Performance Assessment Examples from the Quality Performance Assessment Network
ERIC Educational Resources Information Center
Kuriacose, Christina
2017-01-01
In this brief article, Christina Kuriacose provides four sample performance assessments. Spanning grade levels, these assessments are strong examples of teacher-developed performance assessments from schools within the Center for Collaborative Education's Quality Performance Assessment network. These performance tasks demonstrate the pedagogical…
VMSoar: a cognitive agent for network security
NASA Astrophysics Data System (ADS)
Benjamin, David P.; Shankar-Iyer, Ranjita; Perumal, Archana
2005-03-01
VMSoar is a cognitive network security agent designed for both network configuration and long-term security management. It performs automatic vulnerability assessments by exploring a configuration"s weaknesses and also performs network intrusion detection. VMSoar is built on the Soar cognitive architecture, and benefits from the general cognitive abilities of Soar, including learning from experience, the ability to solve a wide range of complex problems, and use of natural language to interact with humans. The approach used by VMSoar is very different from that taken by other vulnerability assessment or intrusion detection systems. VMSoar performs vulnerability assessments by using VMWare to create a virtual copy of the target machine then attacking the simulated machine with a wide assortment of exploits. VMSoar uses this same ability to perform intrusion detection. When trying to understand a sequence of network packets, VMSoar uses VMWare to make a virtual copy of the local portion of the network and then attempts to generate the observed packets on the simulated network by performing various exploits. This approach is initially slow, but VMSoar"s learning ability significantly speeds up both vulnerability assessment and intrusion detection. This paper describes the design and implementation of VMSoar, and initial experiments with Windows NT and XP.
Semaphore network encryption report
NASA Astrophysics Data System (ADS)
Johnson, Karen L.
1994-03-01
This paper documents the results of a preliminary assessment performed on the commercial off-the-shelf (COTS) Semaphore Communications Corporation (SCC) Network Security System (NSS). The Semaphore NSS is a family of products designed to address important network security concerns, such as network source address authentication and data privacy. The assessment was performed in the INFOSEC Core Integration Laboratory, and its scope was product usability focusing on interoperability and system performance in an existing operational network. Included in this paper are preliminary findings. Fundamental features and functionality of the Semaphore NSS are identified, followed by details of the assessment, including test descriptions and results. A summary of test results and future plans are also included. These findings will be useful to those investigating the use of commercially available solutions to network authentication and data privacy.
Research on Holographic Evaluation of Service Quality in Power Data Network
NASA Astrophysics Data System (ADS)
Wei, Chen; Jing, Tao; Ji, Yutong
2018-01-01
With the rapid development of power data network, the continuous development of the Power data application service system, more and more service systems are being put into operation. Following this, the higher requirements for network quality and service quality are raised, in the actual process for the network operation and maintenance. This paper describes the electricity network and data network services status. A holographic assessment model was presented to achieve a comprehensive intelligence assessment on the power data network and quality of service in the operation and maintenance on the power data network. This evaluation method avoids the problems caused by traditional means which performs a single assessment of network performance quality. This intelligent Evaluation method can improve the efficiency of network operation and maintenance guarantee the quality of real-time service in the power data network..
Networks to Strengthen Health Systems for Chronic Disease Prevention
Riley, Barbara L.; Herbert, Carol P.; Best, Allan
2013-01-01
Interorganizational networks that harness the priorities, capacities, and skills of various agencies and individuals have emerged as useful approaches for strengthening preventive services in public health systems. We use examples from the Canadian Heart Health Initiative and Alberta’s Primary Care Networks to illustrate characteristics of networks, describe the limitations of existing frameworks for assessing the performance of prevention-oriented networks, and propose a research agenda for guiding future efforts to improve the performance of these initiatives. Prevention-specific assessment strategies that capture relevant aspects of network performance need to be identified, and feedback mechanisms are needed that make better use of these data to drive change in network activities. PMID:24028225
Development of task network models of human performance in microgravity
NASA Technical Reports Server (NTRS)
Diaz, Manuel F.; Adam, Susan
1992-01-01
This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.
ERIC Educational Resources Information Center
Cui, Ying; Gierl, Mark; Guo, Qi
2016-01-01
The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…
2008-11-01
is particularly important in order to design a network that is realistically deployable. The goal of this project is the design of a theoretical ... framework to assess and predict the effectiveness and performance of networks and their loads.
2016-10-01
and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6
High Performance Computing and Networking for Science--Background Paper.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
The Office of Technology Assessment is conducting an assessment of the effects of new information technologies--including high performance computing, data networking, and mass data archiving--on research and development. This paper offers a view of the issues and their implications for current discussions about Federal supercomputer initiatives…
An intelligent control system for failure detection and controller reconfiguration
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.
1994-01-01
We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.
A New Network Modeling Tool for the Ground-based Nuclear Explosion Monitoring Community
NASA Astrophysics Data System (ADS)
Merchant, B. J.; Chael, E. P.; Young, C. J.
2013-12-01
Network simulations have long been used to assess the performance of monitoring networks to detect events for such purposes as planning station deployments and network resilience to outages. The standard tool has been the SAIC-developed NetSim package. With correct parameters, NetSim can produce useful simulations; however, the package has several shortcomings: an older language (FORTRAN), an emphasis on seismic monitoring with limited support for other technologies, limited documentation, and a limited parameter set. Thus, we are developing NetMOD (Network Monitoring for Optimal Detection), a Java-based tool designed to assess the performance of ground-based networks. NetMOD's advantages include: coded in a modern language that is multi-platform, utilizes modern computing performance (e.g. multi-core processors), incorporates monitoring technologies other than seismic, and includes a well-validated default parameter set for the IMS stations. NetMOD is designed to be extendable through a plugin infrastructure, so new phenomenological models can be added. Development of the Seismic Detection Plugin is being pursued first. Seismic location and infrasound and hydroacoustic detection plugins will follow. By making NetMOD an open-release package, it can hopefully provide a common tool that the monitoring community can use to produce assessments of monitoring networks and to verify assessments made by others.
Probabilistic Assessment of High-Throughput Wireless Sensor Networks
Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho
2016-01-01
Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270
Pope, Ronald; Wu, Jianguo
2014-06-01
In the United States, air pollution is primarily measured by Air Quality Monitoring Networks (AQMN). These AQMNs have multiple objectives, including characterizing pollution patterns, protecting the public health, and determining compliance with air quality standards. In 2006, the U.S. Environmental Protection Agency issued a directive that air pollution agencies assess the performance of their AQMNs. Although various methods to design and assess AQMNs exist, here we demonstrate a geographic information system (GIS)-based approach that combines environmental, economic, and social indicators through the assessment of the ozone (O3) and particulate matter (PM10) networks in Maricopa County, Arizona. The assessment was conducted in three phases: (1) to evaluate the performance of the existing networks, (2) to identify areas that would benefit from the addition of new monitoring stations, and (3) to recommend changes to the AQMN. A comprehensive set of indicators was created for evaluating differing aspects of the AQMNs' objectives, and weights were applied to emphasize important indicators. Indicators were also classified according to their sustainable development goal. Our results showed that O3 was well represented in the county with some redundancy in terms of the urban monitors. The addition of weights to the indicators only had a minimal effect on the results. For O3, urban monitors had greater social scores, while rural monitors had greater environmental scores. The results did not suggest a need for adding more O3 monitoring sites. For PM10, clustered urban monitors were redundant, and weights also had a minimal effect on the results. The clustered urban monitors had overall low scores; sites near point sources had high environmental scores. Several areas were identified as needing additional PM10 monitors. This study demonstrates the usefulness of a multi-indicator approach to assess AQMNs. Network managers and planners may use this method to assess the performance of air quality monitoring networks in urban regions. The U.S. Environmental Protection Agency issued a directive in 2006 that air pollution agencies assess the performance of their AQMNs; as a result, we developed a GIS-based, multi-objective assessment approach that integrates environmental, economic, and social indicators, and demonstrates its use through assessing the O3 and PM10 monitoring networks in the Phoenix metropolitan area. We exhibit a method of assessing network performance and identifying areas that would benefit from new monitoring stations; also, we demonstrate the effect of adding weights to the indicators. Our study shows that using a multi-indicator approach gave detailed assessment results for the Phoenix AQMN.
Wisdom of crowds for robust gene network inference
Marbach, Daniel; Costello, James C.; Küffner, Robert; Vega, Nicci; Prill, Robert J.; Camacho, Diogo M.; Allison, Kyle R.; Kellis, Manolis; Collins, James J.; Stolovitzky, Gustavo
2012-01-01
Reconstructing gene regulatory networks from high-throughput data is a long-standing problem. Through the DREAM project (Dialogue on Reverse Engineering Assessment and Methods), we performed a comprehensive blind assessment of over thirty network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae, and in silico microarray data. We characterize performance, data requirements, and inherent biases of different inference approaches offering guidelines for both algorithm application and development. We observe that no single inference method performs optimally across all datasets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse datasets. Thereby, we construct high-confidence networks for E. coli and S. aureus, each comprising ~1700 transcriptional interactions at an estimated precision of 50%. We experimentally test 53 novel interactions in E. coli, of which 23 were supported (43%). Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks. PMID:22796662
ERIC Educational Resources Information Center
West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.
2010-01-01
A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…
Configuration development for ROMENET
NASA Astrophysics Data System (ADS)
Rhue, Lawrence
1989-10-01
A plan prepared by RJO Enterprises and BBN Communications Corporation (BBNCC) for the design of ROMENET, a DDN-like testbed for the Rome Air Development Center (RADC) Wide Area Networks (WAN) laboratory is presented. The ROMENET is intended to provide RADC with the ability to test and evaluate the performance and vulnerability of the Defense Data Network (DDN) technologies in support of specific Major Command programs and activities at RADC. It will also support experimentation with packet switched network technologies and includes facilities to analytically evaluate the performance of the network and its associated equipment and media. In addition, ROMENET will provide a simulation vehicle for controlled interference or jamming into the media for vulnerability assessment. Through interfaces with the RADC Battle Management Laboratory (BML), ROMENET will allow the Air Force to assess the restorative and performance characteristics of the network under stressed conditions. The closed environment of ROMENET makes it ideal for creating and testing routing algorithms and network control protocols.
Brandon M. Collins; Heather A. Kramer; Kurt Menning; Colin Dillingham; David Saah; Peter A. Stine; Scott L. Stephens
2013-01-01
We built on previous work by performing a more in-depth examination of a completed landscape fuel treatment network. Our specific objectives were: (1) model hazardous fire potential with and without the treatment network, (2) project hazardous fire potential over several decades to assess fuel treatment network longevity, and (3) assess fuel treatment effectiveness and...
Network survivability performance
NASA Astrophysics Data System (ADS)
1993-11-01
This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunications networks to user expectations for network survivability and a foundation for continuing industry activities in the subject area. This report focuses on the survivability of both public and private networks and covers a wide range of users. Two frameworks are established for quantifying and categorizing service outages, and for classifying network survivability techniques and measures. The performance of the network survivability techniques is considered; however, recommended objectives are not established for network survivability performance.
NASA Astrophysics Data System (ADS)
Ahn, Sul-Ah; Jung, Youngim
2016-10-01
The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.
Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks.
Scharnhorst, Wolfram; Hilty, Lorenz M; Jolliet, Olivier
2006-07-01
The environmental performance of presently operated GSM and UMTS networks was analysed concentrating on the environmental effects of the End-of-Life (EOL) phase using the Life Cycle Assessment (LCA) method. The study was performed based on comprehensive life cycle inventory and life cycle modelling. The environmental effects were quantified using the IMPACT2002+ method. Based on technological forecasts, the environmental effects of forthcoming mobile telephone networks were approximated. The results indicate that a parallel operation of GSM and UMTS networks is environmentally detrimental and the transition phase should be kept as short as possible. The use phase (i.e. the operation) of the radio network components account for a large fraction of the total environmental impact. In particular, there is a need to lower the energy consumption of those network components. Seen in relation to each other, UMTS networks provide an environmentally more efficient mobile communication technology than GSM networks. In assessing the EOL phase, recycling the electronic scrap of mobile phone networks was shown to have clear environmental benefits. Under the present conditions, material recycling could help lower the environmental impact of the production phase by up to 50%.
How Do States Integrate Performance Assessment in Their Systems of Assessment?
ERIC Educational Resources Information Center
Stosich, Elizabeth Leisy; Snyder, Jon; Wilczak, Katie
2018-01-01
This paper reviews state strategies for incorporating performance assessment in policy and practice. Specifically, the paper reviews the use of performance assessment in 12 states in the Innovation Lab Network, a group committed to developing systems of assessment that provide meaningful measures of college and career readiness. This review…
Visuospatial working memory in very preterm and term born children--impact of age and performance.
Mürner-Lavanchy, I; Ritter, B C; Spencer-Smith, M M; Perrig, W J; Schroth, G; Steinlin, M; Everts, R
2014-07-01
Working memory is crucial for meeting the challenges of daily life and performing academic tasks, such as reading or arithmetic. Very preterm born children are at risk of low working memory capacity. The aim of this study was to examine the visuospatial working memory network of school-aged preterm children and to determine the effect of age and performance on the neural working memory network. Working memory was assessed in 41 very preterm born children and 36 term born controls (aged 7-12 years) using functional magnetic resonance imaging (fMRI) and neuropsychological assessment. While preterm children and controls showed equal working memory performance, preterm children showed less involvement of the right middle frontal gyrus, but higher fMRI activation in superior frontal regions than controls. The younger and low-performing preterm children presented an atypical working memory network whereas the older high-performing preterm children recruited a working memory network similar to the controls. Results suggest that younger and low-performing preterm children show signs of less neural efficiency in frontal brain areas. With increasing age and performance, compensational mechanisms seem to occur, so that in preterm children, the typical visuospatial working memory network is established by the age of 12 years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Assessing Advanced Technology in CENATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallent, Nathan R.; Barker, Kevin J.; Gioiosa, Roberto
PNNL's Center for Advanced Technology Evaluation (CENATE) is a new U.S. Department of Energy center whose mission is to assess and facilitate access to emerging computing technology. CENATE is assessing a range of advanced technologies, from evolutionary to disruptive. Technologies of interest include the processor socket (homogeneous and accelerated systems), memories (dynamic, static, memory cubes), motherboards, networks (network interface cards and switches), and input/output and storage devices. CENATE is developing a multi-perspective evaluation process based on integrating advanced system instrumentation, performance measurements, and modeling and simulation. We show evaluations of two emerging network technologies: silicon photonics interconnects and the Datamore » Vortex network. CENATE's evaluation also addresses the question of which machine is best for a given workload under certain constraints. We show a performance-power tradeoff analysis of a well-known machine learning application on two systems.« less
Graph theory network function in Parkinson's disease assessed with electroencephalography.
Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G
2016-05-01
To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Aritz Ruiz-Gonzalez; Mikel Gurrutxaga; Samuel A. Cushman; Maria Jose Madeira; Ettore Randi; Benjamin J. Gomez-Moliner
2014-01-01
Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and...
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Goh, A. T. C.; Kulhawy, F. H.
2005-05-01
In urban environments, one major concern with deep excavations in soft clay is the potentially large ground deformations in and around the excavation. Excessive movements can damage adjacent buildings and utilities. There are many uncertainties associated with the calculation of the ultimate or serviceability performance of a braced excavation system. These include the variabilities of the loadings, geotechnical soil properties, and engineering and geometrical properties of the wall. A risk-based approach to serviceability performance failure is necessary to incorporate systematically the uncertainties associated with the various design parameters. This paper demonstrates the use of an integrated neural network-reliability method to assess the risk of serviceability failure through the calculation of the reliability index. By first performing a series of parametric studies using the finite element method and then approximating the non-linear limit state surface (the boundary separating the safe and failure domains) through a neural network model, the reliability index can be determined with the aid of a spreadsheet. Two illustrative examples are presented to show how the serviceability performance for braced excavation problems can be assessed using the reliability index.
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
ERIC Educational Resources Information Center
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
Network meta-analyses performed by contracting companies and commissioned by industry.
Schuit, Ewoud; Ioannidis, John Pa
2016-11-25
Industry commissions contracting companies to perform network meta-analysis for health technology assessment (HTA) and reimbursement submissions. Our objective was to estimate the number of network meta-analyses performed by consulting companies contracted by industry, to assess whether they were published, and to explore reasons for non-publication. We searched MEDLINE for network meta-analyses of randomized trials. Papers were included if they had authors affiliated with any contracting company. All identified contracting companies as well as additional ones from the list of the exhibitors at the International Society for Pharmacoeconomics and Outcomes Research, an annual meeting that representatives from many contracting companies attend and exhibit at, were surveyed regarding conduct and publication of network meta-analyses. In 162 of 822 (20%) network meta-analysis papers, authors were affiliated to 66 contracting companies. Another 36 contracting companies were identified by the exhibitors list. Three companies had no contact information and six merged with others, therefore 93 companies were contacted. Thirty seven out of ninety three (40%) companies responded, and 19 indicated that they had performed a total of 476 network meta-analyses, but only 102 (21%) papers were published. Thirteen companies that disclosed to have conducted 174 network meta-analyses (45 published) provided reasons for non-publication. Of the 129 still unpublished meta-analyses, for 40 there were plans for future publication, for 37 the sponsor did not allow publication, for 16 the contracting companies did not plan to publish the meta-analysis, for another 23 plans were unclear, and the remaining 13 were used as HTA submission. The protocol of the network meta-analysis was publically available from 11/162 (6.8%) network meta-analyses published by authors affiliated with contracting companies. There is a prolific sector of professional contracting companies that perform network meta-analyses. Industry commissions many network meta-analyses, but most are not registered before or published after analyses in the scientific literature. Mechanisms to improve publication rates of network meta-analysis commissioned by industry are warranted.
DOT National Transportation Integrated Search
2007-01-03
This report is the thirs in a series describing the development of performance measures pertaining to the security of the maritime transportation network (port security metrics). THe development of measures to guide improvements in maritime security ...
NASA Astrophysics Data System (ADS)
Weiss, Brian A.; Fronczek, Lisa; Morse, Emile; Kootbally, Zeid; Schlenoff, Craig
2013-05-01
Transformative Apps (TransApps) is a Defense Advanced Research Projects Agency (DARPA) funded program whose goal is to develop a range of militarily-relevant software applications ("apps") to enhance the operational-effectiveness of military personnel on (and off) the battlefield. TransApps is also developing a military apps marketplace to facilitate rapid development and dissemination of applications to address user needs by connecting engaged communities of endusers with development groups. The National Institute of Standards and Technology's (NIST) role in the TransApps program is to design and implement evaluation procedures to assess the performance of: 1) the various software applications, 2) software-hardware interactions, and 3) the supporting online application marketplace. Specifically, NIST is responsible for evaluating 50+ tactically-relevant applications operating on numerous Android™-powered platforms. NIST efforts include functional regression testing and quantitative performance testing. This paper discusses the evaluation methodologies employed to assess the performance of three key program elements: 1) handheld-based applications and their integration with various hardware platforms, 2) client-based applications and 3) network technologies operating on both the handheld and client systems along with their integration into the application marketplace. Handheld-based applications are assessed using a combination of utility and usability-based checklists and quantitative performance tests. Client-based applications are assessed to replicate current overseas disconnected (i.e. no network connectivity between handhelds) operations and to assess connected operations envisioned for later use. Finally, networked applications are assessed on handhelds to establish baselines of performance for when connectivity will be common usage.
Jones, Stephanie A H; Butler, Beverly C; Kintzel, Franziska; Johnson, Anne; Klein, Raymond M; Eskes, Gail A
2016-01-01
Attention is an important, multifaceted cognitive domain that has been linked to three distinct, yet interacting, networks: alerting, orienting, and executive control. The measurement of attention and deficits of attention within these networks is critical to the assessment of many neurological and psychiatric conditions in both research and clinical settings. The Dalhousie Computerized Attention Battery (DalCAB) was created to assess attentional functions related to the three attention networks using a range of tasks including: simple reaction time, go/no-go, choice reaction time, dual task, flanker, item and location working memory, and visual search. The current study provides preliminary normative data, test-retest reliability (intraclass correlations) and practice effects in DalCAB performance 24-h after baseline for healthy young adults (n = 96, 18-31 years). Performance on the DalCAB tasks demonstrated Good to Very Good test-retest reliability for mean reaction time, while accuracy and difference measures (e.g., switch costs, interference effects, and working memory load effects) were most reliable for tasks that require more extensive cognitive processing (e.g., choice reaction time, flanker, dual task, and conjunction search). Practice effects were common and pronounced at the 24-h interval. In addition, performance related to specific within-task parameters of the DalCAB sub-tests provides preliminary support for future formal assessment of the convergent validity of our interpretation of the DalCAB as a potential clinical and research assessment tool for measuring aspects of attention related to the alerting, orienting, and executive control networks.
ERIC Educational Resources Information Center
Lubben, James; Blozik, Eva; Gillmann, Gerhard; Iliffe, Steve; von Renteln-Kruse, Wolfgang; Beck, John C.; Stuck, Andreas E.
2006-01-01
Purpose: There is a need for valid and reliable short scales that can be used to assess social networks and social supports and to screen for social isolation in older persons. Design and Methods: The present study is a cross-national and cross-cultural evaluation of the performance of an abbreviated version of the Lubben Social Network Scale…
Changes in dynamic resting state network connectivity following aphasia therapy.
Duncan, E Susan; Small, Steven L
2017-10-24
Resting state magnetic resonance imaging (rsfMRI) permits observation of intrinsic neural networks produced by task-independent correlations in low frequency brain activity. Various resting state networks have been described, with each thought to reflect common engagement in some shared function. There has been limited investigation of the plasticity in these network relationships after stroke or induced by therapy. Twelve individuals with language disorders after stroke (aphasia) were imaged at multiple time points before (baseline) and after an imitation-based aphasia therapy. Language assessment using a narrative production task was performed at the same time points. Group independent component analysis (ICA) was performed on the rsfMRI data to identify resting state networks. A sliding window approach was then applied to assess the dynamic nature of the correlations among these networks. Network correlations during each 30-second window were used to cluster the data into ten states for each window at each time point for each subject. Correlation was performed between changes in time spent in each state and therapeutic gains on the narrative task. The amount of time spent in a single one of the (ten overall) dynamic states was positively associated with behavioral improvement on the narrative task at the 6-week post-therapy maintenance interval, when compared with either baseline or assessment immediately following therapy. This particular state was characterized by minimal correlation among the task-independent resting state networks. Increased functional independence and segregation of resting state networks underlies improvement on a narrative production task following imitation-based aphasia treatment. This has important clinical implications for the targeting of noninvasive brain stimulation in post-stroke remediation.
NASA Technical Reports Server (NTRS)
Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.
1991-01-01
The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.
Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems
NASA Technical Reports Server (NTRS)
Menasce, Daniel A.; Pentakalos, Odysseas I.
1995-01-01
Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.
Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.
1997-01-01
The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.
Choe, Eugenie; Lee, Tae Young; Kim, Minah; Hur, Ji-Won; Yoon, Youngwoo Bryan; Cho, Kang-Ik K; Kwon, Jun Soo
2018-03-26
It has been suggested that the mentalizing network and the mirror neuron system network support important social cognitive processes that are impaired in schizophrenia. However, the integrity and interaction of these two networks have not been sufficiently studied, and their effects on social cognition in schizophrenia remain unclear. Our study included 26 first-episode psychosis (FEP) patients and 26 healthy controls. We utilized resting-state functional connectivity to examine the a priori-defined mirror neuron system network and the mentalizing network and to assess the within- and between-network connectivities of the networks in FEP patients. We also assessed the correlation between resting-state functional connectivity measures and theory of mind performance. FEP patients showed altered within-network connectivity of the mirror neuron system network, and aberrant between-network connectivity between the mirror neuron system network and the mentalizing network. The within-network connectivity of the mirror neuron system network was noticeably correlated with theory of mind task performance in FEP patients. The integrity and interaction of the mirror neuron system network and the mentalizing network may be altered during the early stages of psychosis. Additionally, this study suggests that alterations in the integrity of the mirror neuron system network are highly related to deficient theory of mind in schizophrenia, and this problem would be present from the early stage of psychosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Data Driven Performance Evaluation of Wireless Sensor Networks
Frery, Alejandro C.; Ramos, Heitor S.; Alencar-Neto, José; Nakamura, Eduardo; Loureiro, Antonio A. F.
2010-01-01
Wireless Sensor Networks are presented as devices for signal sampling and reconstruction. Within this framework, the qualitative and quantitative influence of (i) signal granularity, (ii) spatial distribution of sensors, (iii) sensors clustering, and (iv) signal reconstruction procedure are assessed. This is done by defining an error metric and performing a Monte Carlo experiment. It is shown that all these factors have significant impact on the quality of the reconstructed signal. The extent of such impact is quantitatively assessed. PMID:22294920
Assessing the Effects of Multi-Node Sensor Network Configurations on the Operational Tempo
2014-09-01
receiver, nP is the noise power of the receiver, and iL is the implementation loss of the receiver due to hardware manufacturing. The received...13. ABSTRACT (maximum 200 words) The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations by...INTENTIONALLY LEFT BLANK v ABSTRACT The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations
NASA Astrophysics Data System (ADS)
Nelson, B. R.; Prat, O. P.; Stevens, S. E.; Seo, D. J.; Zhang, J.; Howard, K.
2014-12-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is nearly completed for the period covering from 2001 to 2012. Reanalysis data are available at 1-km and 5-minute resolution. An important step in generating the best possible precipitation data is to assess the bias in the radar-only product. In this work, we use data from a combination of rain gauge networks to assess the bias in the NMQ reanalysis. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network Daily (GHCN-D) are combined for use in the assessment. These rain gauge networks vary in spatial density and temporal resolution. The challenge hence is to optimally utilize them to assess the bias at the finest resolution possible. For initial assessment, we propose to subset the CONUS data in climatologically representative domains, and perform bias assessment using information in the Q2 dataset on precipitation type and phase.
Calciolari, Stefano; González-Ortiz, Laura G; Lega, Federico
2017-08-08
In several health systems of advanced countries, reforms have changed primary care in the last two decades. The literature has assessed the effects of a variety of interventions and individual factors on the behavior of general practitioners (GPs). However, there has been a lack of investigation concerning the influence of the resources embedded in the GPs' personal advice networks (i.e., social capital) on GPs' capacity to meet defined objectives. The present study has two goals: (a) to assess the GPs' personal advice networks according to the social capital framework and (b) to test the influence of such relationships on GPs' capacity to accomplish organizational goals. The data collection relied on administrative data provided by an Italian local health authority (LHA) and a survey administered to the GPs of the selected LHA. The GPs' personal advice networks were assessed through an ad-hoc instrument and interpreted as egocentric networks. Multivariate regression analyses assessed two different performance measures. Social capital may influence the GPs' capacity to meet targets, though the influence differs according to the objective considered. In particular, the higher the professional heterogeneity of a GP personal advice network, the lower her/his capacity is to meet targets of prescriptive appropriateness. Our findings might help to design more effective primary care reforms depending on the pursued goals. However, further research is needed.
Schaffter, Thomas; Marbach, Daniel; Floreano, Dario
2011-08-15
Over the last decade, numerous methods have been developed for inference of regulatory networks from gene expression data. However, accurate and systematic evaluation of these methods is hampered by the difficulty of constructing adequate benchmarks and the lack of tools for a differentiated analysis of network predictions on such benchmarks. Here, we describe a novel and comprehensive method for in silico benchmark generation and performance profiling of network inference methods available to the community as an open-source software called GeneNetWeaver (GNW). In addition to the generation of detailed dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a network motif analysis that reveals systematic prediction errors, thereby indicating potential ways of improving inference methods. The accuracy of network inference methods is evaluated using standard metrics such as precision-recall and receiver operating characteristic curves. We show how GNW can be used to assess the performance and identify the strengths and weaknesses of six inference methods. Furthermore, we used GNW to provide the international Dialogue for Reverse Engineering Assessments and Methods (DREAM) competition with three network inference challenges (DREAM3, DREAM4 and DREAM5). GNW is available at http://gnw.sourceforge.net along with its Java source code, user manual and supporting data. Supplementary data are available at Bioinformatics online. dario.floreano@epfl.ch.
BRAPH: A graph theory software for the analysis of brain connectivity
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447
BRAPH: A graph theory software for the analysis of brain connectivity.
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
Zhao, Zhiyong; Wu, Jie; Fan, Mingxia; Yin, Dazhi; Tang, Chaozheng; Gong, Jiayu; Xu, Guojun; Gao, Xinjie; Yu, Qiurong; Yang, Hao; Sun, Limin; Jia, Jie
2018-04-24
Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra- and inter-network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty-three left subcortical chronic stroke patients and 34 healthy controls underwent resting-state functional magnetic resonance imaging. Eleven resting-state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl-Meyer Assessment (FMA) scores (hand + wrist). With respect to inter-network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra- and inter-network alterations associated with motor-visual attention and high-order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke. © 2018 Wiley Periodicals, Inc.
Assessing the Robustness of Graph Statistics for Network Analysis Under Incomplete Information
strategy for dismantling these networks based on their network structure. However, these strategies typically assume complete information about the...combat them with missing information . This thesis analyzes the performance of a variety of network statistics in the context of incomplete information by...leveraging simulation to remove nodes and edges from networks and evaluating the effect this missing information has on our ability to accurately
NASA Astrophysics Data System (ADS)
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
Issues in ATM Support of High-Performance, Geographically Distributed Computing
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Dowd, Patrick W.; Srinidhi, Saragur M.; Blade, Eric D.G
1995-01-01
This report experimentally assesses the effect of the underlying network in a cluster-based computing environment. The assessment is quantified by application-level benchmarking, process-level communication, and network file input/output. Two testbeds were considered, one small cluster of Sun workstations and another large cluster composed of 32 high-end IBM RS/6000 platforms. The clusters had Ethernet, fiber distributed data interface (FDDI), Fibre Channel, and asynchronous transfer mode (ATM) network interface cards installed, providing the same processors and operating system for the entire suite of experiments. The primary goal of this report is to assess the suitability of an ATM-based, local-area network to support interprocess communication and remote file input/output systems for distributed computing.
NASA Astrophysics Data System (ADS)
de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia
Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks.
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-12-17
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-01-01
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism. PMID:26694409
Robust neural network with applications to credit portfolio data analysis.
Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun
2010-01-01
In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.
Network survivability performance (computer diskette)
NASA Astrophysics Data System (ADS)
1993-11-01
File characteristics: Data file; 1 file. Physical description: 1 computer diskette; 3 1/2 in.; high density; 2.0MB. System requirements: Mac; Word. This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunication networks to user expectations for network survivability.
Enhancing Classroom Effectiveness through Social Networking Tools
ERIC Educational Resources Information Center
Kurthakoti, Raghu; Boostrom, Robert E., Jr.; Summey, John H.; Campbell, David A.
2013-01-01
To determine the usefulness of social networking Web sites such as Ning.com as a communication tool in marketing courses, a study was designed with special concern for social network use in comparison to Blackboard. Students from multiple marketing courses were surveyed. Assessments of Ning.com and Blackboard were performed both to understand how…
The Amygdalo-Nigrostriatal Network Is Critical for an Optimal Temporal Performance
ERIC Educational Resources Information Center
Es-seddiqi, Mouna; El Massioui, Nicole; Samson, Nathalie; Brown, Bruce L.; Doyère, Valérie
2016-01-01
The amygdalo-nigrostriatal (ANS) network plays an essential role in enhanced attention to significant events. Interval timing requires attention to temporal cues. We assessed rats having a disconnected ANS network, due to contralateral lesions of the medial central nucleus of the amygdala (CEm) and dopaminergic afferents to the lateral striatum,…
Data driven CAN node reliability assessment for manufacturing system
NASA Astrophysics Data System (ADS)
Zhang, Leiming; Yuan, Yong; Lei, Yong
2017-01-01
The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.
Assessment of SRS ambient air monitoring network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, K.; Jannik, T.
Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, ifmore » any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned« less
Ku-band signal design study. [space shuttle orbiter data processing network
NASA Technical Reports Server (NTRS)
Rubin, I.
1978-01-01
Analytical tools, methods and techniques for assessing the design and performance of the space shuttle orbiter data processing system (DPS) are provided. The computer data processing network is evaluated in the key areas of queueing behavior synchronization and network reliability. The structure of the data processing network is described as well as the system operation principles and the network configuration. The characteristics of the computer systems are indicated. System reliability measures are defined and studied. System and network invulnerability measures are computed. Communication path and network failure analysis techniques are included.
Franzmeier, Nicolai; Buerger, Katharina; Teipel, Stefan; Stern, Yaakov; Dichgans, Martin; Ewers, Michael
2017-02-01
Cognitive reserve (CR) shows protective effects on cognitive function in older adults. Here, we focused on the effects of CR at the functional network level. We assessed in patients with amnestic mild cognitive impairment (aMCI) whether higher CR moderates the association between low internetwork cross-talk on memory performance. In 2 independent aMCI samples (n = 76 and 93) and healthy controls (HC, n = 36), CR was assessed via years of education and intelligence (IQ). We focused on the anti-correlation between the dorsal attention network (DAN) and an anterior and posterior default mode network (DMN), assessed via sliding time window analysis of resting-state functional magnetic resonance imaging (fMRI). The DMN-DAN anti-correlation was numerically but not significantly lower in aMCI compared to HC. However, in aMCI, lower anterior DMN-DAN anti-correlation was associated with lower memory performance. This association was moderated by CR proxies, where the association between the internetwork anti-correlation and memory performance was alleviated at higher levels of education or IQ. In conclusion, lower DAN-DMN cross-talk is associated with lower memory in aMCI, where such effects are buffered by higher CR. Copyright © 2016 Elsevier Inc. All rights reserved.
Shuttle orbiter S-band payload communications equipment design evaluation
NASA Technical Reports Server (NTRS)
Springett, J. C.; Maronde, R. G.
1979-01-01
The analysis of the design, and the performance assessment of the Orbiter S-band communication equipment are reported. The equipment considered include: network transponder, network signal processor, FM transmitter, FM signal processor, payload interrogator, and payload signal processor.
NASA Astrophysics Data System (ADS)
Chiang, Yen-Sheng
2015-11-01
Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.
A Holistic Management Architecture for Large-Scale Adaptive Networks
2007-09-01
transmission and processing overhead required for management. The challenges of building models to describe dynamic systems are well-known to the field of...increases the challenge of finding a simple approach to assessing the state of the network. Moreover, the performance state of one network link may be... challenging . These obstacles indicate the need for a less comprehensive-analytical, more systemic-holistic approach to managing networks. This approach might
Tsouri, Gill R.; Prieto, Alvaro; Argade, Nikhil
2012-01-01
Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity. PMID:23201987
Tsouri, Gill R; Prieto, Alvaro; Argade, Nikhil
2012-09-26
Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity.
Rossi, Gianluigi; De Leo, Giulio A; Pongolini, Stefano; Natalini, Silvano; Vincenzi, Simone; Bolzoni, Luca
2015-06-01
Assessing the performance of a surveillance system for infectious diseases of domestic animals is a challenging task for health authorities. Therefore, it is important to assess what strategy is the most effective in identifying the onset of an epidemic and in minimizing the number of infected farms. The aim of the present work was to evaluate the performance of the bovine tuberculosis (bTB) surveillance system in the network of dairy farms in the Emilia-Romagna (ER) Region, Italy. A bTB-free Region since 2007, ER implements an integrated surveillance strategy based on three components, namely routine on-farm tuberculin skin-testing performed every 3 years, tuberculin skin-testing of cattle exchanged between farms, and post-mortem inspection at slaughterhouses. We assessed the effectiveness of surveillance by means of a stochastic network model of both within-farm and between-farm bTB dynamics calibrated on data available for ER dairy farms. Epidemic dynamics were simulated for five scenarios: the current ER surveillance system, a no surveillance scenario that we used as the benchmark to characterize epidemic dynamics, three additional scenarios in which one of the surveillance components was removed at a time so as to outline its significance in detecting the infection. For each scenario we ran Monte Carlo simulations of bTB epidemics following the random introduction of an infected individual in the network. System performances were assessed through the comparative analysis of a number of statistics, including the time required for epidemic detection and the total number of infected farms during the epidemic. Our analysis showed that slaughterhouse inspection is the most effective surveillance component in reducing the time for disease detection, while routine surveillance in reducing the number of multi-farms epidemics. On the other hand, testing exchanged cattle improved the performance of the surveillance system only marginally. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Humble, Travis S.; McCaskey, Alex
A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less
Rosas, Scott R.; Kagan, Jonathan M.; Schouten, Jeffrey T.; Slack, Perry A.; Trochim, William M. K.
2011-01-01
Evaluative bibliometrics uses advanced techniques to assess the impact of scholarly work in the context of other scientific work and usually compares the relative scientific contributions of research groups or institutions. Using publications from the National Institute of Allergy and Infectious Diseases (NIAID) HIV/AIDS extramural clinical trials networks, we assessed the presence, performance, and impact of papers published in 2006–2008. Through this approach, we sought to expand traditional bibliometric analyses beyond citation counts to include normative comparisons across journals and fields, visualization of co-authorship across the networks, and assess the inclusion of publications in reviews and syntheses. Specifically, we examined the research output of the networks in terms of the a) presence of papers in the scientific journal hierarchy ranked on the basis of journal influence measures, b) performance of publications on traditional bibliometric measures, and c) impact of publications in comparisons with similar publications worldwide, adjusted for journals and fields. We also examined collaboration and interdisciplinarity across the initiative, through network analysis and modeling of co-authorship patterns. Finally, we explored the uptake of network produced publications in research reviews and syntheses. Overall, the results suggest the networks are producing highly recognized work, engaging in extensive interdisciplinary collaborations, and having an impact across several areas of HIV-related science. The strengths and limitations of the approach for evaluation and monitoring research initiatives are discussed. PMID:21394198
Assessing Low-Intensity Relationships in Complex Networks
Spitz, Andreas; Gimmler, Anna; Stoeck, Thorsten; Zweig, Katharina Anna; Horvát, Emőke-Ágnes
2016-01-01
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes. PMID:27096435
Assessing Low-Intensity Relationships in Complex Networks.
Spitz, Andreas; Gimmler, Anna; Stoeck, Thorsten; Zweig, Katharina Anna; Horvát, Emőke-Ágnes
2016-01-01
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.
Bellot, Pau; Olsen, Catharina; Salembier, Philippe; Oliveras-Vergés, Albert; Meyer, Patrick E
2015-09-29
In the last decade, a great number of methods for reconstructing gene regulatory networks from expression data have been proposed. However, very few tools and datasets allow to evaluate accurately and reproducibly those methods. Hence, we propose here a new tool, able to perform a systematic, yet fully reproducible, evaluation of transcriptional network inference methods. Our open-source and freely available Bioconductor package aggregates a large set of tools to assess the robustness of network inference algorithms against different simulators, topologies, sample sizes and noise intensities. The benchmarking framework that uses various datasets highlights the specialization of some methods toward network types and data. As a result, it is possible to identify the techniques that have broad overall performances.
Data systems and computer science space data systems: Onboard networking and testbeds
NASA Technical Reports Server (NTRS)
Dalton, Dan
1991-01-01
The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: justification; technology challenges; program description; and state-of-the-art assessment.
Prediction of outcome in multiorgan resections for cancer using a bayes-network.
Udelnow, Andrej; Leinung, Steffen; Grochola, Lukasz Filipp; Henne-Bruns, Doris; Wfcrl, Peter
2013-01-01
The long-term success of multivisceral resections for cancer is difficult to forecast due to the complexity of factors influencing the prognosis. The aim of our study was to assess the predictivity of a Bayes network for the postoperative outcome and survival. We included each oncologic patient undergoing resection of 4 or more organs from 2002 till 2005 at the Ulm university hospital. Preoperative data were assessed as well as the tumour classification, the resected organs, intra- and postoperative complications and overall survival. Using the Genie 2.0 software we developed a Bayes network. Multivisceral tumour resections were performed in 22 patients. The receiver operating curve areas of the variables "survival >12 months" and "hospitalisation >28 days" as predicted by the Bayes network were 0.81 and 0.77 and differed significantly from 0.5 (p: 0.019 and 0.028, respectively). The positive predictive values of the Bayes network for these variables were 1 and 0.8 and the negative ones 0.71 and 0.88, respectively. Bayes networks are useful for the prognosis estimation of individual patients and can help to decide whether to perform a multivisceral resection for cancer.
DeepQA: improving the estimation of single protein model quality with deep belief networks.
Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin
2016-12-05
Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .
Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant
Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less
Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.
Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T
2014-11-01
Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.
Weight-elimination neural networks applied to coronary surgery mortality prediction.
Ennett, Colleen M; Frize, Monique
2003-06-01
The objective was to assess the effectiveness of the weight-elimination cost function in improving classification performance of artificial neural networks (ANNs) and to observe how changing the a priori distribution of the training set affects network performance. Backpropagation feedforward ANNs with and without weight-elimination estimated mortality for coronary artery surgery patients. The ANNs were trained and tested on cases with 32 input variables describing the patient's medical history; the output variable was in-hospital mortality (mortality rates: training 3.7%, test 3.8%). Artificial training sets with mortality rates of 20%, 50%, and 80% were created to observe the impact of training with a higher-than-normal prevalence. When the results were averaged, weight-elimination networks achieved higher sensitivity rates than those without weight-elimination. Networks trained on higher-than-normal prevalence achieved higher sensitivity rates at the cost of lower specificity and correct classification. The weight-elimination cost function can improve the classification performance when the network is trained with a higher-than-normal prevalence. A network trained with a moderately high artificial mortality rate (artificial mortality rate of 20%) can improve the sensitivity of the model without significantly affecting other aspects of the model's performance. The ANN mortality model achieved comparable performance as additive and statistical models for coronary surgery mortality estimation in the literature.
New Applications for the Testing and Visualization of Wireless Networks
NASA Technical Reports Server (NTRS)
Griffin, Robert I.; Cauley, Michael A.; Pleva, Michael A.; Seibert, Marc A.; Lopez, Isaac
2005-01-01
Traditional techniques for examining wireless networks use physical link characteristics such as Signal-to-Noise (SNR) ratios to assess the performance of wireless networks. Such measurements may not be reliable indicators of available bandwidth. This work describes two new software applications developed at NASA Glenn Research Center for the investigation of wireless networks. GPSIPerf combines measurements of Transmission Control Protocol (TCP) throughput with Global Positioning System (GPS) coordinates to give users a map of wireless bandwidth for outdoor environments where a wireless infrastructure has been deployed. GPSIPerfView combines the data provided by GPSIPerf with high-resolution digital elevation maps (DEM) to help users visualize and assess the impact of elevation features on wireless networks in a given sample area. These applications were used to examine TCP throughput in several wireless network configurations at desert field sites near Hanksville, Utah during May of 2004. Use of GPSIPerf and GPSIPerfView provides a geographically referenced picture of the extent and deterioration of TCP throughput in tested wireless network configurations. GPSIPerf results from field-testing in Utah suggest that it can be useful in assessing other wireless network architectures, and may be useful to future human-robotic exploration missions.
NASA Astrophysics Data System (ADS)
Takuma, Takehisa; Masugi, Masao
2009-03-01
This paper presents an approach to the assessment of IP-network traffic in terms of the time variation of self-similarity. To get a comprehensive view in analyzing the degree of long-range dependence (LRD) of IP-network traffic, we use a hierarchical clustering scheme, which provides a way to classify high-dimensional data with a tree-like structure. Also, in the LRD-based analysis, we employ detrended fluctuation analysis (DFA), which is applicable to the analysis of long-range power-law correlations or LRD in non-stationary time-series signals. Based on sequential measurements of IP-network traffic at two locations, this paper derives corresponding values for the LRD-related parameter α that reflects the degree of LRD of measured data. In performing the hierarchical clustering scheme, we use three parameters: the α value, average throughput, and the proportion of network traffic that exceeds 80% of network bandwidth for each measured data set. We visually confirm that the traffic data can be classified in accordance with the network traffic properties, resulting in that the combined depiction of the LRD and other factors can give us an effective assessment of network conditions at different times.
The use of neural network technology to model swimming performance.
Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida
2007-01-01
to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance).
Turner, Monroe P; Hubbard, Nicholas A; Himes, Lyndahl M; Faghihahmadabadi, Shawheen; Hutchison, Joanna L; Bennett, Ilana J; Motes, Michael A; Haley, Robert W; Rypma, Bart
Cognitive slowing is a prevalent symptom observed in Gulf War Illness (GWI). The present study assessed the extent to which functional connectivity between dorsolateral prefrontal cortex (DLPFC) and other task-relevant brain regions was predictive of GWI-related cognitive slowing. GWI patients (n = 54) and healthy veteran controls (n = 29) were assessed on performance of a processing speed task (the Digit Symbol Substitution Task; DSST) while undergoing functional magnetic resonance imaging (fMRI). GWI patients were slower on the DSST relative to controls. Bilateral DLPFC connectivity with task-relevant nodes was altered in GWI patients compared to healthy controls during DSST performance. Moreover, hyperconnectivity in these networks predicted GWI-related increases in reaction time on the DSST, whereas hypoconnectivity did not. These results suggest that GWI-related cognitive slowing reflects reduced efficiency in cortical networks.
Simulation Modeling of Resilience Assessment in Indonesian Fertiliser Industry Supply Networks
NASA Astrophysics Data System (ADS)
Utami, I. D.; Holt, R. J.; McKay, A.
2018-01-01
Supply network resilience is a significant aspect in the performance of the Indonesian fertiliser industry. Decision makers use risk assessment and port management reports to evaluate the availability of infrastructure. An opportunity was identified to incorporate both types of data into an approach for the measurement of resilience. A framework, based on a synthesis of literature and interviews with industry practitioners, covering both social and technical factors is introduced. A simulation model was then built to allow managers to explore implications for resilience and predict levels of risk in different scenarios. Result of interview with respondens from Indonesian fertiliser industry indicated that the simulation model could be valuable in the assessment. This paper provides details of the simulation model for decision makers to explore levels of risk in supply networks. For practitioners, the model could be used by government to assess the current condition of supply networks in Indonesian industries. On the other hand, for academia, the approach provides a new application of agent-based models in research on supply network resilience and presents a real example of how agent-based modeling could be used as to support the assessment approach.
Multi-phenomenology Observation Network Evaluation Tool'' (MONET)
NASA Astrophysics Data System (ADS)
Oltrogge, D.; North, P.; Vallado, D.
2014-09-01
Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.
Synchrophasor Sensor Networks for Grid Communication and Protection.
Gharavi, Hamid; Hu, Bin
2017-07-01
This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems.
Synchrophasor Sensor Networks for Grid Communication and Protection
Gharavi, Hamid
2017-01-01
This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems. PMID:28890553
Default Mode Network Interference in Mild Traumatic Brain Injury – A Pilot Resting State Study
Sours, Chandler; Zhuo, Jiachen; Janowich, Jacqueline; Aarabi, Bizhan; Shanmuganathan, Kathirkamanthan; Gullapalli, Rao P
2013-01-01
In this study we investigated the functional connectivity in 23 Mild TBI (mTBI) patients with and without memory complaints using resting state fMRI in the sub-acute stage of injury as well as a group of control participants. Results indicate that mTBI patients with memory complaints performed significantly worse than patients without memory complaints on tests assessing memory from the Automated Neuropsychological Assessment Metrics (ANAM). Altered functional connectivity was observed between the three groups between the default mode network (DMN) and the nodes of the task positive network (TPN). Altered functional connectivity was also observed between both the TPN and DMN and nodes associated with the Salience Network (SN). Following mTBI there is a reduction in anti-correlated networks for both those with and without memory complaints for the DMN, but only a reduction in the anti-correlated network in mTBI patients with memory complaints for the TPN. Furthermore, an increased functional connectivity between the TPN and SN appears to be associated with reduced performance on memory assessments. Overall the results suggest that a disruption in the segregation of the DMN and the TPN at rest may be mediated through both a direct pathway of increased FC between various nodes of the TPN and DMN, and through an indirect pathway that links the TPN and DMN through nodes of the SN. This disruption between networks may cause a detrimental impact on memory functioning following mTBI, supporting the Default Mode Interference Hypothesis in the context of mTBI related memory deficits. PMID:23994210
Default mode network interference in mild traumatic brain injury - a pilot resting state study.
Sours, Chandler; Zhuo, Jiachen; Janowich, Jacqueline; Aarabi, Bizhan; Shanmuganathan, Kathirkamanthan; Gullapalli, Rao P
2013-11-06
In this study we investigated the functional connectivity in 23 Mild TBI (mTBI) patients with and without memory complaints using resting state fMRI in the sub-acute stage of injury as well as a group of control participants. Results indicate that mTBI patients with memory complaints performed significantly worse than patients without memory complaints on tests assessing memory from the Automated Neuropsychological Assessment Metrics (ANAM). Altered functional connectivity was observed between the three groups between the default mode network (DMN) and the nodes of the task positive network (TPN). Altered functional connectivity was also observed between both the TPN and DMN and nodes associated with the Salience Network (SN). Following mTBI there is a reduction in anti-correlated networks for both those with and without memory complaints for the DMN, but only a reduction in the anti-correlated network in mTBI patients with memory complaints for the TPN. Furthermore, an increased functional connectivity between the TPN and SN appears to be associated with reduced performance on memory assessments. Overall the results suggest that a disruption in the segregation of the DMN and the TPN at rest may be mediated through both a direct pathway of increased FC between various nodes of the TPN and DMN, and through an indirect pathway that links the TPN and DMN through nodes of the SN. This disruption between networks may cause a detrimental impact on memory functioning following mTBI, supporting the Default Mode Interference Hypothesis in the context of mTBI related memory deficits. © 2013 Elsevier B.V. All rights reserved.
Gaspar, Pâmela Cristina; Wohlke, Bruna Lovizutto Protti; Brunialti, Milena Karina Coló; Pires, Ana Flávia; Kohiyama, Igor Massaki; Salomão, Reinaldo; Alonso Neto, José Boullosa; Júnior, Orlando da Costa Ferreira; Franchini, Miriam; Bazzo, Maria Luiza; Benzaken, Adele Schwartz
2018-05-01
The National Network for CD4+ T-lymphocyte counting of Brazil comprises 93 laboratories. This study reports the laboratory performances achieved in external quality assessment (EQA) rounds provides by Ministry of Health to evaluate the quality of the kits used and the performance of test by the technicians.Ten EQA rounds were analyzed according the EQA criteria aimed to evaluate individual laboratory performance on the basis of the accuracy of their results compared to the general mean obtained by all participating laboratories and the reproducibility of the results obtained between 2 samples from the same donor.The percentage of approved and failed laboratories in the EQAs tends to follow a uniform pattern. Since 2011, approval has remained above 80% and the failure rate has never exceeded 15%.EQA is very important to evaluate the performance of the laboratories, to identify monitor, and to resolve errors as quickly as possible.
Learning and robustness to catch-and-release fishing in a shark social network
Brown, Culum; Planes, Serge
2017-01-01
Individuals can play different roles in maintaining connectivity and social cohesion in animal populations and thereby influence population robustness to perturbations. We performed a social network analysis in a reef shark population to assess the vulnerability of the global network to node removal under different scenarios. We found that the network was generally robust to the removal of nodes with high centrality. The network appeared also highly robust to experimental fishing. Individual shark catchability decreased as a function of experience, as revealed by comparing capture frequency and site presence. Altogether, these features suggest that individuals learnt to avoid capture, which ultimately increased network robustness to experimental catch-and-release. Our results also suggest that some caution must be taken when using capture–recapture models often used to assess population size as assumptions (such as equal probabilities of capture and recapture) may be violated by individual learning to escape recapture. PMID:28298593
Marques, Cristiano Corrêa de Azevedo; Carvalheiro, José da Rocha
2017-01-01
to assess the performance of the diagnostic network in the implementation process of the Program for Viral Hepatitis Prevention and Control in São Paulo State, Brazil, from 1997 to 2012. evaluation study based on documentary research and structured interviews, combined with a historical series analysis of indicators developed to assess the implementation process of the program, using data from the Department of the Brazilian National Health System. from 1997 to 2012, the serology, biopsy and molecular biology diagnostic networks showed an increase in the coefficients of coverage of 7.4, 7.3, and 62.0 times, respectively, with an increase in cases detection and treatment access. despite the effective implementation of the diagnostic network, there is a need to review the search strategy for new cases, and access to liver biopsy, still insufficient to the program demand.
Assessing Performance Tradeoffs in Undersea Distributed Sensor Networks
2006-09-01
time. We refer to this process as track - before - detect (see [5] for a description), since the final determination of a target presence is not made until...expressions for probability of successful search and probability of false search for modeling the track - before - detect process. We then describe a numerical...random manner (randomly sampled from a uniform distribution). II. SENSOR NETWORK PERFORMANCE MODELS We model the process of track - before - detect by
Molecular inspired models for prediction and control of directional FSO/RF wireless networks
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Milner, Stuart D.; Davis, Christopher C.
2010-08-01
Directional wireless networks using FSO and RF transmissions provide wireless backbone support for mobile communications in dynamic environments. The heterogeneous and dynamic nature of such networks challenges their robustness and requires self-organization mechanisms to assure end-to-end broadband connectivity. We developed a framework based on the definition of a potential energy function to characterize robustness in communication networks and the study of first and second order variations of the potential energy to provide prediction and control strategies for network performance optimization. In this paper, we present non-convex molecular potentials such as the Morse Potential, used to describe the potential energy of bonds within molecules, for the characterization of communication links in the presence of physical constraints such as the power available at the network nodes. The inclusion of the Morse Potential translates into adaptive control strategies where forces on network nodes drive the release, retention or reconfiguration of communication links for network performance optimization. Simulation results show the effectiveness of our self-organized control mechanism, where the physical topology reorganizes to maximize the number of source to destination communicating pairs. Molecular Normal Mode Analysis (NMA) techniques for assessing network performance degradation in dynamic networks are also presented. Preliminary results show correlation between peaks in the eigenvalues of the Hessian of the network potential and network degradation.
Willis, Cameron; Kernoghan, Alison; Riley, Barbara; Popp, Janice; Best, Allan; Milward, H Brinton
2015-11-19
We conducted a mixed methods study from June 2014 to March 2015 to assess the perspectives of stakeholders in networks that adopt a population approach for chronic disease prevention (CDP). The purpose of the study was to identify important and feasible outcome measures for monitoring network performance. Participants from CDP networks in Canada completed an online concept mapping exercise, which was followed by interviews with network stakeholders to further understand the findings. Nine concepts were considered important outcomes of CDP networks: enhanced learning, improved use of resources, enhanced or increased relationships, improved collaborative action, network cohesion, improved system outcomes, improved population health outcomes, improved practice and policy planning, and improved intersectoral engagement. Three themes emerged from participant interviews related to measurement of the identified concepts: the methodological difficulties in measuring network outcomes, the dynamic nature of network evolution and function and implications for outcome assessment, and the challenge of measuring multisectoral engagement in CDP networks. Results from this study provide initial insights into concepts that can be used to describe the outcomes of networks for CDP and may offer foundations for strengthening network outcome-monitoring strategies and methodologies.
Kernoghan, Alison; Riley, Barbara; Popp, Janice; Best, Allan; Milward, H. Brinton
2015-01-01
Introduction We conducted a mixed methods study from June 2014 to March 2015 to assess the perspectives of stakeholders in networks that adopt a population approach for chronic disease prevention (CDP). The purpose of the study was to identify important and feasible outcome measures for monitoring network performance. Methods Participants from CDP networks in Canada completed an online concept mapping exercise, which was followed by interviews with network stakeholders to further understand the findings. Results Nine concepts were considered important outcomes of CDP networks: enhanced learning, improved use of resources, enhanced or increased relationships, improved collaborative action, network cohesion, improved system outcomes, improved population health outcomes, improved practice and policy planning, and improved intersectoral engagement. Three themes emerged from participant interviews related to measurement of the identified concepts: the methodological difficulties in measuring network outcomes, the dynamic nature of network evolution and function and implications for outcome assessment, and the challenge of measuring multisectoral engagement in CDP networks. Conclusion Results from this study provide initial insights into concepts that can be used to describe the outcomes of networks for CDP and may offer foundations for strengthening network outcome-monitoring strategies and methodologies. PMID:26583571
Optical simulations for experimental networks: lessons from MONET
NASA Astrophysics Data System (ADS)
Richards, Dwight H.; Jackel, Janet L.; Goodman, Matthew S.; Roudas, Ioannis; Wagner, Richard E.; Antoniades, Neophytos
1999-08-01
We have used optical simulations as a means of setting component requirements, assessing component compatibility, and designing experiments in the MONET (Multiwavelength Optical Networking) Project. This paper reviews the simulation method, gives some examples of the types of simulations that have been performed, and discusses the validation of the simulations.
DOT National Transportation Integrated Search
2012-06-01
The objective of this study was to develop an approach for incorporating techniques to interpret and evaluate deflection : data for network-level pavement management system (PMS) applications. The first part of this research focused on : identifying ...
Brain Network Changes and Memory Decline in Aging
Beason-Held, Lori L.; Hohman, Timothy J.; Venkatraman, Vijay; An, Yang; Resnick, Susan M.
2016-01-01
One theory of age-related cognitive decline proposes that changes within the default mode network (DMN) of the brain impact the ability to successfully perform cognitive operations. To investigate this theory, we examined functional covariance within brain networks using regional cerebral blood flow data, measured by 15O-water PET, from 99 participants (mean baseline age 68.6 ±7.5) in the Baltimore Longitudinal Study of Aging collected over a 7.4 year period. The sample was divided in tertiles based on longitudinal performance on a verbal recognition memory task administered during scanning, and functional covariance was compared between the upper (improvers) and lower (decliners) tertile groups. The DMN and verbal memory networks (VMN) were then examined during the verbal memory scan condition. For each network, group differences in node-to-network coherence and individual node-to-node covariance relationships were assessed at baseline and in change over time. Compared with improvers, decliners showed differences in node-to-network coherence and in node-to-node relationships in the DMN but not the VMN during verbal memory. These DMN differences reflected greater covariance with better task performance at baseline and both increasing and declining covariance with declining task performance over time for decliners. When examined during the resting state alone, the direction of change in DMN covariance was similar to that seen during task performance, but node-to-node relationships differed from those observed during the task condition. These results suggest that disengagement of DMN components during task performance is not essential for successful cognitive performance as previously proposed. Instead, a proper balance in network processes may be needed to support optimal task performance. PMID:27319002
User requirements and understanding of public health networks in England.
Fahey, D K; Carson, E R; Cramp, D G; Muir Gray, J A
2003-12-01
The movement of public health professionals from health authorities to primary care trusts has increased their isolation and dependence on public health networks for communication. A cross sectional survey of 60 public health professionals working in England was performed to determine their understanding of the term "public health network" and to explore the functions that they would like these networks to perform. It also assessed their attitudes towards a national network and towards individual, local, and national web sites to support these networks. The most popular functions were the support of CPD/education, the identification of expertise and maximisation of scarce resources, information sharing, and efficient information/knowledge management. The local and national networks and their web sites should provide information on current projects of the network and searches to identify people, expertise, and reports. Public health professionals have a similar but broader understanding of the term "public health network" than that of the government with greater emphasis on sharing of information. The network is more likely to be successful if its priorities are maximising scarce resources, identification of expertise, CPD/education, and knowledge management.
Huang, Dengfeng; Ren, Aifeng; Shang, Jing; Lei, Qiao; Zhang, Yun; Yin, Zhongliang; Li, Jun; von Deneen, Karen M; Huang, Liyu
2016-01-01
The aim of this study is to qualify the network properties of the brain networks between two different mental tasks (play task or rest task) in a healthy population. EEG signals were recorded from 19 healthy subjects when performing different mental tasks. Partial directed coherence (PDC) analysis, based on Granger causality (GC), was used to assess the effective brain networks during the different mental tasks. Moreover, the network measures, including degree, degree distribution, local and global efficiency in delta, theta, alpha, and beta rhythms were calculated and analyzed. The local efficiency is higher in the beta frequency and lower in the theta frequency during play task whereas the global efficiency is higher in the theta frequency and lower in the beta frequency in the rest task. This study reveals the network measures during different mental states and efficiency measures may be used as characteristic quantities for improvement in attentional performance.
NASA Astrophysics Data System (ADS)
Ángel López Comino, José; Kriegerowski, Marius; Cesca, Simone; Dahm, Torsten; Mirek, Janusz; Lasocki, Stanislaw
2016-04-01
Hydraulic fracturing is considered among the human operations which could induce or trigger seismicity or microseismic activity. The influence of hydraulic fracturing operations is typically expected in terms of weak magnitude events. However, the sensitivity of the rock mass to trigger seismicity varies significantly for different sites and cannot be easily predicted prior to operations. In order to assess the sensitivity of microseismity to hydraulic fracturing operations, we perform a seismic monitoring at a shale gas exploration/exploitation site in the central-western part of the Peribaltic synclise at Pomerania (Poland). The monitoring will be continued before, during and after the termination of hydraulic fracturing operations. The fracking operations are planned in April 2016 at a depth 4000 m. A specific network setup has been installed since summer 2015, including a distributed network of broadband stations and three small-scale arrays. The network covers a region of 60 km2. The aperture of small scale arrays is between 450 and 950 m. So far no fracturing operations have been performed, but seismic data can already be used to assess the seismic noise and background microseismicity, and to investigate and assess the detection performance of our monitoring setup. Here we adopt a recently developed tool to generate a synthetic catalogue and waveform dataset, which realistically account for the expected microseismicity. Synthetic waveforms are generated for a local crustal model, considering a realistic distribution of hypocenters, magnitudes, moment tensors, and source durations. Noise free synthetic seismograms are superposed to real noise traces, to reproduce true monitoring conditions at the different station locations. We estimate the detection probability for different magnitudes, source-receiver distances, and noise conditions. This information is used to estimate the magnitude of completeness at the depth of the hydraulic fracturing horizontal wells. Our technique is useful to evaluate the efficiency of the seismic network and validate detection and location algorithms, taking into account the signal to noise ratio. The same dataset may be used at a later time, to assess the performance of other seismological analysis, such as hypocentral location, magnitude estimation and source parameters inversion. This work is funded by the EU H2020 SHEER project.
Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman
2016-01-01
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.
Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman
2016-01-01
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies. PMID:27799906
Dynamic functional connectivity shapes individual differences in associative learning.
Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal
2016-11-01
Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Assessing the Climate Resilience of Transport Infrastructure Investments in Tanzania
NASA Astrophysics Data System (ADS)
Hall, J. W.; Pant, R.; Koks, E.; Thacker, S.; Russell, T.
2017-12-01
Whilst there is an urgent need for infrastructure investment in developing countries, there is a risk that poorly planned and built infrastructure will introduce new vulnerabilities. As climate change increases the magnitudes and frequency of natural hazard events, incidence of disruptive infrastructure failures are likely to become more frequent. Therefore, it is important that infrastructure planning and investment is underpinned by climate risk assessment that can inform adaptation planning. Tanzania's rapid economic growth is placing considerable strain on the country's transportation infrastructure (roads, railways, shipping and aviation); especially at the port of Dar es Salaam and its linking transport corridors. A growing number of natural hazard events, in particular flooding, are impacting the reliability of this already over-used network. Here we report on new methodology to analyse vulnerabilities and risks due to failures of key locations in the intermodal transport network of Tanzania, including strategic connectivity to neighboring countries. To perform the national-scale risk analysis we will utilize a system-of-systems methodology. The main components of this general risk assessment, when applied to transportation systems, include: (1) Assembling data on: spatially coherent extreme hazards and intermodal transportation networks; (2) Intersecting hazards with transport network models to initiate failure conditions that trigger failure propagation across interdependent networks; (3) Quantifying failure outcomes in terms of social impacts (customers/passengers disrupted) and/or macroeconomic consequences (across multiple sectors); and (4) Simulating, testing and collecting multiple failure scenarios to perform an exhaustive risk assessment in terms of probabilities and consequences. The methodology is being used to pinpoint vulnerability and reduce climate risks to transport infrastructure investments.
On the relevance of using open wireless sensor networks in environment monitoring.
Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco
2009-01-01
This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.
Mild traumatic brain injury: graph-model characterization of brain networks for episodic memory.
Tsirka, Vasso; Simos, Panagiotis G; Vakis, Antonios; Kanatsouli, Kassiani; Vourkas, Michael; Erimaki, Sofia; Pachou, Ellie; Stam, Cornelis Jan; Micheloyannis, Sifis
2011-02-01
Episodic memory is among the cognitive functions that can be affected in the acute phase following mild traumatic brain injury (MTBI). The present study used EEG recordings to evaluate global synchronization and network organization of rhythmic activity during the encoding and recognition phases of an episodic memory task varying in stimulus type (kaleidoscope images, pictures, words, and pseudowords). Synchronization of oscillatory activity was assessed using a linear and nonlinear connectivity estimator and network analyses were performed using algorithms derived from graph theory. Twenty five MTBI patients (tested within days post-injury) and healthy volunteers were closely matched on demographic variables, verbal ability, psychological status variables, as well as on overall task performance. Patients demonstrated sub-optimal network organization, as reflected by changes in graph parameters in the theta and alpha bands during both encoding and recognition. There were no group differences in spectral energy during task performance or on network parameters during a control condition (rest). Evidence of less optimally organized functional networks during memory tasks was more prominent for pictorial than for verbal stimuli. Copyright © 2010 Elsevier B.V. All rights reserved.
Planning Multitechnology Access Networks with Performance Constraints
NASA Astrophysics Data System (ADS)
Chamberland, Steven
Considering the number of access network technologies and the investment needed for the “last mile” of a solution, in today’s highly competitive markets, planning tools are crucial for the service providers to optimize the network costs and accelerate the planning process. In this paper, we propose to tackle the problem of planning access networks composed of four technologies/architectures: the digital subscriber line (xDSL) technologies deployed directly from the central office (CO), the fiber-to-the-node (FTTN), the fiber-to-the-micro-node (FTTn) and the fiber-to-the-premises (FTTP). A mathematical programming model is proposed for this planning problem that is solved using a commercial implementation of the branch-and-bound algorithm. Next, a detailed access network planning example is presented followed by a systematic set of experiments designed to assess the performance of the proposed approach.
Systemic delay propagation in the US airport network
Fleurquin, Pablo; Ramasco, José J.; Eguiluz, Victor M.
2013-01-01
Technologically driven transport systems are characterized by a networked structure connecting operation centers and by a dynamics ruled by pre-established schedules. Schedules impose serious constraints on the timing of the operations, condition the allocation of resources and define a baseline to assess system performance. Here we study the performance of an air transportation system in terms of delays. Technical, operational or meteorological issues affecting some flights give rise to primary delays. When operations continue, such delays can propagate, magnify and eventually involve a significant part of the network. We define metrics able to quantify the level of network congestion and introduce a model that reproduces the delay propagation patterns observed in the U.S. performance data. Our results indicate that there is a non-negligible risk of systemic instability even under normal operating conditions. We also identify passenger and crew connectivity as the most relevant internal factor contributing to delay spreading. PMID:23362459
Network-based ranking methods for prediction of novel disease associated microRNAs.
Le, Duc-Hau
2015-10-01
Many studies have shown roles of microRNAs on human disease and a number of computational methods have been proposed to predict such associations by ranking candidate microRNAs according to their relevance to a disease. Among them, machine learning-based methods usually have a limitation in specifying non-disease microRNAs as negative training samples. Meanwhile, network-based methods are becoming dominant since they well exploit a "disease module" principle in microRNA functional similarity networks. Of which, random walk with restart (RWR) algorithm-based method is currently state-of-the-art. The use of this algorithm was inspired from its success in predicting disease gene because the "disease module" principle also exists in protein interaction networks. Besides, many algorithms designed for webpage ranking have been successfully applied in ranking disease candidate genes because web networks share topological properties with protein interaction networks. However, these algorithms have not yet been utilized for disease microRNA prediction. We constructed microRNA functional similarity networks based on shared targets of microRNAs, and then we integrated them with a microRNA functional synergistic network, which was recently identified. After analyzing topological properties of these networks, in addition to RWR, we assessed the performance of (i) PRINCE (PRIoritizatioN and Complex Elucidation), which was proposed for disease gene prediction; (ii) PageRank with Priors (PRP) and K-Step Markov (KSM), which were used for studying web networks; and (iii) a neighborhood-based algorithm. Analyses on topological properties showed that all microRNA functional similarity networks are small-worldness and scale-free. The performance of each algorithm was assessed based on average AUC values on 35 disease phenotypes and average rankings of newly discovered disease microRNAs. As a result, the performance on the integrated network was better than that on individual ones. In addition, the performance of PRINCE, PRP and KSM was comparable with that of RWR, whereas it was worst for the neighborhood-based algorithm. Moreover, all the algorithms were stable with the change of parameters. Final, using the integrated network, we predicted six novel miRNAs (i.e., hsa-miR-101, hsa-miR-181d, hsa-miR-192, hsa-miR-423-3p, hsa-miR-484 and hsa-miR-98) associated with breast cancer. Network-based ranking algorithms, which were successfully applied for either disease gene prediction or for studying social/web networks, can be also used effectively for disease microRNA prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Babulak, Eduard
2006-01-01
The continuous increase in the complexity and the heterogeneity of corporate and healthcare telecommunications infrastructures will require new assessment methods of quality of service (QoS) provision that are capable of addressing all engineering and social issues with much faster speeds. Speed and accessibility to any information at any time from anywhere will create global communications infrastructures with great performance bottlenecks that may put in danger human lives, power supplies, national economy and security. Regardless of the technology supporting the information flows, the final verdict on the QoS is made by the end user. The users' perception of telecommunications' network infrastructure QoS provision is critical to the successful business management operation of any organization. As a result, it is essential to assess the QoS Provision in the light of user's perception. This article presents a cost effective methodology to assess the user's perception of quality of service provision utilizing the existing Staffordshire University Network (SUN) by adding a component of measurement to the existing model presented by Walker. This paper presents the real examples of CISCO Networking Solutions for Health Care givers and offers a cost effective approach to assess the QoS provision within the campus network, which could be easily adapted to any health care organization or campus network in the world.
Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot; Thomas, George; Culley, Dennis; Kratz, Jonathan
2017-01-01
Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Thomas, George Lindsey; Culley, Dennis E.; Kratz, Jonathan L.
2017-01-01
Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
ERIC Educational Resources Information Center
Eliason, Norma Lynn
2014-01-01
The effects of incorporating an online social networking platform, hosted through Wikispace, as a method to potential improve the performance of middle school students on standardized math assessments was investigated in this study. A principal strategy for any educational setting may provide an instructional approach that improves the delivery of…
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Yeh, Cheng-Ta; Huang, Cheng-Fu
2017-01-01
This study develops a multistate freight network for single and perishable merchandise to assess the freight performance, where a node denotes a supplier, a distribution centre, or a buyer, while a logistics company providing a freight traffic service is denoted by an edge. For each logistics company, carrying capacity should be multistate since partial capacity may be reserved by some customers. The merchandise may perish or be perished during conveyance because of disadvantageous weather or collision in carrying such that the number of intact cargoes may be insufficient for the buyers. Hence, according to the perspective of supply chain management, the reliability, a probability of the network to successfully deliver the cargoes from the suppliers to the buyers subject to a budget, is proposed to be a performance index, where the suppliers and buyers are not the previous customers. An algorithm in terms of minimal paths to assess the reliability is developed. A fruit logistics case is adopted to explore the managerial implications of the reliability using sensitivity analysis.
Statistical assessment of crosstalk enrichment between gene groups in biological networks.
McCormack, Theodore; Frings, Oliver; Alexeyenko, Andrey; Sonnhammer, Erik L L
2013-01-01
Analyzing groups of functionally coupled genes or proteins in the context of global interaction networks has become an important aspect of bioinformatic investigations. Assessing the statistical significance of crosstalk enrichment between or within groups of genes can be a valuable tool for functional annotation of experimental gene sets. Here we present CrossTalkZ, a statistical method and software to assess the significance of crosstalk enrichment between pairs of gene or protein groups in large biological networks. We demonstrate that the standard z-score is generally an appropriate and unbiased statistic. We further evaluate the ability of four different methods to reliably recover crosstalk within known biological pathways. We conclude that the methods preserving the second-order topological network properties perform best. Finally, we show how CrossTalkZ can be used to annotate experimental gene sets using known pathway annotations and that its performance at this task is superior to gene enrichment analysis (GEA). CrossTalkZ (available at http://sonnhammer.sbc.su.se/download/software/CrossTalkZ/) is implemented in C++, easy to use, fast, accepts various input file formats, and produces a number of statistics. These include z-score, p-value, false discovery rate, and a test of normality for the null distributions.
van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.
2013-01-01
Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124
The Use of Neural Network Technology to Model Swimming Performance
Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida
2007-01-01
The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance). PMID:24149233
Jeong, Hyundoo; Yoon, Byung-Jun
2017-03-14
Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computational complexity of detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of the query results. In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently extended by maximally reducing the network conductance of the identified subnetworks. Performance assessment based on real PPI networks and known molecular complexes show that SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA .
Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks.
Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin
2016-06-03
This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method.
Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks
Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin
2016-01-01
This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method. PMID:27271626
Performing particle image velocimetry using artificial neural networks: a proof-of-concept
NASA Astrophysics Data System (ADS)
Rabault, Jean; Kolaas, Jostein; Jensen, Atle
2017-12-01
Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.
Mapping the Growing Discipline of Dissemination and Implementation Science in Health
Norton, Wynne E.; Lungeanu, Alina; Chambers, David A.; Contractor, Noshir
2017-01-01
Background The field of dissemination and implementation (D&I) research in health has grown considerably in the past decade. Despite the potential for advancing the science, limited research has focused on mapping the field. Methods We administered an online survey to individuals in the D&I field to assess participants’ demographics and expertise, as well as engagement with journals and conferences, publications, and grants. A combined roster–nomination method was used to collect data on participants’ advice networks and collaboration networks; participants’ motivations for choosing collaborators was also assessed. Frequency and descriptive statistics were used to characterize the overall sample; network metrics were used to characterize both networks. Among a sub-sample of respondents who were researchers, regression analyses identified predictors of two metrics of academic performance (i.e., publications and funded grants). Results A total of 421 individuals completed the survey, representing a 30.75% response rate of eligible individuals. Most participants were White (n = 343), female (n = 284, 67.4%), and identified as a researcher (n = 340, 81%). Both the advice and the collaboration networks displayed characteristics of a small world network. The most important motivations for selecting collaborators were aligned with advancing the science (i.e., prior collaborators, strong reputation, and good collaborators) rather than relying on human proclivities for homophily, proximity, and friendship. Among a sub-sample of 295 researchers, expertise (individual predictor), status (advice network), and connectedness (collaboration network) were significant predictors of both metrics of academic performance. Conclusions Network-based interventions can enhance collaboration and productivity; future research is needed to leverage these data to advance the field. PMID:29249842
Mapping the Growing Discipline of Dissemination and Implementation Science in Health.
Norton, Wynne E; Lungeanu, Alina; Chambers, David A; Contractor, Noshir
2017-09-01
The field of dissemination and implementation (D&I) research in health has grown considerably in the past decade. Despite the potential for advancing the science, limited research has focused on mapping the field. We administered an online survey to individuals in the D&I field to assess participants' demographics and expertise, as well as engagement with journals and conferences, publications, and grants. A combined roster-nomination method was used to collect data on participants' advice networks and collaboration networks; participants' motivations for choosing collaborators was also assessed. Frequency and descriptive statistics were used to characterize the overall sample; network metrics were used to characterize both networks. Among a sub-sample of respondents who were researchers, regression analyses identified predictors of two metrics of academic performance (i.e., publications and funded grants). A total of 421 individuals completed the survey, representing a 30.75% response rate of eligible individuals. Most participants were White (n = 343), female (n = 284, 67.4%), and identified as a researcher (n = 340, 81%). Both the advice and the collaboration networks displayed characteristics of a small world network. The most important motivations for selecting collaborators were aligned with advancing the science (i.e., prior collaborators, strong reputation, and good collaborators) rather than relying on human proclivities for homophily, proximity, and friendship. Among a sub-sample of 295 researchers, expertise (individual predictor), status (advice network), and connectedness (collaboration network) were significant predictors of both metrics of academic performance. Network-based interventions can enhance collaboration and productivity; future research is needed to leverage these data to advance the field.
Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming
2015-10-01
In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network.
IndeCut evaluates performance of network motif discovery algorithms.
Ansariola, Mitra; Megraw, Molly; Koslicki, David
2018-05-01
Genomic networks represent a complex map of molecular interactions which are descriptive of the biological processes occurring in living cells. Identifying the small over-represented circuitry patterns in these networks helps generate hypotheses about the functional basis of such complex processes. Network motif discovery is a systematic way of achieving this goal. However, a reliable network motif discovery outcome requires generating random background networks which are the result of a uniform and independent graph sampling method. To date, there has been no method to numerically evaluate whether any network motif discovery algorithm performs as intended on realistically sized datasets-thus it was not possible to assess the validity of resulting network motifs. In this work, we present IndeCut, the first method to date that characterizes network motif finding algorithm performance in terms of uniform sampling on realistically sized networks. We demonstrate that it is critical to use IndeCut prior to running any network motif finder for two reasons. First, IndeCut indicates the number of samples needed for a tool to produce an outcome that is both reproducible and accurate. Second, IndeCut allows users to choose the tool that generates samples in the most independent fashion for their network of interest among many available options. The open source software package is available at https://github.com/megrawlab/IndeCut. megrawm@science.oregonstate.edu or david.koslicki@math.oregonstate.edu. Supplementary data are available at Bioinformatics online.
Browne, Fiona; Wang, Haiying; Zheng, Huiru; Azuaje, Francisco
2010-03-01
This study applied a knowledge-driven data integration framework for the inference of protein-protein interactions (PPI). Evidence from diverse genomic features is integrated using a knowledge-driven Bayesian network (KD-BN). Receiver operating characteristic (ROC) curves may not be the optimal assessment method to evaluate a classifier's performance in PPI prediction as the majority of the area under the curve (AUC) may not represent biologically meaningful results. It may be of benefit to interpret the AUC of a partial ROC curve whereby biologically interesting results are represented. Therefore, the novel application of the assessment method referred to as the partial ROC has been employed in this study to assess predictive performance of PPI predictions along with calculating the True positive/false positive rate and true positive/positive rate. By incorporating domain knowledge into the construction of the KD-BN, we demonstrate improvement in predictive performance compared with previous studies based upon the Naive Bayesian approach. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
DeLay, Dawn; Zhang, Linlin; Hanish, Laura D; Miller, Cindy F; Fabes, Richard A; Martin, Carol Lynn; Kochel, Karen P; Updegraff, Kimberly A
2016-11-01
Longitudinal social network analysis (SNA) was used to examine how a social-emotional learning (SEL) intervention may be associated with peer socialization on academic performance. Fifth graders (N = 631; 48 % girls; 9 to 12 years) were recruited from six elementary schools. Intervention classrooms (14) received a relationship building intervention (RBI) and control classrooms (8) received elementary school as usual. At pre- and post-test, students nominated their friends, and teachers completed assessments of students' writing and math performance. The results of longitudinal SNA suggested that the RBI was associated with friend selection and peer influence within the classroom peer network. Friendship choices were significantly more diverse (i.e., less evidence of social segregation as a function of ethnicity and academic ability) in intervention compared to control classrooms, and peer influence on improved writing and math performance was observed in RBI but not control classrooms. The current findings provide initial evidence that SEL interventions may change social processes in a classroom peer network and may break down barriers of social segregation and improve academic performance.
Craddock, Travis J. A.; Fletcher, Mary Ann; Klimas, Nancy G.
2015-01-01
There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE) models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI) integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE). Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA) and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm. PMID:25984725
Relations between mental health team characteristics and work role performance.
Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie; Farand, Lambert
2017-01-01
Effective mental health care requires a high performing, interprofessional team. Among 79 mental health teams in Quebec (Canada), this exploratory study aims to 1) determine the association between work role performance and a wide range of variables related to team effectiveness according to the literature, and to 2) using structural equation modelling, assess the covariance between each of these variables as well as the correlation with other exogenous variables. Work role performance was measured with an adapted version of a work role questionnaire. Various independent variables including team manager characteristics, user characteristics, team profiles, clinical activities, organizational culture, network integration strategies and frequency/satisfaction of interactions with other teams or services were analyzed under the structural equation model. The later provided a good fit with the data. Frequent use of standardized procedures and evaluation tools (e.g. screening and assessment tools for mental health disorders) and team manager seniority exerted the most direct effect on work role performance. While network integration strategies had little effect on work role performance, there was a high covariance between this variable and those directly affecting work role performance among mental health teams. The results suggest that the mental healthcare system should apply standardized procedures and evaluation tools and, to a lesser extent, clinical approaches to improve work role performance in mental health teams. Overall, a more systematic implementation of network integration strategies may contribute to improved work role performance in mental health care.
Relations between mental health team characteristics and work role performance
Grenier, Guy; Bamvita, Jean-Marie; Farand, Lambert
2017-01-01
Effective mental health care requires a high performing, interprofessional team. Among 79 mental health teams in Quebec (Canada), this exploratory study aims to 1) determine the association between work role performance and a wide range of variables related to team effectiveness according to the literature, and to 2) using structural equation modelling, assess the covariance between each of these variables as well as the correlation with other exogenous variables. Work role performance was measured with an adapted version of a work role questionnaire. Various independent variables including team manager characteristics, user characteristics, team profiles, clinical activities, organizational culture, network integration strategies and frequency/satisfaction of interactions with other teams or services were analyzed under the structural equation model. The later provided a good fit with the data. Frequent use of standardized procedures and evaluation tools (e.g. screening and assessment tools for mental health disorders) and team manager seniority exerted the most direct effect on work role performance. While network integration strategies had little effect on work role performance, there was a high covariance between this variable and those directly affecting work role performance among mental health teams. The results suggest that the mental healthcare system should apply standardized procedures and evaluation tools and, to a lesser extent, clinical approaches to improve work role performance in mental health teams. Overall, a more systematic implementation of network integration strategies may contribute to improved work role performance in mental health care. PMID:28991923
Merli, M. Giovanna; Moody, James; Smith, Jeffrey; Li, Jing; Weir, Sharon; Chen, Xiangsheng
2014-01-01
We explore the network coverage of a sample of female sex workers (FSWs) in China recruited through Respondent Drive Sampling (RDS) as part of an effort to evaluate the claim of RDS of population representation with empirical data. We take advantage of unique information on the social networks of FSWs obtained from two overlapping studies --RDS and a venue-based sampling approach (PLACE) -- and use an exponential random graph modeling (ERGM) framework from local networks to construct a likely network from which our observed RDS sample is drawn. We then run recruitment chains over this simulated network to assess the assumption that the RDS chain referral process samples participants in proportion to their degree and the extent to which RDS satisfactorily covers certain parts of the network. We find evidence that, contrary to assumptions, RDS oversamples low degree nodes and geographically central areas of the network. Unlike previous evaluations of RDS which have explored the performance of RDS sampling chains on a non-hidden population, or the performance of simulated chains over previously mapped realistic social networks, our study provides a robust, empirically grounded evaluation of the performance of RDS chains on a real-world hidden population. PMID:24834869
2014-03-27
Access (OFDMA) signal so that jamming effectiveness can be assessed; referred to in this research as Battle Damage Assessment ( BDA ). The research extends...the 802.16 Wireless Metropolitan Area Network (MAN) OFDMA standard, and presents a novel method for performing BDA via observation of Sub Carrier (SC...interferer is also evaluated where the blind demodulator’s performance is degraded. BDA is achieved via observing SC LA modulation behavior of the
Assessment of the DORIS network monumentation
NASA Astrophysics Data System (ADS)
Saunier, J.
2016-12-01
Stability of the monumentation is essential for precise positioning applications to minimize velocity uncertainties and noises in the position data. In charge of the DORIS global tracking network deployment since the beginning, IGN, in consultation with CNES, designed three standard monuments compliant with the DORIS system requirements and general geodetic specifications, and suitable for various site configurations: building roofs, concrete pedestals or pillars. This paper describes the monument types in use in the DORIS network according to the current required specifications and provides a comparative assessment of the stability of the monuments over the network based on three methods: a theoretical study of the mechanical behavior of the metallic structures, a misclosure analysis taken during ground surveys and a qualitative approach taking into account different factors. This overview of the network monumentation gives new key numbers following the previous network assessment performed by Fagard (2006). Significant improvements have been made following the continuous efforts to renovate the network monumentation. These results are relevant for the Global Geodetic Observing System (GGOS) goals of measurement stability for the geodetic techniques. Today, two-thirds of the DORIS network monuments are compliant with the standards aiming at stability of 0.1 mm/y. This stability result has been measured for 16 of the 58 stations more than 10 y after its installation while monuments with more than 1 mm antenna tilts are over 10 y old when specifications were less stringent. The grading and scoring grid drawn up for each monument led to the mapping of the stability of the current DORIS network. Finally, we present a number of further actions to monitor the monument stability and provide new elements for the network monumentation assessment, exploring two different approaches: analysis of the time series and direct measurements using devices placed on each monument.
Evaluating the Social Media Performance of Hospitals in Spain: A Longitudinal and Comparative Study.
Martinez-Millana, Antonio; Fernandez-Llatas, Carlos; Basagoiti Bilbao, Ignacio; Traver Salcedo, Manuel; Traver Salcedo, Vicente
2017-05-23
Social media is changing the way in which citizens and health professionals communicate. Previous studies have assessed the use of Health 2.0 by hospitals, showing clear evidence of growth in recent years. In order to understand if this happens in Spain, it is necessary to assess the performance of health care institutions on the Internet social media using quantitative indicators. The study aimed to analyze how hospitals in Spain perform on the Internet and social media networks by determining quantitative indicators in 3 different dimensions: presence, use, and impact and assess these indicators on the 3 most commonly used social media - Facebook, Twitter, YouTube. Further, we aimed to find out if there was a difference between private and public hospitals in their use of the aforementioned social networks. The evolution of presence, use, and impact metrics is studied over the period 2011- 2015. The population studied accounts for all the hospitals listed in the National Hospitals Catalog (NHC). The percentage of hospitals having Facebook, Twitter, and YouTube profiles has been used to show the presence and evolution of hospitals on social media during this time. Usage was assessed by analyzing the content published on each social network. Impact evaluation was measured by analyzing the trend of subscribers for each social network. Statistical analysis was performed using a lognormal transformation and also using a nonparametric distribution, with the aim of comparing t student and Wilcoxon independence tests for the observed variables. From the 787 hospitals identified, 69.9% (550/787) had an institutional webpage and 34.2% (269/787) had at least one profile in one of the social networks (Facebook, Twitter, and YouTube) in December 2015. Hospitals' Internet presence has increased by more than 450.0% (787/172) and social media presence has increased ten times since 2011. Twitter is the preferred social network for public hospitals, whereas private hospitals showed better performance on Facebook and YouTube. The two-sided Wilcoxon test and t student test at a CI of 95% show that the use of Twitter distribution is higher (P<.001) for private and public hospitals in Spain, whereas other variables show a nonsignificant different distribution. The Internet presence of Spanish hospitals is high; however, their presence on the 3 main social networks is still not as high compared to that of hospitals in the United States and Western Europe. Public hospitals are found to be more active on Twitter, whereas private hospitals show better performance on Facebook and YouTube. This study suggests that hospitals, both public and private, should devote more effort to and be more aware of social media, with a clear strategy as to how they can foment new relationships with patients and citizens. ©Antonio Martinez-Millana, Carlos Fernandez-Llatas, Ignacio Basagoiti Bilbao, Manuel Traver Salcedo, Vicente Traver Salcedo. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.05.2017.
Evaluating the Social Media Performance of Hospitals in Spain: A Longitudinal and Comparative Study
2017-01-01
Background Social media is changing the way in which citizens and health professionals communicate. Previous studies have assessed the use of Health 2.0 by hospitals, showing clear evidence of growth in recent years. In order to understand if this happens in Spain, it is necessary to assess the performance of health care institutions on the Internet social media using quantitative indicators. Objectives The study aimed to analyze how hospitals in Spain perform on the Internet and social media networks by determining quantitative indicators in 3 different dimensions: presence, use, and impact and assess these indicators on the 3 most commonly used social media - Facebook, Twitter, YouTube. Further, we aimed to find out if there was a difference between private and public hospitals in their use of the aforementioned social networks. Methods The evolution of presence, use, and impact metrics is studied over the period 2011- 2015. The population studied accounts for all the hospitals listed in the National Hospitals Catalog (NHC). The percentage of hospitals having Facebook, Twitter, and YouTube profiles has been used to show the presence and evolution of hospitals on social media during this time. Usage was assessed by analyzing the content published on each social network. Impact evaluation was measured by analyzing the trend of subscribers for each social network. Statistical analysis was performed using a lognormal transformation and also using a nonparametric distribution, with the aim of comparing t student and Wilcoxon independence tests for the observed variables. Results From the 787 hospitals identified, 69.9% (550/787) had an institutional webpage and 34.2% (269/787) had at least one profile in one of the social networks (Facebook, Twitter, and YouTube) in December 2015. Hospitals’ Internet presence has increased by more than 450.0% (787/172) and social media presence has increased ten times since 2011. Twitter is the preferred social network for public hospitals, whereas private hospitals showed better performance on Facebook and YouTube. The two-sided Wilcoxon test and t student test at a CI of 95% show that the use of Twitter distribution is higher (P<.001) for private and public hospitals in Spain, whereas other variables show a nonsignificant different distribution. Conclusions The Internet presence of Spanish hospitals is high; however, their presence on the 3 main social networks is still not as high compared to that of hospitals in the United States and Western Europe. Public hospitals are found to be more active on Twitter, whereas private hospitals show better performance on Facebook and YouTube. This study suggests that hospitals, both public and private, should devote more effort to and be more aware of social media, with a clear strategy as to how they can foment new relationships with patients and citizens. PMID:28536091
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja
2014-05-01
Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.
NASA Astrophysics Data System (ADS)
Tutschku, Kurt; Nakao, Akihiro
This paper introduces a methodology for engineering best-effort P2P algorithms into dependable P2P-based network control mechanism. The proposed method is built upon an iterative approach consisting of improving the original P2P algorithm by appropriate mechanisms and of thorough performance assessment with respect to dependability measures. The potential of the methodology is outlined by the example of timely routing control for vertical handover in B3G wireless networks. In detail, the well-known Pastry and CAN algorithms are enhanced to include locality. By showing how to combine algorithmic enhancements with performance indicators, this case study paves the way for future engineering of dependable network control mechanisms through P2P algorithms.
A Framework for Dimensioning VDL-2 Air-Ground Networks
NASA Technical Reports Server (NTRS)
Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven
2014-01-01
This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.
NetCoDer: A Retransmission Mechanism for WSNs Based on Cooperative Relays and Network Coding
Valle, Odilson T.; Montez, Carlos; Medeiros de Araujo, Gustavo; Vasques, Francisco; Moraes, Ricardo
2016-01-01
Some of the most difficult problems to deal with when using Wireless Sensor Networks (WSNs) are related to the unreliable nature of communication channels. In this context, the use of cooperative diversity techniques and the application of network coding concepts may be promising solutions to improve the communication reliability. In this paper, we propose the NetCoDer scheme to address this problem. Its design is based on merging cooperative diversity techniques and network coding concepts. We evaluate the effectiveness of the NetCoDer scheme through both an experimental setup with real WSN nodes and a simulation assessment, comparing NetCoDer performance against state-of-the-art TDMA-based (Time Division Multiple Access) retransmission techniques: BlockACK, Master/Slave and Redundant TDMA. The obtained results highlight that the proposed NetCoDer scheme clearly improves the network performance when compared with other retransmission techniques. PMID:27258280
Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases.
Masías, Víctor Hugo; Valle, Mauricio; Morselli, Carlo; Crespo, Fernando; Vargas, Augusto; Laengle, Sigifredo
2016-01-01
Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers-Logistic Regression, Naïve Bayes and Random Forest-with a range of social network measures and the necessary databases to model the verdicts in two real-world cases: the U.S. Watergate Conspiracy of the 1970's and the now-defunct Canada-based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures.
Berchialla, Paola; Scarinzi, Cecilia; Snidero, Silvia; Gregori, Dario
2016-08-01
Risk Assessment is the systematic study of decisions subject to uncertain consequences. An increasing interest has been focused on modeling techniques like Bayesian Networks since their capability of (1) combining in the probabilistic framework different type of evidence including both expert judgments and objective data; (2) overturning previous beliefs in the light of the new information being received and (3) making predictions even with incomplete data. In this work, we proposed a comparison among Bayesian Networks and other classical Quantitative Risk Assessment techniques such as Neural Networks, Classification Trees, Random Forests and Logistic Regression models. Hybrid approaches, combining both Classification Trees and Bayesian Networks, were also considered. Among Bayesian Networks, a clear distinction between purely data-driven approach and combination of expert knowledge with objective data is made. The aim of this paper consists in evaluating among this models which best can be applied, in the framework of Quantitative Risk Assessment, to assess the safety of children who are exposed to the risk of inhalation/insertion/aspiration of consumer products. The issue of preventing injuries in children is of paramount importance, in particular where product design is involved: quantifying the risk associated to product characteristics can be of great usefulness in addressing the product safety design regulation. Data of the European Registry of Foreign Bodies Injuries formed the starting evidence for risk assessment. Results showed that Bayesian Networks appeared to have both the ease of interpretability and accuracy in making prediction, even if simpler models like logistic regression still performed well. © The Author(s) 2013.
Wootton, Richard; Vladzymyrskyy, Anton; Zolfo, Maria; Bonnardot, Laurent
2011-01-01
Telemedicine has been used for many years to support doctors in the developing world. Several networks provide services in different settings and in different ways. However, to draw conclusions about which telemedicine networks are successful requires a method of evaluating them. No general consensus or validated framework exists for this purpose. To define a basic method of performance measurement that can be used to improve and compare teleconsultation networks; to employ the proposed framework in an evaluation of three existing networks; to make recommendations about the future implementation and follow-up of such networks. Analysis based on the experience of three telemedicine networks (in operation for 7-10 years) that provide services to doctors in low-resource settings and which employ the same basic design. Although there are many possible indicators and metrics that might be relevant, five measures for each of the three user groups appear to be sufficient for the proposed framework. In addition, from the societal perspective, information about clinical- and cost-effectiveness is also required. The proposed performance measurement framework was applied to three mature telemedicine networks. Despite their differences in terms of activity, size and objectives, their performance in certain respects is very similar. For example, the time to first reply from an expert is about 24 hours for each network. Although all three networks had systems in place to collect data from the user perspective, none of them collected information about the coordinator's time required or about ease of system usage. They had only limited information about quality and cost. Measuring the performance of a telemedicine network is essential in understanding whether the network is working as intended and what effect it is having. Based on long-term field experience, the suggested framework is a practical tool that will permit organisations to assess the performance of their own networks and to improve them by comparison with others. All telemedicine systems should provide information about setup and running costs because cost-effectiveness is crucial for sustainability.
Wootton, Richard; Vladzymyrskyy, Anton; Zolfo, Maria; Bonnardot, Laurent
2011-01-01
Background Telemedicine has been used for many years to support doctors in the developing world. Several networks provide services in different settings and in different ways. However, to draw conclusions about which telemedicine networks are successful requires a method of evaluating them. No general consensus or validated framework exists for this purpose. Objective To define a basic method of performance measurement that can be used to improve and compare teleconsultation networks; to employ the proposed framework in an evaluation of three existing networks; to make recommendations about the future implementation and follow-up of such networks. Methods Analysis based on the experience of three telemedicine networks (in operation for 7–10 years) that provide services to doctors in low-resource settings and which employ the same basic design. Findings Although there are many possible indicators and metrics that might be relevant, five measures for each of the three user groups appear to be sufficient for the proposed framework. In addition, from the societal perspective, information about clinical- and cost-effectiveness is also required. The proposed performance measurement framework was applied to three mature telemedicine networks. Despite their differences in terms of activity, size and objectives, their performance in certain respects is very similar. For example, the time to first reply from an expert is about 24 hours for each network. Although all three networks had systems in place to collect data from the user perspective, none of them collected information about the coordinator's time required or about ease of system usage. They had only limited information about quality and cost. Conclusion Measuring the performance of a telemedicine network is essential in understanding whether the network is working as intended and what effect it is having. Based on long-term field experience, the suggested framework is a practical tool that will permit organisations to assess the performance of their own networks and to improve them by comparison with others. All telemedicine systems should provide information about setup and running costs because cost-effectiveness is crucial for sustainability. PMID:22162965
Villas-Boas, Mariana D; Olivera, Francisco; de Azevedo, Jose Paulo S
2017-09-01
Water quality monitoring is a complex issue that requires support tools in order to provide information for water resource management. Budget constraints as well as an inadequate water quality network design call for the development of evaluation tools to provide efficient water quality monitoring. For this purpose, a nonlinear principal component analysis (NLPCA) based on an autoassociative neural network was performed to assess the redundancy of the parameters and monitoring locations of the water quality network in the Piabanha River watershed. Oftentimes, a small number of variables contain the most relevant information, while the others add little or no interpretation to the variability of water quality. Principal component analysis (PCA) is widely used for this purpose. However, conventional PCA is not able to capture the nonlinearities of water quality data, while neural networks can represent those nonlinear relationships. The results presented in this work demonstrate that NLPCA performs better than PCA in the reconstruction of the water quality data of Piabanha watershed, explaining most of data variance. From the results of NLPCA, the most relevant water quality parameter is fecal coliforms (FCs) and the least relevant is chemical oxygen demand (COD). Regarding the monitoring locations, the most relevant is Poço Tarzan (PT) and the least is Parque Petrópolis (PP).
Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur
2018-06-13
Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.
Automatic classification of DMSA scans using an artificial neural network
NASA Astrophysics Data System (ADS)
Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.
2014-04-01
DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice.
ERIC Educational Resources Information Center
Hatala, John-Paul
2009-01-01
Any organization that is able to promote the importance of increased levels of social capital and individuals who can leverage and use the resources that exist within the network may experience higher levels of performance. This study sought to add to our knowledge about individuals' accessing social resources for the purpose of accomplishing…
Validating the Chinese Version of the Inventory of School Motivation
ERIC Educational Resources Information Center
King, Ronnel B.; Watkins, David A.
2013-01-01
The aim of this study is to assess the cross-cultural applicability of the Chinese version of the Inventory of School Motivation (ISM; McInerney & Sinclair, 1991) in the Hong Kong context using both within-network and between-network approaches to construct validation. The ISM measures four types of achievement goals: mastery, performance,…
NASA Astrophysics Data System (ADS)
Hafner, K.; Davis, P.; Wilson, D.; Sumy, D.
2017-12-01
The Global Seismographic Network (GSN) recently received delivery of the next generation Very Broadband (VBB) borehole sensors purchased through funding from the DOE. Deployment of these sensors will be underway during the end of summer and fall of 2017 and they will eventually replace the aging KS54000 sensors at approximately one-third of the GSN network stations. We will present the latest methods of deploying these sensors in the existing deep boreholes. To achieve lower noise performance at some sites, emplacement in shallow boreholes might result in lower noise performance for the existing site conditions. In some cases shallow borehole installations may be adapted to vault stations (which make up two thirds of the network), as a means of reducing tilt-induced signals on the horizontal components. The GSN is creating a prioritized list of equipment upgrades at selected stations with the ultimate goal of optimizing overall network data availability and noise performance. For an overview of the performance of the current GSN relative to selected set of metrics, we are utilizing data quality metrics and Probability Density Functions (PDFs)) generated by the IRIS Data Management Centers' (DMC) MUSTANG (Modular Utility for Statistical Knowledge Gathering) and LASSO (Latest Assessment of Seismic Station Observations) tools. We will present our metric analysis of GSN performance in 2016, and show the improvements at GSN sites resulting from recent instrumentation and infrastructure upgrades.
Maeng, Daniel D; Scanlon, Dennis P; Chernew, Michael E; Gronniger, Tim; Wodchis, Walter P; McLaughlin, Catherine G
2010-01-01
Objective To examine the extent to which health plan quality measures capture physician practice patterns rather than plan characteristics. Data Source We gathered and merged secondary data from the following four sources: a private firm that collected information on individual physicians and their health plan affiliations, The National Committee for Quality Assurance, InterStudy, and the Dartmouth Atlas. Study Design We constructed two measures of physician network overlap for all health plans in our sample and linked them to selected measures of plan performance. Two linear regression models were estimated to assess the relationship between the measures of physician network overlap and the plan performance measures. Principal Findings The results indicate that in the presence of a higher degree of provider network overlap, plan performance measures tend to converge to a lower level of quality. Conclusions Standard health plan performance measures reflect physician practice patterns rather than plans' effort to improve quality. This implies that more provider-oriented measurement, such as would be possible with accountable care organizations or medical homes, may facilitate patient decision making and provide further incentives to improve performance. PMID:20403064
NASA Technical Reports Server (NTRS)
Benbenek, Daniel; Soloff, Jason; Lieb, Erica
2010-01-01
Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.
Modified neural networks for rapid recovery of tokamak plasma parameters for real time control
NASA Astrophysics Data System (ADS)
Sengupta, A.; Ranjan, P.
2002-07-01
Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.
Mnemonic training reshapes brain networks to support superior memory
Dresler, Martin; Shirer, William R.; Konrad, Boris N.; Müller, Nils C.J.; Wagner, Isabella C.; Fernández, Guillén; Czisch, Michael; Greicius, Michael D.
2017-01-01
Summary Memory skills strongly differ across the general population, however little is known about the brain characteristics supporting superior memory performance. Here, we assess functional brain network organization of 23 of the world’s most successful memory athletes and matched controls by fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that in a group of naïve controls, functional connectivity changes induced by six weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain’s functional network organization to enable superior memory performance. PMID:28279356
NASA Astrophysics Data System (ADS)
Agrawal, Anuj; Bhatia, Vimal; Prakash, Shashi
2018-01-01
Efficient utilization of spectrum is a key concern in the soon to be deployed elastic optical networks (EONs). To perform routing in EONs, various fixed routing (FR), and fixed-alternate routing (FAR) schemes are ubiquitously used. FR, and FAR schemes calculate a fixed route, and a prioritized list of a number of alternate routes, respectively, between different pairs of origin o and target t nodes in the network. The route calculation performed using FR and FAR schemes is predominantly based on either the physical distance, known as k -shortest paths (KSP), or on the hop count (HC). For survivable optical networks, FAR usually calculates link-disjoint (LD) paths. These conventional routing schemes have been efficiently used for decades in communication networks. However, in this paper, it has been demonstrated that these commonly used routing schemes cannot utilize the network spectral resources optimally in the newly introduced EONs. Thus, we propose a new routing scheme for EON, namely, k -distance adaptive paths (KDAP) that efficiently utilizes the benefit of distance-adaptive modulation, and bit rate-adaptive superchannel capability inherited by EON to improve spectrum utilization. In the proposed KDAP, routes are found and prioritized on the basis of bit rate, distance, spectrum granularity, and the number of links used for a particular route. To evaluate the performance of KSP, HC, LD, and the proposed KDAP, simulations have been performed for three different sized networks, namely, 7-node test network (TEST7), NSFNET, and 24-node US backbone network (UBN24). We comprehensively assess the performance of various conventional, and the proposed routing schemes by solving both the RSA and the dual RSA problems under homogeneous and heterogeneous traffic requirements. Simulation results demonstrate that there is a variation amongst the performance of KSP, HC, and LD, depending on the o - t pair, and the network topology and its connectivity. However, the proposed KDAP always performs better for all the considered networks and traffic scenarios, as compared to the conventional routing schemes, namely, KSP, HC, and LD. The proposed KDAP achieves up to 60 % , and 10.46 % improvement in terms of spectrum utilization, and resource utilization ratio, respectively, over the conventional routing schemes.
Telestroke network fundamentals.
Meyer, Brett C; Demaerschalk, Bart M
2012-10-01
The objectives of this manuscript are to identify key components to maintaining the logistic and/or operational sustainability of a telestroke network, to identify best practices to be considered for assessment and management of acute stroke when planning for and developing a telestroke network, to show practical steps to enable progress toward implementing a telestroke solution for optimizing acute stroke care, to incorporate evidence-based practice guidelines and care pathways into a telestroke network, to emphasize technology variables and options, and to propose metrics to use when determining the performance, outcomes, and quality of a telestroke network. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Clinical correlates of graph theory findings in temporal lobe epilepsy.
Haneef, Zulfi; Chiang, Sharon
2014-11-01
Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30-50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Clinical correlates of graph theory findings in temporal lobe epilepsy
Haneef, Zulfi; Chiang, Sharon
2014-01-01
Purpose Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30–50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. Methods We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. Results Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. Conclusions Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility. PMID:25127370
Effect of Industry Sponsorship on Dental Restorative Trials.
Schwendicke, F; Tu, Y-K; Blunck, U; Paris, S; Göstemeyer, G
2016-01-01
Industry sponsorship was found to potentially introduce bias into clinical trials. We assessed the effects of industry sponsorship on the design, comparator choice, and findings of randomized controlled trials on dental restorative materials. A systematic review was performed via MEDLINE, CENTRAL, and EMBASE. Randomized trials on dental restorative and adhesive materials published 2005 to 2015 were included. The design of sponsored and nonsponsored trials was compared statistically (risk of bias, treatment indication, setting, transferability, sample size). Comparator choice and network geometry of sponsored and nonsponsored trials were assessed via network analysis. Material performance rankings in different trial types were estimated via Bayesian network meta-analysis. Overall, 114 studies were included (15,321 restorations in 5,232 patients). We found 21 and 41 (18% and 36%) trials being clearly or possibly industry sponsored, respectively. Trial design of sponsored and nonsponsored trials did not significantly differ for most assessed items. Sponsored trials evaluated restorations of load-bearing cavities significantly more often than nonsponsored trials, had longer follow-up periods, and showed significantly increased risk of detection bias. Regardless of sponsorship status, comparisons were mainly performed within material classes. The proportion of trials comparing against gold standard restorative or adhesive materials did not differ between trial types. If ranked for performance according to the need to re-treat (best: least re-treatments), most material combinations were ranked similarly in sponsored and nonsponsored trials. The effect of industry sponsorship on dental restorative trials seems limited. © International & American Associations for Dental Research 2015.
Network Performance Evaluation Model for assessing the impacts of high-occupancy vehicle facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janson, B.N.; Zozaya-Gorostiza, C.; Southworth, F.
1986-09-01
A model to assess the impacts of major high-occupancy vehicle (HOV) facilities on regional levels of energy consumption and vehicle air pollution emissions in urban aeas is developed and applied. This model can be used to forecast and compare the impacts of alternative HOV facility design and operation plans on traffic patterns, travel costs, model choice, travel demand, energy consumption and vehicle emissions. The model is designed to show differences in the overall impacts of alternative HOV facility types, locations and operation plans rather than to serve as a tool for detailed engineering design and traffic planning studies. The Networkmore » Performance Evaluation Model (NETPEM) combines several urban transportation planning models within a multi-modal network equilibrium framework including modules with which to define the type, location and use policy of the HOV facility to be tested, and to assess the impacts of this facility.« less
Health impact assessment of cycling network expansions in European cities.
Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark
2018-04-01
We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.
A study on haptic collaborative game in shared virtual environment
NASA Astrophysics Data System (ADS)
Lu, Keke; Liu, Guanyang; Liu, Lingzhi
2013-03-01
A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.
Rodrigues, Ludmila Barbosa Bandeira; Dos Santos, Claudia Benedita; Goyatá, Sueli Leiko Takamatsu; Popolin, Marcela Paschoal; Yamamura, Mellina; Deon, Keila Christiane; Lapão, Luis Miguel Veles; Santos Neto, Marcelino; Uchoa, Severina Alice da Costa; Arcêncio, Ricardo Alexandre
2015-07-22
Health systems organized as networks and coordinated by the Primary Health Care (PHC) may contribute to the improvement of clinical care, sanitary conditions, satisfaction of patients and reduction of local budget expenditures. The aim of this study was to adapt and validate a questionnaire - COPAS - to assess the coordination of Integrated Health Service Delivery Networks by the Primary Health Care. A cross sectional approach was used. The population was pooled from Family Health Strategy healthcare professionals, of the Alfenas region (Minas Gerais, Brazil). Data collection was performed from August to October 2013. The results were checked for the presence of floor and ceiling effects and the internal consistency measured through Cronbach alpha. Construct validity was verified through convergent and discriminant values following Multitrait-Multimethod (MTMM) analysis. Floor and ceiling effects were absent. The internal consistency of the instrument was satisfactory; as was the convergent validity, with a few correlations lower then 0.30. The discriminant validity values of the majority of items, with respect to their own dimension, were found to be higher or significantly higher than their correlations with the dimensions to which they did not belong. The results showed that the COPAS instrument has satisfactory initial psychometric properties and may be used by healthcare managers and workers to assess the PHC coordination performance within the Integrated Health Service Delivery Network.
Assessing Routing Strategies for Cognitive Radio Sensor Networks
Zubair, Suleiman; Fisal, Norsheila; Baguda, Yakubu S.; Saleem, Kashif
2013-01-01
Interest in the cognitive radio sensor network (CRSN) paradigm has gradually grown among researchers. This concept seeks to fuse the benefits of dynamic spectrum access into the sensor network, making it a potential player in the next generation (NextGen) network, which is characterized by ubiquity. Notwithstanding its massive potential, little research activity has been dedicated to the network layer. By contrast, we find recent research trends focusing on the physical layer, the link layer and the transport layers. The fact that the cross-layer approach is imperative, due to the resource-constrained nature of CRSNs, can make the design of unique solutions non-trivial in this respect. This paper seeks to explore possible design opportunities with wireless sensor networks (WSNs), cognitive radio ad-hoc networks (CRAHNs) and cross-layer considerations for implementing viable CRSN routing solutions. Additionally, a detailed performance evaluation of WSN routing strategies in a cognitive radio environment is performed to expose research gaps. With this work, we intend to lay a foundation for developing CRSN routing solutions and to establish a basis for future work in this area. PMID:24077319
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
Pattern Learning, Damage and Repair within Biological Neural Networks
NASA Astrophysics Data System (ADS)
Siu, Theodore; Fitzgerald O'Neill, Kate; Shinbrot, Troy
2015-03-01
Traumatic brain injury (TBI) causes damage to neural networks, potentially leading to disability or even death. Nearly one in ten of these patients die, and most of the remainder suffer from symptoms ranging from headaches and nausea to convulsions and paralysis. In vitro studies to develop treatments for TBI have limited in vivo applicability, and in vitro therapies have even proven to worsen the outcome of TBI patients. We propose that this disconnect between in vitro and in vivo outcomes may be associated with the fact that in vitro tests assess indirect measures of neuronal health, but do not investigate the actual function of neuronal networks. Therefore in this talk, we examine both in vitro and in silico neuronal networks that actually perform a function: pattern identification. We allow the networks to execute genetic, Hebbian, learning, and additionally, we examine the effects of damage and subsequent repair within our networks. We show that the length of repaired connections affects the overall pattern learning performance of the network and we propose therapies that may improve function following TBI in clinical settings.
Resting State Network Topology of the Ferret Brain
Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei
2016-01-01
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024
External Quality Assessments for Microbiologic Diagnosis of Diphtheria in Europe
Both, Leonard; Neal, Shona; De Zoysa, Aruni; Mann, Ginder; Czumbel, Ida
2014-01-01
The European Diphtheria Surveillance Network (EDSN) ensures the reliable epidemiological and microbiologic assessment of disease prevalence in the European Union. Here, we describe a survey of current diagnostic techniques for diphtheria surveillance conducted across the European Union and report the results from three external quality assessment (EQA) schemes performed between 2010 and 2014. PMID:25297336
Mobile Videoconferencing Apps for Telemedicine
Liu, Wei-Li; Locatis, Craig; Ackerman, Michael
2016-01-01
Abstract Introduction: The quality and performance of several videoconferencing applications (apps) tested on iOS (Apple, Cupertino, CA) and Android™ (Google, Mountain View, CA) mobile platforms using Wi-Fi (802.11), third-generation (3G), and fourth-generation (4G) cellular networks are described. Materials and Methods: The tests were done to determine how well apps perform compared with videoconferencing software installed on computers or with more traditional videoconferencing using dedicated hardware. The rationale for app assessment and the testing methodology are described. Results: Findings are discussed in relation to operating system platform (iOS or Android) for which the apps were designed and the type of network (Wi-Fi, 3G, or 4G) used. The platform, network, and apps interact, and it is impossible to discuss videoconferencing experienced on mobile devices in relation to one of these factors without referencing the others. Conclusions: Apps for mobile devices can vary significantly from other videoconferencing software or hardware. App performance increased over the testing period due to improvements in network infrastructure and how apps manage bandwidth. PMID:26204322
Mobile Videoconferencing Apps for Telemedicine.
Zhang, Kai; Liu, Wei-Li; Locatis, Craig; Ackerman, Michael
2016-01-01
The quality and performance of several videoconferencing applications (apps) tested on iOS (Apple, Cupertino, CA) and Android (Google, Mountain View, CA) mobile platforms using Wi-Fi (802.11), third-generation (3G), and fourth-generation (4G) cellular networks are described. The tests were done to determine how well apps perform compared with videoconferencing software installed on computers or with more traditional videoconferencing using dedicated hardware. The rationale for app assessment and the testing methodology are described. Findings are discussed in relation to operating system platform (iOS or Android) for which the apps were designed and the type of network (Wi-Fi, 3G, or 4G) used. The platform, network, and apps interact, and it is impossible to discuss videoconferencing experienced on mobile devices in relation to one of these factors without referencing the others. Apps for mobile devices can vary significantly from other videoconferencing software or hardware. App performance increased over the testing period due to improvements in network infrastructure and how apps manage bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yaquin; Karnowski, Thomas Paul; Tobin Jr, Kenneth William
2011-01-01
In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States.
Li, Yaqin; Karnowski, Thomas P; Tobin, Kenneth W; Giancardo, Luca; Morris, Scott; Sparrow, Sylvia E; Garg, Seema; Fox, Karen; Chaum, Edward
2011-10-01
In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States.
NASA Astrophysics Data System (ADS)
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2016-04-01
The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.
Measure of robustness for complex networks
NASA Astrophysics Data System (ADS)
Youssef, Mina Nabil
Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect to the spread of susceptible/infected/recovered (SIR) epidemics. To compute VCSIR, we propose a novel individual-based approach to model the spread of SIR epidemics in networks, which captures the infection size for a given effective infection rate. Thus, VCSIR quantitatively integrates the infection strength with the corresponding infection size. To optimize the VCSIR metric, a new mitigation strategy is proposed, based on a temporary reduction of contacts in social networks. The social contact network is modeled as a weighted graph that describes the frequency of contacts among the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and the total number of infection cases as the state of the system, while the weight reduction in the social network is the controller variable leading to slow/reduce the spread of epidemics. Using optimal control theory, the obtained solution represents an optimal adaptive weighted network defined over a finite time interval. Moreover, given the high complexity of the optimization problem, we propose two heuristics to find the near optimal solutions by reducing the contacts among the individuals in a decentralized way. Finally, the cascading failures that can take place in power grids and have recently caused several blackouts are studied. We propose a new metric to assess the robustness of the power grid with respect to the cascading failures. The power grid topology is modeled as a network, which consists of nodes and links representing power substations and transmission lines, respectively. We also propose an optimal islanding strategy to protect the power grid when a cascading failure event takes place in the grid. The robustness metrics are numerically evaluated using real and synthetic networks to quantify their robustness with respect to disturbing dynamics. We show that the proposed metrics outperform the classical metrics in quantifying the robustness of networks and the efficiency of the mitigation strategies. In summary, our work advances the network science field in assessing the robustness of complex networks with respect to various disturbing dynamics.
Enric Batllori; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz; Carol Miller
2017-01-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform...
How to Perform a Security Audit: Is Your School's or District's Network Vulnerable?
ERIC Educational Resources Information Center
Dark, Melissa; Poftak, Amy
2004-01-01
In this article, the authors address the importance of taking a proactive approach to securing a school's network. To do this, it is first required to know the system's specific vulnerabilities and what steps to take to reduce them. The formal process for doing this is known as an information security risk assessment, or a security audit. What…
ERIC Educational Resources Information Center
Behrens, John T.; Mislevy, Robert J.; Bauer, Malcolm; Williamson, David M.; Levy, Roy
2004-01-01
This article introduces the assessment and deployment contexts of the Networking Performance Skill System (NetPASS) project and the articles in this section that report on findings from this endeavor. First, the educational context of the Cisco Networking Academy Program is described. Second, the basic outline of Evidence Centered Design is…
Performance Evaluation of an Enhanced Uplink 3.5G System for Mobile Healthcare Applications.
Komnakos, Dimitris; Vouyioukas, Demosthenes; Maglogiannis, Ilias; Constantinou, Philip
2008-01-01
The present paper studies the prospective and the performance of a forthcoming high-speed third generation (3.5G) networking technology, called enhanced uplink, for delivering mobile health (m-health) applications. The performance of 3.5G networks is a critical factor for successful development of m-health services perceived by end users. In this paper, we propose a methodology for performance assessment based on the joint uplink transmission of voice, real-time video, biological data (such as electrocardiogram, vital signals, and heart sounds), and healthcare records file transfer. Various scenarios were concerned in terms of real-time, nonreal-time, and emergency applications in random locations, where no other system but 3.5G is available. The accomplishment of quality of service (QoS) was explored through a step-by-step improvement of enhanced uplink system's parameters, attributing the network system for the best performance in the context of the desired m-health services.
Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi
2018-06-18
Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.
Performance Evaluation of an Enhanced Uplink 3.5G System for Mobile Healthcare Applications
Komnakos, Dimitris; Vouyioukas, Demosthenes; Maglogiannis, Ilias; Constantinou, Philip
2008-01-01
The present paper studies the prospective and the performance of a forthcoming high-speed third generation (3.5G) networking technology, called enhanced uplink, for delivering mobile health (m-health) applications. The performance of 3.5G networks is a critical factor for successful development of m-health services perceived by end users. In this paper, we propose a methodology for performance assessment based on the joint uplink transmission of voice, real-time video, biological data (such as electrocardiogram, vital signals, and heart sounds), and healthcare records file transfer. Various scenarios were concerned in terms of real-time, nonreal-time, and emergency applications in random locations, where no other system but 3.5G is available. The accomplishment of quality of service (QoS) was explored through a step-by-step improvement of enhanced uplink system's parameters, attributing the network system for the best performance in the context of the desired m-health services. PMID:19132096
Šubelj, Lovro; van Eck, Nees Jan; Waltman, Ludo
2016-01-01
Clustering methods are applied regularly in the bibliometric literature to identify research areas or scientific fields. These methods are for instance used to group publications into clusters based on their relations in a citation network. In the network science literature, many clustering methods, often referred to as graph partitioning or community detection techniques, have been developed. Focusing on the problem of clustering the publications in a citation network, we present a systematic comparison of the performance of a large number of these clustering methods. Using a number of different citation networks, some of them relatively small and others very large, we extensively study the statistical properties of the results provided by different methods. In addition, we also carry out an expert-based assessment of the results produced by different methods. The expert-based assessment focuses on publications in the field of scientometrics. Our findings seem to indicate that there is a trade-off between different properties that may be considered desirable for a good clustering of publications. Overall, map equation methods appear to perform best in our analysis, suggesting that these methods deserve more attention from the bibliometric community.
Šubelj, Lovro; van Eck, Nees Jan; Waltman, Ludo
2016-01-01
Clustering methods are applied regularly in the bibliometric literature to identify research areas or scientific fields. These methods are for instance used to group publications into clusters based on their relations in a citation network. In the network science literature, many clustering methods, often referred to as graph partitioning or community detection techniques, have been developed. Focusing on the problem of clustering the publications in a citation network, we present a systematic comparison of the performance of a large number of these clustering methods. Using a number of different citation networks, some of them relatively small and others very large, we extensively study the statistical properties of the results provided by different methods. In addition, we also carry out an expert-based assessment of the results produced by different methods. The expert-based assessment focuses on publications in the field of scientometrics. Our findings seem to indicate that there is a trade-off between different properties that may be considered desirable for a good clustering of publications. Overall, map equation methods appear to perform best in our analysis, suggesting that these methods deserve more attention from the bibliometric community. PMID:27124610
Modelling fuel cell performance using artificial intelligence
NASA Astrophysics Data System (ADS)
Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.
Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.
Caffery, Liam J; Smith, Anthony C
2015-09-01
The use of fourth-generation (4G) mobile telecommunications to provide real-time video consultations were investigated in this study with the aims of determining if 4G is a suitable telecommunications technology; and secondly, to identify if variation in perceived audio and video quality were due to underlying network performance. Three patient end-points that used 4G Internet connections were evaluated. Consulting clinicians recorded their perception of audio and video quality using the International Telecommunications Union scales during clinics with these patient end-points. These scores were used to calculate a mean opinion score (MOS). The network performance metrics were obtained for each session and the relationships between these metrics and the session's quality scores were tested. Clinicians scored the quality of 50 hours of video consultations, involving 36 clinic sessions. The MOS for audio was 4.1 ± 0.62 and the MOS for video was 4.4 ± 0.22. Image impairment and effort to listen were also rated favourably. There was no correlation between audio or video quality and the network metrics of packet loss or jitter. These findings suggest that 4G networks are an appropriate telecommunication technology to deliver real-time video consultations. Variations in quality scores observed during this study were not explained by the packet loss and jitter in the underlying network. Before establishing a telemedicine service, the performance of the 4G network should be assessed at the location of the proposed service. This is due to known variability in performance of 4G networks. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Lamouroux, Julien; Charria, Guillaume; De Mey, Pierre; Raynaud, Stéphane; Heyraud, Catherine; Craneguy, Philippe; Dumas, Franck; Le Hénaff, Matthieu
2016-04-01
In the Bay of Biscay and the English Channel, in situ observations represent a key element to monitor and to understand the wide range of processes in the coastal ocean and their direct impacts on human activities. An efficient way to measure the hydrological content of the water column over the main part of the continental shelf is to consider ships of opportunity as the surface to cover is wide and could be far from the coast. In the French observation strategy, the RECOPESCA programme, as a component of the High frequency Observation network for the environment in coastal SEAs (HOSEA), aims to collect environmental observations from sensors attached to fishing nets. In the present study, we assess that network using the Array Modes (ArM) method (a stochastic implementation of Le Hénaff et al. Ocean Dyn 59: 3-20. doi: 10.1007/s10236-008-0144-7, 2009). That model ensemble-based method is used here to compare model and observation errors and to quantitatively evaluate the performance of the observation network at detecting prior (model) uncertainties, based on hypotheses on error sources. A reference network, based on fishing vessel observations in 2008, is assessed using that method. Considering the various seasons, we show the efficiency of the network at detecting the main model uncertainties. Moreover, three scenarios, based on the reference network, a denser network in 2010 and a fictive network aggregated from a pluri-annual collection of profiles, are also analysed. Our sensitivity study shows the importance of the profile positions with respect to the sheer number of profiles for ensuring the ability of the network to describe the main error modes. More generally, we demonstrate the capacity of this method, with a low computational cost, to assess and to design new in situ observation networks.
Network-targeted cerebellar transcranial magnetic stimulation improves attentional control
Esterman, Michael; Thai, Michelle; Okabe, Hidefusa; DeGutis, Joseph; Saad, Elyana; Laganiere, Simon E.; Halko, Mark A.
2018-01-01
Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurologic and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications of TMS and theoretical models of functional connectivity. PMID:28495634
[Modulation of Metacognition with Decoded Neurofeedback].
Koizumi, Ai; Cortese, Aurelio; Amano, Kaoru; Kawato, Mitsuo; Lau, Hakwan
2017-12-01
Humans often assess their confidence in their own perception, e.g., feeling "confident" or "certain" of having seen a friend, or feeling "uncertain" about whether the phone rang. The neural mechanism underlying the metacognitive function that reflects subjective perception still remains under debate. We have previously used decoded neurofeedback (DecNef) to demonstrate that manipulating the multivoxel activation patterns in the frontoparietal network modulates perceptual confidence without affecting perceptual performance. The results provided clear evidence for a dissociation between perceptual confidence and performance and suggested a distinct role of the frontoparietal network in metacognition.
Modeling Verdict Outcomes Using Social Network Measures: The Watergate and Caviar Network Cases
2016-01-01
Modelling criminal trial verdict outcomes using social network measures is an emerging research area in quantitative criminology. Few studies have yet analyzed which of these measures are the most important for verdict modelling or which data classification techniques perform best for this application. To compare the performance of different techniques in classifying members of a criminal network, this article applies three different machine learning classifiers–Logistic Regression, Naïve Bayes and Random Forest–with a range of social network measures and the necessary databases to model the verdicts in two real–world cases: the U.S. Watergate Conspiracy of the 1970’s and the now–defunct Canada–based international drug trafficking ring known as the Caviar Network. In both cases it was found that the Random Forest classifier did better than either Logistic Regression or Naïve Bayes, and its superior performance was statistically significant. This being so, Random Forest was used not only for classification but also to assess the importance of the measures. For the Watergate case, the most important one proved to be betweenness centrality while for the Caviar Network, it was the effective size of the network. These results are significant because they show that an approach combining machine learning with social network analysis not only can generate accurate classification models but also helps quantify the importance social network variables in modelling verdict outcomes. We conclude our analysis with a discussion and some suggestions for future work in verdict modelling using social network measures. PMID:26824351
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †
Sampangi, Raghav V.; Sampalli, Srinivas
2015-01-01
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.
Sampangi, Raghav V; Sampalli, Srinivas
2015-09-15
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.
NASA Astrophysics Data System (ADS)
Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.
2018-03-01
Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.
Using Differential Evolution to Optimize Learning from Signals and Enhance Network Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmer, Paul K; Temple, Michael A; Buckner, Mark A
2011-01-01
Computer and communication network attacks are commonly orchestrated through Wireless Access Points (WAPs). This paper summarizes proof-of-concept research activity aimed at developing a physical layer Radio Frequency (RF) air monitoring capability to limit unauthorizedWAP access and mprove network security. This is done using Differential Evolution (DE) to optimize the performance of a Learning from Signals (LFS) classifier implemented with RF Distinct Native Attribute (RF-DNA) fingerprints. Performance of the resultant DE-optimized LFS classifier is demonstrated using 802.11a WiFi devices under the most challenging conditions of intra-manufacturer classification, i.e., using emissions of like-model devices that only differ in serial number. Using identicalmore » classifier input features, performance of the DE-optimized LFS classifier is assessed relative to a Multiple Discriminant Analysis / Maximum Likelihood (MDA/ML) classifier that has been used for previous demonstrations. The comparative assessment is made using both Time Domain (TD) and Spectral Domain (SD) fingerprint features. For all combinations of classifier type, feature type, and signal-to-noise ratio considered, results show that the DEoptimized LFS classifier with TD features is uperior and provides up to 20% improvement in classification accuracy with proper selection of DE parameters.« less
Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie
2015-05-01
Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. © 2014 Wiley Periodicals, Inc.
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses
Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.
Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekar, Venkateswaran; Fiondella, Lance; Chatterjee, Samrat
Transportation networks are critical to the social and economic function of nations. Given the continuing increase in the populations of cities throughout the world, the criticality of transportation infrastructure is expected to increase. Thus, it is ever more important to mitigate congestion as well as to assess the impact disruptions would have on individuals who depend on transportation for their work and livelihood. Moreover, several government organizations are responsible for ensuring transportation networks are available despite the constant threat of natural disasters and terrorist activities. Most of the previous transportation network vulnerability research has been performed in the context ofmore » static traffic models, many of which are formulated as traditional optimization problems. However, transportation networks are dynamic because their usage varies over time. Thus, more appropriate methods to characterize the vulnerability of transportation networks should consider their dynamic properties. This paper presents a quantitative approach to assess the vulnerability of a transportation network to disruptions with methods from traffic simulation. Our approach can prioritize the critical links over time and is generalizable to the case where both link and node disruptions are of concern. We illustrate the approach through a series of examples. Our results demonstrate that the approach provides quantitative insight into the time varying criticality of links. Such an approach could be used as the objective function of less traditional optimization methods that use simulation and other techniques to evaluate the relative utility of a particular network defense to reduce vulnerability and increase resilience.« less
Objective assessment of MPEG-2 video quality
NASA Astrophysics Data System (ADS)
Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano
2002-07-01
The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.
Findings from an Organizational Network Analysis to Support Local Public Health Management
Caldwell, Michael; Rockoff, Maxine L.; Gebbie, Kristine; Carley, Kathleen M.; Bakken, Suzanne
2008-01-01
We assessed the feasibility of using organizational network analysis in a local public health organization. The research setting was an urban/suburban county health department with 156 employees. The goal of the research was to study communication and information flow in the department and to assess the technique for public health management. Network data were derived from survey questionnaires. Computational analysis was performed with the Organizational Risk Analyzer. Analysis revealed centralized communication, limited interdependencies, potential knowledge loss through retirement, and possible informational silos. The findings suggested opportunities for more cross program coordination but also suggested the presences of potentially efficient communication paths and potentially beneficial social connectedness. Managers found the findings useful to support decision making. Public health organizations must be effective in an increasingly complex environment. Network analysis can help build public health capacity for complex system management. PMID:18481183
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J
2015-12-22
NetMOD is a tool to model the performance of global ground-based explosion monitoring systems. The version 2.0 of the software supports the simulation of seismic, hydroacoustic, and infrasonic detection capability. The tool provides a user interface to execute simulations based upon a hypothetical definition of the monitoring system configuration, geophysical properties of the Earth, and detection analysis criteria. NetMOD will be distributed with a project file defining the basic performance characteristics of the International Monitoring System (IMS), a network of sensors operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Network modeling is needed to be able to assess and explainmore » the potential effect of changes to the IMS, to prioritize station deployment and repair, and to assess the overall CTBTO monitoring capability currently and in the future. Currently the CTBTO uses version 1.0 of NetMOD, provided to them in early 2014. NetMOD will provide a modern tool that will cover all the simulations currently available and allow for the development of additional simulation capabilities of the IMS in the future. NetMOD simulates the performance of monitoring networks by estimating the relative amplitudes of the signal and noise measured at each of the stations within the network based upon known geophysical principles. From these signal and noise estimates, a probability of detection may be determined for each of the stations. The detection probabilities at each of the stations may then be combined to produce an estimate of the detection probability for the entire monitoring network.« less
Pujol, Jesus; Blanco-Hinojo, Laura; Batalla, Albert; López-Solà, Marina; Harrison, Ben J; Soriano-Mas, Carles; Crippa, Jose A; Fagundo, Ana B; Deus, Joan; de la Torre, Rafael; Nogué, Santiago; Farré, Magí; Torrens, Marta; Martín-Santos, Rocío
2014-04-01
Recreational drugs are generally used to intentionally alter conscious experience. Long-lasting cannabis users frequently seek this effect as a means to relieve negative affect states. As with conventional anxiolytic drugs, however, changes in subjective feelings may be associated with memory impairment. We have tested whether the use of cannabis, as a psychoactive compound, is associated with alterations in spontaneous activity in brain networks relevant to self-awareness, and whether such potential changes are related to perceived anxiety and memory performance. Functional connectivity was assessed in the Default and Insula networks during resting state using fMRI in 28 heavy cannabis users and 29 control subjects. Imaging assessments were conducted during cannabis use in the unintoxicated state and repeated after one month of controlled abstinence. Cannabis users showed increased functional connectivity in the core of the Default and Insula networks and selective enhancement of functional anticorrelation between both. Reduced functional connectivity was observed in areas overlapping with other brain networks. Observed alterations were associated with behavioral measurements in a direction suggesting anxiety score reduction and interference with memory performance. Alterations were also related to the amount of cannabis used and partially persisted after one month of abstinence. Chronic cannabis use was associated with significant effects on the tuning and coupling of brain networks relevant to self-awareness, which in turn are integrated into brain systems supporting the storage of personal experience and motivated behavior. The results suggest potential mechanisms for recreational drugs to interfere with higher-order network interactions generating conscious experience. Copyright © 2014 Elsevier Ltd. All rights reserved.
NATIONAL CROP LOSS ASSESSMENT NETWORK (NCLAN) 1984 ANNUAL REPORT
Research for 1984 involved performance of a preliminary economic assessment of simulated changes in ambient O3 on U.S. agriculture using recent NCLAN response data for six major crops. Four hypothetical ambient O3 levels are measured and compared with a 1980 base situation. The r...
SELF-ORGANIZING MAPS FOR INTEGRATED ASSESSMENT OF THE MID-ATLANTIC REGION
A. new method was developed to perform an environmental assessment for the
Mid-Atlantic Region (MAR). This was a combination of the self-organizing map (SOM) neural network and principal component analysis (PCA). The method is capable of clustering ecosystems in terms of envi...
An extensive assessment of network alignment algorithms for comparison of brain connectomes.
Milano, Marianna; Guzzi, Pietro Hiram; Tymofieva, Olga; Xu, Duan; Hess, Christofer; Veltri, Pierangelo; Cannataro, Mario
2017-06-06
Recently the study of the complex system of connections in neural systems, i.e. the connectome, has gained a central role in neurosciences. The modeling and analysis of connectomes are therefore a growing area. Here we focus on the representation of connectomes by using graph theory formalisms. Macroscopic human brain connectomes are usually derived from neuroimages; the analyzed brains are co-registered in the image domain and brought to a common anatomical space. An atlas is then applied in order to define anatomically meaningful regions that will serve as the nodes of the network - this process is referred to as parcellation. The atlas-based parcellations present some known limitations in cases of early brain development and abnormal anatomy. Consequently, it has been recently proposed to perform atlas-free random brain parcellation into nodes and align brains in the network space instead of the anatomical image space, as a way to deal with the unknown correspondences of the parcels. Such process requires modeling of the brain using graph theory and the subsequent comparison of the structure of graphs. The latter step may be modeled as a network alignment (NA) problem. In this work, we first define the problem formally, then we test six existing state of the art of network aligners on diffusion MRI-derived brain networks. We compare the performances of algorithms by assessing six topological measures. We also evaluated the robustness of algorithms to alterations of the dataset. The results confirm that NA algorithms may be applied in cases of atlas-free parcellation for a fully network-driven comparison of connectomes. The analysis shows MAGNA++ is the best global alignment algorithm. The paper presented a new analysis methodology that uses network alignment for validating atlas-free parcellation brain connectomes. The methodology has been experimented on several brain datasets.
A novel critical infrastructure resilience assessment approach using dynamic Bayesian networks
NASA Astrophysics Data System (ADS)
Cai, Baoping; Xie, Min; Liu, Yonghong; Liu, Yiliu; Ji, Renjie; Feng, Qiang
2017-10-01
The word resilience originally originates from the Latin word "resiliere", which means to "bounce back". The concept has been used in various fields, such as ecology, economics, psychology, and society, with different definitions. In the field of critical infrastructure, although some resilience metrics are proposed, they are totally different from each other, which are determined by the performances of the objects of evaluation. Here we bridge the gap by developing a universal critical infrastructure resilience metric from the perspective of reliability engineering. A dynamic Bayesian networks-based assessment approach is proposed to calculate the resilience value. A series, parallel and voting system is used to demonstrate the application of the developed resilience metric and assessment approach.
3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Wang, Jianting; Ghassemi, Pejhman; Melchiorri, Anthony; Ramella-Roman, Jessica; Mathews, Scott A.; Coburn, James; Sorg, Brian; Chen, Yu; Pfefer, Joshua
2015-03-01
The emerging technique of three-dimensional (3D) printing provides a revolutionary way to fabricate objects with biologically realistic geometries. Previously we have performed optical and morphological characterization of basic 3D printed tissue-simulating phantoms and found them suitable for use in evaluating biophotonic imaging systems. In this study we assess the potential for printing phantoms with irregular, image-defined vascular networks that can be used to provide clinically-relevant insights into device performance. A previously acquired fundus camera image of the human retina was segmented, embedded into a 3D matrix, edited to incorporate the tubular shape of vessels and converted into a digital format suitable for printing. A polymer with biologically realistic optical properties was identified by spectrophotometer measurements of several commercially available samples. Phantoms were printed with the retinal vascular network reproduced as ~1.0 mm diameter channels at a range of depths up to ~3 mm. The morphology of the printed vessels was verified by volumetric imaging with μ-CT. Channels were filled with hemoglobin solutions at controlled oxygenation levels, and the phantoms were imaged by a near-infrared hyperspectral reflectance imaging system. The effect of vessel depth on hemoglobin saturation estimates was studied. Additionally, a phantom incorporating the vascular network at two depths was printed and filled with hemoglobin solution at two different saturation levels. Overall, results indicated that 3D printed phantoms are useful for assessing biophotonic system performance and have the potential to form the basis of clinically-relevant standardized test methods for assessment of medical imaging modalities.
Bearing performance degradation assessment based on time-frequency code features and SOM network
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei
2017-04-01
Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.
Beauchet, O; Noublanche, F; Simon, R; Sekhon, H; Chabot, J; Levinoff, E J; Kabeshova, A; Launay, C P
2018-01-01
Identification of the risk of falls is important among older inpatients. This study aims to examine performance criteria (i.e.; sensitivity, specificity, positive predictive value, negative predictive value and accuracy) for fall prediction resulting from a nurse assessment and an artificial neural networks (ANNs) analysis in older inpatients hospitalized in acute care medical wards. A total of 848 older inpatients (mean age, 83.0±7.2 years; 41.8% female) admitted to acute care medical wards in Angers University hospital (France) were included in this study using an observational prospective cohort design. Within 24 hours after admission of older inpatients, nurses performed a bedside clinical assessment. Participants were separated into non-fallers and fallers (i.e.; ≥1 fall during hospitalization stay). The analysis was conducted using three feed forward ANNs (multilayer perceptron [MLP], averaged neural network, and neuroevolution of augmenting topologies [NEAT]). Seventy-three (8.6%) participants fell at least once during their hospital stay. ANNs showed a high specificity, regardless of which ANN was used, and the highest value reported was with MLP (99.8%). In contrast, sensitivity was lower, with values ranging between 98.4 to 14.8%. MLP had the highest accuracy (99.7). Performance criteria for fall prediction resulting from a bedside nursing assessment and an ANNs analysis was associated with a high specificity but a low sensitivity, suggesting that this combined approach should be used more as a diagnostic test than a screening test when considering older inpatients in acute care medical ward.
Strategies for a better performance of RPL under mobility in wireless sensor networks
NASA Astrophysics Data System (ADS)
Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.
2017-09-01
A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.
Bladder cancer treatment response assessment using deep learning in CT with transfer learning
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Samala, Ravi K.; Cohan, Richard H.; Caoili, Elaine M.; Paramagul, Chintana; Alva, Ajjai; Weizer, Alon Z.
2017-03-01
We are developing a CAD system for bladder cancer treatment response assessment in CT. We compared the performance of the deep-learning convolution neural network (DL-CNN) using different network sizes, and with and without transfer learning using natural scene images or regions of interest (ROIs) inside and outside the bladder. The DL-CNN was trained to identify responders (T0 disease) and non-responders to chemotherapy. ROIs were extracted from segmented lesions in pre- and post-treatment scans of a patient and paired to generate hybrid pre-post-treatment paired ROIs. The 87 lesions from 82 patients generated 104 temporal lesion pairs and 6,700 pre-post-treatment paired ROIs. Two-fold cross-validation and receiver operating characteristic analysis were performed and the area under the curve (AUC) was calculated for the DL-CNN estimates. The AUCs for prediction of T0 disease after treatment were 0.77+/-0.08 and 0.75+/-0.08, respectively, for the two partitions using DL-CNN without transfer learning and a small network, and were 0.74+/-0.07 and 0.74+/-0.08 with a large network. The AUCs were 0.73+/-0.08 and 0.62+/-0.08 with transfer learning using a small network pre-trained with bladder ROIs. The AUC values were 0.77+/-0.08 and 0.73+/-0.07 using the large network pre-trained with the same bladder ROIs. With transfer learning using the large network pretrained with the Canadian Institute for Advanced Research (CIFAR-10) data set, the AUCs were 0.72+/-0.06 and 0.64+/-0.09, respectively, for the two partitions. None of the differences in the methods reached statistical significance. Our study demonstrated the feasibility of using DL-CNN for the estimation of treatment response in CT. Transfer learning did not improve the treatment response estimation. The DL-CNN performed better when transfer learning with bladder images was used instead of natural scene images.
A neural-visualization IDS for honeynet data.
Herrero, Álvaro; Zurutuza, Urko; Corchado, Emilio
2012-04-01
Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzed.
MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition
van Dellen, Edwin; Douw, Linda; Hillebrand, Arjan; Ris-Hilgersom, Irene H. M.; Schoonheim, Menno M.; Baayen, Johannes C.; De Witt Hamer, Philip C.; Velis, Demetrios N.; Klein, Martin; Heimans, Jan J.; Stam, Cornelis J.; Reijneveld, Jaap C.
2012-01-01
Objective To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. Methods We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. Results LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4–8 Hz), similar to NGL patients. HGG patients’ networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. Conclusion Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients’ networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline. PMID:23166829
NASA Astrophysics Data System (ADS)
Srivastava, Abhay; Tian, Ye; Qie, Xiushu; Wang, Dongfang; Sun, Zhuling; Yuan, Shanfeng; Wang, Yu; Chen, Zhixiong; Xu, Wenjing; Zhang, Hongbo; Jiang, Rubin; Su, Debin
2017-11-01
The performances of Beijing Lightning Network (BLNET) operated in Beijing-Tianjin-Hebei urban cluster area have been evaluated in terms of detection efficiency and relative location accuracy. A self-reference method has been used to show the detection efficiency of BLNET, for which fast antenna waveforms have been manually examined. Based on the fast antenna verification, the average detection efficiency of BLNET is 97.4% for intracloud (IC) flashes, 73.9% for cloud-to-ground (CG) flashes and 93.2% for the total flashes. Result suggests the CG detection of regional dense network is highly precise when the thunderstorm passes over the network; however it changes day to day when the thunderstorms are outside the network. Further, the CG stroke data from three different lightning location networks across Beijing are compared. The relative detection efficiency of World Wide Lightning Location Network (WWLLN) and Chinese Meteorology Administration - Lightning Detection Network (CMA-LDN, also known as ADTD) are approximately 12.4% (16.8%) and 36.5% (49.4%), respectively, comparing with fast antenna (BLNET). The location of BLNET is in middle, while WWLLN and CMA-LDN average locations are southeast and northwest, respectively. Finally, the IC pulses and CG return stroke pulses have been compared with the S-band Doppler radar. This type of study is useful to know the approximate situation in a region and improve the performance of lightning location networks in the absence of ground truth. Two lightning flashes occurred on tower in the coverage of BLNET show that the horizontal location error was 52.9 m and 250 m, respectively.
NASA Astrophysics Data System (ADS)
López-Comino, J. A.; Cesca, S.; Kriegerowski, M.; Heimann, S.; Dahm, T.; Mirek, J.; Lasocki, S.
2017-07-01
Ideally, the performance of a dedicated seismic monitoring installation should be assessed prior to the observation of target seismicity. This work is focused on a hydrofracking experiment monitored at Wysin, NE Poland. A microseismic synthetic catalogue is generated to assess the monitoring performance during the pre-operational phase, where seismic information only concerns the noise conditions and the potential background seismicity. Full waveform, accounting for the expected spatial, magnitude and focal mechanism distributions and a realistic local crustal model, are combined with real noise recording to produce either event based or continuous synthetic waveforms. The network detection performance is assessed in terms of the magnitude of completeness (Mc) through two different techniques. First, we use an amplitude threshold, taking into the ratio among the maximal amplitude of synthetic waveforms and station-dependent noise levels, for different values of signal-to-noise ratio. The detection probability at each station is estimated for the whole data set and extrapolated to a broader range of magnitude and distances. We estimate an Mc of about 0.55, when considering the distributed network, and can further decrease Mc to 0.45 using arrays techniques. The second approach, taking advantage on an automatic, coherence-based detection algorithm, can lower Mc to ∼ 0.1, at the cost of an increase of false detections. Mc experiences significant changes during day hours, in consequence of strongly varying noise conditions. Moreover, due to the radiation patterns and network geometry, double-couple like sources are better detected than tensile cracks, which may be induced during fracking.
Artificial neural network modeling of dissolved oxygen in reservoir.
Chen, Wei-Bo; Liu, Wen-Cheng
2014-02-01
The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.
Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1998-01-01
Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.
Neuro-classification of multi-type Landsat Thematic Mapper data
NASA Technical Reports Server (NTRS)
Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.
1991-01-01
Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.
Lenselink, Eelke B; Ten Dijke, Niels; Bongers, Brandon; Papadatos, George; van Vlijmen, Herman W T; Kowalczyk, Wojtek; IJzerman, Adriaan P; van Westen, Gerard J P
2017-08-14
The increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemogenomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different methods have been reported and evaluated, such as target fishing, nearest neighbor similarity-based methods, and Quantitative Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically conducted on different datasets, using different validation strategies, and different metrics. In this study, different methods were compared using one single standardized dataset obtained from ChEMBL, which is made available to the public, using standardized metrics (BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naïve Bayes, Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural Networks was assessed using QSAR and proteochemometric (PCM) methods. All methods were validated using both a random split validation and a temporal validation, with the latter being a more realistic benchmark of expected prospective execution. Deep Neural Networks are the top performing classifiers, highlighting the added value of Deep Neural Networks over other more conventional methods. Moreover, the best method ('DNN_PCM') performed significantly better at almost one standard deviation higher than the mean performance. Furthermore, Multi-task and PCM implementations were shown to improve performance over single task Deep Neural Networks. Conversely, target prediction performed almost two standard deviations under the mean performance. Random Forests, Support Vector Machines, and Logistic Regression performed around mean performance. Finally, using an ensemble of DNNs, alongside additional tuning, enhanced the relative performance by another 27% (compared with unoptimized 'DNN_PCM'). Here, a standardized set to test and evaluate different machine learning algorithms in the context of multi-task learning is offered by providing the data and the protocols. Graphical Abstract .
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring
Gharavi, Hamid; Hu, Bin
2018-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.
Gharavi, Hamid; Hu, Bin
2017-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.
NASA Astrophysics Data System (ADS)
Tang, Xiao-Wei; Bai, Xu; Hu, Ji-Lei; Qiu, Jiang-Nan
2018-05-01
Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral spreading are responsible for considerable damage to engineering structures during major earthquakes. Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards in one model. This is because of the uncertainties and complexity of the factors related to seismic liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and lateral spreading into a model based on standard penetration test data. The constructed BN model can assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms an artificial neural network and Ishihara and Yoshimine's simplified method in terms of accuracy, Brier score, recall, precision, and area under the curve (AUC) of the receiver operating characteristic (ROC). This demonstrates that the BN method is a good alternative tool for the risk assessment of liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in Japan's 2011 Tōhoku earthquake confirms its correctness and reliability compared with the liquefaction potential index approach. The proposed BN model can also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction process of liquefaction-induced hazards and perform backward reasoning. The assessment results from the proposed model provide informative guidelines for decision-makers to detect the damage state of a field following liquefaction.
Advanced Algorithms for Local Routing Strategy on Complex Networks
Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K.; Dong, Chuanfei; Miao, Lixin; Wang, Binghong
2016-01-01
Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70–90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks. PMID:27434502
Advanced Algorithms for Local Routing Strategy on Complex Networks.
Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K; Dong, Chuanfei; Miao, Lixin; Wang, Binghong
2016-01-01
Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70-90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks.
NASA Astrophysics Data System (ADS)
Betta, G.; Capriglione, D.; Ferrigno, L.; Laracca, M.
2009-10-01
Power line telecommunication (PLT) technology offers cheap and fast ways for providing in-home broadband services and local area networking. Its main advantage is due to the possibility of using the pre-existing electrical grid as a communication channel. Nevertheless, technical challenges arise from the difficulty of operating on a hostile medium, not designed for communication purposes, characterized by complex channel modeling and by varying time response. These aspects put practical problems for designers and testers in the assessment of network quality of service performance parameters such as the throughput, the latency, the jitter, and the reliability. The measurement of these parameters has not yet been standardized so that there do not exist reference test set-ups and measurement methodologies (i.e. the type of isolation from the ac main, the observation time and the number of experiments, the measurement uncertainty and so on). Consequently, experiments executed by adopting different methods may lead to incompatible measurement results, thus making it also impossible to have reliable comparisons of different PLT modems. Really, the development of standard procedures is a very difficult task because the scenarios in which the PLT modems can work are very wide and then the application of an exhaustive approach (in which all the parameters influencing the PLT performance should be considered) would be very complex and time consuming, thus making the modem characterization very expensive. In this paper, the authors propose a methodological approach to develop an efficient measurement procedure able to reliably assess the performance of PLT modems (in terms of network quality of service parameters) with a minimum number of experiments. It is based on both creating a reconfigurable grid to which real disturbing loads are connected and implementing an original design of the experiment technique based on the effects of the uncertainty of the measurement results. Methods are also provided to analyze measurement results and to estimate the measurement uncertainty.
The neural basis of impaired self-awareness after traumatic brain injury
Ham, Timothy E.; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H.; Leech, Robert
2014-01-01
Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at ‘rest’. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network. PMID:24371217
The neural basis of impaired self-awareness after traumatic brain injury.
Ham, Timothy E; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H; Leech, Robert; Sharp, David J
2014-02-01
Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at 'rest'. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network.
Li, Yaqin; Karnowski, Thomas P.; Tobin, Kenneth W.; Giancardo, Luca; Morris, Scott; Sparrow, Sylvia E.; Garg, Seema; Fox, Karen
2011-01-01
Abstract In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States. PMID:21819244
HSI top-down requirements analysis for ship manpower reduction
NASA Astrophysics Data System (ADS)
Malone, Thomas B.; Bost, J. R.
2000-11-01
U.S. Navy ship acquisition programs such as DD 21 and CVNX are increasingly relying on top down requirements analysis (TDRA) to define and assess design approaches for workload and manpower reduction, and for ensuring required levels of human performance, reliability, safety, and quality of life at sea. The human systems integration (HSI) approach to TDRA begins with a function analysis which identifies the functions derived from the requirements in the Operational Requirements Document (ORD). The function analysis serves as the function baseline for the ship, and also supports the definition of RDT&E and Total Ownership Cost requirements. A mission analysis is then conducted to identify mission scenarios, again based on requirements in the ORD, and the Design Reference Mission (DRM). This is followed by a mission/function analysis which establishes the function requirements to successfully perform the ship's missions. Function requirements of major importance for HSI are information, performance, decision, and support requirements associated with each function. An allocation of functions defines the roles of humans and automation in performing the functions associated with a mission. Alternate design concepts, based on function allocation strategies, are then described, and task networks associated with the concepts are developed. Task network simulations are conducted to assess workloads and human performance capabilities associated with alternate concepts. An assessment of the affordability and risk associated with alternate concepts is performed, and manning estimates are developed for feasible design concepts.
Caminiti, Silvia P; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F
2015-01-01
bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms.
Resting state network topology of the ferret brain.
Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei
2016-12-01
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.
Saqr, Mohammed; Fors, Uno; Tedre, Matti
2018-02-06
Collaborative learning facilitates reflection, diversifies understanding and stimulates skills of critical and higher-order thinking. Although the benefits of collaborative learning have long been recognized, it is still rarely studied by social network analysis (SNA) in medical education, and the relationship of parameters that can be obtained via SNA with students' performance remains largely unknown. The aim of this work was to assess the potential of SNA for studying online collaborative clinical case discussions in a medical course and to find out which activities correlate with better performance and help predict final grade or explain variance in performance. Interaction data were extracted from the learning management system (LMS) forum module of the Surgery course in Qassim University, College of Medicine. The data were analyzed using social network analysis. The analysis included visual as well as a statistical analysis. Correlation with students' performance was calculated, and automatic linear regression was used to predict students' performance. By using social network analysis, we were able to analyze a large number of interactions in online collaborative discussions and gain an overall insight of the course social structure, track the knowledge flow and the interaction patterns, as well as identify the active participants and the prominent discussion moderators. When augmented with calculated network parameters, SNA offered an accurate view of the course network, each user's position, and level of connectedness. Results from correlation coefficients, linear regression, and logistic regression indicated that a student's position and role in information relay in online case discussions, combined with the strength of that student's network (social capital), can be used as predictors of performance in relevant settings. By using social network analysis, researchers can analyze the social structure of an online course and reveal important information about students' and teachers' interactions that can be valuable in guiding teachers, improve students' engagement, and contribute to learning analytics insights.
Chand, Ganesh B; Wu, Junjie; Hajjar, Ihab; Qiu, Deqiang
2017-09-01
Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals. However, the patterns of interactions have remained largely unknown in healthy aging or those with cognitive decline. In this study, we assess the patterns of interactions between the three networks using dynamical causal modeling in resting state fMRI data and compare them between subjects with normal cognition and mild cognitive impairment (MCI). In healthy elderly subjects, our analysis showed that the salience network, especially its dorsal subnetwork, modulates the interaction between the default-mode network and the central-executive network (Mann-Whitney U test; p < 0.05), which was consistent with the pattern of interaction reported in young adults. In contrast, this pattern of modulation by salience network was disrupted in MCI (p < 0.05). Furthermore, the degree of disruption in salience network control correlated significantly with lower overall cognitive performance measured by Montreal Cognitive Assessment (r = 0.295; p < 0.05). This study suggests that a disruption of the salience network control, especially the dorsal salience network, over other networks provides a neuronal basis for cognitive decline and may be a candidate neuroimaging biomarker of cognitive impairment.
Network meta-analysis: an introduction for clinicians.
Rouse, Benjamin; Chaimani, Anna; Li, Tianjing
2017-02-01
Network meta-analysis is a technique for comparing multiple treatments simultaneously in a single analysis by combining direct and indirect evidence within a network of randomized controlled trials. Network meta-analysis may assist assessing the comparative effectiveness of different treatments regularly used in clinical practice and, therefore, has become attractive among clinicians. However, if proper caution is not taken in conducting and interpreting network meta-analysis, inferences might be biased. The aim of this paper is to illustrate the process of network meta-analysis with the aid of a working example on first-line medical treatment for primary open-angle glaucoma. We discuss the key assumption of network meta-analysis, as well as the unique considerations for developing appropriate research questions, conducting the literature search, abstracting data, performing qualitative and quantitative synthesis, presenting results, drawing conclusions, and reporting the findings in a network meta-analysis.
Short-term estimation of GNSS TEC using a neural network model in Brazil
NASA Astrophysics Data System (ADS)
Ferreira, Arthur Amaral; Borges, Renato Alves; Paparini, Claudia; Ciraolo, Luigi; Radicella, Sandro M.
2017-10-01
This work presents a novel Neural Network (NN) model to estimate Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) measurements in three distinct sectors in Brazil. The purpose of this work is to start the investigations on the development of a regional model that can be used to determine the vertical TEC over Brazil, aiming future applications on a near real-time frame estimations and short-term forecasting. The NN is used to estimate the GNSS TEC values at void locations, where no dual-frequency GNSS receiver that may be used as a source of data to GNSS TEC estimation is available. This approach is particularly useful for GNSS single-frequency users that rely on corrections of ionospheric range errors by TEC models. GNSS data from the first GLONASS network for research and development (GLONASS R&D network) installed in Latin America, and from the Brazilian Network for Continuous Monitoring of the GNSS (RMBC) were used on TEC calibration. The input parameters of the NN model are based on features known to influence TEC values, such as geographic location of the GNSS receiver, magnetic activity, seasonal and diurnal variations, and solar activity. Data from two ten-days periods (from DoY 154 to 163 and from 282 to 291) are used to train the network. Three distinct analyses have been carried out in order to assess time-varying and spatial performance of the model. At the spatial performance analysis, for each region, a set of stations is chosen to provide training data to the NN, and after the training procedure, the NN is used to estimate vTEC behavior for the test station which data were not presented to the NN in training process. An analysis is done by comparing, for each testing station, the estimated NN vTEC delivered by the NN and reference calibrated vTEC. Also, as a second analysis, the network ability to forecast one day after the time interval (DoY 292) based on information of the second period of investigation is also assessed in order to verify the feasibility on using low amount of data for short-term forecasting. In a third analysis, the spatial performance of the NN model is assessed and compared against CODE Global Ionospheric Maps during the geomagnetic storm registered on 13th and 14th October 2016. The results obtained from the three described analyses indicate that even using a ten-days period of data to train the network, the proposed NN model provides good spatial performance and presents to be a promising tool for short-term forecasting. The results obtained in the analysis presented a root mean squared error less than 7.9 TECU in all scenarios under investigation.
Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network
NASA Astrophysics Data System (ADS)
Khan, U. T.
2016-12-01
Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged precipitation and lagged mean daily flow as candidate inputs. Model performance metric show that the CNPSA method had higher performance (with an efficiency of 0.76). Model output was used to assess the risk of extreme peak flows for a given day using an inverse possibility-to-probability transformation.
Primary Schools and Network Governance: A Policy Analysis of Reception Baseline Assessment
ERIC Educational Resources Information Center
Roberts-Holmes, Guy; Bradbury, Alice
2017-01-01
Primary school reception baseline assessment was designed to produce a single "baseline" data figure on the basis of which young children's progress across primary school could be measured and accounted for. This paper suggests that within the context of punitive performativity, head teachers might be considered "irresponsible"…
Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L
2013-12-01
Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal-visual networks in patients relative to control subjects. We found abnormal functional connectivity within and across resting-state networks in children with frontal lobe epilepsy. Impairment in functional connectivity was associated with impaired neuropsychological function.
Kaabi, Mohamed Ghaith; Tonnelier, Arnaud; Martinez, Dominique
2011-05-01
In traditional event-driven strategies, spike timings are analytically given or calculated with arbitrary precision (up to machine precision). Exact computation is possible only for simplified neuron models, mainly the leaky integrate-and-fire model. In a recent paper, Zheng, Tonnelier, and Martinez (2009) introduced an approximate event-driven strategy, named voltage stepping, that allows the generic simulation of nonlinear spiking neurons. Promising results were achieved in the simulation of single quadratic integrate-and-fire neurons. Here, we assess the performance of voltage stepping in network simulations by considering more complex neurons (quadratic integrate-and-fire neurons with adaptation) coupled with multiple synapses. To handle the discrete nature of synaptic interactions, we recast voltage stepping in a general framework, the discrete event system specification. The efficiency of the method is assessed through simulations and comparisons with a modified time-stepping scheme of the Runge-Kutta type. We demonstrated numerically that the original order of voltage stepping is preserved when simulating connected spiking neurons, independent of the network activity and connectivity.
A comparative study of 11 local health department organizational networks.
Merrill, Jacqueline; Keeling, Jonathan W; Carley, Kathleen M
2010-01-01
Although the nation's local health departments (LHDs) share a common mission, variability in administrative structures is a barrier to identifying common, optimal management strategies. There is a gap in understanding what unifying features LHDs share as organizations that could be leveraged systematically for achieving high performance. To explore sources of commonality and variability in a range of LHDs by comparing intraorganizational networks. We used organizational network analysis to document relationships between employees, tasks, knowledge, and resources within LHDs, which may exist regardless of formal administrative structure. A national sample of 11 LHDs from seven states that differed in size, geographic location, and governance. Relational network data were collected via an on-line survey of all employees in 11 LHDs. A total of 1062 out of 1239 employees responded (84% response rate). Network measurements were compared using coefficient of variation. Measurements were correlated with scores from the National Public Health Performance Assessment and with LHD demographics. Rankings of tasks, knowledge, and resources were correlated across pairs of LHDs. We found that 11 LHDs exhibited compound organizational structures in which centralized hierarchies were coupled with distributed networks at the point of service. Local health departments were distinguished from random networks by a pattern of high centralization and clustering. Network measurements were positively associated with performance for 3 of 10 essential services (r > 0.65). Patterns in the measurements suggest how LHDs adapt to the population served. Shared network patterns across LHDs suggest where common organizational management strategies are feasible. This evidence supports national efforts to promote uniform standards for service delivery to diverse populations.
Chang, Yu-Kai; Pesce, Caterina; Chiang, Yi-Te; Kuo, Cheng-Yuh; Fong, Dong-Yang
2015-01-01
The purpose of this study was to investigate the after-effects of an acute bout of moderate intensity aerobic cycling exercise on neuroelectric and behavioral indices of efficiency of three attentional networks: alerting, orienting, and executive (conflict) control. Thirty young, highly fit amateur basketball players performed a multifunctional attentional reaction time task, the attention network test (ANT), with a two-group randomized experimental design after an acute bout of moderate intensity spinning wheel exercise or without antecedent exercise. The ANT combined warning signals prior to targets, spatial cueing of potential target locations and target stimuli surrounded by congruent or incongruent flankers, which were provided to assess three attentional networks. Event-related brain potentials and task performance were measured during the ANT. Exercise resulted in a larger P3 amplitude in the alerting and executive control subtasks across frontal, central and parietal midline sites that was paralleled by an enhanced reaction speed only on trials with incongruent flankers of the executive control network. The P3 latency and response accuracy were not affected by exercise. These findings suggest that after spinning, more resources are allocated to task-relevant stimuli in tasks that rely on the alerting and executive control networks. However, the improvement in performance was observed in only the executively challenging conflict condition, suggesting that whether the brain resources that are rendered available immediately after acute exercise translate into better attention performance depends on the cognitive task complexity. PMID:25914634
Emmert-Streib, Frank; Glazko, Galina V.; Altay, Gökmen; de Matos Simoes, Ricardo
2012-01-01
In this paper, we present a systematic and conceptual overview of methods for inferring gene regulatory networks from observational gene expression data. Further, we discuss two classic approaches to infer causal structures and compare them with contemporary methods by providing a conceptual categorization thereof. We complement the above by surveying global and local evaluation measures for assessing the performance of inference algorithms. PMID:22408642
Performance Assessment of Network Intrusion-Alert Prediction
2012-09-01
the threats. In this thesis, we use Snort to generate the intrusion detection alerts. 2. SNORT Snort is an open source network intrusion...standard for IPS. (Snort, 2012) We choose Snort because it is an open source product that is free to download and can be deployed cross-platform...Learning & prediction in relational time series: A survey. 21st Behavior Representation in Modeling & Simulation ( BRIMS ) Conference 2012, 93–100. Tan
Uddin, Lucina Q.; Clare Kelly, A. M.; Biswal, Bharat B.; Castellanos, F. Xavier; Milham, Michael P.
2013-01-01
The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally-oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here we examined functional differentiation within the default mode network, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the default mode network are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. PMID:18219617
GHSI EMERGENCY RADIONUCLIDE BIOASSAY LABORATORY NETWORK: SUMMARY OF A RECENT EXERCISE.
Li, Chunsheng; Ansari, Armin; Bartizel, Christine; Battisti, Paolo; Franck, Didier; Gerstmann, Udo; Giardina, Isabella; Guichet, Claude; Hammond, Derek; Hartmann, Martina; Jones, Robert L; Kim, Eunjoo; Ko, Raymond; Morhard, Ryan; Quayle, Deborah; Sadi, Baki; Saunders, David; Paquet, Francois
2016-11-01
The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop their collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency. A recent exercise was conducted to test the participating laboratories for their capabilities in screening and in vitro assay of biological samples, performing internal dose assessment and providing advice on medical intervention, if necessary, using a urine sample spiked with a single radionuclide, 241 Am. The laboratories were required to submit their reports according to the exercise schedule and using pre-formatted templates. Generally, the participating laboratories were found to be capable with respect to rapidly screening samples for radionuclide contamination, measuring the radionuclide in the samples, assessing the intake and radiation dose, and providing advice on medical intervention. However, gaps in bioassay measurement and dose assessment have been identified. The network may take steps to ensure that procedures and practices within this network be harmonised and a follow-up exercise be organised on a larger scale, with potential participation of laboratories from the networks coordinated by the International Atomic Energy Agency and the World Health Organization. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Application of neural networks and sensitivity analysis to improved prediction of trauma survival.
Hunter, A; Kennedy, L; Henry, J; Ferguson, I
2000-05-01
The performance of trauma departments is widely audited by applying predictive models that assess probability of survival, and examining the rate of unexpected survivals and deaths. Although the TRISS methodology, a logistic regression modelling technique, is still the de facto standard, it is known that neural network models perform better. A key issue when applying neural network models is the selection of input variables. This paper proposes a novel form of sensitivity analysis, which is simpler to apply than existing techniques, and can be used for both numeric and nominal input variables. The technique is applied to the audit survival problem, and used to analyse the TRISS variables. The conclusions discuss the implications for the design of further improved scoring schemes and predictive models.
Lai, Chih-Chin; Tu, Yu-Kang; Wang, Tyng-Guey; Huang, Yi-Ting; Chien, Kuo-Liong
2018-05-01
A variety of different types of exercise are promoted to improve muscle strength and physical performance in older people. We aimed to determine the relative effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people. A systematic review and network meta-analysis. Adults aged 60 and over. Evidence from randomised controlled trials of resistance training, endurance training and whole-body vibration were combined. The effects of exercise interventions on lean body mass, muscle strength and physical performance were evaluated by conducting a network meta-analysis to compare multiple interventions and usual care. Risk of bias of included studies was assessed using the Cochrane Collaboration's tool. A meta-regression was performed to assess potential effect modifiers. Data were obtained from 30 trials involving 1,405 participants (age range: 60-92 years). No significant differences were found between the effects of exercise or usual care on lean body mass. Resistance training (minimum 6 weeks duration) achieved greater muscle strength improvement than did usual care (12.8 kg; 95% confidence interval [CI]: 8.5-17.0 kg). Resistance training and whole-body vibration were associated with greater physical performance improvement compared with usual care (2.6 times greater [95% CI: 1.3-3.9] and 2.1 times greater [95% CI: 0.5-3.7], respectively). Resistance training is the most effect intervention to improve muscle strength and physical performance in older people. Our findings also suggest that whole-body vibration is beneficial for physical performance. However, none of the three exercise interventions examined had a significant effect on lean body mass.
Chen, Shuonan; Mar, Jessica C
2018-06-19
A fundamental fact in biology states that genes do not operate in isolation, and yet, methods that infer regulatory networks for single cell gene expression data have been slow to emerge. With single cell sequencing methods now becoming accessible, general network inference algorithms that were initially developed for data collected from bulk samples may not be suitable for single cells. Meanwhile, although methods that are specific for single cell data are now emerging, whether they have improved performance over general methods is unknown. In this study, we evaluate the applicability of five general methods and three single cell methods for inferring gene regulatory networks from both experimental single cell gene expression data and in silico simulated data. Standard evaluation metrics using ROC curves and Precision-Recall curves against reference sets sourced from the literature demonstrated that most of the methods performed poorly when they were applied to either experimental single cell data, or simulated single cell data, which demonstrates their lack of performance for this task. Using default settings, network methods were applied to the same datasets. Comparisons of the learned networks highlighted the uniqueness of some predicted edges for each method. The fact that different methods infer networks that vary substantially reflects the underlying mathematical rationale and assumptions that distinguish network methods from each other. This study provides a comprehensive evaluation of network modeling algorithms applied to experimental single cell gene expression data and in silico simulated datasets where the network structure is known. Comparisons demonstrate that most of these assessed network methods are not able to predict network structures from single cell expression data accurately, even if they are specifically developed for single cell methods. Also, single cell methods, which usually depend on more elaborative algorithms, in general have less similarity to each other in the sets of edges detected. The results from this study emphasize the importance for developing more accurate optimized network modeling methods that are compatible for single cell data. Newly-developed single cell methods may uniquely capture particular features of potential gene-gene relationships, and caution should be taken when we interpret these results.
NetMOD Version 2.0 Mathematical Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.; Young, Christopher J.; Chael, Eric P.
2015-08-01
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).« less
Dynamic security contingency screening and ranking using neural networks.
Mansour, Y; Vaahedi, E; El-Sharkawi, M A
1997-01-01
This paper summarizes BC Hydro's experience in applying neural networks to dynamic security contingency screening and ranking. The idea is to use the information on the prevailing operating condition and directly provide contingency screening and ranking using a trained neural network. To train the two neural networks for the large scale systems of BC Hydro and Hydro Quebec, in total 1691 detailed transient stability simulation were conducted, 1158 for BC Hydro system and 533 for the Hydro Quebec system. The simulation program was equipped with the energy margin calculation module (second kick) to measure the energy margin in each run. The first set of results showed poor performance for the neural networks in assessing the dynamic security. However a number of corrective measures improved the results significantly. These corrective measures included: 1) the effectiveness of output; 2) the number of outputs; 3) the type of features (static versus dynamic); 4) the number of features; 5) system partitioning; and 6) the ratio of training samples to features. The final results obtained using the large scale systems of BC Hydro and Hydro Quebec demonstrates a good potential for neural network in dynamic security assessment contingency screening and ranking.
DOT National Transportation Integrated Search
2015-08-01
Preventive maintenance has the potential to improve network condition by retarding future pavement deterioration. This : report outlines guidelines for implementing a preventive maintenance policy for bituminous pavements. : Preventive maintenance tr...
Muscle networks: Connectivity analysis of EMG activity during postural control
NASA Astrophysics Data System (ADS)
Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael
2015-12-01
Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.
Tsouri, Gill R; Zambito, Stephanie R; Venkataraman, Jayanti
2017-02-01
We consider the on-body, off-body, and body-to-body channels in wireless body area networks utilizing creeping wave antennas. Experimental setups are used to gather measurements in the 2.4 GHz band with body area networks operating in an office environment. Data packets providing received signal strength indicators are used to assess the performance of the creeping wave antenna in reducing interference at a neighboring on-body access point while supporting reliable on-body communications. Results demonstrate that creeping wave antennas provide reliable on-body communications while significantly reducing inter-network interference; the inter-network interference is shown to be 10 dB weaker than the on-body signal. In addition, the inter-network interference when both networks utilize creeping wave antennas is shown to be 3 dB weaker than the interference when monopole antennas are used.
Airport Surface Network Architecture Definition
NASA Technical Reports Server (NTRS)
Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.
2006-01-01
Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.
Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming
2017-10-01
Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017 Elsevier B.V. All rights reserved.
Baggiani, A; Casini, B; Totaro, M; Aquino, F; Valentini, P; Bruni, B; Porretta, A; Casalini, F; Miccoli, M; Privitera, G
2015-01-01
Despite the increase of community acquired cases of legionellosis in Italy over the last years, the Italian guidelines do not give indications for prevention and control of Legionella in the hot water networks (or centralized conditioning systems) of residential buildings. We performed a survey on eight medium sized apartment buildings in the Pisa district to assess the prevalence of Legionella spp. in the water network and the respondance to drinking water requisites at the point of use, according to the Italian norms. For each building two hot water and three cold water samples (located at water entrance from the aqueduct network into the building pipework, at the exit from pressure autoclave, and at a remote tap) were collected. Legionella was detected in 20% of residential buildings, mostly in those with a central hot water production system. The study highlights a condition of potential risk for susceptible population subgroups and supports the need for measures of risk assessment and control.
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Huang, Cheng-Fu
2015-04-01
From a quality of service viewpoint, the transmission packet unreliability and transmission time are both critical performance indicators in a computer system when assessing the Internet quality for supervisors and customers. A computer system is usually modelled as a network topology where each branch denotes a transmission medium and each vertex represents a station of servers. Almost every branch has multiple capacities/states due to failure, partial failure, maintenance, etc. This type of network is known as a multi-state computer network (MSCN). This paper proposes an efficient algorithm that computes the system reliability, i.e., the probability that a specified amount of data can be sent through k (k ≥ 2) disjoint minimal paths within both the tolerable packet unreliability and time threshold. Furthermore, two routing schemes are established in advance to indicate the main and spare minimal paths to increase the system reliability (referred to as spare reliability). Thus, the spare reliability can be readily computed according to the routing scheme.
NINJA: a noninvasive framework for internal computer security hardening
NASA Astrophysics Data System (ADS)
Allen, Thomas G.; Thomson, Steve
2004-07-01
Vulnerabilities are a growing problem in both the commercial and government sector. The latest vulnerability information compiled by CERT/CC, for the year ending Dec. 31, 2002 reported 4129 vulnerabilities representing a 100% increase over the 2001 [1] (the 2003 report has not been published at the time of this writing). It doesn"t take long to realize that the growth rate of vulnerabilities greatly exceeds the rate at which the vulnerabilities can be fixed. It also doesn"t take long to realize that our nation"s networks are growing less secure at an accelerating rate. As organizations become aware of vulnerabilities they may initiate efforts to resolve them, but quickly realize that the size of the remediation project is greater than their current resources can handle. In addition, many IT tools that suggest solutions to the problems in reality only address "some" of the vulnerabilities leaving the organization unsecured and back to square one in searching for solutions. This paper proposes an auditing framework called NINJA (acronym for Network Investigation Notification Joint Architecture) for noninvasive daily scanning/auditing based on common security vulnerabilities that repeatedly occur in a network environment. This framework is used for performing regular audits in order to harden an organizations security infrastructure. The framework is based on the results obtained by the Network Security Assessment Team (NSAT) which emulates adversarial computer network operations for US Air Force organizations. Auditing is the most time consuming factor involved in securing an organization's network infrastructure. The framework discussed in this paper uses existing scripting technologies to maintain a security hardened system at a defined level of performance as specified by the computer security audit team. Mobile agents which were under development at the time of this writing are used at a minimum to improve the noninvasiveness of our scans. In general, noninvasive scans with an adequate framework performed on a daily basis reduce the amount of security work load as well as the timeliness in performing remediation, as verified by the NINJA framework. A vulnerability assessment/auditing architecture based on mobile agent technology is proposed and examined at the end of the article as an enhancement to the current NINJA architecture.
NASA Astrophysics Data System (ADS)
Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.
2018-06-01
The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.
Generation of Global Geodetic Networks for GGOS
NASA Astrophysics Data System (ADS)
MacMillan, Daniel; Pavlis, Erricos C.; Kuzmicz-Cieslak, Magda; Koenig, Daniel
2016-12-01
We simulated future networks of VLBI+SLR sites to assess their performance. The objective is to build a global network of geographically well distributed, co-located next-generation sites from each of the space geodetic techniques. The network is being designed to meet the GGOS terrestrial reference frame goals of 1 mm in accuracy and 0.1 mm/yr in stability. We simulated the next generation networks that should be available in five years and in ten years to assess the likelihood that these networks will meet the reference frame goals. Simulations were based on the expectation that 17 broadband VLBI stations will be available in five years and 27 stations in ten years. We also consider the improvement resulting from expanding the network by six additional VLBI sites to improve the global distribution of the network. In the simulations, the networks will operate continuously, but we account for station downtime for maintenance or because of bad weather. We ran SLR+VLBI combination TRF solutions, where site ties were used to connect the two networks in the same way as in combination solutions with observed data. The strengths of VLBI and SLR allows them to provide the necessary reference frame accuracy in scale, geocenter, and orientation. With the +10-year extended network operating for ten years, simulations indicate that scale, origin, and orientation accuracies will be at the level of 0.02 ppb, 0.2 mm, and 6 μas. Combining the +5-year and +10-year network realizations will provide better estimates of accuracy and estimates of stability.
Evaluating the Fraser Health Balanced Scorecard--a formative evaluation.
Barnardo, Catherine; Jivanni, Amin
2009-01-01
Fraser Health (FH), a large, Canadian, integrated health care network, adopted the Balanced Scorecard (BSC) approach to monitor organizational performance in 2006. This paper reports on the results of a formative evaluation, conducted in April, 2008, to assess the usefulness of the BSC as a performance-reporting system and a performance management tool. Results indicated that the BSC has proven to be useful for reporting performance but is not currently used for performance management in a substantial way.
2012-02-06
Event Interface Custom ASCII JSS Client Y (Spectrum) 3.2 8 IT Infrastructure Performance Data/Vulnerability Assessment eHealth , Spectrum NSM...monitoring of infrastructure servers.) The Concord product line. Concord products ( eHealth and Spectrum) can provide both real-time and historical...Network and Systems Management (NSM) • Unicenter Asset Management • Spectrum • eHealth • Centennial Discovery Table 12 summarizes the the role of
Remote-seeded WDM-PON upgrade using linear semiconductor opticalamplifiers
NASA Astrophysics Data System (ADS)
Martínez, J. J.; Merayo, N.; Villafranca, A.; Garcés, I.
2013-05-01
In this work we have assessed the capacity of a linear (gain-clamped) semiconductor optical amplifier to enhance the budget of WDM PON network links for their evolution from FTTC to FTTH access. A wavelength-seeded network architecture has been considered, evaluating the performance improvement obtained by the use of an amplifier for the cases of link reach extension and optical splitting to reach end users. The evaluation measurements have shown that the extra budget is enough to compensate for the losses of a passive splitter up to atleast 1:16 division rate or to highly increment reach of the network.
Welch, J P; Sims, N; Ford-Carlton, P; Moon, J B; West, K; Honore, G; Colquitt, N
1991-01-01
The article describes a study conducted on general surgical and thoracic surgical floors of a 1000-bed hospital to assess the impact of a new network for portable patient care devices. This network was developed to address the needs of hospital patients who need constant, multi-parameter, vital signs surveillance, but do not require intensive nursing care. Bedside wall jacks were linked to UNIX-based workstations using standard digital network hardware, creating a flexible system (for general care floors of the hospital) that allowed the number of monitored locations to increase and decrease as patient census and acuity levels varied. It also allowed the general care floors to provide immediate, centralized vital signs monitoring for patients who unexpectedly became unstable, and permitted portable monitors to travel with patients as they were transferred between hospital departments. A disk-based log within the workstation automatically collected performance data, including patient demographics, monitor alarms, and network status for analysis. The log has allowed the developers to evaluate the use and performance of the system.
Sequential defense against random and intentional attacks in complex networks.
Chen, Pin-Yu; Cheng, Shin-Ming
2015-02-01
Network robustness against attacks is one of the most fundamental researches in network science as it is closely associated with the reliability and functionality of various networking paradigms. However, despite the study on intrinsic topological vulnerabilities to node removals, little is known on the network robustness when network defense mechanisms are implemented, especially for networked engineering systems equipped with detection capabilities. In this paper, a sequential defense mechanism is first proposed in complex networks for attack inference and vulnerability assessment, where the data fusion center sequentially infers the presence of an attack based on the binary attack status reported from the nodes in the network. The network robustness is evaluated in terms of the ability to identify the attack prior to network disruption under two major attack schemes, i.e., random and intentional attacks. We provide a parametric plug-in model for performance evaluation on the proposed mechanism and validate its effectiveness and reliability via canonical complex network models and real-world large-scale network topology. The results show that the sequential defense mechanism greatly improves the network robustness and mitigates the possibility of network disruption by acquiring limited attack status information from a small subset of nodes in the network.
Statistical downscaling of precipitation using long short-term memory recurrent neural networks
NASA Astrophysics Data System (ADS)
Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra
2017-11-01
Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.
Rosas, Scott R; Cope, Marie T; Villa, Christie; Motevalli, Mahnaz; Utech, Jill; Schouten, Jeffrey T
2014-04-01
Large-scale, multi-network clinical trials are seen as a means for efficient and effective utilization of resources with greater responsiveness to new discoveries. Formal structures instituted within the National Institutes of Health (NIH) HIV/AIDS Clinical Trials facilitate collaboration and coordination across networks and emphasize an integrated approach to HIV/AIDS vaccine, prevention and therapeutics clinical trials. This study examines the joint usage of clinical research sites as means of gaining efficiency, extending capacity, and adding scientific value to the networks. A semi-structured questionnaire covering eight clinical management domains was administered to 74 (62% of sites) clinical site coordinators at single- and multi-network sites to identify challenges and efficiencies related to clinical trials management activities and coordination with multi-network units. Overall, respondents at multi-network sites did not report more challenges than single-network sites, but did report unique challenges to overcome including in the areas of study prioritization, community engagement, staff education and training, and policies and procedures. The majority of multi-network sites reported that such affiliations do allow for the consolidation and cost-sharing of research functions. Suggestions for increasing the efficiency or performance of multi-network sites included streamlining standards and requirements, consolidating protocol activation methods, using a single cross-network coordinating centre, and creating common budget and payment mechanisms. The results of this assessment provide important information to consider in the design and management of multi-network configurations for the NIH HIV/AIDS Clinical Trials Networks, as well as others contemplating and promoting the concept of multi-network settings. © 2013 John Wiley & Sons Ltd.
Frontal networks associated with command following after hemorrhagic stroke.
Mikell, Charles B; Banks, Garrett P; Frey, Hans-Peter; Youngerman, Brett E; Nelp, Taylor B; Karas, Patrick J; Chan, Andrew K; Voss, Henning U; Connolly, E Sander; Claassen, Jan
2015-01-01
Level of consciousness is frequently assessed by command-following ability in the clinical setting. However, it is unclear what brain circuits are needed to follow commands. We sought to determine what networks differentiate command following from noncommand following patients after hemorrhagic stroke. Structural MRI, resting-state functional MRI, and electroencephalography were performed on 25 awake and unresponsive patients with acute intracerebral and subarachnoid hemorrhage. Structural injury was assessed via volumetric T1-weighted MRI analysis. Functional connectivity differences were analyzed against a template of standard resting-state networks. The default mode network (DMN) and the task-positive network were investigated using seed-based functional connectivity. Networks were interrogated by pairwise coherence of electroencephalograph leads in regions of interest defined by functional MRI. Functional imaging of unresponsive patients identified significant differences in 6 of 16 standard resting-state networks. Significant voxels were found in premotor cortex, dorsal anterior cingulate gyrus, and supplementary motor area. Direct interrogation of the DMN and task-positive network revealed loss of connectivity between the DMN and the orbitofrontal cortex and new connections between the task-positive network and DMN. Coherence between electrodes corresponding to right executive network and visual networks was also decreased in unresponsive patients. Resting-state functional MRI and electroencephalography coherence data support a model in which multiple, chiefly frontal networks are required for command following. Loss of DMN anticorrelation with task-positive network may reflect a loss of inhibitory control of the DMN by motor-executive regions. Frontal networks should thus be a target for future investigations into the mechanism of responsiveness in the intensive care unit environment. © 2014 American Heart Association, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
...) Not to exceed 3000 positions that require unique cyber security skills and knowledge to perform cyber..., distributed control systems security, cyber incident response, cyber exercise facilitation and management, cyber vulnerability detection and assessment, network and systems engineering, enterprise architecture...
Assessing park-and-ride impacts.
DOT National Transportation Integrated Search
2010-06-01
Efficient transportation systems are vital to quality-of-life and mobility issues, and an effective park-and-ride (P&R) : network can help maximize system performance. Properly placed P&R facilities are expected to result in fewer calls : to increase...
Large-Scale Brain Network Coupling Predicts Total Sleep Deprivation Effects on Cognitive Capacity
Wang, Lubin; Zhai, Tianye; Zou, Feng; Ye, Enmao; Jin, Xiao; Li, Wuju; Qi, Jianlin; Yang, Zheng
2015-01-01
Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI). Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Self-reported scores of sleepiness were higher for TSD than for RW. A subsequent working memory (WM) task showed that WM performance was lower after 36 h of TSD. Moreover, SPI was developed based on the coupling strength of salience network (SN) and default mode network (DMN). Significant increase of SPI was observed after 36 h of TSD, suggesting stronger pressure for sleep. In addition, SPI was significantly correlated with both the visual analogue scale score of sleepiness and the WM performance. These results showed that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the impact of sleep deprivation. PMID:26218521
NASA Astrophysics Data System (ADS)
Guinehut, Stephanie; Valladeau, Guillaume; Legeais, Jean-Francois; Rio, Marie-Helene; Ablain, Michael; Larnicol, Gilles
2013-09-01
This proceeding presents an overview of the two-way inter-comparison activities performed at CLS for both space and in situ observation agencies and why this activity is a required step to obtain accurate and homogenous data sets that can then be used together for climate studies or in assimilation/validation tools. We first describe the work performed in the frame of the SALP program to assess the stability of altimeter missions through SSH comparisons with tide gauges (GLOSS/CLIVAR network). Then, we show how the SSH comparison between the Argo array and altimeter time series allows the detection of drifts or jumps in altimeter (SALP program) but also for some Argo floats (Ifremer/Coriolis center). Lastly, we describe how the combine use of altimeter and wind observations helps the detection of drogue loss of surface drifting buoys (GDP network) and allow the computation of a correction term for wind slippage.
Applications of self-organizing neural networks in virtual screening and diversity selection.
Selzer, Paul; Ertl, Peter
2006-01-01
Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear relationships between molecular structures and pharmacological activity. Many network types, including Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence between the input and output data. This work shows how a combination of neural networks and radial distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical research. These applications include the prediction of biological activity, the selection of screening candidates (cherry picking), and the extraction of representative subsets from large compound collections such as combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool, allowing chemists to perform interactive neural network experiments on the Novartis intranet.
Causality networks from multivariate time series and application to epilepsy.
Siggiridou, Elsa; Koutlis, Christos; Tsimpiris, Alkiviadis; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2015-08-01
Granger causality and variants of this concept allow the study of complex dynamical systems as networks constructed from multivariate time series. In this work, a large number of Granger causality measures used to form causality networks from multivariate time series are assessed. For this, realizations on high dimensional coupled dynamical systems are considered and the performance of the Granger causality measures is evaluated, seeking for the measures that form networks closest to the true network of the dynamical system. In particular, the comparison focuses on Granger causality measures that reduce the state space dimension when many variables are observed. Further, the linear and nonlinear Granger causality measures of dimension reduction are compared to a standard Granger causality measure on electroencephalographic (EEG) recordings containing episodes of epileptiform discharges.
A Comparative Study of 11 Local Health Department Organizational Networks
Merrill, Jacqueline; Keeling, Jonathan W.; Carley, Kathleen M.
2013-01-01
Context Although the nation’s local health departments (LHDs) share a common mission, variability in administrative structures is a barrier to identifying common, optimal management strategies. There is a gap in understanding what unifying features LHDs share as organizations that could be leveraged systematically for achieving high performance. Objective To explore sources of commonality and variability in a range of LHDs by comparing intraorganizational networks. Intervention We used organizational network analysis to document relationships between employees, tasks, knowledge, and resources within LHDs, which may exist regardless of formal administrative structure. Setting A national sample of 11 LHDs from seven states that differed in size, geographic location, and governance. Participants Relational network data were collected via an on-line survey of all employees in 11 LHDs. A total of 1 062 out of 1 239 employees responded (84% response rate). Outcome Measures Network measurements were compared using coefficient of variation. Measurements were correlated with scores from the National Public Health Performance Assessment and with LHD demographics. Rankings of tasks, knowledge, and resources were correlated across pairs of LHDs. Results We found that 11 LHDs exhibited compound organizational structures in which centralized hierarchies were coupled with distributed networks at the point of service. Local health departments were distinguished from random networks by a pattern of high centralization and clustering. Network measurements were positively associated with performance for 3 of 10 essential services (r > 0.65). Patterns in the measurements suggest how LHDs adapt to the population served. Conclusions Shared network patterns across LHDs suggest where common organizational management strategies are feasible. This evidence supports national efforts to promote uniform standards for service delivery to diverse populations. PMID:20445462
Behavior-based network management: a unique model-based approach to implementing cyber superiority
NASA Astrophysics Data System (ADS)
Seng, Jocelyn M.
2016-05-01
Behavior-Based Network Management (BBNM) is a technological and strategic approach to mastering the identification and assessment of network behavior, whether human-driven or machine-generated. Recognizing that all five U.S. Air Force (USAF) mission areas rely on the cyber domain to support, enhance and execute their tasks, BBNM is designed to elevate awareness and improve the ability to better understand the degree of reliance placed upon a digital capability and the operational risk.2 Thus, the objective of BBNM is to provide a holistic view of the digital battle space to better assess the effects of security, monitoring, provisioning, utilization management, allocation to support mission sustainment and change control. Leveraging advances in conceptual modeling made possible by a novel advancement in software design and implementation known as Vector Relational Data Modeling (VRDM™), the BBNM approach entails creating a network simulation in which meaning can be inferred and used to manage network behavior according to policy, such as quickly detecting and countering malicious behavior. Initial research configurations have yielded executable BBNM models as combinations of conceptualized behavior within a network management simulation that includes only concepts of threats and definitions of "good" behavior. A proof of concept assessment called "Lab Rat," was designed to demonstrate the simplicity of network modeling and the ability to perform adaptation. The model was tested on real world threat data and demonstrated adaptive and inferential learning behavior. Preliminary results indicate this is a viable approach towards achieving cyber superiority in today's volatile, uncertain, complex and ambiguous (VUCA) environment.
Schluter, Renée S; Jansen, Jochem M; van Holst, Ruth J; van den Brink, Wim; Goudriaan, Anna E
2018-03-01
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has gained great interest in multiple clinical and research fields and is believed to accomplish its effect by influencing neuronal networks. The dorsolateral prefrontal cortex (dlPFC) is frequently chosen as the cortical target for HF-rTMS. However, very little is known about the differential effect of HF-rTMS over the left and right dlPFC on intrinsic functional connectivity networks in patients or in healthy individuals. The current study assessed the differential effects of left or right HF-rTMS (corrected for sham) on intrinsic independent component analysis (ICA)-defined functional connectivity networks in a sample of 45 healthy individuals. All subjects had a first scanning session in which baseline functional connectivity was assessed. During the second session, individuals received one session of left, right, or sham dlPFC HF-rTMS (60 5-sec trains of 10 Hz at 110% motor threshold). The sham condition was used to correct for time and placebo effects. ICAs were performed to assess baseline differences and stimulation effects on within- and between-network functional connectivity. Stimulation of the left dlPFC resulted in decreased functional connectivity in the salience network, whereas right dlPFC stimulation resulted in increased functional connectivity within this network. No differences between left or right dlPFC stimulation were found in between-network connectivity. These results suggest that left and right HF-rTMS may have differential effects, and more research is needed on the clinical consequences.
Correlation analysis of a ground-water level monitoring network, Miami-Dade County, Florida
Prinos, Scott T.
2005-01-01
The U.S. Geological Survey cooperative ground-water monitoring program in Miami-Dade County, Florida, expanded from 4 to 98 continuously recording water-level monitoring wells during the 1939-2001 period. Network design was based on area specific assessments; however, no countywide statistical assessments of network coverage had been performed for the purpose of assessing network redundancy. To aid in the assessment of network redundancy, correlation analyses were performed using S-PLUS 2000 statistical analysis software for daily maximum water-level data from 98 monitoring wells for the November 1, 1973, to October 31, 2000 period. Because of the complexities of the hydrologic, water-supply, and water-management systems in Miami-Dade County and the changes that have occurred to these systems through time, spatial and temporal variations in the degree of correlation had to be considered. To assess temporal variation in correlation, water-level data from each well were subdivided by year and by wet and dry seasons. For each well, year, and season, correlation analyses were performed on the data from those wells that had available data. For selected wells, the resulting correlation coefficients from each year and season were plotted with respect to time. To assess spatial variation in correlation, the coefficients determined from the correlation analysis were averaged. These average wet- and dry-season correlation coefficients were plotted spatially using geographic information system software. Wells with water-level data that correlated with a coefficient of 0.95 or greater were almost always located in relatively close proximity to each other. Five areas were identified where the water-level data from wells within the area remained correlated with that of other wells in the area during the wet and dry seasons. These areas are located in or near the C-1 and C-102 basins (2 wells), in or near the C-6 and C-7 basins (2 wells), near the Florida Keys Aqueduct Authority Well Field (2 wells), near the Hialeah-Miami Springs Well Field (6 wells), and near the West Well Field (21 wells). Data from the remaining 65 wells (most of the wells in the network) generally were not correlated with those of other wells during both the wet and dry seasons with an average coefficient of 0.95 or greater for the comparison. Because many of the wells near the West Well Field and some near the Hialeah-Miami Springs Well Field had not been in operation for very long (most having been installed in 1994), the averaged correlation coefficients for these wells were often determined using only a few seasons of data. For the few instances where water-level data were found to be well correlated on average for a lengthy period of record, short-term declines in correlation were often identified. In general, it would be beneficial to compare data for longer periods of record than currently available.
Top-down network analysis characterizes hidden termite-termite interactions.
Campbell, Colin; Russo, Laura; Marins, Alessandra; DeSouza, Og; Schönrogge, Karsten; Mortensen, David; Tooker, John; Albert, Réka; Shea, Katriona
2016-09-01
The analysis of ecological networks is generally bottom-up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host-parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail-rich reference communities with known modes of interaction can inform our understanding of detail-sparse focal communities. With this top-down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant-pollinator and antagonistic host-parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant-pollinator communities than the antagonistic host-parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite-termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well-characterized communities.
Ubago Pérez, Ruth; Castillo Muñoz, María Auxiliadora; Banqueri, Mercedes Galván; García Estepa, Raúl; Alfaro Lara, Eva Rocío; Vega Coca, María Dolores; Beltrán Calvo, Carmen; Molina López, Teresa
The European network for Health Technology Assessment (EUnetHTA) is the network of public health technology assessment (HTA) agencies and entities from across the EU. In this context, the HTA Core Model ® , has been developed. The Andalusian Agency for Health Technology Assessment (AETSA) is a member of the Spanish HTA Network and EUnetHTA collaboration In addition, AETSA participates in the new EUnetHTA Joint Action 3 (JA, 2016-2019). Furthermore, AETSA works on pharmaceutical assessments. Part of this work involves drafting therapeutic positioning reports (TPRs) on drugs that have recently been granted marketing authorisation, which is overseen by the Spanish Agency of Medicines and Medical Devices (AEMPS). AETSA contributes by drafting "Evidence synthesis reports: pharmaceuticals" in which a rapid comparative efficacy and safety assessment is performed for drugs for which a TPR will be created. To create this type of report, AETSA follows its own methodological guideline based on EUnetHTA guidelines and the HTA Core Model ® . In this paper, the methodology that AETSA has developed to create the guideline for "Evidence synthesis reports: pharmaceuticals" is described. The structure of the report itself is also presented. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Internal evaluation of the European network for health technology assessment project.
Håheim, Lise Lund; Imaz, Iñaki; Loud, Marlène Läubli; Gasparetto, Teresa; González-Enriquez, Jesús; Dahlgren, Helena; Trofimovs, Igor; Berti, Elena; Mørland, Berit
2009-12-01
The internal evaluation studied the development of the European network for Health Technology Assessment (EUnetHTA) Project in achieving the general objective of establishing an effective and a sustainable network of health technology assessment (HTA) in Europe. The Work Package 3 group was dedicated to this task and performed the work. Information on activities during the project was collected from three sources. First, three yearly cross-sectional studies surveyed the participants' opinions. Responses were by individuals or by institutions. The last round included surveys to the Steering Committee, the Stakeholder Forum, and the Secretariat. Second, the Work Package Lead Partners were interviewed bi-annually, five times in total, to update the information on the Project's progress. Third, additional information was sought in available documents. The organizational structure remained stable. The Project succeeded in developing tools aimed at providing common methodology with intent to establish a standard of conducting and reporting HTA and to facilitate greater collaboration among agencies. The participants/agencies expressed their belief in a network and in maintaining local/national autonomy. The Work Package Leaders expressed a strong belief in the solid base of the Project for a future network on which to build, but were aware of the need for funding and governmental support. Participants and Work Package Leaders have expressed support for a future network that will improve national and international collaboration in HTA based on the experience from the EUnetHTA project.
Evaluation of machine learning algorithms for improved risk assessment for Down's syndrome.
Koivu, Aki; Korpimäki, Teemu; Kivelä, Petri; Pahikkala, Tapio; Sairanen, Mikko
2018-05-04
Prenatal screening generates a great amount of data that is used for predicting risk of various disorders. Prenatal risk assessment is based on multiple clinical variables and overall performance is defined by how well the risk algorithm is optimized for the population in question. This article evaluates machine learning algorithms to improve performance of first trimester screening of Down syndrome. Machine learning algorithms pose an adaptive alternative to develop better risk assessment models using the existing clinical variables. Two real-world data sets were used to experiment with multiple classification algorithms. Implemented models were tested with a third, real-world, data set and performance was compared to a predicate method, a commercial risk assessment software. Best performing deep neural network model gave an area under the curve of 0.96 and detection rate of 78% with 1% false positive rate with the test data. Support vector machine model gave area under the curve of 0.95 and detection rate of 61% with 1% false positive rate with the same test data. When compared with the predicate method, the best support vector machine model was slightly inferior, but an optimized deep neural network model was able to give higher detection rates with same false positive rate or similar detection rate but with markedly lower false positive rate. This finding could further improve the first trimester screening for Down syndrome, by using existing clinical variables and a large training data derived from a specific population. Copyright © 2018 Elsevier Ltd. All rights reserved.
A soil sampling intercomparison exercise for the ALMERA network.
Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas
2009-11-01
Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.
NASA Astrophysics Data System (ADS)
Arenaccio, S.; Vernucci, A.; Padovani, R.; Arcidiacono, A.
Results of a detailed comparative performance assessment between two candidate access solutions for the provision of land-mobile services, i.e., FDMA and CDMA, for the European Land-Mobile Satellite Services (LMSS) provision are presented. The design of the CDMA access system and the network architecture, system procedures, network control, operation in fading environments, and implementation aspects of the system are described. The CDMA system is shown to yield superior traffic capability, despite the absence of polarization reuse due to payload design, especially in the second-generation era (multiple spot-beams). In this case, the advantage was found to be largely dependent on the traffic distribution across spot beams. Power control techniques are proposed to cope with the geographical disadvantage suffered by mobile stations located at the beam borders to compensate for fadings.
2010-01-01
Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes. Conclusions Overall, our in silico study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space. PMID:20230643
Hommes, J; Rienties, B; de Grave, W; Bos, G; Schuwirth, L; Scherpbier, A
2012-12-01
World-wide, universities in health sciences have transformed their curriculum to include collaborative learning and facilitate the students' learning process. Interaction has been acknowledged to be the synergistic element in this learning context. However, students spend the majority of their time outside their classroom and interaction does not stop outside the classroom. Therefore we studied how informal social interaction influences student learning. Moreover, to explore what really matters in the students learning process, a model was tested how the generally known important constructs-prior performance, motivation and social integration-relate to informal social interaction and student learning. 301 undergraduate medical students participated in this cross-sectional quantitative study. Informal social interaction was assessed using self-reported surveys following the network approach. Students' individual motivation, social integration and prior performance were assessed by the Academic Motivation Scale, the College Adaption Questionnaire and students' GPA respectively. A factual knowledge test represented student' learning. All social networks were positively associated with student learning significantly: friendships (β = 0.11), providing information to other students (β = 0.16), receiving information from other students (β = 0.25). Structural equation modelling revealed a model in which social networks increased student learning (r = 0.43), followed by prior performance (r = 0.31). In contrast to prior literature, students' academic motivation and social integration were not associated with students' learning. Students' informal social interaction is strongly associated with students' learning. These findings underline the need to change our focus from the formal context (classroom) to the informal context to optimize student learning and deliver modern medics.
Quality Control of The Norwegian Uv Monitoring Network.
NASA Astrophysics Data System (ADS)
Johnsen, B.; Mikkelborg, O.; Dahlback, A.; Høiskar, B. A.; Kylling, A.; Edvardsen, K.; Olseth, J. A.; Kjeldstad, B.; Ørbæk, J. B.
A Norwegian UV-monitoring network of GUV multiband radiometers has been operating at locations between 59°N to 79°N since 1995-96. The purpose of the network is to obtain data of high scientific quality, to be used in further assessments related to health- and environmental issues. Maintenance of measurement quality is given priority. Spectral response functions, crucial for calibrations, have been obtained for each instrument. Calibrations are traceable to the Nordic intercomparison of UV radiometers held in Sweden in June 2000. Instruments are inspected daily or weekly. Once a year the instruments are compared to travelling standards operating side by side to the local network radiometers. This enables determination of the longterm drift in instrument responses. For the six years period of operation, the steadiest instrument performed stable within +/-3%, whereas the least steady had a response drop by 23%. Comparisons with a true cosine performing spectroradiometer demonstrate close agreement (+/- 2%) for solar zenith angles less than 80°. Good cosine performance, high spectral sensitivity and weatherproof design demonstrate that the GUV radiometers are particularly suitable for UV monitoring at high latitudes. Complete records of corrected daily CIE-effective doses and online measurements are presented on http://uvnett.nrpa.no/. Gaps in measurement series have been corrected for with a clear sky radiative transfer model and hourly UV sky transmittances estimated from pyranometer data. Measurement data and information about the monitoring network may be found by visiting websites at respectively NRPA, NILU and The University of Oslo; http://www.nrpa.no, http://www.nilu.no/uv, http://www.fys.uio.no/plasma/ozone/. At this stage the quality of the network has reached a satisfactory level and it is possible to move on using UV data in further assessments. Trend analyses and UV forecasting are topics for future work. The network is supported by the ministries of Health and Environment and is administered by The Norwegian Radiation Protection Authority and The Norwegian Pollution Control Authority, the latter through The Norwegian Institute for Air Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settlemyer, Bradley; Kettimuthu, R.; Boley, Josh
High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods ofmore » time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.« less
Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano
2008-09-01
This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.
Mendoza, Nohora Marcela; González, Nohora Elizabeth
2015-01-01
One of the most important activities for quality assurance of malaria diagnosis is performance assessment. In Colombia, performance assessment of malaria microscopists has been done through the external performance assessment and indirect external performance assessment programs. To assess the performance of malaria microscopists of public reference laboratories using slide sets, and to describe the methodology used for this purpose. This was a retrospective study to evaluate the concordance of senior microscopists regarding parasite detection, species identification and parasite count based on the results of the assessment of competences using two sets, one comprising 40 slides, and another one with 17 slides. The concordance for parasite detection was 96.9% (95% CI: 96.0-97.5) and 88.7% (95% CI: 86.6-90.5) for species identification. The average percentage of concordant slides in the group evaluated was 89.7% (95% CI: 87.5-91.6). Most of the senior microscopists in Colombia were classified in the two top categories in the performance assessment using slide sets. The most common difficulty encountered was the identification of parasite species. The use of this tool to assess individual performance of microscopists in the evaluation of samples with different degrees of difficulty allows for characterizing the members of the malaria diagnosis network and strengthening the abilities of those who require it.
Grey-matter network disintegration as predictor of cognitive and motor function with aging.
Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold
2018-06-01
Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.
Gigabit Ethernet: A Technical Assessment.
ERIC Educational Resources Information Center
Axner, David
1997-01-01
Describes gigabit ethernet for LAN (local area network) technology that will expand ethernet bandwidth. Technical details are discussed, including protocol stacks, optical fiber, deployment strategy for performance improvement, ATM (Asynchronous Transfer Mode), real-time protocol, reserve reservation protocol, and standards. (LRW)
Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi
2018-05-04
End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.
Donald, Kirsten A; Ipser, Jonathan C; Howells, Fleur M; Roos, Annerine; Fouche, Jean-Paul; Riley, Edward P; Koen, Nastassja; Woods, Roger P; Biswal, Bharat; Zar, Heather J; Narr, Katherine L; Stein, Dan J
2016-01-01
Children exposed to alcohol in utero demonstrate reduced white matter microstructural integrity. While early evidence suggests altered functional brain connectivity in the lateralization of motor networks in school-age children with prenatal alcohol exposure (PAE), the specific effects of alcohol exposure on the establishment of intrinsic connectivity in early infancy have not been explored. Sixty subjects received functional imaging at 2 to 4 weeks of age for 6 to 8 minutes during quiet natural sleep. Thirteen alcohol-exposed (PAE) and 14 age-matched control (CTRL) participants with usable data were included in a multivariate model of connectivity between sensorimotor intrinsic functional connectivity networks. Seed-based analyses of group differences in interhemispheric connectivity of intrinsic motor networks were also conducted. The Dubowitz neurological assessment was performed at the imaging visit. Alcohol exposure was associated with significant increases in connectivity between somatosensory, motor networks, brainstem/thalamic, and striatal intrinsic networks. Reductions in interhemispheric connectivity of motor and somatosensory networks did not reach significance. Although results are preliminary, findings suggest PAE may disrupt the temporal coherence in blood oxygenation utilization in intrinsic networks underlying motor performance in newborn infants. Studies that employ longitudinal designs to investigate the effects of in utero alcohol exposure on the evolving resting-state networks will be key in establishing the distribution and timing of connectivity disturbances already described in older children. Copyright © 2016 by the Research Society on Alcoholism.
Artuñedo, Antonio; del Toro, Raúl M.; Haber, Rodolfo E.
2017-01-01
Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks. PMID:28445398
Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E
2017-04-26
Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.
Two years of LCOGT operations: the challenges of a global observatory
NASA Astrophysics Data System (ADS)
Volgenau, Nikolaus; Boroson, Todd
2016-07-01
With 18 telescopes distributed over 6 sites, and more telescopes being added in 2016, Las Cumbres Observatory Global Telescope Network is a unique resource for timedomain astronomy. The Network's continuous coverage of the night sky, and the optimization of the observing schedule over all sites simultaneously, have enabled LCOGTusers to produce significant science results. However, practical challenges to maximizing the Network's science output remain. The Network began providing observations for members of its Science Collaboration and other partners in May 2014. In the two years since then, LCOGT has made a number of improvements to increase the Network's science yield. We also now have two years' experience monitoring observatory performance; effective monitoring of an observatory that spans the globe is a complex enterprise. Here, we describe some of LCOGT's efforts to monitor the Network, assess the quality of science data, and improve communication with our users.
Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2018-06-01
Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.
Lang, Stefan; Gaxiola-Valdez, Ismael; Opoku-Darko, Michael; Partlo, Lisa A; Goodyear, Bradley G; Kelly, John J P; Federico, Paolo
2017-09-01
Patients with diffuse glioma are known to have impaired cognitive functions preoperatively. However, the mechanism of these cognitive deficits remains unclear. Resting-state functional connectivity in the frontoparietal network (FPN) is associated with cognitive performance in healthy subjects. For this reason, it was hypothesized that functional connectivity of the FPN would be related to cognitive functioning in patients with glioma. To assess this relationship, preoperative cognitive status was correlated to patient-specific connectivity within the FPN. Further, we assessed whether connectivity could predict neuropsychologic outcome following surgery. Sixteen patients with diffuse glioma underwent neuropsychologic assessment and preoperative functional magnetic resonance imaging using task (n-back) and resting-state scans. Thirteen patients had postoperative cognitive assessment. An index of patient-specific functional connectivity in the FPN was derived by averaging connectivity values between 2 prefrontal and 2 parietal cortex regions defined by activation during the n-back task. The relationship of these indices with cognitive performance was assessed. Higher average connectivity within the FPN is associated with lower composite cognitive scores. Higher connectivity of the parietal region of the tumor-affected hemisphere is associated specifically with lower fluid cognition. Lower connectivity of the parietal region of the nontumor hemisphere is associated with worse neuropsychologic outcome 1 month after surgery. Resting-state functional connectivity between key regions of the FPN is associated with cognitive performance in patients with glioma and is related to cognitive outcome following surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens
2017-01-01
In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.
Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.
2015-01-01
Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631
Fault-tolerance of a neural network solving the traveling salesman problem
NASA Technical Reports Server (NTRS)
Protzel, P.; Palumbo, D.; Arras, M.
1989-01-01
This study presents the results of a fault-injection experiment that stimulates a neural network solving the Traveling Salesman Problem (TSP). The network is based on a modified version of Hopfield's and Tank's original method. We define a performance characteristic for the TSP that allows an overall assessment of the solution quality for different city-distributions and problem sizes. Five different 10-, 20-, and 30- city cases are sued for the injection of up to 13 simultaneous stuck-at-0 and stuck-at-1 faults. The results of more than 4000 simulation-runs show the extreme fault-tolerance of the network, especially with respect to stuck-at-0 faults. One possible explanation for the overall surprising result is the redundancy of the problem representation.
Silva Pereira, Silvana; Hindriks, Rikkert; Mühlberg, Stefanie; Maris, Eric; van Ede, Freek; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo
2017-11-01
A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.
Attention networks in adolescent anorexia nervosa.
Weinbach, Noam; Sher, Helene; Lock, James D; Henik, Avishai
2018-03-01
Anorexia nervosa (AN) usually develops during adolescence when considerable structural and functional brain changes are taking place. Neurocognitive inefficiencies have been consistently found in adults with enduring AN and were suggested to play a role in maintaining the disorder. However, such findings are inconsistent in children and adolescents with AN. The current study conducted a comprehensive assessment of attention networks in adolescents with AN who were not severely underweight during the study using an approach that permits disentangling independent components of attention. Twenty partially weight-restored adolescents with AN (AN-WR) and 24 healthy adolescents performed the Attention Network Test which assesses the efficiency of three main attention networks-executive control, orienting, and alerting. The results revealed abnormal function in the executive control network among adolescents with AN-WR. Specifically, adolescents with AN-WR demonstrated superior ability to suppress attention to task-irrelevant information while focusing on a central task. Moreover, the alerting network modulated this ability. No difference was found between the groups in the speed of orienting attention, but reorienting attention to a target resulted in higher error rates in the AN-WR group. The findings suggest that adolescents with AN have attentional abnormalities that cannot be explained by a state of starvation. These attentional dysregulations may underlie clinical phenotypes of the disorder such as increased attention of details.
Characterizing Cancer Drug Response and Biological Correlates: A Geometric Network Approach.
Pouryahya, Maryam; Oh, Jung Hun; Mathews, James C; Deasy, Joseph O; Tannenbaum, Allen R
2018-04-23
In the present work, we apply a geometric network approach to study common biological features of anticancer drug response. We use for this purpose the panel of 60 human cell lines (NCI-60) provided by the National Cancer Institute. Our study suggests that mathematical tools for network-based analysis can provide novel insights into drug response and cancer biology. We adopted a discrete notion of Ricci curvature to measure, via a link between Ricci curvature and network robustness established by the theory of optimal mass transport, the robustness of biological networks constructed with a pre-treatment gene expression dataset and coupled the results with the GI50 response of the cell lines to the drugs. Based on the resulting drug response ranking, we assessed the impact of genes that are likely associated with individual drug response. For genes identified as important, we performed a gene ontology enrichment analysis using a curated bioinformatics database which resulted in biological processes associated with drug response across cell lines and tissue types which are plausible from the point of view of the biological literature. These results demonstrate the potential of using the mathematical network analysis in assessing drug response and in identifying relevant genomic biomarkers and biological processes for precision medicine.
Executive Attention Impairment in Adolescents With Major Depressive Disorder.
Sommerfeldt, Sasha L; Cullen, Kathryn R; Han, Georges; Fryza, Brandon J; Houri, Alaa K; Klimes-Dougan, Bonnie
2016-01-01
Neural network models that guide neuropsychological assessment practices are increasingly used to explicate depression, though a paucity of work has focused on regulatory systems that are under development in adolescence. The purpose of this study was to evaluate subsystems of attention related to executive functioning including alerting, orienting, and executive attention networks, as well as sustained attention with varying working memory load, in a sample of depressed and well adolescents. Neuropsychological functioning in 99 adolescents diagnosed with major depressive disorder (MDD) and 63 adolescent healthy controls (M = 16.6 years old) was assessed on the Attention Network Test (ANT) and the Continuous Performance Test, Identical Pairs. Adolescents with MDD, particularly those who were not medicated, were slower to process conflict (slower reaction time on the Executive Attention scale of the ANT) compared to controls, particularly for those who were not undergoing psychopharmacological treatment. Tentative evidence also suggests that within the MDD group, orienting performance was more impaired in those with a history of comorbid substance use disorder, and alerting was more impaired in those with a history of a suicide attempt. Adolescents with depression showed impaired executive attention, although cognitive performance varied across subgroups of patients. These findings highlight the importance of examining neurocognitive correlates associated with features of depression and suggest an avenue for future research to help guide the development of interventions.
Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.
2015-01-01
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996
NASA Astrophysics Data System (ADS)
Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.
2017-11-01
Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.
A New Measure for Neural Compensation Is Positively Correlated With Working Memory and Gait Speed.
Ji, Lanxin; Pearlson, Godfrey D; Hawkins, Keith A; Steffens, David C; Guo, Hua; Wang, Lihong
2018-01-01
Neuroimaging studies suggest that older adults may compensate for declines in brain function and cognition through reorganization of neural resources. A limitation of prior research is reliance on between-group comparisons of neural activation (e.g., younger vs. older), which cannot be used to assess compensatory ability quantitatively. It is also unclear about the relationship between compensatory ability with cognitive function or how other factors such as physical exercise modulates compensatory ability. Here, we proposed a data-driven method to semi-quantitatively measure neural compensation under a challenging cognitive task, and we then explored connections between neural compensation to cognitive engagement and cognitive reserve (CR). Functional and structural magnetic resonance imaging scans were acquired for 26 healthy older adults during a face-name memory task. Spatial independent component analysis (ICA) identified visual, attentional and left executive as core networks. Results show that the smaller the volumes of the gray matter (GM) structures within core networks, the more networks were needed to conduct the task ( r = -0.408, p = 0.035). Therefore, the number of task-activated networks controlling for the GM volume within core networks was defined as a measure of neural compensatory ability. We found that compensatory ability correlated with working memory performance ( r = 0.528, p = 0.035). Among subjects with good memory task performance, those with higher CR used fewer networks than subjects with lower CR. Among poor-performance subjects, those using more networks had higher CR. Our results indicated that using a high cognitive-demanding task to measure the number of activated neural networks could be a useful and sensitive measure of neural compensation in older adults.
Rzucidlo, Justyna K; Roseman, Paige L; Laurienti, Paul J; Dagenbach, Dale
2013-01-01
Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI) data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.
Age-dependent modulation of the somatosensory network upon eye closure.
Brodoehl, Stefan; Klingner, Carsten; Witte, Otto W
2016-02-01
Eye closure even in complete darkness can improve somatosensory perception by switching the brain to a uni-sensory processing mode. This causes an increased information flow between the thalamus and the somatosensory cortex while decreasing modulation by the visual cortex. Previous work suggests that these modulations are age-dependent and that the benefit in somatosensory performance due to eye closing diminishes with age. The cause of this age-dependency and to what extent somatosensory processing is involved remains unclear. Therefore, we intended to characterize the underlying age-dependent modifications in the interaction and connectivity of different sensory networks caused by eye closure. We performed functional MR-imaging with tactile stimulation of the right hand under the conditions of opened and closed eyes in healthy young and elderly participants. Conditional Granger causality analysis was performed to assess the somatosensory and visual networks, including the thalamus. Independent of age, eye closure improved the information transfer from the thalamus to and within the somatosensory cortex. However, beyond that, we found an age-dependent recruitment strategy. Whereas young participants were characterized by an optimized information flow within the relays of the somatosensory network, elderly participants revealed a stronger modulatory influence of the visual network upon the somatosensory cortex. Our results demonstrate that the modulation of the somatosensory and visual networks by eye closure diminishes with age and that the dominance of the visual system is more pronounced in the aging brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing attentional systems in children with Attention Deficit Hyperactivity Disorder.
Casagrande, Maria; Martella, Diana; Ruggiero, Maria Cleonice; Maccari, Lisa; Paloscia, Claudio; Rosa, Caterina; Pasini, Augusto
2012-01-01
The aim of this study was to evaluate the efficiency and interactions of attentional systems in children with Attention Deficit Hyperactivity Disorder (ADHD) by considering the effects of reinforcement and auditory warning on each component of attention. Thirty-six drug-naïve children (18 children with ADHD/18 typically developing children) performed two revised versions of the Attentional Network Test, which assess the efficiency of alerting, orienting, and executive systems. In feedback trials, children received feedback about their accuracy, whereas in the no-feedback trials, feedback was not given. In both conditions, children with ADHD performed more slowly than did typically developing children. They also showed impairments in the ability to disengage attention and in executive functioning, which improved when alertness was increased by administering the auditory warning. The performance of the attentional networks appeared to be modulated by the absence or the presence of reinforcement. We suggest that the observed executive system deficit in children with ADHD could depend on their low level of arousal rather than being an independent disorder. © The Author 2011. Published by Oxford University Press. All rights reserved.
Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine
2017-01-01
Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional faces. In addition, training was associated with increased connectivity in emotion processing networks, including greater STS-medial prefrontal connectivity and normalization of amygdala connectivity patterns. Conclusion: These results suggest that targeted cognitive training produced improvements in emotion recognition and may be effective in altering functional network connectivity in networks associated with psychosis risk. TCT may be a useful tool for early intervention in individuals at risk for psychotic disorders to address behaviors that impact functional outcome.
NASA Astrophysics Data System (ADS)
Rahmanita, E.; Widyaningrum, V. T.; Kustiyahningsih, Y.; Purnama, J.
2018-04-01
SMEs have a very important role in the development of the economy in Indonesia. SMEs assist the government in terms of creating new jobs and can support household income. The number of SMEs in Madura and the number of measurement indicators in the SME mapping so that it requires a method.This research uses Fuzzy Analytic Network Process (FANP) method for performance measurement SME. The FANP method can handle data that contains uncertainty. There is consistency index in determining decisions. Performance measurement in this study is based on a perspective of the Balanced Scorecard. This research approach integrated internal business perspective, learning, and growth perspective and fuzzy Analytic Network Process (FANP). The results of this research areframework a priority weighting of assessment indicators SME.
Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations
NASA Astrophysics Data System (ADS)
Niemeier, Wolfgang; Tengen, Dieter
2017-06-01
In this article first ideas are presented to extend the classical concept of geodetic network adjustment by introducing a new method for uncertainty assessment as two-step analysis. In the first step the raw data and possible influencing factors are analyzed using uncertainty modeling according to GUM (Guidelines to the Expression of Uncertainty in Measurements). This approach is well established in metrology, but rarely adapted within Geodesy. The second step consists of Monte-Carlo-Simulations (MC-simulations) for the complete processing chain from raw input data and pre-processing to adjustment computations and quality assessment. To perform these simulations, possible realizations of raw data and the influencing factors are generated, using probability distributions for all variables and the established concept of pseudo-random number generators. Final result is a point cloud which represents the uncertainty of the estimated coordinates; a confidence region can be assigned to these point clouds, as well. This concept may replace the common concept of variance propagation and the quality assessment of adjustment parameters by using their covariance matrix. It allows a new way for uncertainty assessment in accordance with the GUM concept for uncertainty modelling and propagation. As practical example the local tie network in "Metsähovi Fundamental Station", Finland is used, where classical geodetic observations are combined with GNSS data.
NASA Technical Reports Server (NTRS)
Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris; Holden, Tina; Rudisill, Marianne
1993-01-01
One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry.
A closer look at cross-validation for assessing the accuracy of gene regulatory networks and models.
Tabe-Bordbar, Shayan; Emad, Amin; Zhao, Sihai Dave; Sinha, Saurabh
2018-04-26
Cross-validation (CV) is a technique to assess the generalizability of a model to unseen data. This technique relies on assumptions that may not be satisfied when studying genomics datasets. For example, random CV (RCV) assumes that a randomly selected set of samples, the test set, well represents unseen data. This assumption doesn't hold true where samples are obtained from different experimental conditions, and the goal is to learn regulatory relationships among the genes that generalize beyond the observed conditions. In this study, we investigated how the CV procedure affects the assessment of supervised learning methods used to learn gene regulatory networks (or in other applications). We compared the performance of a regression-based method for gene expression prediction estimated using RCV with that estimated using a clustering-based CV (CCV) procedure. Our analysis illustrates that RCV can produce over-optimistic estimates of the model's generalizability compared to CCV. Next, we defined the 'distinctness' of test set from training set and showed that this measure is predictive of performance of the regression method. Finally, we introduced a simulated annealing method to construct partitions with gradually increasing distinctness and showed that performance of different gene expression prediction methods can be better evaluated using this method.
Dynamic frame resizing with convolutional neural network for efficient video compression
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Park, Youngo; Choi, Kwang Pyo; Lee, JongSeok; Jeon, Sunyoung; Park, JeongHoon
2017-09-01
In the past, video codecs such as vc-1 and H.263 used a technique to encode reduced-resolution video and restore original resolution from the decoder for improvement of coding efficiency. The techniques of vc-1 and H.263 Annex Q are called dynamic frame resizing and reduced-resolution update mode, respectively. However, these techniques have not been widely used due to limited performance improvements that operate well only under specific conditions. In this paper, video frame resizing (reduced/restore) technique based on machine learning is proposed for improvement of coding efficiency. The proposed method features video of low resolution made by convolutional neural network (CNN) in encoder and reconstruction of original resolution using CNN in decoder. The proposed method shows improved subjective performance over all the high resolution videos which are dominantly consumed recently. In order to assess subjective quality of the proposed method, Video Multi-method Assessment Fusion (VMAF) which showed high reliability among many subjective measurement tools was used as subjective metric. Moreover, to assess general performance, diverse bitrates are tested. Experimental results showed that BD-rate based on VMAF was improved by about 51% compare to conventional HEVC. Especially, VMAF values were significantly improved in low bitrate. Also, when the method is subjectively tested, it had better subjective visual quality in similar bit rate.
Assessment of the 802.11g Wireless Protocol for Lunar Surface Communications
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Bguyen, Hung D.; Foore, Lawrence R.
2009-01-01
Future lunar surface missions supporting the NASA Vision for Space Exploration will rely on wireless networks to transmit voice and data. The ad hoc network architecture is of particular interest since it does not require a complex infrastructure. In this report, we looked at data performance over an ad hoc network with varying distances between Apple AirPort wireless cards. We developed a testing program to transmit data packets at precise times and then monitored the receive time to characterize connection delay, packet loss, and data rate. Best results were received for wireless links of less than 75 ft, and marginally acceptable (25-percent) packet loss was received at 150 ft. It is likely that better results will be obtained on the lunar surface because of reduced radiofrequency interference; however, higher power transmitters or receivers will be needed for significant performance gains.
Prediction of wastewater treatment plants performance based on artificial fish school neural network
NASA Astrophysics Data System (ADS)
Zhang, Ruicheng; Li, Chong
2011-10-01
A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.
Public–nonprofit partnership performance in a disaster context: the case of Haiti.
Nolte, Isabella M; Boenigk, Silke
2011-01-01
During disasters, partnerships between public and nonprofit organizations are vital to provide fast relief to affected communities. In this article, we develop a process model to support a performance evaluation of such intersectoral partnerships. The model includes input factors, organizational structures, outputs and the long-term outcomes of public–nonprofit partnerships. These factors derive from theory and a systematic literature review of emergency, public, nonprofit, and network research. To adapt the model to a disaster context, we conducted a case study that examines public and nonprofit organizations that partnered during the 2010 Haiti earthquake. The case study results show that communication, trust, and experience are the most important partnership inputs; the most prevalent governance structure of public–nonprofit partnerships is a lead organization network. Time and quality measures should be considered to assess partnership outputs, and community, network, and organizational actor perspectives must be taken into account when evaluating partnership outcomes.
Integrated modelling for the evaluation of infiltration effects.
Schulz, N; Baur, R; Krebs, P
2005-01-01
The objective of the present study is the estimation of the potential benefits of sewer pipe rehabilitation for the performance of the drainage system and the wastewater treatment plant (WWTP) as well as for the receiving water quality. The relation of sewer system status and the infiltration rate is assessed based on statistical analysis of 470 km of CCTV (Closed Circuit Television) inspected sewers of the city of Dresden. The potential reduction of infiltration rates and the consequent performance improvements of the urban wastewater system are simulated as a function of rehabilitation activities in the network. The integrated model is applied to an artificial system with input from a real sewer network. In this paper, the general design of the integrated model and its data requirements are presented. For an exemplary study, the consequences of the simulations are discussed with respect to the prioritisation of rehabilitation activities in the network.
Financial networks based on Granger causality: A case study
NASA Astrophysics Data System (ADS)
Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees
2017-09-01
Connectivity analysis is performed on a long financial record of 21 international stock indices employing a linear and a nonlinear causality measure, the conditional Granger causality index (CGCI) and the partial mutual information on mixed embedding (PMIME), respectively. Both measures aim to specify the direction of the interrelationships among the international stock indexes and portray the links of the resulting networks, by the presence of direct couplings between variables exploiting all available information. However, their differences are assessed due to the presence of nonlinearity. The weighted networks formed with respect to the causality measures are transformed to binary ones using a significance test. The financial networks are formed on sliding windows in order to examine the network characteristics and trace changes in the connectivity structure. Subsequently, two statistical network quantities are calculated; the average degree and the average shortest path length. The empirical findings reveal interesting time-varying properties of the constructed network, which are clearly dependent on the nature of the financial cycle.
Learning a Markov Logic network for supervised gene regulatory network inference
2013-01-01
Background Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. Results We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate “regulates”, starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. Conclusions The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge. PMID:24028533
Learning a Markov Logic network for supervised gene regulatory network inference.
Brouard, Céline; Vrain, Christel; Dubois, Julie; Castel, David; Debily, Marie-Anne; d'Alché-Buc, Florence
2013-09-12
Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate "regulates", starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge.
Myung, W; Han, C E; Fava, M; Mischoulon, D; Papakostas, G I; Heo, J-Y; Kim, K W; Kim, S T; Kim, D J H; Kim, D K; Seo, S W; Seong, J-K; Jeon, H J
2016-01-01
Major depressive disorder (MDD) and suicidal behavior have been associated with structural and functional changes in the brain. However, little is known regarding alterations of brain networks in MDD patients with suicidal ideation. We investigated whether or not MDD patients with suicidal ideation have different topological organizations of white matter networks compared with MDD patients without suicidal ideation. Participants consisted of 24 patients with MDD and suicidal ideation, 25 age- and gender-matched MDD patients without suicidal ideation and 31 healthy subjects. A network-based statistics (NBS) and a graph theoretical analysis were performed to assess differences in the inter-regional connectivity. Diffusion tensor imaging (DTI) was performed to assess topological changes according to suicidal ideation in MDD patients. The Scale for Suicide Ideation (SSI) and the Korean version of the Barrett Impulsiveness Scale (BIS) were used to assess the severity of suicidal ideation and impulsivity, respectively. Reduced structural connectivity in a characterized subnetwork was found in patients with MDD and suicidal ideation by utilizing NBS analysis. The subnetwork included the regions of the frontosubcortical circuits and the regions involved in executive function in the left hemisphere (rostral middle frontal, pallidum, superior parietal, frontal pole, caudate, putamen and thalamus). The graph theoretical analysis demonstrated that network measures of the left rostral middle frontal had a significant positive correlation with severity of SSI (r=0.59, P=0.02) and BIS (r=0.59, P=0.01). The total edge strength that was significantly associated with suicidal ideation did not differ between MDD patients without suicidal ideation and healthy subjects. Our findings suggest that the reduced frontosubcortical circuit of structural connectivity, which includes regions associated with executive function and impulsivity, appears to have a role in the emergence of suicidal ideation in MDD patients. PMID:27271861
The inland water macro-invertebrate occurrences in Flanders, Belgium.
Vannevel, Rudy; Brosens, Dimitri; Cooman, Ward De; Gabriels, Wim; Frank Lavens; Mertens, Joost; Vervaeke, Bart
2018-01-01
The Flanders Environment Agency (VMM) has been performing biological water quality assessments on inland waters in Flanders (Belgium) since 1989 and sediment quality assessments since 2000. The water quality monitoring network is a combined physico-chemical and biological network, the biological component focusing on macro-invertebrates. The sediment monitoring programme produces biological data to assess the sediment quality. Both monitoring programmes aim to provide index values, applying a similar conceptual methodology based on the presence of macro-invertebrates. The biological data obtained from both monitoring networks are consolidated in the VMM macro-invertebrates database and include identifications at family and genus level of the freshwater phyla Coelenterata, Platyhelminthes, Annelida, Mollusca, and Arthropoda. This paper discusses the content of this database, and the dataset published thereof: 282,309 records of 210 observed taxa from 4,140 monitoring sites located on 657 different water bodies, collected during 22,663 events. This paper provides some background information on the methodology, temporal and spatial coverage, and taxonomy, and describes the content of the dataset. The data are distributed as open data under the Creative Commons CC-BY license.
A Markov game theoretic data fusion approach for cyber situational awareness
NASA Astrophysics Data System (ADS)
Shen, Dan; Chen, Genshe; Cruz, Jose B., Jr.; Haynes, Leonard; Kruger, Martin; Blasch, Erik
2007-04-01
This paper proposes an innovative data-fusion/ data-mining game theoretic situation awareness and impact assessment approach for cyber network defense. Alerts generated by Intrusion Detection Sensors (IDSs) or Intrusion Prevention Sensors (IPSs) are fed into the data refinement (Level 0) and object assessment (L1) data fusion components. High-level situation/threat assessment (L2/L3) data fusion based on Markov game model and Hierarchical Entity Aggregation (HEA) are proposed to refine the primitive prediction generated by adaptive feature/pattern recognition and capture new unknown features. A Markov (Stochastic) game method is used to estimate the belief of each possible cyber attack pattern. Game theory captures the nature of cyber conflicts: determination of the attacking-force strategies is tightly coupled to determination of the defense-force strategies and vice versa. Also, Markov game theory deals with uncertainty and incompleteness of available information. A software tool is developed to demonstrate the performance of the high level information fusion for cyber network defense situation and a simulation example shows the enhanced understating of cyber-network defense.
2014-03-31
Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks M.M. Asadi H. Mahboubi A...2014 Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks Contract Report # AMBUSH.1.1 Contract...pi j /= 0. The sensor network considered in this work is composed of underwater sensors , which use acoustic waves for
Early grey matter changes in structural covariance networks in Huntington's disease.
Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C
2016-01-01
Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p < 0.001, in pre-HD p = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p < 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.
Systematic network assessment of the carcinogenic activities of cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peizhan; Duan, Xiaohua; Li, Mian
Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscapemore » software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.« less
NASA Technical Reports Server (NTRS)
Shelhamer, M.; Mindock, J.; Lumpkins, S.
2015-01-01
NASA supports research to mitigate risks to health and performance on extended missions. Typically these risks are investigated independently. In reality, physiological systems are tightly coupled, and related to psychological and inter-individual factors (team cohesion, conflict). We draw on ideas from network theory to assess these interactions and better design a research framework to address them.
NASA Astrophysics Data System (ADS)
Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli
2018-05-01
Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.
de Waal, Hanneke; Stam, Cornelis J; Lansbergen, Marieke M; Wieggers, Rico L; Kamphuis, Patrick J G H; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C W
2014-01-01
Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. 179 drug-naïve mild AD patients who participated in the Souvenir II study. Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for assessing the effects of interventions. Dutch Trial Register NTR1975.
de Waal, Hanneke; Stam, Cornelis J.; Lansbergen, Marieke M.; Wieggers, Rico L.; Kamphuis, Patrick J. G. H.; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C. W.
2014-01-01
Background Synaptic loss is a major hallmark of Alzheimer’s disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. Objective To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. Design A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. Participants 179 drug-naïve mild AD patients who participated in the Souvenir II study. Intervention Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. Outcome In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. Results The network measures in the beta band were significantly different between groups: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. Conclusions The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for assessing the effects of interventions. Trial registration Dutch Trial Register NTR1975. PMID:24475144
Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative
2015-01-01
Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791
Deng, Lei; Wu, Hongjie; Liu, Chuyao; Zhan, Weihua; Zhang, Jingpu
2018-06-01
Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as immune response, development, differentiation and gene imprinting and are associated with diseases and cancers. But the functions of the vast majority of lncRNAs are still unknown. Predicting the biological functions of lncRNAs is one of the key challenges in the post-genomic era. In our work, We first build a global network including a lncRNA similarity network, a lncRNA-protein association network and a protein-protein interaction network according to the expressions and interactions, then extract the topological feature vectors of the global network. Using these features, we present an SVM-based machine learning approach, PLNRGO, to annotate human lncRNAs. In PLNRGO, we construct a training data set according to the proteins with GO annotations and train a binary classifier for each GO term. We assess the performance of PLNRGO on our manually annotated lncRNA benchmark and a protein-coding gene benchmark with known functional annotations. As a result, the performance of our method is significantly better than that of other state-of-the-art methods in terms of maximum F-measure and coverage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phasic and tonic alerting in mild cognitive impairment: A preliminary study.
Martella, Diana; Manzanares, Salvadora; Campoy, Guillermo; Roca, Javier; Antúnez, Carmen; Fuentes, Luis J
2014-01-01
In this preliminary study we assessed the functioning of the different attentional networks in mild cognitive impairment (MCI) patients, taking as theoretical framework the Posner's cognitive neuroscience approach. Two groups of participants were tested in a single short experiment: 20 MCI patients (6 amnestic, 6 non-amnestic and 8 multiple-domain) and 18 healthy matched controls (HC). For attentional assessment we used a version of the Attention Network Test (the ANTI-V) that provided not only a score of the orienting, the executive, and the alerting networks and their interactions, but also an independent measure of vigilance (tonic alerting). The results showed that all subtypes of MCI patients exhibited a selective impairment in the tonic component of alerting, as indexed by a decrease in the d' sensitivity index, and their performance in executive network increased up to the HC group level when phasic alerting was provided by a warning tone. Our findings suggest that a core attentional deficit, especially the endogenous component of alerting, may significantly contribute to the behavioral and cognitive deficits associated with MCI. Copyright © 2013 Elsevier Inc. All rights reserved.
Schwaibold, M; Schöchlin, J; Bolz, A
2002-01-01
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
NASA Astrophysics Data System (ADS)
Kashim, Rosmaini; Kasim, Maznah Mat; Rahman, Rosshairy Abd
2015-12-01
Measuring university performance is essential for efficient allocation and utilization of educational resources. In most of the previous studies, performance measurement in universities emphasized the operational efficiency and resource utilization without investigating the university's ability to fulfill the needs of its stakeholders and society. Therefore, assessment of the performance of university should be separated into two stages namely efficiency and effectiveness. In conventional DEA analysis, a decision making unit (DMU) or in this context, a university is generally treated as a black-box which ignores the operation and interdependence of the internal processes. When this happens, the results obtained would be misleading. Thus, this paper suggest an alternative framework for measuring the overall performance of a university by incorporating both efficiency and effectiveness and applies network DEA model. The network DEA models are recommended because this approach takes into account the interrelationship between the processes of efficiency and effectiveness in the system. This framework also focuses on the university structure which is expanded from the hierarchical to form a series of horizontal relationship between subordinate units by assuming both intermediate unit and its subordinate units can generate output(s). Three conceptual models are proposed to evaluate the performance of a university. An efficiency model is developed at the first stage by using hierarchical network model. It is followed by an effectiveness model which take output(s) from the hierarchical structure at the first stage as a input(s) at the second stage. As a result, a new overall performance model is proposed by combining both efficiency and effectiveness models. Thus, once this overall model is realized and utilized, the university's top management can determine the overall performance of each unit more accurately and systematically. Besides that, the result from the network DEA model can give a superior benchmarking power over the conventional models.
AlignNemo: a local network alignment method to integrate homology and topology.
Ciriello, Giovanni; Mina, Marco; Guzzi, Pietro H; Cannataro, Mario; Guerra, Concettina
2012-01-01
Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo.
RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA).
Oestreicher, Ursula; Samaga, Daniel; Ainsbury, Elizabeth; Antunes, Ana Catarina; Baeyens, Ans; Barrios, Leonardo; Beinke, Christina; Beukes, Philip; Blakely, William F; Cucu, Alexandra; De Amicis, Andrea; Depuydt, Julie; De Sanctis, Stefania; Di Giorgio, Marina; Dobos, Katalin; Dominguez, Inmaculada; Duy, Pham Ngoc; Espinoza, Marco E; Flegal, Farrah N; Figel, Markus; Garcia, Omar; Monteiro Gil, Octávia; Gregoire, Eric; Guerrero-Carbajal, C; Güçlü, İnci; Hadjidekova, Valeria; Hande, Prakash; Kulka, Ulrike; Lemon, Jennifer; Lindholm, Carita; Lista, Florigio; Lumniczky, Katalin; Martinez-Lopez, Wilner; Maznyk, Nataliya; Meschini, Roberta; M'kacher, Radia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Noditi, Mihaela; Pajic, Jelena; Radl, Analía; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Slabbert, Jacobus; Sommer, Sylwester; Stuck Oliveira, Monica; Subramanian, Uma; Suto, Yumiko; Que, Tran; Testa, Antonella; Terzoudi, Georgia; Vral, Anne; Wilkins, Ruth; Yanti, LusiYanti; Zafiropoulos, Demetre; Wojcik, Andrzej
2017-01-01
Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.
Welch, J. P.; Sims, N.; Ford-Carlton, P.; Moon, J. B.; West, K.; Honore, G.; Colquitt, N.
1991-01-01
The article describes a study conducted on general surgical and thoracic surgical floors of a 1000-bed hospital to assess the impact of a new network for portable patient care devices. This network was developed to address the needs of hospital patients who need constant, multi-parameter, vital signs surveillance, but do not require intensive nursing care. Bedside wall jacks were linked to UNIX-based workstations using standard digital network hardware, creating a flexible system (for general care floors of the hospital) that allowed the number of monitored locations to increase and decrease as patient census and acuity levels varied. It also allowed the general care floors to provide immediate, centralized vital signs monitoring for patients who unexpectedly became unstable, and permitted portable monitors to travel with patients as they were transferred between hospital departments. A disk-based log within the workstation automatically collected performance data, including patient demographics, monitor alarms, and network status for analysis. The log has allowed the developers to evaluate the use and performance of the system. PMID:1807720
Assessing Research Collaboration through Co-Authorship Network Analysis
ERIC Educational Resources Information Center
Fagan, Jesse; Eddens, Katherine S.; Dolly, Jennifer; Vanderford, Nathan L.; Weiss, Heidi; Levens, Justin S.
2018-01-01
Interdisciplinary research collaboration is needed to perform transformative science and accelerate innovation. The Science of Team Science strives to investigate, evaluate, and foster team science, including institutional policies that may promote or hinder collaborative interdisciplinary research and the resources and infrastructure needed to…
Status of Test and Analysis Plans For 915 MHz Wind Profiler Replacement Technology Assessment
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Barbre/Jacobs, BJ
2017-01-01
Evaluate the performance and output of instruments that could replace the current 915-MHz Doppler Radar Wind Profiler (DRWP) networks at the Eastern Range (ER) and Western Range (WR) over a three month (12 week) period.
42 CFR 438.206 - Availability of services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... female enrollees with direct access to a women's health specialist within the network for covered care... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and Performance Improvement Access... health care needs of specific Medicaid populations represented in the particular MCO, PIHP, and PAHP...
42 CFR 438.206 - Availability of services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... female enrollees with direct access to a women's health specialist within the network for covered care... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and Performance Improvement Access... health care needs of specific Medicaid populations represented in the particular MCO, PIHP, and PAHP...
42 CFR 438.206 - Availability of services.
Code of Federal Regulations, 2012 CFR
2012-10-01
... female enrollees with direct access to a women's health specialist within the network for covered care... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and Performance Improvement Access... health care needs of specific Medicaid populations represented in the particular MCO, PIHP, and PAHP...
42 CFR 438.206 - Availability of services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... female enrollees with direct access to a women's health specialist within the network for covered care... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and Performance Improvement Access... health care needs of specific Medicaid populations represented in the particular MCO, PIHP, and PAHP...
Dynamic robustness of knowledge collaboration network of open source product development community
NASA Astrophysics Data System (ADS)
Zhou, Hong-Li; Zhang, Xiao-Dong
2018-01-01
As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.
Analytic network process model for sustainable lean and green manufacturing performance indicator
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik
2014-09-01
Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.
Hege, M A; Stingl, K T; Kullmann, S; Schag, K; Giel, K E; Zipfel, S; Preissl, H
2015-02-01
A subgroup of overweight and obese people is characterized by binge eating disorder (BED). Increased impulsivity has been suggested to cause binge eating and subsequent weight gain. In the current study, neuronal correlates of increased impulsivity in binge eating disorder during behavioral response inhibition were investigated. Magnetic brain activity and behavioral responses of 37 overweight and obese individuals with and without diagnosed BED were recorded while performing a food-related visual go-nogo task. Trait impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11). Specifically, increased attentional impulsiveness (a subscale of the BIS-11) in BED was related to decreased response inhibition performance and hypoactivity in the prefrontal control network, which was activated when response inhibition was required. Furthermore, participants with BED showed a trend for a food-specific inhibition performance decline. This was possibly related to the absence of a food-specific activity increase in the prefrontal control network in BED, as observed in the control group. In addition, an increase in activity related to the actual button press during prepotent responses and alterations in visual processing were observed. Our results suggest an attentional impulsiveness-related attenuation in response inhibition performance in individuals with BED. This might have been related to increased reward responsiveness and limited resources to activate the prefrontal control network involved in response inhibition. Our results substantiate the importance of neuronal markers for investigating prevention and treatment of obesity, especially in specific subgroups at risk such as BED.
Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis.
Caeyenberghs, K; Powell, H W R; Thomas, R H; Brindley, L; Church, C; Evans, J; Muthukumaraswamy, S D; Jones, D K; Hamandi, K
2015-01-01
Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients.
Design of a monitoring network over France in case of a radiological accidental release
NASA Astrophysics Data System (ADS)
Abida, Rachid; Bocquet, Marc; Vercauteren, Nikki; Isnard, Olivier
The Institute of Radiation Protection and Nuclear Safety (France) is planning the set-up of an automatic nuclear aerosol monitoring network over the French territory. Each of the stations will be able to automatically sample the air aerosol content and provide activity concentration measurements on several radionuclides. This should help monitor the French and neighbouring countries nuclear power plants set. It would help evaluate the impact of a radiological incident occurring at one of these nuclear facilities. This paper is devoted to the spatial design of such a network. Here, any potential network is judged on its ability to extrapolate activity concentrations measured on the network stations over the whole domain. The performance of a network is quantitatively assessed through a cost function that measures the discrepancy between the extrapolation and the true concentration fields. These true fields are obtained through the computation of a database of dispersion accidents over one year of meteorology and originating from 20 French nuclear sites. A close to optimal network is then looked for using a simulated annealing optimisation. The results emphasise the importance of the cost function in the design of a network aimed at monitoring an accidental dispersion. Several choices of norm used in the cost function are studied and give way to different designs. The influence of the number of stations is discussed. A comparison with a purely geometric approach which does not involve simulations with a chemistry-transport model is performed.
Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis
Caeyenberghs, K.; Powell, H.W.R.; Thomas, R.H.; Brindley, L.; Church, C.; Evans, J.; Muthukumaraswamy, S.D.; Jones, D.K.; Hamandi, K.
2014-01-01
Objective Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Methods Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Results Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Conclusions Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients. PMID:25610771
A low-cost, tablet-based option for prehospital neurologic assessment: The iTREAT Study.
Chapman Smith, Sherita N; Govindarajan, Prasanthi; Padrick, Matthew M; Lippman, Jason M; McMurry, Timothy L; Resler, Brian L; Keenan, Kevin; Gunnell, Brian S; Mehndiratta, Prachi; Chee, Christina Y; Cahill, Elizabeth A; Dietiker, Cameron; Cattell-Gordon, David C; Smith, Wade S; Perina, Debra G; Solenski, Nina J; Worrall, Bradford B; Southerland, Andrew M
2016-07-05
In this 2-center study, we assessed the technical feasibility and reliability of a low cost, tablet-based mobile telestroke option for ambulance transport and hypothesized that the NIH Stroke Scale (NIHSS) could be performed with similar reliability between remote and bedside examinations. We piloted our mobile telemedicine system in 2 geographic regions, central Virginia and the San Francisco Bay Area, utilizing commercial cellular networks for videoconferencing transmission. Standardized patients portrayed scripted stroke scenarios during ambulance transport and were evaluated by independent raters comparing bedside to remote mobile telestroke assessments. We used a mixed-effects regression model to determine intraclass correlation of the NIHSS between bedside and remote examinations (95% confidence interval). We conducted 27 ambulance runs at both sites and successfully completed the NIHSS for all prehospital assessments without prohibitive technical interruption. The mean difference between bedside (face-to-face) and remote (video) NIHSS scores was 0.25 (1.00 to -0.50). Overall, correlation of the NIHSS between bedside and mobile telestroke assessments was 0.96 (0.92-0.98). In the mixed-effects regression model, there were no statistically significant differences accounting for method of evaluation or differences between sites. Utilizing a low-cost, tablet-based platform and commercial cellular networks, we can reliably perform prehospital neurologic assessments in both rural and urban settings. Further research is needed to establish the reliability and validity of prehospital mobile telestroke assessment in live patients presenting with acute neurologic symptoms. © 2016 American Academy of Neurology.
A low-cost, tablet-based option for prehospital neurologic assessment
Chapman Smith, Sherita N.; Govindarajan, Prasanthi; Padrick, Matthew M.; Lippman, Jason M.; McMurry, Timothy L.; Resler, Brian L.; Keenan, Kevin; Gunnell, Brian S.; Mehndiratta, Prachi; Chee, Christina Y.; Cahill, Elizabeth A.; Dietiker, Cameron; Cattell-Gordon, David C.; Smith, Wade S.; Perina, Debra G.; Solenski, Nina J.; Worrall, Bradford B.
2016-01-01
Objectives: In this 2-center study, we assessed the technical feasibility and reliability of a low cost, tablet-based mobile telestroke option for ambulance transport and hypothesized that the NIH Stroke Scale (NIHSS) could be performed with similar reliability between remote and bedside examinations. Methods: We piloted our mobile telemedicine system in 2 geographic regions, central Virginia and the San Francisco Bay Area, utilizing commercial cellular networks for videoconferencing transmission. Standardized patients portrayed scripted stroke scenarios during ambulance transport and were evaluated by independent raters comparing bedside to remote mobile telestroke assessments. We used a mixed-effects regression model to determine intraclass correlation of the NIHSS between bedside and remote examinations (95% confidence interval). Results: We conducted 27 ambulance runs at both sites and successfully completed the NIHSS for all prehospital assessments without prohibitive technical interruption. The mean difference between bedside (face-to-face) and remote (video) NIHSS scores was 0.25 (1.00 to −0.50). Overall, correlation of the NIHSS between bedside and mobile telestroke assessments was 0.96 (0.92–0.98). In the mixed-effects regression model, there were no statistically significant differences accounting for method of evaluation or differences between sites. Conclusions: Utilizing a low-cost, tablet-based platform and commercial cellular networks, we can reliably perform prehospital neurologic assessments in both rural and urban settings. Further research is needed to establish the reliability and validity of prehospital mobile telestroke assessment in live patients presenting with acute neurologic symptoms. PMID:27281534
Takahashi, Yoshimitsu; Uchida, Chiyoko; Miyaki, Koichi; Sakai, Michi; Shimbo, Takuro; Nakayama, Takeo
2009-07-23
Internet peer support groups for depression are becoming popular and could be affected by an increasing number of social network services (SNSs). However, little is known about participant characteristics, social relationships in SNSs, and the reasons for usage. In addition, the effects of SNS participation on people with depression are rather unknown. The aim was to explore the potential benefits and harms of an SNS for depression based on a concurrent triangulation design of mixed methods strategy, including qualitative content analysis and social network analysis. A cross-sectional Internet survey of participants, which involved the collection of SNS log files and a questionnaire, was conducted in an SNS for people with self-reported depressive tendencies in Japan in 2007. Quantitative data, which included user demographics, depressive state, and assessment of the SNS (positive vs not positive), were statistically analyzed. Descriptive contents of responses to open-ended questions concerning advantages and disadvantages of SNS participation were analyzed using the inductive approach of qualitative content analysis. Contents were organized into codes, concepts, categories, and a storyline based on the grounded theory approach. Social relationships, derived from data of "friends," were analyzed using social network analysis, in which network measures and the extent of interpersonal association were calculated based on the social network theory. Each analysis and integration of results were performed through a concurrent triangulation design of mixed methods strategy. There were 105 participants. Median age was 36 years, and 51% (36/71) were male. There were 37 valid respondents; their number of friends and frequency of accessing the SNS were significantly higher than for invalid/nonrespondents (P = .008 and P = .003). Among respondents, 90% (28/31) were mildly, moderately, or severely depressed. Assessment of the SNS was performed by determining the access frequency of the SNS and the number of friends. Qualitative content analysis indicated that user-selectable peer support could be passive, active, and/or interactive based on anonymity or ease of use, and there was the potential harm of a downward depressive spiral triggered by aggravated psychological burden. Social network analysis revealed that users communicated one-on-one with each other or in small groups (five people or less). A downward depressive spiral was related to friends who were moderately or severely depressed and friends with negative assessment of the SNS. An SNS for people with depressive tendencies provides various opportunities to obtain support that meets users' needs. To avoid a downward depressive spiral, we recommend that participants do not use SNSs when they feel that the SNS is not user-selectable, when they get egocentric comments, when friends have a negative assessment of the SNS, or when they have additional psychological burden.
Validating module network learning algorithms using simulated data.
Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves
2007-05-03
In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network algorithms. We used SynTReN data to develop and test an alternative module network learning strategy, which is incorporated in the software package LeMoNe, and we provide evidence that this alternative strategy has several advantages with respect to existing methods.
Protein complex prediction for large protein protein interaction networks with the Core&Peel method.
Pellegrini, Marco; Baglioni, Miriam; Geraci, Filippo
2016-11-08
Biological networks play an increasingly important role in the exploration of functional modularity and cellular organization at a systemic level. Quite often the first tools used to analyze these networks are clustering algorithms. We concentrate here on the specific task of predicting protein complexes (PC) in large protein-protein interaction networks (PPIN). Currently, many state-of-the-art algorithms work well for networks of small or moderate size. However, their performance on much larger networks, which are becoming increasingly common in modern proteome-wise studies, needs to be re-assessed. We present a new fast algorithm for clustering large sparse networks: Core&Peel, which runs essentially in time and storage O(a(G)m+n) for a network G of n nodes and m arcs, where a(G) is the arboricity of G (which is roughly proportional to the maximum average degree of any induced subgraph in G). We evaluated Core&Peel on five PPI networks of large size and one of medium size from both yeast and homo sapiens, comparing its performance against those of ten state-of-the-art methods. We demonstrate that Core&Peel consistently outperforms the ten competitors in its ability to identify known protein complexes and in the functional coherence of its predictions. Our method is remarkably robust, being quite insensible to the injection of random interactions. Core&Peel is also empirically efficient attaining the second best running time over large networks among the tested algorithms. Our algorithm Core&Peel pushes forward the state-of the-art in PPIN clustering providing an algorithmic solution with polynomial running time that attains experimentally demonstrable good output quality and speed on challenging large real networks.
Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.
de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J
2017-01-01
In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2 = 0.070) and p = 0.001 (β = - 0.264, η p 2 = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.
Van Vaerenbergh, J; Vranken, R; Briers, L; Briers, H
2001-11-01
A data glove is a typical input device to control a virtual environment. At the same time it measures movements of wrist and fingers. The purposes of this investigation were to assess the ability of BrainMaker, a neural network, to recognize movement patterns during an opposition task that consisted of repetitive self-paced movements of the fingers in opposition to the thumb. The neural network contained 56 inputs, 3 hidden layers of 20 neurons, and one output. The 5th glove '95 (5DT), a commercial glove especially designed for virtual reality games, was used for finger motion capture. The training of the neural network was successful for recognizing the thumb, the index finger and the ring finger movements during the repetitive self-paced movements and neural network performed well during testing.
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons.
Probst, Dimitri; Petrovici, Mihai A; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz
2015-01-01
The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems.
Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons
Probst, Dimitri; Petrovici, Mihai A.; Bytschok, Ilja; Bill, Johannes; Pecevski, Dejan; Schemmel, Johannes; Meier, Karlheinz
2015-01-01
The means by which cortical neural networks are able to efficiently solve inference problems remains an open question in computational neuroscience. Recently, abstract models of Bayesian computation in neural circuits have been proposed, but they lack a mechanistic interpretation at the single-cell level. In this article, we describe a complete theoretical framework for building networks of leaky integrate-and-fire neurons that can sample from arbitrary probability distributions over binary random variables. We test our framework for a model inference task based on a psychophysical phenomenon (the Knill-Kersten optical illusion) and further assess its performance when applied to randomly generated distributions. As the local computations performed by the network strongly depend on the interaction between neurons, we compare several types of couplings mediated by either single synapses or interneuron chains. Due to its robustness to substrate imperfections such as parameter noise and background noise correlations, our model is particularly interesting for implementation on novel, neuro-inspired computing architectures, which can thereby serve as a fast, low-power substrate for solving real-world inference problems. PMID:25729361
Adjagba, Alex; MacDonald, Noni E; Ortega-Pérez, Inmaculada; Duclos, Philippe
2017-05-25
National Immunization Technical Advisory Groups (NITAGs) provide independent, evidence-informed advice to assist their governments in immunization policy formation. However, many NITAGs face challenges in fulfilling their roles. Hence the many requests for formation of a network linking NITAGs together so they can learn from each other. To address this request, the Health Policy and Institutional Development (HPID) Center (a WHO Collaborating Center at the Agence de Médecine Préventive - AMP), in collaboration with WHO, organized a meeting in Veyrier-du-Lac, France, on 11 and 12 May 2016, to establish a Global NITAG Network (GNN). The meeting focused on two areas: the requirements for (a) the establishment of a global NITAG collaborative network; and (b) the global assessment/evaluation of the performance of NITAGs. 35 participants from 26 countries reviewed the proposed GNN framework documents and NITAG performance evaluation. Participants recommended that a GNN should be established, agreed on its governance, function, scope and a proposed work plan as well as setting a framework for NITAG evaluation. Copyright © 2017.
NASA Astrophysics Data System (ADS)
De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio
2016-06-01
In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.
Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon
2009-09-01
The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.
Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H
2014-05-01
Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.
Dørum, Erlend S; Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Lund, Martina J; Tønnesen, Siren; Sneve, Markus H; Mathiesen, Nina C; Rustan, Øyvind G; Gjertsen, Øivind; Vatn, Sigurd; Fure, Brynjar; Andreassen, Ole A; Nordvik, Jan Egil; Westlye, Lars T
2016-11-01
Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age. We obtained fMRI data during MOT at two load conditions from a group of younger ( n = 25, mean age = 24.4 ± 5.1 years) and older ( n = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations. Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults. Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.
Understanding Student Recommendations to Attend NIACC
ERIC Educational Resources Information Center
Morrison, Michael C.
2008-01-01
Successful organizations, both public and private, rely heavily on "word-of-mouth recommendations" for their products and services. Financial viability of any organization depends profoundly on formal and informal networks of customers who pass their assessments of an organization's performance to acquaintances, friends and families.…
Nogueira, Mariana A; Abreu, Pedro H; Martins, Pedro; Machado, Penousal; Duarte, Hugo; Santos, João
2017-02-13
Positron Emission Tomography - Computed Tomography (PET/CT) imaging is the basis for the evaluation of response-to-treatment of several oncological diseases. In practice, such evaluation is manually performed by specialists, which is rather complex and time-consuming. Evaluation measures have been proposed, but with questionable reliability. The usage of before and after-treatment image descriptors of the lesions for treatment response evaluation is still a territory to be explored. In this project, Artificial Neural Network approaches were implemented to automatically assess treatment response of patients suffering from neuroendocrine tumors and Hodgkyn lymphoma, based on image features extracted from PET/CT. The results show that the considered set of features allows for the achievement of very high classification performances, especially when data is properly balanced. After synthetic data generation and PCA-based dimensionality reduction to only two components, LVQNN assured classification accuracies of 100%, 100%, 96.3% and 100% regarding the 4 response-to-treatment classes.
Communication Needs Assessment for Distributed Turbine Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Behbahani, Alireza R.
2008-01-01
Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.
Didic, Mira; Felician, Olivier; Gour, Natalina; Bernard, Rafaelle; Pécheux, Christophe; Mundler, Olivier; Ceccaldi, Mathieu; Guedj, Eric
2015-09-01
The ε4 allele of the apolipoprotein E (APO-E4) gene, a genetic risk factor for Alzheimer's disease (AD), also modulates brain metabolism and function in healthy subjects. The aim of the present study was to explore cerebral metabolism using FDG PET in healthy APO-E4 carriers by comparing cognitively normal APO-E4 carriers to noncarriers and to assess if patterns of metabolism are correlated with performance on cognitive tasks. Moreover, metabolic connectivity patterns were established in order to assess if the organization of neural networks is influenced by genetic factors. Whole-brain PET statistical analysis was performed at voxel-level using SPM8 with a threshold of p < 0.005, corrected for volume, with age, gender and level of education as nuisance variables. Significant hypometabolism between APO-E4 carriers (n = 11) and noncarriers (n = 30) was first determined. Mean metabolic values with clinical/neuropsychological data were extracted at the individual level, and correlations were searched using Spearman's rank test in the whole group. To evaluate metabolic connectivity from metabolic cluster(s) previously identified in the intergroup comparison, voxel-wise interregional correlation analysis (IRCA) was performed between groups of subjects. APO-E4 carriers had reduced metabolism within the left anterior medial temporal lobe (MTL), where neuropathological changes first appear in AD, including the entorhinal and perirhinal cortices. A correlation between metabolism in this area and performance on the DMS48 (delayed matching to sample-48 items) was found, in line with converging evidence involving the perirhinal cortex in object-based memory. Finally, a voxel-wise IRCA revealed stronger metabolic connectivity of the MTL cluster with neocortical frontoparietal regions in carriers than in noncarriers, suggesting compensatory metabolic networks. Exploring cerebral metabolism using FDG PET can contribute to a better understanding of the influence of genetic factors on cerebral metabolism at both the local and network levels leading to phenotypical variations of the healthy brain and selective vulnerability.
Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku
2009-01-01
Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050
Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks
Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina
2017-01-01
Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568
Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.
Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina
2017-11-28
Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roxas, R. M.; Monterola, C.; Carreon-Monterola, S. L.
2010-07-28
We probe the effect of seating arrangement, group composition and group-based competition on students' performance in Physics using a teaching technique adopted from Mazur's peer instruction method. Ninety eight lectures, involving 2339 students, were conducted across nine learning institutions from February 2006 to June 2009. All the lectures were interspersed with student interaction opportunities (SIO), in which students work in groups to discuss and answer concept tests. Two individual assessments were administered before and after the SIO. The ratio of the post-assessment score to the pre-assessment score and the Hake factor were calculated to establish the improvement in student performance.more » Using actual assessment results and neural network (NN) modeling, an optimal seating arrangement for a class was determined based on student seating location. The NN model also provided a quantifiable method for sectioning students. Lastly, the study revealed that competition-driven interactions increase within-group cooperation and lead to higher improvement on the students' performance.« less
Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.
Caillet, Pascal; Klemm, Sarah; Ducher, Michel; Aussem, Alexandre; Schott, Anne-Marie
2015-01-01
Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach. EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences. Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density. Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.
Study on additional carrier sensing for IEEE 802.15.4 wireless sensor networks.
Lee, Bih-Hwang; Lai, Ruei-Lung; Wu, Huai-Kuei; Wong, Chi-Ming
2010-01-01
Wireless sensor networks based on the IEEE 802.15.4 standard are able to achieve low-power transmissions in the guise of low-rate and short-distance wireless personal area networks (WPANs). The slotted carrier sense multiple access with collision avoidance (CSMA/CA) is used for contention mechanism. Sensor nodes perform a backoff process as soon as the clear channel assessment (CCA) detects a busy channel. In doing so they may neglect the implicit information of the failed CCA detection and further cause the redundant sensing. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. This paper proposes an additional carrier sensing (ACS) algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which in turn significantly improves throughput, average medium access control (MAC) delay and power consumption of CCA detection.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Models for Threat Assessment in Networks
2006-09-01
Software International and Command AntiVirus . [Online]. Available: http://www.commandsoftware.com/virus/newlove.html [38] C. Ng and P. Ferrie. (2000...28 2.3 False positive trends across all population sizes for r=0.7 and m=0.1 . . . . 33 2.4 False negative trends across all population...benefits analysis is often performed to determine the list of mitigation procedures. Traditionally, risk assessment has been done in part with software
Evaluation of tactical training in team handball by means of artificial neural networks.
Hassan, Amr; Schrapf, Norbert; Ramadan, Wael; Tilp, Markus
2017-04-01
While tactical performance in competition has been analysed extensively, the assessment of training processes of tactical behaviour has rather been neglected in the literature. Therefore, the purpose of this study is to provide a methodology to assess the acquisition and implementation of offensive tactical behaviour in team handball. The use of game analysis software combined with an artificial neural network (ANN) software enabled identifying tactical target patterns from high level junior players based on their positions during offensive actions. These patterns were then trained by an amateur junior handball team (n = 14, 17 (0.5) years)). Following 6 weeks of tactical training an exhibition game was performed where the players were advised to use the target patterns as often as possible. Subsequently, the position data of the game was analysed with an ANN. The test revealed that 58% of the played patterns could be related to the trained target patterns. The similarity between executed patterns and target patterns was assessed by calculating the mean distance between key positions of the players in the game and the target pattern which was 0.49 (0.20) m. In summary, the presented method appears to be a valid instrument to assess tactical training.
Cope, Shannon; Zhang, Jie; Saletan, Stephen; Smiechowski, Brielan; Jansen, Jeroen P; Schmid, Peter
2014-06-05
The aim of this study is to outline a general process for assessing the feasibility of performing a valid network meta-analysis (NMA) of randomized controlled trials (RCTs) to synthesize direct and indirect evidence for alternative treatments for a specific disease population. Several steps to assess the feasibility of an NMA are proposed based on existing recommendations. Next, a case study is used to illustrate this NMA feasibility assessment process in order to compare everolimus in combination with hormonal therapy to alternative chemotherapies in terms of progression-free survival for women with advanced breast cancer. A general process for assessing the feasibility of an NMA is outlined that incorporates explicit steps to visualize the heterogeneity in terms of treatment and outcome characteristics (Part A) as well as the study and patient characteristics (Part B). Additionally, steps are performed to illustrate differences within and across different types of direct comparisons in terms of baseline risk (Part C) and observed treatment effects (Part D) since there is a risk that the treatment effect modifiers identified may not explain the observed heterogeneity or inconsistency in the results due to unexpected, unreported or unmeasured differences. Depending on the data available, alternative approaches are suggested: list assumptions, perform a meta-regression analysis, subgroup analysis, sensitivity analyses, or summarize why an NMA is not feasible. The process outlined to assess the feasibility of an NMA provides a stepwise framework that will help to ensure that the underlying assumptions are systematically explored and that the risks (and benefits) of pooling and indirectly comparing treatment effects from RCTs for a particular research question are transparent.
Support surfaces for pressure ulcer prevention: A network meta-analysis
Dumville, Jo C.; Cullum, Nicky
2018-01-01
Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties. PMID:29474359
Support surfaces for pressure ulcer prevention: A network meta-analysis.
Shi, Chunhu; Dumville, Jo C; Cullum, Nicky
2018-01-01
Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties.
Assessment and evaluation of the high risk neonate: the NICU Network Neurobehavioral Scale.
Lester, Barry M; Andreozzi-Fontaine, Lynne; Tronick, Edward; Bigsby, Rosemarie
2014-08-25
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
NASA Technical Reports Server (NTRS)
Himwich, Ed; Strand, Richard
2013-01-01
This report includes an assessment of the network performance in terms of lost observing time for the 2012 calendar year. Overall, the observing time loss was about 12.3%, which is in-line with previous years. A table of relative incidence of problems with various subsystems is presented. The most significant identified causes of loss were electronics rack problems (accounting for about 21.8% of losses), antenna reliability (18.1%), RFI (11.8%), and receiver problems (11.7%). About 14.2% of the losses occurred for unknown reasons. New antennas are under development in the USA, Germany, and Spain. There are plans for new telescopes in Norway and Sweden. Other activities of the Network Coordinator are summarized.
Space-Based Information Infrastructure Architecture for Broadband Services
NASA Technical Reports Server (NTRS)
Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.
1996-01-01
This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.
Winstein, Carolee; Pate, Patricia; Ge, Tingting; Ervin, Carolyn; Baurley, James; Sullivan, Katherine J; Underwood, Samantha J; Fowler, Eileen G; Mulroy, Sara; Brown, David A; Kulig, Kornelia; Gordon, James; Azen, Stanley P
2008-11-01
This article describes the vision, methods, and implementation strategies used in building the infrastructure for PTClinResNet, a clinical research network designed to assess outcomes for health-related mobility associated with evidence-based physical therapy interventions across and within four different disability groups. Specific aims were to (1) create the infrastructure necessary to develop and sustain clinical trials research in rehabilitation, (2) generate evidence to evaluate the efficacy of resistance exercise-based physical interventions designed to improve muscle performance and movement skills, and (3) provide education and training opportunities for present and future clinician-researchers and for the rehabilitation community at-large in its support of evidence-based practice. We present the network's infrastructure, development, and several examples that highlight the benefits of a clinical research network. We suggest that the network structure is ideal for building research capacity and fostering multisite, multiinvestigator clinical research projects designed to generate evidence for the efficacy of rehabilitation interventions.
A Real-Time Decision Support System for Voltage Collapse Avoidance in Power Supply Networks
NASA Astrophysics Data System (ADS)
Chang, Chen-Sung
This paper presents a real-time decision support system (RDSS) based on artificial intelligence (AI) for voltage collapse avoidance (VCA) in power supply networks. The RDSS scheme employs a fuzzy hyperrectangular composite neural network (FHRCNN) to carry out voltage risk identification (VRI). In the event that a threat to the security of the power supply network is detected, an evolutionary programming (EP)-based algorithm is triggered to determine the operational settings required to restore the power supply network to a secure condition. The effectiveness of the RDSS methodology is demonstrated through its application to the American Electric Power Provider System (AEP, 30-bus system) under various heavy load conditions and contingency scenarios. In general, the numerical results confirm the ability of the RDSS scheme to minimize the risk of voltage collapse in power supply networks. In other words, RDSS provides Power Provider Enterprises (PPEs) with a viable tool for performing on-line voltage risk assessment and power system security enhancement functions.
NASA Astrophysics Data System (ADS)
Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela
2015-10-01
An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation (RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE algorithm has been extended to take into account both flow and water level measurements and the resulting control loop has been extensively simulated to assess the system performance according different measurement availability scenarios and rain events. All simulations have been carried out using a detailed physically based model of a real case-study network as virtual reality.
Analysis of gene network robustness based on saturated fixed point attractors
2014-01-01
The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364
Toppi, Jlenia; Astolfi, Laura; Risetti, Monica; Anzolin, Alessandra; Kober, Silvia E.; Wood, Guilherme; Mattia, Donatella
2018-01-01
Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT. Neural correlates of WM were assessed by means of a combination of EEG signal processing methods (i.e., time-varying connectivity estimation and graph theory), in order to extract synthetic descriptors of the complex networks underlying the encoding, storage, and retrieval phases of WM construct. The group analysis revealed that the encoding phase exhibited a significantly higher small-world topology of EEG networks with respect to storage and retrieval in all EEG frequency oscillations, thus indicating that during the encoding of items the global network organization could “optimally” promote the information flow between WM sub-networks. We also found that the magnitude of such configuration could predict subject behavioral performance when memory load increases as indicated by the negative correlation between Reaction Time and the local efficiency values estimated during the encoding in the alpha band in both 4 and 6 digits conditions. At the local scale, the values of the degree index which measures the degree of in- and out- information flow between scalp areas were found to specifically distinguish the hubs within the relevant sub-networks associated to each of the three different WM phases, according to the different role of the sub-network of regions in the different WM phases. Our findings indicate that the use of EEG-derived connectivity measures and their related topological indices might offer a reliable and yet affordable approach to monitor WM components and thus theoretically support the clinical assessment of cognitive functions in presence of WM decline/impairment, as it occurs after stroke. PMID:29379425
NASA Technical Reports Server (NTRS)
Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris
1992-01-01
One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through BRAIN, an integrated network of both human and computer elements. BRAIN will function as an advisor to mission managers by assessing the risk of inflight biomedical problems and recommending appropriate countermeasures. Described here is a joint effort among various NASA elements to develop BRAIN and the Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of knowledge acquisition, integration of IDRA components, the use of expert systems to automate the biomedical prediction process, development of a user friendly interface, and integration of IDRA and ExerCISys systems. Because C language, CLIPS and the X-Window System are portable and easily integrated, they were chosen ss the tools for the initial IDRA prototype.
NASA Astrophysics Data System (ADS)
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.
Well-balanced high-order solver for blood flow in networks of vessels with variable properties.
Müller, Lucas O; Toro, Eleuterio F
2013-12-01
We present a well-balanced, high-order non-linear numerical scheme for solving a hyperbolic system that models one-dimensional flow in blood vessels with variable mechanical and geometrical properties along their length. Using a suitable set of test problems with exact solution, we rigorously assess the performance of the scheme. In particular, we assess the well-balanced property and the effective order of accuracy through an empirical convergence rate study. Schemes of up to fifth order of accuracy in both space and time are implemented and assessed. The numerical methodology is then extended to realistic networks of elastic vessels and is validated against published state-of-the-art numerical solutions and experimental measurements. It is envisaged that the present scheme will constitute the building block for a closed, global model for the human circulation system involving arteries, veins, capillaries and cerebrospinal fluid. Copyright © 2013 John Wiley & Sons, Ltd.
Multitask assessment of roads and vehicles network (MARVN)
NASA Astrophysics Data System (ADS)
Yang, Fang; Yi, Meng; Cai, Yiran; Blasch, Erik; Sullivan, Nichole; Sheaff, Carolyn; Chen, Genshe; Ling, Haibin
2018-05-01
Vehicle detection in wide area motion imagery (WAMI) has drawn increasing attention from the computer vision research community in recent decades. In this paper, we present a new architecture for vehicle detection on road using multi-task network, which is able to detect and segment vehicles, estimate their pose, and meanwhile yield road isolation for a given region. The multi-task network consists of three components: 1) vehicle detection, 2) vehicle and road segmentation, and 3) detection screening. Segmentation and detection components share the same backbone network and are trained jointly in an end-to-end way. Unlike background subtraction or frame differencing based methods, the proposed Multitask Assessment of Roads and Vehicles Network (MARVN) method can detect vehicles which are slowing down, stopped, and/or partially occluded in a single image. In addition, the method can eliminate the detections which are located at outside road using yielded road segmentation so as to decrease the false positive rate. As few WAMI datasets have road mask and vehicles bounding box anotations, we extract 512 frames from WPAFB 2009 dataset and carefully refine the original annotations. The resulting dataset is thus named as WAMI512. We extensively compare the proposed method with state-of-the-art methods on WAMI512 dataset, and demonstrate superior performance in terms of efficiency and accuracy.
Carney, Timothy Jay; Morgan, Geoffrey P; Jones, Josette; McDaniel, Anna M; Weaver, Michael T; Weiner, Bryan; Haggstrom, David A
2015-10-01
Nationally sponsored cancer-care quality-improvement efforts have been deployed in community health centers to increase breast, cervical, and colorectal cancer-screening rates among vulnerable populations. Despite several immediate and short-term gains, screening rates remain below national benchmark objectives. Overall improvement has been both difficult to sustain over time in some organizational settings and/or challenging to diffuse to other settings as repeatable best practices. Reasons for this include facility-level changes, which typically occur in dynamic organizational environments that are complex, adaptive, and unpredictable. This study seeks to understand the factors that shape community health center facility-level cancer-screening performance over time. This study applies a computational-modeling approach, combining principles of health-services research, health informatics, network theory, and systems science. To investigate the roles of knowledge acquisition, retention, and sharing within the setting of the community health center and to examine their effects on the relationship between clinical decision support capabilities and improvement in cancer-screening rate improvement, we employed Construct-TM to create simulated community health centers using previously collected point-in-time survey data. Construct-TM is a multi-agent model of network evolution. Because social, knowledge, and belief networks co-evolve, groups and organizations are treated as complex systems to capture the variability of human and organizational factors. In Construct-TM, individuals and groups interact by communicating, learning, and making decisions in a continuous cycle. Data from the survey was used to differentiate high-performing simulated community health centers from low-performing ones based on computer-based decision support usage and self-reported cancer-screening improvement. This virtual experiment revealed that patterns of overall network symmetry, agent cohesion, and connectedness varied by community health center performance level. Visual assessment of both the agent-to-agent knowledge sharing network and agent-to-resource knowledge use network diagrams demonstrated that community health centers labeled as high performers typically showed higher levels of collaboration and cohesiveness among agent classes, faster knowledge-absorption rates, and fewer agents that were unconnected to key knowledge resources. Conclusions and research implications: Using the point-in-time survey data outlining community health center cancer-screening practices, our computational model successfully distinguished between high and low performers. Results indicated that high-performance environments displayed distinctive network characteristics in patterns of interaction among agents, as well as in the access and utilization of key knowledge resources. Our study demonstrated how non-network-specific data obtained from a point-in-time survey can be employed to forecast community health center performance over time, thereby enhancing the sustainability of long-term strategic-improvement efforts. Our results revealed a strategic profile for community health center cancer-screening improvement via simulation over a projected 10-year period. The use of computational modeling allows additional inferential knowledge to be drawn from existing data when examining organizational performance in increasingly complex environments. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ángel López Comino, José; Cesca, Simone; Kriegerowski, Marius; Heimann, Sebastian; Dahm, Torsten; Mirek, Janusz; Lasocky, Stanislaw
2017-04-01
Previous analysis to assess the monitoring performance of a dedicated seismic network are always useful to determine its capability of detecting, locating and characterizing target seismicity. This work focuses on a hydrofracking experiment in Poland, which is monitored in the framework of the SHEER (SHale gas Exploration and Exploitation induced Risks) EU project. The seismic installation is located near Wysin (Poland), in the central-western part of the Peribaltic synclise at Pomerania. The network setup includes a distributed network of six broadband stations, three shallow borehole stations and three small-scale arrays. We assess the monitoring performance prior operations, using synthetic seismograms. Realistic full waveform are generated and combined with real noise before fracking operations, to produce either event based or continuous synthetic waveforms. Background seismicity is modelled by double couple (DC) focal mechanisms. Non-DC sources resemble induced tensile fractures opening in the direction of the minimal compressive stress and closing in the same direction after the injection. Microseismic sources are combined with a realistic crustal model, distribution of hypocenters, magnitudes and source durations. The network detection performance is then assessed in terms of Magnitude of Completeness (Mc) through two different techniques: i) using an amplitude threshold approach, taking into account a station dependent noise level and different values of signal-to-noise ratio (SNR) and ii) through the application of an automatic detection algorithm to the continuous synthetic dataset. In the first case, we compare the maximal amplitude of noise free synthetic waveforms with the different noise levels. Imposing the simultaneous detection at e.g. 4 stations for a robust detection, the Mc is assessed and can be adjusted by empirical relationships for different SNR values. We find that different source mechanisms have different detection threshold. The background seismicity (DC sources) is better detectable than induced earthquakes (tensile cracks mechanisms). Assuming a SNR of 2, we estimate a Mc 0.55 around the fracking wells, with an increase of 0.05 during day hours. The value of Mc can be decreased to 0.45 around the fracking region, taking advantage by the array installations. The second approach applies a full waveform detection and location algorithm based on the stacking of smooth characteristic function and the identification of high coherence in the signals recorded at different stations. In this case the detection can be increased at the cost of increasing also false detections, with an acceptable compromise found for Mc 0.1.
Assessing quality outcome measures in children with coeliac disease--experience from two UK centres.
Ross, Alexander; Shelley, Helen; Novell, Kim; Ingham, Elizabeth; Callan, Julia; Heuschkel, Robert; Morris, Mary-Anne; Zilbauer, Matthias
2013-11-19
Improved diagnosis of coeliac disease has increased incidence and therefore burden on the health care system. There are no quality outcome measures (QOM) in use nationally to assess hospital management of this condition. This study applied QOM devised by the East of England paediatric gastroenterology network to 99 patients reviewed at two tertiary hospitals in the Network, to assess the quality of care provided by nurse led and doctor led care models. The average performance across all QOM was 96.2% at Addenbrooke's Hospital (AH), and 98.7% at Norfolk and Norwich Hospital (NNUH), whilst 95% (n = 18) of QOM were met. Patient satisfaction was high at both sites (uptake of questionnaire 53 of 99 patients in the study). The study showed a comparably high level of care delivered by both a nurse and doctor led service. Our quality assessment tools could be applied in the future by other centres to measure standards of care.
Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges
Prill, Robert J.; Marbach, Daniel; Saez-Rodriguez, Julio; Sorger, Peter K.; Alexopoulos, Leonidas G.; Xue, Xiaowei; Clarke, Neil D.; Altan-Bonnet, Gregoire; Stolovitzky, Gustavo
2010-01-01
Background Systems biology has embraced computational modeling in response to the quantitative nature and increasing scale of contemporary data sets. The onslaught of data is accelerating as molecular profiling technology evolves. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) is a community effort to catalyze discussion about the design, application, and assessment of systems biology models through annual reverse-engineering challenges. Methodology and Principal Findings We describe our assessments of the four challenges associated with the third DREAM conference which came to be known as the DREAM3 challenges: signaling cascade identification, signaling response prediction, gene expression prediction, and the DREAM3 in silico network challenge. The challenges, based on anonymized data sets, tested participants in network inference and prediction of measurements. Forty teams submitted 413 predicted networks and measurement test sets. Overall, a handful of best-performer teams were identified, while a majority of teams made predictions that were equivalent to random. Counterintuitively, combining the predictions of multiple teams (including the weaker teams) can in some cases improve predictive power beyond that of any single method. Conclusions DREAM provides valuable feedback to practitioners of systems biology modeling. Lessons learned from the predictions of the community provide much-needed context for interpreting claims of efficacy of algorithms described in the scientific literature. PMID:20186320
Szkuta, Bianca; Ballantyne, Kaye N; Kokshoorn, Bas; van Oorschot, Roland A H
2018-03-01
Questions relating to how DNA from an individual got to where it was recovered from and the activities associated with its pickup, retention and deposition are increasingly relevant to criminal investigations and judicial considerations. To address activity level propositions, investigators are typically required to assess the likelihood that DNA was transferred indirectly and not deposited through direct contact with an item or surface. By constructing a series of Bayesian networks, we demonstrate their use in assessing activity level propositions derived from a recent legal case involving the alleged secondary transfer of DNA to a surface following a handshaking event. In the absence of data required to perform the assessment, a set of handshaking simulations were performed to obtain probabilities on the persistence of non-self DNA on the hands following a 40min, 5h or 8h delay between the handshake and contact with the final surface (an axe handle). Variables such as time elapsed, and the activities performed and objects contacted between the handshake and contact with the axe handle, were also considered when assessing the DNA results. DNA from a known contributor was transferred to the right hand of an opposing hand-shaker (as a depositor), and could be subsequently transferred to, and detected on, a surface contacted by the depositor 40min to 5h post-handshake. No non-self DNA from the known contributor was detected in deposits made 8h post-handshake. DNA from the depositor was generally detected as the major or only contributor in the profiles generated. Contributions from the known contributor were minor, decreasing in presence and in the strength of support for inclusion as the time between the handshake and transfer event increased. The construction of a series of Bayesian networks based on the case circumstances provided empirical estimations of the likelihood of direct or indirect deposition. The analyses and conclusions presented demonstrate both the complexity of activity level assessments concerning DNA evidence, and the power of Bayesian networks to visualise and explore the issues of interest for a given case. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-03-26
Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the...Human Universal Measurement and Assessment Network (HUMAN) Lab human performance experiment trials were used to train , validate and test the...calming music to ease the individual before the start of the study [8]. EEG data contains noise ranging from muscle twitches, blinking and other functions
Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H
2014-04-01
Graph theory is increasingly used in the field of neuroscience to understand the large-scale network structure of the human brain. There is also considerable interest in applying machine learning techniques in clinical settings, for example, to make diagnoses or predict treatment outcomes. Here we used support-vector machines (SVMs), in conjunction with whole-brain tractography, to identify graph metrics that best differentiate individuals with Major Depressive Disorder (MDD) from nondepressed controls. To do this, we applied a novel feature-scoring procedure that incorporates iterative classifier performance to assess feature robustness. We found that small-worldness , a measure of the balance between global integration and local specialization, most reliably differentiated MDD from nondepressed individuals. Post-hoc regional analyses suggested that heightened connectivity of the subcallosal cingulate gyrus (SCG) in MDDs contributes to these differences. The current study provides a novel way to assess the robustness of classification features and reveals anomalies in large-scale neural networks in MDD.
Gkonis, Fotios; Boursianis, Achilles; Samaras, Theodoros
2017-07-01
To assess general public exposure to electromagnetic fields from Long Term Evolution (LTE) base stations, measurements at 10 sites in Thessaloniki, Greece were performed. Results are compared with other mobile cellular networks currently in use. All exposure values satisfy the guidelines for general public exposure of the International Commission on Non-Ionizing Radiation Protection (ICNIRP), as well as the reference levels by the Greek legislation at all sites. LTE electric field measurements were recorded up to 0.645 V/m. By applying the ICNIRP guidelines, the exposure ratio for all LTE signals is between 2.9 × 10-5 and 2.8 × 10-2. From the measurements results it is concluded that the average and maximum power density contribution of LTE downlink signals to the overall cellular networks signals are 7.8% and 36.7%, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, W.
2000-02-22
Modern High Energy Nuclear and Particle Physics (HENP) experiments at Laboratories around the world present a significant challenge to wide area networks. Petabytes (1015) or exabytes (1018) of data will be generated during the lifetime of the experiment. Much of this data will be distributed via the Internet to the experiment's collaborators at Universities and Institutes throughout the world for analysis. In order to assess the feasibility of the computing goals of these and future experiments, the HENP networking community is actively monitoring performance across a large part of the Internet used by its collaborators. Since 1995, the pingER projectmore » has been collecting data on ping packet loss and round trip times. In January 2000, there are 28 monitoring sites in 15 countries gathering data on over 2,000 end-to-end pairs. HENP labs such as SLAC, Fermi Lab and CERN are using Advanced Network's Surveyor project and monitoring performance from one-way delay of UDP packets. More recently several HENP sites have become involved with NLANR's active measurement program (AMP). In addition SLAC and CERN are part of the RIPE test-traffic project and SLAC is home for a NIMI machine. The large End-to-end performance monitoring infrastructure allows the HENP networking community to chart long term trends and closely examine short term glitches across a wide range of networks and connections. The different methodologies provide opportunities to compare results based on different protocols and statistical samples. Understanding agreement and discrepancies between results provides particular insight into the nature of the network. This paper will highlight the practical side of monitoring by reviewing the special needs of High Energy Nuclear and Particle Physics experiments and provide an overview of the experience of measuring performance across a large number of interconnected networks throughout the world with various methodologies. In particular, results from each project will be compared and disagreement will be analyzed. The goal is to address issues for improving understanding for gathering and analysis of accurate monitoring data, but the outlook for the computing goals of HENP will also be examined.« less
Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease
NASA Astrophysics Data System (ADS)
Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.
2018-04-01
Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.
Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.
Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M
2018-04-01
Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.
Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool.
Gardner, G G; Keating, D; Williamson, T H; Elliott, A T
1996-11-01
To determine if neural networks can detect diabetic features in fundus images and compare the network against an ophthalmologist screening a set of fundus images. 147 diabetic and 32 normal images were captured from a fundus camera, stored on computer, and analysed using a back propagation neural network. The network was trained to recognise features in the retinal image. The effects of digital filtering techniques and different network variables were assessed. 200 diabetic and 101 normal images were then randomised and used to evaluate the network's performance for the detection of diabetic retinopathy against an ophthalmologist. Detection rates for the recognition of vessels, exudates, and haemorrhages were 91.7%, 93.1%, and 73.8% respectively. When compared with the results of the ophthalmologist, the network achieved a sensitivity of 88.4% and a specificity of 83.5% for the detection of diabetic retinopathy. Detection of vessels, exudates, and haemorrhages was possible, with success rates dependent upon preprocessing and the number of images used in training. When compared with the ophthalmologist, the network achieved good accuracy for the detection of diabetic retinopathy. The system could be used as an aid to the screening of diabetic patients for retinopathy.
Franzmeier, Nicolai; Göttler, Jens; Grimmer, Timo; Drzezga, Alexander; Áraque-Caballero, Miguel A; Simon-Vermot, Lee; Taylor, Alexander N W; Bürger, Katharina; Catak, Cihan; Janowitz, Daniel; Müller, Claudia; Duering, Marco; Sorg, Christian; Ewers, Michael
2017-01-01
Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer's disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44). Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education) and better maintenance of memory in mild cognitive impairment (MCI). Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC) and in an independent validation sample (23 MCI/32 HC). Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual) was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN), but positively correlated with the dorsal-attention network (DAN). Greater education predicted stronger LFC-DMN-connectivity (anti-correlation) and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.
Development of Autonomous Aerobraking - Phase 2
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2013-01-01
Phase 1 of the Development of Autonomous Aerobraking (AA) Assessment investigated the technical capability of transferring the processes of aerobraking maneuver (ABM) decision-making (currently performed on the ground by an extensive workforce and communicated to the spacecraft via the deep space network) to an efficient flight software algorithm onboard the spacecraft. This document describes Phase 2 of this study, which was a 12-month effort to improve and rigorously test the AA Development Software developed in Phase 1. Aerobraking maneuver; Autonomous Aerobraking; Autonomous Aerobraking Development Software; Deep Space Network; NASA Engineering and Safety Center
Gomez, Carles; Paradells, Josep
2015-09-10
Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.
Digital Image Compression Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Gomez, Carles; Paradells, Josep
2015-01-01
Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost. PMID:26378534
Adaptive multi-sensor biomimetics for unsupervised submarine hunt (AMBUSH): Early results
NASA Astrophysics Data System (ADS)
Blouin, Stéphane
2014-10-01
Underwater surveillance is inherently difficult because acoustic wave propagation and transmission are limited and unpredictable when targets and sensors move around in the communication-opaque undersea environment. Today's Navy underwater sensors enable the collection of a massive amount of data, often analyzed offtine. The Navy of tomorrow will dominate by making sense of that data in real-time. DRDC's AMBUSH project proposes a new undersea-surveillance network paradigm that will enable such a real-time operation. Nature abounds with examples of collaborative tasks taking place despite limited communication and computational capabilities. This publication describes a year's worth of research efforts finding inspiration in Nature's collaborative tasks such as wolves hunting in packs. This project proposes the utilization of a heterogeneous network combining both static and mobile network nodes. The military objective is to enable an unsupervised surveillance capability while maximizing target localization performance and endurance. The scientific objective is to develop the necessary technology to acoustically and passively localize a noise-source of interest in shallow waters. The project fulfills these objectives via distributed computing and adaptation to changing undersea conditions. Specific research interests discussed here relate to approaches for performing: (a) network self-discovery, (b) network connectivity self-assessment, (c) opportunistic network routing, (d) distributed data-aggregation, and (e) simulation of underwater acoustic propagation. We present early results then followed by a discussion about future work.
Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization
Küffner, Robert; Petri, Tobias; Windhager, Lukas; Zimmer, Ralf
2010-01-01
Background The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters. PMID:20862218
Bridging the gap between motor imagery and motor execution with a brain-robot interface.
Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza
2015-03-01
According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke. Copyright © 2014 Elsevier Inc. All rights reserved.
Economic viability of access broadband multiservice networks
NASA Astrophysics Data System (ADS)
Castelli, Francesco; Dammicco, Giacinto; Mocci, Ugo
1995-02-01
In this paper the economic viability of alternative architectures for optical access networks providing broad band services to different subscriber classes in a metropolitan environment, is investigated by a specific tool, NEVE (Network Economic Viability Evaluator), developed for broad band multiservice network planning, service evolutionary scenarios assessment, evaluation of tariff strategies and other actions taken at stimulating the demand growth. As the viability target can be achieved in different ways, different studies can be carried out by NEVE. In the paper some of them are discussed, particularly the ones addressed: to evaluate the impact on viability of alternative service scenarios; to determine the critical mass of broad band subscribers and the critical joint service adoption cost; to evaluate cross subsidiary policies among different subscriber classes and services; to perform sensitivity analysis with respect to variations of demand parameters and tariffs.
Centralized and distributed control architectures under Foundation Fieldbus network.
Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves
2013-01-01
This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, Troy; Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee; Liu, Liwang
As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity,more » peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of neural networks for temperature reconstruction improves the accuracy of the measurement.« less
Network Security Risk Assessment System Based on Attack Graph and Markov Chain
NASA Astrophysics Data System (ADS)
Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian
2017-10-01
Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.
SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)
2017-10-10
in the Cyber & Communication Technologies Group , but not on the SOUND project, would review the code, design and perform attacks against a live...3.5 Red Team As part of our testing , we planned to conduct Red Team assessments. In these assessments, a group of engineers from BAE who worked...developed under the DARPA CRASH program and SOUND were designed to be companion projects. SAFE focused on the processor and the host, SOUND focused on
Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.
Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J
2018-04-18
Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.
Rowland, Zarah; Wenzel, Mario; Kubiak, Thomas
2016-12-01
Self-control is an important ability in everyday life, showing associations with health-related outcomes. The aim of the Self-control and Mindfulness within Ambulatorily assessed network Systems across Health-related domains (SMASH) study is twofold: first, the effectiveness of a computer-based mindfulness training will be evaluated in a randomized controlled trial. Second, the SMASH study implements a novel network approach in order to investigate complex temporal interdependencies of self-control networks across several domains. The SMASH study is a two-armed, 6-week, non-blinded randomized controlled trial that combines seven weekly laboratory meetings and 40 days of electronic diary assessments with six prompts per day in a healthy undergraduate student population at the Johannes Gutenberg University Mainz, Germany. Participants will be randomly assigned to (1) receive a computer-based mindfulness intervention or (2) to a wait-list control condition. Primary outcomes are self-reported momentary mindfulness and self-control assessed via electronic diaries. Secondary outcomes are habitual mindfulness and habitual self-control. Further measures include self-reported behaviors in specific self-control domains: emotion regulation, alcohol consumption and eating behaviors. The effects of mindfulness training on primary and secondary outcomes are explored using three-level mixed models. Furthermore, networks will be computed with vector autoregressive mixed models to investigate the dynamics at participant and group level. This study was approved by the local ethics committee (reference code 2015_JGU_psychEK_011) and follows the standards laid down in the Declaration of Helsinki (2013). This randomized controlled trial combines an intensive Ambulatory Assessment of 40 consecutive days and seven laboratory meetings. By implementing a novel network approach, underlying processes of self-control within different health domains will be identified. These results will deepen the understanding of self-control performance and will guide to just-in-time individual interventions for several health-related behaviors. ClinicalTrials.gov, NCT02647801 . Registered on 15 December 2015 (registered retrospectively). .
Jiang, Ling; Yang, Christopher C
2017-09-01
The rapid growth of online health social websites has captured a vast amount of healthcare information and made the information easy to access for health consumers. E-patients often use these social websites for informational and emotional support. However, health consumers could be easily overwhelmed by the overloaded information. Healthcare information searching can be very difficult for consumers, not to mention most of them are not skilled information searcher. In this work, we investigate the approaches for measuring user similarity in online health social websites. By recommending similar users to consumers, we can help them to seek informational and emotional support in a more efficient way. We propose to represent the healthcare social media data as a heterogeneous healthcare information network and introduce the local and global structural approaches for measuring user similarity in a heterogeneous network. We compare the proposed structural approaches with the content-based approach. Experiments were conducted on a dataset collected from a popular online health social website, and the results showed that content-based approach performed better for inactive users, while structural approaches performed better for active users. Moreover, global structural approach outperformed local structural approach for all user groups. In addition, we conducted experiments on local and global structural approaches using different weight schemas for the edges in the network. Leverage performed the best for both local and global approaches. Finally, we integrated different approaches and demonstrated that hybrid method yielded better performance than the individual approach. The results indicate that content-based methods can effectively capture the similarity of inactive users who usually have focused interests, while structural methods can achieve better performance when rich structural information is available. Local structural approach only considers direct connections between nodes in the network, while global structural approach takes the indirect connections into account. Therefore, the global similarity approach can deal with sparse networks and capture the implicit similarity between two users. Different approaches may capture different aspects of the similarity relationship between two users. When we combine different methods together, we could achieve a better performance than using each individual method. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Calabretta, Nicola; Miao, Wang; Dorren, Harm
2016-03-01
Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.
Kim, Eun-Kyong; Jung, Yun-Sook; Kim, Kyung-Hee; Kim, Ki-Rim; Kwon, Gi-Hong; Choi, Youn-Hee; Lee, Hee-Kyung
2018-01-01
The association between social capital and oral health had been reported in various ways, but still remains unclear. We investigated the association between the social capital of the elderly living in a rural region and their edentulism and chewing ability. A total of 241 elderly aged≥70years living in a rural city of Korea participated in this cross-sectional study. Their social capital was surveyed by questionnaire assessing its network and trust dimensions. Their edentulism and chewing ability were assessed by oral examination and chewing gum whose color changes based on the mastication performance. The mean age of the participants was 82.7 (ranged 71 to 101) years and 68.8% of them were female. In the binomial regression analysis, the general network aspect of the network dimension was significantly associated with chewing ability, of which the prevalence ratio was 1.88 (95% CI: 1.16-3.06) in the age, sex, education and marital status-adjusted model. Our findings suggest that social capital, such as a poor social network, is associated with poor chewing ability in the elderly living in rural areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental assessment of PSS, feedback on 2 years of experimentation
NASA Astrophysics Data System (ADS)
Allais, Romain; Gobert, Julie
2018-05-01
This communication details the sustainability assessment of the partial transition of business model from selling products to product renting for small household equipment (SHE). Perceived by the French SHE manufacturer as a strategic opportunity to meet customers' expectations and environmental regulation, 2-years experimentation was performed on a specific territory with the support of a network of new competencies (B-to-B-to-C market). Researchers were mandated for the sustainability assessment of such a transition but this communication focuses on the environmental performance of the experimentation. The results of the comparative LCA are presented and the main environmental impacts linked to this business model transition are specified and discussed. Then, different eco-design scenarios are explored and recommendations for this specific case are proposed.
Flexible modulation of network connectivity related to cognition in Alzheimer's disease.
McLaren, Donald G; Sperling, Reisa A; Atri, Alireza
2014-10-15
Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Performance study of the wearable one-lead wireless electrocardiographic monitoring system.
Hong, Sungyoup; Yang, Yougmo; Kim, Seunghwan; Shin, Seungcheol; Lee, Inbum; Jang, Yongwon; Kim, Kiseong; Yi, Hwayeon
2009-03-01
This study attempts to compare and assess the performance of a wearable electrocardiogram (ECG) using a sensing fabric electrode and a Bluetooth network with a conventional ECG. A one-lead ECG examination was performed using Bioshirt and an iWorx 214 while walking or running at 3, 6, and 9 km per hour. A correlation coefficient of a heart rate variability (HRV) between these two devices was higher than 0.96 and power spectral density of HRV measured also showed an excellent agreement. Thus, both of these two ECG devices showed similar detection capability for R peaks. The measured values for wave duration and intervals of both devices concur with each other. The intensity of noise is controversial. The ECG device using a sensing fabric electrode and a wireless network showed an ECG signal detection and transmission capability similar to that of a conventional ECG device.
Model Diagnostics for Bayesian Networks
ERIC Educational Resources Information Center
Sinharay, Sandip
2006-01-01
Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…
Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.
2016-01-01
This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Himanshu; Palmintier, Bryan S; Krad, Ibrahim
This paper presents the results of a distributed solar PV impact assessment study that was performed using a synthetic integrated transmission (T) and distribution (D) model. The primary objective of the study was to present a new approach for distributed solar PV impact assessment, where along with detailed models of transmission and distribution networks, consumer loads were modeled using the physics of end-use equipment, and distributed solar PV was geographically dispersed and connected to the secondary distribution networks. The highlights of the study results were (i) increase in the Area Control Error (ACE) at high penetration levels of distributed solarmore » PV; and (ii) differences in distribution voltages profiles and voltage regulator operations between integrated T&D and distribution only simulations.« less
Watanabe, Katsumi; Yoshimura, Yuko; Kikuchi, Mitsuru; Minabe, Yoshio; Aihara, Kazuyuki
2017-01-01
Autism spectrum disorder (ASD) is a developmental disorder that involves developmental delays. It has been hypothesized that aberrant neural connectivity in ASD may cause atypical brain network development. Brain graphs not only describe the differences in brain networks between clinical and control groups, but also provide information about network development within each group. In the present study, graph indices of brain networks were estimated in children with ASD and in typically developing (TD) children using magnetoencephalography performed while the children viewed a cartoon video. We examined brain graphs from a developmental point of view, and compared the networks between children with ASD and TD children. Network development patterns (NDPs) were assessed by examining the association between the graph indices and the raw scores on the achievement scale or the age of the children. The ASD and TD groups exhibited different NDPs at both network and nodal levels. In the left frontal areas, the nodal degree and efficiency of the ASD group were negatively correlated with the achievement scores. Reduced network connections were observed in the temporal and posterior areas of TD children. These results suggested that the atypical network developmental trajectory in children with ASD is associated with the development score rather than age. PMID:28886147
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shannon, Casey P; Chen, Virginia; Takhar, Mandeep; Hollander, Zsuzsanna; Balshaw, Robert; McManus, Bruce M; Tebbutt, Scott J; Sin, Don D; Ng, Raymond T
2016-11-14
Gene network inference (GNI) algorithms can be used to identify sets of coordinately expressed genes, termed network modules from whole transcriptome gene expression data. The identification of such modules has become a popular approach to systems biology, with important applications in translational research. Although diverse computational and statistical approaches have been devised to identify such modules, their performance behavior is still not fully understood, particularly in complex human tissues. Given human heterogeneity, one important question is how the outputs of these computational methods are sensitive to the input sample set, or stability. A related question is how this sensitivity depends on the size of the sample set. We describe here the SABRE (Similarity Across Bootstrap RE-sampling) procedure for assessing the stability of gene network modules using a re-sampling strategy, introduce a novel criterion for identifying stable modules, and demonstrate the utility of this approach in a clinically-relevant cohort, using two different gene network module discovery algorithms. The stability of modules increased as sample size increased and stable modules were more likely to be replicated in larger sets of samples. Random modules derived from permutated gene expression data were consistently unstable, as assessed by SABRE, and provide a useful baseline value for our proposed stability criterion. Gene module sets identified by different algorithms varied with respect to their stability, as assessed by SABRE. Finally, stable modules were more readily annotated in various curated gene set databases. The SABRE procedure and proposed stability criterion may provide guidance when designing systems biology studies in complex human disease and tissues.
Multi-criteria robustness analysis of metro networks
NASA Astrophysics Data System (ADS)
Wang, Xiangrong; Koç, Yakup; Derrible, Sybil; Ahmad, Sk Nasir; Pino, Willem J. A.; Kooij, Robert E.
2017-05-01
Metros (heavy rail transit systems) are integral parts of urban transportation systems. Failures in their operations can have serious impacts on urban mobility, and measuring their robustness is therefore critical. Moreover, as physical networks, metros can be viewed as topological entities, and as such they possess measurable network properties. In this article, by using network science and graph theory, we investigate ten theoretical and four numerical robustness metrics and their performance in quantifying the robustness of 33 metro networks under random failures or targeted attacks. We find that the ten theoretical metrics capture two distinct aspects of robustness of metro networks. First, several metrics place an emphasis on alternative paths. Second, other metrics place an emphasis on the length of the paths. To account for all aspects, we standardize all ten indicators and plot them on radar diagrams to assess the overall robustness for metro networks. Overall, we find that Tokyo and Rome are the most robust networks. Rome benefits from short transferring and Tokyo has a significant number of transfer stations, both in the city center and in the peripheral area of the city, promoting both a higher number of alternative paths and overall relatively short path-lengths.
Integrated Operations Architecture Technology Assessment Study
NASA Technical Reports Server (NTRS)
2001-01-01
As part of NASA's Integrated Operations Architecture (IOA) Baseline, NASA will consolidate all communications operations. including ground-based, near-earth, and deep-space communications, into a single integrated network. This network will make maximum use of commercial equipment, services and standards. It will be an Internet Protocol (IP) based network. This study supports technology development planning for the IOA. The technical problems that may arise when LEO mission spacecraft interoperate with commercial satellite services were investigated. Commercial technology and services that could support the IOA were surveyed, and gaps in the capability of existing technology and techniques were identified. Recommendations were made on which gaps should be closed by means of NASA research and development funding. Several findings emerged from the interoperability assessment: in the NASA mission set, there is a preponderance of small. inexpensive, low data rate science missions; proposed commercial satellite communications services could potentially provide TDRSS-like data relay functions; and. IP and related protocols, such as TCP, require augmentation to operate in the mobile networking environment required by the space-to-ground portion of the IOA. Five case studies were performed in the technology assessment. Each case represented a realistic implementation of the near-earth portion of the IOA. The cases included the use of frequencies at L-band, Ka-band and the optical spectrum. The cases also represented both space relay architectures and direct-to-ground architectures. Some of the main recommendations resulting from the case studies are: select an architecture for the LEO/MEO communications network; pursue the development of a Ka-band space-qualified transmitter (and possibly a receiver), and a low-cost Ka-band ground terminal for a direct-to-ground network, pursue the development of an Inmarsat (L-band) space-qualified transceiver to implement a global, low data rate network for LEO/MEO, mission spacecraft; and, pursue developmental research for a miniaturized, high data rate optical transceiver.
Ranft, Andreas; von Meyer, Ludwig; Zieglgänsberger, Walter; Kochs, Eberhard; Dodt, Hans-Ulrich
2012-01-01
The anesthetic excitement phase occurring during induction of anesthesia with volatile anesthetics is a well-known phenomenon in clinical practice. However, the physiological mechanisms underlying anesthetic-induced excitation are still unclear. Here we provide evidence from in vitro experiments performed on rat brain slices that the general anesthetic isoflurane at a concentration of about 0.1 mM can enhance neuronal network excitability in the hippocampus, while simultaneously reducing it in the neocortex. In contrast, isoflurane tissue concentrations above 0.3 mM expectedly caused a pronounced reduction in both brain regions. Neuronal network excitability was assessed by combining simultaneous multisite stimulation via a multielectrode array with recording intrinsic optical signals as a measure of neuronal population activity. PMID:22723999
Whitfield-Gabrieli, Susan; Fischer, Adina S; Henricks, Angela M; Khokhar, Jibran Y; Roth, Robert M; Brunette, Mary F; Green, Alan I
2018-04-01
Nearly half of patients with schizophrenia (SCZ) have co-occurring cannabis use disorder (CUD), which has been associated with decreased treatment efficacy, increased risk of psychotic relapse, and poor global functioning. While reports on the effects of cannabis on cognitive performance in patients with SCZ have been mixed, study of brain networks related to executive function may clarify the relationship between cannabis use and cognition in these dual-diagnosis patients. In the present pilot study, patients with SCZ and CUD (n=12) and healthy controls (n=12) completed two functional magnetic resonance imaging (fMRI) resting scans. Prior to the second scan, patients smoked a 3.6% tetrahydrocannabinol (THC) cannabis cigarette or ingested a 15mg delta-9-tetrahydrocannabinol (THC) pill. We used resting-state functional connectivity to examine the default mode network (DMN) during both scans, as connectivity/activity within this network is negatively correlated with connectivity of the network involved in executive control and shows reduced activity during task performance in normal individuals. At baseline, relative to controls, patients exhibited DMN hyperconnectivity that correlated with positive symptom severity, and reduced anticorrelation between the DMN and the executive control network (ECN). Cannabinoid administration reduced DMN hyperconnectivity and increased DMN-ECN anticorrelation. Moreover, the magnitude of anticorrelation in the controls, and in the patients after cannabinoid administration, positively correlated with WM performance. The finding that DMN brain connectivity is plastic may have implications for future pharmacotherapeutic development, as treatment efficacy could be assessed through the ability of therapies to normalize underlying circuit-level dysfunction. Copyright © 2017. Published by Elsevier B.V.
Passive and Active Monitoring on a High Performance Research Network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Warren
2001-05-01
The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge hasmore » arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.« less
Verbal working memory-related neural network communication in schizophrenia.
Kustermann, Thomas; Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte
2018-04-19
Impaired working memory (WM) in schizophrenia is associated with reduced hemodynamic and electromagnetic activity and altered network connectivity within and between memory-associated neural networks. The present study sought to determine whether schizophrenia involves disruption of a frontal-parietal network normally supporting WM and/or involvement of another brain network. Nineteen schizophrenia patients (SZ) and 19 healthy comparison subjects (HC) participated in a cued visual-verbal Sternberg task while dense-array EEG was recorded. A pair of item arrays each consisting of 2-4 consonants was presented bilaterally for 200 ms with a prior cue signaling the hemifield of the task-relevant WM set. A central probe letter 2,000 ms later prompted a choice reaction time decision about match/mismatch with the target WM set. Group and WM load effects on time domain and time-frequency domain 11-15 Hz alpha power were assessed for the cue-to-probe time window, and posterior 11-15 Hz alpha power and frontal 4-8 Hz theta power were assessed during the retention period. Directional connectivity was estimated via Granger causality, evaluating group differences in communication. SZ showed slower responding, lower accuracy, smaller overall time-domain alpha power increase, and less load-dependent alpha power increase. Midline frontal theta power increases did not vary by group or load. Network communication in SZ was characterized by temporal-to-posterior information flow, in contrast to bidirectional temporal-posterior communication in HC. Results indicate aberrant WM network activity supporting WM in SZ that might facilitate normal load-dependent and only marginally less accurate task performance, despite generally slower responding. © 2018 Society for Psychophysiological Research.
Problems associated with the use of social networks--a pilot study.
Szczegielniak, Anna; Pałka, Karol; Krysta, Krzysztof
2013-09-01
The definition of addiction is that it is an acquired, strong need to perform a specific activity or continued use of mood alerting substances. Increasing discussion about the development of Internet addiction, which like other addictions, have their roots in depression, impaired assessment esteem and social anxiety shows that it affects all users of the global network, regardless of gender or age. The aim of the study was to assess the impact of social networking on the ongoing behavior of respondents- the first step of a study on the possibility of dependence on social networks. The study was based on an authors questionnaire placed on popular polish websites on February 2013. Questions related to the types and frequency of specific activities undertaken by the private profiles of users. The study involved 221 respondents, 193 questionnaires were filled in completely and correctly, without missing any questions. 83.24% admitted to using social networking sites, 16.76% indicated that they never had their own profile. An overwhelming number of respondents are a member of Facebook (79.17%), specialized portals related to their profession or work were used by only 13.89%, Our-class (6.25%) and Twitter was a primary portal for one person only. Nobody marked a participation in dating services. There is a big difference between the addiction to the Internet and addictions existing within the Internet; the same pattern applies to social networking. There is a need to recognize the "social networking" for a particular activity, irrespective of Facebook, Twitter and Nasza-Klasa, which are commercial products.
Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H
2012-01-01
Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.
Thaden, Joshua T; Mogno, Ilaria; Wierzbowski, Jamey; Cottarel, Guillaume; Kasif, Simon; Collins, James J; Gardner, Timothy S
2007-01-01
Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. PMID:17214507
Yan, Yan; Song, Jian; Xu, Guozheng; Yao, Shun; Cao, Chenglong; Li, Chang; Peng, Guibao; Du, Hao
2017-10-01
This study investigated the characteristics of the small-world brain network architecture of patients with mild traumatic brain injury (MTBI), and a correlation between brain functional connectivity network properties in the resting-state fMRI and Standardized Assessment of Concussion (SAC) parameters. The neurological conditions of 22 MTBI patients and 17 normal control individuals were evaluated according to the SAC. Resting-state fMRI was performed in all subjects 3 and 7days after injury respectively. After preprocessing the fMRI data, cortex functional regions were marked using AAL90 and Dosenbach160 templates. The small-world network parameters and areas under the integral curves were computed in the range of sparsity from 0.01 to 0.5. Independent-sample t-tests were used to compare these parameters between the MTBI and control group. Significantly different parameters were investigated for correlations with SAC scores; those that correlated were chosen for further curve fitting. The clustering coefficient, the communication efficiency across in local networks, and the strength of connectivity were all higher in MTBI patients relative to control individuals. Parameters in 160 brain regions of the MTBI group significantly correlated with total SAC score and score for attention; the network parameters may be a quadratic function of attention scores of SAC and a cubic function of SAC scores. MTBI patients were characterized by elevated communication efficiency across global brain regions, and in local networks, and strength of mean connectivity. These features may be associated with brain function compensation. The network parameters significantly correlated with SAC total and attention scores. Copyright © 2017 Elsevier Ltd. All rights reserved.
A frequency-domain approach to improve ANNs generalization quality via proper initialization.
Chaari, Majdi; Fekih, Afef; Seibi, Abdennour C; Hmida, Jalel Ben
2018-08-01
The ability to train a network without memorizing the input/output data, thereby allowing a good predictive performance when applied to unseen data, is paramount in ANN applications. In this paper, we propose a frequency-domain approach to evaluate the network initialization in terms of quality of training, i.e., generalization capabilities. As an alternative to the conventional time-domain methods, the proposed approach eliminates the approximate nature of network validation using an excess of unseen data. The benefits of the proposed approach are demonstrated using two numerical examples, where two trained networks performed similarly on the training and the validation data sets, yet they revealed a significant difference in prediction accuracy when tested using a different data set. This observation is of utmost importance in modeling applications requiring a high degree of accuracy. The efficiency of the proposed approach is further demonstrated on a real-world problem, where unlike other initialization methods, a more conclusive assessment of generalization is achieved. On the practical front, subtle methodological and implementational facets are addressed to ensure reproducibility and pinpoint the limitations of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Guanxue; Wang, Lin; Wang, Xiaofan
2017-06-07
Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.
Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi
2014-07-01
Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bompard, E.; Ma, Y. C.; Ragazzi, E.
2006-03-01
Competition has been introduced in the electricity markets with the goal of reducing prices and improving efficiency. The basic idea which stays behind this choice is that, in competitive markets, a greater quantity of the good is exchanged at a lower price, leading to higher market efficiency. Electricity markets are pretty different from other commodities mainly due to the physical constraints related to the network structure that may impact the market performance. The network structure of the system on which the economic transactions need to be undertaken poses strict physical and operational constraints. Strategic interactions among producers that game the market with the objective of maximizing their producer surplus must be taken into account when modeling competitive electricity markets. The physical constraints, specific of the electricity markets, provide additional opportunity of gaming to the market players. Game theory provides a tool to model such a context. This paper discussed the application of game theory to physical constrained electricity markets with the goal of providing tools for assessing the market performance and pinpointing the critical network constraints that may impact the market efficiency. The basic models of game theory specifically designed to represent the electricity markets will be presented. IEEE30 bus test system of the constrained electricity market will be discussed to show the network impacts on the market performances in presence of strategic bidding behavior of the producers.
SLA-aware differentiated QoS in elastic optical networks
NASA Astrophysics Data System (ADS)
Agrawal, Anuj; Vyas, Upama; Bhatia, Vimal; Prakash, Shashi
2017-07-01
The quality of service (QoS) offered by optical networks can be improved by accurate provisioning of service level specifications (SLSs) included in the service level agreement (SLA). A large number of users coexisting in the network require different services. Thus, a pragmatic network needs to offer a differentiated QoS to a variety of users according to the SLA contracted for different services at varying costs. In conventional wavelength division multiplexed (WDM) optical networks, service differentiation is feasible only for a limited number of users because of its fixed-grid structure. Newly introduced flex-grid based elastic optical networks (EONs) are more adaptive to traffic requirements as compared to the WDM networks because of the flexibility in their grid structure. Thus, we propose an efficient SLA provisioning algorithm with improved QoS for these flex-grid EONs empowered by optical orthogonal frequency division multiplexing (O-OFDM). The proposed algorithm, called SLA-aware differentiated QoS (SADQ), employs differentiation at the level of routing, spectrum allocation, and connection survivability. The proposed SADQ aims to accurately provision the SLA using such multilevel differentiation with an objective to improve the spectrum utilization from the network operator's perspective. SADQ is evaluated for three different CoSs under various traffic demand patterns and for different ratios of the number of requests belonging to the three considered CoSs. We propose two new SLA metrics for the improvement of functional QoS requirements, namely, security, confidentiality and survivability of high class of service (CoS) traffic. Since, to the best of our knowledge, the proposed SADQ is the first scheme in optical networks to employ exhaustive differentiation at the levels of routing, spectrum allocation, and survivability in a single algorithm, we first compare the performance of SADQ in EON and currently deployed WDM networks to assess the differentiation capability of EON and WDM networks under such differentiated service environment. The proposed SADQ is then compared with two existing benchmark routing and spectrum allocation (RSA) schemes that are also designed under EONs. Simulations indicate that the performance of SADQ is distinctly better in EON than in WDM network under differentiated QoS scenario. The comparative analysis of the proposed SADQ with the considered benchmark RSA strategies designed under EON shows the improved performance of SADQ in EON paradigm for offering differentiated services as per the SLA.
2018-01-25
generally a researcher into methods and techniques (i.e., the science) of assessment. This stakeholder may observe ongoing events/experiments or may use... Research Visualization Tool. A first step toward finding a method to link research . 3.1.2 Phase II: Linking and the Network Approach During Phase I, we...innovations. In the former realm, UMMPIREE will develop a method to link assessments from different research studies to guide research
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.
1999-01-01
The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.
Statins in adult patients with HIV: Protocol for a systematic review and network meta-analysis.
Roever, Leonardo; Resende, Elmiro Santos; Diniz, Angélica Lemos Debs; Penha-Silva, Nilson; O'Connell, João Lucas; Gomes, Paulo Fernando Silva; Zanetti, Hugo Ribeiro; Roerver-Borges, Anaisa Silva; Veloso, Fernando César; Fidale, Thiago Montes; Casella-Filho, Antonio; Dourado, Paulo Magno Martins; Chagas, Antonio Carlos Palandri; Ali-Hasan-Al-Saegh, Sadeq; Reis, Paulo Eduardo Ocke; Pinto, Rogério de Melo; Oliveira, Gustavo B F; Avezum, Álvaro; Neto, Mansueto; Durães, André; Silva, Rose Mary Ferreira Lisboa da; Grande, Antonio José; Denardi, Celise; Lopes, Renato Delascio; Nerlekar, Nitesh; Alizadeh, Shahab; Hernandez, Adrian V; Biondi-Zoccai, Giuseppe
2018-04-01
Patients with HIV have been found to suffer from lipid abnormalities, including elevated levels of total and LDL-cholesterol as well as triglyceride levels. Abnormal lipid levels are associated with an increased risk of developing cardiovascular diseases, which are significant causes of mortality among the general population. Therefore, the objective of the current study is to conduct a systematic review with network meta-analysis to compare the effects of statins classes on HIV patients. Randomized clinical trials (RCTs) and observational studies published in English up to 31 December 2017, and which include direct and/or indirect evidence, will be included. Studies will be retrieved by searching four electronic databases and cross-referencing. Dual selection and abstraction of data will occur. The primary outcome will all-cause mortality, new event of acute myocardial infarction, stroke (hemorrhagic and ischemic), hospitalization for acute coronary syndrome and urgent revascularization procedures and cardiovascular mortality. Secondary outcomes will be assessment of the differences in change of total cholesterol (TC), low-density lipoprotein (LDL-C), apolipoprotein B (ApoB), high density lipoprotein (HDL-C). Risk of bias will be assessed using the Cochrane Risk of Bias assessment instrument for RCTs and the Strengthening the Reporting of Observational Studies in Epidemiology instrument for observational studies. Network meta-analysis will be performed using multivariate random-effects meta-regression models. The surface under the cumulative ranking curve will be used to provide a hierarchy of statins that reduce cardiovascular mortality in HIV patients. A revised version of the Cochrane Risk of Bias tool (RoB 2.0) will be used to assess the risk of bias in eligible RCTs. Results will be synthesized and analyzed using network meta-analysis (NMA). Overall strength of the evidence and publication bias will be evaluated. Subgroup and sensitivity analysis will also be performed. Ethics approval was not required for this study because it was based on published studies. The results and findings of this study will be submitted and published in a scientific peer-reviewed journal. The evidence will determine which combination of interventions are most promising for current practice and further investigation. PROSPERO (CRD42017072996).
Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.
Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit
2014-02-01
To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deep Space Network and Lunar Network Communication Coverage of the Moon
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2006-01-01
In this article, we describe the communication coverage analysis for the lunar network and the Earth ground stations. The first part of this article focuses on the direct communication coverage of the Moon from the Earth's ground stations. In particular, we assess the coverage performance of the Moon based on the existing Deep Space Network (DSN) antennas and the complimentary coverage of other potential stations at Hartebeesthoek, South Africa and at Santiago, Chile. We also address the coverage sensitivity based on different DSN antenna scenarios and their capability to provide single and redundant coverage of the Moon. The second part of this article focuses on the framework of the constrained optimization scheme to seek a stable constellation six relay satellites in two planes that not only can provide continuous communication coverage to any users on the Moon surface, but can also deliver data throughput in a highly efficient manner.
Damage and Loss Estimation for Natural Gas Networks: The Case of Istanbul
NASA Astrophysics Data System (ADS)
Çaktı, Eser; Hancılar, Ufuk; Şeşetyan, Karin; Bıyıkoǧlu, Hikmet; Şafak, Erdal
2017-04-01
Natural gas networks are one of the major lifeline systems to support human, urban and industrial activities. The continuity of gas supply is critical for almost all functions of modern life. Under natural phenomena such as earthquakes and landslides the damages to the system elements may lead to explosions and fires compromising human life and damaging physical environment. Furthermore, the disruption in the gas supply puts human activities at risk and also results in economical losses. This study is concerned with the performance of one of the largest natural gas distribution systems in the world. Physical damages to Istanbul's natural gas network are estimated under the most recent probabilistic earthquake hazard models available, as well as under simulated ground motions from physics based models. Several vulnerability functions are used in modelling damages to system elements. A first-order assessment of monetary losses to Istanbul's natural gas distribution network is also attempted.
Assessing Social Networks in Patients with Psychotic Disorders: A Systematic Review of Instruments.
Siette, Joyce; Gulea, Claudia; Priebe, Stefan
2015-01-01
Evidence suggests that social networks of patients with psychotic disorders influence symptoms, quality of life and treatment outcomes. It is therefore important to assess social networks for which appropriate and preferably established instruments should be used. To identify instruments assessing social networks in studies of patients with psychotic disorders and explore their properties. A systematic search of electronic databases was conducted to identify studies that used a measure of social networks in patients with psychotic disorders. Eight instruments were identified, all of which had been developed before 1991. They have been used in 65 studies (total N of patients = 8,522). They assess one or more aspects of social networks such as their size, structure, dimensionality and quality. Most instruments have various shortcomings, including questionable inter-rater and test-retest reliability. The assessment of social networks in patients with psychotic disorders is characterized by a variety of approaches which may reflect the complexity of the construct. Further research on social networks in patients with psychotic disorders would benefit from advanced and more precise instruments using comparable definitions of and timescales for social networks across studies.
Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou
2015-12-01
The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.
Eckner, James T; Rettmann, Ashley; Narisetty, Naveen; Greer, Jacob; Moore, Brandon; Brimacombe, Susan; He, Xuming; Broglio, Steven P
2016-01-01
To determine test-re-test reliabilities of novel Evoked Response Potential (ERP)-based Brain Network Activation (BNA) scores in healthy athletes. Observational, repeated-measures study. Forty-two healthy male and female high school and collegiate athletes completed auditory oddball and go/no-go ERP assessments at baseline, 1 week, 6 weeks and 1 year. The BNA algorithm was applied to the ERP data, considering electrode location, frequency band, peak latency and normalized amplitude to generate seven unique BNA scores for each testing session. Mean BNA scores, intra-class correlation coefficient (ICC) values and reliable change (RC) values were calculated for each of the seven BNA networks. BNA scores ranged from 46.3 ± 34.9 to 69.9 ± 22.8, ICC values ranged from 0.46-0.65 and 95% RC values ranged from 38.3-68.1 across the seven networks. The wide range of BNA scores observed in this population of healthy athletes suggests that a single BNA score or set of BNA scores from a single after-injury test session may be difficult to interpret in isolation without knowledge of the athlete's own baseline BNA score(s) and/or the results of serial tests performed at additional time points. The stability of each BNA network should be considered when interpreting test-re-test BNA score changes.
Measuring Learning Progressions Using Bayesian Modeling in Complex Assessments
ERIC Educational Resources Information Center
Rutstein, Daisy Wise
2012-01-01
This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case…
Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis.
1997-03-01
shortest queue length. Setia , Squillante, and Tripathi [109] extend Makowski and Nelson’s work by performing a quantitative assessment of a range of...Markov chains." Numerical Solution of Markov Chains, edited by W. J. Stewart, 63- 88. Basel: Marcel Dekker, 1991. [109] Setia , S. K., and others
Analysis of the proposed utilization of TDRS system by the HEAO-C satellite
NASA Technical Reports Server (NTRS)
Weathers, G.
1974-01-01
The primary function of the study was to assess the impact upon the HEAO telecommunications system of the proposed relay satellite-to-ground-link configuration. The system is designed to perform the function of most of the NASA ground tracking and communications network at a net cost savings for NASA.
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
Leitner, Jordan B.; Duran-Jordan, Kelly; Magerman, Adam B.; Schmader, Toni; Allen, John J. B.
2015-01-01
This study assessed whether individual differences in self-oriented neural processing were associated with performance perceptions of minority students under stereotype threat. Resting electroencephalographic activity recorded in white and minority participants was used to predict later estimates of task errors and self-doubt on a presumed measure of intelligence. We assessed spontaneous phase-locking between dipole sources in left lateral parietal cortex (LPC), precuneus/posterior cingulate cortex (P/PCC), and medial prefrontal cortex (MPFC); three regions of the default mode network (DMN) that are integral for self-oriented processing. Results revealed that minorities with greater LPC-P/PCC phase-locking in the theta band reported more accurate error estimations. All individuals experienced less self-doubt to the extent they exhibited greater LPC-MPFC phase-locking in the alpha band but this effect was driven by minorities. Minorities also reported more self-doubt to the extent they overestimated errors. Findings reveal novel neural moderators of stereotype threat effects on subjective experience. Spontaneous synchronization between DMN regions may play a role in anticipatory coping mechanisms that buffer individuals from stereotype threat. PMID:25398433
The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2002-01-01
The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.
NASA Astrophysics Data System (ADS)
Mascarenas, David D. L.; Flynn, Eric; Lin, Kaisen; Farinholt, Kevin; Park, Gyuhae; Gupta, Rajesh; Todd, Michael; Farrar, Charles
2008-03-01
A major challenge impeding the deployment of wireless sensor networks for structural health monitoring (SHM) is developing means to supply power to the sensor nodes in a cost-effective manner. In this work an initial test of a roving-host wireless sensor network was performed on a bridge near Truth or Consequences, NM in August of 2007. The roving-host wireless sensor network features a radio controlled helicopter responsible for wirelessly delivering energy to sensor nodes on an "as-needed" basis. In addition, the helicopter also serves as a central data repository and processing center for the information collected by the sensor network. The sensor nodes used on the bridge were developed for measuring the peak displacement of the bridge, as well as measuring the preload of some of the bolted joints in the bridge. These sensors and sensor nodes were specifically designed to be able to operate from energy supplied wirelessly from the helicopter. The ultimate goal of this research is to ease the requirement for battery power supplies in wireless sensor networks.
Complex Networks Analysis of Manual and Machine Translations
NASA Astrophysics Data System (ADS)
Amancio, Diego R.; Antiqueira, Lucas; Pardo, Thiago A. S.; da F. Costa, Luciano; Oliveira, Osvaldo N.; Nunes, Maria G. V.
Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by MT tools can be distinguished from their manual counterparts by means of metrics such as in- (ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better MT tools and automatic evaluation metrics.
Effects of amyloid and small vessel disease on white matter network disruption.
Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Ye, Byoung Seok; Kim, Yeo Jin; Cho, Hanna; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won
2015-01-01
There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232 cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B (PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.
Evaluation of urban drainage network based geographycal information system (GIS) in Sumenep City
NASA Astrophysics Data System (ADS)
Agrianto, F.; Hadiani, R.; Purwana, Y. M.
2017-02-01
Sumenep City frequently hit by floods. Drainage network conditions greatly affect the performance of her maid, especially those aspects that affect the capacity of the drainage channel. Aspects that affect the capacity of the drainage channel in the form of sedimentation rate and complementary buildings on drainage channels, for example, the presence of street inlet and trash rack. The method used is a drainage channel capacity level approach that level assessment of each segment drainage network conditions by calculating the ratio of the channel cross-sectional area that is filled with sediment to the total cross-sectional area wet and the existence of complementary buildings. Having obtained the condition index value of each segment, the subsequent analysis is spatial analysis using ArcGIS applications to obtain a map of the drainage network information. The analysis showed that the level condition of drainage network in the city of Sumenep in 2016 that of the total 428 drainage network there are 43 sections belonging to the state level “Good”, 198 drainage network belong to the state level “Enough”, 115 drainage network belong to the state “Mild Damaged”, 50 sections belonging to the state “Heavy Damage” and 22 drainage network belong to the state of “Dysfunction”.
Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.
Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z
2018-03-15
Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.
Understanding and managing disaster evacuation on a transportation network.
Lambert, James H; Parlak, Ayse I; Zhou, Qian; Miller, John S; Fontaine, Michael D; Guterbock, Thomas M; Clements, Janet L; Thekdi, Shital A
2013-01-01
Uncertain population behaviors in a regional emergency could potentially harm the performance of the region's transportation system and subsequent evacuation effort. The integration of behavioral survey data with travel demand modeling enables an assessment of transportation system performance and the identification of operational and public health countermeasures. This paper analyzes transportation system demand and system performance for emergency management in three disaster scenarios. A two-step methodology first estimates the number of trips evacuating the region, thereby capturing behavioral aspects in a scientifically defensible manner based on survey results, and second, assigns these trips to a regional highway network, using geographic information systems software, thereby making the methodology transferable to other locations. Performance measures are generated for each scenario including maps of volume-to-capacity ratios, geographic contours of evacuation time from the center of the region, and link-specific metrics such as weighted average speed and traffic volume. The methods are demonstrated on a 600 segment transportation network in Washington, DC (USA) and are applied to three scenarios involving attacks from radiological dispersion devices (e.g., dirty bombs). The results suggests that: (1) a single detonation would degrade transportation system performance two to three times more than that which occurs during a typical weekday afternoon peak hour, (2) volume on several critical arterials within the network would exceed capacity in the represented scenarios, and (3) resulting travel times to reach intended destinations imply that un-aided evacuation is impractical. These results assist decisions made by two categories of emergency responders: (1) transportation managers who provide traveler information and who make operational adjustments to improve the network (e.g., signal retiming) and (2) public health officials who maintain shelters, food and water stations, or first aid centers along evacuation routes. This approach may also interest decisionmakers who are in a position to influence the allocation of emergency resources, including healthcare providers, infrastructure owners, transit providers, and regional or local planning staff. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assuring SS7 dependability: A robustness characterization of signaling network elements
NASA Astrophysics Data System (ADS)
Karmarkar, Vikram V.
1994-04-01
Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.
Future benefits and applications of intelligent on-board processing to VSAT services
NASA Technical Reports Server (NTRS)
Price, Kent M.; Kwan, Robert K.; Edward, Ron; Faris, F.; Inukai, Tom
1992-01-01
The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified.
Physicians' propensity to collaborate and their attitude towards EBM: A cross-sectional study
2011-01-01
Background The healthcare management literature states that physicians often coordinate their activities within and between organizations through social networks. Previous studies have also documented the relationship between professional networks and physicians' attitudes toward evidence-based medicine (EBM). The present study sought associations between physicians' self-reported attitudes toward EBM and the formation of inter-physician collaborative network ties. Methods Primary data were collected from 297 clinicians at six hospitals belonging to one of the largest local health units of the Italian National Health Service. Data collection used a survey questionnaire that inquired about professional networks and physicians' characteristics. Social network analysis was performed to describe inter-physician professional networks. Multiple regression quadratic assignment procedures were performed to assess the relationship between self-reported attitudes toward EBM and clinicians' propensity to collaborate. Results Physicians who reported similar attitudes toward EBM were more likely to exchange information and advice through collaborative relationships (β = 0.0198; p < 0.05). Similarities in other characteristics, such as field of specialization (β = 0.1988; p < 0.01), individual affiliations with hospital sites (β = 0.0845; p < 0.01), and organizational clinical directorates (β = 0.0459; p < 0.01), were also significantly related to physicians' propensity to collaborate. Conclusions Communities of practice within healthcare organizations are likely to contain separate clusters of physicians whose members are highly similar. Organizational interventions are needed to foster heterophily whenever multidisciplinary cooperation is required to provide effective health care. PMID:21787395
Correcting evaluation bias of relational classifiers with network cross validation
Neville, Jennifer; Gallagher, Brian; Eliassi-Rad, Tina; ...
2011-01-04
Recently, a number of modeling techniques have been developed for data mining and machine learning in relational and network domains where the instances are not independent and identically distributed (i.i.d.). These methods specifically exploit the statistical dependencies among instances in order to improve classification accuracy. However, there has been little focus on how these same dependencies affect our ability to draw accurate conclusions about the performance of the models. More specifically, the complex link structure and attribute dependencies in relational data violate the assumptions of many conventional statistical tests and make it difficult to use these tests to assess themore » models in an unbiased manner. In this work, we examine the task of within-network classification and the question of whether two algorithms will learn models that will result in significantly different levels of performance. We show that the commonly used form of evaluation (paired t-test on overlapping network samples) can result in an unacceptable level of Type I error. Furthermore, we show that Type I error increases as (1) the correlation among instances increases and (2) the size of the evaluation set increases (i.e., the proportion of labeled nodes in the network decreases). Lastly, we propose a method for network cross-validation that combined with paired t-tests produces more acceptable levels of Type I error while still providing reasonable levels of statistical power (i.e., 1–Type II error).« less
Evaluation of a 433 MHz band body sensor network for biomedical applications.
Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen
2013-01-14
Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%).
Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A
2008-12-01
It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.
Effects of Transcranial Direct Current Stimulation on Neural Networks in Young and Older Adults
Martin, Andrew K; Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Flöel, Agnes
2017-11-01
Transcranial direct current stimulation (tDCS) may be a viable tool to improve motor and cognitive function in advanced age. However, although a number of studies have demonstrated improved cognitive performance in older adults, other studies have failed to show restorative effects. The neural effects of beneficial stimulation response in both age groups is lacking. In the current study, tDCS was administered during simultaneous fMRI in 42 healthy young and older participants. Semantic word generation and motor speech baseline tasks were used to investigate behavioral and neural effects of uni- and bihemispheric motor cortex tDCS in a three-way, crossover, sham tDCS controlled design. Independent components analysis assessed differences in task-related activity between the two age groups and tDCS effects at the network level. We also explored whether laterality of language network organization was effected by tDCS. Behaviorally, both active tDCS conditions significantly improved semantic word retrieval performance in young and older adults and were comparable between groups and stimulation conditions. Network-level tDCS effects were identified in the ventral and dorsal anterior cingulate networks in the combined sample during semantic fluency and motor speech tasks. In addition, a shift toward enhanced left laterality was identified in the older adults for both active stimulation conditions. Thus, tDCS results in common network-level modulations and behavioral improvements for both age groups, with an additional effect of increasing left laterality in older adults.
NASA Astrophysics Data System (ADS)
Maffucci, R.; Bigi, S.; Corrado, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.
2015-04-01
We report the results of a systematic study carried out on the fracture systems exposed in the Sierra de La Candelaria anticline, in the central Andean retrowedge of northwestern Argentina. The aim was to elaborate a kinematic model of the anticline and to assess the dimensional and spatial properties of the fracture network characterizing the Cretaceous sandstone reservoir of the geothermal system of Rosario de La Frontera. Special regard was devoted to explore how tectonics may affect fluid circulation at depth and control fluids' natural upwelling at surface. With this aim we performed a Discrete Fracture Network model in order to evaluate the potential of the reservoir of the studied geothermal system. The results show that the Sierra de La Candelaria regional anticline developed according to a kinematic model of transpressional inversion compatible with the latest Andean regional WNW-ESE shortening, acting on a pre-orogenic N-S normal fault. A push-up geometry developed during positive inversion controlling the development of two minor anticlines: Termas and Balboa, separated by further NNW-SSE oblique-slip fault in the northern sector of the regional anticline. Brittle deformation recorded at the outcrop scale is robustly consistent with the extensional and transpressional events recognized at regional scale. In terms of fluid circulation, the NNW-SSE and NE-SW fault planes, associated to the late stage of the positive inversion, are considered the main structures controlling the migration paths of hot fluids from the reservoir to the surface. The results of the fracture modeling performed show that fractures related to the same deformation stage, are characterized by the highest values of secondary permeability. Moreover, the DFN models performed in the reservoir volume indicates that fracture network enhances its permeability: its secondary permeability is of about 49 mD and its fractured portion represents the 0.03% of the total volume.
Bajaj, Sahil; Housley, Stephen N.; Wu, David; Dhamala, Mukesh; James, G. A.; Butler, Andrew J.
2016-01-01
Balance of motor network activity between the two brain hemispheres after stroke is crucial for functional recovery. Several studies have extensively studied the role of the affected brain hemisphere to better understand changes in motor network activity following stroke. Very few studies have examined the role of the unaffected brain hemisphere and confirmed the test–retest reliability of connectivity measures on unaffected hemisphere. We recorded blood oxygenation level dependent functional magnetic resonance imaging (fMRI) signals from nine stroke survivors with hemiparesis of the left or right hand. Participants performed a motor execution task with affected hand, unaffected hand, and both hands simultaneously. Participants returned for a repeat fMRI scan 1 week later. Using dynamic causal modeling (DCM), we evaluated effective connectivity among three motor areas: the primary motor area (M1), the premotor cortex (PMC) and the supplementary motor area for the affected and unaffected hemispheres separately. Five participants’ manual motor ability was assessed by Fugl-Meyer Motor Assessment scores and root-mean square error of participants’ tracking ability during a robot-assisted game. We found (i) that the task performance with the affected hand resulted in strengthening of the connectivity pattern for unaffected hemisphere, (ii) an identical network of the unaffected hemisphere when participants performed the task with their unaffected hand, and (iii) the pattern of directional connectivity observed in the affected hemisphere was identical for tasks using the affected hand only or both hands. Furthermore, paired t-test comparison found no significant differences in connectivity strength for any path when compared with one-week follow-up. Brain-behavior linear correlation analysis showed that the connectivity patterns in the unaffected hemisphere more accurately reflected the behavioral conditions than the connectivity patterns in the affected hemisphere. Above findings enrich our knowledge of unaffected brain hemisphere following stroke, which further strengthens our neurobiological understanding of stroke-affected brain and can help to effectively identify and apply stroke-treatments. PMID:28082882
Meditation is associated with increased brain network integration.
van Lutterveld, Remko; van Dellen, Edwin; Pal, Prasanta; Yang, Hua; Stam, Cornelis Jan; Brewer, Judson
2017-09-01
This study aims to identify novel quantitative EEG measures associated with mindfulness meditation. As there is some evidence that meditation is associated with higher integration of brain networks, we focused on EEG measures of network integration. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators performed a basic meditation practice that supported effortless awareness, which is an important quality of experience related to mindfulness practices, while their EEG was recorded. Experienced meditators performed a self-selected meditation practice that supported effortless awareness. Network integration was analyzed with maximum betweenness centrality and leaf fraction (which both correlate positively with network integration) as well as with diameter and average eccentricity (which both correlate negatively with network integration), based on a phase-lag index (PLI) and minimum spanning tree (MST) approach. Differences between groups were assessed using repeated-measures ANOVA for the theta (4-8 Hz), alpha (8-13 Hz) and lower beta (13-20 Hz) frequency bands. Maximum betweenness centrality was significantly higher in experienced meditators than in novices (P = 0.012) in the alpha band. In the same frequency band, leaf fraction showed a trend toward being significantly higher in experienced meditators than in novices (P = 0.056), while diameter and average eccentricity were significantly lower in experienced meditators than in novices (P = 0.016 and P = 0.028 respectively). No significant differences between groups were observed for the theta and beta frequency bands. These results show that alpha band functional network topology is better integrated in experienced meditators than in novice meditators during meditation. This novel finding provides the rationale to investigate the temporal relation between measures of functional connectivity network integration and meditation quality, for example using neurophenomenology experiments. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Tonnis, Dorothy Ann
The goals of this interpretive study were to examine selected Wisconsin science teachers' perceptions of teaching and learning science, to describe the scope of classroom performance assessment practices, and to gain an understanding of teachers' personal and professional experiences that influenced their belief systems of teaching, learning and assessment. The study was designed to answer the research questions: (1) How does the integration of performance assessment relate to the teachers' views of teaching and learning? (2) How are the selected teachers integrating performance assessment in their teaching? (3) What past personal and professional experiences have influenced teachers' attitudes and beliefs related to their classroom performance assessment practices? Purposeful sampling was used to select seven Wisconsin elementary, middle and high school science teachers who participated in the WPADP initiative from 1993-1995. Data collection methods included a Teaching Practices Inventory (TPI), semi-structured interviews, teacher developed portfolios, portfolio conferences, and classroom observations. Four themes and multiple categories emerged through data analysis to answer the research questions and to describe the results. Several conclusions were drawn from this research. First, science teachers who appeared to effectively integrate performance assessment, demonstrated transformational thinking in their attitudes and beliefs about teaching and learning science. In addition, these teachers viewed assessment and instructional practices as interdependent. Third, transformational teachers generally used well defined criteria to judge student work and made it public to the students. Transformational teachers provided students with real-world performance assessment tasks that were also learning events. Furthermore, student task responses informed the transformational teachers about effectiveness of instruction, students' complex thinking skills, quality of assessment instruments, students' creativity, and students' self-assessment skills. Finally, transformational teachers maintained integration of performance assessment practices through sustaining teacher support networks, engaging in professional development programs, and reflecting upon past personal and professional experiences related to teaching, learning and assessment. Salient conflicts overcome or minimized by transformational teachers include the conflict between assessment scoring and grading issues, validity and reliability concerns about the performance assessment tasks used, and the difficulty for teachers to consistently provide public criteria to students before task administration.
Extension of mixture-of-experts networks for binary classification of hierarchical data.
Ng, Shu-Kay; McLachlan, Geoffrey J
2007-09-01
For many applied problems in the context of medically relevant artificial intelligence, the data collected exhibit a hierarchical or clustered structure. Ignoring the interdependence between hierarchical data can result in misleading classification. In this paper, we extend the mechanism for mixture-of-experts (ME) networks for binary classification of hierarchical data. Another extension is to quantify cluster-specific information on data hierarchy by random effects via the generalized linear mixed-effects model (GLMM). The extension of ME networks is implemented by allowing for correlation in the hierarchical data in both the gating and expert networks via the GLMM. The proposed model is illustrated using a real thyroid disease data set. In our study, we consider 7652 thyroid diagnosis records from 1984 to early 1987 with complete information on 20 attribute values. We obtain 10 independent random splits of the data into a training set and a test set in the proportions 85% and 15%. The test sets are used to assess the generalization performance of the proposed model, based on the percentage of misclassifications. For comparison, the results obtained from the ME network with independence assumption are also included. With the thyroid disease data, the misclassification rate on test sets for the extended ME network is 8.9%, compared to 13.9% for the ME network. In addition, based on model selection methods described in Section 2, a network with two experts is selected. These two expert networks can be considered as modeling two groups of patients with high and low incidence rates. Significant variation among the predicted cluster-specific random effects is detected in the patient group with low incidence rate. It is shown that the extended ME network outperforms the ME network for binary classification of hierarchical data. With the thyroid disease data, useful information on the relative log odds of patients with diagnosed conditions at different periods can be evaluated. This information can be taken into consideration for the assessment of treatment planning of the disease. The proposed extended ME network thus facilitates a more general approach to incorporate data hierarchy mechanism in network modeling.
ERIC Educational Resources Information Center
Bertot, John Carlo; McClure, Charles R.
This report describes the results of an assessment of Sailor, Maryland's Online Public Information Network, which provides statewide Internet connection to 100% of Maryland public libraries. The concept of a "statewide networked environment" includes information services, products, hardware and software, telecommunications…
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...
Vukicevic, Arso M; Jovicic, Gordana R; Jovicic, Milos N; Milicevic, Vladimir L; Filipovic, Nenad D
2018-02-01
Bone injures (BI) represents one of the major health problems, together with cancer and cardiovascular diseases. Assessment of the risks associated with BI is nontrivial since fragility of human cortical bone is varying with age. Due to restrictions for performing experiments on humans, only a limited number of fracture resistance curves (R-curves) for particular ages have been reported in the literature. This study proposes a novel decision support system for the assessment of bone fracture resistance by fusing various artificial intelligence algorithms. The aim was to estimate the R-curve slope, toughness threshold and stress intensity factor using the two input parameters commonly available during a routine clinical examination: patients age and crack length. Using the data from the literature, the evolutionary assembled Artificial Neural Network was developed and used for the derivation of Linear regression (LR) models of R-curves for arbitrary age. Finally, by using the patient (age)-specific LR models and diagnosed crack size one could estimate the risk of bone fracture under given physiological conditions. Compared to the literature, we demonstrated improved performances for estimating nonlinear changes of R-curve slope (R 2 = 0.82 vs. R 2 = 0.76) and Toughness threshold with ageing (R 2 = 0.73 vs. R 2 = 0.66).
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
Mutasa, Simukayi; Chang, Peter D; Ruzal-Shapiro, Carrie; Ayyala, Rama
2018-02-05
Bone age assessment (BAA) is a commonly performed diagnostic study in pediatric radiology to assess skeletal maturity. The most commonly utilized method for assessment of BAA is the Greulich and Pyle method (Pediatr Radiol 46.9:1269-1274, 2016; Arch Dis Child 81.2:172-173, 1999) atlas. The evaluation of BAA can be a tedious and time-consuming process for the radiologist. As such, several computer-assisted detection/diagnosis (CAD) methods have been proposed for automation of BAA. Classical CAD tools have traditionally relied on hard-coded algorithmic features for BAA which suffer from a variety of drawbacks. Recently, the advent and proliferation of convolutional neural networks (CNNs) has shown promise in a variety of medical imaging applications. There have been at least two published applications of using deep learning for evaluation of bone age (Med Image Anal 36:41-51, 2017; JDI 1-5, 2017). However, current implementations are limited by a combination of both architecture design and relatively small datasets. The purpose of this study is to demonstrate the benefits of a customized neural network algorithm carefully calibrated to the evaluation of bone age utilizing a relatively large institutional dataset. In doing so, this study will aim to show that advanced architectures can be successfully trained from scratch in the medical imaging domain and can generate results that outperform any existing proposed algorithm. The training data consisted of 10,289 images of different skeletal age examinations, 8909 from the hospital Picture Archiving and Communication System at our institution and 1383 from the public Digital Hand Atlas Database. The data was separated into four cohorts, one each for male and female children above the age of 8, and one each for male and female children below the age of 10. The testing set consisted of 20 radiographs of each 1-year-age cohort from 0 to 1 years to 14-15+ years, half male and half female. The testing set included left-hand radiographs done for bone age assessment, trauma evaluation without significant findings, and skeletal surveys. A 14 hidden layer-customized neural network was designed for this study. The network included several state of the art techniques including residual-style connections, inception layers, and spatial transformer layers. Data augmentation was applied to the network inputs to prevent overfitting. A linear regression output was utilized. Mean square error was used as the network loss function and mean absolute error (MAE) was utilized as the primary performance metric. MAE accuracies on the validation and test sets for young females were 0.654 and 0.561 respectively. For older females, validation and test accuracies were 0.662 and 0.497 respectively. For young males, validation and test accuracies were 0.649 and 0.585 respectively. Finally, for older males, validation and test set accuracies were 0.581 and 0.501 respectively. The female cohorts were trained for 900 epochs each and the male cohorts were trained for 600 epochs. An eightfold cross-validation set was employed for hyperparameter tuning. Test error was obtained after training on a full data set with the selected hyperparameters. Using our proposed customized neural network architecture on our large available data, we achieved an aggregate validation and test set mean absolute errors of 0.637 and 0.536 respectively. To date, this is the best published performance on utilizing deep learning for bone age assessment. Our results support our initial hypothesis that customized, purpose-built neural networks provide improved performance over networks derived from pre-trained imaging data sets. We build on that initial work by showing that the addition of state-of-the-art techniques such as residual connections and inception architecture further improves prediction accuracy. This is important because the current assumption for use of residual and/or inception architectures is that a large pre-trained network is required for successful implementation given the relatively small datasets in medical imaging. Instead we show that a small, customized architecture incorporating advanced CNN strategies can indeed be trained from scratch, yielding significant improvements in algorithm accuracy. It should be noted that for all four cohorts, testing error outperformed validation error. One reason for this is that our ground truth for our test set was obtained by averaging two pediatric radiologist reads compared to our training data for which only a single read was used. This suggests that despite relatively noisy training data, the algorithm could successfully model the variation between observers and generate estimates that are close to the expected ground truth.
Non-animal methods to predict skin sensitization (II): an assessment of defined approaches *.
Kleinstreuer, Nicole C; Hoffmann, Sebastian; Alépée, Nathalie; Allen, David; Ashikaga, Takao; Casey, Warren; Clouet, Elodie; Cluzel, Magalie; Desprez, Bertrand; Gellatly, Nichola; Göbel, Carsten; Kern, Petra S; Klaric, Martina; Kühnl, Jochen; Martinozzi-Teissier, Silvia; Mewes, Karsten; Miyazawa, Masaaki; Strickland, Judy; van Vliet, Erwin; Zang, Qingda; Petersohn, Dirk
2018-05-01
Skin sensitization is a toxicity endpoint of widespread concern, for which the mechanistic understanding and concurrent necessity for non-animal testing approaches have evolved to a critical juncture, with many available options for predicting sensitization without using animals. Cosmetics Europe and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods collaborated to analyze the performance of multiple non-animal data integration approaches for the skin sensitization safety assessment of cosmetics ingredients. The Cosmetics Europe Skin Tolerance Task Force (STTF) collected and generated data on 128 substances in multiple in vitro and in chemico skin sensitization assays selected based on a systematic assessment by the STTF. These assays, together with certain in silico predictions, are key components of various non-animal testing strategies that have been submitted to the Organization for Economic Cooperation and Development as case studies for skin sensitization. Curated murine local lymph node assay (LLNA) and human skin sensitization data were used to evaluate the performance of six defined approaches, comprising eight non-animal testing strategies, for both hazard and potency characterization. Defined approaches examined included consensus methods, artificial neural networks, support vector machine models, Bayesian networks, and decision trees, most of which were reproduced using open source software tools. Multiple non-animal testing strategies incorporating in vitro, in chemico, and in silico inputs demonstrated equivalent or superior performance to the LLNA when compared to both animal and human data for skin sensitization.
Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks
Khan, Komal Saifullah; Tariq, Muhammad
2014-01-01
Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739
McAuliffe, Eilish; De Brún, Aoife; Ward, Marie; O'Shea, Marie; Cunningham, Una; O'Donovan, Róisín; McGinley, Sinead; Fitzsimons, John; Corrigan, Siobhán; McDonald, Nick
2017-11-03
There is accumulating evidence implicating the role of leadership in system failures that have resulted in a range of errors in healthcare, from misdiagnoses to failures to recognise and respond to patient deterioration. This has led to concerns about traditional hierarchical leadership structures and created an interest in the development of collective ways of working that distribute leadership roles and responsibilities across team members. Such collective leadership approaches have been associated with improved team performance and staff engagement. This research seeks to improve our understanding of collective leadership by addressing two specific issues: (1) Does collective leadership emerge organically (and in what forms) in a newly networked structure? and (2) Is it possible to design and implement collective leadership interventions that enable teams to collectively improve team performance and patient safety? The first phase will include a social network analysis, using an online survey and semistructured interviews at three time points over 12 months, to document the frequency of contact and collaboration between senior hospital management staff in a recently configured hospital group. This study will explore how the network of 11 hospitals is operating and will assess whether collective leadership emerges organically. Second, collective leadership interventions will be co-designed during a series of workshops with healthcare staff, researchers and patient representatives, and then implemented and evaluated with four healthcare teams within the hospital network. A mixed-methods evaluation will explore the impact of the intervention on team effectiveness and team performance indicators to assess whether the intervention is suitable for wider roll-out and evaluation across the hospital group. Favourable ethical opinion has been received from the University College Dublin Research Ethics Committee (HREC-LS-16-116397/LS-16-20). Results will be disseminated via publication in peer-reviewed journals, national and international conferences, and to relevant stakeholders and interest groups. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Li, Hui; Giger, Maryellen L; Huynh, Benjamin Q; Antropova, Natalia O
2017-10-01
To evaluate deep learning in the assessment of breast cancer risk in which convolutional neural networks (CNNs) with transfer learning are used to extract parenchymal characteristics directly from full-field digital mammographic (FFDM) images instead of using computerized radiographic texture analysis (RTA), 456 clinical FFDM cases were included: a "high-risk" BRCA1/2 gene-mutation carriers dataset (53 cases), a "high-risk" unilateral cancer patients dataset (75 cases), and a "low-risk dataset" (328 cases). Deep learning was compared to the use of features from RTA, as well as to a combination of both in the task of distinguishing between high- and low-risk subjects. Similar classification performances were obtained using CNN [area under the curve [Formula: see text]; standard error [Formula: see text
Woodford Guegan, Eleanor; Cook, Andrew
2014-06-01
The European network for Health Technology Assessment Joint Action (EUnetHTA JA) project's overarching objective was to 'establish an effective and sustainable HTA [Health technology assessment] collaboration in Europe that brings added value at the regional, national and European level'. Specific objectives were to develop a strategy and business model for sustainable European collaboration on HTA, develop HTA tools and methods and promote good practice in HTA methods and processes. We describe activities performed on behalf of the National Institute for Health Research HTA programme; evaluating the project processes and developing a data set for a registry of planned clinical studies of relevance to public funders. Annual self-completion online questionnaires were sent to project participants and external stakeholders to identify their views about the project processes. Documentary review was undertaken at the project end on the final technical reports from the work packages to examine whether or not their deliverables had been achieved. The project's impact was assessed by whether or not the deliverables were produced, the objectives met and additional 'added value' generated. The project's effectiveness was evaluated by its processes, communication, administration, workings of individual work packages and involvement of external stakeholders. A two-stage Delphi exercise was undertaken to identify the data elements that should be included in a registry of planned clinical studies of relevance to public funders. The data set was validated by an efficacy testing exercise. High response rates were achieved for the questionnaires sent to project participants and this was attributed to the evidence-based strategy implemented. Response rates to questionnaires sent to external stakeholders were disappointingly lower. Most of the high-level objectives were achieved, although applying the developed tools in practice will be implemented in the European network for Health Technology Assessment Joint Action 2 (EUnetHTA JA2). Most work packages produced their planned deliverables. Networking emerged as one of the main benefits of the project and face-to-face meetings were important. However, the overarching objective did not appear to have been met because there will be a follow-up EUnetHTA JA2 project (reliant on project funding) before the establishment of any permanent network. Twelve organisations from three continents participated in the Delphi exercise to develop the data set. It was demonstrated that a registry for matching pragmatic clinical studies under consideration by funders could be built on a very small data set. This would include 10 unique items, of which five are required to describe a study and the rest are metadata. In the test sample the data set with an appropriate matching rule was able to deliver a sensitivity of between 50% and 100% and a specificity of between 43% and 86% for matching different elements. A number of recommendations have been made for the next EUnetHTA JA2 project and its evaluation. This included that the evaluation of the EUnetHTA JA2 project should extend beyond the end of the project to allow assessment of its impact; that the quality, usability and cost-effectiveness of tools in 'real-world HTA practice' should be assessed and tangible benefits of international networking should be evaluated. It is worth proceeding to develop a database registry aimed at identifying trials in development based on the data set developed. The study was funded by the National Institute for Health Research Health Technology Assessment programme (50%) and the European Union Commission (50%).
Woodford Guegan, Eleanor; Cook, Andrew
2014-01-01
BACKGROUND The European network for Health Technology Assessment Joint Action (EUnetHTA JA) project's overarching objective was to 'establish an effective and sustainable HTA [Health technology assessment] collaboration in Europe that brings added value at the regional, national and European level'. Specific objectives were to develop a strategy and business model for sustainable European collaboration on HTA, develop HTA tools and methods and promote good practice in HTA methods and processes. We describe activities performed on behalf of the National Institute for Health Research HTA programme; evaluating the project processes and developing a data set for a registry of planned clinical studies of relevance to public funders. METHODS Annual self-completion online questionnaires were sent to project participants and external stakeholders to identify their views about the project processes. Documentary review was undertaken at the project end on the final technical reports from the work packages to examine whether or not their deliverables had been achieved. The project's impact was assessed by whether or not the deliverables were produced, the objectives met and additional 'added value' generated. The project's effectiveness was evaluated by its processes, communication, administration, workings of individual work packages and involvement of external stakeholders. A two-stage Delphi exercise was undertaken to identify the data elements that should be included in a registry of planned clinical studies of relevance to public funders. The data set was validated by an efficacy testing exercise. RESULTS AND DISCUSSION High response rates were achieved for the questionnaires sent to project participants and this was attributed to the evidence-based strategy implemented. Response rates to questionnaires sent to external stakeholders were disappointingly lower. Most of the high-level objectives were achieved, although applying the developed tools in practice will be implemented in the European network for Health Technology Assessment Joint Action 2 (EUnetHTA JA2). Most work packages produced their planned deliverables. Networking emerged as one of the main benefits of the project and face-to-face meetings were important. However, the overarching objective did not appear to have been met because there will be a follow-up EUnetHTA JA2 project (reliant on project funding) before the establishment of any permanent network. Twelve organisations from three continents participated in the Delphi exercise to develop the data set. It was demonstrated that a registry for matching pragmatic clinical studies under consideration by funders could be built on a very small data set. This would include 10 unique items, of which five are required to describe a study and the rest are metadata. In the test sample the data set with an appropriate matching rule was able to deliver a sensitivity of between 50% and 100% and a specificity of between 43% and 86% for matching different elements. CONCLUSIONS A number of recommendations have been made for the next EUnetHTA JA2 project and its evaluation. This included that the evaluation of the EUnetHTA JA2 project should extend beyond the end of the project to allow assessment of its impact; that the quality, usability and cost-effectiveness of tools in 'real-world HTA practice' should be assessed and tangible benefits of international networking should be evaluated. It is worth proceeding to develop a database registry aimed at identifying trials in development based on the data set developed. FUNDING The study was funded by the National Institute for Health Research Health Technology Assessment programme (50%) and the European Union Commission (50%). PMID:24913263
Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin
2017-12-01
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio
2017-11-01
The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukherjee, A. D.; Brown, S. G.; McCarthy, M. C.
2017-12-01
A new generation of low cost air quality sensors have the potential to provide valuable information on the spatial-temporal variability of air pollution - if the measurements have sufficient quality. This study examined the performance of a particulate matter sensor model, the AirBeam (HabitatMap Inc., Brooklyn, NY), over a three month period in the urban environment of Sacramento, California. Nineteen AirBeam sensors were deployed at a regulatory air monitoring site collocated with meteorology measurements and as a local network over an 80 km2 domain in Sacramento, CA. This study presents the methodology to evaluate the precision, accuracy, and reliability of the sensors over a range of meteorological and aerosol conditions. The sensors demonstrated a robust degree of precision during collocated measurement periods (R2 = 0.98 - 0.99) and a moderate degree of correlation against a Beta Attenuation Monitor PM2.5 monitor (R2 0.6). A normalization correction is applied during the study period so that each AirBeam sensor in the network reports a comparable value. The role of the meteorological environment on the accuracy of the sensor measurements is investigated, along with the possibility of improving the measurements through a meteorology weighted correction. The data quality of the network of sensors is examined, and the spatial variability of particulate matter through the study domain derived from the sensor network is presented.