survey area by comparing timing of migration of marked birds and scaup counted in the North Dakota Game and Fish Department survey. We detected a strong positive correlation between marked scaup and the survey data, which indicated that marked scaup were representative of the population. We subsequently used our validated sample of marked scaup to investigate the effects of annual variation in temperature, precipitation, and ice cover on spring migration chronology in the traditional and eastern survey areas of the Waterfowl Breeding Population and Habitat Survey, 2005–2010. We evaluated competing environmental models to explain variation in timing and rate of scaup migration at large-scale and local levels. Spring migration of scaup occurred earlier and faster during springs with warmer temperatures and greater precipitation, variables known to influence energy budgets and wetland availability. Our results suggest that surveys designed to index abundance of breeding mallards is imprecise for estimating scaup abundance, and inaccurate at estimating breeding population size by survey stratum.
NASA Technical Reports Server (NTRS)
Morisette, Jeffrey T.; Richardson, Andrew D.; Knapp, Alan K.; Fisher, Jeremy I.; Graham, Eric A.; Abatzoglou, John; Wilson, Bruce E.; Breshears, David D.; Hanebry, Geoffrey M.; Hanes, Jonathan M.;
2008-01-01
Phenology is the study of recurring life-cycle events, of which classic examples include flowering by plants as well as animal migration. Phenological responses are increasingly relevant for addressing applied environmental issues. Yet, challenges remain with respect to spanning scales of observation, integrating observations across taxa, and modeling phenological sequences to enable ecological forecasts in light of future climate change. Recent advances that are helping to address these challenges include refined landscape-scale phenology estimates from satellite data, advanced instrument-based approaches for field measurements, and new cyber-infrastructure for archiving and distribution of products. These advances are aiding in diverse areas including modeling land-surface exchange, evaluating climate-phenology relationships, and aiding land management decisions.
Cross-cultural validation of the German and Turkish versions of the PHQ-9: an IRT approach.
Reich, Hanna; Rief, Winfried; Brähler, Elmar; Mewes, Ricarda
2018-06-05
The Patient Health Questionnaire's depression module (PHQ-9) is a widely used screening tool to assess depressive disorders. However, cross-linguistic and cross-cultural validation of the PHQ-9 is mostly lacking. This study investigates whether scores on the German and Turkish versions of the PHQ-9 are comparable. Data from Germans without a migration background (German version, n = 1670) and Turkish immigrants in Germany (either German or Turkish version, n = 307) were used. Differential Item Functioning (DIF) was assessed using Item Response Theory (IRT) models. Several items of the PHQ-9 were found to exhibit DIF related to language or ethnicity, e.g. 'sleep problems', 'appetite changes' and 'anhedonia'. However, PHQ-9 sum scores were found to be unbiased, i.e., DIF had no notable impact on scale levels. PHQ-9 sum scores can be compared between Turkish immigrants and Germans without a migration background without any adjustments, regardless of whether they complete the German or the Turkish version.
Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models
Geremia, Chris; White, P. J.; Wallen, Rick L.; Watson, Fred G. R.; Treanor, John J.; Borkowski, John; Potter, Christopher S.; Crabtree, Robert L.
2011-01-01
Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies. PMID:21340035
Local Electric Field Facilitates High-Performance Li-Ion Batteries.
Liu, Youwen; Zhou, Tengfei; Zheng, Yang; He, Zhihai; Xiao, Chong; Pang, Wei Kong; Tong, Wei; Zou, Youming; Pan, Bicai; Guo, Zaiping; Xie, Yi
2017-08-22
By scrutinizing the energy storage process in Li-ion batteries, tuning Li-ion migration behavior by atomic level tailoring will unlock great potential for pursuing higher electrochemical performance. Vacancy, which can effectively modulate the electrical ordering on the nanoscale, even in tiny concentrations, will provide tempting opportunities for manipulating Li-ion migratory behavior. Herein, taking CuGeO 3 as a model, oxygen vacancies obtained by reducing the thickness dimension down to the atomic scale are introduced in this work. As the Li-ion storage progresses, the imbalanced charge distribution emerging around the oxygen vacancies could induce a local built-in electric field, which will accelerate the ions' migration rate by Coulomb forces and thus have benefits for high-rate performance. Furthermore, the thus-obtained CuGeO 3 ultrathin nanosheets (CGOUNs)/graphene van der Waals heterojunctions are used as anodes in Li-ion batteries, which deliver a reversible specific capacity of 1295 mAh g -1 at 100 mA g -1 , with improved rate capability and cycling performance compared to their bulk counterpart. Our findings build a clear connection between the atomic/defect/electronic structure and intrinsic properties for designing high-efficiency electrode materials.
Higley, Debra K.
2004-01-01
The Progreso Basin province (6083) in northwestern Peru and southwestern Ecuador consists of the Paleogene Santa Elena block and Peru Bank, and the Neogene Tumbes-Progreso subbasin. The Santa Elena block and Peru Bank are part of the Cretaceous-Paleogene Total Petroleum System (TPS)(608302), which contains the Cretaceous-Paleogene Santa Elena Block Assessment Unit (60830201). The Tumbes- Progreso subbasin includes the Neogene TPS (608301) and associated Neogene Pull-Apart Basin Assessment Unit (60830101). The complex tectonic history of the Progreso Basin province influenced depositional and erosional patterns across the region, and also the location, timing, and types of seals, traps, possible source and reservoir rocks, and hydrocarbon generation and migration. Marine shales that are interbedded with and overlie reservoir intervals are the probable hydrocarbon source rocks. Timing of hydrocarbon generation and migration was probably Miocene and younger, following creation of the Tumbes-Progreso subbasin by movement along the Dolores-Guayaquil megashear. More than 220 million barrels of oil (MMBO) and 255 billion cubic feet of gas (BCFG) have been produced from the Progreso Basin province. The means of estimated recoverable oil, gas, and natural gas liquids (NGL) resources from undiscovered fields in the province are 237 MMBO, 695 BCFG, and 32 MMB NGL, respectively. The means of estimated recoverable oil, gas, and NGL resources from undiscovered onshore fields are 45 MMBO, 113 BCFG, and 5 MMBNGL, and from undiscovered offshore fields are 192 BBO, 582 BCFG, and 27 MMBNGL. These are USGS grown undiscovered resources that were determined by using a minimum field size of 1 million barrels of oil equivalent.
Martinez-Bakker, Micaela E.; Sell, Stephanie K.; Swanson, Bradley J.; Kelly, Brendan P.; Tallmon, David A.
2013-01-01
Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies. PMID:24130843
Kebede, Abiy S; Nicholls, Robert J; Allan, Andrew; Arto, Iñaki; Cazcarro, Ignacio; Fernandes, Jose A; Hill, Chris T; Hutton, Craig W; Kay, Susan; Lázár, Attila N; Macadam, Ian; Palmer, Matthew; Suckall, Natalie; Tompkins, Emma L; Vincent, Katharine; Whitehead, Paul W
2018-09-01
To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA 1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future changing conditions. The concept, methods, and processes presented are transferable to other sub-national socio-ecological settings with multi-scale challenges. Copyright © 2018. Published by Elsevier B.V.
Modeling of thin film GaAs growth
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1982-01-01
A potential scaling Monte Carlo model of crystal growth is developed. The model is a modification of the solid-on-solid method for studying crystal growth in that potentials at surface sites are continuously updated on a time scale reflecting the surface events of migration, incorporation and evaporation. The model allows for B on A type of crystal growth and lattice disregistry by the assignment of potential values at various surface sites. The surface adatoms are periodically assigned a random energy from a Boltzmann distribution and this energy determines whether the adatoms evaporate, migrate or remain stationary during the sampling interval. For each addition or migration of an adatom, the surface potentials are adjusted to reflect the adsorption, migration or desorption potential changes.
Space-based Remote Sensing: A Tool for Studying Bird Migration Across Multiple Scales
NASA Technical Reports Server (NTRS)
Smith, James A.
2005-01-01
The study of bird migration on a global scale is one of the compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties. Space based technology offers new opportunities to shed understanding on the distribution and migration of organisms on the planet and their sensitivity to human disturbances and environmental changes. Our working hypothesis is that individual organism biophysical models of energy and water balance, driven by satellite measurements of spatio-temporal gradients in climate and habitat, will help us to explain the variability in avian species richness and distribution. Further, these models provide an ecological forecasting tool for science and application users to visualize the possible consequences of loss of wetlands, flooding, or other natural disasters such as hurricanes on avian biodiversity and bird migration.
Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux.
Ayoub, F; Avouac, J-P; Newman, C E; Richardson, M I; Lucas, A; Leprince, S; Bridges, N T
2014-09-30
Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100 km scale) of τ(s)=0.01±0.0015 N m(-2).
NASA Astrophysics Data System (ADS)
Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.
2005-05-01
Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (<2 m) and two vertical arrays of deep (5-109 m) gas-sampling ports, plus ground-water monitoring wells. Migration is dominated by lateral transport in the upper 50 m of sediments. Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.
Norling, Wayne; Jeske, Clinton W.; Thigpen, Tyler F.; Chadwick, Paul C.
2012-01-01
Migrating shorebird populations using approximately 2% of Louisiana and Texas Gulf Coastal rice fields were surveyed during spring migration (March–May of 1997 and 1998) using biweekly stratified random surveys conducted at 50 roadside survey points and approximately 30,000 shorebirds were observed. Shorebird counts were extrapolated and almost 1.4 million birds in 1997 and over 1.6 million birds of 31 species in 1998 were estimated to use rice field habitat for stopover sites in Louisiana and Texas. Greater than 50% of the estimated North American populations were estimated to use rice field habitats for five species, including a species of concern, Buff-breasted Sandpiper (Tryngites subruficollis) at 187%. Because of predictability of suitable rice field habitat acreage, timing of field preparation and water availability, coastal rice prairies are identified as critical spring migration stopover sites.
Survey of viruses present in radish fields in 2014
USDA-ARS?s Scientific Manuscript database
In Korea, recent climate change has caused increased insect populations and migration from neighboring countries. As insect migration increases newly emerging virus diseases have been reported. In 2014, we performed a nationwide survey in radish fields to investigate the distribution of common virus...
Assessing sufficiency of thermal riverscapes for resilient ...
Resilient salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. Efforts to protect, enhance and restore watershed thermal regimes for salmon may target specific locations and features within stream networks hypothesized to provide disproportionately high-value functional resilience to salmon populations. These include relatively small-scale features such as thermal refuges, and larger-scale features such as entire watersheds or aquifers that support thermal regimes buffered from local climatic conditions. Quantifying the value of both small and large scale thermal features to salmon populations has been challenged by both the difficulty of mapping thermal regimes at sufficient spatial and temporal resolutions, and integrating thermal regimes into population models. We attempt to address these challenges by using newly-available datasets and modeling approaches to link thermal regimes to salmon populations across scales. We will describe an individual-based modeling approach for assessing sufficiency of thermal refuges for migrating salmon and steelhead in large rivers, as well as a population modeling approach for assessing large-scale climate refugia for salmon in the Pacific Northwest. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec
Busza, Joanna; Teferra, Sehin; Omer, Serawit; Zimmerman, Cathy
2017-09-11
International migration has become a global political priority, with growing concern about the scale of human trafficking, hazardous work conditions, and resulting psychological and physical morbidity among migrants. Ethiopia remains a significant "source" country for female domestic workers to the Middle East and Gulf States, despite widespread reports of exploitation and abuse. Prior to introduction of a "safe migration" intervention, we conducted formative research to elicit lessons learned by women who had worked as domestic workers abroad. The aim of the study was to identify realistic measures future migrants could take to protect themselves, based on the collective insights and experience of returnees. We conducted a qualitative assessment among returnee domestic labour migrants in Amhara Region, Ethiopia, an area considered a "hotspot" for outmigration. We conducted in-depth interviews and focus group discussions with a total of 35 female returnees, exploring risk and protective factors experienced by Ethiopian women during domestic work abroad. We used thematic content analysis to identify practical messages that could improve prospective migrants' preparedness. Returnees described the knowledge and skills they acquired prior to departure and during migration, and shared advice they would give to prospective migrants in their community. Facilitators of positive migration included conforming to cultural and behavioural expectations, learning basic Arabic, using household appliances, and ensuring safety in employers' homes. Respondents also associated confidence and assertiveness with better treatment and respect, and emphasized the importance of access to external communication (e.g. a mobile phone, local sim card, and contact details) for help in an emergency. Following their own challenging or even traumatic experiences, returnees were keen to support resilience among the next wave of migrants. There is little evidence on practices that foster safer migration, yet attention to human trafficking has led to an increase in pre-migration interventions. These require robust evidence about local risk and protective factors. Our findings identify knowledge, skills, attributes and resources found useful by returnee domestic workers in Amhara region, and have been used to inform a community-based programme aiming to foster better decision-making and preparation, with potential to offer insights for safer migration elsewhere.
ERIC Educational Resources Information Center
Lam, Eddie T. C.; Zhang, James J.; Jensen, Barbara E.
2005-01-01
This study was designed to develop the Service Quality Assessment Scale to evaluate the service quality of health-fitness clubs. Through a review of literature, field observations, interviews, modified application of the Delphi technique, and a pilot study, a preliminary scale with 46 items was formulated. The preliminary scale was administered to…
MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, Corinne; Charbonneau, Paul; Bouchat, Amelie, E-mail: corinne@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca, E-mail: amelie.bouchat@mail.mcgill.ca
We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields thatmore » share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.« less
The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries
NASA Astrophysics Data System (ADS)
Constable, C.
2017-12-01
Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow configuration for several millennia.
Maier, I; Kriston, L; Härter, M; Hölzel, L P; Bermejo, I
2015-10-01
In Germany live a lot of migrants. Cultural and migration specific aspects seem to have an effect on utilisation of health care. There are no instruments that measure such factors of influence. A systematic literature research or article that identify the difficulties of the migrants in using the health care system, was made. The relevant aspects were explored during a health related opinion survey of migrants from former USSR, Turkey, Italy and Spain. The psychometric qualities of this questionnaire were investigated with factor and reliability analyses. There were 24 reasons identified for non-utilisation health care. They were combined in a questionnaire. The factor analysis showed 2-factor structure ("janguage und information related Reasons" Chronbach's α=0.928 and "experience with/attitude toward health care system", Chronbach's α=0.879). Furthermore, there was a total scale with Chronbach's α=0.945. The acceptance was between 80.0 and 96.3%. The results confirm the psychometric quality of this measuring instrument. For further generalisability more verification will be necessary. © Georg Thieme Verlag KG Stuttgart · New York.
Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.
2014-01-01
Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been migrating toward, and subparallel to, the northeast margin of the Colorado Plateau since the middle Miocene. Quaternary volcanism within this northern Rio Grande rift corridor is evidence that the rift is continuing to evolve.
Rodríguez-Zárate, Clara J; Sandoval-Castillo, Jonathan; van Sebille, Erik; Keane, Robert G; Rocha-Olivares, Axayácatl; Urteaga, Jose; Beheregaray, Luciano B
2018-05-16
Spatial and temporal scales at which processes modulate genetic diversity over the landscape are usually overlooked, impacting the design of conservation management practices for widely distributed species. We examine processes shaping population divergence in highly mobile species by re-assessing the case of panmixia in the iconic olive ridley turtle from the eastern Pacific. We implemented a biophysical model of connectivity and a seascape genetic analysis based on nuclear DNA variation of 634 samples collected from 27 nesting areas. Two genetically distinct populations largely isolated during reproductive migrations and mating were detected, each composed of multiple nesting sites linked by high connectivity. This pattern was strongly associated with a steep environmental gradient and also influenced by ocean currents. These findings relate to meso-scale features of a dynamic oceanographic interface in the eastern tropical Pacific (ETP) region, a scenario that possibly provides different cost-benefit solutions and selective pressures for sea turtles during both the mating and migration periods. We reject panmixia and propose a new paradigm for olive ridley turtles where reproductive isolation due to assortative mating is linked to its environment. Our study demonstrates the relevance of integrative approaches for assessing the role of environmental gradients and oceanographic currents as drivers of genetic differentiation in widely distributed marine species. This is relevant for the conservation management of species of highly mobile behaviour, and assists the planning and development of large-scale conservation strategies for the threatened olive ridley turtles in the ETP. © 2018 The Author(s).
Movement ecology of migration in turkey vultures
Mandel, J. T.; Bildstein, K. L.; Bohrer, G.; Winkler, D. W.
2008-01-01
We develop individual-based movement ecology models (MEM) to explore turkey vulture (Cathartes aura) migration decisions at both hourly and daily scales. Vulture movements in 10 migration events were recorded with satellite-reporting GPS sensors, and flight behavior was observed visually, aided by on-the-ground VHF radio-tracking. We used the North American Regional Reanalysis dataset to obtain values for wind speed, turbulent kinetic energy (TKE), and cloud height and used a digital elevation model for a measure of terrain ruggedness. A turkey vulture fitted with a heart-rate logger during 124 h of flight during 38 contiguous days showed only a small increase in mean heart rate as distance traveled per day increased, which suggests that, unlike flapping, soaring flight does not lead to greatly increased metabolic costs. Data from 10 migrations for 724 hourly segments and 152 daily segments showed that vultures depended heavily upon high levels of TKE in the atmospheric boundary layer to increase flight distances and maintain preferred bearings at both hourly and daily scales. We suggest how the MEM can be extended to other spatial and temporal scales of avian migration. Our success in relating model-derived atmospheric variables to migration indicates the potential of using regional reanalysis data, as here, and potentially other regional, higher-resolution, atmospheric models in predicting changing movement patterns of soaring birds under various scenarios of climate and land use change. PMID:19060195
Partial diel migration: A facultative migration underpinned by long-term inter-individual variation.
Harrison, Philip M; Gutowsky, Lee F G; Martins, Eduardo G; Patterson, David A; Cooke, Steven J; Power, Michael
2017-09-01
The variations in migration that comprise partial diel migrations, putatively occur entirely as a consequence of behavioural flexibility. However, seasonal partial migrations are increasingly recognised to be mediated by a combination of reversible plasticity in response to environmental variation and individual variation due to genetic and environmental effects. Here, we test the hypothesis that while partial diel migration heterogeneity occurs primarily due to short-term within-individual flexibility in behaviour, long-term individual differences in migratory behaviour also underpin this migration variation. Specifically, we use a hierarchical behavioural reaction norm approach to partition within- and among-individual variation in depth use and diel plasticity in depth use, across short- and long-term time-scales, in a group of 47 burbot (Lota lota) tagged with depth-sensing acoustic telemetry transmitters. We found that within-individual variation at the among-dates-within-seasons and among-seasons scale, explained the dominant proportion of phenotypic variation. However, individuals also repeatedly differed in their expression of migration behaviour over the 2 year study duration. These results reveal that diel migration variation occurs primarily due to short-term within-individual flexibility in depth use and diel migration behaviour. However, repeatable individual differences also played a key role in mediating partial diel migration. These findings represent a significant advancement of our understanding of the mechanisms generating the important, yet poorly understood phenomena of partial diel migration. Moreover, given the pervasive occurrence of diel migrations across aquatic taxa, these findings indicate that individual differences have an important, yet previously unacknowledged role in structuring the temporal and vertical dynamics of aquatic ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories
NASA Astrophysics Data System (ADS)
Park, Kiwan; Blackman, Eric G.; Subramanian, Kandaswamy
2013-05-01
Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.
Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.
Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy
2013-05-01
Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.
Fecal corticoid monitoring in whooping cranes (Grus americana) undergoing reintroduction
Hartup, Barry K.; Olsen, Glenn H.; Czekala, Nancy M.
2005-01-01
We used radioimmunoassay to determine fecal corticoid concentrations and assess potential stress in 10 endangered whooping cranes (Grus americana) undergoing reintroduction to the wild. Fecal samples were collected shortly after hatching at a captive facility in Maryland, during field training in Wisconsin, and throughout a human-led migration to Florida. After a 14-day decline following hatching, fecal corticoid concentrations stabilized at baseline levels for the duration of the captive period, despite exposure to potentially stressful stimuli. Shipment of the cranes to the field training site was correlated with an eight- to 34-fold increase in fecal corticoid concentrations, which returned to baseline levels within 1 week. Increases were positively correlated with age but not body weight at the time of shipping. Fecal corticoid concentrations during the training period increased slightly and exhibited greater variation than levels observed at the captive facility, but were well within expected norms based on previous studies. Fecal corticoid concentrations increased twofold following premigration physical examinations and placement of radiotransmitters, and persisted for up to 4 days before they returned to baseline levels. Though fecal corticoid concentrations and variation during the migration period were similar to training levels, there was an overall decline in fecal corticoid concentrations during the artificial migration. Acute stressors, such as capture, restraint, and severe storms, were associated with stress responses by the cranes that varied in accordance with lasting physical or psychological stimuli. The overall reintroduction process of costume-rearing, ultralight aircraft habituation, training, and artificial migration was not associated with elevations in fecal corticoid concentrations suggestive of chronic stress.
Reyier, Eric A.; Franks, Bryan R.; Chapman, Demian D.; Scheidt, Douglas M.; Stolen, Eric D.; Gruber, Samuel H.
2014-01-01
Resolving the geographic extent and timing of coastal shark migrations, as well as their environmental cues, is essential for refining shark management strategies in anticipation of increasing anthropogenic stressors to coastal ecosystems. We employed a regional-scale passive acoustic telemetry array encompassing 300 km of the east Florida coast to assess what factors influence site fidelity of juvenile lemon sharks (Negaprion brevirostris) to an exposed coastal nursery at Cape Canaveral, and to document the timing and rate of their seasonal migrations. Movements of 54 juvenile lemon sharks were monitored for three years with individuals tracked for up to 751 days. While most sharks demonstrated site fidelity to the Cape Canaveral region December through February under typical winter water temperatures, historically extreme declines in ocean temperature were accompanied by rapid and often temporary, southward displacements of up to 190 km along the Florida east coast. From late February through April each year, most sharks initiated a northward migration at speeds of up to 64 km day−1 with several individuals then detected in compatible estuarine telemetry arrays in Georgia and South Carolina up to 472 km from release locations. Nineteen sharks returned for a second or even third consecutive winter, thus demonstrating strong seasonal philopatry to the Cape Canaveral region. The long distance movements and habitat associations of immature lemon sharks along the US southeast coast contrast sharply with the natal site fidelity observed in this species at other sites in the western Atlantic Ocean. These findings validate the existing multi-state management strategies now in place. Results also affirm the value of collaborative passive arrays for resolving seasonal movements and habitat preferences of migratory coastal shark species not easily studied with other tagging techniques. PMID:24586329
Reyier, Eric A; Franks, Bryan R; Chapman, Demian D; Scheidt, Douglas M; Stolen, Eric D; Gruber, Samuel H
2014-01-01
Resolving the geographic extent and timing of coastal shark migrations, as well as their environmental cues, is essential for refining shark management strategies in anticipation of increasing anthropogenic stressors to coastal ecosystems. We employed a regional-scale passive acoustic telemetry array encompassing 300 km of the east Florida coast to assess what factors influence site fidelity of juvenile lemon sharks (Negaprion brevirostris) to an exposed coastal nursery at Cape Canaveral, and to document the timing and rate of their seasonal migrations. Movements of 54 juvenile lemon sharks were monitored for three years with individuals tracked for up to 751 days. While most sharks demonstrated site fidelity to the Cape Canaveral region December through February under typical winter water temperatures, historically extreme declines in ocean temperature were accompanied by rapid and often temporary, southward displacements of up to 190 km along the Florida east coast. From late February through April each year, most sharks initiated a northward migration at speeds of up to 64 km day(-1) with several individuals then detected in compatible estuarine telemetry arrays in Georgia and South Carolina up to 472 km from release locations. Nineteen sharks returned for a second or even third consecutive winter, thus demonstrating strong seasonal philopatry to the Cape Canaveral region. The long distance movements and habitat associations of immature lemon sharks along the US southeast coast contrast sharply with the natal site fidelity observed in this species at other sites in the western Atlantic Ocean. These findings validate the existing multi-state management strategies now in place. Results also affirm the value of collaborative passive arrays for resolving seasonal movements and habitat preferences of migratory coastal shark species not easily studied with other tagging techniques.
Growing magma chambers control the distribution of small-scale flood basalts
Yu, Xun; Chen, Li-Hui; Zeng, Gang
2015-01-01
Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905
NASA Astrophysics Data System (ADS)
Wu, Ming; Cheng, Zhou; Wu, Jianfeng; Wu, Jichun
2017-06-01
Representative elementary volume (REV) is important to determine properties of porous media and those involved in migration of contaminants especially dense nonaqueous phase liquids (DNAPLs) in subsurface environment. In this study, an experiment of long-term migration of the commonly used DNAPL, perchloroethylene (PCE), is performed in a two dimensional (2D) sandbox where several system variables including porosity, PCE saturation (Soil) and PCE-water interfacial area (AOW) are accurately quantified by light transmission techniques over the entire PCE migration process. Moreover, the REVs for these system variables are estimated by a criterion of relative gradient error (εgi) and results indicate that the frequency of minimum porosity-REV size closely follows a Gaussian distribution in the range of 2.0 mm and 8.0 mm. As experiment proceeds in PCE infiltration process, the frequency and cumulative frequency of both minimum Soil-REV and minimum AOW-REV sizes change their shapes from the irregular and random to the regular and smooth. When experiment comes into redistribution process, the cumulative frequency of minimum Soil-REV size reveals a linear positive correlation, while frequency of minimum AOW-REV size tends to a Gaussian distribution in the range of 2.0 mm-7.0 mm and appears a peak value in 13.0 mm-14.0 mm. Undoubtedly, this study will facilitate the quantification of REVs for materials and fluid properties in a rapid, handy and economical manner, which helps enhance our understanding of porous media and DNAPL properties at micro scale, as well as the accuracy of DNAPL contamination modeling at field-scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Wolfsberg; Lee Glascoe; Guoping Lu
Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurementsmore » have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.« less
Improved Mars Upper Atmosphere Climatology
NASA Technical Reports Server (NTRS)
Bougher, S. W.
2004-01-01
The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the upcoming MRO aerobraking exercises in 2006. A Michigan website, containing MTGCM output fields from previous climate simulations, is being expanded to include new MGCM-MTGCM simulations addressing planetary wave influences upon thermospheric aerobraking fields (densities and temperatures). In addition, similar MTGCM output fields have been supplied to the MSFC MARSGRAM - 200X empirical model, which will be used in mission operations for conducting aerobraking maneuvers.
Monitoring of well-controlled turbidity currents using the latest technology and a dredger
NASA Astrophysics Data System (ADS)
Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.
2017-12-01
Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.
Terluin, Berend; Brouwers, Evelien P M; Marchand, Miquelle A G; de Vet, Henrica C W
2018-05-01
Many paper-and-pencil (P&P) questionnaires have been migrated to electronic platforms. Differential item and test functioning (DIF and DTF) analysis constitutes a superior research design to assess measurement equivalence across modes of administration. The purpose of this study was to demonstrate an item response theory (IRT)-based DIF and DTF analysis to assess the measurement equivalence of a Web-based version and the original P&P format of the Four-Dimensional Symptom Questionnaire (4DSQ), measuring distress, depression, anxiety, and somatization. The P&P group (n = 2031) and the Web group (n = 958) consisted of primary care psychology clients. Unidimensionality and local independence of the 4DSQ scales were examined using IRT and Yen's Q3. Bifactor modeling was used to assess the scales' essential unidimensionality. Measurement equivalence was assessed using IRT-based DIF analysis using a 3-stage approach: linking on the latent mean and variance, selection of anchor items, and DIF testing using the Wald test. DTF was evaluated by comparing expected scale scores as a function of the latent trait. The 4DSQ scales proved to be essentially unidimensional in both modalities. Five items, belonging to the distress and somatization scales, displayed small amounts of DIF. DTF analysis revealed that the impact of DIF on the scale level was negligible. IRT-based DIF and DTF analysis is demonstrated as a way to assess the equivalence of Web-based and P&P questionnaire modalities. Data obtained with the Web-based 4DSQ are equivalent to data obtained with the P&P version.
NASA Astrophysics Data System (ADS)
Cozzarelli, I. M.; Esaid, H. I.; Bekins, B. A.; Eganhouse, R. P.; Baedecker, M.
2002-05-01
Assessment of natural attenuation as a remedial option requires understanding the long-term fate of contaminant compounds. The development of correct conceptual models of biodegradation requires observations at spatial and temporal scales appropriate for the reactions being measured. For example, the availability of electron acceptors such as solid-phase iron oxides may vary at the cm scale due to aquifer heterogeneities. Characterizing the distribution of these oxides may require small-scale measurements over time scales of tens of years in order to assess their impact on the fate of contaminants. The long-term study of natural attenuation of hydrocarbons in a contaminant plume near Bemidji, MN provides insight into how natural attenuation of hydrocarbons evolves over time. The sandy glacial-outwash aquifer at this USGS Toxic Substances Hydrology research site was contaminated by crude oil in 1979. During the 16 years that data have been collected the shape and extent of the contaminant plume changed as redox reactions, most notably iron reduction, progressed over time. Investigation of the controlling microbial reactions in this system required a systematic and multi-scaled approach. Early indications of plume shrinkage were observed over a time scale of a few years, based on observation well data. These changes were associated with iron reduction near the crude-oil source. The depletion of Fe (III) oxides near the contaminant source caused the dissolved iron concentrations to increase and spread downgradient at a rate of approximately 3 m/year. The zone of maximum benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations has also spread within the anoxic plume. Subsequent analyses of sediment and water, collected at small-scale cm intervals from cores in the contaminant plume, provided insight into the evolution of redox zones at smaller scales. Contaminants, such as ortho-xylene, that appeared to be contained near the oil source based on the larger-scale observation well data, were observed to be migrating in thin layers as the aquifer evolved to methanogenic conditions in narrow zones. The impact of adequately identifying the microbially mediated redox reactions was illustrated with a novel inverse modeling effort (using both the USGS solute transport and biodegradation code BIOMOC and the USGS universal inverse modeling code UCODE) to quantify field-scale hydrocarbon dissolution and biodegradation at the Bemidji site. Extensive historical data compiled at the Bemidji site were used, including 1352 concentration observations from 30 wells and 66 core sections. The simulations reproduced the general large-scale evolution of the plume, but the percent BTEX mass removed from the oil body after 18 years varied significantly, depending on which biodegradation conceptual model was used. The best fit was obtained for the iron-reduction conceptual model, which incorporated the finite availability of Fe (III) in the aquifer and reproduced the field observation that depletion of solid-phase iron resulted in increased downgradient transport of BTEX compounds. The predicted benzene plume 50 years after the spill showed significantly higher concentrations of benzene for the iron-reduction model compared to other conceptual models tested. This study demonstrates that the long-term sustainability of the electron acceptors is key to predicting the ultimate fate of the hydrocarbons. Assessing this evolution of redox processes and developing an adequate conceptual model required observations on multiple spatial scales over the course of many years.
NASA Astrophysics Data System (ADS)
Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.
We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.
Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.
2017-08-23
Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.
Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less
Davis, J. Brian; Webb, Elisabeth B.; Kaminski, Richard M.; Barbour, Philip J.; Vilella, Francisco
2014-01-01
Following the Deepwater Horizon oil spill in the Gulf of Mexico in April 2010, the USDA Natural Resources Conservation Service (NRCS) established and funded the Migratory Bird Habitat Initiative (MBHI), with the goal of improving and increasing wetland habitats on private lands to benefit wintering and migrating waterbirds displaced from oil-impacted coastal wetlands. The NRCS and conservation partners provided financial and technical assistance to landowners and managers of sites enrolled in various conservation easement programs, and incorporated approximately 190,000 ha of wetlands and agricultural lands in the Mississippi Alluvial Valley (MAV) and Gulf Coast regions in the MBHI. In fall 2010, the NRCS worked with scientists and graduate students from three universities and various conservation agencies to design and implement landscape-scale evaluations of (1) the use of MBHI-managed wetlands and comparable non-MBHI wetlands by Charadriiformes(shorebirds), Anseriformes (waterfowl), and other waterbirds; and (2) the relative effectiveness of different MBHI practices for providing habitat and food resources for migrating, resident, and wintering waterbirds. In this paper, we describe the scientific framework designed to evaluate the MBHI in improving waterbird habitats on private lands in the MAV, the Gulf Coast Prairies in Louisiana and Texas, and Gulf coastal wetlands of Mississippi and Alabama. The results of our evaluation will enhance our understanding of the influence of MBHI, other Farm Bill Conservation Initiative managed lands (e.g., Wetland Reserve Program), and selected agricultural working lands (e.g., Oryza sativa L. [Rice] fields in southern Louisiana and Texas) on wintering and migrating waterbirds. A proactive approach that uses science to evaluate governmental conservation programs is relevant and can inform development of meaningful public policy that likely will be needed for effective delivery of future conservation programs and to justify financial incentives paid to landowners to apply best management practices.
Hahn, Steffen; Emmenegger, Tamara; Lisovski, Simeon; Amrhein, Valentin; Zehtindjiev, Pavel; Liechti, Felix
2014-01-01
Migration detours, the spatial deviation from the shortest route, are a widespread phenomenon in migratory species, especially if barriers must be crossed. Moving longer distances causes additional efforts in energy and time, and to be adaptive, this should be counterbalanced by favorable condition en route. We compared migration patterns of nightingales that travelled along different flyways from their European breeding sites to the African nonbreeding sites. We tested for deviations from shortest routes and related the observed and expected routes to the habitat availability at ground during autumn and spring migration. All individuals flew detours of varying extent. Detours were largest and seasonally consistent in western flyway birds, whereas birds on the central and eastern flyways showed less detours during autumn migration, but large detours during spring migration (eastern flyway birds). Neither migration durations nor the time of arrival at destination were related to the lengths of detours. Arrival at the breeding site was nearly synchronous in birds flying different detours. Flying detours increased the potential availability of suitable broad-scale habitats en route only along the western flyway. Habitat availability on observed routes remained similar or even decreased for individuals flying detours on the central or the eastern flyway as compared to shortest routes. Thus, broad-scale habitat distribution may partially explain detour performance, but the weak detour-habitat association along central and eastern flyways suggests that other factors shape detour extent regionally. Prime candidate factors are the distribution of small suitable habitat patches at local scale as well as winds specific for the region and altitude. PMID:25505540
Dual impacts of climate change: forest migration and turnover through life history.
Zhu, Kai; Woodall, Christopher W; Ghosh, Souparno; Gelfand, Alan E; Clark, James S
2014-01-01
Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.
Multimodal chemo-magnetic control of self-propelling microbots
NASA Astrophysics Data System (ADS)
Singh, Amit Kumar; Dey, Krishna Kanti; Chattopadhyay, Arun; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar
2014-01-01
We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment. Electronic supplementary information (ESI) available: Scanning electron microscopy, transmission electron microscopy, X-ray diffraction pattern, vibrating sample magnetometry (VSM) hysteresis loop of freshly prepared FeNP coated micromotor and movies of micromotor motion. See DOI: 10.1039/c3nr05294j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed fo throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants.« less
Steiger, Judy I.
2007-01-01
The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Walter H.; Skalski, John R.
2011-09-01
The effects of deep-draft vessel traffic in confined riverine channels on shorelines and fish are of widespread concern. In the Pacific Northwest of the United States, wakes and subsequent beach run-up from ships transiting the Lower Columbia River have been observed to strand juvenile salmon and other fish. As part of a before-and-after study to assess stranding effects that may be associated with channel deepening, we measured 19 co-variables from observations of 126 vessel passages at three low-slope beaches and used multiple logistic regression to discern the significant factors influencing the frequency of stranding. Subyearling Chinook salmon were 82% ofmore » the fish stranded over all sites and seasons. Given a low-slope beach, stranding frequencies for juvenile salmon were significantly related to river location, salmon density in the shallows, a proxy for ship kinetic energy, tidal height, and two interactions. The beach types selected for our study do not include all the beach types along the Lower Columbia River so that the stranding probabilities described here cannot be extrapolated river-wide. A more sophisticated modeling effort, informed by additional field data, is needed to assess salmon losses by stranding for the entire lower river. Such modeling needs to include river-scale factors such as beach type, berms, proximity to navigation channel, and perhaps, proximity to tributaries that act as sources of out-migrating juvenile salmon. At both river and beach scales, no one factor produces stranding; rather interactions among several conditions produce a stranding event and give stranding its episodic nature.« less
Lifetime of the solar nebula constrained by meteorite paleomagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning
We present that a key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation ofmore » chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. In conclusion, the core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.« less
Lifetime of the solar nebula constrained by meteorite paleomagnetism.
Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E
2017-02-10
A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. Copyright © 2017, American Association for the Advancement of Science.
Lifetime of the solar nebula constrained by meteorite paleomagnetism
Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning; ...
2017-02-10
We present that a key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation ofmore » chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. In conclusion, the core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.« less
Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping
NASA Astrophysics Data System (ADS)
Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.
2017-12-01
Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.
Aagaard, Kevin; Crimmins, Shawn M.; Thogmartin, Wayne E.; Tavernia, Brian G.; Lyons, James E.
2015-01-01
The development of robust modelling techniques to derive inferences from large-scale migratory bird monitoring data at appropriate scales has direct relevance to their management. The Integrated Waterbird Management and Monitoring programme (IWMM) represents one of the few attempts to monitor migrating waterbirds across entire flyways using targeted local surveys. This dataset included 13,208,785 waterfowl (eight Anas species) counted during 28,000 surveys at nearly 1,000 locations across the eastern United States between autumn 2010 and spring 2013 and was used to evaluate potential predictors of waterfowl abundance at the wetland scale. Mixed-effects, log-linear models of local abundance were built for the Atlantic and Mississippi flyways during spring and autumn migration to identify factors relating to habitat structure, forage availability, and migration timing that influence target dabbling duck species abundance. Results indicated that migrating dabbling ducks responded differently to environmental factors. While the factors identified demonstrated a high degree of importance, they were inconsistent across species, flyways and seasons. Furthermore, the direction and magnitude of the importance of each covariate group considered here varied across species. Given our results, actionable policy recommendations are likely to be most effective if they consider species-level variation within targeted taxonomic units and across management areas. The methods implemented here can easily be applied to other contexts, and serve as a novel investigation into local-level population patterns using data from broad-scale monitoring programmes.
Nocturnally migrating songbirds drift when they can and compensate when they must.
Horton, Kyle G; Van Doren, Benjamin M; Stepanian, Phillip M; Hochachka, Wesley M; Farnsworth, Andrew; Kelly, Jeffrey F
2016-02-16
The shortest possible migratory route for birds is not always the best route to travel. Substantial research effort has established that birds in captivity are capable of orienting toward the direction of an intended goal, but efforts to examine how free-living birds use navigational information under conditions that potentially make direct flight toward that goal inefficient have been limited in spatiotemporal scales and in the number of individuals observed because of logistical and technological limitations. Using novel and recently developed techniques for analysis of Doppler polarimetric weather surveillance radar data, we examined two impediments for nocturnally migrating songbirds in eastern North America following shortest-distance routes: crosswinds and oceans. We found that migrants in flight often drifted sideways on crosswinds, but most strongly compensated for drift when near the Atlantic coast. Coastal migrants' tendency to compensate for wind drift also increased through the night, while no strong temporal differences were observed at inland sites. Such behaviors suggest that birds migrate in an adaptive way to conserve energy by assessing while airborne the degree to which they must compensate for wind drift.
2018-01-01
This study investigates the effect of perceived discrimination on the mental health of Afghan refugees, and secondly, tests the distress moderating effects of pre-migration traumatic experiences and post-resettlement adjustment factors. In a cross-sectional design, 259 Afghans completed surveys assessing perceived discrimination and a number of other factors using scales developed through inductive techniques. Multivariable analyses consisted of a series of hierarchical regressions testing the effect of perceived discrimination on distress, followed by a sequential analysis of moderator variables. Perceived discrimination was significantly associated with higher distress, and this relationship was stronger among those with a strong intra-ethnic identity and high pre-resettlement traumatic experiences. The expected buffering effects of civic engagement, ethnic orientation (e.g. integration), and social support were not significant. Discrimination is a significant source of stress for Afghan refugees, which may exacerbate stresses associated with other pre- and post-migration stressors. Future research is needed to tailor interventions that can help mitigate the stress associated with discrimination among this highly vulnerable group. PMID:29782531
Nocturnally migrating songbirds drift when they can and compensate when they must
Horton, Kyle G.; Van Doren, Benjamin M.; Stepanian, Phillip M.; Hochachka, Wesley M.; Farnsworth, Andrew; Kelly, Jeffrey F.
2016-01-01
The shortest possible migratory route for birds is not always the best route to travel. Substantial research effort has established that birds in captivity are capable of orienting toward the direction of an intended goal, but efforts to examine how free-living birds use navigational information under conditions that potentially make direct flight toward that goal inefficient have been limited in spatiotemporal scales and in the number of individuals observed because of logistical and technological limitations. Using novel and recently developed techniques for analysis of Doppler polarimetric weather surveillance radar data, we examined two impediments for nocturnally migrating songbirds in eastern North America following shortest-distance routes: crosswinds and oceans. We found that migrants in flight often drifted sideways on crosswinds, but most strongly compensated for drift when near the Atlantic coast. Coastal migrants’ tendency to compensate for wind drift also increased through the night, while no strong temporal differences were observed at inland sites. Such behaviors suggest that birds migrate in an adaptive way to conserve energy by assessing while airborne the degree to which they must compensate for wind drift. PMID:26879152
Internal and International Migration Across the Urban Hierarchy in Albania.
Lerch, Mathias
2016-01-01
The interactions between the processes of urbanization and international migration in less developed and transition countries have important repercussions for socioeconomic development, but are not well understood. Based on the retrospective data from the Albanian Living Standards Measurement Survey 2008, we first assess the geography of migration in terms of the rural-urban continuum, the urban hierarchy and the outside world since 1990. We then investigate the spatio-temporal diffusion of rural-to-urban and international movements using survival models. Results reveal an immediate onset of large-scale rural exodus, despite the post-communist crisis. Internal migrants mainly moved to the capital, bypassing secondary cities, and were predominantly female. Initially, international migrants were primarily men who tended to originate from the main urban agglomerations. The diffusion of opportunities to emigrate down the urban hierarchy and across the sexes then redirected the rural exodus abroad, despite domestic economic development. This evolution in population mobility is related to the gendered patterns and interlinkages of the two flows, as well as to rising inequalities within the urban hierarchy.
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems
Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip
2017-01-01
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.
Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip
2017-01-31
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.
Singha, Kamini; Gorelick, Steven M.
2006-01-01
Two important mechanisms affect our ability to estimate solute concentrations quantitatively from the inversion of field-scale electrical resistivity tomography (ERT) data: (1) the spatially variable physical processes that govern the flow of current as well as the variation of physical properties in space and (2) the overparameterization of inverse models, which requires the imposition of a smoothing constraint (regularization) to facilitate convergence of the inverse solution. Based on analyses of field and synthetic data, we find that the ability of ERT to recover the 3D shape and magnitudes of a migrating conductive target is spatially variable. Additionally, the application of Archie's law to tomograms from field ERT data produced solute concentrations that are consistently less than 10% of point measurements collected in the field and estimated from transport modeling. Estimates of concentration from ERT using Archie's law only fit measured solute concentrations if the apparent formation factor is varied with space and time and allowed to take on unreasonably high values. Our analysis suggests that the inability to find a single petrophysical relation in space and time between concentration and electrical resistivity is largely an effect of two properties of ERT surveys: (1) decreased sensitivity of ERT to detect the target plume with increasing distance from the electrodes and (2) the smoothing imprint of regularization used in inversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif
2015-03-31
Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO 2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO 2 in supercritical fluid phase (scCO 2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanismsmore » in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO 2. Laboratory experiments using scCO 2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO 2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO 2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods and research results.« less
Near-membrane electric field calcium ion dehydration.
Barger, James P; Dillon, Patrick F
2016-12-01
The dehydration of ion-water complexes prior to ion channel transit has focused on channel protein-mediated dissociation of water. Ion dehydration by the membrane electric field has not previously been considered. Near membrane electric fields have previously been shown to cause the disassociation of non-covalently bound small molecule-small molecule, small molecule-protein, and protein-protein complexes. It is well known that cosmotropic, structure making ions such as calcium and sodium significantly bind multiple water ions in solution. It is also known that these ions are often not hydrated as they pass through membrane ion channels. Using capillary electrophoresis, the range of electric fields needed to strip water molecules from calcium ions has been measured. Ion migration velocity is a linear function of the electric field. At low electric fields, the migration rate of calcium ion was shown to be linearly related to the applied electric field. Using a form of the Stoke's equation applicable to ion migration, the hydrated calcium radius was found to be 0.334nm, corresponding to a water hydration shell of 5.09 water molecules. At higher electric fields, the slope of the calcium migration velocity as a function of the electric field increased, which was modeled as a decrease in the radius of the migrating ion as the water was removed. Using a tanh function to model the transition of the ion from a hydrated to a stripped state, the transition had a midpoint at 446V/cm, and was 88% complete at 587V/cm with a correlation coefficient of 0.9996. The migration velocity of the stripped calcium ion was found to be a function of both the decrease in radius and an increase in the effective, electronic viscosity of the dipole medium through which the dehydrated ion moved. The size of the electric field needed to dehydrate calcium occurs 6-7nm from the cell membrane. Calcium ions within this distance from the membrane will be devoid of water molecules when they reach the calcium selective channel pore entrances, all known to be approximately 1-2nm from the membrane. No matter what the calcium pore structure, calcium ions reaching the channel entrance will be devoid of a water shell. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lymphocyte Electrotaxis in vitro and in vivo
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D.; Santiago, Juan G.; Butcher, Eugene C.
2008-01-01
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e. electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified transwell assay and a simple microfluidic device, we show that human peripheral blood lymphocytes migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well. PMID:18684937
Lymphocyte electrotaxis in vitro and in vivo.
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D; Santiago, Juan G; Butcher, Eugene C
2008-08-15
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified Transwell assay and a simple microfluidic device, we show that human PBLs migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well.
NASA Astrophysics Data System (ADS)
Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.
2013-12-01
Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller scale simulations were then used to simulate coupled flow and moisture migration in soils in saturated and unsaturated zones, surface and groundwater exchange, and surface water flow in streams and lakes at the DWP site under dynamic precipitation conditions. Laboratory measurements of soil hydrological and biogeochemical properties are used to parameterize the UMSM at the small scales, and field measurements are used to evaluate the UMSM.
Dual impacts of climate change: forest migration and turnover through life history
Kai Zhu; Christopher W. Woodall; Souparno Ghosh; Alan E. Gelfand; James S. Clark
2014-01-01
Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would...
NASA Astrophysics Data System (ADS)
Ginsberg, Naomi
2015-03-01
The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.
Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks
Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian
2014-01-01
In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better. PMID:24959631
Global detection of live virtual machine migration based on cellular neural networks.
Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian
2014-01-01
In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.
Wyman, Megan T.; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth’s main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. PMID:28575021
Klimley, A Peter; Wyman, Megan T; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert; ...
2017-06-02
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garven, Grant
2015-08-11
Our studies have had an important impact on societal issues. Experimental and field observations show that CO 2 degassing, such as might occur from stored CO 2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, ourmore » characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.« less
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
Aeolian Processes of the Pismo-Oceano Dune Complex, California
NASA Astrophysics Data System (ADS)
Barrineau, C. P.; Tchakerian, V.; Houser, C.
2012-12-01
The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Niño and La Niña periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal scale, excessive vehicular traffic may have impeded the transition of emergent, defect-ridden dune forms into mature transverse ridges. Despite the astounding lack to studies focusing on the Pismo Dunes, the complex presents multiple opportunities for inquiry regarding climatic control on dune field evolution, defect law and complex landform pattern development, and long-term anthropogenic alteration of coastal process morphology.
Godbout, Charles; Frenette, Jérôme
2006-01-01
A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
Sommerlot, Andrew R; Pouyan Nejadhashemi, A; Woznicki, Sean A; Prohaska, Michael D
2013-10-15
Non-point source pollution from agricultural lands is a significant contributor of sediment pollution in United States lakes and streams. Therefore, quantifying the impact of individual field management strategies at the watershed-scale provides valuable information to watershed managers and conservation agencies to enhance decision-making. In this study, four methods employing some of the most cited models in field and watershed scale analysis were compared to find a practical yet accurate method for evaluating field management strategies at the watershed outlet. The models used in this study including field-scale model (the Revised Universal Soil Loss Equation 2 - RUSLE2), spatially explicit overland sediment delivery models (SEDMOD), and a watershed-scale model (Soil and Water Assessment Tool - SWAT). These models were used to develop four modeling strategies (methods) for the River Raisin watershed: Method 1) predefined field-scale subbasin and reach layers were used in SWAT model; Method 2) subbasin-scale sediment delivery ratio was employed; Method 3) results obtained from the field-scale RUSLE2 model were incorporated as point source inputs to the SWAT watershed model; and Method 4) a hybrid solution combining analyses from the RUSLE2, SEDMOD, and SWAT models. Method 4 was selected as the most accurate among the studied methods. In addition, the effectiveness of six best management practices (BMPs) in terms of the water quality improvement and associated cost were assessed. Economic analysis was performed using Method 4, and producer requested prices for BMPs were compared with prices defined by the Environmental Quality Incentives Program (EQIP). On a per unit area basis, producers requested higher prices than EQIP in four out of six BMP categories. Meanwhile, the true cost of sediment reduction at the field and watershed scales was greater than EQIP in five of six BMP categories according to producer requested prices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of centrifugally-loaded flame migration for ultra-compact combustors
NASA Astrophysics Data System (ADS)
LeBay, Kenneth D.
The Air Force Research Laboratory (AFRL) has designed a centrifugally-loaded Ultra-Compact Combustor (UCC) showing viable merit for reducing gas turbine combustor length by as much as 66%. The overarching goal of this research was to characterize the migration of centrifugally-loaded flames in a sectional model of the UCC to enable scaling of the design from 15 cm to the 50--75 cm diameter of most engines. Two-line Planar Laser-Induced Fluorescence thermometry (PLIF) of OH, time-resolved Particle Image Velocimetry (PIV), and high-speed video data were collected. Using a sectional UCC model, the flame migration angle was determined to be a function of the UCC/core velocity ratio (VR) while both the VR and the centrifugal or "g-load" affected the migration quantity. Higher g-loads and lower VRs yielding higher migration but lower VRs had lower core flow temperatures due to higher core air mass flow. A comparison of the straight and curved UCC sections showed the centrifugal load increased the flame migration but increased unsteadiness. The flame migration into the core was estimated using pressure and temperature measurements upstream, and PIV measurements downstream of the core flow interface with constant density and velocity profile assumptions. The flame migration quantity was used to estimate the core flow temperature which was in relatively good agreement with the measured PLIF values. The migration quantity scaled relatively linearly with the UCC tangential velocity, which corresponds to the g-load value, with the slope determined by the VR. A simple analytical model resulted for the dependence of the migration quantity on the tangential velocity and VR. The quantitative relationships determined in this research provided a detailed description of the migration of centrifugally-loaded flames in a sectional UCC.
Yamagata, Yoshitaka; Terada, Yuko; Suzuki, Atsushi; Mimura, Osamu
2010-01-01
The visual efficiency scale currently adopted to determine the legal grade of visual disability associated with visual field loss in Japan is not appropriate for the evaluation of disability regarding daily living activities. We investigated whether Esterman disability score (EDS) is suitable for the assessment of mobility difficulty in patients with visual field loss. The correlation between the EDS calculated from Goldmann's kinetic visual field and the degree of subjective mobility difficulty determined by a questionnaire was investigated in 164 patients with visual field loss. The correlation between the EDS determined using a program built into the Humphrey field analyzer and that calculated from Goldmann's kinetic visual field was also investigated. The EDS based on the kinetic visual field was correlated well with the degree of subjective mobility difficulty, and the EDS measured using the Humphrey field analyzer could be estimated from the kinetic visual field-based EDS. Instead of the currently adopted visual efficiency scale, EDS should be employed for the assessment of mobility difficulty in patients with visual field loss, also to establish new judgment criteria concerning the visual field.
NASA Astrophysics Data System (ADS)
Glaser, Rüdiger; Himmelsbach, Iso; Bösmeier, Annette
2017-11-01
This paper contributes to the ongoing debate on the extent to which climate and climatic change can have a negative impact on societies by triggering migration, or even contribute to conflict. It summarizes results from the transdisciplinary project Climate of migration
(funded 2010-2014), whose innovative title was created by Franz Mauelshagen and Uwe Lübken. The overall goal of this project was to analyze the relation between climatic and socioeconomic parameters and major migration waves from southwest Germany to North America during the 19th century. The article assesses the extent to which climatic conditions triggered these migration waves. The century investigated was in general characterized by the Little Ice Age with three distinct cooling periods, causing major glacier advances in the alpine regions and numerous climatic extremes such as major floods, droughts and severe winter. Societal changes were tremendous, marked by the warfare during the Napoleonic era (until 1815), the abolition of serfdom (1817), the bourgeois revolution (1847/48), economic freedom (1862), the beginning of industrialization accompanied by large-scale rural-urban migration resulting in urban poverty, and finally by the foundation of the German Empire in 1871.
The presented study is based on quantitative data and a qualitative, information-based discourse analysis. It considers climatic conditions as well as socioeconomic and political issues, leading to the hypothesis of a chain of effects ranging from unfavorable climatic conditions to a decrease in crop yields to rising cereal prices and finally to emigration. These circumstances were investigated extensively for the peak emigration years identified with each migration wave. Furthermore, the long-term relations between emigration and the prevailing climatic conditions, crop yields and cereal prices were statistically evaluated with a sequence of linear models which were significant with explanatory power between 22 and 38 %.
Schwilch, G; Liniger, H P; Hurni, H
2014-11-01
Managing land sustainably is a huge challenge, especially under harsh climatic conditions such as those found in drylands. The socio-economic situation can also pose challenges, as dryland regions are often characterized by remoteness, marginality, low-productive farming, weak institutions, and even conflict. With threats from climate change, disputes over water, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) measures will only increase in the future. Within the EU-funded DESIRE project, researchers and stakeholders jointly identified existing SLM technologies and approaches in 17 dryland study sites located in the Mediterranean and around the world. In order to evaluate and share this valuable SLM experience, local researchers documented the SLM technologies and approaches in collaboration with land users, utilizing the internationally recognized WOCAT questionnaires. This article provides an analysis of 30 technologies and 8 approaches, enabling an initial evaluation of how SLM addresses prevalent dryland threats, such as water scarcity, soil degradation, vegetation degradation and low production, climate change, resource use conflicts, and migration. Among the impacts attributed to the documented technologies, those mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Favorable local-scale cost-benefit relationships were mainly found when considered over the long term. Nevertheless, SLM was found to improve people's livelihoods and prevent further outmigration. More field research is needed to reinforce expert assessments of SLM impacts and provide the necessary evidence-based rationale for investing in SLM.
Alaska at the Crossroads of Migration: Space Based Ornithology
NASA Technical Reports Server (NTRS)
Deppe, Jill; Wessels, Konrad; Smith, James A.
2007-01-01
Understanding bird migration on a global scale is one of the most compelling and challenging problems of modern biology with major implications for human health and conservation biology. Revolutionary advances in remote sensing now provide us with near real-time measurements of atmospheric and land surface conditions at high spatial resolution over entire continents. We use spatially-explicit, individual based bird migration models driven by numerical weather prediction models of atmospheric conditions, dynamic habitat suitability maps derived from remotely sensed land surface conditions, biophysiological models, and biological field data to simulate migration routes, timing, energy budgets, and survival of individual birds and populations. Long-distance migratory birds travel annually between breeding grounds in Alaska and wintering grounds in Latin Amierica. Approximately 25% of these species are potential vectors of Avian Influenza. Alaska is at the crossroads of Asian and New World migratory flyways and is likely to be a point of introduction of Asian H5N1 AI into the western hemisphere. If/when an infected bird is detected, a pressing question will be where was this bird several days ago, and where is it likely to go after it was released from the survey site? Answers to such questions will increase effectiveness of AI surveillance and mitigation measures. From a conservation perspective, Alaska's diverse landscape provides breeding sites for many migrants, and climatic and land surface changes along migratory flyways in the western hemisphere may reduce bird survival and physical condition upon arrival at Alaskan breeding territories, success and migrant populations.
NASA Astrophysics Data System (ADS)
Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji
2018-02-01
It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.
Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J
2012-08-01
This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a reduction in flush-out time. Freshwater recharge caused an early dilution of salt water in the top part of the tank in the case of a layered media, but also pushed the saltwater plume into the low-permeability layer which led to increased total flush-out times. Copyright © 2012 Elsevier B.V. All rights reserved.
Natural analogues for CO2 storage sites - analysis of a global dataset
NASA Astrophysics Data System (ADS)
Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, R. Stuart
2013-04-01
Carbon Capture and Storage is the only industrial scale technology currently available to reduce CO2 emissions from fossil-fuelled power plants and large industrial source to the atmosphere and thus mitigate climate change. CO2 is captured at the source and transported to subsurface storage sites, such as depleted oil and gas fields or saline aquifers. In order to have an effect on emissions and to be considered safe it is crucial that the amount of CO2 leaking from storage sites to shallow aquifers or the surface remains very low (<1% over 1000 years). Some process that influence the safety of a reservoir, such as CO2-rock-brine interactions, can be studied using experiments on both laboratory and field-scale. However, long-term processes such as the development of leakage pathways can only be understood by either predictive modelling or by studying natural CO2 reservoirs as analogues for long term CO2 storage sites. Natural CO2 reservoirs have similar geological trapping mechanisms as anticipated for CO2 storage sites and often have held CO2 for a geological period of time (millions of years) without any indication for leakage. Yet, migration of CO2 from reservoirs to the surface is also common and evidenced by gas seeps such as springs and soil degassing. We have compiled and analysed a dataset comprising of more than 50 natural CO2 reservoirs from different settings all around the globe to provide an overview of the factors that are important for the retention of CO2 in the subsurface and what processes lead to leakage of CO2 from the reservoir. Initial results indicate that if the reservoir is found to be leaking, CO2 migration is along faults and not through caprock layers. This indicates that faults act as fluid pathways and play an important role when characterizing a storage site. Additionally, it appears that overpressure of the overburden and the state of CO2 in the reservoir influence the likelihood of migration and hence the safety of a reservoir.
Assessing indicators of rangeland health with remote sensing in southeast Arizona
Jared Buono; Philip Heilman; David Williams; Phillip Guertin
2005-01-01
The goal of this study was to scale up ground-based range assessments to ranch and landscape scales in southeast Arizona using remote sensing and minimum amount of field data collection. Remotely sensed metrics of canopy cover, biomass, and mesquite composition were used to assess soil and site stability and biotic integrity. Ground-based assessments were conducted on...
A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA
NASA Astrophysics Data System (ADS)
Hinkel, Jochen; Nicholls, Robert J.; Tol, Richard S. J.; Wang, Zheng B.; Hamilton, Jacqueline M.; Boot, Gerben; Vafeidis, Athanasios T.; McFadden, Loraine; Ganopolski, Andrey; Klein, Richard J. T.
2013-12-01
This paper presents a first assessment of the global effects of climate-induced sea-level rise on the erosion of sandy beaches, and its consequent impacts in the form of land loss and forced migration of people. We consider direct erosion on open sandy coasts and indirect erosion near selected tidal inlets and estuaries, using six global mean sea-level scenarios (in the range of 0.2-0.8 m) and six SRES socio-economic development scenarios for the 21st century. Impacts are assessed both without and with adaptation in the form of shore and beach nourishment, based on cost-benefit analysis that includes the benefits of maintaining sandy beaches for tourism. Without nourishment, global land loss would amount to about 6000-17,000 km2 during the 21st century, leading to 1.6-5.3 million people being forced to migrate and migration costs of US 300-1000 billion (not discounted). Optimal beach and shore nourishment would cost about US 65-220 billion (not discounted) during the 21st century and would reduce land loss by 8-14%, forced migration by 56-68% and the cost of forced migration by 77-84% (not discounted). The global share of erodible coast that is nourished increases from about 4% in 2000 to 18-33% in 2100, with beach nourishment being 3-4 times more frequent than shore nourishment, reflecting the importance of tourism benefits. In absolute terms, with or without nourishment, large countries with long shorelines appear to have the largest costs, but in relative terms, small island states appear most impacted by erosion. Considerable uncertainty remains due to the limited availability of basic coastal geomorphological data and models on a global scale. Future work should also further explore the effects of beach tourism, including considering sub-national distributions of beach tourists.
Input-output relationship in galvanotactic response of Dictyostelium cells.
Sato, Masayuki J; Ueda, Michihito; Takagi, Hiroaki; Watanabe, Tomonobu M; Yanagida, Toshio; Ueda, Masahiro
2007-04-01
Under a direct current electric field, Dictyostelium cells exhibit migration towards the cathode. To determine the input-output relationship of the cell's galvanotactic response, we developed an experimental instrument in which electric signals applied to the cells are highly reproducible and the motile response are analyzed quantitatively. With no electric field, the cells moved randomly in all directions. Upon applying an electric field, cell migration speeds became about 1.3 times faster than those in the absence of an electric field. Such kinetic effects of electric fields on the migration were observed for cells stimulated between 0.25 and 10 V/cm of the field strength. The directions of cell migrations were biased toward the cathode in a positive manner with field strength, showing galvanotactic response in a dose-dependent manner. Quantitative analysis of the relationship between field strengths and directional movements revealed that the biased movements of the cells depend on the square of electric field strength, which can be described by one simple phenomenological equation. The threshold strength for the galvanotaxis was between 0.25 and 1 V/cm. Galvanotactic efficiency reached to half-maximum at 2.6 V/cm, which corresponds to an approximate 8 mV voltage difference between the cathode and anode direction of 10 microm wide, round cells. Based on these results, possible mechanisms of galvanotaxis in Dictyostelium cells were discussed. This development of experimental system, together with its good microscopic accessibility for intracellular signaling molecules, makes Dictyostelium cells attractive as a model organism for elucidating stochastic processes in the signaling systems responsible for cell motility and its regulations.
THE ROLE OF ELECTRICAL SIGNALS IN MURINE CORNEAL WOUND RE-EPITHELIALISATION
Kucerova, R.; Walczysko, P.; Reid, B.; Ou, J.; Leiper, L. J.; Rajnicek, A. M.; McCaig, C. D.; Zhao, M.; Collinson, J. M.
2011-01-01
Ion flow from intact tissue into epithelial wound sites results in lateral electric currents that may represent a major driver of wound healing cell migration. Use of applied electric fields to promote wound healing is the basis of Medicare-approved electric stimulation therapy. This study investigated the roles for electric fields in wound re-epithelialisation, using the Pax6+/− mouse model of the human ocular surface abnormality aniridic keratopathy (in which wound healing and corneal epithelial cell migration are disrupted). Both wild-type and Pax6+/− corneal epithelial cells showed increased migration speeds in response to applied electric fields in vitro. However, only Pax6+/+ cells demonstrated directional galvanotaxis towards the cathode, with activation of pSrc signalling, polarised to the leading edges of cells. In vivo, the epithelial wound site normally represents a cathode, but 43% of Pax6+/− corneas exhibited reversed endogenous wound-induced currents (the wound was an anode). These corneas healed at the same rate as wild-type. Surprisingly, epithelial migration did not correlate with direction or magnitude of endogenous currents for wild-type or mutant corneas. Furthermore, during healing in vivo, no polarisation of pSrc was observed. We found little evidence that Src-dependent mechanisms of cell migration, observed in response to applied EFs in vitro, normally exist in vivo. It is concluded that endogenous electric fields do not drive long-term directionality of sustained healing migration in this mouse corneal epithelial model. Ion flow from wounds may nevertheless represent an important component of wound signalling initiation. PMID:20945376
ERIC Educational Resources Information Center
Mason, Elisa
1999-01-01
Describes the evolution of refugee and forced migration studies, identifies factors that render it a challenging field to research, and highlights a variety of Internet-based and other electronic resources that can be used to locate monographs, periodicals, grey literature, and current information. Provides a bibliography of reference materials in…
Field-driven ion migration against dead-stop collisional braking
NASA Astrophysics Data System (ADS)
Grzesik, J. A.
1988-02-01
The steady-state migration of ions, driven by a uniform electric field against full-stop collisions, is investigated in some detail. The required phase-space distribution is obtained very easily from Boltzmann's equation together with explicit recognition of energy conservation and population balance for the stagnant ion pool. We go on to decompose this aggregate solution into ion tiers classified by the number of background impacts previously endured. Such a decomposition permits us to detect the presence of Poisson statistics (as to collision number) lurking within the composite, thermalized Maxwellian, and likewise also a multiple-scattering hierarchy having the maiden, first-flight distribution for its natural kernel. Scattering-sequence accounting, in particular, allows a quantitative (even though unwieldy) distinction to be made between ions of varying residence times. A model of this sort is motivated by the technique of ion implantation through sample immersion within a plasma at higher electric potential. Numerical consequences of the solution obtained here reveal that both ion density and average kinetic energy relax to their terminal values within just a few mean free-path lengths. Such modest scaling of plasma-sheath extent evidently carries a beneficial implication for the technological ease with which surface properties (such as metal corrosion resistance and hardness) remain open to improvement via ion bombardment.
Migration in Deltas: An Integrated Analysis
NASA Astrophysics Data System (ADS)
Nicholls, Robert J.; Hutton, Craig W.; Lazar, Attila; Adger, W. Neil; Allan, Andrew; Arto, Inaki; Vincent, Katharine; Rahman, Munsur; Salehin, Mashfiqus; Sugata, Hazra; Ghosh, Tuhin; Codjoe, Sam; Appeaning-Addo, Kwasi
2017-04-01
Deltas and low-lying coastal regions have long been perceived as vulnerable to global sea-level rise, with the potential for mass displacement of exposed populations. The assumption of mass displacement of populations in deltas requires a comprehensive reassessment in the light of present and future migration in deltas, including the potential role of adaptation to influence these decisions. At present, deltas are subject to multiple drivers of environmental change and often have high population densities as they are accessible and productive ecosystems. Climate change, catchment management, subsidence and land cover change drive environmental change across all deltas. Populations in deltas are also highly mobile, with significant urbanization trends and the growth of large cities and mega-cities within or adjacent to deltas across Asia and Africa. Such migration is driven primarily by economic opportunity, yet environmental change in general, and climate change in particular, are likely to play an increasing direct and indirect role in future migration trends. The policy challenges centre on the role of migration within regional adaptation strategies to climate change; the protection of vulnerable populations; and the future of urban settlements within deltas. This paper reviews current knowledge on migration and adaptation to environmental change to discern specific issues pertinent to delta regions. It develops a new integrated methodology to assess present and future migration in deltas using the Volta delta in Ghana, Mahanadi delta in India and Ganges-Brahmaputra-Meghna delta across India and Bangladesh. The integrated method focuses on: biophysical changes and spatial distribution of vulnerability; demographic changes and migration decision-making using multiple methods and data; macro-economic trends and scenarios in the deltas; and the policies and governance structures that constrain and enable adaptation. The analysis is facilitated by a range of consistent scenarios from global to delta scales, developed in consultation with major stakeholders. Initial results suggest that migration decision-making strongly interacts with diverse measures for adaptation of land, water and agricultural management. A key normative challenge is to identify the parameters of successful migration and adaptation across delta regions, to inform policy analysis and formulation. Key words: Deltas, sea-level rise, migration and adaptation Acknowledgement: DECCMA (Deltas, Vulnerability & Climate Change: Migration & Adaptation) project is part of the Collaborative ADAPTATION Research Initiative in Africa and Asia (CARIAA), with financial support from the UK Government's Department for International Development (DFID) and the International Development Research Centre (IDRC), Canada.
NASA Astrophysics Data System (ADS)
Bogoni, M.; Lanzoni, S.; Putti, M.
2017-12-01
Floodplains, and rivers therein, constitute complex systems whose simulation involves modeling of hydrodynamic, morphodynamic, chemical, and biological processes which act over a wide range of time scales (from days to centuries) and affect each other. Self-formed floodplains are produced by the sedimentary processes associated with the migration of river bends and the formation of abandoned oxbow lakes consequent to the cutoff of mature meanders. The erosion and deposition processes at the banks lead to heterogeneities in the surface composition, thus the river may experience faster or slower migration rates depending on the spatial distribution of the erosional resistance. As a consequence, the past spatial configurations of the river (i.e. the migration history) play a key role in shaping the successive river paths.We recently published a paper addressing the modeling of meander morphodynamics over self-formed heterogeneous floodplain. Results show that the heterogeneity in floodplain composition associated with the formation of geomorphic units (i.e., scroll bars and oxbow lakes) and the choice of a reliable flow field model to drive channel migration are two fundamental ingredients for reproducing correctly the long-term morphodynamics of alluvial meanders. We compare numerically generated planforms obtained for different scenarios of floodplain heterogeneity to natural meandering paths, through half meander metrics and spatial distribution of channel curvatures. Statistical and spectral tools disclose the complexity embedded in meandering geometry and the crucial differences between apparently similar configurations.Floodplain heterogeneity affects both the temporal and spatial distributions of meander geometry, and eventually leads to a closer statistical similarity between simulated and natural planform shapes when scroll bars and oxbow lakes left behind are harder to erode than the surrounding floodplain.
Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration
NASA Astrophysics Data System (ADS)
McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.
2006-12-01
Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.
Transport and fate of microbial pathogens in agricultural settings
Bradford, Scott A.; Morales, Veronica L.; Zhang, Wei; Harvey, Ronald W.; Packman, Aaron I.; Mohanram, Arvind; Welty, Claire
2013-01-01
An understanding of the transport and survival of microbial pathogens (pathogens hereafter) in agricultural settings is needed to assess the risk of pathogen contamination to water and food resources, and to develop control strategies and treatment options. However, many knowledge gaps still remain in predicting the fate and transport of pathogens in runoff water, and then through the shallow vadose zone and groundwater. A number of transport pathways, processes, factors, and mathematical models often are needed to describe pathogen fate in agricultural settings. The level of complexity is dramatically enhanced by soil heterogeneity, as well as by temporal variability in temperature, water inputs, and pathogen sources. There is substantial variability in pathogen migration pathways, leading to changes in the dominant processes that control pathogen transport over different spatial and temporal scales. For example, intense rainfall events can generate runoff and preferential flow that can rapidly transport pathogens. Pathogens that survive for extended periods of time have a greatly enhanced probability of remaining viable when subjected to such rapid-transport events. Conversely, in dry seasons, pathogen transport depends more strongly on retention at diverse environmental surfaces controlled by a multitude of coupled physical, chemical, and microbiological factors. These interactions are incompletely characterized, leading to a lack of consensus on the proper mathematical framework to model pathogen transport even at the column scale. In addition, little is known about how to quantify transport and survival parameters at the scale of agricultural fields or watersheds. This review summarizes current conceptual and quantitative models for pathogen transport and fate in agricultural settings over a wide range of spatial and temporal scales. The authors also discuss the benefits that can be realized by improved modeling, and potential treatments to mitigate the risk of waterborne disease transmission.
Vidal, Omar; López-García, José; Rendón-Salinas, Eduardo
2014-02-01
We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005-2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve's long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico-which engage in one of the longest known insect migrations-are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. © 2013 Society for Conservation Biology.
Benjamin D. Cook; Sofie Bernays; Catherine M. Pringle; Jane M. Hughes
2009-01-01
Various components of island stream faunas, including caridean shrimps, fish, and gastropods, undertake obligate amphidromous migration, whereby larvae are released in upstream freshwater reaches, drift downstream to estuaries or marine waters, then migrate upstream as postlarvae to freshwater adult habitats. Longitudinal migration from estuaries to headwaters is well...
Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong
2011-10-01
To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.
Babona-Pilipos, Robart; Droujinine, Ilia A; Popovic, Milos R; Morshead, Cindi M
2011-01-01
The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.
Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.
Huang, G-H; Lin, C-H; Lee, L C
2017-08-25
Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, M.; Baik, H. S.; Choi, Y.
2016-12-01
At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune fields where constant HIRISE image acquisitions are available. ACKNOWLEDGEMENTS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement Nr. 607379.
Signature of charge migration in modulations of double ionization
NASA Astrophysics Data System (ADS)
Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.
2018-04-01
We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.
Symmetric rearrangement of groundwater-fed streams.
Yi, Robert; Cohen, Yossi; Devauchelle, Olivier; Gibbins, Goodwin; Seybold, Hansjörg; Rothman, Daniel H
2017-11-01
Streams shape landscapes through headward growth and lateral migration. When these streams are primarily fed by groundwater, recent work suggests that their tips advance to maximize the symmetry of the local Laplacian field associated with groundwater flow. We explore the extent to which such forcing is responsible for the lateral migration of streams by studying two features of groundwater-fed streams in Bristol, Florida: their confluence angle near junctions and their curvature. First, we find that, while streams asymptotically form a 72° angle near their tips, they simultaneously exhibit a wide 120° confluence angle within approximately 10 m of their junctions. We show that this wide angle maximizes the symmetry of the groundwater field near the junction. Second, we argue that streams migrate laterally within valleys and present a new spectral analysis method to relate planform curvature to the surrounding groundwater field. Our results suggest that streams migrate laterally in response to fluxes from the surrounding groundwater table, providing evidence of a new mechanism that complements Laplacian growth at their tips.
Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions
NASA Astrophysics Data System (ADS)
Liu, Ran; Bi, Jun-Jie; Xie, Zhen; Yin, Kaikai; Wang, Dunyou; Zhang, Guang-Ping; Xiang, Dong; Wang, Chuan-Kui; Li, Zong-Liang
2018-05-01
The gap sizes between electrodes generated by typical methods are generally much larger than the dimension of a common molecule when fabricating a single-molecule junction, which dramatically suppresses the yield of single-molecule junctions. Based on the ab initio calculations, we develop a strategy named the field-aided method to accurately fabricate an atomic-sized gap between gold nanoelectrodes. To understand the mechanism of this strategy, configuration evolutions of gold nanojunction in stretching and compressing processes are calculated. The numerical results show that, in the stretching process, the gold atoms bridged between two electrodes are likely to form atomic chains. More significantly, lattice vacant positions can be easily generated in stretching and compressing processes, which make field-aided gap generation possible. In field-aided atom migration (FAAM), the external field can exert driving force, enhance the initial energy of the system, and decrease the barrier in the migration path, which makes the atom migration feasible. Conductance and stretching and compressing forces, as measurable variables in stretching and compressing processes, present very useful signals for determining the time to perform FAAM. Following this desirable strategy, we successfully fabricate gold nanogaps with a dimension of 0.38 ±0.05 nm in the experiment, as our calculation simulates.
Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua
2016-08-01
In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawloski, G A; Tompson, A F B; Carle, S F
The objectives of this report are to develop, summarize, and interpret a series of detailed unclassified simulations that forecast the nature and extent of radionuclide release and near-field migration in groundwater away from the CHESHIRE underground nuclear test at Pahute Mesa at the NTS over 1000 yrs. Collectively, these results are called the CHESHIRE Hydrologic Source Term (HST). The CHESHIRE underground nuclear test was one of 76 underground nuclear tests that were fired below or within 100 m of the water table between 1965 and 1992 in Areas 19 and 20 of the NTS. These areas now comprise the Pahutemore » Mesa Corrective Action Unit (CAU) for which a separate subregional scale flow and transport model is being developed by the UGTA Project to forecast the larger-scale migration of radionuclides from underground tests on Pahute Mesa. The current simulations are being developed, on one hand, to more fully understand the complex coupled processes involved in radionuclide migration, with a specific focus on the CHESHIRE test. While remaining unclassified, they are as site specific as possible and involve a level of modeling detail that is commensurate with the most fundamental processes, conservative assumptions, and representative data sets available. However, the simulation results are also being developed so that they may be simplified and interpreted for use as a source term boundary condition at the CHESHIRE location in the Pahute Mesa CAU model. In addition, the processes of simplification and interpretation will provide generalized insight as to how the source term behavior at other tests may be considered or otherwise represented in the Pahute Mesa CAU model.« less
Assessing the fate of radioactive nickel in cultivated soil cores.
Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis
2009-10-01
Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.
Brouyère, Serge; Dassargues, Alain; Hallet, Vincent
2004-08-01
This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.
Vaccarino, Anthony L; Anonymous; Anderson, Karen E.; Borowsky, Beth; Coccaro, Emil; Craufurd, David; Endicott, Jean; Giuliano, Joseph; Groves, Mark; Guttman, Mark; Ho, Aileen K; Kupchak, Peter; Paulsen, Jane S.; Stanford, Matthew S.; van Kammen, Daniel P; Watson, David; Wu, Kevin D; Evans, Ken
2011-01-01
The Functional Rating Scale Taskforce for pre-Huntington Disease (FuRST-pHD) is a multinational, multidisciplinary initiative with the goal of developing a data-driven, comprehensive, psychometrically sound, rating scale for assessing symptoms and functional ability in prodromal and early Huntington disease (HD) gene expansion carriers. The process involves input from numerous sources to identify relevant symptom domains, including HD individuals, caregivers, and experts from a variety of fields, as well as knowledge gained from the analysis of data from ongoing large-scale studies in HD using existing clinical scales. This is an iterative process in which an ongoing series of field tests in prodromal (prHD) and early HD individuals provides the team with data on which to make decisions regarding which questions should undergo further development or testing and which should be excluded. We report here the development and assessment of the first iteration of interview questions aimed to assess "Anger and Irritability" and "Obsessions and Compulsions" in prHD individuals. PMID:21826116
A Synthesis of Paleo-Present Stress and Structural Evolution in the Western Anadarko Basin
NASA Astrophysics Data System (ADS)
Gragg, E.; van Wijk, J.
2017-12-01
This research uses a compilation of geological and geophysical data from literature and public databases paired with new seismic, petrophysical and core analyses to deduce the stress and structural histories of the western Anadarko Basin from 1.3 Ga to present day. Paleo-stress fields are vital to understand fold-faulting styles, fracture networks, and the evolution of stratigraphic mechanics through time. These are features that can drastically influence paleo-present fluid migration and accumulations in the subsurface. This work is conducted in an effort to characterize risks to commercial-scale geologic carbon storage via CO2 Enhanced Oil Recovery. We conducted palinspastic restorations on a field-scale fault system using a 3D seismic survey, and also used a fault database produced by the Oklahoma Geological Survey in the analysis. Preliminary results indicate that stress field reorganization occurred multiple times, and is related to a variety of orogenic and epeirogenic events. Sparse age data allow us to constrain at least four of these stress field phases: 1) Mid-Proterozoic crustal grain development; 2) Cambrian Southern Oklahoma Aulacogen; 3) Late Mississippian orogeny, and Pennsylvanian epeirogeny; and 4) Cenozoic Laramide convergence. Stress states influence faulting style and fracture development that can impact CO2 storage and production performance. Future work will explore anthropogenic effects of prior and future production on the stress states and structures at the field scale via the construction of a 3D mechanical earth model coupled to flow simulators. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591.
The Evolution of a Snow Dune Field
NASA Astrophysics Data System (ADS)
Filhol, S.; Pirk, N.; Schuler, T.; Burkhart, J. F.
2017-12-01
On March 24, 2017 we observed the evolution of a snow dune field during a passing storm on the alpine plateau of Finse, Norway. With a terrestrial lidar we captured 15 high-resolution scans of the snow surface over an area of about 5000 m2 over the course of 7.5 hours from which we analyze morphological changes. An eddy covariance system located nearby at the Finse Alpine Research Station recorded wind and its turbulent structure, and measured the snow drifting flux with a FlowCapt sensor. This combined dataset provides novel insight into the responses and changes of the snow surface morphology exposed to storm constraints (e.g. wind speed, drifting flux). We found that individual dunes have moved 30 to 37 m over the course of 7.5 hours. The wavelength of the dunes varied from 10.3±3.1 m at the time of the first scan to 13.6±3.3 m at the last scan. Within this time period we observed individual dunes 1) migrating down wind, later becoming 2) temporarily nearly static as the wind speed dropped, and finally 3) migrating, growing, and merging into larger transverse dunes under strong wind conditions accompanied by large quantities of drifting snow. This dynamics can be considered analogous to sand dune behavior, however, on much shorter time scale (1h vs 10-100 years) and smaller spatial scale (10m vs 100m). The record of this event helps us to understand the morphological evolution of a snow surface during a blowing snow storm, and further illustrates the fate of self-sustained bedforms such as dunes in varying conditions. Such detailed description of erosion/deposition processes of the snow surface are crucial for improvements of land surface models, commonly applied to hydrological and ecological purposes.
Hemispheric-scale wind selection facilitates bar-tailed godwit circum-migration of the Pacific
Gill, Robert E.; Douglas, David C.; Handel, Colleen M.; Tibbitts, T. Lee; Hufford, Gary; Piersma, Theunis
2014-01-01
The annual 29 000 km long migration of the bar-tailed godwit, Limosa lapponica baueri, around the Pacific Ocean traverses what is arguably the most complex and seasonally structured atmospheric setting on Earth. Faced with marked variation in wind regimes and storm conditions across oceanic migration corridors, individuals must make critical decisions about when and where to fly during nonstop flights of a week's duration or longer. At a minimum, their decisions will affect wind profitability and thus reduce energetic costs of migration; in the extreme, poor decisions or unpredictable weather events will risk survival. We used satellite telemetry to track the annual migration of 24 bar-tailed godwits and analysed their flight performance relative to wind conditions during three major migration legs between nonbreeding grounds in New Zealand and breeding grounds in Alaska. Because flight altitudes of birds en route were unknown, we modelled flight efficiency at six geopotential heights across each migratory segment. Birds selected departure dates when atmospheric conditions conferred the greatest wind assistance both at departure and throughout their flights. This behaviour suggests that there exists a cognitive mechanism, heretofore unknown among migratory birds, that allows godwits to assess changes in weather conditions that are linked (i.e. teleconnected) across widely separated atmospheric regions. Godwits also showed adaptive flexibility in their response not only to cues related to seasonal changes in macrometeorology, such as spatial shifting of storm tracks and temporal periods of cyclogenesis, but also to cues associated with stochastic events, especially at departure sites. Godwits showed limits to their response behaviours, however, especially relative to rapidly developing stochastic events while en route. We found that flight efficiency depended significantly upon altitude and hypothesize that godwits exhibit further adaptive flexibility by varying flight altitude en route to optimize flight efficiency.
ERIC Educational Resources Information Center
Seo, Hyojeong; Wehmeyer, Michael L.; Shogren, Karrie A.; Hughes, Carolyn; Thompson, James R.; Little, Todd D.; Palmer, Susan B.
2017-01-01
Given the growing importance of support needs assessment in the field of intellectual disability, it is imperative to develop assessments of support needs whose scores and inferences demonstrate reliability and validity. The purpose of this study was to examine the criterion validity of scores on the "Supports Intensity Scale-Children's…
Chen, Wen; Hall, Brian J; Ling, Li; Renzaho, Andre Mn
2017-03-01
The process of becoming a humanitarian migrant is potentially damaging to mental health. We examined the association between pre-migration and post-migration potentially traumatic events and stressors and mental health, and assessed the moderating effect of post-migration stressors in humanitarian migrants in Australia. In this study, we used the first wave of data between 2013 and 2014 from the Building a New Life in Australia survey. The survey included 2399 migrants who had arrived in Australia holding a permanent humanitarian visa 3-6 months preceding the survey, with 77% and 23% of participants being granted visas through offshore and onshore humanitarian programmes, respectively. Post-traumatic stress disorder (PTSD) was measured with the Post-traumatic Stress Disorder 8 items (PTSD-8) and severe mental illness was measured with the Kessler Screening Scale for Psychological Distress (K6). Pre-migration potentially traumatic events and post-migration stressors related to asylum process and resettlement were measured with a self-reported questionnaire. Of the 2399 participants, 762 (31%; 95% CI 29·4-33·2) had PTSD and 394 (16%; 95% CI 14·2-17·2) had severe mental illness. The mean number of pre-migration potentially traumatic events was 2·1 (SD 1·4). 64%, 59%, 49%, and 18% of participants reported poor social integration, economic problems, worrying about family or friends overseas, and loneliness as post-migration stressors. Pre-migration potentially traumatic events and post-migration stressors were positively associated with PTSD and severe mental illness. Factors significantly modifying the association between pre-migration potentially traumatic events and mental health after controlling for confounding factors were resettlement related stressors, including loneliness (odds ratio 1·17, 95% CI 1·05-1·28 for PTSD and 1·28, 1·16-1·41 for severe mental illness) and the number of social integration stressors (1·10, 1·05-1·16 for PTSD). Our data suggest that post-migration resettlement-related stressors were the most important correlates of mental health in humanitarian migrants, accounting for both direct and indirect associations. Targeting resettlement-related stressors through augmenting psychosocial care programmes and social integration would be a key approach to improve humanitarian migrants' mental health. None. Copyright © 2017 Elsevier Ltd. All rights reserved.
1989-02-01
contaminated by past disposal practices. Sampling and analysis was not included in the PA. B. MAJOR FINDINGS The Air National Guard has utilized...with 23 Base personnel and the field surveys identified 3 potentially contaminated sites resulting from past disposal, storage, and/or spills and leaks...characteristic petroleum odor. With visible evidence of released contaminants , there is potential for contaminant migration by shallow groundwater. Site No. 3
Post-project geomorphic assessment of a large process-based river restoration project
Erwin, Susannah O.; Schmidt, John C.; Allred, Tyler M.
2016-01-01
This study describes channel changes following completion of the Provo River Restoration Project (PRRP), the largest stream restoration project in Utah and one of the largest projects in the United States in which a gravel-bed river was fully reconstructed. We summarize project objectives and the design process, and we analyze monitoring data collected during the first 7 years after project completion. Post-project channel adjustment during the study period included two phases: (i) an initial phase of rapid, but small-scale, adjustment during the first years after stream flow was introduced to the newly constructed channel and (ii) a subsequent period of more gradual topographic adjustment and channel migration. Analysis of aerial imagery and ground-survey data demonstrate that the channel has been more dynamic in the downstream 4 km where a local source contributes a significant annual supply of bed material. Here, the channel migrates and exhibits channel adjustments that are more consistent with project objectives. The upstream 12 km of the PRRP are sediment starved, the channel has been laterally stable, and this condition may not be consistent with large-scale project objectives.
Understanding the conductive channel evolution in Na:WO3-x-based planar devices
NASA Astrophysics Data System (ADS)
Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias
2015-03-01
An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07545e
ERIC Educational Resources Information Center
Lam, Wan Shun Eva; Warriner, Doris S.
2012-01-01
This review of research offers a synthesis and analysis of research studies that address issues of language and literacy practices and learning in transnational contexts of migration. We consider how theoretical concepts from transnational migration studies, including particular Boudieusian-inspired concepts such as transnational social field,…
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof
2016-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG reactors. Fault reactivation resulting from fault shear and normal displacements is discussed under consideration of potentially induced seismicity. Here, the coupled simulation results indicate that seismic hazard during UCG operation remains negligible with a seismic moment magnitude of MW < 3.
NASA Astrophysics Data System (ADS)
Farrell, E.; Lynch, K.; Wilkes Orozco, S.; Castro Camba, G.; Scullion, A.
2017-12-01
This two year field monitoring project examines the response and recovery of 1.2km of a coastal beach-dune system in the west coast of Ireland (The Maharees, Brandon Bay, Co. Kerry) to storms. The results from this project initiated a larger scale study to assess the long term evolution of Brandon Bay (12km) and patterns of meso-scale rotation. On a bay scale historic shoreline analyses were completed using historic Ordnance Survey maps, aerial photography, and DGPS surveys inputted to the Digital Shoreline Analysis System. These were coupled with a GSTA-wavemeter experiment that collected 410 sediment samples along the beach and nearshore to identify preferred sediment transport pathways along the bay. On a local scale (1.2km) geomorphological changes of the beach and nearshore were monitored using repeated monthly DGPS surveys and drone technology. Topographical data were correlated with atmospheric data obtained from a locally installed automatic weather station, oceanographic data from secondary sources, and photogrammetry using a camera installed at the site collecting pictures every 10 minutes during daylight hours. Changes in surface elevation landward of the foredune from aeolian processes were measured using five pin transects across the dune. The contribution of local blowout dynamics were measured using drone imagery and structure-from-motion technology. The results establish that the average shoreline recession along the 1.2 km site is 72 m during the past 115 years. The topographic surveys illustrate that natural beach building processes initiate system recovery post storms including elevated foreshores and backshores and nearshore sand bar migration across the entire 1.2 km stretch of coastline. In parallel with the scientific work, the local community have mobilized and are working closely with the lead scientists to implement short term coastal management strategies such as signage, information booklets, sand trap fencing, walkways, wooden revetments, dune planting in order to support the end goal of obtaining financial support from government for a larger, long term coastal protection plan.
Endogenous electric fields as guiding cue for cell migration
Funk, Richard H. W.
2015-01-01
This review covers two topics: (1) “membrane potential of low magnitude and related electric fields (bioelectricity)” and (2) “cell migration under the guiding cue of electric fields (EF).”Membrane potentials for this “bioelectricity” arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the “electric” interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113
The Application of Depth Migration for Processing GPR Data
NASA Astrophysics Data System (ADS)
Hoai Trung, Dang; Van Giang, Nguyen; Thanh Van, Nguyen
2018-03-01
Migration methods play a significant role in processing ground penetrating radar data. Beside recovering the true image of subsurface structures from the prior designed velocity model and the raw GPR data, the migration algorithm could be an effective tool in bulding real environmental velocity model. In this paper, we have proposed one technique using energy diagram extracted from migrated data as a criterion of looking for the correct velocity. Split Step Fourier migration, a depth migration, is chosen for facing the challenge where the velocity varies laterally and vertically. Some results verified on field data on Vietnam show that migrated sections with calculated velocity from energy diagram have the best quality.
Assessing the scalability of dynamic field gradient focusing by linear modeling
Tracy, Noah I.; Ivory, Cornelius F.
2010-01-01
Dynamic field gradient focusing (DFGF) separates and concentrates proteins in native buffers, where proteins are most soluble, using a computer-controlled electric field gradient which lets the operator adjust the pace and resolution of the separation in real-time. The work in this paper assessed whether DFGF could be scaled up from microgram analytical-scale protein loads to milligram preparative-scale loads. Linear modeling of the electric potential, protein transport, and heat transfer simulated the performance of a preparative-scale DFGF instrument. The electric potential model showed where the electrodes should be placed to optimize the shape and strength of the electric field gradient. Results from the protein transport model suggested that in 10 min the device should separate 10 mg each of two proteins whose electrophoretic mobilities differ by 5 ×. Proteins with electrophoretic mobilities differing by only 5% should separate in 3 h. The heat transfer model showed that the preparative DFGF design could dissipate 1 kW of Joule heat while keeping the separation chamber at 25°C. Model results pointed to DFGF successfully scaling up by 1000 × using the proposed instrument design. PMID:18196522
Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.; DeLonay, Aaron J.
2008-01-01
This report is a repository of reach-scale maps of hydraulic and substrate characteristics generated for the habitat-use portion of an interdisciplinary sturgeon research project on the Lower Missouri River (from Gavins Point Dam to the junction with the Mississippi River). The maps were derived from hydroacoustic data sets that were collected for the purpose of assessing physical aquatic habitat in the vicinity of locations of adult shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus). Hydroacoustic data sets were collected at the reach scale (mean reach length, 2.4 kilometers) in order to include the immediate vicinity of a targeted sturgeon location as well as the full range of habitat available at the bend and crossover scale. Reaches typically were surveyed on the day following the relocation of a telemetered sturgeon and at a discharge within 10 percent of the discharge on the sturgeon relocation date in order to characterize as closely as possible the channel morphology and flow-field conditions at the time that the sturgeon was present. One hundred fifty-three reaches were mapped during April–September in the years 2005 through 2007, with the majority of data collection occurring in the months of May and June (coinciding with the period of sturgeon migration and spawning in the Lower Missouri River). Interpolated maps (grid cell size, 5 meters) depict depth, generalized substrate, and depth-averaged velocity. Side-scan sonar imagery is also available for a subset of reaches. Collectively, the maps represent more than 20 percent of the length of the Lower Missouri River.
NASA Astrophysics Data System (ADS)
Wu, Ming; Wu, Jianfeng; Wu, Jichun
2017-10-01
When the dense nonaqueous phase liquid (DNAPL) comes into the subsurface environment, its migration behavior is crucially affected by the permeability and entry pressure of subsurface porous media. A prerequisite for accurately simulating DNAPL migration in aquifers is then the determination of the permeability, entry pressure and corresponding representative elementary volumes (REV) of porous media. However, the permeability, entry pressure and corresponding representative elementary volumes (REV) are hard to determine clearly. This study utilizes the light transmission micro-tomography (LTM) method to determine the permeability and entry pressure of two dimensional (2D) translucent porous media and integrates the LTM with a criterion of relative gradient error to quantify the corresponding REV of porous media. As a result, the DNAPL migration in porous media might be accurately simulated by discretizing the model at the REV dimension. To validate the quantification methods, an experiment of perchloroethylene (PCE) migration is conducted in a two-dimensional heterogeneous bench-scale aquifer cell. Based on the quantifications of permeability, entry pressure and REV scales of 2D porous media determined by the LTM and relative gradient error, different models with different sizes of discretization grid are used to simulate the PCE migration. It is shown that the model based on REV size agrees well with the experimental results over the entire migration period including calibration, verification and validation processes. This helps to better understand the microstructures of porous media and achieve accurately simulating DNAPL migration in aquifers based on the REV estimation.
Kim, Hyoun S; Wohl, Michael J A; Salmon, Melissa M; Gupta, Rina; Derevensky, Jeffrey
2015-12-01
Social casino games (i.e., free-to-play online gambling games) are enjoyed by millions of players worldwide on a daily basis. Despite being free to play, social casino games share many similarities to traditional casino games. As such, concerns have been raised as to whether social casino games influences the migration to online gambling among people who have not engaged in such activity (see Griffiths in World Online Gambl 9:12-13, 2010). To date, however, no empirical research has assessed this possibility. Thus, the purpose of the present research was to assess the extent to which social casino gamers migrate to online gambling and potential predictors (time spent on social casino games, skill building, enhancement and micro-transactions) of such migration. To this end, social casino gamers who never gambled online (N = 409) completed a questionnaire battery assessing our variables of interest and were re-contacted 6-months later to see if they had engaged in online gambling during the intervening months. Approximately 26% of social casino gamers reported having migrated to online gambling. Importantly, engagement in micro-transactions was the only unique predictor of migration from social casino gaming to online gambling. The implications for the potential harms associated with social casino gaming are discussed.
Thompson, Sally E; Katul, Gabriel G
2013-06-01
Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Fan, Caiwei; Jiang, Tao; Liu, Kun; Tan, Jiancai; Li, Hu; Li, Anqi
2018-12-01
In recent years, several large gas fields have been discovered in western Qiongdongnan Basin. It is important and necessary to illustrate their sedimentary characteristics and hydrocarbon migration so that more gas fields could be discovered in the future. Previous regional tectonic-sedimentary researchers show that large-scale source rock of the Yacheng Formation developed in the Ledong and Lingshui sags due to the Red River Fault pull-apart strike slip in early Oligocene. The main targets for hydrocarbon exploration in this area are the Miocene deep water reservoirs. In late Miocene, the Huangliu Formation reservoirs are composed of the early channels which were sourced by river systems in Hainan uplift and the consequent channels were sourced by Qiupen River in Kunsong uplift. Both axial channels exhibit unique spatial distribution patterns and geometries. The other kind of reservoir developed in the middle Miocene Meishan Formation, which compose of slope break-controlled submarine fan. They can be further classified into three types—slope channelized fan, basin floor fan, and bottom current reworked fan. The various fans have different reservoir quality. These two kinds of reservoirs contribute to four types of litho-stratigraphic traps under the actions of sedimentation and subsidence. The overpressure caused by hydrocarbon generation can fracture deeper strata and result in regional fractured network for hydrocarbon migration. Therefore, free gas driven by overpressure and buoyancy force can be migrated into Miocene litho-stratigraphic traps to accumulate. The revealed genesis of Miocene lithologic trap and hydrocarbon accumulation in the Qiongdongnan Basin would greatly contribute to the further hydrocarbon exploration in northern South China Sea and can be helpful for other deep water areas around the world.
Current Pattern Change in the Fram Strait at the Pliocene/Pleistocene Boundary
NASA Astrophysics Data System (ADS)
Gebhardt, C.; Geissler, W. H.; Matthiessen, J. J.; Jokat, W.
2014-12-01
Thick packages of drift-type sediments were identified in the northwestern and central part of the Fram Strait, mainly along the western Yermak Plateau flank, but also in the central, flat part of the Fram Strait. A large-scale field of sediment waves was found north of 80.5°, along the Yermak Plateau rise. This field separates two drift bodies, a deeper one towards west and a shallower one towards east. The drift bodies were deposited by bottom currents, most likely by the northbound Yermak Branch of the West Spitsbergen Current, but an influence of a southbound current on the westren drift body cannot be ruled out. Within the drift bodies and even more pronounced withing the sediment waves, a stratigraphic boundary is clearly visible. It separates a lower package of waves migrating upslope at a low angle of ~5° from an upper package with significantly increased wave crest migration at ~16.5°. Using the seismic network, this stratigraphic boundary could be tracked to ODP Leg 151, Site 911, where it corresponds to the lithostratigraphic boundary between units IA and IB dated to 2.7 Ma. The increase in wave-crest migration angle points at a shift towards higher sedimentation rates at 2.7 Ma. This corresponds to the intensification of the Northern Hemisphere glaciation with a major expansion of the Scandinavian, northern Barents Sea, North American and Greenland ice sheets. The Barents Shelf that was subaerially exposed and the expansion of the northern Barents Sea ice sheet (as well as Svalbard) are the likely sources for enhanced erosion and fluvial input along the pathway of the West Spitsbergen Current, resulting in higher sedimentation rates in the Fram Strait.
The magnetic map of hatchling loggerhead sea turtles.
Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F
2012-04-01
Young loggerhead sea turtles (Caretta caretta) from eastern Florida, U.S.A., undertake a transoceanic migration in which they gradually circle the North Atlantic Ocean before returning to the North American coast. Hatchlings in the open sea are guided at least partly by a 'magnetic map' in which regional magnetic fields function as navigational markers and elicit changes in swimming direction at crucial locations along the migratory route. The magnetic map exists in turtles that have never migrated and thus appears to be inherited. Turtles derive both longitudinal and latitudinal information from the Earth's field, most likely by exploiting unique combinations of field inclination and intensity that occur in different geographic areas. Similar mechanisms may function in the migrations of diverse animals. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, G.; Kwon, T. H.; Lee, J. Y.
2016-12-01
As gas and water flows induced by depressurization of hydrate-bearing sediments exert seepage forces on fines in sediments, such as clay particles, depressurization is reported to accompany the transport of fine particles through sediment pores, i.e., fines migration. Because such fines migration can cause pore clogging, the fines migration is considered as one of the critical phenomena contributing to the transport of fluids among various pore-scale processes associated with depressurization. However, quantification of fines migration during depressurization still remains poorly understood. This study thus investigated fines migration caused by depressurization using X-ray computerized tomography(X-ray CT) imaging. A host sediment was prepared by mixing fine sand with kaolinite clay minerals to achieve 10% mass fraction of fines (less than 75 um). Then, methane hydrate was synthesized in the host clayey sand, and thereafter water was injected to saturate the hydrate-bearing sediment sample. Step-wise depressurization was applied while the produced gas was collected through an outlet fluid port. X-ray CT imaging was conducted on the sediment sample over the courses of the experiment to monitor the sample preparation, hydrate formation, depressurization, and fines migration. Based on the calibration tests, the amount and locations of methane hydrate formed in the sample was estimated, and the gas migration path was also identified. Finally, the spatial distribution of fines after completion of depressurization was first assessed using the obtained X-ray images and then compared with the post-mortem mine-back results.Notably, we found that the middle part of the sample was clogged possibly by fines or by re-formed hydrate, leading to a big pressure difference between the inlet and outlet fluid port of the sample by 3 MPa. Owing to this clogging and the lost in pressure communication, hydrate dissociation first occurred at the bottom half and the hydrate dissociation in the top half part followed later. Our study demonstrates that X-ray CT imaging can be a useful tool to visualize and quantify the fines migration during hydrate depressurization, and our results present an experimental evidence that depressurization can cause pore clogging in sediments containing more than 10% fines fraction.
NASA Astrophysics Data System (ADS)
Katselis, George; Koukou, Katerina; Dimitriou, Evagelos; Koutsikopoulos, Constantin
2007-07-01
In the present study we analysed the daily seaward migratory behaviour of four dominant euryhaline fish species (Mugilidae: Liza saliens, Liza aurata, Mugil cephalus and Sparidae: Sparus aurata) in the Messolonghi Etoliko lagoon system (Western Greek coast) based on the daily landings' time series of barrier traps and assessed the relationship between their migratory behaviour and various climatic variables (air temperature and atmospheric pressure) and the lunar cycle. A 2-year time series of daily fish landings (1993 and 1994), a long time series of daily air temperature and daily temperature range (1991 1998) as well as a 4-year time series of the daily atmospheric pressure (1994 1997) and daily pressure range were used. Harmonic models (HM) consisting of annual and lunar cycle harmonic components explained most (R2 > 0.80) of the mean daily species landings and temperature variations, while a rather low part of the variation (0.18 < R2 < 0.27) was explained for pressure, daily pressure range and daily temperature range. In all the time series sets the amplitude of the annual component was highest. The model values of all species revealed two important migration periods (summer and winter) corresponding to the spawning and refuge migrations. The lunar cycle effect on species' daily migration rates and the short-term fluctuation of daily migration rates were rather low. However, the short-term fluctuation of some species' daily migration rates during winter was greater than during summer. In all species, the main migration was the spawning migration. The model lunar components of the species landings showed a monthly oscillation synchronous to the full moon (S. aurata and M. cephalus) or a semi-monthly oscillation synchronous to the new and full moon (L. aurata and L. saliens). Bispectral analysis of the model values and the model residuals' time series revealed that the species daily migration were correlated (coherencies > 0.6) to the daily fluctuations of the climatic variables at seasonal, mid and short-term scales.
Bird Migration Under Climate Change - A Mechanistic Approach Using Remote Sensing
NASA Technical Reports Server (NTRS)
Smith, James A.; Blattner, Tim; Messmer, Peter
2010-01-01
The broad-scale reductions and shifts that may be expected under climate change in the availability and quality of stopover habitat for long-distance migrants is an area of increasing concern for conservation biologists. Researchers generally have taken two broad approaches to the modeling of migration behaviour to understand the impact of these changes on migratory bird populations. These include models based on causal processes and their response to environmental stimulation, "mechanistic models", or models that primarily are based on observed animal distribution patterns and the correlation of these patterns with environmental variables, i.e. "data driven" models. Investigators have applied the latter technique to forecast changes in migration patterns with changes in the environment, for example, as might be expected under climate change, by forecasting how the underlying environmental data layers upon which the relationships are built will change over time. The learned geostatstical correlations are then applied to the modified data layers.. However, this is problematic. Even if the projections of how the underlying data layers will change are correct, it is not evident that the statistical relationships will remain the same, i.e. that the animal organism may not adapt its' behaviour to the changing conditions. Mechanistic models that explicitly take into account the physical, biological, and behaviour responses of an organism as well as the underlying changes in the landscape offer an alternative to address these shortcomings. The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies enable the application of the mechanistic models to predict how continental bird migration patterns may change in response to environmental change. In earlier work, we simulated the impact of effects of wetland loss and inter-annual variability on the fitness of migratory shorebirds in the central fly ways of North America. We demonstrated the phenotypic plasticity of a migratory population of Pectoral sandpipers consisting of an ensemble of 10,000 individual birds in response to changes in stopover locations using an individual based migration model driven by remotely sensed land surface data, climate data and biological field data. With the advent of new computing capabilities enabled hy recent GPU-GP computing paradigms and commodity hardware, it now is possible to simulate both larger ensemble populations and to incorporate more realistic mechanistic factors into migration models. Here, we take our first steps use these tools to study the impact of long-term drought variability on shorebird survival.
Ornelas, India J; Perreira, Krista M
2011-10-01
Nearly one out of every four children in the US is a child of immigrants. Yet few studies have assessed how factors at various stages of migration contribute to the development of health problems in immigrant populations. Most focus only on post-migration factors influencing health. Using data from the Latino Adolescent Migration, Health, and Adaptation Project, this study assessed the extent to which pre-migration (e.g., major life events, high poverty), migration (e.g., unsafe and stressful migration experiences), post-migration (e.g., discrimination, neighborhood factors, family reunification, linguistic isolation), and social support factors contributed to depressive symptoms among a sample of Latino immigrant parents with children ages 12-18. Results indicated that high poverty levels prior to migration, stressful experiences during migration, as well as racial problems in the neighborhood and racial/ethnic discrimination upon settlement in the US most strongly contribute to the development of depressive symptoms among Latino immigrant parents. Family reunification, social support, and familism reduce the likelihood of depressive symptoms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ornelas, India J.; Perreira, Krista M.
2011-01-01
Nearly one out of every four children in the US is a child of immigrants. Yet few studies have assessed how factors at various stages of migration contribute to the development of health problems in immigrant populations. Most focus only on post-migration factors influencing health. Using data from the Latino Adolescent Migration, Health, and Adaptation Project, this study assessed the extent to which pre-migration (e.g., major life events, high poverty), migration (e.g., unsafe and stressful migration experiences), post-migration (e.g., discrimination, neighborhood factors, family reunification, linguistic isolation), and social support factors contributed to depressive symptoms among a sample of Latino immigrant parents with children ages 12-18. Results indicated that high poverty levels prior to migration, stressful experiences during migration, as well as racial problems in the neighborhood and racial/ethnic discrimination upon settlement in the US most strongly contribute to the development of depressive symptoms among Latino immigrant parents. Family reunification, social support, and familism reduce the likelihood of depressive symptoms. PMID:21908089
Tornadic storm avoidance behavior in breeding songbirds
Streby, Henry M.; Kramer, Gunnar R.; Peterson, Sean M.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.
2015-01-01
Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.
Migration Reversals in Grain-size Transitions to Shoreline
NASA Astrophysics Data System (ADS)
Baumanis, C.; Kim, W.
2015-12-01
The migration of the lithofacies boundary recorded in the sedimentary record is key to interpreting changes in depositional environments. Change in grain size in the stratigraphic record is one of the most recognizable physical lithological features. Advance and retreat of the lithofacies boundary (gravel-sand transition) is attributed to external control variation, e.g., climate variation, sea-level change, and tectonic subsidence. While most models focus on predicting the response of the fluviodeltaic shoreline to these forcings, none have thoroughly incorporated the migration of grain-size transitions (GST) that coevolve within the fluviodeltaic system. We present a delta evolution model that treats the shoreline and GST as moving boundaries to provide quantitative understanding of the dynamic interaction between the external boundary (shoreline) and the internal lithofacies boundaries (GSTs) under relative sea-level rise. We tested a range of relative sea-level rise rates in the model. The shoreline and GST gradually reduced their progradation rates and eventually retreated landward as the fluviodeltaic topset and foreset elongated. However, their timings of retreats were different, resulting in a counterintuitive case for a quicker retreat of GST while the shoreline still continued to advance. A series of scaled flume experiments with a sand and crushed walnut sediment mixture captured the same behaviors of these two moving boundaries. We found that GST experienced higher relative sea-level rise rates that scale with the downstream river slope and the shoreline progradation rate, which caused earlier GST retreat timing in comparison to the shoreline. Time series data from the experiments show higher natural variability in migration rate of GST compared to that of the shoreline. Therefore, final recorded stratigraphy displayed a GST trajectory as a shazam line that shows zigzag fluctuations. This study investigates autogenic processes acting on the fluviodeltaic surface and tests their stratigraphic architecture recorded in the trajectories. The fundamental understanding of migration of both the lithofacies transition and shoreline in fluviodeltaic systems from this study will aid in accurately assessing the trajectories of GST in sedimentary strata as a proxy for environmental change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, C.M.
2011-06-01
The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improvemore » performance assessment and guide development of mitigation strategies.« less
Runaway gas accretion and gap opening versus type I migration
NASA Astrophysics Data System (ADS)
Crida, A.; Bitsch, B.
2017-03-01
Growing planets interact with their natal protoplanetary disc, which exerts a torque onto them allowing them to migrate in the disc. Small mass planets do not affect the gas profile and migrate in the fast type-I migration. Although type-I migration can be directed outwards for planets smaller than 20 - 30M⊕ in some regions of the disc, planets above this mass should be lost into the central star long before the disc disperses. Massive planets push away material from their orbit and open a gap. They subsequently migrate in the slower, type II migration, which could save them from migrating all the way to the star. Hence, growing giant planets can be saved if and only if they can reach the gap opening mass, because this extends their migration timescale, allowing them to eventually survive at large orbits until the disc itself disperses. However, most of the previous studies only measured the torques on planets with fixed masses and orbits to determine the migration rate. Additionally, the transition between type-I and type-II migration itself is not well studied, especially when taking the growth mechanism of rapid gas accretion from the surrounding disc into account. Here we use isothermal 2D disc simulations with FARGO-2D1D to study the migration behaviour of gas accreting protoplanets in discs. We find that migrating giant planets always open gaps in the disc. We further show analytically and numerically that in the runaway gas accretion regime, the growth time-scale is comparable to the type-I migration time-scale, indicating that growing planets will reach gap opening masses before migrating all the way to the central star in type-I migration if the disc is not extremely viscous and/or thick. An accretion rate limited to the radial gas flow in the disc, in contrast, is not fast enough. When gas accretion by the planet is taken into account, the gap opening process is accelerated because the planet accretes material originating from its horseshoe region. This allows an accreting planet to transition to type-II migration before being lost even if gas fails to be provided for a rapid enough growth and the classical gap opening mass is not reached.
[Migration mobility and movement of the population].
Zaslavska, T; Ribakovski, L
1983-01-01
"The functions of migration are reviewed from the viewpoint of the demographic situation in the USSR (by regions, sex, age, education, profession, labour and social activity, nationality, rural-urban, etc.). Some effects of migration on fertility are shown. The authors investigate the role of the economic functions of migration for the process of professional mobility. The territorial mobility of the population is analysed on a wider scale as a part of the social mobility in the socialist society. In connection with this, some problems of the migration policy as an element of the demographic policy of the USSR are outlined." (summary in ENG, RUS) excerpt
Afolayan, A A
1985-09-01
"The paper sets out to test whether or not the movement pattern of people in Nigeria is step-wise. It examines the spatial order in the country and the movement pattern of people. It then analyzes the survey data and tests for the validity of step-wise migration in the country. The findings show that step-wise migration cannot adequately describe all the patterns observed." The presence of large-scale circulatory migration between rural and urban areas is noted. Ways to decrease the pressure on Lagos by developing intermediate urban areas are considered. excerpt
Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.
2010-01-01
Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.
Kim, Joon-Tae; Chung, Pil-Wook; Starkman, Sidney; Sanossian, Nerses; Stratton, Samuel J; Eckstein, Marc; Pratt, Frank D; Conwit, Robin; Liebeskind, David S; Sharma, Latisha; Restrepo, Lucas; Tenser, May-Kim; Valdes-Sueiras, Miguel; Gornbein, Jeffrey; Hamilton, Scott; Saver, Jeffrey L
2017-02-01
The Los Angeles Motor Scale (LAMS) is a 3-item, 0- to 10-point motor stroke-deficit scale developed for prehospital use. We assessed the convergent, divergent, and predictive validity of the LAMS when performed by paramedics in the field at multiple sites in a large and diverse geographic region. We analyzed early assessment and outcome data prospectively gathered in the FAST-MAG trial (Field Administration of Stroke Therapy-Magnesium phase 3) among patients with acute cerebrovascular disease (cerebral ischemia and intracranial hemorrhage) within 2 hours of onset, transported by 315 ambulances to 60 receiving hospitals. Among 1632 acute cerebrovascular disease patients (age 70±13 years, male 57.5%), time from onset to prehospital LAMS was median 30 minutes (interquartile range 20-50), onset to early postarrival (EPA) LAMS was 145 minutes (interquartile range 119-180), and onset to EPA National Institutes of Health Stroke Scale was 150 minutes (interquartile range 120-180). Between the prehospital and EPA assessments, LAMS scores were stable in 40.5%, improved in 37.6%, and worsened in 21.9%. In tests of convergent validity, against the EPA National Institutes of Health Stroke Scale, correlations were r=0.49 for the prehospital LAMS and r=0.89 for the EPA LAMS. Prehospital LAMS scores did diverge from the prehospital Glasgow Coma Scale, r=-0.22. Predictive accuracy (adjusted C statistics) for nondisabled 3-month outcome was as follows: prehospital LAMS, 0.76 (95% confidence interval 0.74-0.78); EPA LAMS, 0.85 (95% confidence interval 0.83-0.87); and EPA National Institutes of Health Stroke Scale, 0.87 (95% confidence interval 0.85-0.88). In this multicenter, prospective, prehospital study, the LAMS showed good to excellent convergent, divergent, and predictive validity, further establishing it as a validated instrument to characterize stroke severity in the field. © 2017 American Heart Association, Inc.
Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.
Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O
2018-04-01
Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .
Field-Scale Modeling of Local Capillary Trapping During CO2 Injection into a Saline Aquifer
NASA Astrophysics Data System (ADS)
Ren, B.; Lake, L. W.; Bryant, S. L.
2015-12-01
Local capillary trapping is the small-scale (10-2 to 10+1 m) CO2 trapping that is caused by the capillary pressure heterogeneity. The benefit of LCT, applied specially to CO2 sequestration, is that saturation of stored CO2 is larger than the residual gas, yet these CO2 are not susceptible to leakage through failed seals. Thus quantifying the extent of local capillary trapping is valuable in design and risk assessment of geologic storage projects. Modeling local capillary trapping is computationally expensive and may even be intractable using a conventional reservoir simulator. In this paper, we propose a novel method to model local capillary trapping by combining geologic criteria and connectivity analysis. The connectivity analysis originally developed for characterizing well-to-reservoir connectivity is adapted to this problem by means of a newly defined edge weight property between neighboring grid blocks, which accounts for the multiphase flow properties, injection rate, and gravity effect. Then the connectivity is estimated from shortest path algorithm to predict the CO2 migration behavior and plume shape during injection. A geologic criteria algorithm is developed to estimate the potential local capillary traps based only on the entry capillary pressure field. The latter is correlated to a geostatistical realization of permeability field. The extended connectivity analysis shows a good match of CO2 plume computed by the full-physics simulation. We then incorporate it into the geologic algorithm to quantify the amount of LCT structures identified within the entry capillary pressure field that can be filled during CO2 injection. Several simulations are conducted in the reservoirs with different level of heterogeneity (measured by the Dykstra-Parsons coefficient) under various injection scenarios. We find that there exists a threshold Dykstra-Parsons coefficient, below which low injection rate gives rise to more LCT; whereas higher injection rate increases LCT in heterogeneous reservoirs. Both the geologic algorithm and connectivity analysis are very fast; therefore, the integrated methodology can be used as a quick tool to estimate local capillary trapping. It can also be used as a potential complement to the full-physics simulation to evaluate safe storage capacity.
Resolving ultrafast exciton migration in organic solids at the nanoscale
NASA Astrophysics Data System (ADS)
Penwell, Samuel B.; Ginsberg, Lucas D. S.; Noriega, Rodrigo; Ginsberg, Naomi S.
2017-11-01
Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.
THE ROLE OF TEMPERATURE DISEQUILIBRIUM IN MONITORING LOW VOLATILITY CONTAMINANT MIGRATION
Temperature disequilibrium is a common phenomenon within and among envirornnental media at local regional continental and global scales. The significance of temperature disequilibrium on low vapor pressure environmental contaminant migration has only rarely been addressed in the ...
Philippine migration policy: dilemmas of a crisis.
Battistella, G
1999-04-01
Philippine migration policy is traced from the early 1970s to the present. The main migration trends in the 1990s are described. An assessment is made of the efficacy and appropriateness of present migration policy in light of the economic crisis. A regional approach to migration policy is necessary in order to encourage placing migration as a greater priority on national agendas and in bilateral agreements. In the Philippines, migrants are considered better paid workers, which diminishes their importance as a legislative or program priority. Santo Tomas (1998) conducted an empirical assessment of migration policies in the Philippines, but refinement is needed. Although migration is a transnational experience, there is little dialogue and cooperation among countries. Philippine migration policy defines its role as an information resource for migrants. Policy shifted from labor export to migrant management in the public and private sectors. Predeparture information program studies are recommending a multi-stage process that would involve all appropriate parties. There is talk of including migration information in the education curriculum. There are a variety of agendas, competing interests, and information resources between migration networks and officiating agencies. The Asian financial crisis may have a mild impact, but there are still issues of reintegration, protection, and employment conditions
Purification of CdZnTe by electromigration
NASA Astrophysics Data System (ADS)
Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.
2015-04-01
Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10-2 cm2/V, compared with that of 1.4 × 10-3 cm2/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.
ERIC Educational Resources Information Center
Sadjed, Ariane; Sprung, Annette; Kukovetz, Brigitte
2015-01-01
Focusing especially on biographical competencies that are gained through the experience of migration and socialisation in a certain country or cultural context, this article analyses how professionals define and deploy these "migration-related competencies" when it comes to employment in the field of adult education in Austria. By means…
Blanchard, Paul J.
2002-01-01
The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential or intermediate potential for contamination. About 6 percent of the study area was assessed to have the least potential for contamination, mostly in areas where the slope of the land surface is more than 12 percent. Nearly all fields on the Navajo Indian Irrigation Project were assessed to have the most potential for contamination. The assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project was based on pesticide application to various crops on part of the Navajo Indian Irrigation Project during 1997-99. The assessment indicated that ground water underlying fields of beans, wheat, barley, and alfalfa was most vulnerable to pesticide contamination; ground water underlying fields of corn and potatoes was intermediately vulnerable to pesticide contamination; and ground water underlying fields of hay was least vulnerable to pesticide contamination.
Installation-Restoration Program Preliminary Assessment, Naknek Recreational Camps, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
The Hazardous Materials Technical Center (HMTC) was retained in January 1988 to conduct the Installation-Restoration Program (IRP) Preliminary Assessment of Naknek Recreational Camps, Alaska, DoD policy is to identify and fully evaluate suspected problems associated with past hazardous-material disposal sites on DoD facilities, control the migration of hazardous contamination from such facilities, and control hazards to health and welfare that may have resulted from these past operations. Past installation operations involved the use and disposal of materials and wastes that were subsequently categorized as hazardous. The major operations of Naknek Camp I and Camp II did not use or disposemore » of HM/HW; however, these camps were used by the Air Force as dump areas and landfills. Waste oils, fuels, and polychlorinated biphenyls (PCBs) were among the wastes disposed of during these dumping activities. Information obtained through interviews, records, and field observations resulted in the identification of three sites that are potentially contaminated with HM/HW. At each of the identified sites, the potential exists for contamination of surface water, soils, and/or ground water and subsequent contaminant migration.« less
NASA Astrophysics Data System (ADS)
Lee, S.; Allen, J.; Han, W.; Lu, C.; McPherson, B. J.
2011-12-01
Jurassic aeolian sandstones (e.g. Navajo and White Rim Sandstones) on the Colorado Plateau of Utah have been considered potential sinks for geologic CO2 sequestration due to their regional lateral continuity, thickness, high porosity and permeability, presence of seal strata and proximity to large point sources of anthropogenic CO2. However, aeolian deposits usually exhibit inherent internal complexities induced by migrating bedforms of different sizes and their resulting bounding surfaces. Therefore, CO2 plume migration in such complex media should be well defined and successively linked in models for better characterization of the plume behavior. Based on an outcrop analog of the upper Navajo Sandstone in the western flank of the San Rafael Swell, Utah, we identified five different bedform types with dune and interdune facies to represent the spatial continuity of lithofacies units. Using generated 3D geometrical facies patterns of cross-bedded structures in the Navajo Sandstone, we performed numerical simulations to understand the detailed behavior of CO2 plume migration under the different cross-bedded bedforms. Our numerical simulation results indicate that cross-bedded structures (bedform types) play an important role on governing the rate and directionality of CO2 migration, resulting in changes of imbibition processes of CO2. CO2 migration tends to follow wind ripple laminations and reactivation surfaces updip. Our results suggest that geologically-based upscaling of CO2 migration is crucial in cross-bedded formations as part of reservoir or basin scale models. Furthermore, comparative modeling studies between 3D models and 2D cross-sections extracted from 3D models showed the significant three-dimensional interplay in a cross-bedded structure and the need to correctly capture the geologic heterogeneity to predict realistic CO2 plume behavior. Our outcrop analog approach presented in this study also demonstrates an alternative method for assessing geologic CO2 storage in deep formations when scarce data is available.
Periodic sediment shift in migrating ripples influences benthic microbial activity
NASA Astrophysics Data System (ADS)
Zlatanović, Sanja; Fabian, Jenny; Mendoza-Lera, Clara; Woodward, K. Benjamin; Premke, Katrin; Mutz, Michael
2017-06-01
Migrating bedforms have high levels of particulate organic matter and high rates of pore water exchange, causing them to be proposed as hot spots of carbon turnover in rivers. Yet, the shifting of sediments and associated mechanical disturbance within migrating bedforms, such as ripples, may stress and abrade microbial communities, reducing their activity. In a microcosm experiment, we replicated the mechanical disturbances caused by the periodic sediment shift within ripples under oligotrophic conditions. We assessed the effects on fungal and bacterial biomass ratio (F:B), microbial community respiration (CR), and bacterial production (BCP) and compared with stable undisturbed sediments. Interactions between periodic mechanical disturbance and sediment-associated particulate organic matter (POM) were tested by enriching sediments collected from migrating ripples with different qualities of POM (fish feces, leaf litter fragments and no addition treatments). F:B and BCP were affected by an interaction between mechanical disturbance and POM quality. Fish feces enriched sediments showed increased F:B and BCP compared to sediments with lower POM quality and responded with a decrease of F:B and BCP to sediment disturbance. In the other POM treatments F:B and BCP were not affected by disturbance. Microbial respiration was however reduced by mechanical disturbance to similar low activity levels regardless of POM qualities added, whereas fish feces enriched sediment showed short temporary boost of CR. With the worldwide proliferation of migrating sand ripples due to massive catchment erosion, suppressed mineralization of POM will increasingly affect stream metabolism, downstream transport of POM and carbon cycling from reach to catchment scale.
Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae
Silvestro, S.; Vaz, D.A.; Fenton, L.K.; Geissler, P.E.
2011-01-01
We present evidence of widespread aeolian activity in the Arabia Terra/Meridiani region (Mars), where different kinds of aeolian modifications have been detected and classified. Passing from the regional to the local scale, we describe one particular dune field in Meridiani Planum, where two ripple populations are distinguished by means of different migration rates. Moreover, a consistent change in the ripple pattern is accompanied by significant dune advancement (between 0.4-1 meter in one Martian year) that is locally triggered by large avalanche features. This suggests that dune advancement may be common throughout the Martian tropics. ?? 2011 by the American Geophysical Union.
Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S
2007-08-15
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.
Saraga, Michael; Gholam-Rezaee, Mehdi; Preisig, Martin
2013-11-01
Migration is considered a depression risk factor when associated with psychosocial adversity, but its impact on depression's clinical characteristics has not been specifically studied. We compared 85 migrants to 34 controls, examining depression's severity, symptomatology, comorbidity profile and clinical course. A MINI interview modified to assess course characteristics was used to assign DSM-IV axis I diagnoses; medical files were used for Somatoform Disorders. Severity was assessed with the Montgomery-Asberg scale. Wherever possible, we adjusted comparisons for age and gender using logistic and linear regressions. Depression in migrants was characterized by higher comorbidity (mostly somatoform and anxiety disorders), higher severity, and a non-recurrent, chronic course. Our sample comes from a single center, and should be replicated in other health care facilities and other countries. Somatoform disorder diagnoses were solely based on file-content. Depression in migrants presented as a complex, chronic clinical picture. Most of our migrant patients experienced significant psychosocial adversity before and after migration: beyond cultural issues, our results suggest that psychosocial adversity impacts on the clinical expression of depression. Our study also suggests that migration associated with psychosocial adversity might play a specific etiological role, resulting in a distinct clinical picture, questioning the DSM-IV unitarian model of depression. The chronic course might indicate a resistance to standard therapeutic regimen and hints at the necessity of developing specific treatment strategies, adapted to the individual patients and their specific context. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Comparing internal migration across the countries of Latin America: A multidimensional approach
Bernard, Aude; Rowe, Francisco; Bell, Martin; Ueffing, Philipp; Charles-Edwards, Elin
2017-01-01
While considerable progress has been made in understanding the way particular aspects of internal migration, such as its intensity, age profile and spatial impact, vary between countries around the world, little attention to date has been given to establishing how these dimensions of migration interact in different national settings. We use recently developed measures of internal migration that are scale-independent to compare the overall intensity, age composition, spatial impact, and distance profile of internal migration in 19 Latin American countries. Comparisons reveal substantial cross-national variation but cluster analysis suggests the different dimensions of migration evolve systematically to form a broad sequence characterised by low intensities, young ages at migration, unbalanced flows and high friction of distance at lower levels of development, trending to high intensities, an older age profile of migration, more closely balanced flows and lower friction of distance at later stages of development. However, the transition is not linear and local contingencies, such as international migration and political control, often distort the migration-development nexus, leading to unique migration patterns in individual national contexts. PMID:28328932
IRT Item Parameter Scaling for Developing New Item Pools
ERIC Educational Resources Information Center
Kang, Hyeon-Ah; Lu, Ying; Chang, Hua-Hua
2017-01-01
Increasing use of item pools in large-scale educational assessments calls for an appropriate scaling procedure to achieve a common metric among field-tested items. The present study examines scaling procedures for developing a new item pool under a spiraled block linking design. The three scaling procedures are considered: (a) concurrent…
Cross-correlation least-squares reverse time migration in the pseudo-time domain
NASA Astrophysics Data System (ADS)
Li, Qingyang; Huang, Jianping; Li, Zhenchun
2017-08-01
The least-squares reverse time migration (LSRTM) method with higher image resolution and amplitude is becoming increasingly popular. However, the LSRTM is not widely used in field land data processing because of its sensitivity to the initial migration velocity model, large computational cost and mismatch of amplitudes between the synthetic and observed data. To overcome the shortcomings of the conventional LSRTM, we propose a cross-correlation least-squares reverse time migration algorithm in pseudo-time domain (PTCLSRTM). Our algorithm not only reduces the depth/velocity ambiguities, but also reduces the effect of velocity error on the imaging results. It relieves the accuracy requirements on the migration velocity model of least-squares migration (LSM). The pseudo-time domain algorithm eliminates the irregular wavelength sampling in the vertical direction, thus it can reduce the vertical grid points and memory requirements used during computation, which makes our method more computationally efficient than the standard implementation. Besides, for field data applications, matching the recorded amplitudes is a very difficult task because of the viscoelastic nature of the Earth and inaccuracies in the estimation of the source wavelet. To relax the requirement for strong amplitude matching of LSM, we extend the normalized cross-correlation objective function to the pseudo-time domain. Our method is only sensitive to the similarity between the predicted and the observed data. Numerical tests on synthetic and land field data confirm the effectiveness of our method and its adaptability for complex models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The preliminary assessment included the following activities: (1) An on-site visit, including interviews and field surveys; (2) Acquisition and analysis of information on past hazardous materials use, waste generation, and waste disposal at the Station; (3) Acquisition and analysis of available geological surveys, hydrological data, meteorological data, and environmental data; and (4) The identification and assessment of sites where contamination of soils, ground water and/or surface water may have occurred. Operations that have involved the use of hazardous materials and the disposal of hazardous wastes include vehicle maintenance and aerospace ground equipment (AGE) maintenance. The hazardous wastes disposed of throughmore » these operations include varying quantities of petroleum-oil-lubricant (POL) products, acids, paints, thinners, strippers, and solvents. The field surveys and interviews resulted in the identification of three sites that exhibit the potential for migration of contaminants due to leakage or seepage from landfills and storage tanks.« less
Effects of Faults on Petroleum Fluid Dynamics, Borderland Basins of Southern California
NASA Astrophysics Data System (ADS)
Jung, B.; Garven, G.; Boles, J. R.
2012-12-01
Multiphase flow modeling provides a useful quantitative tool for understanding crustal processes such as petroleum migration in geological systems, and also for characterizing subsurface environmental issues such as carbon sequestration in sedimentary basins. However, accurate modeling of multi-fluid behavior is often difficult because of the various coupled and nonlinear physics affecting multiphase fluid saturation and migration, including effects of capillarity and relative permeability, anisotropy and heterogeneity of the medium, and the effects of pore pressure, composition, and temperature on fluid properties. Regional fault structures also play a strong role in controlling fluid pathlines and mobility, so considering hydrogeologic effects of these structures is critical for testing exploration concepts, and for predicting the fate of injected fluids. To address these issues on spatially large and long temporal scales, we have developed a 2-D multiphase fluid flow model, coupled to heat flow, using a hybrid finite element and finite volume method. We have had good success in applying the multiphase flow model to fundamental issues of long-distance petroleum migration and accumulation in the Los Angeles basin, which is intensely faulted and disturbed by transpressional tectonic stresses, and host to the world's richest oil accumulation. To constrain the model, known subsurface geology and fault structures were rendered using geophysical logs from industry exploration boreholes and published seismic profiles. Plausible multiphase model parameters were estimated, either from known fault permeability measurements in similar strata in the Santa Barbara basin, and from known formation properties obtained from numerous oil fields in the Los Angeles basin. Our simulations show that a combination of continuous hydrocarbon generation and primary migration from upper Miocene source rocks in the central LA basin synclinal region, coupled with a subsiding basin fluid dynamics, favored the massive accumulation and alignment of hydrocarbon pools along the Newport-Inglewood fault zone (NIFZ). According to our multiphase flow calculations, the maximum formation water velocities within fault zones likely ranged between 1 ~ 2 m/yr during the middle Miocene to Pliocene (13 to 2.6 Ma). The estimated time for long-distance (~ 25 km) petroleum migration from source beds in the central basin to oil fields along the NIFZ is approximately 150,000 ~ 250,000 years, depending on the effective permeability assigned to the faults and adjacent interbedded sandstone and siltstone "petroleum aquifers". With an average long-distance flow rate (~ 0.6 m/yr) and fault permeability of 100 millidarcys (10-13 m2), the total petroleum oil of Inglewood oil field of 450 million barrels (~ 1.6 × 105 m3) would have accumulated rather quickly, likely over 25,000 years or less. The results also suggest that besides the thermal and structural history of the basin, the fault permeability, capillary pressure, and the configuration of aquifer and aquitard layers played an important role in controlling petroleum migration rates, patterns of flow, and the overall fluid mechanics of petroleum accumulation.
Space Based Ornithology: On the Wings of Migration and Biophysics
NASA Technical Reports Server (NTRS)
Smith, James A.
2005-01-01
The study of bird migration on a global scale is one of the compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties. Space based technology offers new opportunities to shed understanding on the distribution and migration of organisms on the planet and their sensitivity to human disturbances and environmental changes. Migration is an incredibly diverse and complex behavior. A broad outline of space based research must address three fundamental questions: (1) where could birds be, i.e. what is their fundamental niche constrained by their biophysical limits? (2) where do we actually find birds, i.e. what is their realizable niche as modified by local or regional abiotic and biotic factors, and (3) how do they get there (and how do we know?), that is what are their migration patterns and associated mechanisms? Our working hypothesis is that individual organism biophysical models of energy and water balance, driven by satellite measurements of spatio-temporal gradients in climate and habitat, will help us to explain the variability in avian species richness and distribution. Dynamic state variable modeling provides one tool for studying bird migration across multiple scales and can be linked to mechanistic models describing the time and energy budget states of migrating birds. Such models yield an understanding of how a migratory flyway and its component habitats function as a whole and link stop-over ecology with biological conservation and management. Further these models provide an ecological forecasting tool for science and application users to address what are the possible consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration.
Anitua, E; Pino, A; Orive, G
2016-11-02
The use of plasma rich in growth factors (PRGF) has gained importance in many medical fields due to its regenerative potential. The aim of this study is to evaluate the effects of PRGF on primary skin fibroblasts assessing cell proliferation, migration and secretion of growth factors. The age of the patients from who PRGF was prepared was also studied to determine whether it influenced the outcomes. Human dermal fibroblasts were isolated from three healthy volunteers. Using PRGF-Endoret technology, PRGF was prepared from two groups of different ages (18-35 years and 50+ years). The effects of increasing concentration of PRGF (5%, 10% and 20%) on cell proliferation and migration was evaluated. Biosynthetic behaviour of cells was also analysed measuring vascular endothelial growth factor (VEGF), transforming growth factor b1 (TGFb1) and pro-collagen type I secreted levels with or without PRGF treatment. Mean platelet enrichment reached 2.4X and 2X in 18-35 and 50+ groups respectively. A dose-dependent response was observed in proliferation assays achieving the highest levels with 20% PRGF. Migration was also promoted in cells but not in a dose-dependent manner. Cell proliferation and migration outcomes obtained with PRGF (from both groups) were significantly higher compared to non-stimulated groups (p<0.05), with no statistical significances were observed between the different age groups. Production of VEGF, TGFb and procollagen type I was significantly increased by cells treated with PRGF, however, with the exception of VEGF, no statistical significances were observed between the different age groups. Results from this study concluded that PRGF is safe and effective in stimulating skin regeneration by enhancing proliferation, migration and expression of pivotal bioactive molecules involved in wound healing and haemostasis.
The Making of a Self-Neglect Severity Scale
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Dyer, C. B.; Pavlik, V. N.; Kelly, P. A.; Lee, J.; Doody, R. S.; Regev, C.; Pickens, C.; Burnett, J.
2006-01-01
Research in elder self-neglect has lagged behind that of other forms of mistreatment, despite the fact that self-neglect is the most common allegation reported to Adult Protective Service agencies throughout the US. The lack of a gold-standard to measure self-neglect has hampered efforts to study this phenomenon. Researchers designed the Self-neglect Severity Scale (SSS) based on interviews with Adult Protective Service workers and a national expert panel. The SSS is based on observation and interview and is administered in the home to include an environmental assessment. It was piloted, extensively field tested and then revised. The CREST SSS was developed using survey data and consultation with experts in the field. This instrument utilizes observer ratings, interview responses, and assesses subjects physical and environmental domains. It also assesses functional status as it relates to health and safety issues. After field and pilot testing the SSS was finalized and is currently undergoing reliability and validity testing. The CREST SSS was developed as a state scale to provide a common language for describing cases of self-neglect. It is the first self-neglect severity scale available to researchers. If found to be both reliable and valid it can be used in future intervention studies.
The making of a self-neglect severity scale.
Dyer, Carmel Bitondo; Kelly, P Adam; Pavlik, Valory N; Lee, Jessica; Doody, Rachelle S; Regev, Tziona; Pickens, Sabrina; Burnett, Jason; Smith, Scott M
2006-01-01
Research in elder self-neglect has lagged behind that of other forms of mistreatment, despite the fact that self-neglect is the most common allegation reported to Adult Protective Service agencies throughout the US. The lack of a gold standard to measure self-neglect has hampered efforts to study this phenomenon. Researchers designed the Self-Neglect Severity Scale (SSS) based on interviews with Adult Protective Service workers and a national expert panel. The SSS is based on observation and interview and is administered in the home to include an environmental assessment. It was piloted, extensively field tested and then revised. The CREST SSS was developed using survey data and consultation with experts in the field. This instrument utilizes observer ratings, interview responses, and assesses subjects' physical and environmental domains. It also assesses functional status as it relates to health and safety issues. After field and pilot testing, the SSS was finalized and is currently undergoing reliability and validity testing. The CREST SSS was developed as a state scale to provide a common language for describing cases of self-neglect. It is the first self-neglect severity scale available to researchers. If found to be both reliable and valid, it may be used in future intervention studies.
Bohling, Geoffrey C.; Butler, James J.; Zhan, Xiaoyong; Knoll, Michael D.
2007-01-01
Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field‐scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape analysis methodology. The hydraulic conductivity (K) estimates from steady shape and transient analyses of the tomographic data compare well with those from a tracer test and direct‐push permeameter tests, providing a field validation of the method. Zonations based on equal‐thickness layers and cross‐hole radar surveys are used to regularize the inverse problem. The results indicate that the radar surveys provide some useful information regarding the geometry of the K field. The steady shape analysis provides results similar to the transient analysis at a fraction of the computational burden. This study clearly demonstrates the advantages of hydraulic tomography over conventional pumping tests, which provide only large‐scale averages, and small‐scale hydraulic tests (e.g., slug tests), which cannot assess strata connectivity and may fail to sample the most important pathways or barriers to flow.
Superresolution near-field imaging with surface waves
NASA Astrophysics Data System (ADS)
Fu, Lei; Liu, Zhaolun; Schuster, Gerard
2018-02-01
We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulae and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green's functions for migration, and only costs O(N4) algebraic operations for post-stack migration compared to O(N6) operations for natural pre-stack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.
Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars
Chojnacki, Matthew; Urso, Anna; Fenton, Lori K.; Michaels, Timothy I.
2018-01-01
It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum’s Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion. PMID:29576818
Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars.
Chojnacki, Matthew; Urso, Anna; Fenton, Lori K; Michaels, Timothy I
2017-06-01
It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum's Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion.
Surviving utopia: Energy, social capital, and international migration in Ixcan, Guatemala
NASA Astrophysics Data System (ADS)
Taylor, Matthew John
Mounting peasant impoverishment in Guatemala comes face to face with growing ecological impoverishment. Abysmal living standards for Guatemala's majority results from highly skewed land distribution, rapid population growth, and a brutal civil war, which lasted almost four decades and laid waste to many rural communities and fields. In the face of such adversity, Guatemalans migrate to remaining forested frontiers and make longer journeys to North America in search of work. In an attempt to understand and improve natural resource use, especially firewood, I uncover how networks of social relations (social capital) and international migration influence livelihoods in agricultural communities along a forested frontier. I used both qualitative and quantitative methods to gather information about the lives of residents in four agricultural villages in Ixcan, Guatemala. The results from extended fieldwork illustrate how high levels of social capital can benefit the lives of rural residents. I argue that development programs can take advantage of existing high levels of social capital and take measures to create social capital where it is lacking to ensure the successful implementation of development programs. I also discuss firewood management in each community and demonstrate the disjuncture between local firewood use and national energy plans. Finally, I show how migrants and the money they send home from North America radically alter land use and land distribution in this part of rural Guatemala. My study reveals the need to examine the linkages between large-scale international migration, social capital, and the environment in communities that rely on the land for survival.
Polito, Michael J; Hinke, Jefferson T; Hart, Tom; Santos, Mercedes; Houghton, Leah A; Thorrold, Simon R
2017-08-01
Identifying the at-sea distribution of wide-ranging marine predators is critical to understanding their ecology. Advances in electronic tracking devices and intrinsic biogeochemical markers have greatly improved our ability to track animal movements on ocean-wide scales. Here, we show that, in combination with direct tracking, stable carbon isotope analysis of essential amino acids in tail feathers provides the ability to track the movement patterns of two, wide-ranging penguin species over ocean basin scales. In addition, we use this isotopic approach across multiple breeding colonies in the Scotia Arc to evaluate migration trends at a regional scale that would be logistically challenging using direct tracking alone. © 2017 The Author(s).
Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
Brine Migration in Heated Salt: Lessons Learned from Field Experiments
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Matteo, E. N.; Mills, M.
2017-12-01
We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Technical Reports Server (NTRS)
Little, B. H., Jr.; Tomlin, K. H.; Aljabri, A. S.; Mason, C. A.
1988-01-01
One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate.
NASA Astrophysics Data System (ADS)
Schwenk, Jonathan
Meandering rivers are dynamic agents of geomorphic change that rework landscapes through migration while maintaining beautiful looping planforms. This work investigates the relationships between the alluring planform geometries of meandering rivers, the dynamics of individual meander bend migration, and the dynamic processes driving meander evolution. A simple yet physically-based model of long-time meander migration is employed to understand the dynamic trajectories of individual meander bends and establish relationships between historic dynamics and cutoff bend geometry. At the reach scale, concepts from nonlinear dynamic theory are applied to river centerlines to determine if the dynamic nonlinearities driving meander evolution are preserved in the reachwide planform structure. Understanding how rivers move across their floodplains requires snapshots of planforms over long time periods from aerial photography or historic maps and surveys which are often taken at irregular and long intervals. Migration occurring between snapshots has thus largely remained a mystery. More recently, worldwide satellite imagery collected at least every 18 days by the NASA Landsat family of satellites offers the potential to reveal the secret lives of migrating, meandering rivers. This research mines the vault of Landsat imagery to resolve over 30 years of planform migration along more than 1,300 km of one of the Earth's most active meandering rivers: the Ucayali River in Peru. Analysis of the resulting annual binary channel masks suggests that migration rates are controlled by processes acting across bend-to-reach scales. An exciting new geomorphic discovery emerges from the analysis revealing the role of cutoffs as drivers of nonlocal morphodynamic change.
NASA Astrophysics Data System (ADS)
Jardine, P. M.; Mehlhorn, T. L.
2006-05-01
The following research investigated the effectiveness of an aggressive, large scale remedial action that is occurring to subsurface waste trenches containing radioactive and organic waste at the Oak Ridge National Laboratory. The site is being remediated as one of the top cleanup prioritization for the Oak Ridge Accelerated Remediation endeavor. Site landlords, Bechtel Jacobs Co., LLC (BJC) are installing a minimal RCRA cap with the primary objective of controlling the infiltration of storm water into the hundreds of unconfined waste trenches containing radioactive and organic waste. The site now offers a unique scientific opportunity to track the kinetic evolution of post-cap processes influencing contaminant migration and immobilization, because we have many years of pre-cap coupled processes information and knowledge. Since the cap is certain to disrupt the near steady-state contaminant discharge profiles that have existed for many years from the site, we have been quantifying the influence of post-cap hydrological, geochemical, and microbial processes on contaminant discharge as a function of scale and time in an effort to assess local-scale cap influences versus regional scale groundwater flow influences on contaminant discharge. We have been allowed to maintain numerous groundwater monitoring wells at a field site and these have a rich historical data set with regard to hydrology, geochemistry, microbiology, and contaminant flux. Our objectives are to investigate cap induced changes in (1) groundwater and surface hydrology and contaminant flux, (2) geochemistry and contaminant speciation, and (3) microbial community structure and organic contaminant degradation and inorganic contaminant immobilization. Our approach monitors coupled processes during base-flow and during storm events in both the groundwater and surface water discharge from the site and the surrounding watershed. Pre- and post-cap data will than be modeled with a multiprocess, multicomponent, transport model which is linked to pre- and post-cap surface water hydrograph analysis from the site and the surrounding watershed. Our goal is to provide an improved fundamental understanding of the long-term fate and transport of contaminants and an improved ability to predict system response to remedial actions. The experimental and numerical results from this investigation will provide knowledge and information in previously unexplored areas of cap performance with regard to coupled hydrology, geochemistry, microbiology, and contaminant flux in humid regimes. The products will support DOE's mission of long-term stewardship of contaminated environments and be transferable to other site where similar remediation exists or is planned.
Thomas, Evert; Tovar, Eduardo; Villafañe, Carolina; Bocanegra, José Leonardo; Moreno, Rodrigo
2017-12-01
Crop wild relatives (CWRs) of rice hold important traits that can contribute to enhancing the ability of cultivated rice (Oryza sativa and O. glaberrima) to produce higher yields, cope with the effects of climate change, and resist attacks of pests and diseases, among others. However, the genetic resources of these species remain dramatically understudied, putting at risk their future availability from in situ and ex situ sources. Here we assess the distribution of genetic diversity of the four rice CWRs known to occur in Colombia (O. glumaepatula, O. alta, O. grandiglumis, and O. latifolia). Furthermore, we estimated the degree of overlap between areas with suitable habitat for cultivated and wild rice, both under current and predicted future climate conditions to assess the potential spatiotemporal scale of potential gene flow from GM rice to its CWRs. Our findings suggest that part of the observed genetic diversity and structure, at least of the most exhaustively sampled species, may be explained by their glacial and post-glacial range dynamics. Furthermore, in assessing the expected impact of climate change and the potential spatiotemporal scale of gene flow between populations of CWRs and GM rice we find significant overlap between present and future suitable areas for cultivated rice and its four CWRs. Climate change is expected to have relatively limited negative effects on the rice CWRs, with three species showing opportunities to expand their distribution ranges in the future. Given (i) the sparse presence of CWR populations in protected areas (ii) the strong suitability overlap between cultivated rice and its four CWRs; and (iii) the complexity of managing and regulating areas to prevent alien gene flow, the first priority should be to establish representative ex situ collections for all CWR species, which currently do not exist. In the absence of studies under field conditions on the scale and extent of gene flow between cultivated rice and its Colombian CWRs, effective in situ conservation might best be achieved through tailor-made management plans and exclusion of GM rice cultivation in areas holding the most genetically diverse CWR populations. This may be combined with assisted migration of populations to suitable areas where rice is unlikely to be cultivated under current and future climate conditions.
Role of hydrodynamic interactions in dynamics of semi-flexible polyelectrolytes
NASA Astrophysics Data System (ADS)
Kekre, Rahul
Experiments have shown that DNA molecules in capillary electrophoresis migrate across field lines if a pressure gradient is applied simultaneously. We suggest that this migration results from an electrically driven flow field around the polyelectrolyte, which generates additional contributions to the center-of-mass velocity if the overall polymer conformation is asymmetric. Numerical simulations and experiments have demonstrated that confined polymers migrate towards the center of the channel in response to both external forces and uniaxial flows. Yet, migration towards the walls has been observed with combinations of external force and flow. In this work, the kinetic theory for an elastic dumbbell developed by Ma and Graham [Phys. Fluids 17, 083103 (2005)] has been extended to account for the effects of an external body force. Further modifications account for counterion screening within a Debye-Huckel approximation for the specific case of applied electric field. The theory qualitatively reproduces results of both experiments for the migration of neutral polymers and polyelectrolytes. The favorable comparison supports the contention [Long et al., Phys. Rev. Lett. 76, 3858 (1996)] that the hydrodynamic interactions in polyelectrolytes decay algebraically, as 1/r 3, rather than exponentially. A coarse-grained polymer model, without explicit charges, is developed and integrated using Brownian-dynamics simulations in analogy with the kinetic theory. The novel feature of the simulations is the inclusion of hydrodynamic interactions induced by the electric field. This model quantitatively captures experimental observations [Zheng and Yeung, Anal. Chem. 75, 3675 (2003)] of DNA migration under combined electric and pressure-driven flow fields in absence of any adjusted parameters. In addition the model predicts dependence of electrophoretic velocity on the instantaneous length of the polyelectrolyte which has been verified by experiments of Lee et. al. [Electrophoresis 31, 2813 (2010)]. The model also predicts phenomenons that are yet to be verified experimentally. These include decrease in diffusivity and increase in radius of gyration of the polyelectrolyte in high electric fields due to internal dispersion. The resulting change in orientation distribution at high electric fields decreases the extent of migration. Preliminary results from microfluidic experiments are presented in this dissertation demonstrating the saturation of migration. This dissertation also includes comparison of results from lattice-Boltzmann and Brownian dynamics simulations of a linear bead-spring model of DNA for two cases; infinite dilution and confinement. We have systematically varied the parameters that may affect the accuracy of the lattice-Boltzmann simulations, including grid resolution, temperature, polymer mass, periodic boundary size and fluid viscosity. For the case of a single chain Lattice-Boltzmann results for the diffusion coefficient and Rouse mode relaxation times were within 1--2% from those obtained from Brownian-dynamics. Results from both methods are also compared for polymer migration in confined flows driven by a uniform shear or pressure gradient. Center-of-mass distribution obtained from Lattice-Boltzmann simulations agrees quantitatively with Brownian-dynamics results, contradicting previously published results. The mobility matrix for a confined polymer was derived by applying Faxen's correction to the flow-field generated by a point force bounded by two parallel plates. This formulation of the mobility matrix is symmetric and positive-definite for all physically accessible configurations of the polymer.
ENVIRONMENTAL ASSESSMENT OF THE BASE CATALYZED DECOMPOSITION (BCD) PROCESS
This report summarizes laboratory-scale, pilot-scale, and field performance data on BCD (Base Catalyzed Decomposition) and technology, collected to date by various governmental, academic, and private organizations.
Glossary: migration and health.
Urquia, Marcelo L; Gagnon, Anita J
2011-05-01
The literature on migration and health is quite heterogeneous in how migrants are labelled and how the relation between migration and health is conceptualised. A narrative review has been carried out. This glossary presents the most commonly used terms in the field of migration and health, along with synonyms and related concepts, and discusses the suitability of their use in epidemiological studies. The terminology used in migrant health is ambiguous in many cases. Studies on migrant health should avoid layman terms and strive to use internationally defined concepts.
Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates
NASA Astrophysics Data System (ADS)
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2016-10-01
We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng
2011-01-01
Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target salinemore » aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.« less
NASA Astrophysics Data System (ADS)
Souquet, Jean Louis
2006-06-01
Ionocovalent crystals or glasses as well as molten salts or salt polymer complexes are currently studied as electrolytes for high energy density batteries. Their large Red/Ox stability range results from their thermodynamic or kinetic characteristics. For all these electrolytes, charge carriers are the consequence of local deviations from electroneutrality, identified as point defects for ionic crystals or partial dissociation in disordered structures. The charge carriers formation derives from a similar activated process. The main difference comes from the migration process, which depends on the dynamic properties of the surrounding medium. When the structural relaxation time is large, an activated process, mainly enthalpic, prevails for charge carriers migration. It is the usual case for ionic crystals or glasses. In the liquid or overcooled liquid states, the structural relaxation time of the medium is shorter that the time required for the activated migration process to occur and a local reorganization of the medium vanishes the energy barrier and provides the free volume necessary to ionic migration. In that case, the migration is mainly an entropic process. The configurational entropy necessary to this process decreases with temperature and vanishes at the so called ideal glass transition temperature which can be estimated by extrapolation of the transport properties or of the thermodynamic characteristics of the medium. However, at the experiment time scale, this configurational entropy disappears at a somewhat higher temperature, the glass transition temperature at which the structural relaxation time corresponds to the measurement time. Some glass forming ionic melts studied in a large temperature scale, over and below the glass transition temperature, evidence the two, enthalpic and entropic, migration mechanisms, allowing the determination of the thermodynamic characteristics of the charge carriers formation and migration. Some recent results indicate that entropic process, associated to long scale deformations, may also exist in crystalline structures.
ERIC Educational Resources Information Center
Bartlett, Lesley
2012-01-01
The world is witnessing an era of unprecedented human mobility and much of this movement entails migration between countries in the global south. This article contributes to the development of an important new line of inquiry within the field of comparative and international education: South-South migration and education. In the first section, I…
Transoceanic migration, spatial dynamics, and population linkages of white sharks.
Bonfil, Ramón; Meÿer, Michael; Scholl, Michael C; Johnson, Ryan; O'Brien, Shannon; Oosthuizen, Herman; Swanson, Stephan; Kotze, Deon; Paterson, Michael
2005-10-07
The large-scale spatial dynamics and population structure of marine top predators are poorly known. We present electronic tag and photographic identification data showing a complex suite of behavioral patterns in white sharks. These include coastal return migrations and the fastest known transoceanic return migration among swimming fauna, which provide direct evidence of a link between widely separated populations in South Africa and Australia. Transoceanic return migration involved a return to the original capture location, dives to depths of 980 meters, and the tolerance of water temperatures as low as 3.4 degrees C. These findings contradict previous ideas that female white sharks do not make transoceanic migrations, and they suggest natal homing behavior.
Migration, Sociolinguistic Scale, and Educational Reproduction
ERIC Educational Resources Information Center
Collins, James
2012-01-01
Migration-based language pluralism and globalized identity conflicts pose challenges for educational research and linguistic anthropology, in particular, how we think about education and social inequality. This article proposes new conceptual tools, drawn from linguistic anthropology as well as world systems theory, for analyzing the role of…
Perry, R.; Farley , M.; Hansen, G.; Morse , J.; Rondorf, D.
2005-01-01
Passage through dams is a major source of mortality of anadromous juvenile salmonids because some populations must negotiate up to eight dams in Columbia and Snake rivers. Dams cause direct mortality when fish pass through turbines, but dams may also cause indirect mortality by altering migration conditions in rivers. Forebays immediately upstream of dams have decreased the water velocity of rivers and may contribute substantially to the total migration delay of juvenile salmonids. Recently, Coutant (2001a) suggested that in addition to low water velocities, lack of natural turbulence may contribute to migration delay by causing fish to lose directional cues. Coutant (2001a) further hypothesized that restoring turbulence in dam forebays may reduce migration delay by providing directional cues that allow fish to find passage routes more quickly (Coutant 2001a). Although field experiments have yielded proof of the concept of using induced turbulence to guide fish to safe passage routes, little is known about mechanisms actually causing behavioral changes. To test hypotheses about how turbulence influences movement and behavior of migrating juvenile salmonids, we conducted two types of controlled experiments at Cowlitz Falls Dam, Washington. A common measure of migration delay is the elapsed time between arrival at, and passage through, a dam. Therefore, for the first set of experiments, we tested the effect of induced turbulence on the elapsed time needed for fish to traverse through a raceway and pass over a weir at its downstream end (time trial experiment). If turbulence helps guide fish to passage routes, then fish should pass through the raceway quicker in the presence of appropriately scaled and directed turbulent cues. Second, little is known about how the physical properties of water movement provide directional cues to migrating juvenile salmonids. To examine the feasibility of guiding fish with turbulence, we tested whether directed turbulence could guide fish into one of two channels in the raceway, and subsequently cause them to pass disproportionately over the weir where turbulent cues were aimed (guidance experiment). Last, we measured and mapped water velocity and turbulence during the experiments to understand water movement patterns and the spatial distribution of turbulence in the raceways.
NASA Astrophysics Data System (ADS)
Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika
2014-05-01
Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).
Impacts of Colville River dynamics on river navigability near Nuiqsut, Alaska: 1955-present
NASA Astrophysics Data System (ADS)
Whitley, M. A.; Panda, S. K.; Prakash, A.; Brinkman, T. J.
2016-12-01
Climate-driven changes in river systems are challenging access to ecosystem services such as access to traditional hunting grounds and other subsistence food sources on the North Slope of Alaska. This work studies the dynamics of the Colville River and assesses the impacts on traditional harvest practices and subsistence travel of the Native community of Nuiqsut. Recent reports from Nuiqsut residents indicate accelerated changes in the environment, limiting river travel and their ability to harvest subsistence food. This study explores how channel migration, gravel bars, and bank erosion have evolved since the 1950s, and their impact on water depth and navigability. In an area of ice-rich permafrost, warmer summer temperatures exacerbate lateral bank erosion, resulting in river siltation. The study focuses on selected key areas south of Nuiqsut that have shown significant change in river geomorphology. Since 1955, some areas proximate to ice wedge exposures show channel migration in excess of 1 km. Panchromatic aerial photography acquired by US Geological Surveys in the mid 1950s, color infrared aerial photography from 1979 and 1982 acquired by the Alaska High Altitude Photography (AHAP) mission, and high resolution satellite images from Digital Globe, Inc. were used in this study. We mapped water, vegetation, and gravel/non-vegetated classes to identify risk areas for river navigability. River bathymetry was also mapped using a multispectral ratio-based water depth retrieval algorithm to identify problem sites for boat travel. Remote sensing products and analyses were validated with field data for mapping risk areas along the river. This study has the potential to be implemented on a larger scale for predictive mapping to aid river navigation. Findings from this study will provide insight whether recent changes are anomalies, or if they are part of a directional trend that will require local adaptation.
Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron
Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.
2014-01-01
Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.
Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.
Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J
2014-01-01
Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.
Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron
Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.
2014-01-01
Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913
Tornadic storm avoidance behavior in breeding songbirds.
Streby, Henry M; Kramer, Gunnar R; Peterson, Sean M; Lehman, Justin A; Buehler, David A; Andersen, David E
2015-01-05
Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trepat, Xavier; Chen, Zaozao; Jacobson, Ken
2015-01-01
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251
Guillemette, Magella; Polymeropoulos, Elias T.; Portugal, Steven J.; Pelletier, David
2017-01-01
The large amount of energy expended during flapping flight is associated with heat generated through the increased work of the flight muscles. This increased muscle work rate can manifest itself in core body temperature (Tb) increase of 1–2°C in birds during flight. Therefore, episodic body cooling may be mandatory in migratory birds. To elucidate the thermoregulatory strategy of a short-distance migrant, common eiders (Somateria mollissima), we implanted data loggers in the body cavity of wild birds for 1 year, and report information on Tb during their entire migration for 19 individuals. We show that the mean body temperature during flight (TbMean) in the eiders was associated with rises in Tb ranging from 0.2 to 1.5°C, largely depending on flight duration. To understand how eiders are dealing with hyperthermia during migration, we first compare, at a daily scale, how Tb differs during migration using a before-after approach. Only a slight difference was found (0.05°C) between the after (40.30°C), the before (40.41°C) and the migration (40.36°C) periods, indicating that hyperthermia during flight had minimal impact at this time scale. Analyses at the scale of a flight cycle (flight plus stops on the water), however, clearly shows that eiders were closely regulating Tb during migration, as the relationship between the storage of heat during flight was highly correlated (slope = 1) with the level of heat dumping during stops, at both inter-individual and intra-individual levels. Because Tb at the start of a flight (TbStart) was significantly and positively related to Tb at the end of a flight (TbEnd), and the maximal attained Tb during a flight (TbMax), we conclude that in absence of sufficient body cooling during stopovers, eiders are likely to become increasingly hyperthermic during migration. Finally, we quantified the time spent cooling down during migration to be 36% of their daily (24 h) time budget, and conclude that behavioral body cooling in relation to hyperthermia represents an important time cost. PMID:28790930
NASA Astrophysics Data System (ADS)
Kim, Jungrack; Kim, Younghwi; Park, Minseong
2016-10-01
At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated. Acknowledgements:The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement Nr. 607379.
Evolution of the magnetorotational instability on initially tangled magnetic fields
NASA Astrophysics Data System (ADS)
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.; Subramanian, Kandaswamy
2017-12-01
The initial magnetic field of previous magnetorotational instability (MRI) simulations has always included a significant system-scale component, even if stochastic. However, it is of conceptual and practical interest to assess whether the MRI can grow when the initial field is turbulent. The ubiquitous presence of turbulent or random flows in astrophysical plasmas generically leads to a small-scale dynamo (SSD), which would provide initial seed turbulent velocity and magnetic fields in the plasma that becomes an accretion disc. Can the MRI grow from these more realistic initial conditions? To address this, we supply a standard shearing box with isotropically forced SSD generated magnetic and velocity fields as initial conditions and remove the forcing. We find that if the initially supplied fields are too weak or too incoherent, they decay from the initial turbulent cascade faster than they can grow via the MRI. When the initially supplied fields are sufficient to allow MRI growth and sustenance, the saturated stresses, large-scale fields and power spectra match those of the standard zero net flux MRI simulation with an initial large-scale vertical field.
NASA Astrophysics Data System (ADS)
Ayuni Suied, Anis; Tajudin, Saiful Azhar Ahmad; Nizam Zakaria, Muhammad; Madun, Aziman
2018-04-01
Heavy metal in soil possesses high contribution towards soil contamination which causes to unbalance ecosystem. There are many ways and procedures to make the electrokinetic remediation (EKR) method to be efficient, effective, and potential as a low cost soil treatment. Electrode compartment for electrolyte is expected to treat the contaminated soil through electromigration and enhance metal ions movement. The electrokinetic is applicable for many approaches such as electrokinetic remediation (EKR), electrokinetic stabilization (EKS), electrokinetic bioremediation and many more. This paper presents a critical review on comparison of laboratory scale between EKR, EKS and EK bioremediation treatment by removing the heavy metal contaminants. It is expected to propose one framework of contaminated soil mapping. Electrical Resistivity Method (ERM) is one of famous indirect geophysical tools for surface mapping and subsurface profiling. Hence, ERM is used to mapping the migration of heavy metal ions by electrokinetic.
A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest.
Bocinsky, R Kyle; Kohler, Timothy A
2014-12-04
Humans experience, adapt to and influence climate at local scales. Paleoclimate research, however, tends to focus on continental, hemispheric or global scales, making it difficult for archaeologists and paleoecologists to study local effects. Here we introduce a method for high-frequency, local climate-field reconstruction from tree-rings. We reconstruct the rain-fed maize agricultural niche in two regions of the southwestern United States with dense populations of prehispanic farmers. Niche size and stability are highly variable within and between the regions. Prehispanic rain-fed maize farmers tended to live in agricultural refugia--areas most reliably in the niche. The timing and trajectory of the famous thirteenth century Pueblo migration can be understood in terms of relative niche size and stability. Local reconstructions like these illuminate the spectrum of strategies past humans used to adapt to climate change by recasting climate into the distributions of resources on which they depended.
Stochastic Modeling of CO2 Migrations and Chemical Reactions in Deep Saline Formations
NASA Astrophysics Data System (ADS)
Ni, C.; Lee, I.; Lin, C.
2013-12-01
Carbon capture and storage (CCS) has been recognized the feasible technology that can significant reduce the anthropogenic CO2 emissions from large point sources. The CO2 injection in geological formations is one of the options to permanently store the captured CO2. Based on this concept a large number of target formations have been identified and intensively investigated with different types of techniques such as the hydrogeophysical experiments or numerical simulations. The numerical simulations of CO2 migrations in saline formations recently gather much attention because a number of models are available for this purpose and there are potential sites existing in many countries. The lower part of Cholan Formation (CF) near Changhua Coastal Industrial Park (CCIP) in west central Taiwan was identified the largest potential site for CO2 sequestration. The top elevations of the KF in this area varies from 1300 to 1700m below the sea level. Laboratory experiment showed that the permeability of CF is 10-14 to 10-12 m2. Over the years the offshore seismic survey and limited onshore borehole logs have provided information for the simulation of CO2 migration in the CF although the original investigations might not focus on the purpose of CO2 sequestration. In this study we modify the TOUGHREACT model to consider the small-scale heterogeneity in target formation and the cap rock of upper CF. A Monte Carlo Simulation (MCS) approach based on the TOUGHREACT model is employed to quantify the effect of small-scale heterogeneity on the CO2 migrations and hydrochemical reactions in the CF. We assume that the small-scale variability of permeability in KF can be described with a known Gaussian distribution. Therefore, the Gaussian type random field generator such as Sequential Gaussian Simulation (SGSIM) in Geostatistical Software Library (GSLIB) can be used to provide the random permeability realizations for the MCS. A variety of statistical parameters such as the variances and correlation lengths in a Gaussian covariance model are varied in the MCS and the uncertainty of the CO2 and other chemical concentrations are evaluated based on 144 random realizations. In this study a constant injection rate of100Mt/year supercritical CO2 is applied in the bottom of CF. The continuous injection time is 20 years and the uncertainty results are evaluated at 100 years. By comparing with the case without small-scale variability simulation results show that the CO2 plume sizes in the horizontal direction increase from tens of meters to hundreds of meters when the variances of small-scale variability are varied from 1.0 to 4.0. The changes of correlation lengths (i.e., from 100m, 200m, to 400m) show small contribution on the size increases of CO2 plumes. Other uncertainties of chemical concentrations show behaviors similar to the CO2 plume patterns.
Collective cell migration without proliferation: density determines cell velocity and wave velocity
NASA Astrophysics Data System (ADS)
Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François
2018-05-01
Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.
Energetic and biomechanical constraints on animal migration distance.
Hein, Andrew M; Hou, Chen; Gillooly, James F
2012-02-01
Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model - that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration. © 2011 Blackwell Publishing Ltd/CNRS.
Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF
NASA Astrophysics Data System (ADS)
Soto, Emmaris; de Mello, Duilia F.; Rafelski, Marc; Gardner, Jonathan P.; Teplitz, Harry I.; Koekemoer, Anton M.; Ravindranath, Swara; Grogin, Norman A.; Scarlata, Claudia; Kurczynski, Peter; Gawiser, Eric
2017-03-01
We present an investigation of clumpy galaxies in the Hubble Ultra Deep Field at 0.5≤slant z≤slant 1.5 in the rest-frame far-ultraviolet (FUV) using Hubble Space Telescope Wide Field Camera 3 broadband imaging in F225W, F275W, and F336W. An analysis of 1404 galaxies yields 209 galaxies that host 403 kpc scale clumps. These host galaxies appear to be typical star-forming galaxies, with an average of 2 clumps per galaxy and reaching a maximum of 8 clumps. We measure the photometry of the clumps and determine the mass, age, and star formation rates (SFR) using the spectral energy distribution fitting code FAST. We find that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Individually, clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from lower than 1% up to 93%. Clumps in the outskirts of galaxies are typically younger, with higher SFRs, than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.
NASA Astrophysics Data System (ADS)
Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.
2012-04-01
In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS+ (Interactive Gravity and Magnetic Assistant System; Götze et al., 2010 and Schmidt et al., 2011). The ensuing model will be applied to predict the present-day deep crustal configuration and thermal field characteristics of the basin. Thereafter, 3D volumetric backstripping analysis will be performed to predict basin subsidence mechanisms (i.e. tectonic, thermal and sediment load) through time as well as to estimate paleo-water depths for paleogeographic reconstruction. The information gathered from crust-scale basin dynamics will be subsequently used at the petroleum system modelling stage to holistically assess the hydrocarbon potential of the basin in terms of source rock maturity and hydrocarbon generation, migration, timing and accumulation.
Gautier, Donald L.; Scheirer, Allegra Hosford; Tennyson, Marilyn E.; Peters, Kenneth E.; Magoon, Leslie B.; Lillis, Paul G.; Charpentier, Ronald R.; Cook, Troy A.; French, Christopher D.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.
2007-01-01
In 2003, the U.S. Geological Survey (USGS) completed an assessment of the oil and gas resource potential of the San Joaquin Basin Province of California (fig. 1.1). The assessment is based on the geologic elements of each Total Petroleum System defined in the province, including hydrocarbon source rocks (source-rock type and maturation and hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five total petroleum systems and ten assessment units within these systems. Undiscovered oil and gas resources were quantitatively estimated for the ten assessment units (table 1.1). In addition, the potential was estimated for further growth of reserves in existing oil fields of the San Joaquin Basin.
The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...
The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...
Bulle, Cécile; Samson, Réjean; Deschênes, Louise
2010-03-01
Field samples were collected around six pentachlorophenol (PCP)-treated wooden poles (in clay, organic soil, and sand) to evaluate the vertical migration of polychlorodibenzo-p-dioxins and furans (PCDD/Fs). Soils were characterized, PCDD/Fs, C(10)-C(50), and PCP were analyzed for seven composite samples located at a depth from 0 to 100 cm and at a distance from 0 to 50 cm from each pole. Concentrations of PCDD/Fs measured in organic soils were the highest (maximum 1.2E + 05 pg toxic equivalent TEQ/g soil), followed by clay (maximum 3.8E + 04 pg TEQ/g soil) and sand (maximum 1.8E + 04 pg TEQ/g soil). Model predictions, including the influence of wood treatment oil, were validated using measured concentration values in soils around poles. The model predicts a migration of PCDD/Fs due to the migration of oil, which differs depending on the type of soil: in clay, 90% of PCDD/Fs are predicted to remain in the first 29 cm, whereas in sand, 80 to 90% of the emitted PCDD/Fs are predicted to migrate deeper than 185 cm. For the organic soil, the predicted migration depth varies from 90 to 155 cm. This screening model allows evaluating the danger of microcontaminated sites around PCP-treated wooden poles: from a risk assessment perspective, in the case of organic soil and clay, no PCDD/F contamination is to be expected below the pole, but high levels of PCDD/Fs can be found in the first 2 m below the surface. For sand, however, significantly lower levels of PCDD/Fs were predicted in the surface soil, while the migration depth remains elevated, posing an inherent danger of aquifer contamination under the pole.
Traveltime computation and imaging from rugged topography in 3D TTI media
NASA Astrophysics Data System (ADS)
Liu, Shaoyong; Wang, Huazhong; Yang, Qinyong; Fang, Wubao
2014-02-01
Foothill areas with rugged topography are of great potential for oil and gas seismic exploration, but subsurface imaging in these areas is very challenging. Seismic acquisition with larger offset and wider azimuth is necessary for seismic imaging in complex areas. However, the scale anisotropy in this case must be taken into account. To generalize the pre-stack depth migration (PSDM) to 3D transversely isotropic media with vertical symmetry axes (VTI) and tilted symmetry axes (TTI) from rugged topography, a new dynamic programming approach for the first-arrival traveltime computation method is proposed. The first-arrival time on every uniform mesh point is calculated based on Fermat's principle with simple calculus techniques and a systematic mapping scheme. In order to calculate the minimum traveltime, a set of nonlinear equations is solved on each mesh point, where the group velocity is determined by the group angle. Based on the new first-arrival time calculation method, the corresponding PSDM and migration velocity analysis workflow for 3D anisotropic media from rugged surface is developed. Numerical tests demonstrate that the proposed traveltime calculation method is effective in both VTI and TTI media. The migration results for 3D field data show that it is necessary to choose a smooth datum to remove the high wavenumber move-out components for PSDM with rugged topography and take anisotropy into account to achieve better images.
[Contaminants from food packaging : New developments in risk assessment].
Pfaff, Karla; Wölfle, Detlef; Luch, Andreas
2017-07-01
Diverse materials intended for contact with food are important sources of food contamination. Harmonised European regulations including whitelists (so-called "positive lists") of substances along with migration limits and restrictions exist for plastics and regenerated cellulose films only. The European Food Safety Authority (EFSA) is responsible for the risk assessment of substances prior to their authorization and inclusion into the positive lists. In 2016 the EFSA issued an opinion on recent developments in the risk assessment of substances migrating into food for public consideration. Also migration related to non-intentionally added substances (NIASs), e. g. impurities, degradations products or oligomers, may be relevant for risk assessment. For substances migrating in quantities up to 50 ppb the requested data are restricted to genotoxicity testing based on a tiered approach for toxicological data requirements. In the case of higher migration levels (>50 ppb) experimental animal studies are also requested. Along with an evaluation of the available information, toxicological data on structurally similar substances may be used for the assessment if sufficiently justified with the aim to reduce animal studies as far as possible. For the risk assessment of NIASs it is possible to apply in silico methods in the absence of experimental toxicological data. Additionally, new technologies such as the use of nanomaterials, active and intelligent packaging and recycled plastics are challenging tasks in EFSA's risk assessment in accordance with the regulations by the European Commission.
NASA Astrophysics Data System (ADS)
Avouac, J.; Ayoub, F.; Bridges, N. T.; Leprince, S.; Lucas, A.
2012-12-01
The High Resolution Imaging Science Experiment (HiRISE) in orbit around Mars provides images with a nominal ground resolution of 25cm. Its agility allows imaging a same scene with stereo view angles thus allowing for for Digital elevation Model (DEM) extraction through stereo-photogrammetry. This dataset thus offers an exceptional opportunity to measure the topography with high precision and track its eventual evolution with time. In this presentation, we will discuss how multi-temporal acquisitions of HiRISE images of the Nili Patera dune field allow tracking ripples migration, assess sand fluxes and dunes activity. We investigated in particular the use of multi-temporal DEMs to monitor the migration and morphologic evolution of the dune field. We present here the methodology used and the various challenges that must be overcome to best exploit the multi-temporal images. Two DEMs were extracted from two stereo images pairs acquired 390 earth days apart in 2010-2011 using SOCET SET photogrammetry software, with a 1m post-spacing and a vertical accuracy of few tens of centimeters. Prior to comparison the DEMs registration, which was not precise enough out of SOCET-SET, was improved by wrapping the second DEM onto the first one using the bedrock only as a support for registration. The vertical registration residual was estimated at around 40cm RMSE and is mostly due to CCD misalignment and uncorrected spacecraft attitudes. Changes of elevation over time are usually determined from DEMs differentiation: provided that DEMs are perfectly registered and sampled on the same grid, this approach readily quantifies erosion and deposition processes. As the dunes have moved horizontally, they are not physically aligned anymore in the DEMs, and their morphologic evolution cannot be recovered easily from differentiating the DEMs. In this particular setting the topographic evolution is best recovered from correlation of the DEMs. We measure that the fastest dunes have migrated by up to 1meter per Earth year as a result of lee front deposition and stoss slope erosion. DEMs differentiation, after correction for horizontal migration, provides and additional information on dune morphology evolution. Some dunes show a vertical growth over the 390 days spanning the 2 DEMs, but we cannot exclude a bias due to the acquisition parameters. Indeed, the images of the two stereo pairs were acquired 22 and 5 days apart, respectively. During that time, the ripples laying on the dune surface have probably migrated. As the DEMs extraction is based on feature tracking and parallax, this difference in DEMs elevation may be only, or in part, due to the ripple migration between the acquisition times that biased the actual dune elevations.
NASA Astrophysics Data System (ADS)
Palmieri, Benoit; Bresler, Yony; Wirtz, Denis; Grant, Martin
2015-07-01
We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed “bursts” where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.
Integrated Hydrogeological Model of the General Separations Area, Vol. 2, Rev. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
FLACH, GREGORYK.
1999-04-01
The 15 mi2 General Separations Area (GSA) contains more than 35 RCRA and CERCLA waste units, and is the focus of numerous ongoing and anticipated contaminant migration and remedial alternatives studies. To meet the analysis needs of GSA remediation programs, a groundwater flow model of the area based on the FACT code was developed. The model is consistent with detailed characterization and monitoring data through 1996. Model preprocessing has been automated so that future updates and modifications can be performed quickly and efficiently. Most remedial action scenarios can be explicitly simulated, including vertical recirculation wells, vertical barriers, surface caps, pumpingmore » wells at arbitrary locations, specified drawdown within well casings (instead of flowrate), and wetland impacts of remedial actions. The model has a fine scale vertical mesh and heterogeneous conductivity field, and includes the vadose zone. Therefore, the model is well suited to support subsequent contaminant transport simulations. the model can provide a common framework for analyzing groundwater flow, contaminant migration, and remedial alternatives across Environmental Restoration programs within the GSA.« less
Resolving ultrafast exciton migration in organic solids at the nanoscale.
Penwell, Samuel B; Ginsberg, Lucas D S; Noriega, Rodrigo; Ginsberg, Naomi S
2017-11-01
Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.
Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts
Furey, Nathan B.; Vincent, Stephen P.; Hinch, Scott G.; Welch, David W.
2015-01-01
Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004–2008 and 2010–2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20–40% of sockeye and 30–50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher proportion of steelhead smolts exhibiting this counterclockwise behavior may reflect a greater exposure to wind-altered currents for the more surface-oriented steelhead. Our results provide an empirical example of how movements can affect migration survival, for which examples remain rare in movement ecology, confirming that variability in movements themselves are an important part of the migratory process. PMID:26451837
A massively parallel adaptive scheme for melt migration in geodynamics computations
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Heister, Timo; Grove, Ryan
2016-04-01
Melt generation and migration are important processes for the evolution of the Earth's interior and impact the global convection of the mantle. While they have been the subject of numerous investigations, the typical time and length-scales of melt transport are vastly different from global mantle convection, which determines where melt is generated. This makes it difficult to study mantle convection and melt migration in a unified framework. In addition, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. We describe our extension of the community mantle convection code ASPECT that adds equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects, and it incorporates the individual compressibilities of the solid and the fluid phase. For this, we derive an accurate and stable Finite Element scheme that can be combined with adaptive mesh refinement. This is particularly advantageous for this type of problem, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high resolution, 3d, compressible, global mantle convection simulations coupled with melt migration. Furthermore, scalable iterative linear solvers are required to solve the large linear systems arising from the discretized system. Finally, we present benchmarks and scaling tests of our solver up to tens of thousands of cores, show the effectiveness of adaptive mesh refinement when applied to melt migration and compare the compressible and incompressible formulation. We then apply our software to large-scale 3d simulations of melting and melt transport in mantle plumes interacting with the lithosphere. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. The presented implementation is available online under an Open Source license together with an extensive documentation.
NASA Astrophysics Data System (ADS)
Corwin, D. L.; Scudiero, E.
2016-12-01
Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.
Balasubramanian, M; Spencer, A J; Short, S D; Watkins, K; Chrisopoulos, S; Brennan, D S
2016-06-01
Migrants occupy a significant proportion of the dental workforce in Australia. The objectives of this study were to assess the level of job satisfaction of employed migrant dentists in Australia, and to examine the association between various migrant dentist characteristics and job satisfaction. All migrant dentists resident in Australia were surveyed using a five-point Likert scale that measured specific aspects of job, career and satisfaction with area and type of practice. A total of 1022 migrant dentists responded to this study; 974 (95.4%) were employed. Responses for all scales were skewed towards strongly agree (scores ≥4). The overall scale varied by age group, marital status, years since arrival to Australia and specialist qualification (chi-square, p < 0.05). In a multivariate logistic regression model, there was a trend towards greater satisfaction amongst older age groups. Dentists who migrated through the examination pathway (mainly from low- and middle-income countries) had a lower probability of being satisfied with the area and type of practice (OR = 0.71; 0.51-0.98), compared with direct-entry migrant dentists (from high-income countries). The high level of job satisfaction of migrant dentists reflects well on their work-related experiences in Australia. The study offers policy suggestions towards support for younger dentists and examination pathway migrants, so they have appropriate skills and standards to fit the Australian health care environment. © 2016 Australian Dental Association.
Lines of evidence for environmentally driven human migration
NASA Astrophysics Data System (ADS)
Davis, K. F.; D'Odorico, P.
2012-12-01
International human migration is an important mechanism that affects, and is affected by, various human and natural systems. With the number of people living outside their countries of origin currently estimated at 214 million people and projected to potentially reach more than 400 million people by mid-century, the topic of international human movements presents possible advantages and pitfalls for both sending and receiving countries on multiple fronts (e.g. economic, environmental, political and cultural). Understanding how human migration interacts with human and natural systems is therefore essential in realizing a sustainable and balanced future. While the study of international migration has historically been motivated largely by economic and political interests, the issue of environmentally induced migration has become increasingly important in light of a rapidly changing climate in conjunction with increasing population pressure on many important resources. Particularly in terms of theoretical and conceptual discussions, environmentally induced human migration has been receiving increased attention in the literature. To date, few studies - many of which focus on internal (intra-national) or regional migration - have attempted to quantify the interactions of human migration and the environment, with little attention paid to the global scale as a result of varying regional factors and lack of sufficient data. Recently available global bilateral migration datasets have been developed that allow for a more comprehensive understanding of human movements between all countries. With these datasets, we seek to elucidate environmental drivers of human migration over the past half-century using a multi-pronged approach. First, using a recently developed universal radiation model, we examine human movements based solely on global population distribution. Next, by comparison of migration movements with selected economic, environmental and human welfare indicators, we determine additional factors that may help explain migration at global, regional, continental and community-based (i.e. maximized module) scales. Lastly, we explore the relationship between migration and natural disasters (e.g. drought, flooding) to identify instances in which the environment is a proximate cause of human displacement and in turn use this information to determine if a subsequent cascade of human movements appears in neighboring countries as a result of the elevated inflow of migrants from the initial country of interest. In this way, we seek to gain a fuller picture of the environmental factors driving the dynamics of modern human migration.
Reducing the uncertainty in the fidelity of seismic imaging results
NASA Astrophysics Data System (ADS)
Zhou, H. W.; Zou, Z.
2017-12-01
A key aspect in geoscientific inversion is quantifying the quality of the results. In seismic imaging, we must quantify the uncertainty of every imaging result based on field data, because data noise and methodology limitations may produce artifacts. Detection of artifacts is therefore an important aspect in uncertainty quantification in geoscientific inversion. Quantifying the uncertainty of seismic imaging solutions means assessing their fidelity, which defines the truthfulness of the imaged targets in terms of their resolution, position error and artifact. Key challenges to achieving the fidelity of seismic imaging include: (1) Difficulty to tell signal from artifact and noise; (2) Limitations in signal-to-noise ratio and seismic illumination; and (3) The multi-scale nature of the data space and model space. Most seismic imaging studies of the Earth's crust and mantle have employed inversion or modeling approaches. Though they are in opposite directions of mapping between the data space and model space, both inversion and modeling seek the best model to minimize the misfit in the data space, which unfortunately is not the output space. The fact that the selection and uncertainty of the output model are not judged in the output space has exacerbated the nonuniqueness problem for inversion and modeling. In contrast, the practice in exploration seismology has long established a two-fold approach of seismic imaging: Using velocity modeling building to establish the long-wavelength reference velocity models, and using seismic migration to map the short-wavelength reflectivity structures. Most interestingly, seismic migration maps the data into an output space called imaging space, where the output reflection images of the subsurface are formed based on an imaging condition. A good example is the reverse time migration, which seeks the reflectivity image as the best fit in the image space between the extrapolation of time-reversed waveform data and the prediction based on estimated velocity model and source parameters. I will illustrate the benefits of deciding the best output result in the output space for inversion, using examples from seismic imaging.
Enhanced bioremediation of BTEX using immobilized nutrients: Field demonstration and monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borden, R.C.; Goin, R.T.; Kao, C.M.
1996-12-01
A permeable barrier system was developed for controlling the migration of dissolved contaminant plumes in ground water. The barrier system consisted of a line of closely spaced wells installed perpendicular to the contaminant plume. Each well contained concrete briquets that released oxygen and nitrate at a controlled rate, enhancing the aerobic biodegradation of dissolved hydrocarbons in the downgradient aquifer. A full scale permeable barrier system was constructed at a gasoline-spill site near Leland, NC. Initially, increased dissolved oxygen and decreased benzene, toluene, ethylbenzene, and xylene isomer (BTEX) concentrations in the downgradient aquifer indicated that oxygen released from the remediation wellsmore » was enhancing biodegradation. Field tracer tests and soil analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells was being clogged by precipitation from iron minerals.« less
The alignment of molecular cloud magnetic fields with the spiral arms in M33.
Li, Hua-bai; Henning, Thomas
2011-11-16
The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds. ©2011 Macmillan Publishers Limited. All rights reserved
NASA Astrophysics Data System (ADS)
Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.
2017-12-01
Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-02-01
Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far-field data affected by large amounts of random noise are similar to the analytical results derived in this study, and they provide a direction for future studies.
Assessment scale of risk for surgical positioning injuries 1
Lopes, Camila Mendonça de Moraes; Haas, Vanderlei José; Dantas, Rosana Aparecida Spadoti; de Oliveira, Cheila Gonçalves; Galvão, Cristina Maria
2016-01-01
ABSTRACT Objective: to build and validate a scale to assess the risk of surgical positioning injuries in adult patients. Method: methodological research, conducted in two phases: construction and face and content validation of the scale and field research, involving 115 patients. Results: the Risk Assessment Scale for the Development of Injuries due to Surgical Positioning contains seven items, each of which presents five subitems. The scale score ranges between seven and 35 points in which, the higher the score, the higher the patient's risk. The Content Validity Index of the scale corresponded to 0.88. The application of Student's t-test for equality of means revealed the concurrent criterion validity between the scores on the Braden scale and the constructed scale. To assess the predictive criterion validity, the association was tested between the presence of pain deriving from surgical positioning and the development of pressure ulcer, using the score on the Risk Assessment Scale for the Development of Injuries due to Surgical Positioning (p<0.001). The interrater reliability was verified using the intraclass correlation coefficient, equal to 0.99 (p<0.001). Conclusion: the scale is a valid and reliable tool, but further research is needed to assess its use in clinical practice. PMID:27579925
Chou, Kee-Lee
2009-04-01
Although it is a well-known fact that migration is a risk factor contributing to psychopathology, little is known about how pre-migration factors may lead to depression among migrants. The present study examined the relationship between poorly planned migration and depressive symptoms, and evaluated the moderating roles of optimism, sense of control, and social support in the relationship between pre-migration planning and depression among new immigrants from Mainland China to Hong Kong. A representative sample of 449 migrants aged 18 and above were interviewed in 2007 using a face-to-face format. The 20-item Center for Epidemiological Studies of Depression (CES-D) scale was used to measure depressive symptoms, and a series of questions regarding socio-demographic characteristics (age, gender, marital status, education, and household income), optimism, sense of control, and social support were also included. A total of 26.5% of our sample scored 16 or above on the CES-D scale, which indicated a clinically significant case of depression. Poor migration planning was significantly related to CES-D scores after adjusting for all socio-demographic variables and three psycho-social factors. In addition, optimism, sense of control, and social support were also significantly related to the CES-D score. It was also found that social support reduced the harmful impact of poor migration planning on depressive symptoms. New immigrants to Hong Kong from Mainland China are at risk for depressive symptoms, especially those who are not well prepared for migration; therefore, prevention measures, particularly strengthening their social support in Hong Kong, should be considered seriously by policy makers.
Application of lab derived kinetic biodegradation parameters at the field scale
NASA Astrophysics Data System (ADS)
Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.
2003-04-01
Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way, there are no scale relationships to be found that link the laboratory and the field scale, accurately incorporating the additional processes, phenomena and characteristics, such as a) advective and dispersive transport of one or more contaminants, b) advective and dispersive transport and availability of electron acceptors, c) mass transfer limitations and d) spatial heterogeneities, at the larger scale and applying well defined lab scale parameters should accurately describe field scale processes.
Observational hints of radial migration in disc galaxies from CALIFA
NASA Astrophysics Data System (ADS)
Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.; Califa Team
2017-07-01
Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However, in light of these results we cannot further quantify the importance of radial migration in shaping spiral galaxies, and other processes, such as recent star formation or satellite accretion, might play a role. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A4
Solano-Acosta, W.; Mastalerz, Maria; Schimmelmann, A.
2007-01-01
Cleats and fractures in Pennsylvanian coals in southwestern Indiana were described, statistically analyzed, and subsequently interpreted in terms of their origin, relation to geologic lineaments, and significance for coal permeability and coalbed gas generation and storage. These cleats can be interpreted as the result of superimposed endogenic and exogenic processes. Endogenic processes are associated with coalification (i.e., matrix dehydration and shrinkage), while exogenic processes are mainly associated with larger-scale phenomena, such as tectonic stress. At least two distinct generations of cleats were identified on the basis of field reconnaissance and microscopic study: a first generation of cleats that developed early on during coalification and a second generation that cuts through the previous one at an angle that mimics the orientation of the present-day stress field. The observed parallelism between early-formed cleats and mapped lineaments suggests a well-established tectonic control during early cleat formation. Authigenic minerals filling early cleats represent the vestiges of once open hydrologic regimes. The second generation of cleats is characterized by less prominent features (i.e., smaller apertures) with a much less pronounced occurrence of authigenic mineralization. Our findings suggest a multistage development of cleats that resulted from tectonic stress regimes that changed orientation during coalification and basin evolution. The coals studied are characterized by a macrocleat distribution similar to that of well-developed coalbed methane basins (e.g., Black Warrior Basin, Alabama). Scatter plots and regression analyses of meso- and microcleats reveal a power-law distribution between spacing and cleat aperture. The same distribution was observed for fractures at microscopic scale. Our observations suggest that microcleats enhance permeability by providing additional paths for migration of gas out of the coal matrix, in addition to providing access for methanogenic bacteria. The abundance, distribution, and orientation of cleats control coal fabric and are crucial features in all stages of coalbed gas operations (i.e., exploration and production). Understanding coal fabric is important for coal gas exploration as it may be related to groundwater migration and the occurrence of methanogenic bacteria, prerequisite to biogenic gas accumulations. Likewise, the distribution of cleats in coal also determines pathways for migration and accumulation of thermogenic gas generated during coalification. ?? 2007 Elsevier B.V. All rights reserved.
Downstream fish passage guide walls: A hydraulic scale model analysis
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2018-01-01
Partial-depth guide walls are used to improve passage efficiency and reduce the delay of out-migrating anadromous fish species by guiding fish to a bypass route (i.e. weir, pipe, sluice gate) that circumvents the turbine intakes, where survival is usually lower. Evaluation and monitoring studies, however, indicate a high propensity for some fish to pass underneath, rather than along, the guide walls, compromising their effectiveness. In the present study we evaluated a range of guide wall structures to identify where/if the flow field shifts from sweeping (i.e. flow direction primarily along the wall and towards the bypass) to downward-dominant. Many migratory fish species, particularly juveniles, are known to drift with the flow and/or exhibit rheotactic behaviour during their migration. When these behaviours are present, fish follow the path of the flow field. Hence, maintaining a strong sweeping velocity in relation to the downward velocity along a guide wall is essential to successful fish guidance. Nine experiments were conducted to measure the three-dimensional velocity components upstream of a scale model guide wall set at a wide range of depths and angles to flow. Results demonstrated how each guide wall configuration affected the three-dimensional velocity components, and hence the downward and sweeping velocity, along the full length of the guide wall. In general, the velocities produced in the scale model were sweeping dominant near the water surface and either downward dominant or close to the transitional depth near the bottom of the guide wall. The primary exception to this shift from sweeping do downward flow was for the minimum guide wall angle tested in this study (15°). At 15° the flow pattern was fully sweeping dominant for every cross-section, indicating that a guide wall with a relatively small angle may be more likely to produce conditions favorable to efficient guidance. A critical next step is to evaluate the behaviour of migratory fish as they approach and swim along a guide wall in a controlled laboratory environment.
Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.
2009-01-01
Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.
Focus on environmental risks and migration: causes and consequences
NASA Astrophysics Data System (ADS)
Adger, W. Neil; Arnell, Nigel W.; Black, Richard; Dercon, Stefan; Geddes, Andrew; Thomas, David S. G.
2015-06-01
Environmental change poses risks to societies, including disrupting social and economic systems such as migration. At the same time, migration is an effective adaptation to environmental and other risks. We review novel science on interactions between migration, environmental risks and climate change. We highlight emergent findings, including how dominant flows of rural to urban migration mean that populations are exposed to new risks within destination areas and the requirement for urban sustainability. We highlight the issue of lack of mobility as a major issue limiting the effectiveness of migration as an adaptation strategy and leading to potentially trapped populations. The paper presents scenarios of future migration that show both displacement and trapped populations over the incoming decades. Papers in the special issue bring new insights from demography, human geography, political science and environmental science to this emerging field.