Karin L. Riley; Crystal Stonesifer; Haiganoush Preisler; Dave Calkin
2014-01-01
Can fire potential forecasts assist with pre-positioning of fire suppression resources, which could result in a cost savings to the United States government? Here, we present a preliminary assessment of the 7-Day Fire Potential Outlook forecasts made by the Predictive Services program. We utilized historical fire occurrence data and archived forecasts to assess how...
W. Matt Jolly; Patrick H. Freeborn
2017-01-01
Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better...
Comparing fire severity models from post-fire and pre/post-fire differenced imagery
USDA-ARS?s Scientific Manuscript database
Wildland fires are common in rangelands worldwide. The potential for high severity fires to affect long-term changes in rangelands is considerable, and for this reason assessing fire severity shortly after the fire is critical. Such assessments are typically carried out following Burned Area Emergen...
Elizabeth E. Hoy; Nancy H.F. French; Merritt R. Turetsky; Simon N. Trigg; Eric S. Kasischke
2008-01-01
Satellite remotely sensed data of fire disturbance offers important information; however, current methods to study fire severity may need modifications for boreal regions. We assessed the potential of the differenced Normalized Burn Ratio (dNBR) and other spectroscopic indices and image transforms derived from Landsat TM/ETM+ data for mapping fire severity in Alaskan...
Mapping severe fire potential across the contiguous United States
Brett H. Davis
2016-01-01
The Fire Severity Mapping System (FIRESEV) project is an effort to provide critical information and tools to fire managers that enhance their ability to assess potential ecological effects of wildland fire. A major component of FIRESEV is the development of a Severe Fire Potential Map (SFPM), a geographic dataset covering the contiguous United States (CONUS) that...
A GIS-based approach for comparative analysis of potential fire risk assessment
NASA Astrophysics Data System (ADS)
Sun, Ying; Hu, Lieqiu; Liu, Huiping
2007-06-01
Urban fires are one of the most important sources of property loss and human casualty and therefore it is necessary to assess the potential fire risk with consideration of urban community safety. Two evaluation models are proposed, both of which are integrated with GIS. One is the single factor model concerning the accessibility of fire passage and the other is grey clustering approach based on the multifactor system. In the latter model, fourteen factors are introduced and divided into four categories involving security management, evacuation facility, construction resistance and fire fighting capability. A case study on campus of Beijing Normal University is presented to express the potential risk assessment models in details. A comparative analysis of the two models is carried out to validate the accuracy. The results are approximately consistent with each other. Moreover, modeling with GIS promotes the efficiency the potential risk assessment.
Brandon M. Collins; Heather A. Kramer; Kurt Menning; Colin Dillingham; David Saah; Peter A. Stine; Scott L. Stephens
2013-01-01
We built on previous work by performing a more in-depth examination of a completed landscape fuel treatment network. Our specific objectives were: (1) model hazardous fire potential with and without the treatment network, (2) project hazardous fire potential over several decades to assess fuel treatment network longevity, and (3) assess fuel treatment effectiveness and...
Assessing European wild fire vulnerability
NASA Astrophysics Data System (ADS)
Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.
2012-04-01
Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However, due to limitations in data availability, this approach of environmental accounting is not fully implemented yet. Keywords: fire vulnerability, damage assessment, land cover restoration, long-term fire risk, European scale
Assessing crown fire potential by linking models of surface and crown fire behavior
Joe H. Scott; Elizabeth D. Reinhardt
2001-01-01
Fire managers are increasingly concerned about the threat of crown fires, yet only now are quantitative methods for assessing crown fire hazard being developed. Links among existing mathematical models of fire behavior are used to develop two indices of crown fire hazard-the Torching Index and Crowning Index. These indices can be used to ordinate different forest...
Remote sensing techniques to assess active fire characteristics and post-fire effects
Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson
2006-01-01
Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...
David J. Ganz; David S. Saah; Klaus Barber; Mark Nechodom
2007-01-01
The fire behavior modeling described here, conducted as part of the Biomass to Energy (B2E) life cycle assessment, is funded by the California Energy Commission to evaluate the potential net benefits associated with treating and utilizing forest biomass. The B2E project facilitates economic, environmental, energy, and effectiveness assessments of the potential public...
Paul Sopko; Larry Bradshaw; Matt Jolly
2016-01-01
The Wildland Fire Assessment System (WFAS, www.wfas.net) is a one-stop-shop giving wildland fire managers the ability to assess fire potential ranging in scale from national to regional and temporally from 1 to 5 days. Each day, broad-area maps are produced from fire weather station and lightning location networks. Three products are created using 24 hour...
Integrating climatic and fuels information into National Fire Risk Decision Support Tools
W. Cooke; V. Anantharaj; C. Wax; J. Choi; K. Grala; M. Jolly; G.P. Dixon; J. Dyer; D.L. Evans; G.B. Goodrich
2007-01-01
The Wildland Fire Assessment System (WFAS) is a component of the U.S. Department of Agriculture, Forest Service Decision Support Systems (DSS) that support fire potential modeling. Fire potential models for Mississippi and for Eastern fire environments have been developed as part of a National Aeronautic and Space Agency-funded study aimed at demonstrating the utility...
FIREMON: Fire effects monitoring and inventory system
Duncan C. Lutes; Robert E. Keane; John F. Caratti; Carl H. Key; Nathan C. Benson; Steve Sutherland; Larry J. Gangi
2006-01-01
Monitoring and inventory to assess the effects of wildland fire is critical for 1) documenting fire effects, 2) assessing ecosystem damage and benefit, 3) evaluating the success or failure of a burn, and 4) appraising the potential for future treatments. However, monitoring fire effects is often difficult because data collection requires abundant funds, resources, and...
Assessing wildland fire risk transmission to communities in northern Spain
Fermín J. Alcasena; Michele Salis; Alan A. Ager; Rafael Castell; Cristina Vega-García
2017-01-01
We assessed potential economic losses and transmission to residential houses from wildland fires in a rural area of central Navarra (Spain). Expected losses were quantified at the individual structure level (n = 306) in 14 rural communities by combining fire model predictions of burn probability and fire intensity with susceptibility functions derived from expert...
Roger D. Fight; R. James Barbour; Glenn Christensen; Guy L. Pinjuv; Rao V. Nagubadi
2004-01-01
This work was undertaken under a joint fire science project "Assessing the need, costs, and potential benefits of prescribed fire and mechanical treatments to reduce fire hazard." This paper compares the future mix of timber projects under two treatment scenarios for New Mexico.We developed and demonstrated an analytical method that uses readily available...
R. James Barbour; Roger D. Fight; Glenn A. Christensen; Guy L. Pinjuv; Rao V. Nagubadi
2004-01-01
This work was undertaken under a joint fire science project "Assessing the need, costs, and potential benefits of prescribed fire and mechanical treatments to reduce fire hazard." This paper compares the future mix of timber products under two treatment scenarios for the state of Montana. We developed and demonstrated an analytical method that uses readily...
Assessing fire impacts on the carbon stability of fire-tolerant forests.
Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina
2017-12-01
The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes. © 2017 by the Ecological Society of America.
RAPID POST-FIRE HYDROLOGIC WATERSHED ASSESSMENT USING THE AGWA GIS-BASED HYDROLOGIC MODELING TOOL
Rapid post-fire watershed assessment to identify potential trouble spots for erosion and flooding can potentially aid land managers and Burned Area Emergency Rehabilitation (BAER) teams in deploying mitigation and rehabilitation resources.
These decisions are inherently co...
Assessing the Fire Risk for a Historic Hangar
NASA Technical Reports Server (NTRS)
Datta, Koushik; Morrison, Richard S.
2010-01-01
NASA Ames Research Center (ARC) is evaluating options of reuse of its historic Hangar 1. As a part of this evaluation, a qualitative fire risk assessment study was performed to evaluate the potential threat of combustion of the historic hangar. The study focused on the fire risk trade-off of either installing or not installing a Special Hazard Fire Suppression System in the Hangar 1 deck areas. The assessment methodology was useful in discussing the important issues among various groups within the Center. Once the methodology was deemed acceptable, the results were assessed. The results showed that the risk remained in the same risk category, whether Hangar 1 does or does not have a Special Hazard Fire Suppression System. Note that the methodology assessed the risk to Hangar 1 and not the risk to an aircraft in the hangar. If one had a high value aircraft, the aircraft risk analysis could potentially show a different result. The assessed risk results were then communicated to management and other stakeholders.
Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska
NASA Astrophysics Data System (ADS)
French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.
2014-12-01
An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency of high fire weather danger. While the Alaska Large Fire Database represents the best data available for the Alaskan Arctic, and is superior to many other regions around the world, particularly Arctic regions, these fire records need to be used with some caution due to the mixed origin and minimal validation of the data; this is reviewed in the presentation.
Forest fuels and landscape-level fire risk assessment of the ozark highlands, Missouri
Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey
2007-01-01
In this paper we describe a fire risk assessment of the Ozark Highlands. Fire risk is rated using information on ignition potential and fuel hazard. Fuel loading, a component of the fire hazard module, is weakly predicted (r2 = 0.19) by site- and landscape-level attributes. Fuel loading does not significantly differ between Ozark ecological...
Assessing the risk of ignition in the Russian far east within a modeling framework of fire threat.
Loboda, Tatiana V; Csiszar, Ivan A
2007-04-01
The forests of high biological importance in the Russian Far East (RFE) have been experiencing increasing pressure from growing demands for natural resources under the changing economy of post-Soviet Russia. This pressure is further amplified by the rising threat of large and catastrophic fire occurrence, which threatens both the resources and the economic potential of the region. In this paper we introduce a conceptual Fire Threat Model (FTM) and use it to provide quantitative assessment of the risk of ignition in the Russian Far East. The remotely sensed data driven FTM is aimed at evaluating potential wildland fire occurrence and its impact and recovery potential for a given resource. This model is intended for use by resource managers to assist in assessing current levels of fire threat to a given resource, projecting the changes in fire threat under changing climate and land use, and evaluating the efficiency of various management approaches aimed at minimizing the fire impact. Risk of ignition (one of the major uncertainties within fire threat modeling) was analyzed using the MODIS active fire product. The risk of ignition in the RFE is shown to be highly variable in spatial and temporal domains. However, the number of ignition points is not directly proportional to the amount of fire occurrence in the area. Fire ignitions in the RFE are strongly linked to anthropogenic activity (transportation routes, settlements, and land use). An increase in the number of fire ignitions during summer months could be attributed to (1) disruption of the summer monsoons and subsequent changes in fire weather and (2) an increase in natural sources of fire ignitions.
Alan A. Ager; Nicole M. Vaillant; Mark A. Finney
2011-01-01
Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...
Satellite-based Assessment of Climate Controls on US Burned Area
NASA Technical Reports Server (NTRS)
Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.
2012-01-01
Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.
Characterizing crown fuel distribution for conifers in the interior western United States
Seth Ex; Frederick W. Smith; Tara Keyser
2015-01-01
Canopy fire hazard evaluation is essential for prioritizing fuel treatments and for assessing potential risk to firefighters during suppression activities. Fire hazard is usually expressed as predicted potential fire behavior, which is sensitive to the methodology used to quantitatively describe fuel profiles: methodologies that assume that fuel is distributed...
Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential
NASA Astrophysics Data System (ADS)
İnan, M.; Bilici, E.; Akay, A. E.
2017-11-01
Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.
NASA Astrophysics Data System (ADS)
Cioca, Ionel-Lucian; Moraru, Roland Iosif
2012-10-01
In order to meet statutory requirements concerning the workers health and safety, it is necessary for mine managers within Valea Jiului coal basin in Romania to address the potential for underground fires and explosions and their impact on the workforce and the mine ventilation systems. Highlighting the need for a unified and systematic approach of the specific risks, the authors are developing a general framework for fire/explosion risk assessment in gassy mines, based on the quantification of the likelihood of occurrence and gravity of the consequences of such undesired events and employing Root-Cause analysis method. It is emphasized that even a small fire should be regarded as being a major hazard from the point of view of explosion initiation, should a combustible atmosphere arise. The developed methodology, for the assessment of underground fire and explosion risks, is based on the known underground explosion hazards, fire engineering principles and fire test criteria for potentially combustible materials employed in mines.
Assessing predictive services' 7-day fire potential outlook
Karin Riley; Crystal Stonesifer; Dave Calkin; Haiganoush Preisler
2015-01-01
The Predictive Services program was created under the National Wildfire Coordinating Group in 2001 to address the need for long- and short-term decision support information for fire managers and operations personnel. The primary mission of Predictive Services is to integrate fire weather, fire danger, and resource availability to enable strategic fire suppression...
Craig, Joyce A; Creegan, Shelagh; Tait, Martin; Dolan, Donna
2015-04-14
The Scottish Fire and Rescue Service and NHS Tayside piloted partnership working. A Community Fire Safety Link Worker provided Risk Assessments to adults, identified by community health teams, at high risk of fires, with the aim of reducing fires. An existing evaluation shows the Service developed a culture of 'high trust' between partners and had high client satisfaction. This paper reports on an economic evaluation of the costs and benefits of the Link Worker role. An economic evaluation of the costs and benefits of the Link Worker role was undertaken. Changes in the Risk Assessment score following delivery of the Service were used to estimate the potential fires avoided. These were valued using a national cost of a fire. The estimated cost of delivering the Service was deducted from these savings. The pilot was estimated to save 4.4 fires, equivalent to £286 per client. The estimated cost of delivering the Service was £55 per client, giving net savings of £231 per client. The pilot was cost-saving under all scenarios, with results sensitive to the probability of a fire. We believe this is the first evaluation of Fire Safety Risk Assessments. Partnership working, delivering joint Risk Assessments in the homes of people at high risk of fire, is modelled to be cost saving. Uncertainties in data and small sample are key limitations. Further research is required into the ex ante risk of fire by risk category. Despite these limitations, potential savings identified in this study supports greater adoption of this partnership initiative.
Oxygen Compatibility Assessment of Components and Systems
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel; Sparks, Kyle
2010-01-01
Fire hazards are inherent in oxygen systems and a storied history of fires in rocket engine propulsion components exists. To detect and mitigate these fire hazards requires careful, detailed, and thorough analyses applied during the design process. The oxygen compatibility assessment (OCA) process designed by NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) can be used to determine the presence of fire hazards in oxygen systems and the likelihood of a fire. This process may be used as both a design guide and during the approval process to ensure proper design features and material selection. The procedure for performing an OCA is a structured step-by-step process to determine the most severe operating conditions; assess the flammability of the system materials at the use conditions; evaluate the presence and efficacy of ignition mechanisms; assess the potential for a fire to breach the system; and determine the reaction effect (the potential loss of life, mission, and system functionality as the result of a fire). This process should be performed for each component in a system. The results of each component assessment, and the overall system assessment, should be recorded in a report that can be used in the short term to communicate hazards and their mitigation and to aid in system/component development and, in the long term, to solve anomalies that occur during engine testing and operation.
Practical tools for assessing potential crown fire behavior and canopy fuel characteristics
Martin E. Alexander; Miguel G. Cruz
2015-01-01
This presentation recapitulates the main points made at a technology and information transfer workshop held in advance of the conference that provided overviews of two software applications, developed by the authors, for use in assessing crown fire behavior and canopy fuel characteristics. These are the Crown Fire Initiation and Spread (CFIS) software system and the...
Evaluating the ecological benefits of wildfire by integrating fire and ecosystem simulation models
Robert E. Keane; Eva Karau
2010-01-01
Fire managers are now realizing that wildfires can be beneficial because they can reduce hazardous fuels and restore fire-dominated ecosystems. A software tool that assesses potential beneficial and detrimental ecological effects from wildfire would be helpful to fire management. This paper presents a simulation platform called FLEAT (Fire and Landscape Ecology...
Red imported fire ant impacts on upland arthropods in Southern Mississippi
Epperson, D.M.; Allen, Craig R.
2010-01-01
Red imported fire ants (Solenopsis invicta) have negative impacts on a broad array of invertebrate species. We investigated the impacts of fire ants on the upland arthropod community on 20???40 ha study sites in southern Mississippi. Study sites were sampled from 19972000 before, during, and after fire ant bait treatments to reduce fire ant populations. Fire ant abundance was assessed with bait transects on all sites, and fire ant population indices were estimated on a subset of study sites. Species richness and diversity of other ant species was also assessed from bait transects. Insect biomass and diversity was determined from light trap samples. Following treatments, fire ant abundance and population indices were significantly reduced, and ant species diversity and richness were greater on treated sites. Arthropod biomass, species diversity and species richness estimated from light trap samples were negatively correlated with fire ant abundance, but there were no observable treatment effects. Solenopsis invicta has the potential to negatively impact native arthropod communities resulting in a potential loss of both species and function.
Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...
Back to Basics: Preventing Surgical Fires.
Spruce, Lisa
2016-09-01
When fires occur in the OR, they are devastating and potentially fatal to both patients and health care workers. Fires can be prevented by understanding the fire triangle and methods of reducing fire risk, conducting fire risk assessments, and knowing how to respond if a fire occurs. This Back to Basics article addresses the basics of fire prevention and the steps that can be taken to prevent fires from occurring. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog
2013-01-01
Past studies have established measures of co-firing potential at varying spatial scales to assess opportunities for renewable energy generation from woody biomass. This study estimated physical availability, within ecological and public policy constraints, and associated harvesting and delivery costs of woody biomass for co-firing in selected power plants of the...
The potential impact of regional climate change on fire weather in the United States
Ying Tang; Shiyuan Zhong; Lifeng Luo; Xindi Bian; Warren E. Heilman; Julie. Winkler
2015-01-01
Climate change is expected to alter the frequency and severity of atmospheric conditions conducive for wildfires. In this study, we assess potential changes in fire weather conditions for the contiguous United States using the Haines Index (HI), a fire weather index that has been employed operationally to detect atmospheric conditions favorable for large and erratic...
Structure Ignition Assessment can help reduce fire damages in the W-UI
Jack Cohen; Jim Saveland
1997-01-01
The wildland-urban interface (W-UI) refers to residential areas surrounded by or adjacent to wildland areas. In recent years, significant W-UI residential fire losses have occurred nationwide in the United States that have focused attention on the principal W-UI problem - losses of life and property to fire. To assess potential ignitions, SIAM uses an analytical...
Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.
Toward improving our application and understanding of crown fire behavior
Martin E. Alexander; Miguel G. Cruz; Nicole M. Vaillant
2014-01-01
The suggestion has been made that most wildland fire operations personnel base their expectations of how a fire will behave largely on experience and, to a lesser extent, on guides to predicting fire behavior (Burrows 1984). Experienced judgment is certainly needed in any assessment of wildland fire potential but it does have its limitations. The same can be said for...
Assessment of the FARSITE model for predicting fire behavior in the Southern Appalachian Mountains
Ross J. Phillips; Thomas A. Waldrop; Dean M. Simon
2006-01-01
Fuel reduction treatments are necessary in fire-adapted ecosystems where fire has been excluded for decades and the potential for severe wildfire is high. Using the Fire Area Simulator, FARSITE, we examined the spatial and temporal effects of these treatments on fire behavior in the Southern Appalachian Mountains. With measurements from temperature sensors during...
Venn-Watson, Stephanie; Smith, Cynthia R; Jensen, Eric D; Rowles, Teri
2013-08-01
Firestorms negatively affected air quality throughout San Diego County during 2003 and 2007, including the San Diego Bay, which houses the Navy's bottlenose dolphins (Tursiops truncatus). To assess the potential impact of the 2003 and 2007 fires on dolphin health. Hematology and serum chemistry values were evaluated retrospectively among Navy dolphins the year and month before; during; and the month after the 2003 and 2007 fires. Both 2003 and 2007 fires were associated with lower calcium either during or the month post-fire compared to the control periods. During and the month following the 2003 fire, dolphins had higher serum carbon dioxide compared to the control periods. Dolphins during and the month following the 2007 fire had lower absolute or percent neutrophils and higher chloride. The 2007 fire was also associated with increased percent eosinophils during the fire and higher percent monocytes and bilirubin the month following the fire compared to the control periods. Consistent with what has been previously reported in humans and other animals, this study supports that fire smoke inhalation may have mild effects on dolphin physiology, including calcium homeostasis, lung function and immune response.
NASA Astrophysics Data System (ADS)
Kennedy, R. S.
2010-12-01
Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.
Potential Operating Room Fire Hazard of Bone Cement.
Sibia, Udai S; Connors, Kevin; Dyckman, Sarah; Zahiri, Hamid R; George, Ivan; Park, Adrian E; MacDonald, James H
Approximately 600 cases of operating room (OR) fires are reported annually. Despite extensive fire safety education and training, complete elimination of OR fires still has not been achieved. Each fire requires an ignition source, a fuel source, and an oxidizer. In this case report, we describe the potential fire hazard of bone cement in the OR. A total knee arthroplasty was performed with a standard medial parapatellar arthrotomy. Tourniquet control was used. After bone cement was applied to the prepared tibial surface, the surgeon used an electrocautery device to resect residual lateral meniscus tissue-and started a fire in the operative field. The surgeon suffocated the fire with a dry towel and prevented injury to the patient. We performed a PubMed search with a cross-reference search for relevant papers and found no case reports outlining bone cement as a potential fire hazard in the OR. To our knowledge, this is the first case report identifying bone cement as a fire hazard. OR fires related to bone cement can be eliminated by correctly assessing the setting time of the cement and avoiding application sites during electrocautery.
Christopher D. O' Connor; David E. Calkin; Matthew P. Thompson
2017-01-01
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions,...
Predicting Fire Severity and Hydrogeomorphic Effects for Wildland Fire Decision Support
NASA Astrophysics Data System (ADS)
Hyde, K.; Woods, S. W.; Calkin, D.; Ryan, K.; Keane, R.
2007-12-01
The Wildland Fire Decision Support System (WFDSS) uses the Fire Spread Probability (FSPro) model to predict the spatial extent of fire, and to assess values-at-risk within probable spread zones. This information is used to support Appropriate Management Response (AMR), which involves decision making regarding fire-fighter deployment, fire suppression requirements, and identification of areas where fire may be safely permitted to take its course. Current WFDSS assessments are generally limited to a binary prediction of whether or not a fire will reach a given location and an assessment of the infrastructure which may be damaged or destroyed by fire. However, an emerging challenge is to expand the capabilities of WFDSS so that it also estimates the probable fire severity, and hence the effect on soil, vegetation and on hydrologic and geomorphic processes such as runoff and soil erosion. We present a conceptual framework within which derivatives of predictive fire modelling are used to predict impacts upon vegetation and soil, from which fire severity and probable post-fire watershed response can be inferred, before a fire actually occurs. Fire severity predictions are validated using Burned Area Reflectance Classification imagery. Recent tests indicate that satellite derived BARC images are a simple and effective means to predict post-fire erosion response based on relative vegetation disturbance. A fire severity prediction which reasonably approximates a BARC image may therefore be used to assess post-fire erosion and flood potential before fire reaches an area. This information may provide a new avenue of reliable support for fire management decisions.
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.
Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example
Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453
Mapping the potential for high severity wildfire in the western United States
Greg Dillon; Penny Morgan; Zack Holden
2011-01-01
Each year, large areas are burned in wildfires across the Western United States. Assessing the ecological effects of these fires is crucial to effective postfire management. This requires accurate, efficient, and economical methods to assess the severity of fires at broad landscape scales (Brennan and Hardwick 1999; Parsons and others 2010). While postfire assessment...
Rocky Mountain Research Station USDA Forest Service
2005-01-01
The Guide to Fuel Treatments analyzes a range of potential silvicultural thinnings and surface fuel treatments for 25 representative dry-forest stands in the Western United States. The guide provides quantitative guidelines and visualization for treatment based on scientific principles identified for reducing potential crown fires. This fact sheet identifies the...
Modeling fire occurrence as a function of landscape
NASA Astrophysics Data System (ADS)
Loboda, T. V.; Carroll, M.; DiMiceli, C.
2011-12-01
Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of area impacted by fire from the total available area within a given value of the Fire Occurrence Index (FOI) increased from 9.e-06 at FOI < 3 to 28.e-06 at 25 < FOI <= 28. Additionally, the model has revealed a new important relationship between fire occurrence, anthropogenic activity, and fire weather. Data analysis has demonstrated that human activity can alter the expected weather/fire occurrence relationships and result in considerable modifications of fire regimes contrary to the assumed ecological parameters. Specifically, between 2001 and 2009 over 50% of total fire impacted area burned during the low fire danger conditions (Canadian Fire Weather Index < 5). These findings and the FOM capabilities offer a new theoretical construct and an advanced tool for assessing the potential impacts of climate changes on fire regimes, particularly within landscapes which are impacted strongly by human activities. Future development of the FOM will focus on ingesting and internal downscaling of climate variables produced by General or Regional Circulation Models to develop scenarios of potential future change in fire occurrence under the influence of projected climate change at the appropriate regional or landscape scales.
Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene
2016-03-01
A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Forecasting distribution of numbers of large fires
Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.
2014-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.
DOT National Transportation Integrated Search
1982-12-01
This report presents the results of an assessment of the benefits and costs associated with the adoption of Recommended Fire Safety Practices for Rail Transit Materials Selection for rapid rail transit and light rail transit vehicles. The potential b...
Survival analysis and classification methods for forest fire size
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497
Survival analysis and classification methods for forest fire size.
Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.
Carl E. Fiedler; Charles E. Keegan; Christopher W. Woodall; Todd A. Morgan
2004-01-01
Estimates of crown fire hazard are presented for existing forest conditions in Montana by density class, structural class, forest type, and landownership. Three hazard reduction treatments were evaluated for their effectiveness in treating historically fire-adapted forests (ponderosa pine (Pinus ponderosa Dougl. ex Laws.), Douglas-fir (...
R. B. Foltz; N. S. Wagenbrenner
2010-01-01
The assessment teams who make post-fire stabilization and treatment decisions are under pressure to employ more effective and economic post-fire treatments, as wild fire activity and severity has increased in recent years across the western United States. Use of forest-native wood-based materials for hillslope mulching has been on the rise due to potential...
Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures
NASA Astrophysics Data System (ADS)
Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.
2018-03-01
Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.
Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States
Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar
2012-01-01
Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...
Development and mapping of fuel characteristics and associated fire potentials for South America
M. Lucrecia Pettinari; Roger D. Ottmar; Susan J. Prichard; Anne G. Andreu; Emilio Chuvieco
2014-01-01
The characteristics and spatial distribution of fuels are critical for assessing fire hazard, fuel consumption, greenhouse gas emissions and other fire effects. However, fuel maps are difficult to generate and update, because many regions of the world lack fuel descriptions or adequate mapped vegetation attributes to assign these fuelbeds spatially across the landscape...
Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods
Engle, M.A.; Radke, L.F.; Heffern, E.L.; O'Keefe, J.M.K.; Smeltzer, C.D.; Hower, J.C.; Hower, J.M.; Prakash, A.; Kolker, A.; Eatwell, R.J.; ter, Schure A.; Queen, G.; Aggen, K.L.; Stracher, G.B.; Henke, K.R.; Olea, R.A.; Roman-Colon, Y.
2011-01-01
Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7-4.4td-1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3-9.5td-1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation. ?? 2011.
Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods
Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara
2011-01-01
Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.
Fire Effects at the Tundra-Boreal Ecotone in Interior Alaska
NASA Astrophysics Data System (ADS)
Howard, B. K.; Mack, M. C.; Johnstone, J. F.; Walker, X. J.; Roland, C.
2016-12-01
Climate warming in northern latitudes has led to an intensification of disturbance by wildfire. Little is known about the effects of fire on tundra vegetation. Changes in vegetation composition could have important implications for carbon cycling , and may feedback positively or negatively to future climate change (Randerson et al., 2006). Our study utilizes extensive pre-fire ecological data collected by the National Park Service (NPS) Inventory and Monitoring (I&M) program to assess the prefire conditions important in driving successional pathways within Denali National Park and Preserve. In 2013, the East Toklat fire burned 30,000 acres of tussock tundra and mixed white and black spruce forest at a high severity, which encompassed 50 NPS plots that were originally monitored in 2003. Our sampling occurred the summer of 2016 following the same NPS protocols to assess post-fire vegetation composition. In addition, we conducted a seeding experiment using locally collected white and black spruce seed to assess natural and potential tree regeneration in unburned and post fire environments. Seed traps were established along our transects to assess seed rain. A multivariate approach will be used to assess post-fire community dynamics and future field seasons will address tree germination and survival rates. These data will then be coupled with pre and post-fire ecological data to parse out important factors driving secondary succession.
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2010-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 La Brea and Jesusita fires in Santa Barbara County, the Guiberson fire in Ventura County, the Morris fire in Los Angeles County, the Sheep, Oak Glen, and Pendleton fires in San Bernardino County, and the Cottonwood fire in Riverside County, southern California. Statistical-empirical models developed to analyze postfire debris flows are used to estimate the probability and volume of debris-flows produced from drainage basins within each of the burned areas. Debris-flow probabilities and volumes are estimated as functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 2-year-recurrence thunderstorm and to a widespread, 12-hour-duration, 2-year-recurrence winter storm. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire.
Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo
2011-01-01
We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...
Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...
Richy J. Harrod; Nicholas A. Povak; David W. Peterson
2007-01-01
Forest thinning and prescribed fires are the main practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests of the Western United States. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. This study assesses the...
Turbulent kinetic energy during wildfires in the north central and north-eastern US
Warren E. Heilman; Xindi Bian
2010-01-01
The suite of operational fire-weather indices available for assessing the atmospheric potential for extreme fire behaviour typically does not include indices that account for atmospheric boundary-layer turbulence or wind gustiness that can increase the erratic behaviour of fires. As a first step in testing the feasibility of using a quantitative measure of turbulence...
R. J. Ansley; W. E. Pinchak; W. R. Teague
2007-01-01
Prescribed fire is used to reduce rate of mesquite (Prosopis glandulosa) encroachment and dominance on grassland ecosystems, but is difficult to apply in continuousgrazed systems because of the difficulty in accumulating sufficient herbaceous biomass (that is, âfine fuelâ) that is needed to fuel fire. We evaluated the potential of rotationally...
Using hyperspectral imagery to predict post-wildfire soil water repellency
Sarah A. Lewis; Peter R. Robichaud; Bruce E. Frazier; Joan Q. Wu; Denise Y. M. Laes
2008-01-01
A principal task of evaluating large wildfires is to assess fire's effect on the soil in order to predict the potential watershed response. Two types of soil water repellency tests, the water drop penetration time (WDPT) test and the mini-disk infiltrometer (MDI) test, were performed after the Hayman Fire in Colorado, in the summer of 2002 to assess the...
Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements.
Twigg, John; Christie, Nicola; Haworth, James; Osuteye, Emmanuel; Skarlatidou, Artemis
2017-02-01
Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum) settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix.
A Causal Inference Analysis of the Effect of Wildland Fire ...
Wildfire smoke is a major contributor to ambient air pollution levels. In this talk, we develop a spatio-temporal model to estimate the contribution of fire smoke to overall air pollution in different regions of the country. We combine numerical model output with observational data within a causal inference framework. Our methods account for aggregation and potential bias of the numerical model simulation, and address uncertainty in the causal estimates. We apply the proposed method to estimation of ozone and fine particulate matter from wildland fires and the impact on health burden assessment. We develop a causal inference framework to assess contributions of fire to ambient PM in the presence of spatial interference.
Wildland fire potential: A tool for assessing wildfire risk and fuels management needs
Greg Dillon; James Menakis; Frank Fay
2015-01-01
Federal wildfire managers often want to know, over large landscapes, where wildfires are likely to occur and how intense they may be. To meet this need we developed a map that we call wildland fire potential (WFP) - a raster geospatial product that can help to inform evaluations of wildfire risk or prioritization of fuels management needs across very large spatial...
Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin
NASA Astrophysics Data System (ADS)
Scheller, R.; Kretchun, A.
2017-12-01
Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.
Richy J. Harrod; David W. Peterson; Nicholas A. Povak; Erich Kyle Dodson
2009-01-01
Forest thinning and prescribed fires are practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. The purpose of this study was to assess changes to forest stand...
Near-Real-Time Earth Observation Data Supporting Wildfire Management
NASA Astrophysics Data System (ADS)
Ambrosia, V. G.; Zajkowski, T.; Quayle, B.
2013-12-01
During disaster events, the most critical element needed by responding personnel and management teams is situational intelligence / awareness. During rapidly-evolving events such as wildfires, the need for timely information is critical to save lives, property and resources. The wildfire management agencies in the US rely heavily on remote sensing information both from airborne platforms as well as from orbital assets. The ability to readily have information from those systems, not just data, is critical to effective control and damage mitigation. NASA has been collaborating with the USFS to mature and operationalize various asset-information capabilities to effect improved knowledge of fire-prone areas, monitor wildfire events in real-time, assess effectiveness of fire management strategies, and provide rapid, post-fire assessment for recovery operations. Specific examples of near-real-time remote sensing asset utility include daily MODIS data employed to assess fire potential / wildfire hazard areas, and national-scale hot-spot detection, airborne thermal sensor collected during wildfire events to effect management strategies, EO-1 ALI 'pointable' satellite sensor data to assess fire-retardant application effectiveness, and Landsat 8 and other sensor data to derive burn severity indices for post-fire remediation work. These cases of where near-real-time data is used operationally during the previous few fire seasons will be presented.
Assessing Landscape Scale Wildfire Exposure for Highly Valued Resources in a Mediterranean Area
NASA Astrophysics Data System (ADS)
Alcasena, Fermín J.; Salis, Michele; Ager, Alan A.; Arca, Bachisio; Molina, Domingo; Spano, Donatella
2015-05-01
We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km2 located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.
van Mantgem, P.J.; Schwilk, D.W.
2009-01-01
Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.
Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but proper implementation is often hampered by inadequate study designs and inconsistent financial and institutional support. The challenge for providing better management guidelines will be to add solid empirical data and models to assess the relevance of emerging concepts and theories, and provide a sense of where and when fires pose significant risks and/or benefits to fishes.
Climate change, fire management, and ecological services in the southwestern US
Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.
2014-01-01
The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.
Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements
Twigg, John; Christie, Nicola; Haworth, James; Osuteye, Emmanuel; Skarlatidou, Artemis
2017-01-01
Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum) settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix. PMID:28157149
1981-09-01
of wood frame and brick veneer, slab on grade construction), killed 33, injured more than 1,000, derailed a train, destroyed 4,000 cars, uprooted most... of a nuclear detonation) in or near structures, with emphasis on critical facil- ities and industries. Assessment of the potential for secondary fires...and/or 517 East Dayshore, Redwood City, CA 94063 DistI pial (DETACHABLE SUMMARY) SECONDARY FIRE ANALYSIS This report presents the results of a
Michael C. Wimberly; Matthew J. Reilly
2007-01-01
Relatively little is known about the disturbance ecology of large wildfires in the southern Appalachians. The occurrence of a 4000-ha wildfire in the Linville Gorge Wilderness area in western North Carolina has provided a rare opportunity to study a large fire with a range of severities. The objectives of this study were to 1) assess the potential for using multi-...
Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.
Fire and amphibians in North America
Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S.
2003-01-01
Information on amphibian responses to fire and fuel reduction practices is critically needed due to potential declines of species and the prevalence of new, more intensive fire management practices in North American forests. The goals of this review are to summarize the known and potential effects of fire and fuels management on amphibians and their aquatic habitats, and to identify information gaps to help direct future scientific research. Amphibians as a group are taxonomically and ecologically diverse; in turn, responses to fire and associated habitat alteration are expected to vary widely among species and among geographic regions. Available data suggest that amphibian responses to fire are spatially and temporally variable and incompletely understood. Much of the limited research has addressed short-term (1–3 years) effects of prescribed fire on terrestrial life stages of amphibians in the southeastern United States. Information on the long-term negative effects of fire on amphibians and the importance of fire for maintaining amphibian communities is sparse for the majority of taxa in North America. Given the size and severity of recent wildland fires and the national effort to reduce fuels on federal lands, future studies are needed to examine the effects of these landscape disturbances on amphibians. We encourage studies to address population-level responses of amphibians to fire by examining how different life stages are affected by changes in aquatic, riparian, and upland habitats. Research designs need to be credible and provide information that is relevant for fire managers and those responsible for assessing the potential effects of various fuel reduction alternatives on rare, sensitive, and endangered amphibian species.
Wildfire risk assessment in a typical Mediterranean wildland-urban interface of Greece.
Mitsopoulos, Ioannis; Mallinis, Giorgos; Arianoutsou, Margarita
2015-04-01
The purpose of this study was to assess spatial wildfire risk in a typical Mediterranean wildland-urban interface (WUI) in Greece and the potential effect of three different burning condition scenarios on the following four major wildfire risk components: burn probability, conditional flame length, fire size, and source-sink ratio. We applied the Minimum Travel Time fire simulation algorithm using the FlamMap and ArcFuels tools to characterize the potential response of the wildfire risk to a range of different burning scenarios. We created site-specific fuel models of the study area by measuring the field fuel parameters in representative natural fuel complexes, and we determined the spatial extent of the different fuel types and residential structures in the study area using photointerpretation procedures of large scale natural color orthophotographs. The results included simulated spatially explicit fire risk components along with wildfire risk exposure analysis and the expected net value change. Statistical significance differences in simulation outputs between the scenarios were obtained using Tukey's significance test. The results of this study provide valuable information for decision support systems for short-term predictions of wildfire risk potential and inform wildland fire management of typical WUI areas in Greece.
Wildfire Risk Assessment in a Typical Mediterranean Wildland-Urban Interface of Greece
NASA Astrophysics Data System (ADS)
Mitsopoulos, Ioannis; Mallinis, Giorgos; Arianoutsou, Margarita
2015-04-01
The purpose of this study was to assess spatial wildfire risk in a typical Mediterranean wildland-urban interface (WUI) in Greece and the potential effect of three different burning condition scenarios on the following four major wildfire risk components: burn probability, conditional flame length, fire size, and source-sink ratio. We applied the Minimum Travel Time fire simulation algorithm using the FlamMap and ArcFuels tools to characterize the potential response of the wildfire risk to a range of different burning scenarios. We created site-specific fuel models of the study area by measuring the field fuel parameters in representative natural fuel complexes, and we determined the spatial extent of the different fuel types and residential structures in the study area using photointerpretation procedures of large scale natural color orthophotographs. The results included simulated spatially explicit fire risk components along with wildfire risk exposure analysis and the expected net value change. Statistical significance differences in simulation outputs between the scenarios were obtained using Tukey's significance test. The results of this study provide valuable information for decision support systems for short-term predictions of wildfire risk potential and inform wildland fire management of typical WUI areas in Greece.
Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.
Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella
2017-10-01
We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.
2015-12-01
In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.
THE POTENTIAL APPLICATION OF FIRESAT DATA TO ASSESSMENT OF HUMAN EXPOSURES TO WILDFIRE EMISSIONS
FireSat is a proposed NASA mission that will obtain global coverage of the occurrence of wildfires. The specifications for FireSat are described in detail by Levine et al., (1991). Because of limitations of instruments (designed for other purposes) in existing satellites, new in...
Nicole M. Vaillant; Alan A. Ager; John Anderson
2013-01-01
Fire behavior modeling and geospatial analyses can provide tremendous insight for land managers as they grapple with the complex problems frequently encountered in wildfire risk assessments and fire and fuels management planning. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be...
NASA Astrophysics Data System (ADS)
Giannakopoulos, Christos; Karali, Anna; Roussos, Anargyros
2014-05-01
Greece, being part of the eastern Mediterranean basin, is an area particularly vulnerable to climate change and associated forest fire risk. The aim of this study is to assess the vulnerability of Greek forests to fire risk occurrence and identify potential adaptation options within the context of climate change through continuous interaction with local stakeholders. To address their needs, the following tools for the provision of climate information services were developed: 1. An application providing fire risk forecasts for the following 3 days (http://cirrus.meteo.noa.gr/forecast/bolam/index.htm) was developed from NOA to address the needs of short term fire planners. 2. A web-based application providing long term fire risk and other fire related indices changes due to climate change (time horizon up to 2050 and 2100) was developed in collaboration with the WWF Greece office to address the needs of long term fire policy makers (http://www.oikoskopio.gr/map/). 3. An educational tool was built in order to complement the two web-based tools and to further expand knowledge in fire risk modeling to address the needs for in-depth training. In particular, the second product provided the necessary information to assess the exposure to forest fires. To this aim, maps depicting the days with elevated fire risk (FWI>30) both for the control (1961-1990) and the near future period (2021-2050) were created by the web-application. FWI is a daily index that provides numerical ratings of relative fire potential based solely on weather observations. The meteorological inputs to the FWI System are daily noon values of temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. It was found that eastern lowlands are more exposed to fire risk followed by eastern high elevation areas, for both the control and near future period. The next step towards vulnerability assessment was to address sensitivity, ie the human-environmental conditions that can worsen or ameliorate the hazard. In our study static information concerning fire affecting factors, namely the topography and vegetation, was used to create a fire hazard map in order to assess the sensitivity factor. Land cover types for the year 2007 were combined with topographic information deriving from a digital elevation model order to produce these maps. High elevation continental areas were found to be the most sensitive areas followed by the lowland continental areas. Exposure and sensitivity were combined to produce the overall impact of climate change to forest fire risk. The adaptive capacity is defined by the ability of forests to adapt to changing environmental conditions. To assess the adaptive capacity of Greek forests, a Multi-Criteria Analysis (MCA) tool was implemented and used by the stakeholders. The major proposed adaptation measures for Greek forests included fire prevention measures and the inclusion of the private forest covered areas in the fire fighting. Finally, vulnerability of Greek forest to fire was estimated as the overall impact of climate change minus the forests' adaptive capacity and was found to be medium for most areas in the country. Acknowledgement: This work was supported by the EU project CLIM-RUN under contract FP7-ENV-2010-265192.
Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area.
Alcasena, Fermín J; Salis, Michele; Ager, Alan A; Arca, Bachisio; Molina, Domingo; Spano, Donatella
2015-05-01
We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km(2) located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.
Litton, Charles D.; Perera, Inoka E.; Harteis, Samuel P.; Teacoach, Kara A.; DeRosa, Maria I.; Thomas, Richard A.; Smith, Alex C.
2018-01-01
When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments. PMID:29599565
Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C
2018-04-15
When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.
Rachel A. Loehman; Elizabeth Reinhardt; Karin L. Riley
2014-01-01
Wildfires are an important component of the terrestrial carbon cycle and one of the main pathways for movement of carbon from the land surface to the atmosphere. Fires have received much attention in recent years as potential catalysts for shifting landscapes from carbon sinks to carbon sources. Unless structural or functional ecosystem shifts occur, net carbon balance...
NASA Astrophysics Data System (ADS)
Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.
2015-12-01
The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.
Predicting fire impact from plant traits?
NASA Astrophysics Data System (ADS)
Stoof, Cathelijne; Ottink, Roos; Zylstra, Philip; Cornelissen, Hans; Fernandes, Paulo
2017-04-01
Fire can considerably increase the landscape's vulnerability to flooding and erosion, which is in part caused by fire-induced soil heating, vegetation removal and resulting hydrological changes. While the magnitude of these fire effects and ecosystem responses is frequently studied, there is still little attention for the fundamental mechanisms that drive these changes. One example is on the effect of plants: while it is known that plants can alter the fire environment, there is a major knowledge gap regarding the fundamental mechanisms by which vegetation mediates fire impact on soil and hydrology. Essential to identifying these mechanisms is consideration of the effects of vegetation on flammability and fire behaviour, which are studied both in ecology and traditional fire science. Here we discuss the challenges of integrating these very distinct fields and the potential benefits of this integration for improved understanding of fire effects on soil and hydrology. We furthermore present results of a study in which we assessed the spatial drivers controlling the proportion of live and dead fuel in a natural park in northern Portugal, and evaluated the impacts on the spatial variability of fire behaviour and potential soil heating using BehavePlus modeling. Better understanding of the role of (spatial variability in) plant traits on fire impact can facilitate the development of risk maps to ultimately help predict and mitigate fire risk and impact across landscapes.
Psychological distress and alcohol use among fire fighters.
Boxer, P A; Wild, D
1993-04-01
Few studies have investigated stressors to which fire fighters are subjected and the potential psychological consequences. One hundred and forty-five fire fighters were studied to enumerate potential occupational stressors, assess psychological distress and problems with alcohol use, and determine whether a relationship exists between these measures and self-reported stressors. Hearing that children are in a burning building was the highest ranked stressor. According to three self-report instruments, between 33 and 41% of the fire fighters were experiencing significant psychological distress, and 29% had possible or probable problems with alcohol use. These figures are significantly higher than would be expected in a typical community or working population. In a logistic regression analysis, no relationship was found between measures of psychological distress and alcohol use and the 10 most highly ranked work stressors.
NASA Astrophysics Data System (ADS)
Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.
2014-02-01
Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue Department Malaysia can use the end result of this study in preparation for the land and forest fires in the future.
Ultrafine and respirable particle exposure during vehicle fire suppression
Fent, Kenneth W.
2015-01-01
Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews’ potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures. PMID:26308547
Ultrafine and respirable particle exposure during vehicle fire suppression.
Evans, Douglas E; Fent, Kenneth W
2015-10-01
Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews' potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures.
NASA Astrophysics Data System (ADS)
White, Joseph D.; Swint, Pamela
2014-01-01
Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.
Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules
Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin
2015-01-01
Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO2) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires. PMID:28793434
Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.
Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin
2015-07-09
Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.
Hyperspectral remote sensing of postfire soil properties
Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu
2004-01-01
Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...
Regime shifts and weakened environmental gradients in open oak and pine ecosystems
Brice B. Hanberry; Dan C. Dey; Hong S. He
2012-01-01
Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition,...
Jerrold E. Winandy; Douglas Herdman
2003-01-01
The objective of this work was to evaluate the effects of a new boron-nitrogen, phosphate-free fire-retardant (FR) formulation on several mechanical properties of FR-treated wood and to assess the potential of this treatment for in-service thermal-induced strength loss resulting from exposure to high temperature. Fire-retardant-treated and untreated small clear...
Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire.
Taylor, Kimberley T; Maxwell, Bruce D; McWethy, David B; Pauchard, Aníbal; Nuñez, Martín A; Whitlock, Cathy
2017-03-01
Invasive plant species that have the potential to alter fire regimes have significant impacts on native ecosystems. Concern that pine invasions in the Southern Hemisphere will increase fire activity and severity and subsequently promote further pine invasion prompted us to examine the potential for feedbacks between Pinus contorta invasions and fire in Patagonia and New Zealand. We determined how fuel loads and fire effects were altered by P. contorta invasion. We also examined post-fire plant communities across invasion gradients at a subset of sites to assess how invasion alters the post-fire vegetation trajectory. We found that fuel loads and soil heating during simulated fire increase with increasing P. contorta invasion age or density at all sites. However, P. contorta density did not always increase post-fire. In the largest fire, P. contorta density only increased significantly post-fire where the pre-fire P. contorta density was above an invasion threshold. Below this threshold, P. contorta did not dominate after fire and plant communities responded to fire in a similar manner as uninvaded communities. The positive feedback observed at high densities is caused by the accumulation of fuel that in turn results in greater soil heating during fires and high P. contorta density post-fire. Therefore, a positive feedback may form between P. contorta invasions and fire, but only above an invasion density threshold. These results suggest that management of pine invasions before they reach the invasion density threshold is important for reducing fire risk and preventing a transition to an alternate ecosystem state dominated by pines and novel understory plant communities. © 2016 by the Ecological Society of America.
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies. PMID:23658726
Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew
2013-01-01
Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.
Limitations imposed on fire PRA methods as the result of incomplete and uncertain fire event data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowlen, Steven Patrick; Hyslop, J. S.
2010-04-01
Fire probabilistic risk assessment (PRA) methods utilize data and insights gained from actual fire events in a variety of ways. For example, fire occurrence frequencies, manual fire fighting effectiveness and timing, and the distribution of fire events by fire source and plant location are all based directly on the historical experience base. Other factors are either derived indirectly or supported qualitatively based on insights from the event data. These factors include the general nature and intensity of plant fires, insights into operator performance, and insights into fire growth and damage behaviors. This paper will discuss the potential methodology improvements thatmore » could be realized if more complete fire event reporting information were available. Areas that could benefit from more complete event reporting that will be discussed in the paper include fire event frequency analysis, analysis of fire detection and suppression system performance including incipient detection systems, analysis of manual fire fighting performance, treatment of fire growth from incipient stages to fully-involved fires, operator response to fire events, the impact of smoke on plant operations and equipment, and the impact of fire-induced cable failures on plant electrical circuits.« less
Cannon, Susan H.; Michael, John A.
2011-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2011 Motor fire in the Sierra and Stanislaus National Forests, Calif. Statistical-empirical models are used to estimate the probability and volume of debris flows that may be produced from burned drainage basins as a function of different measures of basin burned extent, gradient, and soil physical properties, and in response to a 30-minute-duration, 10-year-recurrence rainstorm. Debris-flow probability and volume estimates are then combined to form a relative hazard ranking for each basin. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two years following the fire.
Projecting climate-driven increases in North American fire activity
NASA Astrophysics Data System (ADS)
Wang, D.; Morton, D. C.; Collatz, G. J.
2013-12-01
Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near-term climate projections point to pronounced changes in fire season length, total burned area, and the frequency of extreme events across North America by 2050.
Jones, R T; Kazdin, A E; Haney, J I
1981-01-01
A multifaceted behavioral program designed to teach emergency fire escape procedures to children was evaluated in a multiple-baseline design. Five children were trained to respond correctly to nine home emergency fire situations under simulated conditions. The situations and responses focused upon in training were identified by a social validation procedure involving consultation with several safety agencies, including the direct input of firefighters. Training, carried out in simulated bedrooms at school, resulted in significant improvements in both overt behavior and self-report of fire safety skills. The gains were maintained at a post-check assessment 2 weeks after training had been terminated. The results are discussed in relation both to the importance of social validation of targets and outcomes and the implications for further research in assessing and developing emergency response skills. PMID:7298537
A rapid response database in support of post-fire hydrological modeling
Mary Ellen Miller; William J. Elliot
2016-01-01
Being prepared for an emergency is important. Every year wildfires threaten homes and lives, but danger persists even after the flames are extinguished. Post-fire flooding and erosion (Figure 1) can threaten lives, property, and natural resources. To respond to this threat, interdisciplinary Burned Area Emergency Response (BAER) teams assess potential erosion and flood...
Ponderosa pine forest restoration treatment longevity: Implications of regeneration on fire hazard
Wade T. Tinkham; Chad M. Hoffman; Seth A. Ex; Michael A. Battaglia; Jarred D. Saralecos
2016-01-01
Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking growth and...
Development of coarse-scale spatial data for wildland fire and fuel management
Kirsten M. Schmidt; James P. Menakis; Colin C. Hardy; Wendall J. Hann; David L. Bunnell
2002-01-01
We produced seven coarse-scale, 1-km2 resolution, spatial data layers for the conterminous United States to support national-level fire planning and risk assessments. Four of these layers were developed to evaluate ecological conditions and risk to ecosystem components: Potential Natural Vegetation Groups, a layer of climax vegetation types representing site...
The invasive ant, Solenopsis invicta, reduces herpetofauna richness and abundance
Allen, Craig R.; Birge, Hannah E.; Slater, J.; Wiggers, E.
2017-01-01
Amphibians and reptiles are declining globally. One potential cause of this decline includes impacts resulting from co-occurrence with non-native red imported fire ant, Solenopsis invicta. Although a growing body of anecdotal and observational evidence from laboratory experiments supports this hypothesis, there remains a lack of field scale manipulations testing the effect of fire ants on reptile and amphibian communities. We addressed this gap by measuring reptile and amphibian (“herpetofauna”) community response to successful fire ant reductions over the course of 2 years following hydramethylnon application to five 100–200 ha plots in southeastern coastal South Carolina. By assessing changes in relative abundance and species richness of herpetofauna in response to fire ant reductions, we were able to assess whether some species were particularly vulnerable to fire ant presence, and whether this sensitivity manifested at the community level. We found that herpetofauna abundance and species richness responded positively to fire ant reductions. Our results document that even moderate populations of red imported fire ants decrease both the abundance and diversity of herpetofauna. Given global herpetofauna population declines and continued spread of fire ants, there is urgency to understand the impacts of fire ants beyond anecdotal and singles species studies. Our results provides the first community level investigation addressing these dynamics, by manipulating fire ant abundance to reveal a response in herpetofauna species abundance and richness.
Ginsberg, H.S.
2005-01-01
This paper discusses eleven tick-borne and five mosquito-borne pathogens that are known to occur at FIlS, or could potentially occur. The potential for future occurrence, and ecological factors that influence occurrence, are assessed for each disease. Lyme disease is the most common vector-borne disease on Fire Island. The Lyme spirochete, Borrelia burgdorferi, is endemic in local tick and wildlife populations. Public education, personal precautions against tick bite, and prompt treatment of early-stage infections can help manage the risk of Lyme disease on Fire Island. The pathogens that cause Human Monocytic Ehrlichiosis and Tularemia have been isolated from ticks or wildlife on Fire Island, and conditions suggest that other tickborne diseases (including Babesiosis, Rocky Mountain Spotted Fever, and Human Granulocytic Ehrlichiosis) might also occur, but these are far less common than Lyme disease, if present. West Nile Virus (WNV) is the primary mosquito- borne human pathogen that is known to occur on Fire Island. Ecological conditions and recent epizootiological events suggest that WNV occurs in foci that can shift from year to year. Therefore, a surveillance program with appropriate responses to increasing epizootic activity can help manage the risk of WNV transmission on Fire Island.
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands
NASA Astrophysics Data System (ADS)
Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.
2012-04-01
Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.
Abraham, Joji; Dowling, Kim; Florentine, Singarayer
2018-01-01
Prescribed fire conducted in fire-prone areas is a cost-effective choice for forest management, but it also affects many of the physicochemical and bio-geological properties of the forest soil, in a similar manner to wild fires. The aim of this study is to investigate the nature of the mercury mobilization after a prescribed fire and the subsequent temporal changes in concentration. A prescribed fire was conducted in a legacy mine site in Central Victoria, Australia, in late August 2015 and soil sample collection and analyses were carried out two days before and two days after the fire, followed by collection at the end of each season and after an intense rainfall event in September 2016. Results revealed the occurrence of mercury volatilization (8.3-97%) during the fire, and the mercury concentration displayed a significant difference (p < 0.05) before and immediately after the fire. Integrated assessment with number of pollution indices has shown that the study site is extremely contaminated with mercury during all the sampling events, and this poses a serious ecological risk due to the health impacts of mercury on human and ecosystems. In times of climate fluctuation with concomitant increase in forest fire (including prescribed fire), and subsequent precipitation and runoff, the potential for an increased amount of mercury being mobilized is of heighted significance. Therefore, it is recommended that prescribed fire should be cautiously considered as a forest management strategy in any mercury affected landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.
2007-01-01
This report describes the approach used to assess potential debris-flow hazards from basins burned by the Buckweed, Santiago, Canyon, Poomacha, Ranch, Harris, Witch, Rice, Ammo, Slide, Grass Valley and Cajon Fires of 2007 in southern California. The assessments will be presented as a series of maps showing a relative ranking of the predicted volume of debris flows that can issue from basin outlets in response to a 3-hour duration rainstorm with a 10-year return period. Potential volumes of debris flows are calculated using a multiple-regression model that describes debris-flow volume at a basin outlet as a function of measures of basin gradient, burn extent, and storm rainfall. This assessment provides critical information for issuing basin-specific warnings, locating and designing mitigation measures, and planning of evacuation timing and routes.
Castillo, Miguel E; Molina, Juan R; Rodríguez Y Silva, Francisco; García-Chevesich, Pablo; Garfias, Roberto
2017-02-01
Wildfires constitute the greatest economic disruption to Mediterranean ecosystems, from a socio-economic and ecological perspective (Molina et al., 2014). This study proposes to classify fire intensity levels based on potential fire behavior in different types of Mediterranean vegetation types, using two geographical scales. The study considered >4 thousand wildfires over a period of 25years, identifying fire behavior on each event, based on simulations using "KITRAL", a model developed in Chile in 1993 and currently used in the entire country. Fire intensity values allowed results to be classified into six fire effects categories (levels), each of them with field indicators linking energy values with damage related to burned vegetation and wildland urban interface zone. These indicators also facilitated a preliminary assessment of wildfire impact on different Mediterranean land uses and, are therefore, a useful tool to prioritize future interventions. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermal degradation of fire-retardant -treated wood : predicting residual service life
Jerrold E. Winandy
2001-01-01
This paper presents a review of more than 10 years of research on the effects of fire-retardant treatments on wood properties and the potential of these treatments for in-service degradation when exposed to elevated temperatures. It presents an in-depth discussion of the findings and implications of a major wood engineering research program to assess the current...
Alan A. Ager; Michelle A. Day; Karen C. Short; Cody R. Evers
2016-01-01
We analyzed the impact of amenity and biodiversity protection as mandated in national forest plans on the implementation of hazardous fuel reduction treatments aimed at protecting the wildland urban interface (WUI) and restoring fire resilient forests. We used simulation modeling to delineate areas on national forests that can potentially transmit fires to...
Fire Risk Assessment of Some Indian Coals Using Radial Basis Function (RBF) Technique
NASA Astrophysics Data System (ADS)
Nimaje, Devidas; Tripathy, Debi Prasad
2017-04-01
Fires, whether surface or underground, pose serious and environmental problems in the global coal mining industry. It is causing huge loss of coal due to burning and loss of lives, sterilization of coal reserves and environmental pollution. Most of the instances of coal mine fires happening worldwide are mainly due to the spontaneous combustion. Hence, attention must be paid to take appropriate measures to prevent occurrence and spread of fire. In this paper, to evaluate the different properties of coals for fire risk assessment, forty-nine in situ coal samples were collected from major coalfields of India. Intrinsic properties viz. proximate and ultimate analysis; and susceptibility indices like crossing point temperature, flammability temperature, Olpinski index and wet oxidation potential method of Indian coals were carried out to ascertain the liability of coal to spontaneous combustion. Statistical regression analysis showed that the parameters of ultimate analysis provide significant correlation with all investigated susceptibility indices as compared to the parameters of proximate analysis. Best correlated parameters (ultimate analysis) were used as inputs to the radial basis function network model. The model revealed that Olpinski index can be used as a reliable method to assess the liability of Indian coals to spontaneous combustion.
NASA Astrophysics Data System (ADS)
Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.
2016-12-01
Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the Canadian Fire Weather Index (FWI) which have been widely used for assessing wildfire potential in the U.S.A and Canada, respectively.
Non-supervised method for early forest fire detection and rapid mapping
NASA Astrophysics Data System (ADS)
Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús
2017-09-01
Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.
Fire-protection research for energy technology: Fy 80 year end report
NASA Astrophysics Data System (ADS)
Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.
1981-05-01
This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.
Riley, Karin L.; Loehman, Rachel A.
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.
NASA Astrophysics Data System (ADS)
Falakh, Fajrul; Setiani, Onny
2018-02-01
Water Treatment Plant (WTP) is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.
NASA Astrophysics Data System (ADS)
Manning, George C.; Baer, Sara G.; Blair, John M.
2017-12-01
Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI ( P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.
Manning, George C; Baer, Sara G; Blair, John M
2017-12-01
Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies (P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI (P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.
Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun
2016-10-03
Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.
Mayor, A G; Valdecantos, A; Vallejo, V R; Keizer, J J; Bloem, J; Baeza, J; González-Pelayo, O; Machado, A I; de Ruiter, P C
2016-12-15
Since the mid of the last century, fire recurrence has increased in the Iberian Peninsula and in the overall Mediterranean basin due to changes in land use and climate. The warmer and drier climate projected for this region will further increase the risk of wildfire occurrence and recurrence. Although the impact of wildfires on soil nutrient content in this region has been extensively studied, still few works have assessed this impact on the basis of fire recurrence. This study assesses the changes in soil organic C and nutrient status of mineral soils in two Southern European areas, Várzea (Northern Portugal) and Valencia (Eastern Spain), affected by different levels of fire recurrence and where short fire intervals have promoted a transition from pine woodlands to shrublands. At the short-term (<1year), the amount of soil organic matter was higher in burned than in unburned soils while its quality (represented as labile to total organic matter) was actually lower. In any case, total and labile soil organic matter showed decreasing trends with increasing fire recurrence (one to four fires). At the long-term (>5years), a decline in overall soil fertility with fire recurrence was also observed, with a drop between pine woodlands (one fire) and shrublands (two and three fires), particularly in the soil microsites between shrubs. Our results suggest that the current trend of increasing fire recurrence in Southern Europe may result in losses or alterations of soil organic matter, particularly when fire promotes a transition from pine woodland to shrubland. The results also point to labile organic matter fractions in the intershrub spaces as potential early warning indicators for shifts in soil fertility in response to fire recurrence. Copyright © 2016 Elsevier B.V. All rights reserved.
AGWA DESIGN DOCUMENTATION: MIGRATING TO ARCGIS AND THE INTERNET
Rapid post-fire watershed assessment to identify potential trouble spots for erosion and flooding can potentially aid land managers and Burned Area Emergency Rehabilitation (BAER) teams in deploying mitigation and rehabilitation resources.
These decisions are inherently co...
Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest.
DeLuca, Thomas H; Sala, Anna
2006-10-01
Recurrent, low-severity fire in ponderosa pine (Pinus ponderosa)/interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests is thought to have directly influenced nitrogen (N) cycling and availability. However, no studies to date have investigated the influence of natural fire intervals on soil processes in undisturbed forests, thereby limiting our ability to understand ecological processes and successional dynamics in this important ecosystem of the Rocky Mountain West. Here, we tested the standing hypothesis that recurrent fire in ponderosa pine/Douglas-fir forests of the Inland Northwest decreases total soil N, but increases N turnover and nutrient availability. We compared soils in stands unburned over the past 69-130 years vs. stands exposed to two or more fires over the last 130 years at seven distinct locations in two wilderness areas. Mineral soil samples were collected from each of the seven sites in June and July of 2003 and analyzed for pH, total C and N, potentially mineralizable N (PMN), and extractable NH4+, NO3-, PO4(-3), Ca+2, Mg+2, and K+. Nitrogen transformations were assessed at five sites by installing ionic resin capsules in the mineral soil in August of 2003 and by conducting laboratory assays of nitrification potential and net nitrification in aerobic incubations. Total N and PMN decreased in stands subjected to multiple fires. This loss of total N and labile N was not reflected in concentrations of extractable NH4+ and NO3-. Rather, multiple fires caused an increase in NO3 sorbed on ionic resins, nitrification potential, and net nitrification in spite of the burned stands not having been exposed to fire for at least 12-17 years. Charcoal collected from a recent fire site and added to unburned soils increased nitrification potential, suggesting that the decrease of charcoal in the absence of fire may play an important role in N transformations in fire-dependent ecosystems in the long term. Interestingly, we found no consistent effect of fire frequency on extractable P or alkaline metal concentrations. Our results corroborate the largely untested hypothesis that frequent fire in ponderosa pine forests increases inorganic N availability in the long term and emphasize the need to study natural, unmanaged sites in far greater detail.
Bernard R. Parresol; John I. Blake; Andrew J. Thompson
2012-01-01
In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...
Establishing a proactive safety and health risk management system in the fire service.
Poplin, Gerald S; Pollack, Keshia M; Griffin, Stephanie; Day-Nash, Virginia; Peate, Wayne F; Nied, Ed; Gulotta, John; Burgess, Jefferey L
2015-04-19
Formalized risk management (RM) is an internationally accepted process for reducing hazards in the workplace, with defined steps including hazard scoping, risk assessment, and implementation of controls, all within an iterative process. While required for all industry in the European Union and widely used elsewhere, the United States maintains a compliance-based regulatory structure, rather than one based on systematic, risk-based methodologies. Firefighting is a hazardous profession, with high injury, illness, and fatality rates compared with other occupations, and implementation of RM programs has the potential to greatly improve firefighter safety and health; however, no descriptions of RM implementation are in the peer-reviewed literature for the North American fire service. In this paper we describe the steps used to design and implement the RM process in a moderately-sized fire department, with particular focus on prioritizing and managing injury hazards during patient transport, fireground, and physical exercise procedures. Hazard scoping and formalized risk assessments are described, in addition to the identification of participatory-led injury control strategies. Process evaluation methods were conducted to primarily assess the feasibility of voluntarily instituting the RM approach within the fire service setting. The RM process was well accepted by the fire department and led to development of 45 hazard specific-interventions. Qualitative data documenting the implementation of the RM process revealed that participants emphasized the: value of the RM process, especially the participatory bottom-up approach; usefulness of the RM process for breaking down tasks to identify potential risks; and potential of RM for reducing firefighter injury. As implemented, this risk-based approach used to identify and manage occupational hazards and risks was successful and is deemed feasible for U.S. (and other) fire services. While several barriers and challenges do exist in the implementation of any intervention such as this, recommendations for adopting the process are provided. Additional work will be performed to determine the effectiveness of select controls strategies that were implemented; however participants throughout the organizational structure perceived the RM process to be of high utility while researchers also found the process improved the awareness and engagement in actively enhancing worker safety and health.
Bark flammability as a fire-response trait for subalpine trees
Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher
2013-01-01
Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473
Exposure assessment through realistic laboratory simulation of a soccer stadium fire.
van Belle, N J C; van Putten, E M; de Groot, A C; Meeussen, V J A; Banus, S
2010-10-01
On Sunday April 13, 2008 a fire broke out on a grandstand in the Euroborg soccer stadium in Groningen The Netherlands. The polyamide chairs on the grandstand were set on fire and supporters were exposed to the emitted smoke which induced mild health effects. The Dutch government was concerned about potential health risks that such fires could have to exposed fans. Especially the exposure to toxic fumes was considered a risk because prior research has proven that large amounts of chemical compounds are emitted during the burning of chemical substances such as polyamide. Among these emitted compounds are HCN, CO, NO(x), NH(3) and volatile organic compounds. To study if supporters were exposed to hazardous chemical compounds we designed a laboratory controlled replica of a part of the grandstand of the Euroborg stadium to perform fire-experiments. This simulation of the fire under controlled circumstances proved that a wide variety of chemicals were emitted. Especially the emission of CO and NO(x) were high, but also the emission of formaldehyde might be toxicologically relevant. The emission of HCN and NH(3) were less than expected. Exposure assessment suggests that the exposure to NO(x) is the main health risk for the supporters that were present at the Euroborg fire. Copyright © 2010 Elsevier Ltd. All rights reserved.
Approach to the assessment of the hazard. [fire released carbon fiber electrical effects
NASA Technical Reports Server (NTRS)
Huston, R. J.
1980-01-01
An overview of the carbon fiber hazard assessment is presented. The potential risk to the civil sector associated with the accidental release of carbon fibers from aircraft having composite structures was assessed along with the need for protection of civil aircraft from carbon fibers.
Computational Pollutant Environment Assessment from Propulsion-System Testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif
1996-01-01
An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.
Assessing Lebanon's wildfire potential in association with current and future climatic conditions
George H. Mitri; Mireille G. Jazi; David McWethy
2015-01-01
The increasing occurrence and extent of large-scale wildfires in the Mediterranean have been linked to extended periods of warm and dry weather. We set out to assess Lebanon's wildfire potential in association with current and future climatic conditions. The Keetch-Byram Drought Index (KBDI) was the primary climate variable used in our evaluation of climate/fire...
The potential predictability of fire danger provided by ECMWF forecast
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca
2017-04-01
The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.
Piqué, Míriam; Domènech, Rut
2018-03-15
Fuel treatments can mitigate present and future impacts of climate change by reducing fire intensity and severity. In recent years, Pinus nigra forests in the Mediterranean basin have been dramatically affected by the new risk of highly intense and extreme fires and its distribution area has been reduced. New tools are necessary for assessing the management of these forests so they can adapt to the challenges to come. Our main goal was to evaluate the effects of different fuel treatments on Mediterranean Pinus nigra forests. We assessed the forest response, in terms of forest structure and fire behavior, to different intensities of low thinning treatments followed by different slash prescriptions (resulting in: light thinning and lop and scatter; light thinning and burn; heavy thinning and lop and scatter; heavy thinning and burn; and, untreated control). Treatments that used fire to decrease the resulting slash were the most effective for reducing active crown fires decreasing the rate of spread and flame length more than 89%. Low thinning had an effect on torching potential, but there was no difference between intensities of thinning. Only an outcoming crown fire could spread actively if it was sustained by a high-enough constant wind speed and enough surface fuel load. Overall, treatments reduce fire intensity and treated areas have a more homogenous fire behavior response than untreated areas. This provides opportunities to extinguish the fire and reduce the probability of trees dying from the fire. It would be helpful to include ecological principles and fire behavior criteria in silvicultural treatment guidelines in order to perform more efficient management techniques in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment of risk due to the use of carbon fiber composites in commercial and general aviation
NASA Technical Reports Server (NTRS)
Fiksel, J.; Rosenfield, D.; Kalelkar, A.
1980-01-01
The development of a national risk profile for the total annual aircraft losses due to carbon fiber composite (CFC) usage through 1993 is discussed. The profile was developed using separate simulation methods for commercial and general aviation aircraft. A Monte Carlo method which was used to assess the risk in commercial aircraft is described. The method projects the potential usage of CFC through 1993, investigates the incidence of commercial aircraft fires, models the potential release and dispersion of carbon fibers from a fire, and estimates potential economic losses due to CFC damaging electronic equipment. The simulation model for the general aviation aircraft is described. The model emphasizes variations in facility locations and release conditions, estimates distribution of CFC released in general aviation aircraft accidents, and tabulates the failure probabilities and aggregate economic losses in the accidents.
An ecosystem services framework for multidisciplinary research in the Colorado River headwaters
Semmens, D.J.; Briggs, J.S.; Martin, D.A.
2009-01-01
A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can be updated and improved adaptively on an annual basis as tree mortality, climatic conditions, and management actions unfold.
Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico
NASA Astrophysics Data System (ADS)
Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.
2013-05-01
Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.
Illingworth, Marjorie A; Hanrahan, Donncha; Anderson, Claire E; O'Kane, Kathryn; Anderson, Jennifer; Casey, Maureen; de Sousa, Carlos; Cross, J Helen; Wright, Sukvhir; Dale, Russell C; Vincent, Angela; Kurian, Manju A
2011-11-01
Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a clinically recognized epileptic encephalopathy of unknown aetiology. Presentation in previously healthy children is characterized by febrile status epilepticus. A pharmacoresistant epilepsy ensues, occurring in parallel with dramatic cognitive decline and behavioural difficulties. We describe a case of FIRES in a 4-year-old boy that was associated with elevated voltage-gated potassium channel (VGKC) complex antibodies and a significant clinical and immunological response to immunomodulation. This case, therefore, potentially expands the clinical phenotype of VGKC antibody-associated disease to include that of FIRES. Prior to immunomodulation, neuropsychology assessment highlighted significant attention, memory, and word-finding difficulties. The UK version of the Wechsler Preschool and Primary Scale of Intelligence assessment indicated particular difficulties with verbal skills (9th centile). Immunomodulation was initially administered as intravenous methylprednisolone (followed by maintenance oral prednisolone) and later in the disease course as regular monthly intravenous immunoglobulin infusions and low-dose azathioprine. Now aged 6 years, the seizure burden in this child is much reduced, although increased seizure frequency is observed in the few days before his monthly immunoglobulin infusions. Formal IQ assessment has not been repeated but there is no clinical suggestion of further cognitive regression. VGKC complex antibodies have been reported in a range of central and peripheral neurological disorders (predominantly presenting in adulthood), and the identification of elevated VGKC complex antibodies, combined with the response to immunotherapies in this child, supports an autoimmune pathogenesis in FIRES with potential diagnostic and therapeutic implications. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
NASA Astrophysics Data System (ADS)
Sebastián-López, Ana; Urbieta, Itziar R.; de La Fuente Blanco, David; García Mateo, Rubén.; Moreno Rodríguez, José Manuel; Eftichidis, George; Varela, Vassiliki; Cesari, Véronique; Mário Ribeiro, Luís.; Viegas, Domingos Xavier; Lanorte, Antonio; Lasaponara, Rosa; Camia, Andrea; San Miguel, Jesús
2010-05-01
Forest fires burn at the local scale, but their massive occurrence causes effects which have global dimensions. Furthermore climate change projections associate global warming to a significant increase in forest fire activity. Warmer and drier conditions are expected to increase the frequency, duration and intensity of fires, and greater amounts of fuel associated with forest areas in decline may cause more frequent and larger fires. These facts create the need for establishing strategies for harmonizing fire danger rating, fire risk assessment, and fire prevention policies at a supranational level. Albeit forest fires are a permanent threat for European ecosystems, particularly in the south, there is no commonly accepted fuel classification scheme adopted for operational use by the Member States of the EU. The European Commission (EC) DG Environment and JRC have launched a set of studies following a resolution of the European Parliament on the further development and enhancement of the European Forest Fire Information System (EFFIS), the EC focal point for information on forest fires in Europe. One of the studies that are being funded is the FUELMAP project. The objective of FUELMAP is to develop a novel fuel classification system and a new European fuel map that will be based on a comprehensive classification of fuel complexes representing the various vegetation types across EU27, plus Switzerland, Croatia and Turkey. The overall work plan is grounded on a throughout knowledge of European forest landscapes and the key features of fuel situations occurring in natural areas. The method makes extended use of existing databases available in the Member States and European Institutions. Specifically, our proposed classification combines relevant information on ecoregions, land cover and uses, potential and actual vegetation, and stand structure. GIS techniques are used in order to define the geographic extent of the classification units and for identifying the main driving factors that determine the spatial distribution of the resulting fuel complexes. Furthermore, relevant parameters influencing fire potential and effects such as fuel load, live/dead ratio, and fuels' size classes' distribution are considered. National- and local-scale datasets (vegetation maps, forest inventory plots, fuel maps...) will be also studied and compared. Local ground- truth data will be used to assess the accuracy of the classification and will contribute, along with literature values and experts' opinion, to characterize the fuels' physical properties. The resulting classification aims to support the characterization of the fire potential, serve as input in fire emissions models, and be used to assess the expected impact of fire in the European landscapes. The work plan includes the development of a GIS software tool to automatically update the fuel map from modified (up-to-date) input data layers. The fuel map of Europe is mainly intended to support the implementation of the EFFIS modules that can be enhanced by the use of improved information on forest fuel properties and spatial distribution, though it is also envisaged that the results of the project might be useful for other relevant applications at different spatial scales. To this purpose, the classification will be designed with a hierarchical and flexible structure for describing heterogeneous landscapes. The work is on-going and this presentation shows the first results towards the envisaged European fuel map.
B. M. Rau; R. Tausch; A. Reiner; D. W. Johnson; J. C. Chambers; R. R. Blank
2012-01-01
Sagebrush-steppe ecosystems are one of the most threatened ecosystems in North America due to woodland expansion, wildfire, and exotic annual grass invasion. Some scientists and policy makers have suggested that woodland expansion will lead to increased carbon (C) storage on the landscape. To assess this potential we used data collected from a Joint Fire Sciences...
Roger D. Ottmar; John I. Blake; William T. Crolly
2012-01-01
The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...
NASA Technical Reports Server (NTRS)
Cleary, T.; Grosshandler, W.
1999-01-01
As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.
NASA Technical Reports Server (NTRS)
Kalelkar, A. S.; Fiksel, J.; Raj, P. P. K.; Rosenfield, D. B.
1979-01-01
Carbon fiber (CF) composites are being used to an increasing extent in commercial aircraft, due to their excellent structural properties. Since carbon fibers are highly conductive, a potential risk was identified in the event that an aircraft with CF composite structures is involved in an accidental fire. If carbon fibers are released from the fire, they could disperse in the atmosphere and eventually cause damaging short circuits in electronic equipment at remote locations. This phenomenon could conceivably result in economic losses. The purpose of this study was to assess the risks presented to the nation as a whole by the use of CF composites in commercial aircraft, in terms of the potential economic losses from air carrier accidents.
NASA Astrophysics Data System (ADS)
Kafatos, M.; Kim, S. H.; Jia, S.; Nghiem, S. V.
2017-12-01
As housing units in or near wildlands have grown, the wildland-urban interface (WUI) contain at present approximately one-third of all housing in the contiguous US. Wildfires are a part of the natural cycle in the Southwestern United States (SWUS) but the increasing trend of WUI has made wildfires a serious high-risk hazard. The expansion of WUI has elevated wildfire risks by increasing the chance of human caused ignitions and past fire suppression in the area. Previous studies on climate variability have shown that the SWUS region is prone to frequent droughts and has suffered from severe wildfires in the recent decade. Therefore, assessing the increased vulnerability to the wildfire in WUI is crucial for proactive adaptation under climate change. Our previous study has shown that a strong correlation between North Atlantic Oscillation (NAO) and temperature was found during March-June in the SWUS. The abnormally warm and dry spring conditions, combined with suppression of winter precipitation, can cause an early start of a fire season and high fire risk throughout the summer and fall. Therefore, it is crucial to investigate the connections between climate variability and wildfire danger characteristics. This study aims to identify climate variability using multiple climate indices such as NAO, El Niño-Southern Oscillation and the Pacific Decadal Oscillation closely related with droughts in the SWUS region. Correlation between the variability and fire frequency and severity in WUI were examined. Also, we investigated climate variability and its relationship on local wildfire potential using both Keetch-Byram Drought Index (KBDI) and Fire Weather Index (FWI) which have been used to assessing wildfire potential in the U.S.A and Canada, respectively. We examined the long-term variability of the fire potential indices and relationships between the indices and historical occurrence in WUI using multi-decadal reanalysis data sets. Following our analysis, we investigated joint impacts of multiple climate indices on droughts and human activities in the WUI for regional wildfire potential.
van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.
Estimation of wildfire size and risk changes due to fuels treatments
Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.
2012-01-01
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.
Analysis of the prescribed burning practice in the pine forest of northwestern Portugal.
Fernandes, P; Botelho, H
2004-01-01
The ignition of low-intensity fires in the dormant season in the pine stands of north-western Portugal seeks to reduce the existing fuel hazard without compromising site quality. The purpose of this study is to characterise this practice and assess its effectiveness, based on information resulting from the normal monitoring process at the management level, and using operational guidelines, fire behaviour models and a newly developed method to classify prescribed fire severity. Although the region's humid climate strongly constrains the activity of prescribed fire, 87% of the fires analysed were undertaken under acceptable meteorological and fuel moisture conditions. In fact, most operations achieved satisfactory results. On average, prescribed fire reduces by 96% the potential intensity of a wildfire occurring under extreme weather conditions, but 36% of the treated sites would still require heavy fire fighting resources to suppress such fire, and 17% would still carry it in the tree canopy. Only 10% of the prescribed burns have an excessive impact on trees or the forest floor, while 89% (normal fire weather) or 59% (extreme fire weather) comply with both ecological integrity maintenance and wildfire protection needs. Improved planning and monitoring procedures are recommended in order to overcome the current deficiencies.
NASA Astrophysics Data System (ADS)
Mayor, Ángeles G.; Keizer, Jan Jacob; González-Pelayo, Óscar; Valdecantos, Alejandro; Vallejo, Ramón; de Ruiter, Peter
2015-04-01
Since the mid of the last century fire recurrence has increased in the Iberian peninsula and the overall Mediterranean basin due to changes in land use and climate. The warmer and drier climate projected for this region will further increase the risk of wildfire occurrence and of increasing fire recurrence. Although the impact of wildfires on soil nutrient content in this region has been extensively studied, still few works have assessed this impact on the basis of fire recurrence. This study assesses the changes in soil nutrient status of two Iberian ecosystems, Várzea (N Portugal) and Valencia (E Spain), affected by different levels of fire recurrence and where short inter-fire periods have promoted a transition from pine woodlands to shrublands. Trends towards soil fertility loss with increasing fire recurrence (one, two, three or four fires in 37 years) were observed in the two study sites. The sites differed when soil fertility of areas burned several times were compared with long unburned references. In Valencia, overall soil fertility of the surface mineral soil was lower in areas burned two or three times than in long unburned areas, twenty and eight years after the last fire, respectively. On the contrary, total organic matter in Várzea was higher in burned than in unburned soils one year after the occurrence of one or four fires. However, a negative impact of fire was observed for integrated indicators of soil quality, such as hot-water carbon and potentially mineralizable nitrogen, suggesting that fire also had an adverse effect on substrate quality in Várzea. Our results suggest that the current trend of increasing fire recurrence in Southern Europe may result in losses or alterations of soil organic matter, particularly when fire promotes a transition from pine woodland to shrubland.
Fuel models and fire potential from satellite and surface observations
Burgan, R.E.; Klaver, R.W.; Klarer, J.M.
1998-01-01
A national 1-km resolution fire danger fuel model map was derived through use of previously mapped land cover classes and ecoregions, and extensive ground sample data, then refined through review by fire managers familiar with various portions of the U.S. The fuel model map will be used in the next generation fire danger rating system for the U.S., but it also made possible immediate development of a satellite and ground based fire potential index map. The inputs and algorithm of the fire potential index are presented, along with a case study of the correlation between the fire potential index and fire occurrence in California and Nevada. Application of the fire potential index in the Mediterranean ecosystems of Spain, Chile, and Mexico will be tested.
NASA Astrophysics Data System (ADS)
Brunsell, N. A.; Van Vleck, E. S.; Nosshi, M.; Ratajczak, Z.; Nippert, J. B.
2017-10-01
Woody plant expansion into grasslands and savannas is occurring and accelerating worldwide and often impacts ecosystem processes. Understanding and predicting the environmental and ecological impacts of encroachment has led to a variety of methodologies for assessing its onset, transition, and stability, generally relying on dynamical systems approaches. Here we continue this general line of investigation to facilitate the understanding of the roles of precipitation frequency and intensity and fire frequency on the conversion of grasslands to woody-dominated systems focusing on the central United States. A low-dimensional model with stochastic precipitation and fire disturbance is introduced to examine the complex interactions between precipitation and fire as mechanisms that may suppress or facilitate increases in woody cover. By using Lyapunov exponents, we are able to ascertain the relative control exerted on woody encroachment through these mechanisms. Our results indicate that precipitation frequency is a more important control on woody encroachment than the intensity of individual precipitation events. Fire, however, exerts a much more dominant impact on the limitation of encroachment over the range of precipitation variability considered here. These results indicate that fire management may be an effective strategy to slow the onset of woody species into grasslands. While climate change might predict a reduced potential for woody encroachment in the near future, these results indicate a reduction in woody fraction may be unlikely when considering anthropogenic fire suppression.
Long-term boreal forest dynamics and disturbances: a multi-proxy approach
NASA Astrophysics Data System (ADS)
Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki
2017-04-01
The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.
Kindling Fires: Examining the Potential for Cumulative Learning in a Journalism Curriculum
ERIC Educational Resources Information Center
Kilpert, Leigh; Shay, Suellen
2013-01-01
This study investigated context-dependency of learning as an indicator for students' potential to continue learning after graduation. We used Maton's theoretical concepts of "cumulative" and "segmented" learning, and "semantic gravity", to look for context-independent learning in students' assessments in a Journalism…
Solar thermal power plants in small utilities - An economic impact analysis
NASA Technical Reports Server (NTRS)
Bluhm, S. A.; Ferber, R. R.; Mayo, L. G.
1979-01-01
A study was performed to assess the potential economic impact of small solar thermal electric power systems in statistically representative synthetic small utilities of the Southwestern United States. Power supply expansion plans were compared on the basis of present worth of future revenue requirements for 1980-2000 with and without solar thermal plants. Coal-fired and oil-fired municipal utility expansion plans with 5 percent solar penetration were 0.5 percent and 2.25 percent less expensive, respectively, than the corresponding conventional plan. At $969/kWe, which assumes the same low cost solar equipment but no improvement in site development costs, solar penetration of 5 percent in the oil-fired municipal reduced revenue requirements 0.88 percent. The paper concludes that some solar thermal plants are potentially economic in small community utilities of the Southwest.
Assessment of the Risks Presented by Carbon Fiber Composites Released From Motor Vehicle Fires
DOT National Transportation Integrated Search
1980-03-01
A risk assessment was conducted to estimate the potential losses through 1993 due to the usage of carbon fiber (CF) composites in U.S. motor vehicles, including automobiles and trucks. A methodology was developed to compute estimated dollar losses by...
Dennis W. Hallema; Ge Sun; Peter V. Caldwell; Steve Norman; Erika Cohen Mack; Yongqiang Liu; Eric J. Ward; Steve McNulty
2016-01-01
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for...
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; Keizer, Jan Jacob
2017-04-01
Models can be invaluable tools to assess and manage the impacts of forest fires on hydrological and erosion processes. Immediately after fires, models can be used to identify priority areas for post-fire interventions or assess the risks of flooding and downstream contamination. In the long term, models can be used to evaluate the long-term implications of a fire regime for soil protection, surface water quality and potential management risks, or determine how changes to fire regimes, caused e.g. by climate change, can impact soil and water quality. However, several challenges make post-fire modelling particularly difficult: • Fires change vegetation cover and properties, such as by changing soil water repellency or by adding an ash layer over the soil; these processes, however are not described in currently used models, so that existing models need to be modified and tested. • Vegetation and soils recover with time since fire, changing important model parameters, so that the recovery processes themselves also need to be simulated, including the role of post-fire interventions. • During the window of vegetation and soil disturbance, particular weather conditions, such as the occurrence of severe droughts or extreme rainfall events, can have a large impact on the amount of runoff and erosion produced in burnt areas, so that models that smooth out these peak responses and rather simulate "long-term" average processes are less useful. • While existing models can simulate reasonable well slope-scale runoff generation and associated sediment losses and their catchment-scale routing, few models can accommodate the role of the ash layer or its transport by overland flow, in spite of its importance for soil fertility losses and downstream contamination. This presentation will provide an overview of the importance of post-fire hydrological and erosion modelling as well as of the challenges it faces and of recent efforts made to overcome these challenges. It will illustrate these challenges with two examples: probabilistic approaches to simulate the impact of different vegetation regrowth and post-fire climate combinations on runoff and erosion; and model developments for post-fire soil water repellency with different levels of complexity. It will also present an inventory of the current state-of-the-art and propose future research directions, both on post-fire models themselves and on their integration with other models in large-scale water resource assessment management.
LaWen Hollingsworth; James Menakis
2010-01-01
This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...
The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil.
Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta
2018-04-01
Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burnt wood from land after a fire. The main objective of this work was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organic matter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil, which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stackhouse, P. W.; Soja, A. J.; Zhang, T.; Mikovitz, J. C.
2013-12-01
In terms of global change, boreal regions are particularly important, because significant warming and change are already evident and significant future warming is predicted. Mean global air temperature has increased by 0.74°C in the last century, and temperatures are predicted to increase by 1.8°C to 4°C by 2090, depending on the Inter-governmental Panel on Climate Change (IPCC) scenario. Some of the greatest temperature increases are currently found in the Northern Eurasian winter and spring, which has led to longer growing seasons, increased potential evapotranspiration and extreme fire weather [Groisman et al., 2007]. In the Siberian Sayan, winter temperatures have already exceeded a 2090 Hadley Centre scenario (HadCM3GGa1) [Soja et al., 2007]. There is evidence of climate-induced change across the circumboreal in terms of increased infestations, alterations in vegetation and increased fire regimes (area burned, fire frequency, severity and number of extreme fire seasons). In this paper, we analyzed long-term surface radiation data sets from the NASA/GEWEX (Global Energy and Water Exchanges) Surface Radiation Budget data products, CERES Surface EBAF and SYN data products and also the available surface radiation measurements in the region. First, we show that during overlap years SRB and CERES data products agree very well in terms of anomalies and we'll use this fact to evaluate 30 years of satellite based estimates of the variability of downwelling SW parameters first corresponding to locations of surface measurements and then for the region as a whole. We also show the observed variability of other SW components such as the net SW and the albedo. Next we assess the variability of the downward and LW fluxes over time and compare these to variability observed in the surface temperature and other meteorological measurements. We assess anomalies on various spatial scales. Finally, we assess the correlation of this variability in specific locations to known fire events. Extreme fires burned in Sakha and Tuva in 2002 and 2004, respectively, and in contrast, a normal fire season burned in Sakha and Tuva in 1999 and 2002, respectively. For this reason, we focus on the fire season (April - September) for 1999, 2002, and 2004. We assess these data sets for evidence of relationships between the net radiative fluxes and fire onset as well as evidence for residual influence of the fires upon the radiative budgets.
Urban fire risk control: House design, upgrading and replanning
Mbuya, Elinorata Celestine
2018-01-01
Urbanisation leads to house densification, a phenomenon experienced in both planned and unplanned settlements in cities in developing countries. Such densification limits fire brigade access into settlements, thereby aggravating fire disaster risks. In this article, we assess the fire exposure and risks in residences in informal areas of Mchikichini ward, in Dar es Salaam City, Tanzania. We rely on interviews of residents and government officials to obtain background on the occurrence and causes of fire accidents, policy provisions and regulations, and experiences with fire outbreaks and coping strategies, as well as on observations and measurements of house transformations, spatial quality and indoor real life. Our findings suggest that fire risks arise from both inappropriate structural characteristics and unsound behavioural practices. This includes unsafe electric practices by residents, poor capacity of residents to fight fires once started, limited access to structures by firefighting equipment because of flouting of planning regulations and inadequate awareness of local government leaders of the magnitude of fire risks. Potential changes to reduce fire risks in the settlement include the installation of firefighting systems, restriction of cooking to designated spaces, use of safer cooking energy sources and lighting means, improvements of vehicle access routes to neighbourhoods, capacity building at the grass root level and the establishment of community-based fire risk management.
NASA Astrophysics Data System (ADS)
Larcom, S.; Grigsby, S.; Ustin, S.
2015-12-01
Wildfires are a perennial issue for California, and the current record-breaking drought is exacerbating the potential problems for the state. Fires leave behind burn scars characterized by diminished vegetative cover and abundant bare soil, and these areas are especially susceptible to storm events that pose an elevated risk of debris flows and sediment-rich sheet wash. This study focused on the 2013 Rim Fire that devastated significant portions of Stanislaus National Forest and Yosemite National Park, and utilized readily available NASA JPL SRTM elevation data and AVIRIS spectral imaging data to construct a debris flow hazard map that assesses mass wasting risk for the Rim Fire burn scar. This study consisted entirely of remotely sensed data, which was processed in software programs such as ENVI, GRASS GIS, ArcMap, and Google Earth. Parameters that were taken into consideration when constructing this map include hill slope (greater than 30 percent rise), burn severity (assessed by calculating NDVI), and erodibility of the soil (by comparing spectral reflectance of AVIRIS images with the reference spectra of illite). By calculating percent of total burn area, 6% was classified as low risk, 55% as medium risk, and 39% as high risk. In addition, this study assessed the importance of the 2015-2016 El Niño, which is projected to be one of the strongest on record, by studying historic rainfall records and storm events of past El Niño's. Hydrological and infrastructural problems that could be caused by short-term convective or long-term synoptic storms and subsequent debris flows were explored as well.
Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape.
Leys, Berangere A; Commerford, Julie L; McLauchlan, Kendra K
2017-01-01
Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W:L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120μm as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60μm in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W:L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records.
Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape
Leys, Berangere A.; Commerford, Julie L.; McLauchlan, Kendra K.
2017-01-01
Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W:L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120μm as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60μm in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W:L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records. PMID:28448597
Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States
Liu, Zhihua; Wimberly, Michael C.
2015-01-01
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959
Norgrove, Lindsey; Hauser, Stefan
2015-03-01
In the Congo Basin, smallholder farmers practice slash-and-burn shifting cultivation. Yet, deliberate burning might no longer be sustainable under reduced fallow scenarios. We synthesized data from the Forest Margins Benchmark Area (FMBA), comprising 1.54 million hectares (ha), in southern Cameroon and assessed the impact of fire exclusion on yield, labor inputs, soil fertility, ecosystem carbon stocks, and fallow recovery indicators in two common field types (plantain and maize) under both current and reduced fallow scenarios. While we could not distinguish between impacts of standard farmer burning practice and fire exclusion treatments for the current fallow scenario, we concluded that fire exclusion would lead to higher yields, higher ecosystem carbon stocks as well as potentially faster fallow recovery under the reduced fallow scenario. While its implementation would increase labor requirements, we estimated increased revenues of 421 and 388 US$ ha(-1) for plantain and maize, respectively. Applied to the FMBA, and assuming a 6-year reduced fallow scenario, fire exclusion in plantain fields would potentially retain 240,464 Mg more ecosystem carbon, comprising topsoil carbon plus tree biomass carbon, than standard farmer practice. Results demonstrate a potential "win-win scenario" where yield benefits, albeit modest, and conservation benefits can be obtained simultaneously. This could be considered as a transitional phase towards higher input use and thus higher yielding systems.
NASA Astrophysics Data System (ADS)
Norgrove, Lindsey; Hauser, Stefan
2015-03-01
In the Congo Basin, smallholder farmers practice slash-and-burn shifting cultivation. Yet, deliberate burning might no longer be sustainable under reduced fallow scenarios. We synthesized data from the Forest Margins Benchmark Area (FMBA), comprising 1.54 million hectares (ha), in southern Cameroon and assessed the impact of fire exclusion on yield, labor inputs, soil fertility, ecosystem carbon stocks, and fallow recovery indicators in two common field types (plantain and maize) under both current and reduced fallow scenarios. While we could not distinguish between impacts of standard farmer burning practice and fire exclusion treatments for the current fallow scenario, we concluded that fire exclusion would lead to higher yields, higher ecosystem carbon stocks as well as potentially faster fallow recovery under the reduced fallow scenario. While its implementation would increase labor requirements, we estimated increased revenues of 421 and 388 US ha-1 for plantain and maize, respectively. Applied to the FMBA, and assuming a 6-year reduced fallow scenario, fire exclusion in plantain fields would potentially retain 240,464 Mg more ecosystem carbon, comprising topsoil carbon plus tree biomass carbon, than standard farmer practice. Results demonstrate a potential "win-win scenario" where yield benefits, albeit modest, and conservation benefits can be obtained simultaneously. This could be considered as a transitional phase towards higher input use and thus higher yielding systems.
Bali, Zsolt K.; Nagy, Lili V.; Hernádi, István
2017-01-01
The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA) and acetylcholine (ACh). Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA) to assess the contribution of muscarinic ACh receptor (mAChR) or α7 nicotinic ACh receptor (nAChR) receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline. PMID:28928637
Production of CO{sub 2}, CO and hydrocarbons from biomass fires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, W.M.; Ward, D.E.; Olbu, G.
1995-12-01
Emissions of CO{sub 2}, CO, CH{sub 4}, C{sub 2}-C{sub 6} alkanes and alkenes, and aromatic compounds from various biomass fires have been quantified. These gases play important roles in tropospheric chemistry, stratospheric chemistry, and global climate. The fires were used for deforestation and shifting cultivation in tropical forests and for growth of fresh grass in tropical savannas. Smoke samples were collected in stainless steel canisters and were analyzed by gas chromatographs with flame ionization detectors. We investigate and compare the differences in the combustion efficiency, the emission factor of each compound, and the relationship among emitted compounds between forest andmore » savanna fires. The contributions of biomass burning to the sources of these gases in the atmosphere are estimated. We will also assess the potential impact of biomass fires on changes in atmospheric chemistry and global climate.« less
Greene, Michael A
2012-06-01
Comparison of characteristics of fire with non-fire households to determine factors differentially associated with fire households (fire risk factors). National household telephone survey in 2004-2005 by the US Consumer Product Safety Commission with 916 fire households and a comparison sample of 2161 non-fire households. There were an estimated 7.4 million fires (96.6% not reported to fire departments) with 130,000 injuries. Bivariate analysis and multivariate logistic regression analyses to assess differences in household characteristics. Significant factors associated with fire households were renting vs. owning (OR 1.988 p<0.0001); household members under 18 year of age (OR 1.277 p<0.0001); lack of residents over 64 years old (OR 0.552 p=0.0007); and college or higher education (some college OR 1.444 p=0.0360, college graduate OR 1.873, p<0.0001, postgraduate OR 2.156 p<0.0001). Not significant were age of house; race; ethnicity; and income. Number of smokers was borderline significant (OR 1.132 p=0.1019) but was significant in the subset of fire households with non-cooking fires (OR 1.383 p=0.0011). Single family houses were associated with non-fire households in the bivariate analysis but not in the multivariate analyses. Renting, household members under 18 years old and smokers are risk factors for unattended fires, similar to the literature for fatal and injury fires. Differences included household members over 65 years old (associated with non-fire households), college/postgraduate education (associated with fire households) and lack of significance of income. Preventing cooking fires (64% of survey incidents), smoking prevention efforts and fire prevention education for families with young children have the potential for reducing unattended fires and injuries.
NASA Technical Reports Server (NTRS)
Rosenfield, D.; Fiksel, J.
1980-01-01
A Poisson type model was developed and exercised to estimate the risk of economic losses through 1993 due to potential electric effects of carbon fibers released from United States general aviation aircraft in the aftermath of a fire. Of the expected 354 annual general aviation aircraft accidents with fire projected for 1993, approximately 88 could involve carbon fibers. The average annual loss was estimated to be about $250 (1977 dollars) and the likelihood of exceeding $107,000 (1977 dollars) in annual loss in any one year was estimated to be at most one in ten thousand.
Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada
NASA Astrophysics Data System (ADS)
Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.
2017-09-01
Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.
Israel wildfires: future trends, impacts and mitigation strategies
NASA Astrophysics Data System (ADS)
Wittenberg, Lea
2017-04-01
Forest fires in the Euro-Mediterranean region burn about 450,000 ha each year. In Israel, the frequency and extent of wildfires have been steadily increasing over the past decades, culminating in several large and costly fires in 2010, 2012 and 2016. The extensive development of forest areas since the 1950's and the accumulation of fuel in the forests, has led to increased occurrences of high intensity fires. Land-use changes and human population growth are the most prevailing and common determinant of wildfire occurrence and impacts. Climate extremes, possibly already a sign of regional climate change, are another frequent determinant of increasing wildfire risk. Therefore, the combination of extreme dry spells, high fuel loads and increased anthropogenic pressure on the open spaces result in an overall amplified wildfire risk. These fires not only cause loss of life and damage to properties but also carry serious environmental repercussions. Combustion of standing vegetation and the leaf litter leave the soil bare and vulnerable to runoff and erosion, thereby increasing risks of flooding. Today, all of Israel's open spaces, forests, natural parks, major metropolitan centers, towns and villages are embedded within the wildland urban interface (WUI). Typically, wildfires near or in the WUI occur on uplands and runoff generated from the burned area poses flooding risks in urban and agricultural zones located downstream. Post-fire management aims at reducing associated hazards as collapsing trees and erosion risk. Often the time interval between a major fire and the definition of priority sites is in the order of days-to-weeks since administrative procedures, financial estimates and implementation of post-fire salvage logging operations require time. Defining the magnitude of the burn scar and estimating its potential impact on runoff and erosion must therefore be done quickly. A post-fire burn severity, runoff and erosion model is a useful tool in estimating potential risks and management strategic. Moreover, national agencies and local authorities must decide on a range of post-fire measures to mitigate risks quickly since most large fires occur late in summer shortly before the winter season. Possible climate changes, socio-economic trends, and intense land use pressures are contributing factors in a national challenge to deal with forest fires along the WUI. However, in order to support integrated fire preparedness, response, management and recovery at the national, regional and local scales, stronger research and planning effort are required. This includes long-term monitoring programs and a systematic, standardized data acquisition scheme, compiling fire history, landscape-fire spread, mitigation and assessment of the immediate fire effects, land use changes and weather data. Knowledge of both short and long-term impacts of wildfire is essential for effective risk assessment, policy formulation and wildfire management.
NASA Astrophysics Data System (ADS)
Montorio Llovería, Raquel; Pérez-Cabello, Fernando; García-Martín, Alberto
2016-09-01
Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland formations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground measurements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP) and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range (VNIR, 400-900 nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables (HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of seven post-fire ground cover types (vegetation and soil - unburned and charred components - and ash - char and ash, individually and as a combined category). Models were developed and validated at the Peñaflor site (training, n = 217; validation, n = 88) and applied to the samples from the Ibieca and Zuera sites (n = 51). The best results were observed for the abundance estimations of green vegetation (Radj.20.70-0.90), unburned soil (Radj.20.40-0.75), and the combination of ashes (Radj.20.65-0.80). In comparison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made to improve the estimation of intermediate severity levels and upscaling the developed models. In the context of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in a quick and objective manner post-fire ground cover fractions and thus provide valuable information to guide management responses.
Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity
Barrett, K.; McGuire, A. David; Hoy, E.E.; Kasischke, E.S.
2011-01-01
Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep‐burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity.This new approach was used to identify black spruce stands that experienced intermediate‐ to high‐severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (∼4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co‐dominated by deciduous forest stands by 20%. Such disturbance‐driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.
Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity.
Barrett, K; McGuire, A D; Hoy, E E; Kasischke, E S
2011-10-01
Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep-burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression trees as a base learner were able to determine fire severity successfully using spectral data in concert with other relevant geospatial data. This method was successful in estimating average conditions, but it underestimated the range of severity. This new approach was used to identify black spruce stands that experienced intermediate- to high-severity fires in 2004 and are therefore susceptible to a shift in regrowth toward deciduous dominance or mixed dominance. Based on the output of the severity model, we estimate that 39% (approximately 4000 km2) of all burned black spruce stands in 2004 had <10 cm of residual organic layer and may be susceptible a postfire shift in plant functional type dominance, as well as permafrost loss. If the fraction of area susceptible to deciduous regeneration is constant for large fire years, the effect of such years in the most recent decade has been to reduce black spruce stands by 4.2% and to increase areas dominated or co-dominated by deciduous forest stands by 20%. Such disturbance-driven modifications have the potential to affect the carbon cycle and climate system at regional to global scales.
AEGIS: a wildfire prevention and management information system
NASA Astrophysics Data System (ADS)
Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos
2016-03-01
We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also provides mobile access to the web-based version of the system.
Final Environmental Assessment: Proposed Fire Crash Rescue Station, Hill Air Force Base, Utah
2008-10-02
storage shed (Building 16) would be demolished and converted to parking ( see Figure 1 for the approximate locations). 1.3 Need for the Action The...existing facilities ( see Section 2.3.3.1), and other potential locations for siting the proposed fire crash rescue station ( see Section 2.3.3.2). 2.3...during scoping meetings, but eliminated from detailed consideration ( see Section 1.7.3) include: • geology and surface soils (seismicity, topography
Johnson, Lane B; Kipfmueller, Kurt F
2016-06-01
We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
Thelen, Brian; French, Nancy H F; Koziol, Benjamin W; Billmire, Michael; Owen, Robert Chris; Johnson, Jeffrey; Ginsberg, Michele; Loboda, Tatiana; Wu, Shiliang
2013-11-05
A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data.
Furong, Liu; Shengtian, L I
2016-05-25
To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.
NASA Astrophysics Data System (ADS)
Sherman, N. J.; Loboda, T.; Sun, G.; Shugart, H. H.; Csiszar, I.
2008-12-01
The remaining natural habitat of the critically endangered Amur tiger (Panthera tigris altaica) and Amur leopard (Panthera pardus orientalis) is a vast, biologically and topographically diverse area in the Russian Far East (RFE). Although wildland fire is a natural component of ecosystem functioning in the RFE, severe or repeated fires frequently re-set the process of forest succession, which may take centuries to return the affected forests to the pre-fire state and thus significantly alters habitat quality and long-term availability. The frequency of severe fire events has increased over the last 25 years, leading to irreversible modifications of some parts of the species' habitats. Moreover, fire regimes are expected to continue to change toward more frequent and severe events under the influence of climate change. Here we present an approach to developing capabilities for a comprehensive assessment of potential Amur tiger and leopard habitat availability throughout the 21st century by integrating regionally parameterized fire danger and forest growth models. The FAREAST model is an individual, gap-based model that simulates forest growth in a single location and demonstrates temporally explicit forest succession leading to mature forests. Including spatially explicit information on probabilities of fire occurrence at 1 km resolution developed from the regionally specific remotely -sensed data-driven fire danger model improves our ability to provide realistic long-term projections of potential forest composition in the RFE. This work presents the first attempt to merge the FAREAST model with a fire disturbance model, to validate its outputs across a large region, and to compare it to remotely-sensed data products as well as in situ assessments of forest structure. We ran the FAREAST model at 1,000 randomly selected points within forested areas in the RFE. At each point, the model was calibrated for temperature, precipitation, slope, elevation, and fire probability. The output of the model includes biomass estimates for 44 tree species that occur in the RFE, grouped by genus. We compared the model outputs with land cover classifications derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and LIDAR-based estimates of biomass across the entire region, and Russian forest inventory records at selected sites. Overall, we find that the FAREAST estimates of forest biomass and general composition are consistent with the observed distribution of forest types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were: (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
Fire Hazard Assessment in Supporting Fire Protection System Design of a Chemical Process Facility
1996-08-01
CSDP/Studies/FireHaz –i– 3/28/97 FIRE HAZARD ASSESSMENT IN SUPPORTING FIRE PROTECTION SYSTEM DESIGN OF A CHEMICAL PROCESS FACILITY Ali Pezeshk...Joseph Chang, Dwight Hunt, and Peter Jahn Parsons Infrastructure & Technology Group, Inc. Pasadena, California 91124 ABSTRACT Because fires in a chemical ...Assessment in Supporting Fire Protection System Design of a Chemical Process Facility 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Shrub-Steppe Early Succession Following Juniper Cutting and Prescribed Fire
NASA Astrophysics Data System (ADS)
Bates, Jonathan D.; Davies, Kirk W.; Sharp, Robert N.
2011-03-01
Pinus- Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800's. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25-50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.
Shrub-steppe early succession following juniper cutting and prescribed fire.
Bates, Jonathan D; Davies, Kirk W; Sharp, Robert N
2011-03-01
Pinus-Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800's. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25-50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impactmore » statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.« less
PYRONES: pyro-modeling and evacuation simulation system
NASA Astrophysics Data System (ADS)
Kanellos, Tassos; Doulgerakis, Adam; Georgiou, Eftichia; Kountouriotis, Vassilios I.; Paterakis, Manolis; Thomopoulos, Stelios C. A.; Pappou, Theodora; Vrahliotis, Socrates I.; Rekouniotis, Thrasos; Protopsaltis, Byron; Rozenberg, Ofir; Livneh, Ofer
2016-05-01
Structural fires continue to pose a great threat towards human life and property. Due to the complexity and non-deterministic characteristics of a building fire disaster, it is not a straightforward task to assess the effectiveness of fire protection measures embedded in the building design, planned evacuation strategies and potential modes of response for mitigating the fire's consequences. Additionally, there is a lack of means that realistically and accurately recreate the conditions of building fire disasters for the purpose of training personnel in order to be sufficiently prepared when vis-a-vis with such an environment. The propagation of fire within a building, the diffusion of its volatile products, the behavior of the occupants and the sustained injuries not only exhibit non-linear behaviors as individual phenomena, but are also intertwined in a web of co-dependencies. The PYRONES system has been developed to address all these aspects through a comprehensive approach that relies on accurate and realistic computer simulations of the individual phenomena and their interactions. PYRONES offers innovative tools and services to strategically targeted niches in two market domains. In the domain of building design and engineering, PYRONES is seamlessly integrated within existing engineering Building Information Modelling (BIM) workflows and serves as a building performance assessment platform, able to evaluate fire protection systems. On another front, PYRONES penetrates the building security management market, serving as a holistic training platform for specialists in evacuation strategy planning, firefighters and first responders, both at a Command and Control and at an individual trainee level.
A strategic assessment of forest biomass and fuel reduction treatments in Western States
USDA Forest Service; Bob Rummer; Jeff Prestemon; Dennis May; Pat Miles; John Vissage; Ron McRoberts; Greg Liknes; Wayne D. Shepperd; Dennis Ferguson; William Elliot; Sue Miller; Steve Reutebuch; Jamie Barbour; Jeremy Fried; Bryce Stokes; Edward Bilek; Ken Skog
2005-01-01
This assessment characterizes, at a regional scale, forest biomass that can potentially be removed to implement the fuel reduction and ecosystem restoration objectives of the National Fire Plan for the Western United States. The assessment area covers forests on both public and private ownerships in the region and describes all standing tree volume including stems,...
Tundra Fires in the Noatak National Preserve, Northwestern Alaska, Since 6000 yr BP
NASA Astrophysics Data System (ADS)
Chipman, M. L.; Higuera, P. E.; Allen, J.; Rupp, S.; Hu, F. S.
2008-12-01
Over 1.7 million hectares of Alaskan tundra have burned over the past 50 years, including the record-setting Anaktuvuk River fire in 2007. Despite this evidence indicating the flammable nature of these ecosystems under warm and dry conditions, land managers and global change scientists lack critical information concerning long-term relationships among fire, climate and tundra vegetation. This knowledge gap limits the ability to assess the response of the tundra fire regime to ongoing and predicted climate warming and potential feedbacks with Earth systems. We utilize macroscopic charcoal from lake-sediment cores to characterize the frequency component of fire regimes in shrub-dominated and herb-dominated tundra ecosystems in northwestern Alaska over the past 6000 years. Here we present the first long-term records of tundra fire regimes from the Noatak National Preserve, a region encompassing some of the most flammable tundra in the state. Results from three lakes indicate that fire has been a consistent process in the region, with fire return intervals (FRIs) ranging from 70 to 800+ years since 6000 yr BP. FRIs were similar between herb- and shrub-dominated tundra sites before ~2000 yr BP, with a mean FRI of 167 yr (95% CI 145-195) Over the past ~2000 years, however, herb- dominated sites burned more frequently (mean FRI 112 yr [95% CI 80-151]) than shrub-dominated sites (mean FRI 247 yr [95% CI 141-377]). At millennial time scales, shifts in historic FRIs were likely related to regional climate changes and/or associated vegetation changes. These results provide a context for resource management and serve to refine the tundra component of an ecosystem model designed to aid land managers in assessing fuels and fire hazards in the context of climatic change.
Fire danger assessment using ECMWF weather prediction system
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca; Pappemberger, Florian; Wetterhall, Fredrik
2015-04-01
Weather plays a major role in the birth, growth and death of a wildfire wherever there is availability of combustible vegetation and suitable terrain topography. Prolonged dry periods creates favourable conditions for ignitions, wind can then increase the fire spread, while higher relative humidity, and precipitation (rain or snow) may decrease or extinguish it altogether. The European Forest Fire Information System (EFFIS), started in 2011 under the lead of the European Joint Research Centre (JRC) to monitor and forecast fire danger and fire behaviour in Europe. In 2012 a collaboration with the European Centre for Medium range Weather Forecast (ECMWF) was established to explore the potential of using state of the art weather forecast systems as driving forcing for the calculations of fire risk indices. From this collaboration in 2013 the EC-fire system was born. It implements the three most commonly used fire danger rating systems (NFDRS, FWI and MARK-5) and it is both initialised and forced by gridded atmospheric fields provided either by ECMWF re-analysis or ECMWF ensemble prediction systems. For consistency invariant fields (i.e fuel maps, vegetation cover, topogarphy) and real-time weather information are all provided on the same grid. Similarly global climatological vegetation stage conditions for each day of the year are provided by remote satellite observations. These climatological static maps substitute the traditional man judgement in an effort to create an automated procedure that can work in places where local observations are not available. The system has been in operation for the last year providing an ensemble of daily forecasts for fire indices with lead-times up to 10 days over Europe and Globally. An important part of the system is provided by its (re)-analysis dataset obtained by using the (re)-analysis forcings as drivers to calculate the fire risk indices. This is a crucial part of the whole chain since these fields are used to establish the initial conditions from which the forecast is subsequently run. The reanalysis dataset goes back to year 1980 (the starting year of ERA-Interim integrations) and is updated in quasi real time. In addition of providing the staring point for the operational forecasts it is a very useful dataset for the scope of calibration and verification of the system. Assuming reanalysis fields are good proxies for observations then, by comparison with fire events which really occurred, this dataset can be used to assess the potential predictability of fire risk indices. In this work we will introduce the EC-fire system. Then the reanalysis dataset will be used to identify regions of high fire risk predictability and where the system might be in need of further refinement.
Perceived risk of home fire and escape plans in rural households.
Yang, Jingzhen; Peek-Asa, Corinne; Allareddy, Veerasathpurush; Zwerling, Craig; Lundell, John
2006-01-01
Homes in rural areas have a higher fire death rate. Although successful exit from a home fire could greatly reduce fire-related deaths and injuries, little is known about factors associated with behaviors of developing and practicing an escape plan. Between July 2003 and June 2004, a baseline survey was administered, in person, to 691 rural households. Information collected included a history of previous home fire, perceived risk of home fire, existing smoke alarms and their working status, and home fire safety practices, as well as home and occupant characteristics. The association of residents' perceived risk of home fire and fire escape plans was assessed. Forty-two percent of rural households reported having a fire escape plan. Of the households with a plan, less than two thirds (56.9%) discussed or practiced the plan. Households with children were more likely to develop and practice a fire escape plan. Households with an elderly or disabled person were less likely to develop or practice the plan. Compared to respondents who perceived low or very low risk of home fire, those who perceived a high or very high risk had 3.5 times greater odds of having a fire escape plan and 5.5 times greater odds of discussion or practicing their plan. Increasing awareness of the potential risk of home fires may help occupants develop and practice home fire escape plans. In order to reduce fire deaths and injuries, different strategies need to be developed for those households in which the occupants lack the ability to escape.
Protocol and the post-human performativity of security techniques.
O'Grady, Nathaniel
2016-07-01
This article explores the deployment of exercises by the United Kingdom Fire and Rescue Service. Exercises stage, simulate and act out potential future emergencies and in so doing help the Fire and Rescue Service prepare for future emergencies. Specifically, exercises operate to assess and develop protocol; sets of guidelines which plan out the actions undertaken by the Fire and Rescue Service in responding to a fire. In the article I outline and assess the forms of knowledge and technologies, what I call the 'aesthetic forces', by which the exercise makes present and imagines future emergencies. By critically engaging with Karen Barad's notion of post-human performativity, I argue that exercises provide a site where such forces can entangle with one another; creating a bricolage through which future emergencies are evoked sensually and representatively, ultimately making it possible to experience emergencies in the present. This understanding of exercises allows also for critical appraisal of protocol both as phenomena that are produced through the enmeshing of different aesthetic forces and as devices which premise the operation of the security apparatus on contingency.
Protocol and the post-human performativity of security techniques
O’Grady, Nathaniel
2015-01-01
This article explores the deployment of exercises by the United Kingdom Fire and Rescue Service. Exercises stage, simulate and act out potential future emergencies and in so doing help the Fire and Rescue Service prepare for future emergencies. Specifically, exercises operate to assess and develop protocol; sets of guidelines which plan out the actions undertaken by the Fire and Rescue Service in responding to a fire. In the article I outline and assess the forms of knowledge and technologies, what I call the ‘aesthetic forces’, by which the exercise makes present and imagines future emergencies. By critically engaging with Karen Barad’s notion of post-human performativity, I argue that exercises provide a site where such forces can entangle with one another; creating a bricolage through which future emergencies are evoked sensually and representatively, ultimately making it possible to experience emergencies in the present. This understanding of exercises allows also for critical appraisal of protocol both as phenomena that are produced through the enmeshing of different aesthetic forces and as devices which premise the operation of the security apparatus on contingency. PMID:29708110
NASA Astrophysics Data System (ADS)
Hallema, D. W.; Sun, G.; Caldwell, P. V.; Norman, S. P.; Cohen, E. C.; Liu, Y.; McNulty, S. G.
2016-12-01
The magnitude of wildland fire impacts on water resources varies regionally depending on fire severity, topography, vegetation and climate. An assessment of the potential threat that wildland fire poses to water supplies across the conterminous United States (CONUS) is critically important because forests supply 50% of consumed water. In our assessment, we first performed a double mass analysis of streamflow (GAGES-II) vs. precipitation (PRISM) data from 170 burned watersheds to identify changes in average water yield in the first five years following wildland fire (MTBS burn severity dataset), which were positive in 52 watersheds (Chow test p<0.1), negative in 69 (p<0.1), and not significant in 49 (p>0.1). Subsequently, we separated the respective contributions of fire and climate variability to changes in annual runoff (dQ) by fitting linear climate elasticity models (CEMs), yielding acceptable CEMs (coefficient p<0.1) for 106 watersheds. Median dQ (MdQ) for 62 watersheds with a burned area to drainage area ratio (BAR) <10% declined by -12%, mostly attributed to lower annual precipitation (P) (-16%) associated with regional climate trends, which was a common response in watersheds in the eastern states with low severity prescribed (Rx) or wildfires. MdQ increased by +11% in 44 watersheds with BAR >10%, notwithstanding overall declining P. These watersheds were for the greatest part located in the western CONUS, where dQ was correlated with burn severity (R2>0.53, variable per severity class) and PET (R2=0.73). The most severe impacts were observed in Arizona (2005 Cave Creek Complex, 2004 Edge Complex and 2004 Willow Fires), with BARs >39% and dQ>+160%, while hydrologic response in the east was much less extreme with only 10 cases where post-fire dQ increased >+10%. The clear regional patterns in post-fire Q together with evidence showing that downward trends in P can mask flow enhancing effects of fire disturbance (24 watersheds), underline the importance of the combined analysis of wildland fire and climate impacts in national scale assessments. Research funded by the USDA Forest Service Southern Research Station, Joint Fire Science Program (#14-1-06-18), and Oak Ridge Institute for Science and Education (U.S. Department of Energy).
Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto
2005-04-01
Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.
NASA Astrophysics Data System (ADS)
le page, Y.; Morton, D. C.; Hurtt, G. C.
2013-12-01
Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luketa, Anay; Rudeen, David Keith
The objective of this work is to assess dispersion distances of a vapor mixture of species released from a railcar containing a tight crude oil. Tight crude oils can have higher levels of light ends as compared to conventional crude oils [1], which if released and dispersed could pose a potential hazard with regards to a flash fire, explosion, and/or asphyxiation. A historical accident involving rail transport in Viareggio, Italy illustrates how the spillage of LPG can lead to severe damage as a result of a propagating vapor cloud [2]. One of 14 railcars was punctured after derailment, releasing aboutmore » 110 m 3 of LPG into a densely populated area (2000 persons/km 2 ). The resulting vapor cloud propagated and infiltrated nearby buildings and houses which were an average of 10 m in height. Ignition of the cloud occurred approximately 100 to 300 seconds after the start of the spill. A flash fire and explosions resulted, killing 31 people. Evidence suggests that most deaths occurred due to the asphyxiation and thermal hazards from the flash fire. Thus, the motivation for this work is to assess if significant vapors can develop from a railcar carrying a tight crude oil and if this cloud could disperse potentially to nearby populations.« less
Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B
2017-08-01
What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units possessed greater twitch force potentiation. Overall, changes in firing rates during brief steady-force contractions are dependent on recruitment threshold and explained in part by twitch force potentiation. Given that firing rate changes were measured in relationship to recruitment threshold, this study illustrates a more complete view of firing rate changes during steady-force contractions. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Overview of Considerations in Assessing the Biomass Potential of Army Installations.
1981-08-01
stage. Will the species grow well in poor soils and on harsh, open sites? Trees that met these standards were then grouped according to their...frequency of fire, (2) reduces the need of fire control methods such as controlled burns, and (3) makes site preparation easier.21 Whole-tree chipping...the "aesthetic" value of the stand is increased.22 The negative effect most often thought to occur with whole-tree chipping is loss of soil nutrients
Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.
2017-01-01
Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.
Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T
2014-09-15
Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.
Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India
NASA Astrophysics Data System (ADS)
Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.
2017-12-01
Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems. Collaboration between geoscientists and public health researchers are essential to assess complex geohealth issues such as those that may be caused by uncontrolled coal fires. This type of multidisciplinary collaboration must be maintained and expanded to include engineers, social scientists, and others to help minimize or avoid these problems.
NASA Astrophysics Data System (ADS)
Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio
2013-04-01
Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite system may have in assisting and complementing traditional surveillance systems to mitigate damages due to fires. In particular, the usefulness of satellite technology in an operational context was demonstrated mainly in reference to: i) the possibility of identifying fires at an early stage (so avoiding that small hotbeds could extend and become dangerous for citizens and destructive for environmental protected areas) as well as ii) the possibility to have an effective territorial control (e.g. discovering illegal burning fires such as unauthorized cleaning fires, and permitting local authorities to rapidly intervene and catch red-handed pyromaniacs).
Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion
2016-02-17
The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.
Kamber, Tim; Buchmann, Jan P.; Pothier, Joël F.; Smits, Theo H. M.; Wicker, Thomas; Duffy, Brion
2016-01-01
The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568
Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile
2011-01-01
Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...
Remote sensing sensitivity to fire severity and fire recovery
Key, C.H.
2005-01-01
The paper examines fundamental ways that geospatial data on fire severity and recovery are influenced by conditions of the remote sensing. Remote sensing sensitivities are spatial, temporal and radiometric in origin. Those discussed include spatial resolution, the sampling time of year, and time since fire. For standard reference, sensitivities are demonstrated with examples drawn from an archive of burn assessments based on one radiometric index, the differenced Normalized Burn Ratio. Resolution determines the aggregation of fire effects within a pixel (alpha variation), hence defining the detected ecological response, and controlling the ability to determine patchiness and spatial distribution of responses throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation from the complexity of the whole burn. Seasonal timing impacts the radiometric quality of data in terms of transmittance, sun angle, and potential for enhanced contrast between responses within burns. Remote sensing sensitivity can degrade during many fire seasons when snow, incomplete burning, hazy conditions, low sun angles, or extended drought are common. Time since fire (lag timing) most notably shapes severity detection through the first-order fire effects evident in survivorship and delayed mortality that emerge by the growth period after fire. The former effects appear overly severe at first, but diminish, as burned vegetation remains viable. Conversely, the latter signals vegetation that appears healthy at first, but is damaged by heat to the extent that it soon dies. Both responses can lead to either over- or under-estimating severity, respectively, depending on fire behavior and pre-fire composition unique to each burned area. Based on implications of such sensitivities, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within ca. two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Jointly, remote sensing conditions and the way burns are studied yield different tendencies for data quality and information content that impact the objectives and hypotheses that can be studied. Such considerations can be commonly overlooked, but need to be incorporated especially in comparative studies, and to build long-term reference databases on fire severity and recovery.
Increase in quantity and quality of suitable areas for invasive species as climate changes.
Bertelsmeier, Cleo; Luque, Gloria M; Courchamp, Franck
2013-12-01
As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species' establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima. © 2013 Society for Conservation Biology.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.
Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic
Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.
Fire test method for graphite fiber reinforced plastics
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified Ohio State University Rate of Heat Release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.
Quantitative assessment of building fire risk to life safety.
Guanquan, Chu; Jinhua, Sun
2008-06-01
This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.
Simulation of quaking aspen potential fire behavior in Northern Utah, USA
R. Justin DeRose; A. Joshua Leffler
2014-01-01
Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are âfire-proofâ. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and...
Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.
2018-03-15
Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks to ultimately reduce a greater threat of their destruction from wildfire. However, there is relatively little published science that directly addresses the ability of fuel breaks to influence fire behavior in dryland landscapes or that addresses the potential ecological effects of the construction and maintenance of fuel breaks on sagebrush ecosystems and associated wildlife species.This report is intended to provide an initial assessment of both the potential effectiveness of fuel breaks and their ecological costs and benefits. To provide this assessment, we examined prior studies on fuel breaks and other scientific evidence to address three crucial questions: (1) How effective are fuel breaks in reducing or slowing the spread of wildfire in arid and semi-arid shrubland ecosystems? (2) How do fuel breaks affect sagebrush plant communities? (3) What are the effects of fuel breaks on the greater sage-grouse, other sagebrush obligates, and sagebrush-associated wildlife species? We also provide an overview of recent federal policies and management directives aimed at protecting remaining sagebrush and greater sage-grouse habitat; describe the fuel conditions, fire behavior, and fire trends in the Great Basin; and suggest how scientific inquiry and management actions can improve our understanding of fuel breaks and their effects in sagebrush landscapes.
The role of fire in the pan-tropical carbon budget
NASA Astrophysics Data System (ADS)
van der Werf, G.; Randerson, J. T.; Giglio, L.; Baccini, A.; Morton, D. C.; DeFries, R. S.
2012-12-01
Fires are an important management tool in the tropics and subtropics, and are used in the deforestation process, to manage savanna areas, and burn agricultural waste. Satellite-derived datasets of precipitation, aboveground tree biomass, and burned area are now available with over a decade worth of data for precipitation and burned area. Here we used these datasets to assess fire carbon emissions, to better understand relations between interannual variability in precipitation rates and fire activity, and to test ecological hypotheses centered on the role of fire and climate in governing biomass loads in the tropics and subtropics. We show that while most fire carbon emissions are from savanna fires, fires in deforestation regions are crucial from a net carbon emissions perspective and for emissions of reduced trace gases. These tropical fires burning in the dry season increase the amplitude of the CO2 exchange seasonality, in contrast to fires in the boreal region. We then show the large interannual variability of fires and highlight the difference in response of fires to changes in precipitation rates between dry and wet regions. Finally, by studying relations between fire, climate, and biomass, we show that savanna areas that saw fires over the past decade had lower tree biomass than those that did not, but only in medium or high rainfall areas. In areas up to about a meter of rain annually, tree biomass increased monotonically whether there were fires or not. In higher rainfall areas, precipitation seasonality appeared to be a crucial factor in explaining potential biomass. These results show that a world without fires may change the savanna carbon landscape less dramatically than often thought.
A human-driven decline in global burned area
NASA Astrophysics Data System (ADS)
Andela, N.
2017-12-01
Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.
Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L
2016-08-01
Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.
2016-08-01
Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
Postfire soil burn severity mapping with hyperspectral image unmixing
Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A.
2007-01-01
Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. ?? 2006 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Silins, U.; Emelko, M.; Cooke, C. A.; Charrois, J. W. A.; Stone, M.
2016-12-01
A growing number of large severe wildfires have impacted drinking water supplies of both small and larger municipalities in western North America over the past 20 years. While some of these fires include components of wildland-urban interface fire impacts to water or water treatment infrastructure, the vast majority have been wildland fires in critical source water supply regions serving these municipalities. A large body of research has provided key insights on magnitude, variability, and longevity of post-wildfire impacts on erosion, sediment production, and water quality, however assessing the impact of wildfires on water supplies often requires measuring or predicting the downstream propagation of upstream wildfire impacts to water supplies and this remains a comparatively less well explored area of wildfire-water research. The 2016 Horse River wildfire during May-June burned 590,000 ha. forcing the evacuation of the entire City of McMurray ( 90,000 residents) and represents the most expensive natural disaster in Canadian history ($3.6 billion in insurable losses alone). While the wildfire impacted extensive source water supply regions in the area surrounding Ft. McMurray, this fire serves to illustrate a broader range of challenging wildfire-water science and engineering research issues that are needed to assess the impacts of this and potentially other large wildfires on water supplies. Unlike wildfires in headwaters regions, these include unique challenges in assessing impacts of burned tributaries adjacent sources from a large wildfire situated immediately surrounding a very large river system (Athabasca River), post-fire contaminant dilution, mixing, and transport, and contaminant runoff from severely burned residential and commercial/industrial regions of the city on downstream water supplies among others.
Review of methods for developing probabilistic risk assessments
D. A. Weinstein; P.B. Woodbury
2010-01-01
We describe methodologies currently in use or those under development containing features for estimating fire occurrence risk assessment. We describe two major categories of fire risk assessment tools: those that predict fire under current conditions, assuming that vegetation, climate, and the interactions between them and fire remain relatively similar to their...
Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand
2014-01-01
Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...
Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons
Williams, Stephen R; Stuart, Greg J
1999-01-01
Electrophysiological recordings and pharmacological manipulations were used to investigate the mechanisms underlying the generation of action potential burst firing and its postsynaptic consequences in visually identified rat layer 5 pyramidal neurons in vitro.Based upon repetitive firing properties and subthreshold membrane characteristics, layer 5 pyramidal neurons were separated into three classes: regular firing and weak and strong intrinsically burst firing.High frequency (330 ± 10 Hz) action potential burst firing was abolished or greatly weakened by the removal of Ca2+ (n = 5) from, or by the addition of the Ca2+ channel antagonist Ni2+ (250–500 μm; n = 8) to, the perfusion medium.The blockade of apical dendritic sodium channels by the local dendritic application of TTX (100 nm; n = 5) abolished or greatly weakened action potential burst firing, as did the local apical dendritic application of Ni2+ (1 mm; n = 5).Apical dendritic depolarisation resulted in low frequency (157 ± 26 Hz; n = 6) action potential burst firing in regular firing neurons, as classified by somatic current injection. The intensity of action potential burst discharges in intrinsically burst firing neurons was facilitated by dendritic depolarisation (n = 11).Action potential amplitude decreased throughout a burst when recorded somatically, suggesting that later action potentials may fail to propagate axonally. Axonal recordings demonstrated that each action potential in a burst is axonally initiated and that no decrement in action potential amplitude is apparent in the axon > 30 μm from the soma.Paired recordings (n = 16) from synaptically coupled neurons indicated that each action potential in a burst could cause transmitter release. EPSPs or EPSCs evoked by a presynaptic burst of action potentials showed use-dependent synaptic depression.A postsynaptic, TTX-sensitive voltage-dependent amplification process ensured that later EPSPs in a burst were amplified when generated from membrane potentials positive to -60 mV, providing a postsynaptic mechanism that counteracts use-dependent depression at synapses between layer 5 pyramidal neurons. PMID:10581316
The potential and realized spread of wildfires across Canada.
Wang, Xianli; Parisien, Marc-André; Flannigan, Mike D; Parks, Sean A; Anderson, Kerry R; Little, John M; Taylor, Steve W
2014-08-01
Given that they can burn for weeks or months, wildfires in temperate and boreal forests may become immense (eg., 10(0) - 10(4) km(2) ). However, during the period within which a large fire is 'active', not all days experience weather that is conducive to fire spread; indeed most of the spread occurs on a small proportion (e.g., 1 - 15 days) of not necessarily consecutive days during the active period. This study examines and compares the Canada-wide patterns in fire-conducive weather ('potential' spread) and the spread that occurs on the ground ('realized' spread). Results show substantial variability in distributions of potential and realized spread days across Canada. Both potential and realized spread are higher in western than in eastern Canada; however, whereas potential spread generally decreases from south to north, there is no such pattern with realized spread. The realized-to-potential fire-spread ratio is considerably higher in northern Canada than in the south, indicating that proportionally more fire-conducive days translate into fire progression. An exploration of environmental correlates to spread show that there may be a few factors compensating for the lower potential spread in northern Canada: a greater proportion of coniferous (i.e., more flammable) vegetation, lesser human impacts (i.e., less fragmented landscapes), sufficient fire ignitions, and intense droughts. Because a linear relationship exists between the frequency distributions of potential spread days and realized spread days in a fire zone, it is possible to obtain one from the other using a simple conversion factor. Our methodology thus provides a means to estimate realized fire spread from weather-based data in regions where fire databases are poor, which may improve our ability to predict future fire activity. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Roberts, Dar A.; Church, Richard; Ustin, Susan L.; Brass, James A. (Technical Monitor)
2001-01-01
Large urban wildfires throughout southern California have caused billions of dollars of damage and significant loss of life over the last few decades. Rapid urban growth along the wildland interface, high fuel loads and a potential increase in the frequency of large fires due to climatic change suggest that the problem will worsen in the future. Improved fire spread prediction and reduced uncertainty in assessing fire hazard would be significant, both economically and socially. Current problems in the modeling of fire spread include the role of plant community differences, spatial heterogeneity in fuels and spatio-temporal changes in fuels. In this research, we evaluated the potential of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data for providing improved maps of wildfire fuel properties. Analysis concentrated in two areas of Southern California, the Santa Monica Mountains and Santa Barbara Front Range. Wildfire fuel information can be divided into four basic categories: fuel type, fuel load (live green and woody biomass), fuel moisture and fuel condition (live vs senesced fuels). To map fuel type, AVIRIS data were used to map vegetation species using Multiple Endmember Spectral Mixture Analysis (MESMA) and Binary Decision Trees. Green live biomass and canopy moisture were mapped using AVIRIS through analysis of the 980 nm liquid water absorption feature and compared to alternate measures of moisture and field measurements. Woody biomass was mapped using L and P band cross polarimetric data acquired in 1998 and 1999. Fuel condition was mapped using spectral mixture analysis to map green vegetation (green leaves), nonphotosynthetic vegetation (NPV; stems, wood and litter), shade and soil. Summaries describing the potential of hyperspectral and SAR data for fuel mapping are provided by Roberts et al. and Dennison et al. To utilize remotely sensed data to assess fire hazard, fuel-type maps were translated into standard fuel models accessible to the FARSITE fire spread simulator. The FARSITE model and BEHAVE are considered industry standards for fire behavior analysis. Anderson level fuels map, generated using a binary decision tree classifier are available for multiple dates in the Santa Monica Mountains and at least one date for Santa Barbara. Fuel maps that will fill in the areas between Santa Barbara and the Santa Monica Mountains study sites are in progress, as part of a NASA Regional Earth Science Application Center, the Southern California Wildfire Hazard Center. Species-level maps, were supplied to fire managing agencies (Los Angeles County Fire, California Department of Forestry). Research results were published extensively in the refereed and non-refereed literature. Educational outreach included funding of several graduate students, undergraduate intern training and an article featured in the California Alliance for Minorities Program (CAMP) Quarterly Journal.
Jens T. Stevens; Brandon M. Collins; Jonathan W. Long; Malcolm P. North; Susan J. Prichard; Leland W. Tarnay; Angela M. White
2016-01-01
Fuel treatments in fire-suppressed mixed-conifer forests are designed to moderate potential wildfire behavior and effects. However, the objectives for modifying potential fire effects can vary widely, from improving fire suppression efforts and protecting infrastructure, to reintroducing low-severity fire, to restoring and maintaining variable forest structure and...
Impacts of climate on shrubland fuels and fire behavior in the Owyhee Basin, Idaho
NASA Astrophysics Data System (ADS)
Vogelmann, J. E.; Shi, H.; Hawbaker, T.; Li, Z.
2013-12-01
There is evidence that wildland fire is increasing as a function of global change. However, fire activity is spatially, temporally and ecologically variable across the globe, and our understanding of fire risk and behavior in many ecosystems is limited. After a series of severe fire seasons that occurred during the late 1990's in the western United States, the LANDFIRE program was developed with the goals of providing the fire community with objective spatial fuel data for assessing wildland fire risk. Even with access to the data provided by LANDFIRE, assessing fire behavior in shrublands in sagebrush-dominated ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation, the variable influence of understory vegetation including invasive species (e.g. cheatgrass), and prior fire history events. Climate is undoubtedly playing a major role, affecting the intra- and inter-annual variability in vegetation conditions, which in turn impacts fire behavior. In order to further our understanding of climate-vegetation-fire interactions in shrublands, we initiated a study in the Owyhee Basin, which is located in southwestern Idaho and adjacent Nevada. Our goals include: (1) assessing the relationship between climate and vegetation condition, (2) quantifying the range of temporal variability in grassland and shrubland fuel loads, (3) identifying methods to operationally map the variability in fuel loads, and (4) assessing how the variability in fuel loads affect fire spread simulations. To address these goals, we are using a wide variety of geospatial data, including remotely sensed time-series data sets derived from MODIS and Landsat, and climate data from DAYMET and PRISM. Remotely-sensed information is used to characterize climate-induced temporal variability in primary productivity in the Basin, where fire spread can be extensive after senescence when dry vegetation is added to dead fuel loads. Gridded climate data indicate that this area has become warmer and dryer over the previous three decades. We have also observed that fires are especially prevalent in areas that have high Normalized Difference Vegetation Index (NDVI) values in the spring, followed by low NDVI in the summer. At present we are concentrating on the temporally rich MODIS data to map spatial and temporal variability in live fuel loads. To translate NDVI to biomass, we are scaling the range of biomass values using data from the literature. We assume that departure from maximum NDVI, typically occurring during spring, to NDVI values later in the season are related to the proportion of live biomass transferred to dead biomass, which burns more readily than green biomass. Using the FARSITE fire spread model, our initial simulations show that the conversion from live herbaceous fuel to dead fuel increases the burn area by 30% compared with using default static fuel parameters. This indicates that current fuel models underestimate fire spread and areas that could potentially burn. Our study also indicates that a combined remote sensing product with good temporal resolution (MODIS) and spatial resolution (Landsat) is necessary to provide accurate information on the fuel dynamics in shrublands.
Spatial patterns in vegetation fires in the Indian region.
Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu
2008-12-01
In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.
Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites
Allen, Craig D.; Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Baisan, C.H.
2008-01-01
Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuen??os Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ???1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America. ?? IAWF 2008.
Modeling of Electrical Cable Failure in a Dynamic Assessment of Fire Risk
NASA Astrophysics Data System (ADS)
Bucknor, Matthew D.
Fires at a nuclear power plant are a safety concern because of their potential to defeat the redundant safety features that provide a high level of assurance of the ability to safely shutdown the plant. One of the added complexities of providing protection against fires is the need to determine the likelihood of electrical cable failure which can lead to the loss of the ability to control or spurious actuation of equipment that is required for safe shutdown. A number of plants are now transitioning from their deterministic fire protection programs to a risk-informed, performance based fire protection program according to the requirements of National Fire Protection Association (NFPA) 805. Within a risk-informed framework, credit can be taken for the analysis of fire progression within a fire zone that was not permissible within the deterministic framework of a 10 CFR 50.48 Appendix R safe shutdown analysis. To perform the analyses required for the transition, plants need to be able to demonstrate with some level of assurance that cables related to safe shutdown equipment will not be compromised during postulated fire scenarios. This research contains the development of new cable failure models that have the potential to more accurately predict electrical cable failure in common cable bundle configurations. Methods to determine the thermal properties of the new models from empirical data are presented along with comparisons between the new models and existing techniques used in the nuclear industry today. A Dynamic Event Tree (DET) methodology is also presented which allows for the proper treatment of uncertainties associated with fire brigade intervention and its effects on cable failure analysis. Finally a shielding analysis is performed to determine the effects on the temperature response of a cable bundle that is shielded from a fire source by an intervening object such as another cable tray. The results from the analyses demonstrate that models of similar complexity to existing cable failure techniques and tuned to empirical data can better approximate the temperature response of a cables located in tightly packed cable bundles. The new models also provide a way to determine the conditions insides a cable bundle which allows for separate treatment of cables on the interior of the bundle from cables on the exterior of the bundle. The results from the DET analysis show that the overall assessed probability of cable failure can be significantly reduced by more realistically accounting for the influence that the fire brigade has on a fire progression scenario. The shielding analysis results demonstrate a significant reduction in the temperature response of a shielded versus a non-shielded cable bundle; however the computational cost of using a fire progression model that can capture these effects may be prohibitive for performing DET analyses with currently available computational fluid dynamics models and computational resources.
2013-01-01
Background A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Methods Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. Results The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. Conclusions The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data. PMID:24192051
Geomorphic Implications of Fire and Slope Aspect in the Jemez Mountains, New Mexico, USA
NASA Astrophysics Data System (ADS)
Fitch, E. P.; Meyer, G. A.
2011-12-01
Following a fire, extensive erosion may occur on hillslopes due to reduced infiltration and increased runoff as well as a decrease in vegetative anchoring and surface roughness. This increased erosion and subsequent sedimentation on alluvial fans at the base of the hillslope may be the primary process of geomorphic change in fire-prone mountains in the Western US. Insolation differences on north and south facing slopes may also be another potential influence on geomorphic change due to soil moisture and vegetation differences, which may affect the spatial distribution of erosion as well as sediment transport processes. Due to the long recovery period of forest stands in fire-prone areas, it is important to understand the natural variability of erosion for the purposes of forest and river ecology and management as well as mass movement-flooding hazard. The 2002 Lakes Fire area in the Jemez Mountains, NM, provides a natural study area with incision of alluvial fans after the Lakes Fire exposing the internal structure of these fans. The study area displays steeper, drier ponderosa pine dominated south-facing slopes and less steep, moister Douglas-fir dominated north-facing slopes, which suggests that slope aspect may influence fire regime and post-fire erosion in the Jemez Mountains. In order to determine the importance of fire and aspect on erosion and sedimentation, over 15 sections within alluvial fans with both north and south aspect were studied. Debris flow, hyperconcentrated flow and stream flow make up the majority of sediment transport processes in this area. Therefore, deposits formed by these processes were described, and evidence for fire-related sedimentation was assessed. Additionally, the relative importance of sediment transport types in relation to north versus south slope aspects was examined. Finally, charcoal fragments within deposits from north and south aspects were analyzed in terms of their abundance and angularity in order to aid in estimating the severity of the fire event associated with the deposit. In this way, the importance of fire and aspect in influencing erosion and sediment transport was assessed for the study area.
NASA Astrophysics Data System (ADS)
McCarthy, Michael A.; Lindenmayer, David B.
2007-04-01
While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.
McCarthy, Michael A; Lindenmayer, David B
2007-04-01
While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.
Design and realization of disaster assessment algorithm after forest fire
NASA Astrophysics Data System (ADS)
Xu, Aijun; Wang, Danfeng; Tang, Lihua
2008-10-01
Based on GIS technology, this paper mainly focuses on the application of disaster assessment algorithm after forest fire and studies on the design and realization of disaster assessment based on GIS. After forest fire through the analysis and processing of multi-sources and heterogeneous data, this paper integrates the foundation that the domestic and foreign scholars laid of the research on assessment for forest fire loss with the related knowledge of assessment, accounting and forest resources appraisal so as to study and approach the theory framework and assessment index of the research on assessment for forest fire loss. The technologies of extracting boundary, overlay analysis, and division processing of multi-sources spatial data are available to realize the application of the investigation method of the burnt forest area and the computation of the fire area. The assessment provides evidence for fire cleaning in burnt areas and new policy making on restoration in terms of the direct and the indirect economic loss and ecological and environmental damage caused by forest fire under the condition of different fire danger classes and different amounts of forest accumulation, thus makes forest resources protection operated in a faster, more efficient and more economical way. Finally, this paper takes Lin'an city of Zhejiang province as a test area to confirm the method mentioned in the paper in terms of key technologies.
Clutter, Susan Wright; Bailey, Robert; Everly, Jeff C; Mercer, Karl
2009-11-01
Throughout the United States, clearance rates for arson cases remain low due to fire's destructive nature, subsequent suppression, and a misconception by investigators that no forensic evidence remains. Recent research shows that fire scenes can yield fingerprints if soot layers are removed prior to using available fingerprinting processes. An experiment applying liquid latex to sooted surfaces was conducted to assess its potential to remove soot and yield fingerprints after the dried latex was peeled. Latent fingerprints were applied to glass and drywall surfaces, sooted in a controlled burn, and cooled. Liquid latex was sprayed on, dried, and peeled. Results yielded usable prints within the soot prior to removal techniques, but no further fingerprint enhancement was noted with Ninhydrin. Field studies using liquid latex will be continued by the (US) Virginia Fire Marshal Academy but it appears that liquid latex application is a suitable soot removal method for forensic applications.
Toxic fluoride gas emissions from lithium-ion battery fires.
Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik
2017-08-30
Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.
NASA Astrophysics Data System (ADS)
Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly
2010-05-01
Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.
Arch, B N; Thurston, M N
2013-06-01
Deaths and injuries related to fires are largely preventable events. In the UK, a plethora of community-based fire safety initiatives have been introduced over the last 25 years, often led by fire and rescue services, to address this issue. This paper focuses on one such initiative--home safety assessments (HSAs). Cheshire Fire and Rescue Service (in England) implemented a uniquely large-scale HSA intervention. This paper assesses its effectiveness. The impact of HSAs was assessed in relation to three outcomes: accidental dwelling fires (ADFs), ADFs contained and injuries arising from ADFs. A two-period comparison in fire-related rates of incidences in Cheshire between 2002 and 2011 was implemented, using Poisson regression and adjusting for the national temporal trend using a control group comprising the 37 other English non-metropolitan fire-services. Significant reductions were observed in rates of ADFs [incidence rate ratios (IRR): 0.79, 95% confidence interval (CI): 0.74-0.83, P < 0.001, 2002/03-2007/08 versus 2008/09-2010/11] and associated injuries (IRR: 0.49, 95% CI: 0.39-0.60, P < 0.001, 2002/03-2006/07 versus 2007/08-2010/11), but not in the proportion of fires contained to room of origin. There is strong evidence to suggest that the intervention was successful in reducing domestic fires and related injuries.
Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire
NASA Astrophysics Data System (ADS)
Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.
2017-12-01
Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.
Mackay, Christopher E; Vivanco, Stephanie N; Yeboah, George; Vercellone, Jeff
2016-09-01
There have been concerns that fire-derived acid gases could aggravate thermal burns for individuals wearing synthetic flame retardant garments. A comparative risk assessment was performed on three commercial flame retardant materials with regard to relative hazards associated with acidic combustion gases to skin during a full engulfment flash fire event. The tests were performed in accordance with ASTM F1930 and ISO 13506: Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Three fire retardant textiles were tested: an FR treated cotton/nylon blend, a low Protex(®) modacrylic blend, and a medium Protex(®) modacrylic blend. The materials, in the form of whole body coveralls, were subjected to propane-fired flash conditions of 84kW/m(2) in a full sized simulator for a duration of either 3 or 4s. Ion traps consisting of wetted sodium carbonate-impregnated cellulose in Teflon holders were placed on the chest and back both above and under the standard undergarments. The ion traps remained in position from the time of ignition until 5min post ignition. Results indicated that acid deposition did increase with modacrylic content from 0.9μmol/cm(2) for the cotton/nylon, to 12μmol/cm(2) for the medium modacrylic blend. The source of the acidity was dominated by hydrogen chloride. Discoloration was inversely proportional to the amount of acid collected on the traps. A risk assessment was performed on the potential adverse impact of acid gases on both the skin and open wounds. The results indicated that the deposition and dissolution of the acid gases in surficial fluid media (perspiration and blood plasma) resulted in an increase in acidity, but not sufficient to induce irritation/skin corrosion or to cause necrosis in open third degree burns. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wildfire Danger Potential in California
NASA Astrophysics Data System (ADS)
Kafatos, M.; Myoung, B.; Kim, S. H.; Fujioka, F. M.; Kim, J.
2015-12-01
Wildfires are an important concern in California (CA) which is characterized by the semi-arid to arid climate and vegetation types. Highly variable winter precipitation and extended hot and dry warm season in the region challenge an effective strategic fire management. Climatologically, the fire season which is based on live fuel moisture (LFM) of generally below 80% in Los Angeles County spans 4 months from mid-July to mid-November, but it has lasted over 7 months in the past several years. This behavior is primarily due to the ongoing drought in CA during the last decade, which is responsible for frequent outbreaks of severe wildfires in the region. Despite their importance, scientific advances for the recent changes in wildfire risk and effective assessments of wildfire risk are lacking. In the present study, we show impacts of large-scale atmospheric circulations on an early start and then extended length of fire seasons. For example, the strong relationships of North Atlantic Oscillation (NAO) with springtime temperature and precipitation in the SWUS that was recently revealed by our team members have led to an examination of the possible impact of NAO on wildfire danger in the spring. Our results show that the abnormally warm and dry spring conditions associated with positive NAO phases can cause an early start of a fire season and high fire risks throughout the summer and fall. For an effective fire danger assessment, we have tested the capability of satellite vegetation indices (VIs) in replicating in situ LFM of Southern CA chaparral ecosystems by 1) comparing seasonal/interannual characteristics of in-situ LFM with VIs and 2) developing an empirical model function of LFM. Unlike previous studies attempting a point-to-point comparison, we attempt to examine the LFM relationship with VIs averaged over different areal coverage with chamise-dominant grids (i.e., 0.5 km to 25 km radius circles). Lastly, we discuss implications of the results for fire danger assessment and prediction.
Use of prescribed fire to reduce wildfire potential
Robert E. Martin; J. Boone Kauffman
1989-01-01
Fires were a part of our wildlands prehistorically. Prescribed burning reduces fire hazard and potential fire behavior primarily by reducing fuel quantity and continuity. Fuel continuity should be considered on the micro scale within stands, the mid-scale among, and the macro-scale among watersheds or entire forests. Prescribed fire is only one of the tools which can...
NASA Astrophysics Data System (ADS)
Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.
2012-12-01
Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009; Finney et al. 2009; Salis et al. 2012 accepted). In this work, we employed wildfire simulation methods to quantify wildfire exposure to human and ecological values for the island of Sardinia, Italy. The work was focused on the risk and exposure posed by large fires (e.g. 100 - 10,000 ha), and considers historical weather, ignition patterns and fuels. We simulated 100,000 fires using burn periods that replicated the historical size distribution on the Island, and an ignition probability grid derived from historic ignition data. We then examine spatial variation in three exposure components (burn probability, flame length, fire size) among important human and ecological values. The results allowed us to contract exposure among and within the various features examined, and highlighted the importance of human factors in shaping wildfire exposure in Sardinia. The work represents the first application of burn probability modeling in the Mediterranean region, and sets the stage for expanded work in the region to quantify risk from large fires
NASA Astrophysics Data System (ADS)
Westberg, David; Soja, Amber; Stackhouse, Paul, Jr.
2010-05-01
Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Boreal systems contain the largest pool of terrestrial carbon, and Russia holds 2/3 of the global boreal forests. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Meteorological parameters influence fire danger and fire is a catalyst for ecosystem change. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. Our data consists of NASA Langley Research Center (LaRC)-derived fire weather indices (FWI) and National Climatic Data Center (NCDC) surface station-derived FWI on a domain from 50°N-80°N latitude and 70°E-170°W longitude and the fire season from April through October for the years of 1999, 2002, and 2004. Both of these are calculated using the Canadian Forest Service (CFS) FWI, which is based on local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The large-scale (1°) LaRC product uses NASA Goddard Earth Observing System version 4 (GEOS-4) reanalysis and NASA Global Precipitation Climatology Project (GEOS-4/GPCP) data to calculate FWI. CFS Natural Resources Canada uses Geographic Information Systems (GIS) to interpolate NCDC station data and calculate FWI. We compare the LaRC GEOS- 4/GPCP FWI and CFS NCDC FWI based on their fraction of 1° grid boxes that contain satellite-derived fire counts and area burned to the domain total number of 1° grid boxes with a common FWI category (very low to extreme). These are separated by International Geosphere-Biosphere Programme (IGBP) 1°x1° resolution vegetation types to determine and compare fire regimes in each FWI/ecosystem class and to estimate the fraction of each of the 18 IGBP ecosystems burned, which are dependent on the FWI. On days with fire counts, the domain total of 1°x1° grid boxes with and without daily fire counts and area burned are totaled. The fraction of 1° grid boxes with fire counts and area burned to the total number of 1° grid boxes having common FWI category and vegetation type are accumulated, and a daily mean for the burning season is calculated. The mean fire counts and mean area burned plots appear to be well related. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to assess fire weather danger and fire regimes, so these data can be confidently used to predict future fire regimes using large-scale fire weather data. Specifically, we related large-scale fire weather, area burned, and the amount of fire-induced ecosystem change. Both the LaRC and CFS FWI showed gradual linear increase in fraction of grid boxes with fire counts and area burned with increasing FWI category, with an exponential increase in the higher FWI categories in some cases, for the majority of the vegetation types. Our analysis shows a direct correlation between increased fire activity and increased FWI, independent of time or the severity of the fire season. During normal and extreme fire seasons, we noticed the fraction of fire counts and area burned per 1° grid box increased with increasing FWI rating. Given this analysis, we are confident large-scale weather and climate data, in this case from the GEOS-4 reanalysis and the GPCP data sets, can be used to accurately assess future fire potential. This increases confidence in the ability of large-scale IPCC weather and climate scenarios to predict future fire regimes in boreal regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; Mciver, J.D.; Metlen, K.; Skinner, C.N.; Youngblood, A.
2009-01-01
Abstract. Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical-only treatments using whole-tree harvest systems were all effective at reducing potential fire severity under severe fire weather conditions. Retaining the largest trees within stands also increased fire resistance. ?? 2009 by the Ecological Society of America.
Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.
Sowerby, B D
2009-09-01
Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.
Regional air quality impacts of future fire emissions in Sumatra and Kalimantan
NASA Astrophysics Data System (ADS)
Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.
2015-05-01
Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and subsequent health effects.
Emergency assessment of potential debris-flow peak discharges, Missionary Ridge fire, Colorado
Cannon, Susan H.; Rea, Alan H.; Gleason, J. Andrew; Garcia, Stephen P.
2002-01-01
These maps present the results of assessments of peak discharges that can potentially be generated by debris flows issuing from the basins burned by the Missionary Ridge fire of June 9 through July 14, 2002, near Durango, Colorado. The maps are based on a regression model for debris-flow peak discharge normalized by average storm intensity as a function of basin gradient and burned extent, and limited field checking. A range of potential peak discharges that could be produced from each of the burned basins between 1 ft3/s (0.03 m3/s) and 6,446 ft3/s (183 m3/s) is calculated for the 5-year, 1-hour storm of 0.80 inches (20 mm). Potential peak discharges between 1 ft3/s (0.03 m3/s) and >8,000 ft3/s (227 m3/s) are calculated for the 25-year, 1-hour storm of 1.3 inches (33 mm) and for the 100-year, 1-hour storm of 1.8 inches (46 mm). These maps are intended for use by emergency personnel to aid in the preliminary design of mitigation measures, and for the planning of evacuation timing and routes.
Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.
2016-08-01
Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.
Crown fuel spatial variability and predictability of fire spread
Russell A. Parsons; Jeremy Sauer; Rodman R. Linn
2010-01-01
Fire behavior predictions, as well as measures of uncertainty in those predictions, are essential in operational and strategic fire management decisions. While it is becoming common practice to assess uncertainty in fire behavior predictions arising from variability in weather inputs, uncertainty arising from the fire models themselves is difficult to assess. This is...
Assessing accuracy of point fire intervals across landscapes with simulation modelling
Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall
2007-01-01
We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...
NASA Technical Reports Server (NTRS)
Schjelderup, H. C.; Cook, C. Q.; Snyder, E.; Henning, B.; Hosford, J.; Gilles, D. L.; Swanstrom, C. W.
1980-01-01
The potential hazard to electrical and electronic devices should there be a release of free carbon fibers due to an aircraft crash and fire was assessed. Exposure and equipment sensitivity data were compiled for a risk analysis. Results are presented in the following areas: DC-9/DC-10 electrical/electronic component characterization; DC-9 and DC-10 fiber transfer functions; potential for transport aircraft equipment exposure to carbon fibers; and equipment vulnerability assessment. Results reflect only a negligible increase in risk for the DC-9 and DC-10 fleets either now or projected to 1993.
Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.
2013-01-01
Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917
Setterfield, Samantha A; Rossiter-Rachor, Natalie A; Douglas, Michael M; Wainger, Lisa; Petty, Aaron M; Barrow, Piers; Shepherd, Ian J; Ferdinands, Keith B
2013-01-01
Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1) in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1) resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.
Forest biomass supply for bioenergy in the southeast: Evaluating assessment scale
Christopher S. Galik; Robert C. Abt
2012-01-01
This study evaluates the potential impacts of expanded forest biomass use in the Southeast from present year through 2036, focusing on the forest supply, industrial, and GHG emissions implications of maximizing biomass co-firing with coal. We model demand scenarios at the state, subregional, and regional levels, and assess the influence of study scale on the observed...
ArcFuels: an ArcMap toolbar for fuel treatment planning and wildfire risk assessment
Nicole M. Vaillant; Alan A. Ager
2014-01-01
Fire behavior modeling and geospatial analysis can provide tremendous insight to land managers in defining both the benefits and potential impacts of fuel treatments in the context of land management goals and public expectations. ArcFuels is a streamlined fuel management planning and wildfire risk assessment system that creates a trans-scale (stand to large landscape...
Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle
2015-01-01
Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires.
Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle
2015-01-01
Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires. PMID:25691965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, J.S.
DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, John S
DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.
Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron
2011-01-01
A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...
An algorithm to detect fire activity using Meteosat: fine tuning and quality assesment
NASA Astrophysics Data System (ADS)
Amraoui, M.; DaCamara, C. C.; Ermida, S. L.
2012-04-01
Hot spot detection by means of sensors on-board geostationary satellites allows studying wildfire activity at hourly and even sub-hourly intervals, an advantage that cannot be met by polar orbiters. Since 1997, the Satellite Application Facility for Land Surface Analysis has been running an operational procedure that allows detecting active fires based on information from Meteosat-8/SEVIRI. This is the so-called Fire Detection and Monitoring (FD&M) product and the procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 μm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRAAQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood. Generally speaking, the observed fire incidence compares well against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. However, values of probability of detection (POD) tend to be quite low, a result that may be partially expected by the finer resolution of MODIS. The aim of the present study is to make a systematic assessment of the impacts on POD and False Alarm Ratio (FAR) of the several parameters that are set in the algorithms. Such parameters range from the threshold values of brightness temperature in the IR3.9 and 10.8 channels that are used to select potential fire pixels up to the extent of the background grid and thresholds used to statistically characterize the radiometric departures of a potential pixel from the respective background. The impact of different criteria to identify pixels contaminated by clouds, smoke and sun glint is also evaluated. Finally, the advantages that may be brought to the algorithm by adding contextual tests in the time domain are discussed. The study lays the grounds to the development of improved quality flags that will be integrated in the FD&M product in the nearby future.
Field modeling of heat transfer in atrium
NASA Astrophysics Data System (ADS)
Nedryshkin, Oleg; Gravit, Marina; Bushuev, Nikolay
2017-10-01
The results of calculating fire risk are an important element in the system of modern fire safety assessment. The article reviews the work on the mathematical modeling of fire in the room. A comparison of different calculation models in the programs of fire risk assessment and fire modeling was performed. The results of full-scale fire tests and fire modeling in the FDS program are presented. The analysis of empirical and theoretical data on fire modeling is made, a conclusion is made about the modeling accuracy in the FDS program.
Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak
2005-01-01
The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...
Z.A Holden; P. Morgan; A.M.S. Smith; M Rollins; P.E. Gessler
2005-01-01
We evaluated the potential of two novel thermally enhanced Landsat Thematic Mapper (TM)-derived spectral indices for discriminating burned areas and for producing fire perimeter data (as a potential surrogate to digital fire atlas data) within two wildland fires (1985 and 1993) in ponderosa pine (Pinus ponderosa) forests of the Gila Wilderness, New...
NASA Astrophysics Data System (ADS)
Koplitz, Shannon N.; Mickley, Loretta J.; Marlier, Miriam E.; Buonocore, Jonathan J.; Kim, Patrick S.; Liu, Tianjia; Sulprizio, Melissa P.; DeFries, Ruth S.; Jacob, Daniel J.; Schwartz, Joel; Pongsiri, Montira; Myers, Samuel S.
2016-09-01
In September-October 2015, El Niño and positive Indian Ocean Dipole conditions set the stage for massive fires in Sumatra and Kalimantan (Indonesian Borneo), leading to persistently hazardous levels of smoke pollution across much of Equatorial Asia. Here we quantify the emission sources and health impacts of this haze episode and compare the sources and impacts to an event of similar magnitude occurring under similar meteorological conditions in September-October 2006. Using the adjoint of the GEOS-Chem chemical transport model, we first calculate the influence of potential fire emissions across the domain on smoke concentrations in three receptor areas downwind—Indonesia, Malaysia, and Singapore—during the 2006 event. This step maps the sensitivity of each receptor to fire emissions in each grid cell upwind. We then combine these sensitivities with 2006 and 2015 fire emission inventories from the Global Fire Assimilation System (GFAS) to estimate the resulting population-weighted smoke exposure. This method, which assumes similar smoke transport pathways in 2006 and 2015, allows near real-time assessment of smoke pollution exposure, and therefore the consequent morbidity and premature mortality, due to severe haze. Our approach also provides rapid assessment of the relative contribution of fire emissions generated in a specific province to smoke-related health impacts in the receptor areas. We estimate that haze in 2015 resulted in 100 300 excess deaths across Indonesia, Malaysia and Singapore, more than double those of the 2006 event, with much of the increase due to fires in Indonesia’s South Sumatra Province. The model framework we introduce in this study can rapidly identify those areas where land use management to reduce and/or avoid fires would yield the greatest benefit to human health, both nationally and regionally.
Using unplanned fires to help suppressing future large fires in Mediterranean forests.
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.
Crofton, Elizabeth J.; Nenov, Miroslav N.; Zhang, Yafang; Scala, Federico; Page, Sean A.; McCue, David L.; Li, Dingge; Hommel, Jonathan D.; Laezza, Fernanda; Green, Thomas A.
2017-01-01
Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types. PMID:28126496
NASA Astrophysics Data System (ADS)
Martinelli, Elisa; Michetti, Alessandro Maria; Colombaroli, Daniele; Mazzola, Eleonora; Motella De Carlo, Sila; Livio, Franz; Gilli, Adrian; Ferrario, Maria Francesca; Höbig, Nicole; Brunamonte, Fabio; Castelletti, Lanfredo; Tinner, Willy
2017-04-01
Combined pollen, charcoal and modeling evidence from the Insubria Region suggests that fire was a major driver of late Holocene vegetation change. However, the extent and timing of fire response dynamics are not clear yet. We use lacustrine sediments from Lago di Como (N-Italy, S-Alps) to assess if the reconstructed vegetation and fire dynamics were relevant at large scales and if they coincided in time with those observed at smaller sites. The lake, due to its size (142 km2) and economic potential, was very attractive for early land use and human presence in this area is well documented since ca. 10,000 yrs ago (Mesolithic). We used pollen, plant macrofossils and charcoal to reconstruct the vegetation composition and fire activity. During the Younger Dryas and the Early Holocene until ca. 8000 cal BP natural dynamics prevailed. Subsequently, land use and slash-and-burn activities increased at the Mesolithic-Neolithic transition and became widespread around ca. 6500 cal BP. Microscopic charcoal and numerical analyses demonstrate that anthropogenic fires had a determinant influence on long-term vegetation dynamics at regional scales in Insubria. Microscopic charcoal and pollen and spores indicative of land use show that human pressure intensified after ca. 5300 cal yr BP and even more since ca. 4300 cal yr BP. Our results suggest that important species which disappeared or were strongly reduced by land use and fire (e.g. Abies alba, Tilia, Ulmus) will potentially reestablish in the Lago di Como area and elsewhere in Insubria, if land abandonment initiated in the 1950s will continue.
Utilizing multi-sensor fire detections to map fires in the United States
Howard, Stephen M.; Picotte, Joshua J.; Coan, Michael
2014-01-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 “unknown” or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
Utilizing Multi-Sensor Fire Detections to Map Fires in the United States
NASA Astrophysics Data System (ADS)
Howard, S. M.; Picotte, J. J.; Coan, M. J.
2014-11-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
NASA Astrophysics Data System (ADS)
Sparks, A. M.; Kolden, C.; Smith, A. M.
2016-12-01
Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with changing climate. A challenge for landscape level assessment of fire effects, termed burn severity, is that current assessments provide very little information regarding vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. To address these limitations, we evaluated an alternative dose-response methodology for quantifying fire effects that attempts to bridge fire combustion dynamics and ecophysiology. Specifically, we conducted a highly controlled, laboratory assessment of seedling response to increasing doses of fire radiative energy applied through surface fires, for two western U.S. conifer species. Seedling physiology and spectral reflectance were acquired pre- and up to 1 year post-fire. Post-fire mortality, physiological performance, and spectral reflectance were strongly related with fire radiative energy density (FRED: J m-2) dose. To examine how these relationships change with tree size and age, we conducted small prescribed fires at the tree scale (35 m2) in a mature conifer stand. Radial growth and resin duct defenses were assessed on the mature conifer trees following the prescribed fires. Differences in dose-response relationships between seedlings and mature trees indicate the importance of fire behavior (e.g., flaming-dominated versus smoldering-dominated combustion) in characterizing these relationships. Ultimately, these results suggest that post-fire impacts on growth of surviving seedlings and mature trees require modes of heat transfer to impact tree canopies.
77 FR 45650 - Interior Fire Program Assessment 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... DEPARTMENT OF THE INTERIOR Office of the Secretary Interior Fire Program Assessment 2012 AGENCY: Office of Wildland Fire, Interior. ACTION: Notice of Tribal consultations and informational meetings. SUMMARY: The Office of Wildland Fire is announcing tribal consultations to discuss the following topics...
Assessment of BART Fire-Hardening Programs.
DOT National Transportation Integrated Search
1982-09-01
This report presents the results of an assessment of the Bay Area Rapid Transit District (BART) vehicle fire hardening. The report assesses the overall effort to improve the fire safety of the current BART vehicles through the removal of prospective ...
Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.
Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer
2008-06-20
Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.
Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J
2014-08-01
Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics. Copyright © 2014 Elsevier Ltd. All rights reserved.
A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments
NASA Astrophysics Data System (ADS)
Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.
2009-12-01
The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual changes in biomass pools. Vegetation succession among LANDFIRE vegetation types is initiated using burn perimeter and severity data at the end of each annual simulation. Results from NDMS are used to update land-use/land-cover layers used by FORE-SCE and also transferred to GEMS for quantifying and updating carbon stocks and greenhouse gas fluxes. In this presentation, we present: 1) an overview of NDMS and its role in USGS's national ecological carbon sequestration assessment; 2) validation of NDMS using historic data; and 3) initial forecasts of disturbances for the southeastern United States and their impacts on greenhouse gas emissions, and post-fire carbon stocks and fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.
1992-12-01
As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and fundedmore » by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.« less
Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853
Cooking with Fire: The Mutagenicity- and PAH-Emission Factors of Solid-Fuel Cookstoves
Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid...
Morrison, Katherine D; Kolden, Crystal A
2015-03-15
Wildfire is a common disturbance that can significantly alter vegetation in watersheds and affect the rate of sediment and nutrient transport to adjacent nearshore oceanic environments. Changes in runoff resulting from heterogeneous wildfire effects are not well-understood due to both limitations in the field measurement of runoff and temporally-limited spatial data available to parameterize runoff models. We apply replicable, scalable methods for modeling wildfire impacts on sediment and nonpoint source pollutant export into the nearshore environment, and assess relationships between wildfire severity and runoff. Nonpoint source pollutants were modeled using a GIS-based empirical deterministic model parameterized with multi-year land cover data to quantify fire-induced increases in transport to the nearshore environment. Results indicate post-fire concentration increases in phosphorus by 161 percent, sediments by 350 percent and total suspended solids (TSS) by 53 percent above pre-fire years. Higher wildfire severity was associated with the greater increase in exports of pollutants and sediment to the nearshore environment, primarily resulting from the conversion of forest and shrubland to grassland. This suggests that increasing wildfire severity with climate change will increase potential negative impacts to adjacent marine ecosystems. The approach used is replicable and can be utilized to assess the effects of other types of land cover change at landscape scales. It also provides a planning and prioritization framework for management activities associated with wildfire, including suppression, thinning, and post-fire rehabilitation, allowing for quantification of potential negative impacts to the nearshore environment in coastal basins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Projected changes in daily fire spread across Canada over the next century
NASA Astrophysics Data System (ADS)
Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.
2017-02-01
In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.
Model-data frameworks for determining greenhouse gas implications of bioenergy landscapes in the US
NASA Astrophysics Data System (ADS)
Hudiburg, T. W.; Kent, J.; DeLucia, E. H.; Law, B. E.
2017-12-01
A sustainable, carbon-negative, bio-based portion of the energy sector may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Woody biomass from harvest residues and forest health thinning operations have also been proposed, however the GHG mitigation potential is less clear. Through integration of observations, ecosystem, and economic models we have assessed the potential for a US Renewable Fuel Standard (RFS) to displace gasoline and reduce GHG emissions from the transportation sector, through the use of cellulosic biofuels (e.g. perennial grasses). We found that 2022 US transportation sector GHG emissions are decreased by 7.0 ± 2.5%; an estimate that is 50% less than those unconstrained by economic feasibility. Also, through integration of observations, ecosystem modeling, and life cycle assessment, we investigated potential carbon mitigation by replacing an Oregon coal plant with wood (bio-coal) from harvest residues and thinning operations in forests vulnerable to drought and fire. We found that carbon emissions varied from no change to moderate increases compared to the current emissions from the coal plant depending on transportation distance, energy inputs for conversion to bio-coal, and avoided emissions from fire and drought. Our work indicates that integrated assessment using ecosystem and economic models that are constrained by observations is required to evaluate potential GHG and carbon mitigation scenarios from varied feedstock sources.
Schoennagel, Tania; Nelson, Cara R; Theobald, David M; Carnwath, Gunnar C; Chapman, Teresa B
2009-06-30
Because of increasing concern about the effects of catastrophic wildland fires throughout the western United States, federal land managers have been engaged in efforts to restore historical fire behavior and mitigate wildfire risk. During the last 5 years (2004-2008), 44,000 fuels treatments were implemented across the western United States under the National Fire Plan (NFP). We assessed the extent to which these treatments were conducted in and near the wildland-urban interface (WUI), where they would have the greatest potential to reduce fire risk in neighboring homes and communities. Although federal policies stipulate that significant resources should be invested in the WUI, we found that only 3% of the area treated was within the WUI, and another 8% was in an additional 2.5-km buffer around the WUI, totaling 11%. Only 17% of this buffered WUI is under federal ownership, which significantly limits the ability of federal agencies to implement fire-risk reduction treatments near communities. Although treatments far from the WUI may have some fire mitigation benefits, our findings suggest that greater priority must be given to locating treatments in and near the WUI, rather than in more remote settings, to satisfy NFP goals of reducing fire risk to communities. However, this may require shifting management and policy emphasis from public to private lands.
NASA Astrophysics Data System (ADS)
Schneider, P.; Roberts, D. A.
2008-12-01
Wildfire is a significant natural disturbance mechanism in Southern California. Assessing spatial patterns of wildfire susceptibility requires estimates of the live and dead fractions of vegetation. The Fire Potential Index (FPI), which is currently the only operationally computed fire susceptibility index incorporating remote sensing data, estimates such fractions using a relative greenness measure based on time series of vegetation index images. This contribution assesses the potential of Multiple Endmember Spectral Mixture Analysis (MESMA) for deriving such fractions from single MODIS images without the need for a long remote sensing time series, and investigates the applicability of such MESMA-derived fractions for mapping dynamic fire susceptibility in Southern California. Endmembers for MESMA were selected from a library of reference endmembers using Constrained Reference Endmember Selection (CRES), which uses field estimates of fractions to guide the selection process. Fraction images of green vegetation, non-photosynthetic vegetation, soil, and shade were then computed for all available 16-day MODIS composites between 2000 and 2006 using MESMA. Initial results indicate that MESMA of MODIS imagery is capable of providing reliable estimates of live and dead vegetation fraction. Validation against in situ observations in the Santa Ynez Mountains near Santa Barbara, California, shows that the average fraction error for two tested species was around 10%. Further validation of MODIS-derived fractions was performed against fractions from high-resolution hyperspectral data. It was shown that the fractions derived from data of both sensors correlate with R2 values greater than 0.95. MESMA-derived live and dead vegetation fractions were subsequently tested as a substitute to relative greenness in the FPI algorithm. FPI was computed for every day between 2000 and 2006 using the derived fractions. Model performance was then tested by extracting FPI values for historical fire events and random no-fire events in Southern California for the same period and developing a logistic regression model. Preliminary results show that an FPI based on MESMA-derived fractions has the potential to deliver similar performance as the traditional FPI but requiring a greatly reduced data volume and using an approach based on physical rather than empirical relationships.
Long, Clive G; Banyard, Ellen; Fulton, Barbara; Hollin, Clive R
2014-09-01
Arson and fire-setting are highly prevalent among patients in secure psychiatric settings but there is an absence of valid and reliable assessment instruments and no evidence of a significant approach to intervention. To develop a semi-structured interview assessment specifically for fire-setting to augment structured assessments of risk and need. The extant literature was used to frame interview questions relating to the antecedents, behaviour and consequences necessary to formulate a functional analysis. Questions also covered readiness to change, fire-setting self-efficacy, the probability of future fire-setting, barriers to change, and understanding of fire-setting behaviour. The assessment concludes with indications for assessment and a treatment action plan. The inventory was piloted with a sample of women in secure care and was assessed for comprehensibility, reliability and validity. Staff rated the St Andrews Fire and Risk Instrument (SAFARI) as acceptable to patients and easy to administer. SAFARI was found to be comprehensible by over 95% of the general population, to have good acceptance, high internal reliability, substantial test-retest reliability and validity. SAFARI helps to provide a clear explanation of fire-setting in terms of the complex interplay of antecedents and consequences and facilitates the design of an individually tailored treatment programme in sympathy with a cognitive-behavioural approach. Further studies are needed to verify the reliability and validity of SAFARI with male populations and across settings.
Dirty Snow, Atmospheric Warming, and Climate Feedbacks from Boreal Black Carbon Emissions
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Zender, C. S.; Randerson, J. T.; Jin, Y.
2005-12-01
Black carbon (BC) emitted from boreal fires darkens snow and sea-ice surfaces, increases solar absorption in the atmosphere, and decreases the incident flux at the surface. Although global surface forcing of darkened snow/ice is small relative to atmospheric forcing, the former directly triggers ice-albedo feedback, whereas the latter directly alters the atmospheric lapse rate. This highlights the importance of examining climate feedback strength as well as instantaneous forcings. We used a coupled land-atmosphere GCM (NCAR CAM3) to compare the relative forcings and climate feedbacks of BC emitted from a suite of boreal forest fires over the last decade, accounting for both enhanced snow/ice and atmospheric absorption by BC. The net change in absorbed energy at the surface was about three times greater than the instantaneous surface forcing when BC interactively heated the snow. Timing and location of fires determined the magnitude of darkened snow/ice feedback potential. We also assessed climate feedback strength from BC emitted globally during extreme high and low fire years, including the 1998 fire season.
Wildland fire limits subsequent fire occurrence
Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird
2016-01-01
Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...
NASA Astrophysics Data System (ADS)
Cannon, S. H.; Perry, S. C.; Staley, D. M.
2010-12-01
The 2009 Station fire burned through portions of the steep, rugged terrain of the San Gabriel Mountains in southern California with a known history of producing large magnitude debris flows following fires. In response to the emergency, the U.S. Geological Survey released an assessment of debris-flow hazards as maps showing estimates of the probability and volume of debris-flow production from 678 burned drainage basins, and the areas that may be inundated by debris flows. The assessment was based on statistical-empirical models developed from post-fire hydrologic-response monitoring data throughout southern California steeplands. The intent of the assessment was to provide state-of-the-art information about potential debris-flow impacts to the public, and quantitative data critical for mitigation, resource-deployment and evacuation decisions by land-management, city and county public-works and flood-control, and emergency-response agencies. Here, we describe a research scientist perspective of the hits and misses associated with the release of this information. Release of the assessment was accompanied by an extensive multi-agency public information campaign. Hazards information was provided to the media and presented at numerous well-attended public meetings organized by local politicians, homeowner and religious associations, city councils, and a multi-agency response team. Meetings targeted to specific ethnic and religious groups resulted in increased attendance by members of these groups. Even with the extensive information campaign, the public response to both mandatory and voluntary evacuation orders was low, and decreased with each sequential winter storm. Interviews with local residents indicated that the low compliance could be attributed to: 1) a lack of a personal understanding of just how dangerous and destructive debris flows can be, 2) inconsistent messaging from different agencies regarding potential magnitudes of a debris-flow response, 3) a poor understanding of the uncertainties inherent to both weather and debris-flow predictions, and 4) a desire to protect personal property. Communication on a one-to-one basis throughout the storm season was necessary to avoid this last, all-too-human tendency. These observations also indicate that effective evacuations in response to debris-flow hazards require an increased awareness of the potential magnitudes and impacts by all parties involved, and this awareness must be established well in advance of any emergency. Most public-response agencies were receptive and appreciative of the information provided, although some were not. The information included in the hazard assessment was used as intended by numerous agencies, and many requested the GIS shapefiles so they would have the capability to generate maps for specific areas of responsibility. However, not every agency had the flexibility to adopt new information during the crisis. A state of emergency is not a good time to advocate for acceptance of new approaches or techniques.
[Study on standards for safe and health-protective zone in firework plant].
Wu, Y; Wang, Q; Shi, J; Shao, Q
1999-03-30
A retrospective investigation on technology and situation in the production of fireworks, the cause and hazard consequences of accidents in blossom firework enterprises was carried out. The risk factors and their origins, the potential effects on surrounding environments and residents, the manufacture processes producing special potential energy in these enterprises were summarized and assessed. In addition, the consequences of explosive fire accidents were assessed retrospectively by the principle of explosion mechanics and Hopkinson Scaling Law. The safe and health-protective zone of the blossom firework plant was suggested.
Dietary response of sympatric deer to fire using stable isotope analysis of liver tissue
Walter, W. David; Zimmerman, T.J.; Leslie, David M.; Jenks, J.A.
2009-01-01
Carbon (??13C) and nitrogen (??15N) isotopes in biological samples from large herbivores identify photosynthetic pathways (C3 vs. C4) of plants they consumed and can elucidate potential nutritional characteristics of dietary selection. Because large herbivores consume a diversity of forage types, ??13C and ??15N in their tissue can index ingested and assimilated diets through time. We assessed ??13C and ??15N in metabolically active liver tissue of sympatric mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus) to identify dietary disparity resulting from use of burned and unburned areas in a largely forested landscape. Interspecific variation in dietary disparity of deer was documented 2-3 years post-fire in response to lag-time effects of vegetative response to burning and seasonal (i.e., summer, winter) differences in forage type. Liver ??13C for mule deer were lower during winter and higher during summer 2 years post-fire on burned habitat compared to unburned habitat suggesting different forages were consumed by mule deer in response to fire. Liver ??15N for both species were higher on burned than unburned habitat during winter and summer suggesting deer consumed more nutritious forage on burned habitat during both seasons 2 and 3 years post-fire. Unlike traditional methods of dietary assessment that do not measure uptake of carbon and nitrogen from dietary components, analyses of stable isotopes in liver or similar tissue elucidated ??13C and ??15N assimilation from seasonal dietary components and resulting differences in the foraging ecology of sympatric species in response to fire.
The global distribution of ecosystems in a world without fire.
Bond, W J; Woodward, F I; Midgley, G F
2005-02-01
This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.
Effects of Fire on Understory Vegetation Communities in Siberian Boreal Forests and Alaskan Tundra
NASA Astrophysics Data System (ADS)
Pena, H., III; Alexander, H. D.; Natali, S.; Loranty, M. M.; Holmes, R. M.; Mack, M. C.; Schade, J. D.; Mann, P. J.; Davydov, S. P.; Frey, B.; Zimov, N.; Jardine, L. E.
2017-12-01
Fire is an important disturbance in Arctic ecosystems that is increasing in frequency and severity as a result of climate warming. Fire alters the landscape, changes soil conditions, and influences vegetation regrowth, favoring early-successional plants and those with well-established root systems capable of surviving fire. Post-fire vegetation establishment contributes to the recovery of the soil organic layer (SOL), which insulates the soil and protects soil and permafrost carbon pools. In order to better understand successional dynamics following fire in the Arctic we assessed the short-(years) and long-(decades) term effects of fire on vegetation communities, SOL depth, and thaw depth across fire-affected sites located in two regions of the Arctic- a 76-year old fire scar in a larch forest in Siberia near Cherskiy, Russia, and a 2-year old fire scar in tundra in the Yukon-Kuskokwim Delta, Alaska. We measured species diversity, plant carbon (C) pools, SOL conditions and NDVI at both study areas. As expected, there was a decline in vegetation C pools following fire in Alaskan tundra, and as a result of higher severity fire in Siberian boreal forests. Two years following fire in Alaskan tundra, vegetation C pools decreased six-fold from 600 g C m-2 at unburned areas, to 100 g C m-2 at the 2015 burn areas. In larch forests, understory C pools were three-times lower in stands with high intensity fires (135 g C m-2) compared to those with low intensity fires (415 g C m-2), due to the absence of dwarf birch (Betula nana). Our results illustrate how fire influences vegetation at both early and later stages of succession, which can have cascading effects on SOL development and permafrost integrity, with the potential for release of large C stocks that may further exacerbate climate warming.
Understanding the long-term fire risks in forests affected by sudden oak death
Yana Valachovic; Chris Lee; Radoslaw Glebocki; Hugh Scanlon; J. Morgan Varner; David Rizzo
2010-01-01
It is assumed that large numbers of dead and down tanoak in forests infested by Phytophthora ramorum contribute to increased fire hazard risk and fuel loading. We studied the impact of P. ramorum infestation on surface fuel loading, potential fire hazard, and potential fire behavior in Douglas-fir- (Pseudotsuga...
Whitlock, C.; Shafer, S.L.; Marlon, J.
2003-01-01
Fire is an important part of the disturbance regimes of northwestern US forests and its role in maintaining and altering forest vegetation is evident in the paleoecological record of the region. Long-term reconstructions of Holocene fire regimes, provided by the analysis of charcoal, pollen, and other fire proxies in a network of lake records, indicate that the Pacific Northwest and summer-dry regions of the northern Rocky Mountains experienced their highest fire activity in the early Holocene (11,000-7000 years ago) and during the Medieval Warm Period (ca. 1000 years ago) when drought conditions were more severe than today. In contrast, in summer-wet areas of the northern Rocky Mountains, the period of highest fire activity was registered in the last 7000 years when dry woodland vegetation developed. When synthesized across the entire northwestern US, the paleoecological record reveals that past and present fire regimes are strongly controlled by climate changes occurring on multiple time scales. The scarcity of fires in the 20th century in some northwestern US ecosystems may be the result of successful fire suppression policies, but in wetter forests this absence is consistent with long-term fire regime patterns. In addition, simulations of potential future climate and vegetation indicate that future fire conditions in some parts of the northwestern US could be more severe than they are today. The Holocene record of periods of intensified summer drought is used to assess the nature of future fire-climate-vegetation linkages in the region. ?? 2003 Elsevier Science B.V. All rights reserved.
Vaughn, Michael G; Fu, Qiang; Delisi, Matt; Wright, John Paul; Beaver, Kevin M; Perron, Brian E; Howard, Matthew O
2010-01-01
Fire-setting is a serious and costly form of antisocial behavior. Our objective in this study was to examine the prevalence and correlates of intentional fire-setting behavior in the United States. Data were derived from a nationally representative sample of US residents 18 years and older. Structured psychiatric interviews (N = 43,093) were completed by trained lay interviewers between 2001 and 2002. Fire-setting as well as mood, anxiety, substance use, and personality disorders of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition were assessed with the Alcohol Use Disorder and Associated Disabilities Interview Schedule (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) version. The prevalence of lifetime fire-setting in the US population was 1.0%. Respondents who were men, white, 18 to 35 years old, born in the United States, and living in the western region of the United States had significantly higher rates of fire-setting than their counterparts. Fire-setting was significantly associated with a wide range of antisocial behaviors. Multivariate logistic regression analyses identified strong associations between lifetime alcohol and marijuana use disorders, conduct disorder, antisocial and obsessive-compulsive personality disorders, and family history of antisocial behavior. Intentional illicit fire-setting behavior is associated with a broad array of antisocial behaviors and psychiatric comorbidities. Given the substantial personal and social costs related to arson, prevention and treatment interventions targeting fire-setters potentially could save lives and property. 2010 Elsevier Inc. All rights reserved.
John D. Shaw; Sara A. Goeking; James Menlove; Charles E. Werstak
2017-01-01
Integration of Forest Inventory and Analysis (FIA) plot data with Monitoring Trends in Burn Severity (MTBS) data can provide new information about fire effects on forests. This integration allowed broad-scale assessment of the cover types burned in large fires, the relationship between prefire stand conditions and fire severity, and postfire stand conditions. Of the 42...
Susie Kocher; Eric Toman; Sarah Trainor; Vita Wright
2012-01-01
In 2009, the federal Joint Fire Science Program (JFSP) initiated a national network of regional fire science consortia to accelerate awareness, understanding and use of wildland fire science. This presentation synthesizes findings from initial needs assessments conducted by consortia in eight regions of the United States. The assessments evaluated how fire science is...
Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen
2008-01-01
There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...
Assessment of Greenhouse Gas Retrofit Issues for Coal Fired Power Plants
Several studies have been published on carbon capture technology as an independent island. In contrast, this evaluation considered the impact on the existing plant and the potential improvements to ease the retrofit of a carbon capture process. This paper will provide insight i...
Mapping burned areas and burn severity patterns across the Mediterranean region
NASA Astrophysics Data System (ADS)
Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea
2010-05-01
The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: • The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. • The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. • Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. • Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.
Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.
Schertzer, E; Staver, A C; Levin, S A
2015-01-01
The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.
A robust scientific workflow for assessing fire danger levels using open-source software
NASA Astrophysics Data System (ADS)
Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul
2017-04-01
Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present the caliver R package, illustrate the main functionalities and show the results of our preliminary experiments calculating fire danger thresholds for various regions on Earth. We will compare these with the existing global thresholds and, lastly, demonstrate how these newly-calculated regional thresholds can lead to improved calibration of fire forecast models in an operational setting.
Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland
NASA Astrophysics Data System (ADS)
White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.
2014-12-01
Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were affected by initial slope-affected erosion, fire severity, vegetation type, and rate of vegetation recovery. The simulation results showed that fire types, such as high severity, was generally associated with low site BC retention related to low vertical transfer of BC into soils, buoyancy of BC particles, and surface runoff from unvegetated soils.
Climate-Driven Effects of Fire on Winter Habitat for Caribou in the Alaskan-Yukon Arctic
Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.
2014-01-01
Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas. PMID:24991804
Quijorna, N; de Pedro, M; Romero, M; Andrés, A
2014-01-01
Waelz slag is an industrial by-product from the recovery of electric arc furnace (EAF) dust which is mainly sent to landfills. Despite the different chemical and mineralogical compositions of Waelz slag compared to traditional clays, previous experiments have demonstrated its potential use as a clay substitute in ceramic processes. Indeed, clayey products containing Waelz slag could improve mechanical and environmental performance, fixing most of the metallic species and moreover decreasing the release of some potential pollutants during firing. However, a deeper understanding of the complex phase transformations during its thermal treatment and the connection of this behaviour with the end properties is desirable in order to explain the role that is played by the Waelz slag and its potential contribution to the ceramic process. For this purpose, in the present study, the chemical, mineralogical, thermal and environmental behaviour of both (i) unfired powdered samples, and (ii) pressed specimen of Waelz slag fired up to different temperatures within the typical range of clay based ceramic production, has been studied. The effect of the heating temperature on the end properties of the fired samples has been assessed. In general, an increase of the firing temperature promotes sintering and densification of the products and decreases the open porosity and water absorption which also contributes to the fixation of heavy metals. On the contrary, an increase in the leaching of Pb, Cr and Mo from the fired specimens is observed. This can be attributed to the creation of Fe and Ca molybdates and chromates that are weakly retained in the alkali matrix. On the other side, at temperature above 950 °C a weight gain related to the emission of evolved gases is observed. In conclusion, the firing temperature of the ceramic process is a key parameter that affects not only the technical properties but also strongly affects the leaching behaviour and the process emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Flower, Aquila; G. Gavin, Daniel; Heyerdahl, Emily K.; Parsons, Russell A.; Cohn, Gregory M.
2014-01-01
Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk. PMID:25526633
Flower, Aquila; Gavin, Daniel G; Heyerdahl, Emily K; Parsons, Russell A; Cohn, Gregory M
2014-01-01
Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
NASA Astrophysics Data System (ADS)
Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.
2014-05-01
Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the fire suppression system. This project proposes to explore an innovative combination of remote sensing and fire spread models in order to 1) better understand the interactions of fire spread drivers that lead to large wildfires; 2) identify the spatio-temporal frames in which large wildfires can be suppressed more efficiently, and 3) explore the essential steps towards an operational use of both tools to assist fire suppression decisions. Preliminary results combine MODIS active-fire data and burn scar perimeters, to derive the main fire spread paths for the 10 largest wildfires that occurred in Portugal between 2001 and 2012. Fire growth and behavior simulations of some of those wildfires are assessed using the active fires data. Results are also compared with the major fire paths to understand the main drivers of fire propagation, through their interactions with topography, vegetation and meteorology. These combined results are also used for spatial and temporal identification of opportunity windows for a more efficient suppression intervention for each fire event. The approach shows promising results, providing a valuable reconstruction of the fire events and retrieval of important parameters related to the complex spread patterns of individual fire events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, Jeremy P., E-mail: inghamjp@halcrow.com
The number of building fires has doubled over the last 50 years. There has never been a greater need for structures to be assessed for fire damage to ensure safety and enable appropriate repairs to be planned. Fortunately, even after a severe fire, concrete and masonry structures are generally capable of being repaired rather than demolished. By allowing direct examination of microcracking and mineralogical changes, petrographic examination has become widely used to determine the depth of fire damage for reinforced concrete elements. Petrographic examination can also be applied to fire-damaged masonry structures built of materials such as stone, brick andmore » mortar. Petrography can ensure accurate detection of damaged geomaterials, which provides cost savings during building repair and increased safety reassurance. This paper comprises a review of the role of petrography in fire damage assessments, drawing on a range of actual fire damage investigations.« less
Chapter 14: Effects of fire suppression and postfire management activities on plant invasions
Matthew L. Brooks
2008-01-01
This chapter explains how various fire suppression and postfire management activities can increase or decrease the potential for plant invasions following fire. A conceptual model is used to summarize the basic processes associated with plant invasions and show how specific fire management activities can be designed to minimize the potential for invasion. The...
A conceptual framework for ranking crown fire potential in wildland fuelbeds.
Mark D. Schaaf; David V. Sandberg; Maarten D. Schreuder; Cynthia L. Riccardi
2007-01-01
This paper presents a conceptual framework for ranking the crown fire potential of wildland fuelbeds with forest canopies. This approach extends the work by Van Wagner and Rothermel, and introduces several new physical concepts to the modeling of crown fire behavior derived from the reformulated Rothemel surface fire modeling concepts proposed by Sandberg et al. This...
Two keys for appraising forest fire fuels.
George R. Fahnestock
1970-01-01
This is an attempt to characterize forest fire fuels in a new way. The immediate purpose is to provide means for recognizing and tentatively evaluating, in the field, the fire spread potential and the crowning potential of fuels on the basis of readily observed characteristics without need for prior technical knowledge of vegetation or experience with fire. The medium...
Potential fire behavior in pine flatwood forests following three different fuel reduction techniques
Patrick Brose; Dale Wade
2002-01-01
A computer modeling study to determine the potential fire behavior in pine flatwood forests following three fuel hazard reduction treatments: herbicide, prescribed fire and thinning was conducted in Florida following the 1998 wildfire season. Prescribed fire provided immediate protection but this protection quickly disappeared as the rough recovered. Thinning had a...
Risk-informed selection of a highway trajectory in the neighborhood of an oil-refinery.
Papazoglou, I A; Nivolianitou, Z; Aneziris, O; Christou, M D; Bonanos, G
1999-06-11
A methodology for characterizing alternative trajectories of a new highway in the neighborhood of an oil-refinery with respect to the risk to public health is presented. The approach is based on a quantitative assessment of the risk that the storage facilities of flammable materials of the refinery pose to the users of the highway. Physical phenomena with a potential for detrimental consequences to public health such as BLEVE (Boiling Liquid Expanding Vapor Explosion), Unconfined Vapor Cloud Explosion, flash fire and pool fire are considered. Methodological and procedural steps for assessing the individual risk around the tank farm of the oil-refinery are presented. Based on the individual risk, group risk for each alternative highway trajectory is determined. Copyright 1999 Elsevier Science B.V.
The Kuwait Oil Fire Health Risk Assessment Biological Surveillance Initiative.
Deeter, David P
2011-07-01
An important environmental concern during the first Gulf War (Operation Desert Storm) was assessing exposures and potential health effects in U.S. forces exposed to the Kuwait oil fires. With only 3 weeks for planning, a Biological Surveillance Initiative (BSI) was developed and implemented for a U.S. Army unit. The BSI included blood and urine collections, questionnaire administration, and other elements during the predeployment, deployment, and post-deployment phases. Many BSI objectives were accomplished. Difficulties encountered included planning failures, loss of data and information, and difficulty in interpreting laboratory results. In order for biological surveillance initiatives to provide useful information for future deployments where environmental exposures may be a concern, meaningful, detailed, and realistic planning and preparation must occur long before the deployment is initiated.
R. Myers; D. Wade; C. Bergh
2004-01-01
From 2-7 February 2003, a team of fire management and fire ecology experts visited the islands of Andros, Abaco, and New Providence in the Bahamas to gain insight into the fire issues facing the conservation of the Caribbean pine forests, which cover large percentages of each island. The objectives for the assessment were to: (1) Gather information on fire...
Assessing the value of increased model resolution in forecasting fire danger
Jeanne Hoadley; Miriam Rorig; Ken Westrick; Larry Bradshaw; Sue Ferguson; Scott Goodrick; Paul Werth
2003-01-01
The fire season of 2000 was used as a case study to assess the value of increasing mesoscale model resolution for fire weather and fire danger forecasting. With a domain centered on Western Montana and Northern Idaho, MM5 simulations were run at 36, 12, and 4-km resolutions for a 30 day period at the height of the fire season. Verification analyses for meteorological...
NASA Astrophysics Data System (ADS)
Liao, Yanfen; Fang, Hailin; Zhang, Hengjin; Yu, Zhaosheng; Liu, Zhichao; Ma, Xiaoqian
2017-05-01
To meet with the demand of energy conservation and emission reduction policies, the method of life cycle assessment (LCA) was used to assess the feasibility of Hybrid Giant Napier (HGN) direct-fired power generation in this study. The entire life cycle is consisted of five stages (cultivation and harvesting, transportation, drying and comminuting, direct-fired power generation, constructing and decommissioning of biomass power plant). Analytical results revealed that to generate 10000kWh electricity, 10.925 t of customized HGN fuel (moisture content: 30 wt%) and 6659.430 MJ of energy were required. The total environmental impact potential was 0.927 PET2010 (person equivalents, targeted, in 2010) and the global warming (GW), acidification (AC), and nutrient (NE) emissions were 339.235 kg CO2-eq, 22.033 kg SO2-eq, and 25.486 kg NOx-eq respectively. The effect of AC was the most serious among all calculated category impacts. The energy requirements and environmental impacts were found to be sensitive to single yield, average transport distance, cutting frequency, and moisture content. The results indicated that HGN direct-fired power generation accorded well with Chinese energy planning; in addition, HGN proved to be a promising contribution to reducing non-renewable energy consumption and had encouraging prospects as a renewable energy plant.
NASA Astrophysics Data System (ADS)
Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.
2005-10-01
The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.
Retrospective fire modeling: Quantifying the impacts of fire suppression
Brett H. Davis; Carol Miller; Sean A. Parks
2010-01-01
Land management agencies need to understand and monitor the consequences of their fire suppression decisions. We developed a framework for retrospective fire behavior modeling and impact assessment to determine where ignitions would have spread had they not been suppressed and to assess the cumulative effects that would have resulted. This document is a general...
Developing the U.S. Wildland Fire Decision Support System
Erin Noonan-Wright; Tonja S. Opperman; Mark A. Finney; Tom Zimmerman; Robert C. Seli; Lisa M. Elenz; David E. Calkin; John R. Fiedler
2011-01-01
A new decision support tool, the Wildland Fire Decision Support System (WFDSS) has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply...
Smokey comes of age: Unmanned aerial systems for fire management
Twidwell, Dirac; Allen, Craig R.; Detweiler, Carrick; Higgins, James; Laney, Christian; Elbaum, Sebastian
2016-01-01
During the past century, fire management has focused on techniques both to protect human communities from catastrophic wildfire and to maintain fire-dependent ecological systems. However, despite a large and increasing allocation of resources and personnel to achieve these goals, fire management objectives at regional to global scales are not being met. Current fire management techniques are clearly inadequate for the challenges faced by fire managers, and technological innovations are needed. Advances in unmanned aerial systems (UAS) technology provide opportunities for innovation in fire management and science. In many countries, fire management organizations are beginning to explore the potential of UAS for monitoring fires. We have taken the next step and developed a prototype that can precisely ignite fires as part of wildfire suppression tactics or prescribed fires (fire intentionally ignited within predetermined conditions to reduce hazardous fuels, improve habitat, or mitigate for large wildfires). We discuss the potential for these technologies to benefit fire management activities, while acknowledging the sizeable sociopolitical barriers that prevent their immediate broad application.
Smędra-Kaźmirska, Anna; Barzdo, Maciej; Kędzierski, Maciej; Antoszczyk, Łukasz; Szram, Stefan; Berent, Jarosław
2013-09-01
Pursuant to the Polish Weapons and Ammunitions Law (Legal Gazette No 53/1999 item 549 with subsequent amendments), air guns with kinetic energy of the fired projectiles below 17 J are not regarded as weapons. The aim of the study was to assess the potential effect of shots caused by projectiles of various mass and structure fired from air guns with kinetic energy below 17 J on human soft tissues. As a model of soft tissue, we used 20% gelatin blocks. After shooting, we measured the depth of gelatin block penetration by pellets fired from various distances and compared these results with autopsy findings. The results demonstrated that examined pneumatic guns may cause serious injuries, including damage to the pleura, pericardium, liver, spleen, kidneys, femoral artery, and thoracic and abdominal aorta. Experiment shown that gelatin blocks do not reflect fully the properties of the human body. © 2013 American Academy of Forensic Sciences.
Cannon, Susan H.; DeGraff, Jerry
2009-01-01
In southern California and the intermountain west of the USA, debris flows generated from recently-burned basins pose significant hazards. Increases in the frequency and size of wildfires throughout the western USA can be attributed to increases in the number of fire ignitions, fire suppression practices, and climatic influences. Increased urbanization throughout the western USA, combined with the increased wildfire magnitude and frequency, carries with it the increased threat of subsequent debris-flow occurrence. Differences between rainfall thresholds and empirical debris-flow susceptibility models for southern California and the intermountain west indicate a strong influence of climatic and geologic settings on post-fire debris-flow potential. The linkages between wildfires, debris-flow occurrence, and global warming suggests that the experiences in the western United States are highly likely to be duplicated in many other parts of the world, and necessitate hazard assessment tools that are specific to local climates and physiographies.
Molina, Juan Ramón; Rodríguez y Silva, Francisco; Mérida, Enrique; Herrera, Miguel Ángel
2014-11-01
One of the main limiting aspects in the application of crown fire models at landscape scale has been the uncertainty derived to describe canopy fuel stratum. Available crown fuel and canopy bulk density are essential in order to simulate crown fire behaviour and are of potential use in the evaluation of silvicultural treatments. Currently, the more accurate approach to estimate these parameters is to develop allometric models from common stand inventory data. In this sense, maritime pine (Pinus pinaster Aiton) trees were destructively sampled in the South of the Iberian Peninsula, covering natural and artificial stands. Crown fine fuel was separated into size classes and allometric equations that estimate crown fuel load by biomass fractions were developed. Available crown fuel was determined according to the fuel load differences between un-burned and burned trees with similar characteristics. Taking our destructive post-fire inventory into account, available crown fuel was estimated as the sum of needles biomass, 87.63% of the twigs biomass and 62.79% of the fine branches biomass. In spite of the differences between natural and artificial stands, generic models explained 82% (needles biomass), 89% (crown fuel), 92% (available crown fuel) and 94% (canopy bulk density) of the observed variation. Inclusion of the fitted models in fire management decision-making can provide a decision support system for assessing the potential crown fire of different silvicultural alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hren, M. T.; Harris, G.; Montanez, I. P.; DiMichele, W.; Eley, Y.; White, J. D.; Wilson, J. P.; McElwain, J.; Poulsen, C. J.
2017-12-01
The late Paleozoic Ice Age (LPIA) represents a dynamic period of widespread glacial/interglacial cycling as the earth underwent a major transition from an icehouse to greenhouse climate. During this transition period, pCO2 is shown to have varied by several hundred ppm and within the predicted range for anthropogenic change. Glacial/interglacial changes in atmospheric pCO2 during this time are associated with restructuring of tropical forests and carbon cycle dynamics. At present however, there is considerable debate over the potential hydrologic and fire-frequency feedbacks associated with this climatic variability. Polycyclic aromatic hydrocarbons (PAHs) are produced from the incomplete combustion of organic matter and are shown to be preserved over hundreds of millions of years. Thus, these organic compounds provide a potential record of the feedbacks between global biogeochemical systems and fire. We analyzed sedimentary organic matter from the Illinois Basin spanning the late Carboniferous glacial-interglacial cycles to assess the evolution of fire during this period. Our data show a decrease in the overall abundance of high molecular weight PAHs (HMW) from 312 to 304 Myr with significant variability that is coincident with the general timing of pCO2 cycling. Decreasing PAH abundance is also coincident with a proposed long-term change in pO2 and may reflect the influence of atmospheric oxygen in regulating fire occurrence and hydrologic cycling in tropical ecosystems in the late Carboniferous.
Remote Sensing of Chaparral Fire Potential: Case Study in Topanga Canyon, California.
Remote sensing techniques, especially the use of color infrared aerial photography, provide a useful tool for fire hazard analysis, including interpetive information about fuel volumes, physiognomic plant groupings, the relationships of buildings to both natural and planted vegetation, and fire vulnerability of roofing materials. In addition, the behavior of the September, 1970 Wright Fire in the Topanga study area suggested the validity of the fire potential analysis which had been made prior to that conflagration.
Modeling disturbance-based native invasive species control and its implications for management.
Shackelford, Nancy; Renton, Michael; Perring, Michael P; Hobbs, Richard J
2013-09-01
Shifts in disturbance regime have often been linked to invasion in systems by native and nonnative species. This process can have negative effects on biodiversity and ecosystem function. Degradation may be ameliorated by the reinstatement of the disturbance regimes, such as the reintroduction of fire in pyrogenic systems. Modeling is one method through which potential outcomes of different regimes can be investigated. We created a population model to examine the control of a native invasive that is expanding and increasing in abundance due to suppressed fire. Our model, parameterized with field data from a case study of the tree Allocasuarina huegeliana in Australian sandplain heath, simulated different fire return intervals with and without the additional management effort of mechanical removal of the native invader. Population behavior under the different management options was assessed, and general estimates of potential biodiversity impacts were compared. We found that changes in fire return intervals made no significant difference in the increase and spread of the population. However, decreased fire return intervals did lower densities reached in the simulated heath patch as well as the estimated maximum biodiversity impacts. When simulating both mechanical removal and fire, we found that the effects of removal depended on the return intervals and the strategy used. Increase rates were not significantly affected by any removal strategy. However, we found that removal, particularly over the whole patch rather than focusing on satellite populations, could decrease average and maximum densities reached and thus decrease the predicted biodiversity impacts. Our simulation model shows that disturbance-based management has the potential to control native invasion in cases where shifted disturbance is the likely driver of the invasion. The increased knowledge gained through the modeling methods outlined can inform management decisions in fire regime planning that takes into consideration control of an invasive species. Although particularly applicable to native invasives, when properly informed by empirical knowledge these techniques can be expanded to management of invasion by nonnative species, either by restoring historic disturbance regimes or by instating novel regimes in innovative ways.
Life cycle assessment of sewage sludge co-incineration in a coal-based power station.
Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei
2013-09-01
A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Silva, Mariana Felipe; Dias, Josilainne Marcelino; Pereira, Ligia Maxwell; Mazuquin, Bruno Fles; Lindley, Steven; Richards, Jim; Cardoso, Jefferson Rosa
2017-01-01
The aims of this study were to determine the motor unit behavior of the erector spinae muscles and to assess whether differences exist between the dominant/nondominant sides of the back muscles. Nine healthy women, aged 21.7 years (SD = 0.7), performed a back extension test. Surface electromyographic decomposition data were collected from both sides of the erector spinae and decomposed into individual motor unit action potential trains. The mean firing rate for each motor unit was calculated, and a regression analysis was performed against the corresponding recruitment thresholds. The mean firing rate ranged from 15.9 to 23.9 pps and 15.8 to 20.6 pps on the dominant and nondominant sides, respectively. However, the early motor unit potentials of the nondominant lumbar erector spinae muscles were recruited at a lower firing rate. This technique may further our understanding of individuals with back pain and other underlying neuromuscular diseases. Muscle Nerve 55: 28-34, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Subekti, P.; Hambali, E.; Suryani, A.; Suryadarma, P.
2017-05-01
This study aims to analyze the potential aplication of of palm oil-based foaming agent as peat fires fighter in Indonesia. From literature review, it has been known that the foaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It is necessary to develop the production and application of foaming agent in Indonesia because peat fires occur almost every year that caused smoke haze. Potential raw material for the production of environmental friendly foaming agent as foam extinguishing for peat fires in Indonesia aong other is palm oil due to abundant availability, sustainable, and foam product easily degraded in the environment of the burnt areas. Production of foaming agent as fire-fighting in Indonesia is one alternative to reduce the time to control the fire and smog disaster impact. Application of palm oil as a raw material for fire-fighting is contribute to increase the value added and the development of palm oil downstream industry.
2016-01-01
Climate Assessment for Army Enterprise Planning Effects of Climate Change , Urban Development, and... Climate Assessment for Army Enterprise Planning ERDC/CERL TR-16-29 January 2016 Effects of Climate Change , Urban Development, and Threatened and...due to climate change factors. The effects of climate change on DoD in- stallations is increasing in significance and has the potential to impact
1999-09-01
Verify that all personnel new to the career field receive a baseline physical exam prior to potential occupational exposure to pesticides and periodic...or using toilet facilities -persons working regularly with organophosphates and N-alkyl carbamate pesticides have periodic physical examinations...after fighting fires involving organophosphate or N-alkyl carbamate pesticides. 7-37 Pesticide 7-38 Pesticide COMPLIANCE CATEGORY
MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING
The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...
Fire weather and large fire potential in the northern Sierra Nevada
Brandon M. Collins
2014-01-01
Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...
Crown physiology and growth of sapling longleaf pine after fire
Mary Anne Sword Sayer; Eric A. Kuehler
2005-01-01
Fire affects foliage and thus, whole-crown C fixation potential. When repeated throughout a rotation, therefore, fire has a potential impact on stemwood growth and C allocation among the foliage, stem and roots. Depending on frequency and intensity, prescribed fire causes foliage damage that may lead to a long-term reduction in stand growth. Past research, however, is...
Numerical modeling of laboratory-scale surface-to-crown fire transition
NASA Astrophysics Data System (ADS)
Castle, Drew Clayton
Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed ignition which closely matched the trends reported in the laboratory experiments.
Butt rot defect and potential hazard in lodgepole pine on selected California recreational areas
Lee A. Paine
1966-01-01
Within the area sampled, potentially hazardous lodgepole pine were common on recreational sites. The incidence of decayed and mechanically weak trees was correlated with fire damage. Two-thirds of fire-scarred trees were decayed; one-third were rated potentially hazardous. Fire scars occurred roughly in proportion to level of plot recreational use.
Mineral Resources of the Mount Nutt Wilderness Study Area, Mohave County, Arizona
Gray, Floyd; Jachens, Robert C.; Miller, Robert J.; Turner, Robert L.; Livo, Eric K.; Knepper, Daniel H.; Mariano, John; Almquist, Carl L.
1990-01-01
The Mount Nutt Wilderness Study Area (AZ-020-024) is located in the Black Mountains about 15 mi west of Kingman, Arizona. At the request of the U.S. Bureau of Land Management, approximately 27,210 acres of the wilderness study area was evaluated for mineral resources (known) and mineral resource potential (undiscovered). In this report, the area studied is referred to as the 'wilderness study area' or simply 'the study area'; any reference to the Mount Nutt Wilderness Study Area refers only to that part of the wilderness study area (27,210 acres) for which a mineral survey was requested. The U.S. Geological Survey and the U.S. Bureau of Mines conducted geological, geochemical, and geophysical surveys to assess the identified mineral resources and mineral resource potential of the study area. Fieldwork for this report was carried out in 1987 and 1988. A gold resource totaling at least 56,000 troy oz has been identified at two sites in Secret Pass Canyon, less than 0.5 mi north of the study area. No other metallic mineral resources were identified inside the study area. An area near the center of the study area contains fire agate, a gem stone. On the basis of tonnage, site accessibility, and current production methods, this area is considered an indicated subeconomic fire-agate resource for the foreseeable future. Sand and gravel are present in the study area. An area surrounding the Tincup mine and including a small portion of the extreme north-central part of the study area has high potential for gold and low potential for silver, lead, and mercury. Three areas in the extreme northwestern, north-central, and southwestern parts of the study area have moderate potential for gold and low potential for silver, lead, and mercury. A small area near the known fire-agate resource in the south-central part of the study area has low potential for fire agate. Large areas in the eastern and central parts of the study area have low potential for perlite and zeolite resources. The entire study area has no potential for oil and gas and no potential for geothermal resources.
Daniel L. Schmoldt; David L. Peterson; Robert E. Keane; James M. Lenihan; Donald McKenzie; David R. Weise; David V. Sandberg
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial...
Bald Mountain Fire long term fire assessment - V1.0 9/24/2012
Bret Fay; LaWen Hollingsworth
2012-01-01
The purpose of this assessment is to answer a number of questions from the agency administrator and Fire Management staff. What are the risks to the following points of concern: Wilderness boundary; Forest Boundary; Minam Lodge and Red's Horse Ranch; Private Lands in Catherine Creek; Lostine River "cherry stem"; Probability of the fire establishing...
Hossack, B.R.; Corn, P.S.; Fagre, D.B.
2006-01-01
Wildfire is a potential threat to many species with narrow environmental tolerances like the Rocky Mountain tailed frog (Ascaphus montanus Mittleman and Myers, 1949), which inhabits a region where the frequency and intensity of wildfires are expected to increase. We compared pre- and post-fire counts of tadpoles in eight streams in northwestern Montana to determine the effects of wildfire on A. montanus. All streams were initially sampled in 2001, 2 years before four of them burned in a large wildfire, and were resampled during the 2 years following the fire. Counts of tadpoles were similar in the two groups of streams before the fire. After the fire, tadpoles were almost twice as abundant in unburned streams than in burned streams. The fire seemed to have the greatest negative effect on abundance of age-1 tadpoles, which was reflected in the greater variation in same-stream age-class structure compared with those in unburned streams. Despite the apparent effect on tadpoles, we do not expect the wildfire to be an extirpation threat to populations in the streams that we sampled. Studies spanning a chronosequence of fires, as well as in other areas, are needed to assess the effects of fires on streams with A. montanus and to determine the severity and persistence of these effects.
NASA Astrophysics Data System (ADS)
Conard, S. G.; Kukavskaya, E. A.; Buryak, L. V.; Shvetsov, E.; Kalenskaya, O. P.; Zhila, S.
2017-12-01
The Zabaikal region of southern Siberia is characterized by some of the highest fire activity in Russia. There has been a significant increase of fire frequency and burned area in the region over the last two decades due to a combination of high anthropogenic pressure, decreased funding to the forestry sector, and increased fire danger, which was associated with higher frequency and intensity of extreme weather events. Central and southern parts of the Zabaikal region where population density is higher and road network is relatively more developed are the most disturbed by fires. Larch stands cover the largest proportion of fire-disturbed lands in the region, while the less common pine and birch stands are characterized by higher fire frequency. About 13% (3.9 M ha) of the total forest area in the Zabaikal region was burned more than once in the 20 years from 1996 to 2015, with many sites burned multiple times. Repeat disturbances led to inadequate tree regeneration on all but the moistest sites. Pine stands on dry soils, which are common in the forest-steppe zone, were the most vulnerable. After repeat burns and over large burned sites we observed transformation of the forests to steppe ecosystems. The most likely causes of insufficient forest regeneration are soil overheating, dominance of tall grasses, and lack of nearby seed sources. Extensive tree plantations have potential to mitigate negative fire impacts; however, due to high fire hazard in the recent decade about half of the plantation area has been burned. Changes in the SWVI index were used to assess postfire reforestation based on a combination of satellite and field data. In the southwestern part of the Zabaikal region, we estimated that reforestation had been hampered over 11% of the forest land area. Regional climate models project increasing temperatures and decreasing precipitation across Siberia by the end of the 21st century, with changes in the Zabaikal region projected to be more than twice the average rate in Siberia. This would likely lead to higher fire activity in the region. Implementation of sustainable forest management strategies has the potential to mitigate effects of changing climate and fire regimes on forest ecosystems in the Zabaikal region. This research was supported by the RFBR grant (# 15-04-06567) and the NASA LCLUC Program.
NASA Astrophysics Data System (ADS)
Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo
2014-05-01
Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify threshold values of indices useful to determine the end of the potential fire season due to fuel status. A weather generator linked to climate change scenarios derived from 17 available General Circulation Models (GCMs) was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Sardinia, Italy. Finally, impacts of future climate change on fire season length at local scale were simulated. Results confirmed that the projected climate scenarios over the Mediterranean area will determine an overall increase of the fire season length.
Fires: Pushing the Reset Button or a Flash in the Pan?
NASA Astrophysics Data System (ADS)
MacDonald, L. H.; Wagenbrenner, J. W.; Robichaud, P. R.; Nelson, P. A.; Kampf, S. K.; Brogan, D. J.
2016-12-01
High and moderate severity wildfires can reduce infiltration rates to less than 10 mm/hr, and the resulting surface runoff can increase small-scale peak flows by one or more orders of magnitude. Fires can increase hillslope erosion rates by several orders of magnitude, but this increase is less linear with rainfall intensity because it also depends on sediment supply and detachment processes as well as transport capacity. These localized and shorter-term effects have been relatively well documented, but there is much more uncertainty in how these fire-induced changes can lead to larger-scale and/or longer-term effects. The goal of this presentation is to provide a process-based analysis of how, where, and when wildfires can cause either longer-term or larger-scale changes, effectively resetting the system as opposed to a more transient "flash in the pan". An understanding of vegetation, climatic, and geomorphic dynamics are are critical for predicting larger-scale and longer-term effects. First is the potential for the vegetation to return to pre-fire conditions, and this depends on vegetation type, spatial extent of the fire, and if the pre-fire vegetation is marginalized by climate change, land use, or other factors. The trajectory of post-fire regrowth controls the duration of increased runoff and erosion as well as the size and severity of future fires, which then sets the scene for longer-term hydrologic and geomorphic change. Climate defines the dominant storm type and how they match up with the spatial extent of a fire. Historic data help estimate the extent and magnitude of post-fire rainfall, but there is a strong stochastic component and the more extreme events are of greatest concern. Geomorphic controls on larger-scale effects include the valley and drainage network characteristics that help govern the storage and delivery of water and sediment. Assessing each component involves multiple site factors, but the biggest problem is understanding their complex interactions to predict resource impacts, landscape change over different temporal and spatial scales, and the potential to ameliorate adverse impacts. Data from multiple field studies are used to illustrate the range of post-fire effects, selected interactions of the different components, and identify key research needs.
Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J
2009-08-01
This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.
Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire
NASA Astrophysics Data System (ADS)
Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne
2016-04-01
Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.
Grassland Fire and Cattle Grazing Regulate Reptile and Amphibian Assembly Among Patches
NASA Astrophysics Data System (ADS)
Larson, Danelle M.
2014-12-01
Fire and grazing are common management schemes of grasslands globally and are potential drivers of reptilian and amphibian (herpetofauna) metacommunity dynamics. Few studies have assessed the impacts of fire and cattle grazing on herpetofauna assemblages in grasslands. A patch-burn grazing study at Osage Prairie, MO, USA in 2011-2012 created landscape patches with treatments of grazing, fire, and such legacies. Response variables were measured before and after the application of treatments, and I used robust-design occupancy modeling to estimate patch occupancy and detection rate within patches, and recolonization and extinction (i.e., dispersal) across patches. I conducted redundancy analysis and a permuted multivariate analysis of variance to determine if patch type and the associated environmental factors explained herpetofauna assemblage. Estimates for reptiles indicate that occupancy was seasonally constant in Control patches ( ψ ~ 0.5), but declined to ψ ~ 0.15 in patches following the applications of fire and grazing. Local extinctions for reptiles were higher in patches with fire or light grazing ( ɛ ~ 0.7) compared to the controls. For the riparian herpetofaunal community, patch type and grass height were important predictors of abundance; further, the turtles, lizards, snakes, and adult amphibians used different patch types. The aquatic amphibian community was predicted by watershed and in-stream characteristics, irrespective of fire or grazing. The varying responses from taxonomic groups demonstrate habitat partitioning across multiple patch types undergoing fire, cattle grazing, and legacy effects. Prairies will need an array of patch types to accommodate multiple herpetofauna species.
Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.
Tyzio, Roman; Khalilov, Ilgam; Represa, Alfonso; Crepel, Valerie; Zilberter, Yuri; Rheims, Sylvain; Aniksztejn, Laurent; Cossart, Rosa; Nardou, Romain; Mukhtarov, Marat; Minlebaev, Marat; Epsztein, Jérôme; Milh, Mathieu; Becq, Helene; Jorquera, Isabel; Bulteau, Christine; Fohlen, Martine; Oliver, Viviana; Dulac, Olivier; Dorfmüller, Georg; Delalande, Olivier; Ben-Ari, Yehezkel; Khazipov, Roustem
2009-08-01
The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.
2011-12-01
The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically important surface soils may be critically damaging for rangelands given inherent slow soil formation rates. This study presents a summary of fire effects on runoff and erosion across the rangeland-xeric forest continuum of the western US and highlights how that knowledge addresses post-fire hydrologic modeling needs. Further, we present a conceptual framework for advancing post-fire hydrologic vulnerability assessment and identify key areas for future research.
Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp
NASA Technical Reports Server (NTRS)
Logan, Michael J.; Glaab, Louis J.; Craig, Timothy
2016-01-01
This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).
Weather Observation Systems and Efficiency of Fighting Forest Fires
NASA Astrophysics Data System (ADS)
Khabarov, N.; Moltchanova, E.; Obersteiner, M.
2007-12-01
Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.
2014-12-01
Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and short-term post-fire recovery years for steeply-sloped sagebrush sites with fine-textured soils. The study results also serve to inform development and enhancement of the Rangeland Hydrology and Erosion Model for predicting runoff and erosion responses from disturbed and undisturbed sagebrush rangelands.
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2003-01-01
These maps present preliminary assessments of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris-flows issuing from basins burned by the Piru, Simi and Verdale Fires of October 2003 in southern California in response to the 25-year, 10-year, and 2-year 1-hour rain storms. The probability maps are based on the application of a logistic multiple regression model that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients and storm rainfall. The peak discharge maps are based on application of a multiple-regression model that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Piru Fire range between 2 and 94% and estimates of debris flow peak discharges range between 1,200 and 6,640 ft3/s (34 to 188 m3/s). Basins burned by the Simi Fire show probabilities for debris-flow occurrence between 1 and 98%, and peak discharge estimates between 1,130 and 6,180 ft3/s (32 and 175 m3/s). The probabilities for debris-flow activity calculated for the Verdale Fire range from negligible values to 13%. Peak discharges were not estimated for this fire because of these low probabilities. These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.
Assessment of urinary metals following exposure to a large vegetative fire, New Mexico, 2000.
Wolfe, Mitchell I; Mott, Joshua A; Voorhees, Ronald E; Sewell, C Mack; Paschal, Dan; Wood, Charles M; McKinney, Patrick E; Redd, Stephen
2004-03-01
In May 2000, a vegetative fire burned 47,000 acres in northern New Mexico, including 7500 acres of land administered by the Los Alamos National Laboratory. We evaluated potential human exposures from the fire. We surveyed two populations (firefighters and the general population) in four cities for urine heavy metal concentrations. Reference concentrations were based on the Third National Health and Nutrition Examination Survey (NHANES III). Multivariate linear regression assessed the association of urinary metal concentrations with smoke exposure. We also performed isotopic analysis of uranium and cesium on a subset of specimens. A total of 92 firefighters and 135 nonfirefighters participated. In both populations, urinary nickel, cesium, chromium, and uranium concentrations were greater than expected compared with NHANES III reference values. No values required immediate medical follow-up. Regression analysis demonstrated that for National Guard members, arsenic and cadmium levels were significantly related to smoke exposure, and for firefighters, cesium and arsenic levels were significantly related to exposure; however, only for cesium in National Guard members was this association in the positive direction. Isotopic analysis demonstrated that the cesium and uranium were naturally occurring. Some people had spot urine metal concentrations above nationally derived reference values, and values for some metals were associated with smoke exposure. These associations had little public health or clinical importance. Studies of exposures resulting from vegetative fires are difficult, and careful consideration should be given to the technical and communication processes at the outset of a fire exposure investigation. Recommendations for future investigations include testing as soon as possible during or after a fire, and early clinical consultation with a medical toxicologist.
Fire Severity and Soil Carbon Combustion in Boreal and Tundra Ecosystems
NASA Astrophysics Data System (ADS)
Walker, X. J.; Mack, M. C.; Baltzer, J. L.; Cummings, S.; Day, N.; Goetz, S.; Johnstone, J. F.; Rogers, B. M.; Turetsky, M. R.
2016-12-01
Climate warming in northern latitudes has led to an intensification of wildfire disturbance. Increased fire frequency, extent, and severity is expected to strongly impact the structure and function of northern ecosystems. In this study, we examined 50 sites in a recently burned tundra ecosystem of Alaska, USA and 250 sites in recently burned boreal conifer forest ecosystems of Northwest Territories, Canada. The majority of organic carbon (C) in both boreal and tundra ecosystems resides in the soil organic layer (SOL) and combustion of this layer can lead to large C emissions. Through examining multiple fire scars in different regions, ranging in moisture, elevation, and pre-fire vegetation communities, we can determine the ecosystem, landscape, and regional controls on SOL combustion and the potential shift in C storage. In this research, we use scalable SOL consumption metrics to estimate depth of burn and the associated C emissions. Preliminary results from boreal conifer sites indicate that nearly 50% of the pre-fire soil C pool was combusted and that over 75% of the total C emitted from the extreme fire year of 2014 can be attributed to combustion of the SOL. Increased combustion of SOL associated with an intensifying fire regime could shift boreal and tundra ecosystems across a C cycle threshold: from net accumulation of C from the atmosphere over multiple fire cycles, to a net loss. Understanding changes in SOL combustion and C storage is essential for assessing the consequences of an altered fire regime on permafrost dynamics, vegetation regeneration, and the initiation of successional trajectories in tundra and boreal ecosystems.
Remote sensing information for fire management and fire effects assessment
NASA Astrophysics Data System (ADS)
Chuvieco, Emilio; Kasischke, Eric S.
2007-03-01
Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.
Fire patterns in the Amazonian biome
NASA Astrophysics Data System (ADS)
Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan
2010-05-01
This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).
Gregory M. Cohn; Russell A. Parsons; Emily K. Heyerdahl; Daniel G. Gavin; Aquila Flower
2014-01-01
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to...
Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu
2009-01-01
Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...
PREFER: a European service providing forest fire management support products
NASA Astrophysics Data System (ADS)
Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George
2015-06-01
PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.
Burns Centre and fire services: What information can be exchanged to manage the burn patient?
Pujji, O; Nizar, B; Bechar, J; North, D; Jeffery, S
2018-05-01
To describe the experience of using a "Burns Extrication Form" at a regional Burns Centre. Communication between the fire services and burns team previously has been regarded as poor. Significant information is collected by the fire services at the scene and this can aid the management of the patient. The Burns Extrication Form was devised to provide a clear framework of communication between the two services. Information regarding time frames, exposure to heat & smoke, fire loading (potential severity of a fire in a given space by measuring amount of combustible material in confined space), building construction, chemicals involved is passed to the medical team through this form through a National Health Service mailbox. Also, treatment provided by the fire service was documented. All data collected by this form was collated for the purpose of this study. Data ranging from 2014 to 2017 was included in this descriptive study. The patient journey following contact by fire services shows that out of the 598 persons who were involved in a fire only 92 (15%) attended the Accident and Emergency (A&E) department at the Queen Elizabeth Hospital. Signs of smoke inhalation, singed nose hair and coughing were found in 190 (32%) patients; the fire service administered oxygen to 106 (18%) of these patients although this may have been initiated by Ambulance crews who were on scene prior to the Fire Crew. The remaining 506 (85%) may have not attended A&E at UHB or may have attended another A&E in the West Midlands base on the location of the incident and clinical needs. Of the 92 patients who attended the A&E at UHB 48 (52%) were admitted to the Burns Centre in the hospital. Nine (19%) of these patients had smoke inhalation and three of these patients were managed by intubation. Birmingham North and Black Country North had the highest incidence of burns incidents, 120 and 103 respectively. Whilst, the lowest numbers were found in Birmingham South and Coventry and Solihull with 65 and 61 respectively. Additional results are described in the study. Data provided by the Fire Extrication forms helps us to assess the magnitude of fire-related injury across the West Midlands. The fire services have been shown to provide important first aid as one of the first responders at the scene. Their value in assessing the environment in and patient status helps clinicians further down the patient's journey. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Emergency Response Capability Baseline Needs Assessment - Requirements Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharry, John A.
This document was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by LLNL Emergency Management Department Head James Colson. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only addresses emergency response.
Forecasting distribution of numbers of large fires
Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan
2015-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...
Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate.
McKenna, Sean T; Birtles, Robert; Dickens, Kathryn; Walker, Richard G; Spearpoint, Michael J; Stec, Anna A; Hull, T Richard
2018-04-01
This paper uses fire statistics to show the importance of fire toxicity on fire deaths and injuries, and the importance of upholstered furniture and bedding on fatalities from unwanted fires. The aim was to compare the fire hazards (fire growth and smoke toxicity) using different upholstery materials. Four compositions of sofa-bed were compared: three meeting UK Furniture Flammability Regulations (FFR), and one using materials without flame retardants intended for the mainland European market. Two of the UK sofa-beds relied on chemical flame retardants to meet the FFR, the third used natural materials and a technical weave in order to pass the test. Each composition was tested in the bench-scale cone calorimeter (ISO 5660) and burnt as a whole sofa-bed in a sofa configuration in a 3.4 × 2.25 × 2.4 m 3 test room. All of the sofas were ignited with a No. 7 wood crib; the temperatures and yields of toxic products are reported. The sofa-beds containing flame retardants burnt somewhat more slowly than the non-flame retarded EU sofa-bed, but in doing so produced significantly greater quantities of the main fire toxicants, carbon monoxide and hydrogen cyanide. Assessment of the effluents' potential to incapacitate and kill is provided showing the two UK flame retardant sofa-beds to be the most dangerous, followed by the sofa-bed made with European materials. The UK sofa-bed made only from natural materials (Cottonsafe ® ) burnt very slowly and produced very low concentrations of toxic gases. Including fire toxicity in the FFR would reduce the chemical flame retardants and improve fire safety. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam
2010-01-01
Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...
Using ArcObjects for automating fireshed assessments and analyzing wildfire risk
Alan A. Ager; Bernhard Bahro; Mark Finney
2006-01-01
Firesheds are geographic units used by the Forest Service to delineate areas with similar fire regimes, fire history, and wildland fire risk issues. Fireshed assessment is a collaborative process where specialists design fuel treatments to mitigate wildfire risk. Fireshed assessments are an iterative process where fuel treatments are proposed for specific stands based...
Bondar, Yu I; Navumau, A D; Nikitin, A N; Brown, J; Dowdall, M
2014-12-01
Forest fires and wild fires are recognized as a possible cause of resuspension and redistribution of radioactive substances when occurring on lands contaminated with such materials, and as such are a matter of concern within the regions of Belarus and the Ukraine which were contaminated by the Chernobyl accident in 1986. Modelling the effects of such fires on radioactive contaminants is a complex matter given the number of variables involved. In this paper, a probabilistic model was developed using empirical data drawn from the Polessie State Radiation-Ecological Reserve (PSRER), Belarus, and the Maximum Entropy Method. Using the model, it was possible to derive estimates of the contribution of fire events to overall variability in the levels of (137)Cs and (239,240)Pu in ground air as well as estimates of the deposition of these radionuclides to specific water bodies within the contaminated areas of Belarus. Results indicate that fire events are potentially significant redistributors of radioactive contaminants within the study area and may result in additional contamination being introduced to water bodies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fire risk in San Diego County, California: A weighted Bayesian model approach
Kolden, Crystal A.; Weigel, Timothy J.
2007-01-01
Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.
Prescribed fire as a means of reducing forest carbon emissions in the western United States.
Wiedinmyer, Christine; Hurteau, Matthew D
2010-03-15
Carbon sequestration by forested ecosystems offers a potential climate change mitigation benefit. However, wildfire has the potential to reverse this benefit In the western United States, climate change and land management practices have led to increases in wildfire intensity and size. One potential means of reducing carbon emissions from wildfire is the use of prescribed burning,which consumes less biomass and therefore releases less carbon to the atmosphere. This study uses a regional fire emissions model to estimate the potential reduction in fire emissions when prescribed burning is applied in dry, temperate forested systems of the western U.S. Daily carbon dioxide (CO(2)) fire emissions for 2001-2008 were calculated for the western U.S. for two cases: a default wildfire case and one in which prescribed burning was applied. Wide-scale prescribed fire application can reduce CO(2) fire emissions for the western U.S. by 18-25%1 in the western U.S., and by as much as 60% in specific forest systems. Although this work does not address important considerations such as the feasibility of implementing wide-scale prescribed fire management or the cumulative emissions from repeated prescribed burning, it does provide constraints on potential carbon emission reductions when prescribed burning is used.
Controlled burns on the urban fringe, Mount Tamalpais, Marin County, California
Thomas E. Spittler
1989-01-01
The California Department of Conservation, Division of Mines and Geology provided technical assistance to the California Department of Forestry and Fire Protection in assessing potential geologic hazards that could be affected by proposed prescribed burns on Mt. Tamalpais. This research yielded the following conclusions: (1) landsliding and surface erosion have...
ERIC Educational Resources Information Center
Boon, Helen Joanna; Pagliano, Paul; Brown, Lawrence; Tsey, Komla
2012-01-01
Recent weather-related disasters (i.e., floods, fires) impacting Australia may potentially increase in frequency and severity as a result of predicted climate variability. The dearth of literature pertaining to school emergency response planning for vulnerable students with disabilities (including those with intellectual disabilities) when such…
2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, E; Woollett, J
2004-11-16
To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grasslandmore » community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.« less
NASA Astrophysics Data System (ADS)
Medvedeva, M. A.; Vozbrannaya, A. E.; Sirin, A. A.; Maslov, A. A.
2017-12-01
The capabilities of several multispectral satellite data types to identify the status of peatlands affected by peat extraction and abandoned deposits are examined to assess potential fire dangers and rewetting effectiveness. The available level of detail of describing land/vegetation cover for monitoring abandoned peat extraction sites using Spot-5 HRG, Spot-6 HRG, and Landsat-7 ETM+ satellite images has been demonstrated using the example of peatlands in the Meschera National Park (Vladimir oblast). The results reflect the pros and cons of using different data types to analyze the status of abandoned peat-extraction lands for purposes of peatland inventory, land-cover monitoring, and the prioritization of sites subject to rewetting and mire restoration, as well as for an evaluation of the effectiveness of these measures.
Assessing Pinyon Juniper Feedstock Properties and Utilization Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gresham, Garold Linn; Kenney, Kevin Louis
2015-08-01
Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvementmore » in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.« less
NASA Astrophysics Data System (ADS)
DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui
2017-04-01
In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp and paper market. Since the operational start of the website, the number of registered users has been steadily increasing up to a total of 300 users from a wide community that encompasses forest managers, firemen and civil protection officers, personnel from municipalities, academic researchers and private owners.
NASA Astrophysics Data System (ADS)
Aricak, Burak; Kucuk, Omer; Enez, Korhan
2014-01-01
Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.
MUNICIPAL WASTE COMBUSTION ASSESSMENT: WASTE CO-FIRING
The report is an overview of waste co-firing and auxiliary fuel fired technology and identifies the extent to which co-firing and auxiliary fuel firing are practised. Waste co-firing is defined as the combustion of wastes (e. g., sewage sludge, medical waste, wood waste, and agri...
MUNICIPAL WASTE COMBUSTION ASSESSMENT: WASTE CO- FIRING
The report is an overview of waste co-firing and auxiliary fuel fired technology and identifies the extent to which co-firing and auxiliary fuel firing are practised. Waste co-firing is defined as the combustion of wastes (e. g., sewage sludge, medical waste, wood waste, and agri...
Projected carbon stocks in the conterminous USA with land use and variable fire regimes.
Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Timothy J; Sleeter, Benjamin M; Zhu, Zhiliang
2015-12-01
The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie-forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122-126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.
2010-12-01
Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how contemporary changes in fire activity and land use are changing the global carbon cycle.
NASA Astrophysics Data System (ADS)
Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta
2016-04-01
Microbial diversity and function in soils are increasingly assessed by the application of molecular methods such as sequencing and PCR technology. We applied these techniques to study microbial recovery in post-fire forest soils. The recovery of forest ecosystems following severe fire is influenced by post-fire management. The removal of burnt tree stumps (salvage logging) is a common practice in Spain following fire. In some cases, the use of heavy machinery in addition to the vulnerability of soils to erosion and degradation make this management potentially damaging to soil, and therefore to the ecosystem. We hypothesized that tree removal slows down the recovery of soil biological communities including microbial and plant communities and contributes to soil degradation in the burnt affected area. The study area is located in "Sierra de Mariola Natural Park" in Alcoi, Alicante (E Spain). A big forest fire (>500 has) occurred in July 2012. The forest is composed mainly of Pinus halepensis trees with an understory of typical Mediterranean shrubs species such as Quercus coccifera, Rosmarinus officinalis, Thymus vulgaris, Brachypodium retusum, etc. Soil is classified as a Typic Xerorthent (Soil Survey Staff, 2014) developed over marls. In February 2013, salvage logging (SL) treatment, with a complete extraction of the burned wood using heavy machinery, was applied to a part of the affected forest. Plots for monitoring the effects of SL were installed in this area and in a similar nearby control (C) area, where no SL treatment was done. The recovery of soil bacterial and fungal communities post-fire with and without tree removal was analysed by using Next-Generation sequencing and the abundance of functional genes, related to nitrogen cycling, in the soil was estimated using quantitative PCR (qPCR). We will present the methods used and the results of our study in this PICO presentation.
Predicting Ground Fire Ignition Potential in Aspen Communities
S. G. Otway; E. W. Bork; K. R. Anderson; M. E. Alexander
2006-01-01
Fire is one of the key disturbances affecting aspen (Populus tremuloides Michx.) forest ecosystems within western Canadian wildlands, including Elk Island National Park. Prescribed fire use is a tool available to modify aspen forests, yet clearly understanding its potential impact is necessary to successfully manage this disturbance.
Vehicle fires and fire safety in tunnels
DOT National Transportation Integrated Search
2002-09-20
Tunnels present what is arguably the most hazardous environment, from the point of view of fire safety, that members of the public ever experience. The fire safety design of tunnels is carried out by tunnel engineers on the basis of a potential fire ...
Rapid assessment of postfire plant invasions in coniferous forests of the western United States
Freeman, J.P.; Stohlgren, T.J.; Hunter, M.E.; Omi, Philip N.; Martinson, E.J.; Chong, G.W.; Brown, C.S.
2007-01-01
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions. ?? 2007 by the Ecological Society of America.
The national fire and fire surrogate study: early results and future challenges
Thomas A. Waldrop; James McIver
2006-01-01
Fire-adapted ecosystems today have dense plant cover and heavy fuel loads as a result of fire exclusion and other changes in land use practices. Mechanical fuel treatments and prescribed fire are powerful tools for reducing wildfire potential, but the ecological consequences of their use is unknown. The National Fire and Fire Surrogate Study examines the effects of...
Climatic and weather factors affecting fire occurrence and behavior
Randall P. Benson; John O. Roads; David R. Weise
2009-01-01
Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...
The use of fire in forest restoration
Colin C. Hardy; Stephen F. Arno
1996-01-01
The 26 papers in this document address the current knowledge of fire as a disturbance agent, fire history and fire regimes, applications of prescribed fire for ecological restoration, and the effects of fire on the various forested ecosystems of the north-western United States. The main body of this document is organized in three sections: Assessing Needs for Fire in...
Current status and future needs of the BehavePlus Fire Modeling System
Patricia L. Andrews
2014-01-01
The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire...
Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.
2009-01-01
Department of the Interior (DOI) bureaus have invested heavily (for example, the U.S. Bureau of Land Management (BLM) spent more than $60 million in fiscal year 2007) in seeding vegetation for emergency stabilization and burned area rehabilitation of non-forested arid lands over the past 10 years. The primary objectives of these seedings commonly are to (1) reduce the post-fire dominance of non-native annual grasses, such as cheatgrass (Bromus tectorum) and red brome (Bromus rubens); (2) minimize the probability of recurrent fire; and (3) ultimately produce desirable vegetation characteristics (for example, ability to recover following disturbance [resilience], resistance to invasive species, and a capacity to support a diverse flora and fauna). Although these projects historically have been monitored to varying extents, land managers currently lack scientific evidence to verify whether seeding arid and semiarid lands achieves desired objectives. Given the amount of resources dedicated to post-fire seeding projects, a synthesis of information determining the factors that result in successful treatments is critically needed. Although results of recently established experiments and monitoring projects eventually will provide useful insights for the future direction of emergency stabilization and burned area rehabilitation programs, a chronosequence approach evaluating emergency stabilization and burned area rehabilitation treatments (both referenced hereafter as ESR treatments) over the past 30 years could provide a comprehensive assessment of treatment success across a range of regional environmental gradients. By randomly selecting a statistically robust sample from the population of historic ESR treatments in the Intermountain West, this chronosequence approach would have inference for most ecological sites in this region. The goal of this feasibility study was to compile and examine historic ESR records from BLM field offices across the Intermountain West to determine whether sufficient documentation existed for a future field-based chronosequence project. We collected ESR records and data at nine BLM field offices in four States (Oregon, Idaho, Nevada, and Utah) and examined the utility of these data for the development of a chronosequence study of post-fire seeding treatments from multiple sites and different ages (since seeding) throughout the Intermountain West. We collected records from 730 post-fire seeding projects with 1,238 individual seeding treatments. Records from each project ranged from minimal reporting of the project's occurrence to detailed documentation of planning, implementation, and monitoring. Of these 1,238 projects, we identified 468 (38 percent) that could potentially be used to implement a field-based chronosequence study. There were 206 ground-seeding treatments and 262 aerial-seeding treatments within this initial population, not including hand plantings. We also located a considerable number of additional records from other potential field offices that would be available for the chronosequence study but have yet to be compiled for this feasibility report. There are a number of potential challenges involved in going forward with a field-based chronosequence study derived from data collected at these nine BLM offices. One challenge is that not all seed mixtures in ESR project files have on-the-ground confirmation about what was sown or rates of application. Most projects, particularly records before 2000, just list the planned or purchased seed mixtures. Although this could potentially bias assessments of factors influencing establishment rates of individual species for treatments conducted before 2000, a chronosequence study would not be intended to assess success solely at the species-level. Treatment success would be evaluated based on the establishment of healthy vegetation communities, such as the abundance and density of perennial species, regardless of their lifeforms (grasses, fo
Wonkka, Carissa L; Rogers, William E; Kreuter, Urs P
2015-12-01
Resistance to the use of prescribed fire is strong among many private land managers despite the advantages it offers for maintaining fire-adapted ecosystems. Even managers who are aware of the benefits of using prescribed fire as a management tool avoid using it, citing potential liability as a major reason for their aversion. Recognizing the importance of prescribed fire for ecosystem management and the constraints current statutory schemes impose on its use, several states in the United States have undertaken prescribed burn statutory reform. The stated purpose of these statutory reforms, often called "right to burn" or "prescribed burning" acts, is to encourage prescribed burning for resource protection, public safety, and land management. Our research assessed the consequences of prescribed burn statutory reform by identifying legal incentives and impediments to prescribed fire application for ecosystem restoration and management, as well as fuel reduction. Specifically, we explored the relationship between prescribed burning laws and decisions made by land managers by exploiting a geographic-based natural experiment to compare landowner-prescribed fire use in contiguous counties with different regulations and legal liability standards. Controlling for potentially confounding variables, we found that private landowners in counties with gross negligence liability standards burn significantly more hectares than those in counties with simple negligence standards (F6,72 = 4.16, P = 0.046). There was no difference in hectares burned on private land between counties with additional statutorily mandated regulatory requirements and those requiring only a permit to complete a prescribed burn (F6,72 = 1.42, P = 0.24) or between counties with burn ban exemptions for certified prescribed burn managers and those with no exemptions during burn bans (F6,72 = 1.39, P = 0.24). Lawmakers attempting to develop prescribed burning statutes to promote the safe use of prescribed fire should consider the benefits of lower legal liability standards in conjunction with regulatory requirements that promote safety for those managing forests and rangelands with fire. Moreover, ecologists and land managers might be better prepared and motivated to educate stakeholder groups who influence prescribed fire policies if they are cognizant of the manner in which policy regulations and liability concerns create legal barriers that inhibit the implementation of effective ecosystem management strategies.
González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.
2017-01-01
Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. PMID:28159988
Analysis of causal factors of fire regimes in Sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Palumbo, I.; Lehsten, V.; Balzter, H.
2009-04-01
Wildfires are a wide spread global phenomenon. Their activity peaks in the tropical savannas, especially in the African continent, where fires are a key component of ecosystem dynamics. Fires affect the ecological balance between trees and grasses in savannas with concomitant effects on biodiversity, soil fertility and biogeochemical cycles. Large amounts of trace greenhouse gases and aerosols from wildfires are emitted each year in Africa, but the underlying dynamics of such wildfires and what drives them remain poorly understood. In general terms, the magnitude and the inter-annual variability of fire activity depend on fire frequency and its spatial distribution, also referred to as fire regimes. These are, in turn, determined by the environmental conditions at the time of burning, ignition sources, fuel type, fuel availability, and its moisture content. This study analysed the driving factors of fire regimes at continental level for a period of 5 years (2002-2007). We considered the following variables: climate (rainfall, temperature, humidity), population density, land cover and the burned areas derived from the MODIS MCD45A1 product at 500m resolution. GIS and multi-variate regression techniques were used to analyse the data. Understanding fire driving factors is fundamentally important for developing process-based simulation models of fire occurrence under future climate and environmental change scenarios. This is particularly relevant if we consider that the IPCC 4th Assessment report indicates that a change in the rainfall patterns has been observed in the last 40 years over most of Africa with a decrease of precipitation around 20-40% in West Africa and more intense and widespread droughts in Southern Africa. The simultaneous increase of temperatures can potentially lead to higher fire occurrence and modify the current fire regimes. This work contributes to climate change research with new insights and understanding about how fires are controlled by bioclimatic and demographic factors in African ecosystems.
Fire detection and incidents localization based on public information channels and social media
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Skroumpelou, Katerina; Rizogiannis, Konstantinos; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Thomopoulos, Stelios C. A.
2017-05-01
In this paper a solution is presented aiming to assist the early detection and localization of a fire incident by exploiting crowdsourcing and unofficial civilian online reports. It consists of two components: (a) the potential fire incident detection and (b) the visualization component. The first component comprises two modules that run in parallel and aim to collect reports posted on public platforms and conclude to potential fire incident locations. It collects the public reports, distinguishes reports that refer to a potential fire incident and store the corresponding information in a structured way. The second module aggregates all these stored reports and conclude to a probable fire location, based on the amount of reports per area, the time and location of these reports. In further the result is entered to a fusion module which combines it with information collected by sensors if available in order to provide a more accurate fire event detection capability. The visualization component is a fully - operational public information channel which provides accurate and up-to-date information about active and past fires, raises awareness about forest fires and the relevant hazards among citizens. The channel has visualization capabilities for presenting in an efficient way information regarding detected fire incidents fire expansion areas, and relevant information such as detecting sensors and reporting origin. The paper concludes with insight to current CONOPS end user with regards to the inclusion of the proposed solution to the current CONOPS of fire detection.
Assessment of Current U.S. Department of Transportation Fire Safety Efforts
DOT National Transportation Integrated Search
1979-07-01
The Urban Mass Transportation Administration (UMTA), has undertaken the task of assessing the entire area of fire research to determine how to provide means to reduce the fire threat in transit systems, and thus, to provide a safer means of transport...
Potential release of fibers from burning carbon composites. [aircraft fires
NASA Technical Reports Server (NTRS)
Bell, V. L.
1980-01-01
A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.
Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm
2014-10-15
Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl(-) and KATP K(+) ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450-1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above -20 mV. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Riisager, Anders; Duehmke, Rudy; Nielsen, Ole Bækgaard; Huang, Christopher L; Pedersen, Thomas Holm
2014-01-01
Recent studies in rat muscle fibres show that repetitive firing of action potentials causes changes in fibre resting membrane conductance (Gm) that reflect regulation of ClC-1 Cl− and KATP K+ ion channels. Methodologically, these findings were obtained by inserting two microelectrodes at close proximity in the same fibres enabling measurements of fibre input resistance (Rin) in between action potential trains. Since the fibre length constant (λ) could not be determined, however, the calculation of Gm relied on the assumptions that the specific cytosolic resistivity (Ri) and muscle fibre volume remained constant during the repeated action potential firing. Here we present a three-microelectrode technique that enables determinations of multiple cable parameters in action potential-firing fibres including Rin and λ as well as waveform and conduction velocities of fully propagating action potentials. It is shown that in both rat and mouse extensor digitorum longus (EDL) fibres, action potential firing leads to substantial changes in both muscle fibre volume and Ri. The analysis also showed, however, that regardless of these changes, rat and mouse EDL fibres both exhibited initial decreases in Gm that were eventually followed by a ∼3-fold, fully reversible increase in Gm after the firing of 1450–1800 action potentials. Using this three-electrode method we further show that the latter rise in Gm was closely associated with excitation failures and loss of action potential signal above −20 mV. PMID:25128573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-12-01
An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Closemore » control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.« less
Modeling the Risk of Fire/Explosion Due to Oxidizer/Fuel Leaks in the Ares I Interstage
NASA Technical Reports Server (NTRS)
Ring, Robert W.; Stott, James E.; Hales, Christy
2008-01-01
A significant flight hazard associated with liquid propellants, such as those used in the upper stage of NASA's new Ares I launch vehicle, is the possibility of leakage of hazardous fluids resulting in a catastrophic fire/explosion. The enclosed and vented interstage of the Ares I contains numerous oxidizer and fuel supply lines as well as ignition sources. The potential for fire/explosion due to leaks during ascent depends on the relative concentrations of hazardous and inert fluids within the interstage along with other variables such as pressure, temperature, leak rates, and fluid outgasing rates. This analysis improves on previous NASA Probabilistic Risk Assessment (PRA) estimates of the probability of deflagration, in which many of the variables pertinent to the problem were not explicitly modeled as a function of time. This paper presents the modeling methodology developed to analyze these risks.
Solution of Fire Protection in Historic Buildings
NASA Astrophysics Data System (ADS)
Iringová, Agnes; Idunk, Róbert
2016-12-01
The paper introduces optimization of the functional use of renovated spaces in historic buildings in terms of fire risk. It brings assessment of fire protection in the folk house Habánsky Dvor, situated in the village of Veľké Leváre, whose function was changed into the museum. It goes into static analysis of existing load-bearing structures and assessment of their fire resistance according to Eurocodes.
The quest for all-purpose plants
Susan L. Frommer; David R. Weise
1995-01-01
The fire safety of a home in the wildland/urban interface is influenced by several factors-one of which is the presence and proximity of vegetation to the home. Landscaping may either provide a significant barrier to fire spread and thus potentially increase a home's fire safety or favor fire spread and reduce a home's fire safety. However, fire safety of...
Changes in fire weather distributions: effects on predicted fire behavior
Lucy A. Salazar; Larry S. Bradshaw
1984-01-01
Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...
Hallema, Dennis W.; Sun, Ge; Caldwell, Peter V.; ...
2016-11-29
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known, however, about the long-term impacts of fire on annual water yield and the role of climate variability within this context. We here propose a framework for evaluating wildland fire impacts on streamflow that combines double-mass analysis with new methods (change point analysis, climate elasticity modeling, and process-based modeling) to distinguish between multiyear fire and climate impacts. The framework captures a wide range of fire types, watershedsmore » characteristics, and climate conditions using streamflow data, as opposed to other approaches requiring paired watersheds. The process is illustrated with three case studies. A watershed in Arizona experienced a +266% increase in annual water yield in the 5 years after a wildfire, where +219% was attributed to wildfire and +24% to precipitation trends. In contrast, a California watershed had a lower (–64%) post-fire net water yield, comprised of enhanced flow (+38%) attributed to wildfire offset (–102%) by lower precipitation in the post-fire period. Changes in streamflow within a watershed in South Carolina had no apparent link to periods of prescribed burning but matched a very wet winter and reports of storm damage. As a result, the presented framework is unique in its ability to detect and quantify fire or other disturbances, even if the date or nature of the disturbance event is uncertain, and regardless of precipitation trends.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallema, Dennis W.; Sun, Ge; Caldwell, Peter V.
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known, however, about the long-term impacts of fire on annual water yield and the role of climate variability within this context. We here propose a framework for evaluating wildland fire impacts on streamflow that combines double-mass analysis with new methods (change point analysis, climate elasticity modeling, and process-based modeling) to distinguish between multiyear fire and climate impacts. The framework captures a wide range of fire types, watershedsmore » characteristics, and climate conditions using streamflow data, as opposed to other approaches requiring paired watersheds. The process is illustrated with three case studies. A watershed in Arizona experienced a +266% increase in annual water yield in the 5 years after a wildfire, where +219% was attributed to wildfire and +24% to precipitation trends. In contrast, a California watershed had a lower (–64%) post-fire net water yield, comprised of enhanced flow (+38%) attributed to wildfire offset (–102%) by lower precipitation in the post-fire period. Changes in streamflow within a watershed in South Carolina had no apparent link to periods of prescribed burning but matched a very wet winter and reports of storm damage. As a result, the presented framework is unique in its ability to detect and quantify fire or other disturbances, even if the date or nature of the disturbance event is uncertain, and regardless of precipitation trends.« less
NASA Astrophysics Data System (ADS)
Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.
2016-05-01
Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.
Salice, Christopher J; Anderson, Todd A; Anderson, Richard H; Olson, Adric D
2018-04-25
Per- and polyfluoroalkyl substances (PFASs) continue to receive significant attention with particular concern for PFASs such as perfluorooctane sulfonate (PFOS) which was a constituent of Aqueous Film-Forming Foam used widely as a fire suppressant for aircraft since the 1970 s. We were interested in the potential for risk to ecological receptors inhabiting Cooper Bayou which is adjacent to two former fire-training areas (FTAs) at Barksdale Air Force Base, LA. Previous research showed higher PFOS concentrations in surface water and biota from Cooper Bayou compared to reference sites. To estimate risk, we compared surface water concentrations from multiple sites within Cooper Bayou to several PFOS chronic toxicity benchmarks for freshwater aquatic organisms (∼0.4-5.1 µg PFOS/L), and showed probility of exceedances from 0.04 to 0.5 suggesting a potential for adverse effects in the most contaminated habitats. A tissue residue assessment similarly showed some exceedance of benchmarks but with with a lower probability (max = 0.17). Both FTAs have been inactive for more than a decade so exposures (and, thus, risks) are expected to decline. Several uncertainties limit confidence in our risk estimates and include, highly dynamic surface water concentrations and limited chronic toxicity data for relevant species. Also, we have little data concerning organisms higher in the food chain which may receive higher lifetime exposures given the potential for PFOS to bioaccumulate and the longevity of many of these organisms. Overall, this study suggests PFOS can occur at concentrations that may cause adverse effects to ecological receptors although additional, focused research is needed to reduce uncertainties. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Dahm, Matthew M; Bertke, Stephen; Allee, Steve; Daniels, Robert D
2015-01-01
Objectives To construct a cohort-specific job-exposure matrix (JEM) using surrogate metrics of exposure for a cancer study on career firefighters from the Chicago, Philadelphia and San Francisco Fire Departments. Methods Departmental work history records, along with data on historical annual fire-runs and hours, were collected from 1950 to 2009 and coded into separate databases. These data were used to create a JEM based on standardised job titles and fire apparatus assignments using several surrogate exposure metrics to estimate firefighters’ exposure to the combustion byproducts of fire. The metrics included duration of exposure (cumulative time with a standardised exposed job title and assignment), fire-runs (cumulative events of potential fire exposure) and time at fire (cumulative hours of potential fire exposure). Results The JEM consisted of 2298 unique job titles alongside 16 174 fire apparatus assignments from the three departments, which were collapsed into 15 standardised job titles and 15 standardised job assignments. Correlations were found between fire-runs and time at fires (Pearson coefficient=0.92), duration of exposure and time at fires (Pearson coefficient=0.85), and duration of exposure and fire-runs (Pearson coefficient=0.82). Total misclassification rates were found to be between 16–30% when using duration of employment as an exposure surrogate, which has been traditionally used in most epidemiological studies, compared with using the duration of exposure surrogate metric. Conclusions The constructed JEM successfully differentiated firefighters based on gradient levels of potential exposure to the combustion byproducts of fire using multiple surrogate exposure metrics. PMID:26163543
Dahm, Matthew M; Bertke, Stephen; Allee, Steve; Daniels, Robert D
2015-09-01
To construct a cohort-specific job-exposure matrix (JEM) using surrogate metrics of exposure for a cancer study on career firefighters from the Chicago, Philadelphia and San Francisco Fire Departments. Departmental work history records, along with data on historical annual fire-runs and hours, were collected from 1950 to 2009 and coded into separate databases. These data were used to create a JEM based on standardised job titles and fire apparatus assignments using several surrogate exposure metrics to estimate firefighters' exposure to the combustion byproducts of fire. The metrics included duration of exposure (cumulative time with a standardised exposed job title and assignment), fire-runs (cumulative events of potential fire exposure) and time at fire (cumulative hours of potential fire exposure). The JEM consisted of 2298 unique job titles alongside 16,174 fire apparatus assignments from the three departments, which were collapsed into 15 standardised job titles and 15 standardised job assignments. Correlations were found between fire-runs and time at fires (Pearson coefficient=0.92), duration of exposure and time at fires (Pearson coefficient=0.85), and duration of exposure and fire-runs (Pearson coefficient=0.82). Total misclassification rates were found to be between 16-30% when using duration of employment as an exposure surrogate, which has been traditionally used in most epidemiological studies, compared with using the duration of exposure surrogate metric. The constructed JEM successfully differentiated firefighters based on gradient levels of potential exposure to the combustion byproducts of fire using multiple surrogate exposure metrics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Assessing Satellite-Based Fire Data for use in the National Emissions Inventory
NASA Technical Reports Server (NTRS)
Soja, Amber J.; Al-Saadi, Jassim; Giglio, Louis; Randall, Dave; Kittaka, Chieko; Pouliot, George; Kordzi, Joseph J.; Raffuse, Sean; Pace, Thompson G.; Pierce, Thomas E.;
2009-01-01
Biomass burning is significant to emission estimates because: (1) it can be a major contributor of particulate matter and other pollutants; (2) it is one of the most poorly documented of all sources; (3) it can adversely affect human health; and (4) it has been identified as a significant contributor to climate change through feedbacks with the radiation budget. Additionally, biomass burning can be a significant contributor to a regions inability to achieve the National Ambient Air Quality Standards for PM 2.5 and ozone, particularly on the top 20% worst air quality days. The United States does not have a standard methodology to track fire occurrence or area burned, which are essential components to estimating fire emissions. Satellite imagery is available almost instantaneously and has great potential to enhance emission estimates and their timeliness. This investigation compares satellite-derived fire data to ground-based data to assign statistical error and helps provide confidence in these data. The largest fires are identified by all satellites and their spatial domain is accurately sensed. MODIS provides enhanced spatial and temporal information, and GOES ABBA data are able to capture more small agricultural fires. A methodology is presented that combines these satellite data in Near-Real-Time to produce a product that captures 81 to 92% of the total area burned by wildfire, prescribed, agricultural and rangeland burning. Each satellite possesses distinct temporal and spatial capabilities that permit the detection of unique fires that could be omitted if using data from only one satellite.
NASA Astrophysics Data System (ADS)
Dobre, Mariana; Brooks, Erin; Lew, Roger; Kolden, Crystal; Quinn, Dylan; Elliot, William; Robichaud, Pete
2017-04-01
Soil erosion is a secondary fire effect with great implications for many ecosystem resources. Depending on the burn severity, topography, and the weather immediately after the fire, soil erosion can impact municipal water supplies, degrade water quality, and reduce reservoirs' storage capacity. Scientists and managers use field and remotely sensed data to quickly assess post-fire burn severity in ecologically-sensitive areas. From these assessments, mitigation activities are implemented to minimize post-fire flood and soil erosion and to facilitate post-fire vegetation recovery. Alternatively, land managers can use fire behavior and spread models (e.g. FlamMap, FARSITE, FOFEM, or CONSUME) to identify sensitive areas a priori, and apply strategies such as fuel reduction treatments to proactively minimize the risk of wildfire spread and increased burn severity. There is a growing interest in linking fire behavior and spread models with hydrology-based soil erosion models to provide site-specific assessment of mitigation treatments on post-fire runoff and erosion. The challenge remains, however, that many burn severity mapping and modeling products quantify vegetation loss rather than measuring soil burn severity. Wildfire burn severity is spatially heterogeneous and depends on the pre-fire vegetation cover, fuel load, topography, and weather. Severities also differ depending on the variable of interest (e.g. soil, vegetation). In the United States, Burned Area Reflectance Classification (BARC) maps, derived from Landsat satellite images, are used as an initial burn severity assessment. BARC maps are classified from either a Normalized Burn Ratio (NBR) or differenced Normalized Burned Ratio (dNBR) scene into four classes (Unburned, Low, Moderate, and High severity). The development of soil burn severity maps requires further manual field validation efforts to transform the BARC maps into a product more applicable for post-fire soil rehabilitation activities. Alternative spectral indices and modeled output approaches may prove better predictors of soil burn severity and hydrologic effects, but these have not yet been assessed in a model framework. In this project we compare field-verified soil burn severity maps to satellite-derived and modeled burn severity maps. We quantify the extent to which there are systematic differences in these mapping products. We then use the Water Erosion Prediction Project (WEPP) hydrologic soil erosion model to assess sediment delivery from these fires using the predicted and observed soil burn severity maps. Finally, we discuss differences in observed and predicted soil burn severity maps and application to watersheds in the Pacific Northwest to estimate post-fire sediment delivery.
An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Quigley, K. W.; Roberts, D. A.; Miller, D.
2017-12-01
Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.
Bennett, B K; Gamelli, R L; Duchene, R C; Atkocaitis, D; Plunkett, J A
2004-01-01
In response to the continued staggering statistics of fires set by juveniles and the devastating personal and property costs that are associated with these fires, the Burn and Shock Trauma Institute of Loyola University Medical Center, in collaboration with the State Fire Marshal's Office; the Illinois Fire Safety Alliance; and representatives from the firefighting community, law enforcement, emergency medicine and mental health, came together to create the Burn Education Awareness Recognition and Support Program. Through financial grant support from the International Association of Firefighters, the Illinois Fire Safety Alliance, and other private donations, the Burn Education Awareness Recognition and Support Program is able to provide a free resource to anyone who is concerned about a child playing with fire. Specially trained firefighters assess each child using the tool developed by the Federal Emergency Management Agency. In 2002, we assessed 42 children; 29 of those children were referred through the courts. So far, none of the children treated in our program have returned to fire-setting behaviors.
Richard F. Miller; Jeanne C. Chambers; Mike Pellant
2015-01-01
This field guide provides a framework for rapidly evaluating post-fire resilience to disturbance, or recovery potential, and resistance to invasive annual grasses, and for determining the need and suitability of the burned area for seeding. The framework identifies six primary components that largely determine resilience to disturbance, resistance to invasive grasses,...
Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Castillo Soto
2013-01-01
Assessing areas affected by forest fires requires comprehensive studies covering a wide range of analyzes. From an economic standpoint, assessing the affected area in monetary terms is crucial. Determining the degree of loss in the value of natural resources, both those of a tangible and intangible nature, enables knowing the residual value remaining after a fire, i.e...
Acoustic emission of fire damaged fiber reinforced concrete
NASA Astrophysics Data System (ADS)
Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.
2016-04-01
The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.
Assessment of the Utility of the Advanced Himawari Imager to Detect Active Fire Over Australia
NASA Astrophysics Data System (ADS)
Hally, B.; Wallace, L.; Reinke, K.; Jones, S.
2016-06-01
Wildfire detection and attribution is an issue of importance due to the socio-economic impact of fires in Australia. Early detection of fires allows emergency response agencies to make informed decisions in order to minimise loss of life and protect strategic resources in threatened areas. Until recently, the ability of land management authorities to accurately assess fire through satellite observations of Australia was limited to those made by polar orbiting satellites. The launch of the Japan Meteorological Agency (JMA) Himawari-8 satellite, with the 16-band Advanced Himawari Imager (AHI-8) onboard, in October 2014 presents a significant opportunity to improve the timeliness of satellite fire detection across Australia. The near real-time availability of images, at a ten minute frequency, may also provide contextual information (background temperature) leading to improvements in the assessment of fire characteristics. This paper investigates the application of the high frequency observation data supplied by this sensor for fire detection and attribution. As AHI-8 is a new sensor we have performed an analysis of the noise characteristics of the two spectral bands used for fire attribution across various land use types which occur in Australia. Using this information we have adapted existing algorithms, based upon least squares error minimisation and Kalman filtering, which utilise high frequency observations of surface temperature to detect and attribute fire. The fire detection and attribution information provided by these algorithms is then compared to existing satellite based fire products as well as in-situ information provided by land management agencies. These comparisons were made Australia-wide for an entire fire season - including many significant fire events (wildfires and prescribed burns). Preliminary detection results suggest that these methods for fire detection perform comparably to existing fire products and fire incident reporting from relevant fire authorities but with the advantage of being near-real time. Issues remain for detection due to cloud and smoke obscuration, along with validation of the attribution of fire characteristics using these algorithms.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.
2009-01-01
The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.
Pfeiffer, Keram; French, Andrew S
2009-09-02
Neurotransmitter chemicals excite or inhibit a range of sensory afferents and sensory pathways. These changes in firing rate or static sensitivity can also be associated with changes in dynamic sensitivity or membrane noise and thus action potential timing. We measured action potential firing produced by random mechanical stimulation of spider mechanoreceptor neurons during long-duration excitation by the GABAA agonist muscimol. Information capacity was estimated from signal-to-noise ratio by averaging responses to repeated identical stimulation sequences. Information capacity was also estimated from the coherence function between input and output signals. Entropy rate was estimated by a data compression algorithm and maximum entropy rate from the firing rate. Action potential timing variability, or jitter, was measured as normalized interspike interval distance. Muscimol increased firing rate, information capacity, and entropy rate, but jitter was unchanged. We compared these data with the effects of increasing firing rate by current injection. Our results indicate that the major increase in information capacity by neurotransmitter action arose from the increased entropy rate produced by increased firing rate, not from reduction in membrane noise and action potential jitter.
Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane
2009-01-01
The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...
Fire Safety for Retired Adults: Participant's Coursebook.
ERIC Educational Resources Information Center
Walker (Bonnie) and Associates, Inc., Crofton, MD.
The risk of dying from fire increases substantially among older adults. This document contains a collection of fire safety information for elderly people. Information includes procedures to follow in case of fire and early warning technologies such as smoke alarms. The booklet describes potential sources of fires (smoking, home heating, kitchens,…
Crone, Nathan E.; Niebur, Ernst; Franaszczuk, Piotr J.; Hsiao, Steven S.
2009-01-01
Recent studies using electrocorticographic (ECoG) recordings in humans have shown that functional activation of cortex is associated with an increase in power in the high-gamma frequency range (∼60–200 Hz). Here we investigate the neural correlates of this high-gamma activity in local field potential (LFP). Single units and LFP were recorded with microelectrodes from the hand region of macaque SII cortex while vibrotactile stimuli of varying intensities were presented to the hand. We found that high-gamma power in the LFP was strongly correlated with the average firing rate recorded by the microelectrodes, both temporally and on a trial-by-trial basis. In comparison, the correlation between firing rate and low-gamma power (40–80 Hz) was much smaller. In order to explore the potential effects of neuronal firing on ECoG, we developed a model to estimate ECoG power generated by different firing patterns of the underlying cortical population and studied how ECoG power varies with changes in firing rate versus the degree of synchronous firing between neurons in the population. Both an increase in firing rate and neuronal synchrony increased high-gamma power in the simulated ECoG data. However, ECoG high-gamma activity was much more sensitive to increases in neuronal synchrony than firing rate. PMID:18987189
Space-Based Sensorweb Monitoring of Wildfires in Thailand
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Mclaren, David; Davies, Ashley; Tran, Daniel; Tanpipat, Veerachai; Akaakara, Siri; Ratanasuwan, Anuchit; Mandl, Daniel
2011-01-01
We describe efforts to apply sensorweb technologies to the monitoring of forest fires in Thailand. In this approach, satellite data and ground reports are assimilated to assess the current state of the forest system in terms of forest fire risk, active fires, and likely progression of fires and smoke plumes. This current and projected assessment can then be used to actively direct sensors and assets to best acquire further information. This process operates continually with new data updating models of fire activity leading to further sensing and updating of models. As the fire activity is tracked, products such as active fire maps, burn scar severity maps, and alerts are automatically delivered to relevant parties.We describe the current state of the Thailand Fire Sensorweb which utilizes the MODIS-based FIRMS system to track active fires and trigger Earth Observing One / Advanced Land Imager to acquire imagery and produce active fire maps, burn scar severity maps, and alerts. We describe ongoing work to integrate additional sensor sources and generate additional products.
Assessing CMAQ's contribution to Ozone and PM 2.5 from Wildland Fire Emissions
This poster to be delivered at the International Association of Wildland Fire Conference highlights modeling efforts that have been made to assess the impact of wildland fires on atmospheric pollution and human health. It points out the need to perform additional evaluation and m...
The essence of fire regime-condition class assessment
McKinley-Ben Miller
2008-01-01
The interagency-Fire Regime / Condition Class - assessment process (FRCC) represents a contemporary and effective means of estimating the relative degree of difference or "departure" a subject landscape condition is currently in, as compared to the historic or reference ecological conditions. This process generally applied to fire adapted systems is science-...
Sean A. Parks; Carol Miller; Cara R. Nelson; Zachary A. Holden
2014-01-01
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological...
Flood and Fire Monitoring and Forecasting Within the Chornobyl Exclusion Zone
NASA Astrophysics Data System (ADS)
Los, Victor
2001-03-01
Taking into consideration that radioactivity from the contaminating elements of the Chernobyl Exclusion Zone (CEZ) amounts to a huge number, one of the most urgent tasks, at present, is the resolution of problems related to secondary radioactive contamination caused by floods and fires. These factors may lead to critical consequences. For instance, if radioactive contaminants migrate into the water system, namely into the Dnipro River, a threat arises to more than 20 million inhabitants of Ukraine. Additionally, fires in the CEZ potentially could cause contaminants to be dispersed into the air and to migrate in the atmosphere for long distances. The elements of information support system for administrative decision-making to respond to the appearances and consequences of forest fires and floods in contaminated areas of the CEZ have been developed. The system proposes: using Earth Remote Sensing (R/S) data for timely detection of forest fires; integration by Geographic Information System (GIS) of mathematical models for radionuclide migration by air in order to forecast radiological consequences of forest fires; forecasting and assessing flood consequences by means of spatial analysis of GIS and R/S; and development of a system for dissemination of information. This project was performed within the framework of USAID Cooperative Agreement #121-A-00-98-00615-00, dedicated to the establishment of the Ukrainian Land and Resource Management Center.
Molina, Juan Ramón; García, Juan Pedro; Fernández, Juan José; Rodríguez Y Silva, Francisco
2018-01-15
Socioeconomic changes, climate change, rural migration and fire exclusion have led to a high woody biomass accumulation increasing potential wildfire severity. Mechanical thinning and prescribed burning practices are commonly used to prevent large fires. The purpose of this study was to assess burning treatment effectiveness following mechanical thinning from biomass harvesting. Prescribed burning to reduce residue removal could help mitigate fire behavior, mainly in strategic management or critical focal points. Field samplings were conducted before and immediately after burnings on different environmental scenarios where fuel load was classified by categories. Prescribed fires reduced available fuel in all fuel categories, mainly in surface litter layer. Total fuel load reduction ranged from 59.07% to 86.18%. In this sense, fuel reduction effects were more pronounced when burns were conducted fewer than 10% on surface litter moisture. The difference in fuel consumption among scenarios was higher for most all woody fuel components and decomposition litter layer than for surface litter layer. Managers can use this information to design technical prescription to achieve the targets while decomposed litter retention maintaining the soil properties and biodiversity. Understanding the most effective "burn window" should help better plan prescribed burning, both in term of fire behavior and fuel consumption, without altering ecosystem properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Chavez, Audrie A; Duzinski, Sarah V; Wheeler, Tareka C; Lawson, Karla A
2014-09-01
To evaluate the effectiveness of the Danger Rangers Fire Safety Curriculum in increasing the fire safety knowledge of low-income, minority children in an urban community setting. Data was collected from child participants via teacher/researcher administered pre-, post-, and retention tests. A self-administered questionnaire was collected from parents pre- and post-intervention to assess fire/burn prevention practices. Paired t-tests were conducted to compare pre-, post-, and retention test mean scores by grade group. McNemar's test was used to determine if there was a change in parent-reported prevention practices following the intervention. The first/second grade group and the third grade group scored significantly higher on the post- and retention test as compared to the pre-test (p<0.0001 for all comparisons). There was no significant change in scores for the pre-k/k group after the intervention. There was a significant increase in 2 of 4 parent-reported fire/burn-related prevention practices after the intervention. Fire safety knowledge improved among first to third grade children, but not among pre-kinder and kindergarten children who participated in the intervention. This study also showed that a program targeted towards children and delivered in a classroom setting has the potential to influence familial prevention practices by proxy. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Bedia, J.; Herrera, S.; Gutiérrez, J. M.
2013-09-01
We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness of ERA-Interim reanalysis data for the reconstruction of historical fire-climate relationships at the scale of analysis. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as response variable.
Back to the future: assessing accuracy and sensitivity of a forest growth model
Susan Hummel; Paul Meznarich
2014-01-01
The Forest Vegetation Simulator (FVS) is a widely used computer model that projects forest growth and predicts the effects of disturbances such as fire, insects, harvests, or disease. Land managers often use these projections to decide among silvicultural options and estimate the potential effects of these options on forest conditions. Despite FVS's popularity,...
Reptile and amphibian response to season of burn in an upland hardwood forest
Cathryn H. Greenberg; Tyler Seiboldt; Tara L. Keyser; W. Henry McNab; Patrick Scott; Janis Bush; Christopher E. Moorman
2018-01-01
Growing-season burns are increasingly used in upland hardwood forest for multiple forest management goals. Many species of reptiles and amphibians are ground-dwelling, potentially increasing their vulnerability to prescribed fire, especially during the growing-season when they are most active. We used drift fences with pitfall traps to experimentally assess how...
Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... quality of the human environment. The U.S. Environmental Protection Agency participated as a cooperating... with respect to resources potentially affected by the proposal and participate in the NEPA analysis... natural gas-fired compressor unit at the new Hancock Compressor Station; About 320 feet of 30-inch...
The science and opportunity of wildfire risk assessment (Chapter 6)
Matthew P. Thompson; Alan A. Ager; Mark A. Finney; Dave E. Calkin; Nicole M. Vaillant
2012-01-01
Wildfire management within the United States continues to increase in complexity, as the converging drivers of (1) increased development into fire-prone areas, (2) accumulated fuels from historic management practices, and (3) climate change potentially magnify threats to social and ecological values (Bruins et al., 2010; Gude et al., 2008; Littell et al., 2009). The...
NASA Technical Reports Server (NTRS)
Brooke, Michael; Williams, Meredith; Fenn, Teresa
2016-01-01
The risk of severe wildfires in Texas has been related to weather phenomena such as climate change and recent urban expansion into wild land areas. During recent years, Texas wild land areas have experienced sequences of wet and dry years that have contributed to increased wildfire risk and frequency. To prevent and contain wildfires, the Texas Forest Service (TFS) is tasked with evaluating and reducing potential fire risk to better manage and distribute resources. This task is made more difficult due to the vast and varied landscape of Texas. The TFS assesses fire risk by understanding vegetative fuel types and fuel loads. To better assist the TFS, NASA Earth observations, including Landsat and Moderate Resolution Imaging Specrtoradiometer (MODIS) data, were analyzed to produce maps of vegetation type and specific vegetation phenology as it related to potential wildfire fuel loads. Fuel maps from 2010-2011 and 2014-2015 fire seasons, created by the Texas Disasters I project, were used and provided alternating, complementary map indicators of wildfire risk in Texas. The TFS will utilize the end products and capabilities to evaluate and better understand wildfire risk across Texas.
Land Fire impacts assessment on the Rice Watershed, California. 2007
NASA Astrophysics Data System (ADS)
Zahraei, A.; Imam, B.; Sorooshian, S.
2009-12-01
Burn impacts assessment is a key factor for the post-fire disaster management. For example, assessing wildfire impacts on vegetation is an important component of improving the prediction of hydrologic and ecologic impacts of wildfires within the affected watershed. Many studies have analyzed satellite derived indices of vegetation vigor as indicator of burning effects. This poster reports a study in which Landsat (TM) data was used to compute three indices, NDVI, MASAVI and NBR, which are commonly used in assessing wildfire impacts. The study focused on the Rice watershed southern California, which was affected by a major wildfire in the 2007 fire season. A series of before and after Landsat images were used to evaluate these indices evaluated before and after the wildfire. Comparison between the three indices reveals that the affects of the fire were not very prominently present in the Satellite observation due to the length of time separating the fire from the next available Lansat scene. Such separation may include a period of vegetation recovery. However, when compared with the scenes from the previous year, but for the same season, post fire vegetation show marked differences from pre-fire conditions. The ability of NDVI, MSAVI and NBR to monitor post-fire impacts on vegetation is further evaluated by comparing precipitation patterns in 2006 and 2007, which may shed more light on whether the marked difference in these indices are due to dry/wet differences or to the impacts of fire. NDVI shows more reliability and better representation of both long-term and short-term impacts of wild-fire.
NASA Technical Reports Server (NTRS)
Saveker, D. R. (Editor)
1973-01-01
The preliminary design of a satellite plus computer earth resources information system is proposed for potential uses in fire prevention and control in the wildland fire community. Suggested are satellite characteristics, sensor characteristics, discrimination algorithms, data communication techniques, data processing requirements, display characteristics, and costs in achieving the integrated wildland fire information system.
Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests
Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens
2006-01-01
Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...
Wildland fire deficit and surplus in the western United States, 1984-2012
Sean A. Parks; Carol Miller; Marc-Andre Parisien; Lisa M. Holsinger; Solomon Z. Dobrowski; John Abatzoglou
2015-01-01
Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a "fire deficit" or "fire surplus", respectively. In this study, we developed...
Spatial-Temporal Dynamics of Urban Fire Incidents: a Case Study of Nanjing, China
NASA Astrophysics Data System (ADS)
Yao, J.; Zhang, X.
2016-06-01
Fire and rescue service is one of the fundamental public services provided by government in order to protect people, properties and environment from fires and other disasters, and thus promote a safer living environment. Well understanding spatial-temporal dynamics of fire incidents can offer insights for potential determinants of various fire events and enable better fire risk estimation, assisting future allocation of prevention resources and strategic planning of mitigation programs. Using a 12-year (2002-2013) dataset containing the urban fire events in Nanjing, China, this research explores the spatial-temporal dynamics of urban fire incidents. A range of exploratory spatial data analysis (ESDA) approaches and tools, such as spatial kernel density and co-maps, are employed to examine the spatial, temporal and spatial-temporal variations of the fire events. Particular attention has been paid to two types of fire incidents: residential properties and local facilities, due to their relatively higher occurrence frequencies. The results demonstrated that the amount of urban fire has greatly increased in the last decade and spatial-temporal distribution of fire events vary among different incident types, which implies varying impact of potential influencing factors for further investigation.
Mapping landscape fire frequency for fire regime condition class
Dale A. Hamilton; Wendel J. Hann
2015-01-01
Fire Regime Condition Class (FRCC) is a departure index that compares the current amounts of the different vegetation succession classes, fire frequency, and fire severity to historic reference conditions. FRCC assessments have been widely used for evaluating ecosystem status in many areas of the U.S. in reports such as land use plans, fire management plans, project...
Simulating spatial and temporally related fire weather
Isaac C. Grenfell; Mark Finney; Matt Jolly
2010-01-01
Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...
Spatial distribution of human-caused forest fires in Galicia (NW Spain)
M. L. Chas-Amil; J. Touza; P. Prestemon
2010-01-01
It is crucial for fire prevention policies to assess the spatial patterns of human-started fires and their relationship with geographical and socioeconomic aspects. This study uses fire reports for the period 1988-2006 in Galicia, Spain, to analyze the spatial distribution of human-induced fire risk attending to causes and underlying motivations associated with fire...
NASA Astrophysics Data System (ADS)
Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C.
2012-04-01
Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires degrade the forest, affect human values, emit huge amount of carbon and aerosols and alter the land surface albedo. Usually, wind, slope, and dry conditions have been recognized as factors determining fire spread. In the Baikal region, 127,000 km2 burned in 2003, while the annual average burned area is approx. 8100 km2. In average years, 16% of the burned area occurred in the continuous permafrost zone but in 2003, 33% of these burned areas coincide with the existence of permanently frozen grounds. Permafrost and the associated upper active layer, which thaws during summer and refreezes during winter, is an important supply for soil moisture in boreal ecosystems. This leads to the question if permafrost hydrology is a potential additional driving factor for extreme fire events in boreal forests. Using temperature and precipitation data, we calculated the Nesterov index as indicator for fire weather conditions. Further, we used satellite observations of burned area and surface moisture, a digital elevation model, a land cover and a permafrost map to evaluate drivers for the temporal dynamic and spatial variability of surface moisture conditions and burned area in spring 2003. On the basis of time series decomposition, we separated the effect of drivers for fire activity on different time scales. We next computed cross-correlations to identify potential time lags between weather conditions, surface moisture and fire activity. Finally, we assessed the predictive capability of different combinations of driving variables for surface moisture conditions and burned area using multivariate spatial-temporal regression models. The results from this study demonstrate that permafrost in larch-dominated ecosystems regulates the inter-annual variability of surface moisture and thus increases the inter-annual variability of burned area. The drought conditions in spring 2003 were accelerated by the presence of permafrost because less water was stored in the upper active layer from the dry previous summer 2002 and the permafrost table prevents vegetative water uptake from deeper layers. In contrast, weather conditions (precipitation anomaly, Nesterov index) are weaker predictors for the 2003 fire event. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil on how feedback mechanisms can lead to extreme fire events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, and fire activity in earth system models for projecting climate change impacts over the next century.
Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.
2011-01-01
In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya. In addition, Interstate Highway 25, Raton Creek and the rail line in Railroad Canyon, County road A-27, and State Highway 526 in Sugarite Canyon may also be affected where they cross drainages downstream from recently burned basins. Although this assessment indicates that a rather large debris flow (approximately 42,000 cubic meters) may be generated from the basin above the City of Raton (basin 9) in response to the design storm, the probability of such an event is relatively low (approximately 10 percent). Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into the City of Raton. In addition, even small debris flows may affect structures at or downstream from basin outlets and increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Track Fire.
Emergency Response Capability Baseline Needs Assessment - Compliance Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharry, John A.
This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by LLNL Emergency Management Department Head, James Colson. This document is the second of a two-part analysis on Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2016 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2016more » BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. The 2013 BNA was approved by NNSA’s Livermore Field Office on January 22, 2014.« less
Noise adaptation in integrate-and fire neurons.
Rudd, M E; Brown, L G
1997-07-01
The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less
Estimation of wildfire size and risk changes due to fuels treatments
M. A. Cochrane; C. J. Moran; M. C. Wimberly; A. D. Baer; M. A. Finney; K. L. Beckendorf; J. Eidenshink; Z. Zhu
2012-01-01
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of...
Using stand-level optimization to reduce crown fire hazard
David H. Graetz; John Sessions; Steven L. Garman
2007-01-01
This study evaluated the ability to generate prescriptions for a wide variety of stands when the goal is to reduce crown fire potential. Forest managers charged with reducing crown fire potential while providing for commodity and ecological production have been hampered by the complexity of possible management options. A program called Stand-Level Optimization with...
Hari Katuwal; Christopher J. Dunn; David E. Calkin
2017-01-01
Currently, limited research on large-fire suppression effectiveness suggests fire managers may over-allocate resources relative to values to be protected. Coupled with observations that weather may be more important than resource abundance to achieve control objectives, resource use may be driven more by risk aversion than efficiency. To explore this potential, we...
Predicting the effect of fire on large-scale vegetation patterns in North America.
Donald McKenzie; David L. Peterson; Ernesto. Alvarado
1996-01-01
Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...
Jack D. Cohen; Bret W. Butler
1998-01-01
Residential losses associated with wildland fires have become a serious international fire protection problem. The radiant heat flux from burning vegetation adjacent to a structure is a principal ignition factor. A thermal radiation and ignition model estimated structure ignition potential using designated flame characteristics (inferred from various types and...
Extinguishment and Burnback Testing of Fire Fighting Agents
2005-09-26
resisting burnback for hydrocarbon fuel fires. Potential Aqueous Film Forming Foam ( AFFF ) replacements are required to exhibit an...simple, reliable test to evaluate the effectiveness of new foams being introduced into the market as potential Aqueous Film Forming Foam ( AFFF ...normal concentrations. Reference: Military Specification MIL-F-24385F, Fire Extinguishing Agent, Aqueous Film - Forming Foam
Potential fire behavior in California: an atlas and guide for forest and brushland managers
Bill C. Ryan
1984-01-01
Potential fire characteristics can be estimated as functions of weather, fuel, and terrain slope. Such information is needed by forest and other land managers--especially for anticipating fire suppression needs and planning prescribed burns. To provide this information, an Atlas has been developed for California. The Atlas includes statistical analyses of spread...
Fire hazard considerations for composites in vehicle design
NASA Technical Reports Server (NTRS)
Gordon, Rex B.
1994-01-01
Military ground vehicles fires are a significant cause of system loss, equipment damage, and crew injury in both combat and non-combat situations. During combat, the ability to successfully fight an internal fire, without losing fighting and mobility capabilities, is often the key to crew survival and mission success. In addition to enemy hits in combat, vehicle fires are initiated by electrical system failures, fuel line leaks, munitions mishaps and improper personnel actions. If not controlled, such fires can spread to other areas of the vehicle, causing extensive damage and the potential for personnel injury and death. The inherent fire safety characteristics (i.e. ignitability, compartments of these vehicles play a major roll in determining rather a newly started fire becomes a fizzle or a catastrophe. This paper addresses a systems approach to assuring optimum vehicle fire safety during the design phase of complex vehicle systems utilizing extensive uses of composites, plastic and related materials. It provides practical means for defining the potential fire hazard risks during a conceptual design phase, and criteria for the selection of composite materials based on its fire safety characteristics.
Flammability Configuration Analysis for Spacecraft Applications
NASA Technical Reports Server (NTRS)
Pedley, Michael D.
2014-01-01
Fire is one of the many potentially catastrophic hazards associated with the operation of crewed spacecraft. A major lesson learned by NASA from the Apollo 204 fire in 1966 was that ignition sources in an electrically powered vehicle should and can be minimized, but can never be eliminated completely. For this reason, spacecraft fire control is based on minimizing potential ignition sources and eliminating materials that can propagate fire. Fire extinguishers are always provided on crewed spacecraft, but are not considered as part of the fire control process. "Eliminating materials that can propagate fire" does not mean eliminating all flammable materials - the cost of designing and building spacecraft using only nonflammable materials is extraordinary and unnecessary. It means controlling the quantity and configuration of such materials to eliminate potential fire propagation paths and thus ensure that any fire would be small, localized, and isolated, and would self-extinguish without harm to the crew. Over the years, NASA has developed many solutions for controlling the configuration of flammable materials (and potentially flammable materials in commercial "off-the-shelf" hardware) so that they can be used safely in air and oxygen-enriched environments in crewed spacecraft. This document describes and explains these design solutions so payload customers and other organizations can use them in designing safe and cost-effective flight hardware. Proper application of these guidelines will produce acceptable flammability configurations for hardware located in any compartment of the International Space Station or other program crewed vehicles and habitats. However, use of these guidelines does not exempt hardware organizations of the responsibility for safety of the hardware under their control.
James K. Agee; John F. (comps.) Lehmkuhl
2009-01-01
The Fire and Fire Surrogate (FFS) project is a large long-term metastudy established to assess the effectiveness and ecological impacts of burning and fire "surrogates" such as cuttings and mechanical fuel treatments that are used instead of fire, or in combination with fire, to restore dry forests. One of the 13 national FFS sites is the Northeastern...
Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K
2014-09-01
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.
Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K
2014-01-01
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629
Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers
1980-09-01
TECHNICAL REPORT N-93 September 1980 ANALYSIS OF FLUE GAS DESULFURIZATION (FGD) PROCESSES FOR POTENTIAL USE ON ARMY COAL-FIRED BOILERS TECHNICAL LIBRARY...REFERENCE: Technical Report N-93, Analysis of Flue Gas Desulfurization (FGD) Ppooesses for Potential Use on Army Coal-Fired Boilers Please take a few...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER CERL-TR-N-93 2. GOVT ACCESSION NO «. TITLE (end Subtitle) ANALYSIS OF FLUE GAS DESULFURIZATION (FGD
Ghermandi, Luciana; Beletzky, Natacha A; de Torres Curth, Mónica I; Oddi, Facundo J
2016-12-01
The overlapping zone between urbanization and wildland vegetation, known as the wildland urban interface (WUI), is often at high risk of wildfire. Human activities increase the likelihood of wildfires, which can have disastrous consequences for property and land use, and can pose a serious threat to lives. Fire hazard assessments depend strongly on the spatial scale of analysis. We assessed the fire hazard in a WUI area of a Patagonian city by working at three scales: landscape, community and species. Fire is a complex phenomenon, so we used a large number of variables that correlate a priori with the fire hazard. Consequently, we analyzed environmental variables together with fuel load and leaf flammability variables and integrated all the information in a fire hazard map with four fire hazard categories. The Nothofagus dombeyi forest had the highest fire hazard while grasslands had the lowest. Our work highlights the vulnerability of the wildland-urban interface to fire in this region and our suggested methodology could be applied in other wildland-urban interface areas. Particularly in high hazard areas, our work could help in spatial delimitation policies, urban planning and development of plans for the protection of human lives and assets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kathryn L. Purcell; Scott L. Stephens
2005-01-01
Fire was once an important component of the disturbance regime in oak woodlands of the Sierra Nevada foothills. In addition to lightning-ignited fires, anthropogenic sources of ignition have historically been important until fire suppression activities in the mid- 20th century lengthened fire return intervals. Few fire history studies have addressed oak woodlands, and...
Theresa Jain; Molly Juillerat; Jonathan Sandquist; Mike Ford; Brad Sauer; Robert Mitchell; Scott McAvoy; Justin Hanley; Jon David
2007-01-01
We describe the efficacy of prescribed fires after two wildfires burned through and around these fires located in eastern Montana within the Missouri River Breaks. The objectives of the prescribed fires were to decrease tree density and favor increased herbaceous cover, thus decreasing the potential for crown fire. Our objective was to evaluate post-fire tree density,...
Sean A. Parks; Lisa M. Holsinger; Morgan A. Voss; Rachel A. Loehman; Nathaniel P. Robinson
2018-01-01
Landsat-based fire severity datasets are an invaluable resource for monitoring and research purposes. These gridded fire severity datasets are generally produced with pre- and post-fire imagery to estimate the degree of fire-induced ecological change. Here, we introduce methods to produce three Landsat-based fire severity metrics using the Google Earth Engine (GEE)...
Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA
Jessica L. Hudec; David L. Peterson
2012-01-01
Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...
Lindsay M. Grayson; Robert A. Progar; Sharon M. Hood
2017-01-01
Fire is a driving force in the North American landscape and predicting post-fire tree mortality is vital to land management. Post-fire tree mortality can have substantial economic and social impacts, and natural resource managers need reliable predictive methods to anticipate potential mortality following fire events. Current fire mortality models are limited to a few...
Assessing high reliability practices in the wildland fire community
Anne E. Black; Kathleen Sutcliffe; Michelle Barton; Deirdre Dether
2008-01-01
The Office of Inspector General's 2006 audit of Forest Service fire management operations added yet another voice to the growing chorus calling on the Federal wildland fire community to get more fire on the ground (OIG 2006). The 1995 National Fire Plan and the 2001 Implementation Plan identify the critical role of wildland fire use in reducing hazardous fuels...
Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley
2010-01-01
Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...
Employing Numerical Weather Models to Enhance Fire Weather and Fire Behavior Predictions
Joseph J. Charney; Lesley A. Fusina
2006-01-01
This paper presents an assessment of fire weather and fire behavior predictions produced by a numerical weather prediction model similar to those used by operational weather forecasters when preparing their forecasts. The PSU/NCAR MM5 model is used to simulate the weather conditions associated with three fire episodes in June 2005. Extreme fire behavior was reported...
Geoffrey H. Donovan; Peter. Noordijk
2005-01-01
To determine the optimal suppression strategy for escaped wildfires, federal land managers are requiredto conduct a wildland fire situation analysis (WFSA). As part of the WFSA process, fire managers estimate final fire size and suppression costs. Estimates from 58 WFSAs conducted during the 2002 fire season are compared to actual outcomes. Results indicate that...
Assessing the Role and Impact of Geospatial Data for Wildland Fire Management Decisions
NASA Astrophysics Data System (ADS)
Klein, E. A.; Lev, S. M.
2016-12-01
The 2015 Wildland and Fire Science and Technology Task Force Final Report, produced by the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, Subcommittee on Disaster Reduction, highlighted the increasing frequency of large wildfires and the growing demand for science to inform critical resource decisions to manage, mitigate, respond to, and recover from wildland fires. Federal spending on fire suppression from 2005-2015 has more than doubled despite policy changes that prioritize the mitigation of fire risks through the use of fuel treatments, prescribed fire, and management of naturally occurring wildfires to protect life and property. Fire suppression policies over the last century have created forests primed for severe fire, and in the face of a changing climate, the benefits of re-introducing fire into once fire-resilient ecosystems are clear. There are a range of complex factors and regional variation associated with wildland fire risk that complicate our understanding and effective management of this hazard. Data derived from Earth-observing (EO) systems and networks are a crucial input for managers when making decisions about fire suppression and fuel management. EO data can also be used to develop pre- and post-fire metrics that can aid in the evaluating the effectiveness of wildland fire management decisions. A value-tree method for mapping the role of EO systems and networks in delivering societal benefit through key Federal objectives related to wildland fire management will be presented. The value-tree methodology utilizes input from subject matter experts to assess the availability and usability of data and data products and to evaluate the impact of individual EO data inputs for achieving wildland fire management objectives. The results provide a qualitative assessment of the value of the data for the objectives described and identify critical gaps and continuity issues associated with improvements to and continuous delivery of societal benefit.
Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
James, Patrick M A; Robert, Louis-Etienne; Wotton, B Mike; Martell, David L; Fleming, Richard A
2017-03-01
Detailed understanding of forest disturbance interactions is needed for effective forecasting, modelling, and management. Insect outbreaks are a significant forest disturbance that alters forest structure as well as the distribution and connectivity of combustible fuels at broad spatial scales. The effect of insect outbreaks on fire activity is an important but contentious issue with significant policy consequences. The eastern spruce budworm (Choristoneura fumiferana) is a native defoliating insect in eastern North America whose periodic outbreaks create large patches of dead fir and spruce trees. Of particular concern to fire and forest managers is whether these patches represent an increased fire risk, if so, for how long, and how the relationship between defoliation and fire risk varies through space and time. Previous work suggests a temporary increase in flammability in budworm-killed forests, but regional and seasonal variability in these relationships has not been examined. Using an extensive database on historical lightning-caused fire ignitions and spruce budworm defoliation between 1963 and 2000, we assess the relative importance of cumulative defoliation and fire weather on the probability of ignition in Ontario, Canada. We modeled fire ignition using a generalized additive logistic regression model that accounts for temporal autocorrelation in fire weather. We compared two ecoregions in eastern Ontario (Abitibi Plains) and western Ontario (Lake of the Woods) that differ in terms of climate, geomorphology, and forest composition. We found that defoliation has the potential to both increase and decrease the probability of ignition depending on the time scale, ecoregion, and season examined. Most importantly, we found that lagged spruce budworm defoliation (8-10 yr) increases the risk of fire ignition whereas recent defoliation (1 yr) can decrease this risk. We also found that historical defoliation has a greater influence on ignition risk during the spring than during the summer fire season. Given predicted increases in forest insect activity due to global change, these results represent important information for fire management agencies that can be used to refine existing models of fire risk. © 2016 by the Ecological Society of America.
Pellegrini, Adam F A; Anderegg, William R L; Paine, C E Timothy; Hoffmann, William A; Kartzinel, Tyler; Rabin, Sam S; Sheil, Douglas; Franco, Augusto C; Pacala, Stephen W
2017-03-01
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models. © 2017 John Wiley & Sons Ltd/CNRS.
Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data
NASA Technical Reports Server (NTRS)
Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan
2013-01-01
High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.
NASA Technical Reports Server (NTRS)
Daniledes, J.; Koch, J. R.
1980-01-01
The risk associated with the accidental release of carbon/graphite fibers (CF) from fires on commercial transport aircraft incorporating composite materials was assessed. Data are developed to evaluate the potential for CF damage to electrical and electronic equipment, assess the cost risk, and evaluate the hazard to continued operation. The subjects covered include identification of susceptible equipments, determination of infiltration transfer functions, analysis of airport operations, calculation of probabilities of equipment failures, assessment of the cost risk, and evaluation of the hazard to continued operation. The results show the risks associated with CF contamination are negligible through 1993.
Index for characterizing post-fire soil environments in temperate coniferous forests
Jain, Theresa B.; Pilliod, David S.; Graham, Russell T.; Lentile, Leigh B.; Sandquist, Jonathan E.
2012-01-01
Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available science and ecological thresholds. Using over 50 literature sources, we identified a minimum of five broad categories of post-fire outcomes: (a) unburned, (b) abundant surface organic matter ( > 85% surface organic matter), (c) moderate amount of surface organic matter ( ≥ 40 through 85%), (d) small amounts of surface organic matter ( < 40%), and (e) absence of surface organic matter (no organic matter left). We then subdivided each broad category on the basis of post-fire mineral soil colors providing a more fine-tuned post-fire soil index. We related each PFI category to characteristics such as soil temperature and duration of heating during fire, and physical, chemical, and biological responses. Classifying or describing post-fire soil conditions consistently will improve interpretations of fire effects research and facilitate communication of potential responses or outcomes (e.g., erosion potential) from fires of varying severities.