Science.gov

Sample records for assessment air quality

  1. Air quality risk assessment and management.

    PubMed

    Chen, Yue; Craig, Lorraine; Krewski, Daniel

    2008-01-01

    This article provides (1) a synthesis of the literature on the linkages between air pollution and human health, (2) an overview of quality management approaches in Canada, the United States, and the European Union (EU), and (3) future directions for air quality research. Numerous studies examining short-term effects of air pollution show significant associations between ambient levels of particulate matter (PM) and other air pollutants and increases in premature mortality and hospitalizations for cardiovascular and respiratory illnesses. Several well-designed epidemiological studies confirmed the adverse long-term effects of PM on both mortality and morbidity. Epidemiological studies also document significant associations between ozone (O3), sulfur (SO2), and nitrogen oxides (NO(x)) and adverse health outcomes; however, the effects of gaseous pollutants are less well documented. Subpopulations that are more susceptible to air pollution include children, the elderly, those with cardiorespiratory disease, and socioeconomically deprived individuals. Canada-wide standards for ambient air concentrations of PM2.5 and O3 were set in 2000, providing air quality targets to be achieved by 2010. In the United States, the Clean Air Act provides the framework for the establishment and review of National Ambient Air Quality Standards for criteria air pollutants and the establishment of emissions standards for hazardous air pollutants. The 1996 European Union's enactment of the Framework Directive for Air Quality established the process for setting Europe-wide limit values for a series of pollutants. The Clean Air for Europe program was established by the European Union to review existing limit values, emission ceilings, and abatement protocols, as set out in the current legislation. These initiatives serve as the legislative framework for air quality management in North America and Europe.

  2. Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  3. Indoor Air Quality Building Education and Assessment Model Forms

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  4. Assessing air quality in Aksaray with time series analysis

    NASA Astrophysics Data System (ADS)

    Kadilar, Gamze Özel; Kadilar, Cem

    2017-04-01

    Sulphur dioxide (SO2) is a major air pollutant caused by the dominant usage of diesel, petrol and fuels by vehicles and industries. One of the most air-polluted city in Turkey is Aksaray. Hence, in this study, the level of SO2 is analyzed in Aksaray based on the database monitored at air quality monitoring station of Turkey. Seasonal Autoregressive Integrated Moving Average (SARIMA) approach is used to forecast the level of SO2 air quality parameter. The results indicate that the seasonal ARIMA model provides reliable and satisfactory predictions for the air quality parameters and expected to be an alternative tool for practical assessment and justification.

  5. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    PubMed

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM10 and PM2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Air quality monitoring in NIS (SERBIA) and health impact assessment.

    PubMed

    Nikic, Dragana; Bogdanovic, Dragan; Nikolic, Maja; Stankovic, Aleksandra; Zivkovic, Nenad; Djordjevic, Amelija

    2009-11-01

    The aim of this study is to indicate the significance of air quality monitoring and to determine the air quality fields for the assessment of air pollution health effects, with special attention to risk population. Radial basis function network was used for air quality index mapping. Between 1991 and 2005, on the territory of Nis, several epidemiological studies were performed on risk groups (pre-school children, school children, pregnant women and persons older than 65). The total number of subjects was 5837. The exposed group comprised individuals living in the areas with unhealthy AQI, while the control group comprised individuals living in city areas with good or moderate AQI. It was determined that even relatively low levels of air pollution had impact on respiratory system and the occurrence of anaemia, allergy and skin symptoms.

  7. School Indoor Air Quality Assessment and Program Implementation.

    ERIC Educational Resources Information Center

    Prill, R.; Blake, D.; Hales, D.

    This paper describes the effectiveness of a three-step indoor air quality (IAQ) program implemented by 156 schools in the states of Washington and Idaho during the 2000-2001 school year. An experienced IAQ/building science specialist conducted walk-through assessments at each school. These assessments documented deficiencies and served as an…

  8. A new air quality perception scale for global assessment of air pollution health effects.

    PubMed

    Deguen, Séverine; Ségala, Claire; Pédrono, Gaëlle; Mesbah, Mounir

    2012-12-01

    Despite improvements in air quality in developed countries, air pollution remains a major public health issue. To fully assess the health impact, we must consider that air pollution exposure has both physical and psychological effects; this latter dimension, less documented, is more difficult to measure and subjective indicators constitute an appropriate alternative. In this context, this work presents the methodological development of a new scale to measure the perception of air quality, useful as an exposure or risk appraisal metric in public health contexts. On the basis of the responses from 2,522 subjects in eight French cities, psychometric methods are used to construct the scale from 22 items that assess risk perception (anxiety about health and quality of life) and the extent to which air pollution is a nuisance (sensorial perception and symptoms). The scale is robust, reproducible, and discriminates between subpopulations more susceptible to poor air pollution perception. The individual risk factors of poor air pollution perception are coherent with those findings in the risk perception literature. Perception of air pollution by the general public is a key issue in the development of comprehensive risk assessment studies as well as in air pollution risk management and policy. This study offers a useful new tool to measure such efforts and to help set priorities for air quality improvements in combination with air quality measurements.

  9. Assessment of urban air quality in China using air pollution indices (APIs).

    PubMed

    Wang, Litao; Zhang, Pu; Tan, Shaobo; Zhao, Xiujuan; Cheng, Dandan; Wei, Wei; Su, Jie; Pan, Xuemei

    2013-02-01

    This study gathered and processed the available air quality daily reports in 86 cities throughout China in 2001-2011. Urban air quality was assessed in terms of the evolution of the key pollutants, the pollution level, and the PM10 (particulate matter with an aerodynamic diameter < 10 microm) concentrations. The authors conclude that PM10 is the most important pollutant in Chinese cities, especially after the national sulfur dioxide (SO2) controls during the 11th Five Year Plan (FYP; 2006-2010). A notable advance was the reduction of extremely heavily polluted days with air pollution index (API) above 150 from 7% in 2001 to 1% in 2011 in the all-city average. In addition, the average API-derived PM10 concentrations continually decreased during the past 11 yr. Additionally, the pollution pattern of "more severe from south to north "in China became less obvious due to the decline of PM10 concentrations in the northern cities and the more obvious regional characteristics of air pollution. Nevertheless, more pollutants should be included in the API system to fully reflect the air quality status and guide future air pollution controls in Chinese cities. Air quality daily report, the only publicly accessible observation database in the past decade, provides valuable insight into the air quality in Chinese cities. Using this data set, this paper assesses the status and change of urban air quality in China in 2001-2011, during which great effort was made to mitigate urban air pollution. It is valuable for the further refinement of national air quality control strategies, and the needs of updating the present daily report system are implicated.

  10. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  11. Integrated assessment of brick kiln emission impacts on air quality.

    PubMed

    Le, Hoang Anh; Oanh, Nguyen Thi Kim

    2010-12-01

    This paper presents monitoring results of daily brick kiln stack emission and the derived emission factors. Emission of individual air pollutant varied significantly during a firing batch (7 days) and between kilns. Average emission factors per 1,000 bricks were 6.35-12.3 kg of CO, 0.52-5.9 kg of SO(2) and 0.64-1.4 kg of particulate matter (PM). PM emission size distribution in the stack plume was determined using a modified cascade impactor. Obtained emission factors and PM size distribution data were used in simulation study using the Industrial Source Complex Short-Term (ISCST3) dispersion model. The model performance was successfully evaluated for the local conditions using the simultaneous ambient monitoring data in 2006 and 2007. SO(2) was the most critical pollutant, exceeding the hourly National Ambient Air Quality Standards over 63 km(2) out of the 100-km(2) modelled domain in the base case. Impacts of different emission scenarios on the ambient air quality (SO(2), PM, CO, PM dry deposition flux) were assessed.

  12. School Indoor Air Quality Assessments Go Mobile / EPA Launches School IAQ Assessment Mobile App

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) today launched a new mobile app to assist schools and school districts with performing comprehensive indoor air quality (IAQ) facility assessments to protect the health of children and sch

  13. Chapter 4: Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    EPA Pesticide Factsheets

    Chapter 4 of “Assessing the Multiple Benefits of Clean Energy” helps state energy, environmental, and economic policy makers assess the air quality, greenhouse gas, air pollution, and health benefits of clean energy initiatives.

  14. Chapter 4: Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    EPA Pesticide Factsheets

    Chapter 4 of “Assessing the Multiple Benefits of Clean Energy” helps state energy, environmental, and economic policy makers assess the air quality, greenhouse gas, air pollution, and health benefits of clean energy initiatives.

  15. Auditing and assessing nutrient management for air quality.

    USDA-ARS?s Scientific Manuscript database

    The potential adverse effects of concentrated animal feeding operations (CAFO) on the environment are a growing concern. Until recently, the effects of CAFO on air quality have received little attention. The air quality concerns of CAFO vary with the location, type of operation, and other factors....

  16. Making air quality indices comparable--assessment of 10 years of air pollutant levels in western Europe.

    PubMed

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2015-01-01

    To address the incomparability of the large number of existing air quality indices, we propose a new normalization method that is suited to directly compare air quality indices based on the common European World Health Organization (WHO) air quality guidelines for NO2, O3, and PM10. Using this method, we compared three air quality indices based on the European guidelines, related them to another air quality index based on the relative risk concept, and used them to assess the air quality and its trends in northwest central Europe. The average air quality in the area of investigation is below the recommended European guidelines. The majority of index values exceeding this threshold are caused by PM10, which is also, in most cases, responsible for the degrading trends in air quality. Eleven out of 29 stations tested showed significant trends, of which eight indicated trends towards better air quality.

  17. Links Related to the Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  18. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  19. AIR QUALITY MODELING AT NEIGHBORHOOD SCALES TO IMPROVE HUMAN EXPOSURE ASSESSMENT

    EPA Science Inventory

    Air quality modeling is an integral component of risk assessment and of subsequent development of effective and efficient management of air quality. Urban areas introduce of fresh sources of pollutants into regional background producing significant spatial variability of the co...

  20. Air Quality Modeling Technical Support Document for the 2015 Ozone NAAQS Preliminary Interstate Transport Assessment

    EPA Pesticide Factsheets

    In this technical support document (TSD) EPA describes the air quality modeling performed to support the 2015 ozone National Ambient Air Quality Standards (NAAQS) preliminary interstate transport assessment Notice of Data Availability (NODA).

  1. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Costa, A. M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, Th.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E.; Smith, P.; André, N.; Gérard, P.; Francis, L. A.; Castell, N.; Schneider, P.; Viana, M.; Minguillón, M. C.; Reimringer, W.; Otjes, R. P.; von Sicard, O.; Pohle, R.; Elen, B.; Suriano, D.; Pfister, V.; Prato, M.; Dipinto, S.; Penza, M.

    2016-12-01

    The 1st EuNetAir Air Quality Joint Intercomparison Exercise organized in Aveiro (Portugal) from 13th-27th October 2014, focused on the evaluation and assessment of environmental gas, particulate matter (PM) and meteorological microsensors, versus standard air quality reference methods through an experimental urban air quality monitoring campaign. The IDAD-Institute of Environment and Development Air Quality Mobile Laboratory was placed at an urban traffic location in the city centre of Aveiro to conduct continuous measurements with standard equipment and reference analysers for CO, NOx, O3, SO2, PM10, PM2.5, temperature, humidity, wind speed and direction, solar radiation and precipitation. The comparison of the sensor data generated by different microsensor-systems installed side-by-side with reference analysers, contributes to the assessment of the performance and the accuracy of microsensor-systems in a real-world context, and supports their calibration and further development. The overall performance of the sensors in terms of their statistical metrics and measurement profile indicates significant differences in the results depending on the platform and on the sensors considered. In terms of pollutants, some promising results were observed for O3 (r2: 0.12-0.77), CO (r2: 0.53-0.87), and NO2 (r2: 0.02-0.89). For PM (r2: 0.07-0.36) and SO2 (r2: 0.09-0.20) the results show a poor performance with low correlation coefficients between the reference and microsensor measurements. These field observations under specific environmental conditions suggest that the relevant microsensor platforms, if supported by the proper post processing and data modelling tools, have enormous potential for new strategies in air quality control.

  2. Auditing and assessing air quality in concentrated feeding operations

    USDA-ARS?s Scientific Manuscript database

    The potential adverse effects of concentrated animal feeding operations (CAFO) on the environment are a growing concern. The air quality issues of most concerns to CAFO vary, but generally include ammonia, hydrogen sulfide, particulate matter (PM), volatile organic compounds (VOC), green house gase...

  3. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  4. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  5. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  6. (AWMA) IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  7. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  8. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  9. (AWMA) IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  10. Assessment on motor vehicle emissions and air quality in Beijing

    SciTech Connect

    Lixin Fu; Jiming Hao; Kebin He; Dongquan He

    1996-12-31

    It is occasionally reported that hourly ozone concentrations exceed the National Air Quality Standard (NAQS) of China in recent years in Beijing, which indicates that motor vehicle emissions are more and more important to the total air quality in urban area of Beijing. A deep investigation was carried out to collect the information on road status, vehicle number and types, fuel consumption, traffic condition, and vehicle management in Beijing, so that the real world emission factors (CO, HC, NO{sub x}) could be calculated by MOBILE5a model. The calculated results were comparable with limited testing data from other former researches. With a detailed survey on emissions from other sources such as oil refueling, plants HC emission, and other stationary sources, the emission inventory are established and further projected for the future years, thus the emission contribution rates are obtained for motor vehicle emissions. The results are given for different seasons and different areas in Beijing.

  11. AIR QUALITY ASSESSMENT IN USA - TECHNICAL TOOLS AND LINKAGE TO HUMAN HEALTH

    EPA Science Inventory

    This is an invited presentation to the Air4EU Final Conference to held in Prague, Czech Republic, on 10 November 2006. Air4EU is a jointly-sponsored, three-year European effort to provide recommendations on air quality assessment by monitoring and modeling for regulated pollutan...

  12. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  13. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  14. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    PubMed Central

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  15. Aircraft Recirculation Filter for Air-Quality and Incident Assessment.

    PubMed

    Eckels, Steven J; Jones, Byron; Mann, Garrett; Mohan, Krishnan R; Weisel, Clifford P

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters.

  16. The role of Health Impact Assessment in the setting of air quality standards: An Australian perspective

    SciTech Connect

    Spickett, Jeffery; Katscherian, Dianne; Harris, Patrick

    2013-11-15

    The approaches used for setting or reviewing air quality standards vary from country to country. The purpose of this research was to consider the potential to improve decision-making through integration of HIA into the processes to review and set air quality standards used in Australia. To assess the value of HIA in this policy process, its strengths and weaknesses were evaluated aligned with review of international processes for setting air quality standards. Air quality standard setting programmes elsewhere have either used HIA or have amalgamated and incorporated factors normally found within HIA frameworks. They clearly demonstrate the value of a formalised HIA process for setting air quality standards in Australia. The following elements should be taken into consideration when using HIA in standard setting. (a) The adequacy of a mainly technical approach in current standard setting procedures to consider social determinants of health. (b) The importance of risk assessment criteria and information within the HIA process. The assessment of risk should consider equity, the distribution of variations in air quality in different locations and the potential impacts on health. (c) The uncertainties in extrapolating evidence from one population to another or to subpopulations, especially the more vulnerable, due to differing environmental factors and population variables. (d) The significance of communication with all potential stakeholders on issues associated with the management of air quality. In Australia there is also an opportunity for HIA to be used in conjunction with the NEPM to develop local air quality standard measures. The outcomes of this research indicated that the use of HIA for air quality standard setting at the national and local levels would prove advantageous. -- Highlights: • Health Impact Assessment framework has been applied to a policy development process. • HIA process was evaluated for application in air quality standard setting.

  17. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    NASA Astrophysics Data System (ADS)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  18. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    PubMed

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM2.5) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM2.5, maximum hourly concentrations 21-103 μg m(-3), and mean concentrations between 7.7 and 13.2 μg m(-3). Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m(-3), and mean concentrations 6.7-11.7 μg m(-3). The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m(-3)) over the NAAQS 98th percentile for PM2.5 (35 μg m(-3)). Pinehurst remained below the federal standards for PM2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire. Published by

  19. Air quality assessment of Estarreja, an urban industrialized area, in a coastal region of Portugal.

    PubMed

    Figueiredo, M L; Monteiro, A; Lopes, M; Ferreira, J; Borrego, C

    2013-07-01

    Despite the increasing concern given to air quality in urban and industrial areas in recent years, particular emphasis on regulation, control, and reduction of air pollutant emissions is still necessary to fully characterize the chain emissions-air quality-exposure-dose-health effects, for specific sources. The Estarreja region was selected as a case study because it has one of the largest chemical industrial complexes in Portugal that has been recently expanded, together with a growing urban area with an interesting location in the Portuguese coastland and crossed by important road traffic and rail national networks. This work presents the first air quality assessment for the region concerning pollutant emissions and meteorological and air quality monitoring data analysis, over the period 2000-2009. This assessment also includes a detailed investigation and characterization of past air pollution episodes for the most problematic pollutants: ozone and PM10. The contribution of different emission sources and meteorological conditions to these episodes is investigated. The stagnant meteorological conditions associated with local emissions, namely industrial activity and road traffic, are the major contributors to the air quality degradation over the study region. A set of measures to improve air quality--regarding ozone and PM10 levels--is proposed as an air quality management strategy for the study region.

  20. Retrospective assessment of air quality management practices in Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, Pei-Hsuan; Ni, Pei-Chen; Keats, Andrew; Tsuang, Ben-Jei; Lan, Yung-Yao; Lin, Min-Der; Chen, Chien-Lung; Tu, Yueh-Yuan; Chang, Len-Fu; Chang, Ken-Hui

    In 1995, Taiwan's Environmental Protection Administration (EPA/TW) instituted a policy of levying emission taxes on polluters in order to combat the rampant national issue of pollution. Since that time, pollution control strategies, tightening exhaust emission standards for industry, improvements in fuel quality, and new stricter vehicle emission standards, etc., have been implemented. This study evaluates the effectiveness of these measures and examines the improvement of Taiwan's air quality. In this paper, we conduct a detailed analysis of change in the concentrations of pollutants (SO 2, NO x and particulate matter [PM]) between two three-year periods (from 1996 to1998 and from 2000 to 2002). The pollution levels were generally lower in the latter period. Concentrations at 14 EPA/TW stations in central Taiwan were simulated and source apportionment analyses in three of Central Taiwan's largest cities were conducted using a trajectory transfer-coefficient air quality model. Correlation coefficients ( r) between simulations and observations for the monthly means of the concentrations of SO 2, NO x, PM 2.5 and PM 10 during the study periods at the 14 stations are 0.56, 0.63, 0.70 and 0.31, respectively. The sulfur control policy greatly reduced SO 2 concentration island-wide, a stringent emission standard put into place for gasoline vehicles reduced NO x concentration along highways, and an emissions tax placed on construction sites, as well as a regular program for road-dust sweeping, reduced primary particulate matter. Among all of the pollution abatement policies implemented, the most effective method for reducing PM 2.5 concentrations in the three largest cities involved the reduction of fine ammonium sulfate aerosols from point sources (56-63% of net PM 2.5 reduction). The next largest reduction was attributed to a diminishment in primary PM 2.5 emanating from point sources (27-56% of net PM 2.5 reduction). Secondary particulate matter, especially sulfate

  1. Assessing Rail Yard Impact on Local Air Quality

    EPA Science Inventory

    This is a technical presentation at the Air and Waste Management Association Measurements Symposium occurring in Durham, NC in April, 2012. The presentation describes preliminary results from air pollution measurements collected surrounding a rail yard in Chicago, IL.

  2. Assessing Rail Yard Impact on Local Air Quality

    EPA Science Inventory

    This is a technical presentation at the Air and Waste Management Association Measurements Symposium occurring in Durham, NC in April, 2012. The presentation describes preliminary results from air pollution measurements collected surrounding a rail yard in Chicago, IL.

  3. An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Longo, Anthony A; Harris, Merylin; Bibilone, Renwick

    2010-01-01

    The Ka'u District of Hawaii is exposed to sulfurous air pollution called vog from the ongoing eruption of Kilauea Volcano. Increased volcanic activity in 2008 prompted an indoor air quality assessment of the district's hospital and schools. All indoor sulfur dioxide concentrations were above the World Health Organization's average 24-hour recommendation. Indoor penetration ratios were up to 94% of ambient levels and dependent upon building construction or the use of air-conditioning. Health-promotion efforts for vulnerable populations at the hospital and schools are under way to improve indoor air quality and respond to those affected by vog exposure.

  4. Assessment of air quality in Haora River basin using fuzzy multiple-attribute decision making techniques.

    PubMed

    Singh, Ajit Pratap; Chakrabarti, Sumanta; Kumar, Sumit; Singh, Anjaney

    2017-08-01

    This paper deals with assessment of air quality in Haora River basin using two techniques. Initially, air quality indices were evaluated using a modified EPA method. The indices were also evaluated using a fuzzy comprehensive assessment (FCA) method. The results obtained from the fuzzy comprehensive assessment method were compared to that obtained from the modified EPA method. To illustrate the applicability of the methodology proposed herein, a case study has been presented. Air samples have been collected at 10 sampling sites located along Haora River. Six important air pollutants, namely, carbon monoxide, sulfur dioxide, nitrogen dioxide, suspended particulate matter (SPM), PM10, and lead, were monitored continuously, and air quality maps were generated on the GIS platform. Comparison of the methodologies has clearly highlighted superiority and robustness of the fuzzy comprehensive assessment method in determining air quality indices under study. It has effectively addressed the inherent uncertainties involved in the evaluation, modeling, and interpretation of sampling data, which was beyond the scope of the traditional weighted approaches employed otherwise. The FCA method is robust and prepares a credible platform of air quality evaluation and identification, in face of the uncertainties that remain eclipsed in the traditional approaches like the modified EPA method. The insights gained through the present study are believed to be of pivotal significance in guiding the development and implementation of effective environmental remedial action plans in the study area.

  5. PM2.5 data reliability, consistency, and air quality assessment in five Chinese cities

    NASA Astrophysics Data System (ADS)

    Liang, Xuan; Li, Shuo; Zhang, Shuyi; Huang, Hui; Chen, Song Xi

    2016-09-01

    We investigate particulate matter (PM2.5) data reliability in five major Chinese cities: Beijing, Shanghai, Guangzhou, Chengdu, and Shenyang by cross-validating data from the U.S. diplomatic posts and the nearby Ministry of Environmental Protection sites based on 3 years' data from January 2013. The investigation focuses on the consistency in air quality assessment derived from the two data sources. It consists of studying (i) the occurrence length and percentage of different PM2.5 concentration ranges; (ii) the air quality assessment for each city; and (iii) the winter-heating effects in Beijing and Shenyang. Our analysis indicates that the two data sources produced highly consistent air quality assessment in the five cities. This is encouraging as it would inject a much needed confidence on the air pollution measurements from China. We also provide air quality assessments on the severity and trends of the fine particulate matter pollution in the five cities. The assessments are produced by statistically constructing the standard monthly meteorological conditions for each city, which are designed to minimize the effects of confounding factors due to yearly variations of some important meteorological variables. Our studies show that Beijing and Chengdu had the worst air quality, while Guangzhou and Shanghai faired the best among the five cities. Most of the five cities had their PM2.5 concentration decreased significantly in the last 2 years. By linking the air quality with the amount of energy consumed, our study suggests that the geographical configuration is a significant factor in a city's air quality management and economic development.

  6. Indoor air quality assessment in the air traffic control tower of the Athens Airport, Greece.

    PubMed

    Helmis, Costas G; Assimakopoulos, Vasiliki D; Flocas, Helena A; Stathopoulou, Ourania I; Sgouros, George; Hatzaki, Maria

    2009-01-01

    In this study, an assessment of indoor air quality (IAQ) and thermal comfort in the Athens Traffic Control Tower (ATCT) offices of Hellinicon building complex, which is mechanically ventilated, is presented. Measurements of PM(10), PM(2.5), TVOCs and CO(2) concentrations were performed during three experimental cycles, while the Thom Discomfort Index was calculated to describe the employees' feeling of discomfort. The aim of the first cycle was to identify the IAQ status, the second to investigate the effectiveness of certain measures taken, and the third to continuously monitor and control IAQ. During the first two cycles, daily spot measurements of TVOCs and CO(2) were performed at various indoor locations and at the respective outdoor air intake positions, in addition with mean 24-h spot measurements of indoor PM(10) and PM(2.5). Results revealed that pollution levels vary according to the occupancy and the kind of activity. Following that, an automated system (IMAS) was designed and employed to continuously monitor indoor and outdoor CO(2), TVOCs, temperature and relative humidity. The ultimate scope was to control the IAQ and offer acceptable comfort conditions to the employees, whose work is of special nature and extremely demanding. Intervention scenarios were formulated and applied to the system to improve indoor conditions, when and where necessary. Regarding the third cycle, 1-year measurements collected from the system to examine its effectiveness. While it was shown that discomfort may be attributed to co-existence of unsatisfactory thermal comfort conditions and IAQ, usually the sole predominant factor of discomfort feeling is thermal comfort.

  7. Near-source air quality assessment: challenges and collaboration

    EPA Science Inventory

    This presentation is to give a general overview of near-source air pollution concerns and recent EPA projects (near-road, near-rail, near-port), as well as explaining how these projects were implemented through collaboration internally and externally.

  8. Assessment of 2012 on-road mobile source episode specific emissions on air quality in Houston

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Shen, X.; Sarker, S.; Du, H.; Huque, Z.; Kommalapati, R. R.

    2015-12-01

    Houston has long been known to suffer from poor air quality, especially ground ozone level produced from photochemical reactions between nitrogen oxides (NOx) and Volatile Organic Compounds (VOC) in the presence of sunlight. In order to investigate impact of various emissions on air quality in Houston, combination of biogenic emissions with anthropogenic emissions were simulated for 2012 ozone episode. In this research, impact of on-road mobile source emissions on air quality in Houston were assessed. On-road mobile source inventories were developed using the EPA's MOVES (MOtor Vehicle Emission Simulator) model. Emissions Preprocessor System was used to convert the developed on-road mobile source inventories to suitable format. The converted on-road mobile source inventories were combined with biogenic emissions as the air quality model input. CAMx (Comprehensive Air quality Model with extensions) model was used to simulate various air pollutants concentrations for 2012 ozone episode. Simulation results showed that various transportation patterns have quite different influences on the air quality in this region.

  9. Managing Air Quality - Human Health, Environmental and Economic Assessments

    EPA Pesticide Factsheets

    Human health and environmental assessments characterize health and environmental risks associated with exposure to pollution. Economic assessments evaluate the cost and economic impact of a policy or regulation & can estimate economic benefits.

  10. Assessment of a Megacity Air Quality Management Policy using the GAINS-Korea : Seoul metropolitan area Air Quality Management Plan(SAQMP)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Ahn, Y. H.; Choi, K. C.; Kim, H. K.; Lee, Y. M.; Amann, M.; Wagner, F.; Lee, J. B.; Song, C. K.; Han, J. S.

    2014-12-01

    Air pollution in and near megacities are very severe because of their massive pollutant emissions and high population density. Korea has ambitiously set its 2nd phase capitol air quality improvement program called Seoul metropolitan area Air Quality Management Plan(SAQMP), targeting the year 2024. The air quality improvement targets for the year 2024 are 30 ug/m3 and 20 ug/m3 for PM10 and pm2.5, respectively and planned expenditure are almost 4 billion US dollar. Emissions of PM10, PM2.5 are required to be decreased up to 35%, 45%, respectively, from their future baseline level. Various special measures, such as cap-and-trade, LNB, EURO standards program, will be implemented to control emissions over Seoul, Incheon, and Gyeonggi-do area. Smart approach of reducing air pollution and GHGs are, however, required to maximize improvement of metropolitan air quality and climate change. IIASA's Greenhouse gas - Air pollution Interactions aNd Synergies(GAINS) modeling framework is an widely used tool to design and manage smart emission control strategies that can achieve air quality/climate improvements with least costs. We have developed the national version of GAINS for Korea (GAINS-Korea) to set up those strategies for national and regional scale. In this study, we have implemented SAQMP in the GAINS-Korea Model and assess its effects of emissions reduction and air quality improvements. Various analysis results using the framework will be presented at site.

  11. A human ecological assessment of air quality management: A convergence in economic and ecological thinking?

    NASA Astrophysics Data System (ADS)

    Simpson, R. W.

    1988-05-01

    Traditional air pollution management practices are examined using the human ecological framework adopted by Boyden and others (1981) in their study of Hong Kong—the biohistorical or biosocial approach. The subsequent analysis of current air quality management practices assesses their effectiveness in protecting the overall health of both humans and the natural environment. The uncertainties inherent in air pollution management practices which emerge highlight the need to reduce emissions rather than rely on scientific knowledge to define “clean” air. The assessment also clearly defines roles for research in various areas such as atmospheric models, health effects, and environmental damage. The final recommendations emphasize the need for the introduction of such incentives to reduce emissions as economic instruments and warn against using health information to define clean air. Health and environmental damage information can, however, be used in risk assessment strategies together with atmospheric dispersion models.

  12. Ambient Air Quality Assessment with Particular Reference to Particulates in Jharia Coalfield, Eastern India.

    PubMed

    Singh, Gurdeep; Roy, Debananda; Sinha, Sweta

    2014-01-01

    Jharia Coalfield is the critically polluted area with the intense mining and associated industrial activities. There has been widespread concern of particulate pollution with the alarming levels of Suspended Particulate Matter (SPM) and Respirable Particulate Matter (PM10 & PM2.5). Coke oven plants, coal washing, thermal power stations and associated activities coupled with the transportation activities, give rise to critical air pollution levels in the region. This study envisages the assessment of air pollution of the region with particular reference to SPM, PM10 and PM2.5. Eighteen monitoring stations were selected considering various sources of pollution such as mining, industrial, commercial and residential areas apart from siting criteria as per IS: 5182 Part XIV. Air quality monitoring was carried out following standard methodologies and protocols as per Central Pollution Control Board (CPCB)/ National Ambient Air Quality Standard (NAAQS) norms using Respirable Dust Samplers (RDS) and Fine Particulate Samplers (PM2.5 Samplers). This study reveals considerable load of particulates (SPM, PM10, PM 2.5) which exceed not only the NAAQS but also the coal mining areas standards of Jharia coalfield, thus falling under the category of critically polluted area. Air Quality Indexing has also been developed which provides a clear map of the deterioration of air quality and also presenting comparative ranking of all the monitoring locations with respect to air quality status in the study area.

  13. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  14. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  15. Assessment of aircraft emissions impacts on air quality at multiple model scales

    NASA Astrophysics Data System (ADS)

    Vennam, Lakshmi Pradeepa

    Aviation activity has grown steadily, and will likely continue to grow in the future. Aviation-related air pollutants occurring during full-flight (landing and takeoff, as well as cruise) can impact air quality, human health and climate. The overall goal of this dissertation is to study the air quality impacts of aviation at local, regional and global scales. The central hypothesis of this study is that fine scale modeling provides better characterization of aviation emissions impacts on air quality and health. To test this hypothesis, a model-based assessment of aviation emissions impacts was conducted at multiple scales ranging from local (4 x 4 km2) to hemispheric (108 x 108 km2) scales. (Abstract shortened by ProQuest.).

  16. Air quality risk management.

    PubMed

    Williams, Martin L

    2008-01-01

    Rather than attempt to provide a comprehensive account of air quality risk assessment, as might be found in a textbook or manual, this article discusses some issues that are of current importance in the United Kingdom and the rest of Europe, with special emphasis on risk assessment in the context of policy formulation, and emerging scientific knowledge. There are two pollutants of particular concern and that both pose challenges for risk assessment and policy, and they are particulate matter (PM) and ozone. The article describes some issues for health risk assessment and finally some forward-looking suggestions for future approaches to air quality management.

  17. Air quality assessment and control of emission rates.

    PubMed

    Skiba, Yuri N; Parra-Guevara, David; Belitskaya, Davydova Valentina

    2005-12-01

    Mathematical methods based on the adjoint model approach are given for the air-pollution estimation and control in an urban region. A simple advection-diffusion-reaction model and its adjoint are used to illustrate the application of the methods. Dual pollution concentration estimates in ecologically important zones are derived and used to develop two non-optimal strategies and one optimal strategy for controlling the emission rates of enterprises. A linear convex combination of these strategies represents a new sufficient strategy. A method for detecting the enterprises, which violate the emission rates prescribed by a control, is given. A method for determining an optimal position for a new enterprise in the region is also described.

  18. Subtask 2.12 - Air Quality Assessment and Control

    SciTech Connect

    Laura Raymond

    2007-07-30

    Past particulate matter (PM) research projects conducted at the Energy & Environmental Research Center included data on PM size, morphology, and chemistry. The objective of this project was to improve automated analysis capabilities of the scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer. The SEM is now able to perform particle-by-particle analysis on the desired number of particles and provide size, morphology, and chemistry information for each particle. A new x-ray and image analysis system was purchased and implemented for improvements to data acquisition and analysis. This new analysis system is equipped with a digital-pulse processor, allowing for the determination of pixel-by-pixel chemistry, which significantly enhances our ability to characterize PM and other materials. In addition, this system is personal computer-based, which allows programming of the SEM to perform the automated image analysis along with detailed chemical information. This permits the incorporation of particle classification algorithms within the same computer system as the analysis is conducted. Additionally, the new Spirit software can now integrate full SEM control with imaging, elemental identification, and electron backscatter diffraction (EBSD) operation. The EBSD system has also allowed for phase identification within the SEM. Reexamination of previous samples collected on a polycarbonate filter for ambient-air PM2.5 analysis has shown that crystalline identification of individual particles can be done without further sample preparation or modification of the sample and/or sampling substrate.

  19. A Risk-based Assessment And Management Framework For Multipollutant Air Quality.

    PubMed

    Frey, H Christopher; Hubbell, Bryan

    2009-06-01

    The National Research Council recommended both a risk- and performance-based multipollutant approach to air quality management. Specifically, management decisions should be based on minimizing the exposure to, and risk of adverse effects from, multiple sources of air pollution and that the success of these decisions should be measured by how well they achieved this objective. We briefly describe risk analysis and its application within the current approach to air quality management. Recommendations are made as to how current practice could evolve to support a fully risk- and performance-based multipollutant air quality management system. The ability to implement a risk assessment framework in a credible and policy-relevant manner depends on the availability of component models and data which are scientifically sound and developed with an understanding of their application in integrated assessments. The same can be said about accountability assessments used to evaluate the outcomes of decisions made using such frameworks. The existing risk analysis framework, although typically applied to individual pollutants, is conceptually well suited for analyzing multipollutant management actions. Many elements of this framework, such as emissions and air quality modeling, already exist with multipollutant characteristics. However, the framework needs to be supported with information on exposure and concentration response relationships that result from multipollutant health studies. Because the causal chain that links management actions to emission reductions, air quality improvements, exposure reductions and health outcomes is parallel between prospective risk analyses and retrospective accountability assessments, both types of assessment should be placed within a single framework with common metrics and indicators where possible. Improvements in risk reductions can be obtained by adopting a multipollutant risk analysis framework within the current air quality management

  20. A Risk-based Assessment And Management Framework For Multipollutant Air Quality

    PubMed Central

    Frey, H. Christopher; Hubbell, Bryan

    2010-01-01

    The National Research Council recommended both a risk- and performance-based multipollutant approach to air quality management. Specifically, management decisions should be based on minimizing the exposure to, and risk of adverse effects from, multiple sources of air pollution and that the success of these decisions should be measured by how well they achieved this objective. We briefly describe risk analysis and its application within the current approach to air quality management. Recommendations are made as to how current practice could evolve to support a fully risk- and performance-based multipollutant air quality management system. The ability to implement a risk assessment framework in a credible and policy-relevant manner depends on the availability of component models and data which are scientifically sound and developed with an understanding of their application in integrated assessments. The same can be said about accountability assessments used to evaluate the outcomes of decisions made using such frameworks. The existing risk analysis framework, although typically applied to individual pollutants, is conceptually well suited for analyzing multipollutant management actions. Many elements of this framework, such as emissions and air quality modeling, already exist with multipollutant characteristics. However, the framework needs to be supported with information on exposure and concentration response relationships that result from multipollutant health studies. Because the causal chain that links management actions to emission reductions, air quality improvements, exposure reductions and health outcomes is parallel between prospective risk analyses and retrospective accountability assessments, both types of assessment should be placed within a single framework with common metrics and indicators where possible. Improvements in risk reductions can be obtained by adopting a multipollutant risk analysis framework within the current air quality management

  1. Assessment of the emissions and air quality impacts of biomass and biogas use in California.

    PubMed

    Carreras-Sospedra, Marc; Williams, Robert; Dabdub, Donald

    2016-02-01

    It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality. This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining

  2. Assessing values of air quality and visibility at risk from wildland fires.

    Treesearch

    Sue A. Ferguson; Steven J. McKay; David E. Nagel; Trent Piepho; Miriam L. Rorig; Casey Anderson; Lara. Kellogg

    2003-01-01

    To assess values of air quality and visibility at risk from wildland fire in the United States, we generated a 40-year database that includes twice daily values of wind, mixing height, and a ventilation index that is the product of windspeed and mixing height. The database provides the first nationally consistent map of surface wind and ventilation index. In addition,...

  3. Assessment of ambient air quality in Eskişehir, Turkey.

    PubMed

    Ozden, O; Döğeroğlu, T; Kara, S

    2008-07-01

    This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO(2)), particulate matter (PM), nitrogen dioxide (NO(2)), ozone (O(3)), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region. The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO(2) and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO(2) (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union

  4. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  5. Assessment of the Air Quality Improvement Potentials for Seoul Metropolitan Area using GAINS-Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Ahn, Y. H.; Kim, J.; Bu, C.; Lee, Y.; Choi, K. C.; Amann, M.; Kim, S. K.

    2016-12-01

    Urban areas are very important places for climate change and air pollution because they have been emitting a significant amount of Green House Gases (GHGs) and air pollutants. Cause they have massive pollutant emissions and high population density with amount of vehicles. Korea's government has set the 2nd phase capital air quality improvement program called Seoul metropolitan area Air Quality Management Plan(SAQMP), targeting the year 2024. The air quality improvement targets are to achieve annual mean PM10 and pm2.5concentration for SMA Area 30 ug/m3 and 20 ug/m3, respectively. To achieve this target, emissions of PM10, PM2.5 are required to be decreased up to 35%, 45%, respectively, from their future baseline level. In this study, we found the emission level of some pollutants for the year 2030 will be decreased compare with the baseline level but the concentration cannot meet their target even with more stringent control measures. The more in-depth analysis of future PM concentration, estimated from Source-Receptor(S-R) relationship, were conducted for more accurate air quality improvement assessment. As the result, we found that secondary and transboundary pollution have been plying significant role in Seoul Metro air quality. Not only direct/in-region measures, therefore, but indirect measures/international cooperation have to be conducted to achieve target air quality. ** This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea.

  6. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    PubMed

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  7. Ambient Air Quality Data Inventory

    EPA Pesticide Factsheets

    The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen

  8. (NEW YORK) IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  9. ( RTP, NC ) IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  10. ( RTP, NC ) IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  11. Evaluation of air quality and noise impact assessments, Deaf Smith County

    SciTech Connect

    Not Available

    1986-05-01

    In this report, several issues are identified regarding the air quality and noise impact assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Deaf Smith County, Texas, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impacts sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 13 tabs.

  12. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  13. Multipollutant air quality management.

    PubMed

    Hidy, George M; Pennell, William T

    2010-06-01

    On the basis of a recent NARSTO assessment, this review discusses the factors involved in the implementation of a risk- and results-based multipollutant air quality management strategy applicable to North America. Such a strategy could evolve from current single-pollutant regulatory practices using a series of steps that would seek to minimize risk of exposure for humans and ecosystems while providing for a quantitative evaluation of the effectiveness of the management process. The tools needed to support multipollutant air quality management are summarized. They include application of a formal risk analysis, accounting for atmospheric processes, ambient measurements, emissions characterization, air quality modeling of emissions to ambient concentrations, and characterization of human and ecological responses to ambient pollutant exposure. The new management strategy would expand the current practice of accountability that relates emission reductions and attainment of air quality derived from air quality criteria and standards. Conceptually, achievement of accountability would establish goals optimizing risk reduction associated with pollution management. This expanded approach takes into account the sequence of processes from emissions reduction to resulting changes in ambient concentration. Using ambient concentration as a proxy for exposure, the resulting improvement in human and ecosystem health is estimated. The degree to which this chain of processes and effects can be achieved in current practice is examined in a multipollutant context exemplified by oxidants, as indicated by ozone, particulate matter, and some hazardous air pollutants. Achievement of a multipollutant management strategy will mostly depend on improving knowledge about human and ecosystem response to pollutant exposure.

  14. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality.

    PubMed

    Klein, Thomas; Kukkonen, Jaakko; Dahl, Aslög; Bossioli, Elissavet; Baklanov, Alexander; Vik, Aasmund Fahre; Agnew, Paul; Karatzas, Kostas D; Sofiev, Mikhail

    2012-12-01

    This article reviews interactions and health impacts of physical, chemical, and biological weather. Interactions and synergistic effects between the three types of weather call for integrated assessment, forecasting, and communication of air quality. Today's air quality legislation falls short of addressing air quality degradation by biological weather, despite increasing evidence for the feasibility of both mitigation and adaptation policy options. In comparison with the existing capabilities for physical and chemical weather, the monitoring of biological weather is lacking stable operational agreements and resources. Furthermore, integrated effects of physical, chemical, and biological weather suggest a critical review of air quality management practices. Additional research is required to improve the coupled modeling of physical, chemical, and biological weather as well as the assessment and communication of integrated air quality. Findings from several recent COST Actions underline the importance of an increased dialog between scientists from the fields of meteorology, air quality, aerobiology, health, and policy makers.

  15. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  16. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  17. Quality assurance for the assessment of exposure of humans to air pollutants

    SciTech Connect

    Jordan, R.C.; Hackworth, L.T.; Howard, J.N.; Smith, D.H.

    1983-06-01

    Since 1977, Northrop Services, Inc. - Environmental Sciences has provided support to the Health Effects Research Laboratory, Inhalation Toxicology Division, U.S. Environmental Protection Agency to develop and implement a comprehensive quality assurance program for complex and diversified experimental systems used to measure the effects of air pollutants on human test subjects. NSI-ES designs, debugs, verifies, and implements audit test procedures in a continual program of assessment of data generated in the human exposure program.

  18. Application of SIM-air modeling tools to assess air quality in Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2012-12-01

    A prerequisite to an air quality management plan for a city is some idea of the main sources of pollution and their contributions for a city. This paper presents the results of an application of the SIM-air modeling tool in six Indian cities - Pune, Chennai, Indore, Ahmedabad, Surat, and Rajkot. Using existing and publicly available data, we put together a baseline of multi-pollutant emissions for each of the cities and then calculate concentrations, health impacts, and model alternative scenarios for 2020. The measured annual PM10 (particulate matter with aerodynamic diameter less than 10 micron meter) concentrations in μg m-3 averaged 94.7 ± 45.4 in Pune, 73.1 ± 33.7 in Chennai, 118.8 ± 44.3 in Indore, 94.0 ± 20.4 in Ahmedabad, 89.4 ± 12.1 in Surat, and 105.0 ± 25.6 in Rajkot, all exceeding the annual standard of 60 μg m-3. The PM10 inventory in tons/year for the year 2010 of 38,400 in Pune, 50,200 in Chennai, 18,600 in Indore, 31,900 in Ahmedabad, 20,000 in Surat, and 14,000 in Rajkot, is further spatially segregated into 1 km grids and includes all known sources such as transport, road dust, residential, power plants, industries (including the brick kilns), waste burning, and diesel generator sets. We use the ATMoS chemical transport model to validate the emissions inventory and estimate an annual premature mortality due to particulate pollution of 15,200 for the year 2010 for the six cities. Of the estimated 21,400 premature deaths in the six cities in 2020, we estimate that implementation of the six interventions in the transport and brick kiln sectors, can potentially save 5870 lives (27%) annually and result in an annual reduction of 16.8 million tons of carbon dioxide emissions in the six cities.

  19. On the design and assessment of regional air quality plans: The SHERPA approach.

    PubMed

    Thunis, P; Degraeuwe, B; Pisoni, E; Ferrari, F; Clappier, A

    2016-12-01

    Although significant progress has been made in Europe regarding air quality, problems still remain acute for some pollutants, notably NO2 and Particulate Matter (fine and coarse fractions) in specific regions/cities. One issue regarding air quality management is governance, i.e. the selection of appropriate and cost effective strategies over the area controlled by policy makers. In this work we present a new approach to integrated assessment modelling focusing on regional and urban aspects. One of the key added values is spatial flexibility, namely the possibility to assess the contributions from different regions to air quality at any given location. The SHERPA tool is shown to be particularly helpful in addressing the following tasks: source allocation, governance and the assessment of scenario impacts. Application of the methodology over the London area for yearly averaged PM2.5 concentrations demonstrates these features. Given that it is possible to use the SHERPA interface with other types of data, SHERPA can also be seen as a means to foster harmonization in the field of model evaluation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Satellite remote sensing of particulate matter and air quality assessment over global cities

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Christopher, Sundar A.; Wang, Jun; Gehrig, Robert; Lee, Yc; Kumar, Naresh

    Using 1 year of aerosol optical thickness (AOT) retrievals from the MODerate resolution Imaging Spectro-radiometer (MODIS) on board NASA's Terra and Aqua satellite along with ground measurements of PM 2.5 mass concentration, we assess particulate matter air quality over different locations across the global urban areas spread over 26 locations in Sydney, Delhi, Hong Kong, New York City and Switzerland. An empirical relationship between AOT and PM 2.5 mass is obtained and results show that there is an excellent correlation between the bin-averaged daily mean satellite and ground-based values with a linear correlation coefficient of 0.96. Using meteorological and other ancillary datasets, we assess the effects of wind speed, cloud cover, and mixing height (MH) on particulate matter (PM) air quality and conclude that these data are necessary to further apply satellite data for air quality research. Our study clearly demonstrates that satellite-derived AOT is a good surrogate for monitoring PM air quality over the earth. However, our analysis shows that the PM 2.5-AOT relationship strongly depends on aerosol concentrations, ambient relative humidity (RH), fractional cloud cover and height of the mixing layer. Highest correlation between MODIS AOT and PM 2.5 mass is found under clear sky conditions with less than 40-50% RH and when atmospheric MH ranges from 100 to 200 m. Future remote sensing sensors such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that have the capability to provide vertical distribution of aerosols will further enhance our ability to monitor and forecast air pollution. This study is among the first to examine the relationship between satellite and ground measurements over several global locations.

  1. Assessing relocation strategies of urban air quality monitoring stations by GA-based compromise programming.

    PubMed

    Tseng, C C; Chang, N B

    2001-06-01

    This paper presents a GA-based compromise programming technique for assessing the relocation strategy of urban air quality monitoring network with respect to the multi-objective and multi-pollutant design criteria. While the impact of conservative, quasi-stable, and reactive pollutants are considered in the design principles via a simulation analysis, cost, effectiveness, and efficiency characteristics are postulated in the optimization process. Therefore, technical coverage for illustrating the needs of siting air quality monitoring stations (AQMS) includes both the air quality simulation and optimization modeling analyses in a two-stage analytical framework simultaneously. It starts from determining the spatial interrelationship among those candidate sites using various types of air quality simulation models as an integrated means. And the outputs drawn from the simulation models can then be used as the required inputs in the compromise programming model in order to screen all those siting alternatives that may satisfy the planning goals subject to the essential constraints throughout the multi-objective optimization process. For the illustrating purposes, a series of technical settings for finding the optimal relocation scenarios of AQMS were examined in the case study for the city of Kaohsiung in South Taiwan where the long-term violations of official standards of ozone and particulates turn out to be critical. It not only expresses the ideas of relocation strategy but also indicates how to utilize those alternatives in the decision-making process for improving the functionality of air quality monitoring in the urban environment. Experience gained in this study clearly indicates that the more the number of pollutants and objectives considered simultaneously, the higher the number of candidate sites to be selected in the relocation strategy.

  2. Integrating health on air quality assessment--review report on health risks of two major European outdoor air pollutants: PM and NO₂.

    PubMed

    Costa, Solange; Ferreira, Joana; Silveira, Carlos; Costa, Carla; Lopes, Diogo; Relvas, Hélder; Borrego, Carlos; Roebeling, Peter; Miranda, Ana Isabel; Teixeira, João Paulo

    2014-01-01

    Quantifying the impact of air pollution on the public's health has become an increasingly critical component in policy discussion. Recent data indicate that more than 70% of the world population lives in cities. Several studies reported that current levels of air pollutants in urban areas are associated with adverse health risks, namely, cardiovascular diseases and lung cancer. IARC recently classified outdoor air pollution and related particulate matter (PM) as carcinogenic to humans. Despite the air quality improvements observed over the last few years, there is still continued widespread exceedance within Europe, particularly regarding PM and nitrogen oxides (NOx). The European Air Quality Directive 2008/50/EC requires Member States to design appropriate air quality plans for zones where air quality does not comply with established limit values. However, in most cases, air quality is only quantified using a combination of monitored and modeled data and no health impact assessment is carried out. An integrated approach combining the effects of several emission abatement measures on air quality, impacts on human health, and associated implementation costs enables an effective cost-benefit analysis and an added value to the decision-making process. Hence, this review describes the basic steps and tools for integrating health into air quality assessment (health indicators, exposure-response functions). In addition, consideration is given to two major outdoor pollutants: PM and NO2. A summary of the health metrics used to assess the health impact of PM and NO2 and recent epidemiologic data are also described.

  3. Utilizing Operational and Improved Remote Sensing Measurements to Assess Air Quality Monitoring Model Forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei

    Air quality model forecasts from Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) are often used to support air quality applications such as regulatory issues and scientific inquiries on atmospheric science processes. In urban environments, these models become more complex due to the inherent complexity of the land surface coupling and the enhanced pollutants emissions. This makes it very difficult to diagnose the model, if the surface parameter forecasts such as PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microm) are not accurate. For this reason, getting accurate boundary layer dynamic forecasts is as essential as quantifying realistic pollutants emissions. In this thesis, we explore the usefulness of vertical sounding measurements on assessing meteorological and air quality forecast models. In particular, we focus on assessing the WRF model (12km x 12km) coupled with the CMAQ model for the urban New York City (NYC) area using multiple vertical profiling and column integrated remote sensing measurements. This assessment is helpful in probing the root causes for WRF-CMAQ overestimates of surface PM2.5 occurring both predawn and post-sunset in the NYC area during the summer. In particular, we find that the significant underestimates in the WRF PBL height forecast is a key factor in explaining this anomaly. On the other hand, the model predictions of the PBL height during daytime when convective heating dominates were found to be highly correlated to lidar derived PBL height with minimal bias. Additional topics covered in this thesis include mathematical method using direct Mie scattering approach to convert aerosol microphysical properties from CMAQ into optical parameters making direct comparisons with lidar and multispectral radiometers feasible. Finally, we explore some tentative ideas on combining visible (VIS) and mid-infrared (MIR) sensors to better separate aerosols into fine and coarse modes.

  4. Assessment methodology for the air quality impact of residential wood burning

    SciTech Connect

    Lipfert, F.W.

    1981-01-01

    Data from surveys of 1977-1979 indicate that firewood usage tends to vary inversely with population density, resulting in an implied limit to the density of usage. Tests of wood stoves indicate that emissions of particulates vary inversely with heat demand, such that nighttime emissions at low combustion rates may be worse than those during maximum heat demand conditions. Finally, atmospheric dispersion rates are coupled to the driving forces of space heating so that nighttime emissions tend to have a disproportionately large impact on ambient air quality. All of these factors must be considered jointly in order to perform a meaningful assessment of the air quality impacts of increased residential wood fuel use; the results indicate that in flat terrain primary ambient standards are not threatened by residential wood combustion.

  5. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    NASA Astrophysics Data System (ADS)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.

  6. Environmental Assessment of the City of El Cerrito, CA: Creek, Trash and Air Quality Analysis

    NASA Astrophysics Data System (ADS)

    Moore, A.; Ilan, A.

    2015-12-01

    The City of El Cerrito, CA is located within Western Contra Costa County and adjacent to the San Francisco Bay. Local land-uses that affect its overall public and environmental health include major freeways, railways, and commercial and industrial zones. In an effort to assess the overall health of the local environment, students at Korematsu Middle School conducted a comprehensive analysis that included street litter auditing, water monitoring of Cerritos Creek and air quality measurements made along local streets. In 2014 the City of El Cerrito adopted a long-term trash plan that included strategies for reducing trash loads of local stormwater sewer systems. This plan called for load reduction of 70% by July 1, 2017 and 100% by July 1, 2022. To evaluate the effectiveness of the trash plan, our team quantified and scored trash concentration levels at two locations—one in a residential neighborhood and the other in a commercial zone. We also monitored water quality at nearby Cerritos Creek to investigate the impacts that each area's trash concentrations had on water quality. We also monitored particulate matter (PM) concentration levels in air within these locations to determine whether or not differences exist between residential and commercial areas. Preliminary analysis of litter data suggests that the Long Term Trash Plan has thus far been effective in reducing concentrations of street litter along San Pablo Avenue, which is located within a major commercial zone, but has been inadequate in reducing trash in nearby parks. Water quality results indicate that Cerritos Creek contains waters that are quite healthy with respect to Ammonia and Nitrate concentration levels (i.e., very low values for every sample collected). However, elevated concentration levels of Phosphates were detected in every sample collected. Air quality data surprisingly revealed that extremely high PM concentration levels occur in air surrounding a residential park in El Cerrito.

  7. Air quality trends in Europe over the past decade: a first multi-model assessment

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Bessagnet, B.; D'Angiola, A.; D'Isidoro, M.; Gauss, M.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Solberg, S.; Stordal, F.; Tampieri, F.

    2011-11-01

    We discuss the capability of current state-of-the-art chemistry and transport models to reproduce air quality trends and interannual variability. Documenting these strengths and weaknesses on the basis of historical simulations is essential before the models are used to investigate future air quality projections. To achieve this, a coordinated modelling exercise was performed in the framework of the CityZEN European Project. It involved six regional and global chemistry-transport models (BOLCHEM, CHIMERE, EMEP, EURAD, OSLOCTM2 and MOZART) simulating air quality over the past decade in the Western European anthropogenic emissions hotspots. Comparisons between models and observations allow assessing the skills of the models to capture the trends in basic atmospheric constituents (NO2, O3, and PM10). We find that the trends of primary constituents are well reproduced (except in some countries - owing to their sensitivity to the emission inventory) although capturing the more moderate trends of secondary species such as O3 is more challenging. Apart from the long term trend, the modelled monthly variability is consistent with the observations but the year-to-year variability is generally underestimated. A comparison of simulations where anthropogenic emissions are kept constant is also investigated. We find that the magnitude of the emission-driven trend exceeds the natural variability for primary compounds. We can thus conclude that emission management strategies have had a significant impact over the past 10 yr, hence supporting further emission reductions.

  8. Air quality trends in Europe over the past decade: a first multi-model assessment

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Bessagnet, B.; D'Angiola, A.; D'Isidoro, M.; Gauss, M.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Solberg, S.; Stordal, F.; Tampieri, F.

    2011-07-01

    We discuss the capability of current state-of-the-art chemistry and transport models to reproduce air quality trends and inter annual variability. Documenting these strengths and weaknesses on the basis of historical simulations is essential before the models are used to investigate future air quality projections. To achieve this, a coordinated modelling exercise was performed in the framework of the CityZEN European Project. It involved six regional and global chemistry-transport models (Bolchem, Chimere, Emep, Eurad, OsloCTM2 and Mozart) simulating air quality over the past decade in the Western European anthropogenic emissions hotspots. Comparisons between models and observations allow assessing the skills of the models to capture the trends in basic atmospheric constituents (NO2, O3, and PM10). We find that the trends of primary constituents are well reproduced (except in some countries - owing to their sensitivity to the emission inventory) although capturing the more moderate trends of secondary species such as O3 is more challenging. Apart from the long term trend, the modelled monthly variability is consistent with the observations but the year-to-year variability is generally underestimated. A comparison of simulations where anthropogenic emissions are kept constant is also investigated. We find that the magnitude of the emission-driven trend exceeds the natural variability for primary compounds. We can thus conclude that emission management strategies have had a significant impact over the past 10 yr, hence supporting further emission reductions strategies.

  9. Assessing the benefit and cost for a voluntary indoor air quality certification scheme in Hong Kong.

    PubMed

    Tse, M S; Chau, C K; Lee, W L

    2004-03-29

    A voluntary indoor air quality certification scheme has been proposed in Hong Kong for assessing and evaluating the indoor air quality level in a variety of public places like offices, restaurants and pubs. The scheme intends to promote the public well being, however, its technical and financial practicality has led to serious discussions among the government officials, practitioners and premises owners. Accordingly, this study intends to develop a protocol for examining its financial viability by linking the appropriate dose-response and economic data with the results from indoor micro-environment models. The financial viability of the scheme is evaluated by examining the cost and benefit associated with compliance on the different prescribed indoor particulate (PM10) levels. According to our analysis, the indoor action level of 180 microg/m3 as 8-h mean (with the objective of protecting the health of general public) does not require office owners to improve beyond the base setting. Nevertheless, owners should consider altering the base settings in their air conditioning systems so as to secure more benefit on every dollar they spent. On the contrary, the 20 microg/m3 level as 8-h mean (with the objective of providing comfort) is not considered to be financially viable for office owners as they will incur financial loss on compliance. Subsequent sensitivity analysis indicates that the total net benefit derived have a great dependency on the value-of-life estimates used. If conservative health estimates are adopted, the optimum level determined to be beneficial to both owners and the society will be 55 microg/m3, which can be obtained by operating the air conditioning system with a ventilation rate of 10 l/s, primary filters of 80-85% efficiency and secondary filters efficiency of 60-65% arrestance. This information should be extremely valuable for government officials and policy makers in assessing the financial viability of the voluntary indoor assessment scheme.

  10. Air quality assessment of benzo(a)pyrene from asphalt plant operation.

    PubMed

    Gibson, Nigel; Stewart, Robert; Rankin, Erika

    2012-01-01

    A study has been carried out to assess the contribution of Polycyclic Aromatic Hydrocarbons (PAHs) from asphalt plant operation, utilising Benzo(a)pyrene (BaP) as a marker for PAHs, to the background air concentration around asphalt plants in the UK. The purpose behind this assessment was to determine whether the use of published BaP emission factors based on the US Environmental Protection Agency (EPA) methodology is appropriate in the context of the UK, especially as the EPA methodology does not give BaP emission factors for all activities. The study also aimed to improve the overall understanding of BaP emissions from asphalt plants in the UK, and determine whether site location and operation is likely to influence the contribution of PAHs to ambient air quality. In order to establish whether the use of US EPA emissions factors is appropriate, the study has compared the BaP emissions measured and calculated emissions rates from two UK sites with those estimated using US EPA emission factors. A dispersion modelling exercise was carried out to show the BaP contribution to ambient air around each site. This study showed that, as the US EPA methodology does not provide factors for all emission sources on asphalt plants, their use may give rise to over- or under-estimations, particularly where sources of BaP are temperature dependent. However, the contribution of both the estimated and measured BaP concentrations to environmental concentration were low, averaging about 0.05 ng m(-3) at the boundary of the sites, which is well below the UK BaP assessment threshold of 0.25 ng m(-3). Therefore, BaP concentrations, and hence PAH concentrations, from similar asphalt plant operations are unlikely to contribute negatively to ambient air quality.

  11. Rocket exhaust effluent modeling for tropospheric air quality and environmental assessments

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Stewart, R. B.

    1977-01-01

    The various techniques for diffusion predictions to support air quality predictions and environmental assessments for aerospace applications are discussed in terms of limitations imposed by atmospheric data. This affords an introduction to the rationale behind the selection of the National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) Rocket Exhaust Effluent Diffusion (REED) program. The models utilized in the NASA/MSFC REED program are explained. This program is then evaluated in terms of some results from a joint MSFC/Langley Research Center/Kennedy Space Center Titan Exhaust Effluent Prediction and Monitoring Program.

  12. A photochemical model for air quality assessment: Model description and verification

    NASA Astrophysics Data System (ADS)

    Hess, G. D.

    A hybrid Eulerian-Lagrangian, photochemical model has been developed for the assessment and prediction of the impact of large point sources on air quality. This simple model is based on solving the mass conservation equations which include chemical reaction terms in the cells of a two-dimensional crosswind plane which moves with the air parcel. Testing of the model is done in three ways. First, the chemistry is evaluated using results of smog chamber experiments simulating Melbourne's emissions and meteorological conditions. Second, the accuracy of the emissions inventory is tested using aircraft measurements. Finally the overall performance of the model is evaluated using monitoring station data. In general the model gives good agreement with the measurements, with the predictions for O 3 being somewhat better than those for NO 2. This result was also found in the three-dimensional study of McRae and Seinfeld (1983, Atmospheric Environment17, 501-522) for the Los Angeles area.

  13. Statistical analysis of Seoul air quality to assess the efficacy of emission abatement strategies since 1987.

    PubMed

    Chambers, Scott D; Kim, Ki-Hyun; Kwon, Eilhann E; Brown, Richard J C; Griffiths, Alan D; Crawford, Jagoda

    2017-02-15

    The combined influences of recent mitigation measures on urban air quality have been assessed using hourly observations of the criteria air pollutants (NO, NO2, O3, CO, and SO2) made from the Yongsan district of Seoul, Korea, over 26years (1987 to 2013). A number of data selection criteria are proposed in order to minimize variability associated with temporal changes (at diurnal, weekly, and seasonal timescales) in source strengths, their spatial distribution, and the atmospheric volume into which they mix. The temporal constraints required to better characterize relationships between observed air quality and changes in source strengths in Seoul were identified as: (i) a 5-hour diurnal sampling window (1300-1700h), (b) weekday measurements (Monday to Friday only), and (c) summer measurements (when pollutant fetch is mostly Korea-specific, and mean wind speeds are the lowest). Using these selection criteria, we were able to closely relate long-term trends identified in criteria pollutants to a number of published changes to traffic-related source strengths brought about by mitigation measures adopted over the last 10-15years.

  14. Particulate matter air quality assessment over southeast United States using satellite and ground measurements

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan

    Fine particles (PM2.5, particles with aerodynamic diameter less than 2.5 mum) can penetrate deep inside the human lungs and recent scientific studies have shown thousands of deaths occur each year around the world, prematurely, due to a high concentration of particulate matter. Therefore, monitoring and forecasting of surface level fine particulate matter air quality is very important. Typically air quality measurements are made from ground stations. In recent years, linear regression relationships between satellite derived aerosol optical thickness (AOT) and surface measured PM2.5 mass concentration are formed and used to estimate PM2.5 in the areas where surface measurements are not available. This type of simple linear relationships varies with regions and seasons, and does not provide accurate enough estimation of surface level pollution and many studies have shown that AOT alone is not sufficient for PM2.5 mass concentration estimations. Furthermore, AOT represents aerosol loading in the entire column of the atmosphere whereas PM2.5 is measured at the surface; hence, the knowledge of vertical distribution of aerosols coupled with meteorology becomes critical in PM2.5 estimations. In this dissertation I used three years (2004-2006) of coincident hourly PM2.5, MODerate resolution Imaging Spectroradiometer (MODIS) derived AOT, and Rapid Update Cycle (RUC) analyzed meteorological fields to assess PM2.5 air quality in the Southeast United States. I explored the use of two-variate (TVM), multi-variate (MVM) and artificial neural network (ANN) methods for estimating PM2.5 over 85 stations in the region. First, satellite data were analyzed for sampling biases, quality, and impact of clouds. Results show that MODIS-Terra AOT data was available only about 50% of the days in any given month due to cloud over and unfavorable surface conditions, but this produced a sampling bias of less than 2 mugm-3. Results indicate that there is up to three fold improvements in the

  15. Panama Canal Expansion Illustrates Need for Multimodal Near-Source Air Quality Assessment

    EPA Science Inventory

    The compelling issue raised is potential major changes in goods movement due to the Panama Canal expansion and considerations for near-source air quality. Near-source air quality may be affected both at near-port areas as well as along the freight transportation corridor.

  16. Panama Canal Expansion Illustrates Need for Multimodal Near-Source Air Quality Assessment

    EPA Science Inventory

    The compelling issue raised is potential major changes in goods movement due to the Panama Canal expansion and considerations for near-source air quality. Near-source air quality may be affected both at near-port areas as well as along the freight transportation corridor.

  17. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    NASA Astrophysics Data System (ADS)

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-10-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations.

  18. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    PubMed Central

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-01-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations. PMID:27731344

  19. Air quality improvement estimation and assessment using contingent valuation method, a case study in Beijing.

    PubMed

    Wang, X J; Zhang, W; Li, Y; Yang, K Z; Bai, M

    2006-09-01

    The aim of the paper is to estimate and assess residents' willingness to pay to improve air quality in the urban area of Beijing using the Contingent Valuation Method (CVM). The mean willingness to pay (WTP) for a 50% reduction of harmful substances in the air was 143 CNY per household per year, and the total WTP of the residents in the study area was 336 million CNY per year. As a proportion of household annual income, the mean WTP amounted to 0.7%. Four socio-economic variables were found to have significant impacts on residents' willingness to pay. The analysis results illustrated that WTP increases with income and education level, and decreases with household population and age. The willingness was larger for residents in the urban districts than those in the suburban districts. It was found that most of the protest bids lay on interviewees' incomplete perception of the values of environmental amenity. The influence of household income on people's willingness to pay illustrated in this study reflects a causal force of Beijing's transition to market economy that households created to have disposable income are more likely to care about environmental quality. The results of this study strike an optimistic note on the possibility of measuring the total economic value of environmental quality improvement by using the CVM in China. Suggestions on implication of the CVM for both academics and policy makers are provided in the paper.

  20. ISSUES THAT MUST BE ADDRESSED FOR RISK ASSESSMENT OF MIXED EXPOSURES: THE EPA EXPERIENCE WITH AIR QUALITY

    EPA Science Inventory

    Issues that Must be Addressed for Risk Assessment of Mixed Exposures: The EPA Experience with Air Quality

    Daniel L. Costa, Sc.D.

    Abstract
    Humans are routinely exposed to a complex mixture of air pollutants in both their outdoor and indoor environments. The wide...

  1. ISSUES THAT MUST BE ADDRESSED FOR RISK ASSESSMENT OF MIXED EXPOSURES: THE EPA EXPERIENCE WITH AIR QUALITY

    EPA Science Inventory

    Issues that Must be Addressed for Risk Assessment of Mixed Exposures: The EPA Experience with Air Quality

    Daniel L. Costa, Sc.D.

    Abstract
    Humans are routinely exposed to a complex mixture of air pollutants in both their outdoor and indoor environments. The wide...

  2. DYNAMIC EVALUATION OF REGIONAL AIR QUALITY MODELS: ASSESSING CHANGES TO O 3 STEMMING FROM CHANGES IN EMISSIONS AND METEOROLOGY

    EPA Science Inventory

    Regional-scale air quality models are used to estimate the response of air pollutants to potential emission control strategies as part of the decision-making process. Traditionally, the model predicted pollutant concentrations are evaluated for the “base case” to assess a model’s...

  3. DYNAMIC EVALUATION OF REGIONAL AIR QUALITY MODELS: ASSESSING CHANGES TO O 3 STEMMING FROM CHANGES IN EMISSIONS AND METEOROLOGY

    EPA Science Inventory

    Regional-scale air quality models are used to estimate the response of air pollutants to potential emission control strategies as part of the decision-making process. Traditionally, the model predicted pollutant concentrations are evaluated for the “base case” to assess a model’s...

  4. THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS

    EPA Science Inventory

    Assessing O3 damage to crops is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O3, for which monitors are limited and deployed mostly in non-rural areas. This work explores the potential b...

  5. THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS

    EPA Science Inventory

    Assessing O3 damage to crops is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O3, for which monitors are limited and deployed mostly in non-rural areas. This work explores the potential b...

  6. An annual assessment of air quality with the CALIOPE modeling system over Spain.

    PubMed

    Baldasano, J M; Pay, M T; Jorba, O; Gassó, S; Jiménez-Guerrero, P

    2011-05-01

    The CALIOPE project, funded by the Spanish Ministry of the Environment, aims at establishing an air quality forecasting system for Spain. With this goal, CALIOPE modeling system was developed and applied with high resolution (4km×4km, 1h) using the HERMES emission model (including emissions of resuspended particles from paved roads) specifically built up for Spain. The present study provides an evaluation and the assessment of the modeling system, coupling WRF-ARW/HERMES/CMAQ/BSC-DREAM8b for a full-year simulation in 2004 over Spain. The evaluation focuses on the capability of the model to reproduce the temporal and spatial distribution of gas phase species (NO(2), O(3), and SO(2)) and particulate matter (PM10) against ground-based measurements from the Spanish air quality monitoring network. The evaluation of the modeling results on an hourly basis shows a strong dependency of the performance of the model on the type of environment (urban, suburban and rural) and the dominant emission sources (traffic, industrial, and background). The O(3) chemistry is best represented in summer, when mean hourly variability and high peaks are generally well reproduced. The mean normalized error and bias meet the recommendations proposed by the United States Environmental Protection Agency (US-EPA) and the European regulations. Modeled O(3) shows higher performance for urban than for rural stations, especially at traffic stations in large cities, since stations influenced by traffic emissions (i.e., high-NO(x) environments) are better characterized with a more pronounced daily variability. NO(x)/O(3) chemistry is better represented under non-limited-NO(2) regimes. SO(2) is mainly produced from isolated point sources (power generation and transformation industries) which generate large plumes of high SO(2) concentration affecting the air quality on a local to national scale where the meteorological pattern is crucial. The contribution of mineral dust from the Sahara desert through

  7. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  8. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    PubMed

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  9. Assessment of the impacts of vehicular pollution on urban air quality.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, S K

    2004-01-01

    Air quality crisis in cities is mainly due to vehicular emissions. Owing to the expanding economic base Indian cities are growing at a faster rate. Transportation systems are increasing everywhere and the improved technology is insufficient to counteract growth. The effect of vehicular emission on urban air quality and human health has been described. A survey has been conducted in an Indian mega city to evaluate the status of air pollution at traffic intersections and the unique problem arising out of vehicular emissions in the study area has been narrated. Approach for the selection of the air monitoring stations, methodology adopted for data collection and the results have been discussed. Vulnerability analysis (VA) has been carried out to identify the zones at what pollution stress. Options for reducing mobile source emission have been discussed and a strategic air quality management plan has been proposed to mitigate the air pollution in the city.

  10. Biometeorological and air quality assessment in an industrialized area of eastern Mediterranean: the Thriassion Plain, Greece.

    PubMed

    Mavrakis, Anastasios; Spanou, Anastasia; Pantavou, Katerina; Katavoutas, George; Theoharatos, George; Christides, Anastasios; Verouti, Eleni

    2012-07-01

    Evidence that heat wave events are associated with poor air quality conditions and health hazards has become stronger in recent years. In this study, the impact of two heat wave episodes on human thermal discomfort and air quality is examined during summer 2007, in an industrial plain of eastern Mediterranean: the Thriassion Plain, Greece. For this purpose, two biometeorological indices-Discomfort Index (DI) and Heat Load (HL)-as well as an air quality index-Air Quality Stress Index (AQSI)-were calculated using data from seven measuring sites. A land-use map was procured in order to examine the effect of different land cover types on human thermal comfort. The results indicated high level of thermal discomfort and increased air pollution levels, while a significant correlation between the DI and the AQSI was identified.

  11. An assessment of air quality reflecting the chemosensory irritation impact of mixtures of volatile organic compounds.

    PubMed

    Abraham, Michael H; Gola, Joelle M R; Cometto-Muñiz, J Enrique

    2016-01-01

    We present a method to assess the air quality of an environment based on the chemosensory irritation impact of mixtures of volatile organic compounds (VOCs) present in such environment. We begin by approximating the sigmoid function that characterizes psychometric plots of probability of irritation detection (Q) versus VOC vapor concentration to a linear function. First, we apply an established equation that correlates and predicts human sensory irritation thresholds (SIT) (i.e., nasal and eye irritation) based on the transfer of the VOC from the gas phase to biophases, e.g., nasal mucus and tear film. Second, we expand the equation to include other biological data (e.g., odor detection thresholds) and to include further VOCs that act mainly by "specific" effects rather than by transfer (i.e., "physical") effects as defined in the article. Then we show that, for 72 VOCs in common, Q values based on our calculated SITs are consistent with the Threshold Limit Values (TLVs) listed for those same VOCs on the basis of sensory irritation by the American Conference of Governmental Industrial Hygienists (ACGIH). Third, we set two equations to calculate the probability (Qmix) that a given air sample containing a number of VOCs could elicit chemosensory irritation: one equation based on response addition (Qmix scale: 0.00 to 1.00) and the other based on dose addition (1000*Qmix scale: 0 to 2000). We further validate the applicability of our air quality assessment method by showing that both Qmix scales provide values consistent with the expected sensory irritation burden from VOC mixtures present in a wide variety of indoor and outdoor environments as reported on field studies in the literature. These scales take into account both the concentration of VOCs at a particular site and the propensity of the VOCs to evoke sensory irritation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    PubMed

    Derwent, Richard

    2017-07-01

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application

  13. Transforming air quality management

    SciTech Connect

    Janet McCabe

    2005-04-01

    Earlier this year, the Clean Air Act Advisory Committee submitted to EPA 38 recommendations intended to improve air quality management in the United States. This article summarizes the evaluation process leading up to the Committee's recommendations. 3 refs., 2 figs.

  14. Air Quality Modeling

    EPA Pesticide Factsheets

    In this technical support document (TSD) EPA describes the air quality modeling performed to support the Environmental Protection Agency’s Transport Rule proposal (now known as the Cross-State Air Pollution Rule).

  15. Air Quality Analysis

    EPA Pesticide Factsheets

    This site provides information for air quality data analysts inside and outside EPA. Much of the information is in the form of documented analyses that support the review of the national air qualiyt standards.

  16. Field Assessment of the Village Green Project: An Autonomous Community Air Quality Monitoring System

    EPA Science Inventory

    Recent findings on air pollution levels in communities motivate new technologies to assess air pollution at finer spatial scale. The Village Green Project (VGP) is a novel approach using commercially-available technology for long-term community environments air pollution measure...

  17. Field Assessment of the Village Green Project: An Autonomous Community Air Quality Monitoring System

    EPA Science Inventory

    Recent findings on air pollution levels in communities motivate new technologies to assess air pollution at finer spatial scale. The Village Green Project (VGP) is a novel approach using commercially-available technology for long-term community environments air pollution measure...

  18. Assessment of the natural sources of particulate matter on the opencast mines air quality.

    PubMed

    Huertas, J I; Huertas, M E; Cervantes, G; Díaz, J

    2014-09-15

    Particulate matter is the main air pollutant in open pit mining areas. Preferred models that simulate the dispersion of the particles have been used to assess the environmental impact of the mining activities. Results obtained through simulation have been compared with the particle concentration measured in several sites and a coefficient of determination R(2)<0.78 has been reported. This result indicates that in the open pit mining areas there may be additional sources of particulate matter that have not been considered in the modeling process. This work proposes that the unconsidered sources of emissions are of regional scope such as the re-suspension particulate matter due to the wind action over uncovered surfaces. Furthermore, this work proposes to estimate the impact of such emissions on air quality as a function of the present and past meteorological conditions. A statistical multiple regression model was implemented in one of the world's largest open pit coal mining regions which is located in northern Colombia. Data from 9 particle-concentration monitoring stations and 3 meteorological stations obtained from 2009 to 2012 were statistically compared. Results confirmed the existence of a high linear relation (R(2)>0.95) between meteorological variables and particulate matter concentration being humidity, humidity of the previous day and temperature, the meteorological variables that contributed most significantly in the variance of the particulate matter concentration measured in the mining area while the contribution of the AERMOD estimations to the short term TSP (Total Suspended Particles) measured concentrations was negligible (<5%). The multiple regression model was used to identify the meteorological condition that leads to pollution episodes. It was found that conditions drier than 54% lead to pollution episodes while humidities greater than 70% maintain safe air quality conditions in the mining region in northern Colombia. Copyright © 2014 Elsevier

  19. Western oil-shale development: a technology assessment. Volume 3: air-quality impacts

    SciTech Connect

    Not Available

    1982-01-01

    The effects of a mature oil shale industry on the air quality over the Green River Oil Shale Formation of Colorado, Utah, and Wyoming is described. Climate information is supplied for the Piceance Creek Basin. (ACR)

  20. A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...

  1. A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...

  2. Air quality resolution for health impact assessment: influence of regional characteristics

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Saari, R. K.; Selin, N. E.

    2014-01-01

    We evaluate how regional characteristics of population and background pollution might impact the selection of optimal air quality model resolution when calculating the human health impacts of changes to air quality. Using an approach consistent with air quality policy evaluation, we use a regional chemical transport model (CAMx) and a health benefit mapping program (BenMAP) to calculate the human health impacts associated with changes in ozone and fine particulate matter resulting from an emission reduction scenario. We evaluate this same scenario at 36, 12 and 4 km resolution for nine regions in the eastern US representing varied characteristics. We find that the human health benefits associated with changes in ozone concentrations are sensitive to resolution. This finding is especially strong in urban areas where we estimate that benefits calculated using coarse resolution results are on average two times greater than benefits calculated using finer scale results. In three urban areas we analyzed, results calculated using 36 km resolution modeling fell outside the uncertainty range of results calculated using finer scale modeling. In rural areas the influence of resolution is less pronounced with only an 8% increase in the estimated health impacts when using 36 km resolution over finer scales. In contrast, health benefits associated with changes in PM2.5 concentrations were not sensitive to resolution and did not follow a pattern based on any regional characteristics evaluated. The largest difference between the health impacts estimated using 36 km modeling results and either 12 or 4 km results was at most ±10% in any region. Several regions showed increases in estimated benefits as resolution increased (opposite the impact seen with ozone modeling), while some regions showed decreases in estimated benefits as resolution increased. In both cases, the dominant contribution was from secondary PM. Additionally, we found that the health impacts calculated using

  3. Assessment of health benefits related to air quality improvement strategies in urban areas: An Impact Pathway Approach.

    PubMed

    Silveira, Carlos; Roebeling, Peter; Lopes, Myriam; Ferreira, Joana; Costa, Solange; Teixeira, João P; Borrego, Carlos; Miranda, Ana I

    2016-12-01

    Air pollution is, increasingly, a concern to our society given the threats to human health and the environment. Concerted actions to improve air quality have been taken at different levels, such as through the development of Air Quality Plans (AQPs). However, air quality impacts associated with the implementation of abatement measures included in AQPs are often neglected. In order to identify the major gaps and strengths in current knowledge, a literature review has been performed on existing methodologies to estimate air pollution-related health impacts and subsequent external costs. Based on this review, the Impact Pathway Approach was adopted and applied within the context of the MAPLIA research project to assess the health impacts and benefits (or avoided external costs) derived from improvements in air quality. Seven emission abatement scenarios, based on individual and combined abatement measures, were tested for the major activity sectors (traffic, residential and industrial combustion and production processes) of a Portuguese urban area (Grande Porto) with severe particular matter (PM10) air pollution problems. Results revealed a strong positive correlation between population density and health benefits obtained from the assessed reduction scenarios. As a consequence, potential health benefits from reduction scenarios are largest in densely populated areas with high anthropic activity and, thus, where air pollution problems are most alarming. Implementation of all measures resulted in a reduction in PM10 emissions by almost 8%, improving air quality by about 1% and contributing to a benefit of 8.8 million €/year for the entire study domain. The introduction of PM10 reduction technologies in industrial units was the most beneficial abatement measure. This study intends to contribute to policy support for decision-making on air quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Model assessing the impact of biomass burning on air quality and photochemistry in Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Wiedinmyer, C.; Yokelson, R. J.; Molina, L. T.

    2010-12-01

    Biomass burning is a major global emission source for trace gases and particulates. Various multi-platform measurements during the Mexico City Metropolitan Area (MCMA)-2003 and Megacity Initiative: Local and Global Research Observations (MILAGRO)-2006 campaigns suggest significant influences of biomass burning (BB) on air quality in Mexico City during the dry season, and the observations show emissions from BB impose viable yet highly variable impacts on organic aerosols (OA) in and around Mexico City. We have developed emission inventories for forest fires surrounding Mexico City based on measurement-estimated emission factors and MODIS fire counts, and for garbage fires in Mexico City based on in situ-measured emission factors and the population distribution and socioeconomic data. In this study, we will comprehensively assess the impact of biomass burning on the aerosol loading, chemical composition, OA formation and photochemistry in Mexico City using WRF-Chem. Analysis of the model results, in conjunction with concurrent field measurements, will be presented.

  5. An Assessment of Air Quality in the Surrounding Holy Places of Mecca, Saudi Arabia during Hajj

    NASA Astrophysics Data System (ADS)

    Khwaja, H. A.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Khatib, F.; Zeb, J.; Blake, D. R.

    2014-12-01

    The associations of exposure to air pollution and adverse human health effects have been demonstrated in many epidemiologic studies. Hajj, an annual pilgrimage of Islam, draws millions of pilgrims from more than 200 countries for religious rituals in Mecca, Saudi Arabia. The city is surrounded by mountains with a population of 1.7 million, which gets doubles or even more during Hajj. The city centers on the Grand Mosque (Masjid Al-haram), connected with the network of tunnels. Main Hajj pilgrimage route for five days extends 20 km to the east and includes "Mina", "Arafat", and "Muzdalifah". A detailed study was conducted in Mecca, its tunnels, and surrounding holy places during Hajj (October 13-17, 2013). Spatial and temporal variations in total suspended particulate (TSP), PM10 , PM7 , PM2.5 , PM1 , ozone (O3), and black carbon (BC) levels along the route were recorded using portable monitors and GPS to assess the status of air quality. This is the first study to elucidate the exposure to air pollutants among pilgrims. Extremely high levels of all pollutants were observed during the intensive measuring periods. For example, the PM7 , PM2.5 , O3, and BC concentrations of up to 9,433 µg/m3, 484 µg/m3, 444 ppb, and 468 µg/m3, respectively, were observed. Results of this investigation revealed that most routes had on average exceeded the World Health Organization (WHO) standards for PM10 and PM2.5 . The reasons for the high air pollutants concentrations are most probably high volume of traffic, construction work, re-suspension of particles, and geographical conditions (arid regions). The pilgrim's longer trip duration lead to their highest whole trip exposure to air pollutants, which indicate that they are possibly subject to higher health risk. Better understanding of air pollution exposure and their determinants in the environments will contribute to the development of more appropriate exposure reductive strategies and have significant public health meanings.

  6. Traffic-related air quality assessment for open road tolling highway facility.

    PubMed

    Lin, Jie; Yu, Dan

    2008-09-01

    Open road tolling (ORT) design has been considered as an effective means of smoothing highway traffic and reducing travel delay on toll highways. In this paper it is demonstrated that ORT can also achieve significant air quality benefits over the conventional toll plaza design. The near roadside carbon monoxide (CO) concentration levels can be reduced by up to 37%, and diesel particulate matter (DPM) emissions can decrease by as much as 58%. These large expected air quality benefits have great implications to the regional efforts of reducing mobile source air pollution toward achieving attainment status and healthier living environment.

  7. Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips.

    PubMed

    Schulze, Frank; Gao, Xinghua; Virzonis, Darius; Damiati, Samar; Schneider, Marlon R; Kodzius, Rimantas

    2017-09-27

    Air quality depends on the various gases and particles present in it. Both natural phenomena and human activities affect the cleanliness of air. In the last decade, many countries experienced an unprecedented industrial growth, resulting in changing air quality values, and correspondingly, affecting our life quality. Air quality can be accessed by employing microchips that qualitatively and quantitatively determine the present gases and dust particles. The so-called particular matter 2.5 (PM2.5) values are of high importance, as such small particles can penetrate the human lung barrier and enter the blood system. There are cancer cases related to many air pollutants, and especially to PM2.5, contributing to exploding costs within the healthcare system. We focus on various current and potential future air pollutants, and propose solutions on how to protect our health against such dangerous substances. Recent developments in the Organ-on-Chip (OoC) technology can be used to study air pollution as well. OoC allows determination of pollutant toxicity and speeds up the development of novel pharmaceutical drugs.

  8. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  9. The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air.

    PubMed

    Lewkowska, Paulina; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2017-01-02

    The quality of indoor air is one of the significant elements that influences people's well-being and health inside buildings. Emissions of pollutants, which may cause odor nuisance, are the main reason for people's complaints regarding the quality of indoor air. As a result, it is necessary to perform tests aimed at identifying the sources of odors inside buildings. The article contains basic information on the characteristics of the sources of indoor air pollution and the influence of the odor detection threshold on people's health and comfort. An attempt was also made to classify and use sensory analysis techniques to perform tests of the quality of indoor air, which would enable identification of sensory experience and would allow for indication of the degree of their intensity.

  10. Louisiana Air Quality - Using ASTER, Landsat 5, and MODIS to Assess the Impact of Sugarcane and Marsh Burning Practices on Local Air Quality

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Clark, R.; Robin, C.; Zeringue, J.; McCarty, J. L.

    2010-12-01

    Protection Agency with the goal of assessing air quality of coastal Louisiana and mitigating health risks to vulnerable human populations in coastal Louisiana.

  11. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    SciTech Connect

    Tonn, Bruce Edward; Rose, Erin M.; Ternes, Mark P.

    2015-10-01

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are compared to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.

  12. Dynamic evaluation of a regional air quality model: Assessing the emissions-induced weekly ozone cycle

    NASA Astrophysics Data System (ADS)

    Pierce, Thomas; Hogrefe, Christian; Trivikrama Rao, S.; Porter, P. Steven; Ku, Jia-Yeong

    2010-09-01

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system for the "weekend ozone effect" to determine if observed changes in ozone due to weekday-to-weekend (WDWE) reductions in precursor emissions can be accurately simulated. The weekend ozone effect offers a unique opportunity for dynamic evaluation, as it is a widely documented phenomenon that has persisted since the 1970s. In many urban areas of the Unites States, higher ozone has been observed on weekends than weekdays, despite dramatically reduced emissions of ozone precursors (nitrogen oxides [NO x] and volatile organic compounds [VOCs]) on weekends. More recent measurements, however, suggest shifts in the spatial extent or reductions in WDWE ozone differences. Using 18 years (1988-2005) of observed and modeled ozone and temperature data across the northeastern United States, we re-examine the long-term trends in the weekend effect and confounding factors that may be complicating the interpretation of this trend and explore whether CMAQ can replicate the temporal features of the observed weekend effect. The amplitudes of the weekly ozone cycle have decreased during the 18-year period in our study domain, but the year-to-year variability in weekend minus weekday (WEWD) ozone amplitudes is quite large. Inter-annual variability in meteorology appears to influence WEWD differences in ozone, as well as WEWD differences in VOC and NO x emissions. Because of the large inter-annual variability, modeling strategies using a single episode lasting a few days or a few episodes in a given year may not capture the WEWD signal that exists over longer time periods. The CMAQ model showed skill in predicting the absolute values of ozone concentrations during the

  13. Future air quality in Europe: a multi-model assessment of projected exposure to ozone

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Rao, S.; Amann, M.; Bessagnet, B.; D'Angiola, A.; Gauss, M.; Heyes, C.; Klimont, Z.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Schucht, S.; Simpson, D.; Stordal, F.; Tampieri, F.; Vrac, M.

    2012-11-01

    In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the modelled projection. Last, the modelling experiment is related to a hind-cast study published earlier, where the performances of all participating models were extensively documented. The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NOx will drop down to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O3 will slightly increase in NOx saturated areas but the overall O3 burden will decrease substantially. Exposure to detrimental O3 levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximum O3 is higher than 120 μg m-3 more than 25 days per year will drop from 43% down to 2 to 8%. We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy.

  14. Future air quality in Europe: a multi-model assessment of projected exposure to ozone

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Rao, S.; Amann, M.; Bessagnet, B.; D'Angiola, A.; Gauss, M.; Heyes, C.; Klimont, Z.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Schucht, S.; Simpson, D.; Stordal, F.; Tampieri, F.; Vrac, M.

    2012-06-01

    In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the model projection. Last, the modelling experiment is linked to a hind-cast study published earlier, where the performances of all participating models were extensively documented. The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NOx will drop to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O3 will slightly increase in NOx saturated areas but the overall O3 burden will decrease substantially. Exposure to detrimental O3 levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximumO3 is higher than 120 μg m-3 more than 25 days per year will drop from 43% down to 2 to 8%. We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy.

  15. An assessment of indoor air quality in recent Mexican immigrant housing in Commerce City, Colorado

    NASA Astrophysics Data System (ADS)

    Miller, Shelly L.; Scaramella, Peter; Campe, Joseph; Goss, Cynthia W.; Diaz-Castillo, Sandra; Hendrikson, Ed; DiGuiseppi, Carolyn; Litt, Jill

    An indoor air quality assessment was conducted on 100 homes of recent Mexican immigrants in Commerce City, Colorado, an urban industrial community north of Denver. Head of households were administered a family health survey, filled out an activity diary, and participated in a home inspection. Carbon monoxide (CO) and carbon dioxide (CO 2) were measured for 24 h inside the main living area and outside of the homes. Harvard Impactors were used to collect 24-h samples of PM 2.5 at the same locations for gravimetric analysis. Dust samples were collected by vacuuming carpeting and flooring at four locations within the home and analyzed by ELISA for seven allergens. Mean indoor and outdoor PM 2.5 levels were 27.2 and 8.5 μg m -3, respectively. Indoor PM 2.5 and CO 2 were elevated in homes for which the number of hours with door/window open was zero compared to homes in which the number of hours was high (>15 h). Indoor PM 2.5 levels did not correlate with outdoor levels and tended to increase with number of inhabitants, and results indicate that the source of indoor particles were occupants and their activities, excluding smoking and cooking. Mean indoor CO 2 and CO levels were 1170 and 2.4 ppm, respectively. Carbon monoxide was higher than the 24-h National Ambient Air Quality Standard in 3 of the homes. The predominant allergens were cat ( Fel d 1) and mouse ( Mus m 1) allergens, found in 20 and 34 homes, respectively.

  16. Source apportionment and air quality impact assessment studies in Beijing/China

    NASA Astrophysics Data System (ADS)

    Suppan, P.; Schrader, S.; Shen, R.; Ling, H.; Schäfer, K.; Norra, S.; Vogel, B.; Wang, Y.

    2012-04-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: Examples of long term measurements of PM2.5 filter sampling in 2005 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. Further experimental studies include the operation of remote sensing systems to determine continuously the MLH (by a ceilometer) and gaseous air pollutants near the ground (by DOAS systems) as well as at the 320 m measurement tower (adhesive plates at different heights for passive particle collection) in cooperation with the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS). The influence of the MLH on

  17. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    PubMed

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  18. Air quality over the Canadian oil sands: A first assessment using satellite observations

    NASA Astrophysics Data System (ADS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-02-01

    Results from the first assessment of air quality over the Canadian oil sands-one of the largest industrial undertakings in human history-using satellite remote sensing observations of two pollutants, nitrogen dioxide (NO2) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km × 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 ± 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  19. Air Quality Over the Canadian Oil Sands: A First Assessment Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-01-01

    Results from the first assessment of air quality over the Canadian oil sands -- one ofthe largest industrial undertakings in human history -- using satellite remote sensing observations of two pollutants, nitrogen dioxide (N0O) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km x 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 +/- 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  20. Air Quality Over the Canadian Oil Sands: A First Assessment Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-01-01

    Results from the first assessment of air quality over the Canadian oil sands -- one ofthe largest industrial undertakings in human history -- using satellite remote sensing observations of two pollutants, nitrogen dioxide (N0O) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km x 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 +/- 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  1. Development of an indoor air quality checklist for risk assessment of indoor air pollutants by semiquantitative score in nonindustrial workplaces

    PubMed Central

    Syazwan, AI; Rafee, B Mohd; Hafizan, Juahir; Azman, AZF; Nizar, AM; Izwyn, Z; Muhaimin, AA; Yunos, MA Syafiq; Anita, AR; Hanafiah, J Muhamad; Shaharuddin, MS; Ibthisham, A Mohd; Ismail, Mohd Hasmadi; Azhar, MN Mohamad; Azizan, HS; Zulfadhli, I; Othman, J

    2012-01-01

    Background To meet the current diversified health needs in workplaces, especially in nonindustrial workplaces in developing countries, an indoor air quality (IAQ) component of a participatory occupational safety and health survey should be included. Objectives The purpose of this study was to evaluate and suggest a multidisciplinary, integrated IAQ checklist for evaluating the health risk of building occupants. This IAQ checklist proposed to support employers, workers, and assessors in understanding a wide range of important elements in the indoor air environment to promote awareness in nonindustrial workplaces. Methods The general structure of and specific items in the IAQ checklist were discussed in a focus group meeting with IAQ assessors based upon the result of a literature review, previous industrial code of practice, and previous interviews with company employers and workers. Results For practicality and validity, several sessions were held to elicit the opinions of company members, and, as a result, modifications were made. The newly developed IAQ checklist was finally formulated, consisting of seven core areas, nine technical areas, and 71 essential items. Each item was linked to a suitable section in the Industry Code of Practice on Indoor Air Quality published by the Department of Occupational Safety and Health. Conclusion Combined usage of an IAQ checklist with the information from the Industry Code of Practice on Indoor Air Quality would provide easily comprehensible information and practical support. Intervention and evaluation studies using this newly developed IAQ checklist will clarify the effectiveness of a new approach in evaluating the risk of indoor air pollutants in the workplace. PMID:22570579

  2. EXPOSURE TO INTERMITTENT AIR POLLUTION AND CHANGES IN SEMEN QUALITY: EVIDENCE FOR AN ASSOCIATION AND IMPLICATIONS FOR REPRODUCTIVE RISK ASSESSMENT

    EPA Science Inventory

    Exposure to Intermittent Air Pollution and Changes in Semen Quality:
    Evidence for an Association and Implications for Reproductive Risk Assessment.

    S. D. Perreault1, S.G. Selevan2, J. Rubes3, D. Zudova3, and D.P. Evenson4
    1US EPA, ORD/NHEERL, Research Triangle Pa...

  3. EXPOSURE TO INTERMITTENT AIR POLLUTION AND CHANGES IN SEMEN QUALITY: EVIDENCE FOR AN ASSOCIATION AND IMPLICATIONS FOR REPRODUCTIVE RISK ASSESSMENT

    EPA Science Inventory

    Exposure to Intermittent Air Pollution and Changes in Semen Quality:
    Evidence for an Association and Implications for Reproductive Risk Assessment.

    S. D. Perreault1, S.G. Selevan2, J. Rubes3, D. Zudova3, and D.P. Evenson4
    1US EPA, ORD/NHEERL, Research Triangle Pa...

  4. ASSESSMENT OF THE IMPACTS OF GLOBAL CHANGE ON REGIONAL U.S. AIR QUALITY: A SYNTHESIS OF CLIMATE CHANGE IMPACTS ON GROUND-LEVEL OZONE (AN INTERIM REPORT OF THE U.S. EPA GLOBAL CHANGE RESEARCH PROGRAM)

    EPA Science Inventory

    The Air Quality Assessment Final Report is intended for managers and scientists working on air quality to provide them with information on the potential effects of climate change on regional air quality in the United States.

  5. ASSESSMENT OF THE IMPACTS OF GLOBAL CHANGE ON REGIONAL U.S. AIR QUALITY: A SYNTHESIS OF CLIMATE CHANGE IMPACTS ON GROUND-LEVEL OZONE (AN INTERIM REPORT OF THE U.S. EPA GLOBAL CHANGE RESEARCH PROGRAM)

    EPA Science Inventory

    The Air Quality Assessment Final Report is intended for managers and scientists working on air quality to provide them with information on the potential effects of climate change on regional air quality in the United States.

  6. Air Quality Implementation Plans

    EPA Pesticide Factsheets

    States must develop plans to attain and maintain air quality standards. These plans, known as SIPs, are submitted to EPA for approval. This web site contains information about this process and the current status of the submittals.

  7. Improving Indoor Air Quality

    EPA Pesticide Factsheets

    Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed.

  8. Process air quality data

    NASA Technical Reports Server (NTRS)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  9. State Air Quality Standards.

    ERIC Educational Resources Information Center

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  10. State Air Quality Standards.

    ERIC Educational Resources Information Center

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  11. Assessment of air quality in and around a steel industry with direct reduction iron route.

    PubMed

    Jena, Pradip K; Behera, Dillip K; Mishra, C S K; Mohanty, Saswat K

    2011-10-01

    The coal based Direct Reduced Iron (DRI) route for secondary steel production is now a preferred choice in India. Steel making is invariably associated with emission of air pollutants into the environment. Air quality monitoring was carried out in Winter, Summer and Rainy seasons of 2008 in eight monitoring stations in the work zone and five stations in the residential zone of an Integrated Steel Industry located in Orissa state, India. Four air quality parameters i.e. SPM, RSPM, SO2 and NO2 were monitored. Mean SPM and RSPM values were found to be significantly high (p < 0.01) at stations nearer to source in both work zone and residential zone .The highest average SPM and RSPM values in the work zone recorded were 4869 microg/m3 and 1420 microg/m3 and in the residential zone 294 microg/m3 and 198 microg/m3 respectively. No significant difference in the SO2 and NO2 levels was observed between the work and residential zones. In general, the values of air pollutants were highest in Winter followed by Summer and Rainy season. SPM and RSPM values exceeded the National Air Quality Standards (NAAQS) in both the residential and work zones.

  12. Air quality [Chapter 8

    Treesearch

    R. C. Musselman

    1994-01-01

    Air quality is monitored continuously at GLEES. Air pollutants are considered an important component of the atmosphere that can have an effect on terrestrial and aquatic ecosystems. Atmospheric deposition of gases, wet deposition of chemicals in precipitation including snow and rain, and dry deposition of chemicals are all monitored at GLEES. Although GLEES is a...

  13. Field assessment of the Village Green Project: an autonomous community air quality monitoring system.

    PubMed

    Jiao, Wan; Hagler, Gayle S W; Williams, Ronald W; Sharpe, Robert N; Weinstock, Lewis; Rice, Joann

    2015-05-19

    Continuous, long-term, and time-resolved measurement of outdoor air pollution has been limited by logistical hurdles and resource constraints. Measuring air pollution in more places is desired to address community concerns regarding local air quality impacts related to proximate sources, to provide data in areas lacking regional air monitoring altogether, or to support environmental awareness and education. This study integrated commercially available technologies to create the Village Green Project (VGP), a durable, solar-powered air monitoring park bench that measures real-time ozone, PM2.5, and meteorological parameters. The data are wirelessly transmitted via cellular modem to a server, where automated quality checks take place before data are provided to the public nearly instantaneously. Over 5500 h of data were successfully collected during the first ten months of pilot testing in Durham, North Carolina, with about 13 days (5.5%) of downtime because of low battery power. Additional data loss (4-14% depending on the measurement) was caused by infrequent wireless communication interruptions and instrument maintenance. The 94.5% operational time via solar power was within 1.5% of engineering calculations using historical solar data for the location. The performance of the VGP was evaluated by comparing the data to nearby air monitoring stations operating federal equivalent methods (FEM), which exhibited good agreement with the nearest benchmark FEMs for hourly ozone (r(2) = 0.79) and PM2.5 (r(2) = 0.76).

  14. 4th National Climate Assessment: Public Webinar for Air Quality Chapter

    EPA Science Inventory

    On May 8, 2017, the NCA4 Air Quality chapter team held a public engagement webinar. The objectives of the webinar were to gather input from stakeholders, including authors of the regional chapters, to help inform the writing and development of NCA4, and to raise awareness of the ...

  15. Assessment of port-related air quality impacts: geographic analysis of population

    EPA Science Inventory

    Increased global trade has led to greater transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, the busy roadways and large emission sources at ports may impact local air quality within several hundred metres of th...

  16. Perspective Paper: Assessing Air Quality as Part of a Physical Therapy Plan of Care

    PubMed Central

    Burrescia, Monika

    2011-01-01

    Purpose: The purposes of this clinical perspective paper are (1) to expand physical therapists’ awareness to the topic of air quality as a health priority when providing professional services; and (2) to provide templates for screening the indoor clinical environments and patient profiles to avert respiratory exacerbations, especially in persons with asthma. Summary of Key Points: The location where a physical therapist practices determines the air quality indices to which a person is exposed. Poor indoor air quality can expose a person to even greater compromise of respiration (ie, Sick Building Syndrome) than outdoor air quality secondary to an array of factors like building materials, the ventilation exchange rate of an enclosed space, chemicals used in cleaning, and humidity. Statement of Conclusions: Extrinsic (ie, environmental) and intrinsic (eg, pre-disposition to airway hypersensitivity) factors must be accounted for by physical therapists to safeguard their patients and themselves from experiencing respiratory compromise and/or distress as a result of a treatment session or their place of employment. Recommendations: Efforts to screen indoor environments for potential triggers and patient risk profiles for abnormal airway reactivity should routinely be undertaken. Individualized Action Plans should be prospectively prepared and readied for implementation when warranted. PMID:21448345

  17. Model assessing the impact of biomass burning on air quality and photochemistry in Mexico City

    Treesearch

    W. Lei; G. Li; C. Wiedinmyer; R. J. Yokelson; L. T. Molina

    2010-01-01

    Biomass burning is a major global emission source for trace gases and particulates. Various multi-platform measurements during the Mexico City Metropolitan Area (MCMA)-2003 and Megacity Initiative: Local and Global Research Observations (MILAGRO)-2006 campaigns suggest significant influences of biomass burning (BB) on air quality in Mexico City during the dry season,...

  18. Monitoring and Assessment of Regional Air Quality in China Using Space Observations (MarcoPolo)

    NASA Astrophysics Data System (ADS)

    van der A, Ronald; Ding, Jieying; Mijling, Bas; Bai, Jianhui

    2014-11-01

    In this paper we will present the FP7-project ’MarcoPolo’. The main objective of Marco Polo is to improve air quality monitoring, modelling and forecasting over China using satellite data. Within the preceeding DRAGON project AMFIC it was concluded that modelling of air quality are hampered by the rapidly changing emission data due to economic growth in China. In addition, air quality policies could not directly be related to changes in emissions. Therefore, within the MarcoPolo project, the focus will be placed on emission estimates from space and the refinement of these emission estimates by spatial downscaling and by source sector apportionment. A wide range of satellite data will be used from various satellite instruments to derive emission estimates for NOx, SO2, PM and biogenic sources. By combining these emission data with known information from the ground, a new emission database for MarcoPolo will be constructed. The improved emission inventory will be input to the regional and local air quality models.

  19. Monitoring and Assessment of Regional Air Quality in China Using Space Observations (MarcoPolo)

    NASA Astrophysics Data System (ADS)

    Van der A, Ronald; Ding, Jieying; Mijling, Bas; Bai, Jianhui

    2014-11-01

    In this paper we will present the FP7-project 'MarcoPolo'. The main objective of Marco Polo is to improve air quality monitoring, modelling and forecasting over China using satellite data. Within the preceeding DRAGON project AMFIC it was concluded that modelling of air quality are hampered by the rapidly changing emission data due to economic growth in China. In addition, air quality policies could not directly be related to changes in emissions. Therefore, within the MarcoPolo project, the focus will be placed on emission estimates from space and the refinement of these emission estimates by spatial downscaling and by source sector apportionment. A wide range of satellite data will be used from various satellite instruments to derive emission estimates for NOx, SO2, PM and biogenic sources. By combining these emission data with known information from the ground, a new emission database for MarcoPolo will be constructed. The improved emission inventory will be input to the regional and local air quality models.

  20. Assessment of port-related air quality impacts: geographic analysis of population

    EPA Science Inventory

    Increased global trade has led to greater transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, the busy roadways and large emission sources at ports may impact local air quality within several hundred metres of th...

  1. Developing air quality forecasts

    NASA Astrophysics Data System (ADS)

    Lee, Pius; Saylor, Rick; Meagher, James

    2012-05-01

    Third International Workshop on Air Quality Forecasting Research; Potomac, Maryland, 29 November to 1 December 2011 Elevated concentrations of both near-surface ozone (O3) and fine particulate matter smaller than 2.5 micrometers in diameter have been implicated in increased mortality and other human health impacts. In light of these known influences on human health, many governments around the world have instituted air quality forecasting systems to provide their citizens with advance warning of impending poor air quality so that they can take actions to limit exposure. In an effort to improve the performance of air quality forecasting systems and provide a forum for the exchange of the latest research in air quality modeling, the International Workshop on Air Quality Forecasting Research (IWAQFR) was established in 2009 and is cosponsored by the U.S. National Oceanic and Atmospheric Administration (NOAA), Environment Canada (EC), and the World Meteorological Organization (WMO). The steering committee for IWAQFR's establishment was composed of Véronique Bouchet, Mike Howe, and Craig Stoud (EC); Greg Carmichael (University of Iowa); Paula Davidson and Jim Meagher (NOAA); and Liisa Jalkanen (WMO). The most recent workshop took place in Maryland.

  2. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    NASA Astrophysics Data System (ADS)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  3. Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality.

    PubMed

    Ke, Wenwei; Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wang, Shuxiao; Hao, Jiming

    2017-01-17

    There have been significant advancements in electric vehicles (EVs) in recent years. However, the different changing patterns in emissions at upstream and on-road stages and complex atmospheric chemistry of pollutants lead to uncertainty in the air quality benefits from fleet electrification. This study considers the Yangtze River Delta (YRD) region in China to investigate whether EVs can improve future air quality. The Community Multiscale Air Quality model enhanced by the two-dimensional volatility basis set module is applied to simulate the temporally, spatially, and chemically resolved changes in PM2.5 concentrations and the changes of other pollutants from fleet electrification. A probable scenario (Scenario EV1) with 20% of private light-duty passenger vehicles and 80% of commercial passenger vehicles (e.g., taxis and buses) electrified can reduce average PM2.5 concentrations by 0.4 to 1.1 μg m(-3) during four representative months for all urban areas of YRD in 2030. The seasonal distinctions of the air quality impacts with respect to concentration reductions in key aerosol components are also identified. For example, the PM2.5 reduction in January is mainly attributed to the nitrate reduction, whereas the secondary organic aerosol reduction is another essential contributor in August. EVs can also effectively assist in mitigating NO2 concentrations, which would gain greater reductions for traffic-dense urban areas (e.g., Shanghai). This paper reveals that the fleet electrification in the YRD region could generally play a positive role in improving regional and urban air quality.

  4. Spatial assessment of air quality patterns in Malaysia using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin

    2012-12-01

    This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.

  5. Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment

    NASA Astrophysics Data System (ADS)

    Yim, Steve H. L.; Stettler, Marc E. J.; Barrett, Steven R. H.

    2013-03-01

    The potential adverse human health impacts of emissions from UK airports have become a significant issue of public concern. We produce an inventory of UK airport emissions - including emissions from aircraft landing and takeoff operations, aircraft auxiliary power units (APUs) and ground support equipment (GSE) - with quantified uncertainty. Emissions due to more than 95% of UK passenger enplanements are accounted for. We apply a multi-scale air quality modelling approach to assess the air quality impacts of UK airports. Using a concentration-response function we estimate that 110 (90% CI: 72-160) early deaths occur in the UK each year (based on 2005 data) due to UK airport emissions. We estimate that up to 65% of the health impacts of UK airports could be mitigated by desulphurising jet fuel, electrifying GSE, avoiding use of APUs and use of single engine taxiing. Two plans for the expansion of UK airport capacity are examined - expansion of London Heathrow and new hub airport in the Thames Estuary. Even if capacity is constrained, we find that the health impacts of UK airports still increases by 170% in 2030 due to an increasing and aging population, increasing emissions, and a changing atmosphere. We estimate that if Heathrow were to be expanded as per previous UK Government plans, UK-wide health impacts in 2030 would increase by 4% relative to the 2030 constrained case, but this increase could become a 48% reduction if emissions mitigation measures were employed. We calculate that 24% of UK-wide aviation-attributable early deaths could be avoided in 2030 if Heathrow were replaced by a new airport in Thames Estuary because the location is downwind of London, where this reduction occurs notwithstanding the increase in aircraft emissions. A Thames hub airport would (isolated from knock-on effects at other airports) cause 60-70% fewer early deaths than an expanded Heathrow, or 55-63% fewer early deaths than an unexpanded Heathrow. Finally, replacing Heathrow by a

  6. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Assessing the Impacts of Atmospheric Conditions under Climate Change on Air Quality Profile over Hong Kong

    NASA Astrophysics Data System (ADS)

    Hei Tong, Cheuk

    2017-04-01

    Small particulates can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Under the projected climate change as reported by literature, atmospheric stability, which has strong effects on vertical mixing of air pollutants and thus air quality Hong Kong, is also varying from near to far future. In addition to domestic emission, Hong Kong receives also significant concentration of cross-boundary particulates that their natures and movements are correlated with atmospheric condition. This study aims to study the relation of atmospheric conditions with air quality over Hong Kong. Past meteorological data is based on Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. Radiosonde data provided from HKO are also adopted in testing and validating the data. Future meteorological data is simulated by the Weather Research and Forecasting Model (WRF), which dynamically downscaled the past and future climate under the A1B scenario simulated by ECHAM5/MPIOM. Air quality data is collected on one hand from the ground station data provided by Environment Protection Department, with selected stations revealing local emission and trans-boundary emission respectively. On the other hand, an Atmospheric Light Detection and Ranging (LiDAR), which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols, has also been adopted to measure vertical aerosol profile, which has been observed tightly related to the high level meteorology. Data from scattered signals are collected, averaged or some episode selected for characteristic comparison with the atmospheric stability indices and other meteorological factors. The relation between atmospheric conditions and air quality is observed by statistical analysis, and statistical models are built based on the stability indices to project the changes in sulphur dioxide, ozone and particulate

  8. Assessing U.S Air Quality Using CALIPSO and MODIS Data via Giovanni

    NASA Astrophysics Data System (ADS)

    Prados, A.; Leptoukh, G.; Alston, E.; Sokolik, I.

    2007-12-01

    The NASA Goddard online system Giovanni (http://giovanni.gsfc.nasa.gov) provides the scientific community with web based visualization, exploration, and analysis tools relevant to air quality. Relevant data products include MODIS Aerosol Optical Depth (AOD), CALIOP aerosol information, and PM2.5 and ozone surface monitor data. Giovanni services include maps, time series, Hovmoller plots, statistical analysis of one or more data sets for a selected region, and image animations of satellite data. For A-Train sensors, Giovanni is capable of providing vertical profile information for various atmospheric components measured along the A-Train orbit tracks. Additionally, the capability to generate AOD/PM2.5 correlation maps, a research tool for understanding the utility of satellite data for monitoring U.S pollution at various temporal and spatial scales, has been added to the Giovanni system. We present several high pollution events in U.S based on these Giovanni analysis and visualization tools. On August 1-5, 2007 a combination of local pollution sources, long range transport of smoke from Canada and the U.S northwest, and hot and humid conditions lead to a high PM2.5 event over the eastern half of the continental U.S. CALIOP profile data from Giovanni are used here to analyze the vertical transport of the pollution plumes and to better understand the satellite observations and the relative contribution of the various pollution sources to surface PM2.5 concentrations. In the spring of 2007, large wildfires occurred in Georgia and Florida. During the active burning period, Atlanta experienced seven PM2.5 National Ambient Air Quality Standard (NAAQS) exceedances, most occurring during May. Correctly predicting air quality during a wildfire can be difficult, as shown by the missed Air Quality Index (AQI) forecasts for those exceedance days. We use ground- based and multi-satellite data to characterize the impact of these fires on air quality in the Atlanta metropolitan

  9. Integration of Air Quality Modeling and Monitoring Data for Enhanced Health Exposure Assessment

    EPA Science Inventory

    In order to assess the environmental impact of air pollution on human health it is necessary to establish the concentrations to which the population is exposed. The obvious way to determine this is to measure these quantities. However, given the limited number of monitoring stati...

  10. Integration of Air Quality Modeling and Monitoring Data for Enhanced Health Exposure Assessment

    EPA Science Inventory

    In order to assess the environmental impact of air pollution on human health it is necessary to establish the concentrations to which the population is exposed. The obvious way to determine this is to measure these quantities. However, given the limited number of monitoring stati...

  11. Strategic environmental assessment of mining activities: A methodology for quantification of cumulative impacts on the air quality.

    PubMed

    Cavalcanti, Paulina Maria Porto Silva; La Rovere, Emilio Lèbre

    2011-04-01

    Environmental impact assessments in Brazil have usually focused solely on project-related issues without considering the regional context. Although required by current environmental legislation, cumulative impact assessments have not been included in the overall environmental assessment of projects. However, in recent Strategic Environmental Assessment (SEA) studies of policies, plans, and programs undertaken on a voluntary basis in support of the decision-making process, this kind of assessment has been performed especially with respect to air quality. This paper presents the application of a methodology for the quantification of cumulative impacts on air quality under high uncertainty caused by various mining activities in a single region that is recommended for SEA studies. In this way, the methodology presented here is suitable for areas lacking detailed modeling information. The developed approach uses a relatively simplified mathematical model, lowering information gathering costs and requiring little processing time. The application of the methodology is illustrated in the case of a SEA of the Corumbá Mining and Industrial Complex Development Program. Despite the lack of data needed for a minimum characterization of conditions of the area surrounding the region modeled, the quantification of impact cumulativeness on air quality has played an important role in the context of the SEA.

  12. Assessment of air quality in a commercial cattle transport vehicle in Swedish summer and winter conditions.

    PubMed

    Wikner, I; Gebresenbet, G; Nilsson, C

    2003-03-01

    Transport by road can induce significant stress in cattle. Thermal stress is among the main stress producing factors during transport. The provision of ventilation in livestock transport vehicles is usually through openings along the sides of the vehicle. The incoming air will affect air quality inside by regulating temperature, relative humidity, gas levels and levels of other contaminants. The aim of the present investigation was to map out the air quality in a commercial cattle transport vehicle under various climatic conditions and with varying stocking densities and transport times. Distributions of air temperature, relative humidity and concentrations of ammonia, carbon dioxide, oxygen and methane have been determined during 35 experimental journeys. In average the mean temperature inside the compartment was about 3 degrees C and 6 degrees C higher than outside temperature in summer (+7.8(-)+24.0 degrees C) and winter (-24.3(-)+12.7 degrees C) conditions respectively. The temperature increment inside, as could be expected from theory, increased with reduced ventilation and increased animal density. Many stops to load new animals lowered the temperature increment and relative humidity in winter time. In summer more stops made the compartment temperature and relative humidity increase. The inside temperature distribution was less than about 3 degrees C during both summer and winter season. Average ammonia level varied between 3 and 6 ppm depending on stocking density and number of stops with a maximum value of 18 ppm. No detectable methane levels could be found inside the compartment at any time.

  13. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M. C.; Amato, F.; Alastuey, A.; Querol, X.; Gibbons, W.

    2014-08-01

    A high resolution air quality monitoring campaign (PM, CO2 and CO) was conducted on differently designed station platforms in the Barcelona subway system under: (a) normal forced tunnel ventilation, and (b) with daytime tunnel ventilation systems shut down. PM concentrations are highly variable (6-128 μgPM1 m-3, 16-314 μgPM3 m-3, and 33-332 μgPM10 m-3, 15-min averages) depending on ventilation conditions and station design. Narrow platforms served by single-track tunnels are heavily dependent on forced tunnel ventilation and cannot rely on the train piston effect alone to reduce platform PM concentrations. In contrast PM levels in stations with spacious double-track tunnels are not greatly affected when tunnel ventilation is switched off, offering the possibility of significant energy savings without damaging air quality. Sampling at different positions along the platform reveals considerable lateral variation, with the greatest accumulation of particulates occurring at one end of the platform. Passenger accesses can dilute PM concentrations by introducing cleaner outside air, although lateral down-platform accesses are less effective than those positioned at the train entry point. CO concentrations on the platform are very low (≤1 ppm) and probably controlled by ingress of traffic-contaminated street-level air. CO2 averages range from 371 to 569 ppm, changing during the build-up and exchange of passengers with each passing train.

  14. Impacts of cool cities on air quality: A preliminary modeling assessment for Nashville TN, Dallas TX and Atlanta GA

    SciTech Connect

    Taha, Haider

    1998-06-15

    Previous atmospheric modeling efforts that concentrated on the Los Angeles Basin suggested beneficial and significant air quality impacts from cool cities strategies. This paper discusses an extension of similar modeling efforts to three regions, Atlanta GA, Dallas - Ft. Worth TX, and Nashville TN, that experience smog and air quality problems. According to the older ozone air quality standard (120 ppb), these regions were classified as serious, moderate, and marginal, respectively, but may be out of compliance with respect to the newer, 80-ppb/8-hours standard. Results from this exploratory modeling work suggest a range of possible impacts on meteorological and air quality conditions. For example, peak ozone concentrations during each region's respective episode could be decreased by 1-6 ppb (conservative and optimistic scenarios, respectively) in Nashville, 5-15 ppb in Dallas - Fort Worth, and 5-12 ppb in Atlanta following implementation of cool cities. The reductions are generally smaller than those obtained from simulating the Los Angeles Basin but are still significant. In all regions, the simulations suggest, the net, domain-wide effects of cool cities are reductions in ozone mass and improvements in air quality. In Atlanta, Nashville, and Dallas, urban areas benefiting from reduced smog reach up to 8460, 7350, and 12870 km{sup 2} in area, respectively. Results presented in this paper should be taken as exploratory and preliminary. These will most likely change during a more comprehensive modeling study to be started soon with the support of the US Environmental Protection Agency. The main purpose of the present project was to obtain the initial data (emission inventories) for these regions, simulate meteorological conditions, and perform preliminary sensitivity analysis. In the future, additional regions will be simulated to assess the potential of cool cities in improving urban air quality.

  15. Global ozone and air quality: a multi-model assessment of risks to human health and crops

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Gauss, M.; van Dingenen, R.; Dentener, F. J.; Emberson, L.; Fiore, A. M.; Schultz, M. G.; Stevenson, D. S.; Ashmore, M. R.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Butler, T.; Drevet, J.; Eskes, H.; Hauglustaine, D. A.; Isaksen, I. S. A.; Horowitz, L. W.; Krol, M.; Lamarque, J. F.; Lawrence, M. G.; van Noije, T.; Pyle, J.; Rast, S.; Rodriguez, J.; Savage, N.; Strahan, S.; Sudo, K.; Szopa, S.; Wild, O.

    2008-02-01

    Within ACCENT, a European Network of Excellence, eighteen atmospheric models from the U.S., Europe, and Japan calculated present (2000) and future (2030) concentrations of ozone at the Earth's surface with hourly temporal resolution. Comparison of model results with surface ozone measurements in 14 world regions indicates that levels and seasonality of surface ozone in North America and Europe are characterized well by global models, with annual average biases typically within 5-10 nmol/mol. However, comparison with rather sparse observations over some regions suggest that most models overestimate annual ozone by 15-20 nmol/mol in some locations. Two scenarios from the International Institute for Applied Systems Analysis (IIASA) and one from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) have been implemented in the models. This study focuses on changes in near-surface ozone and their effects on human health and vegetation. Different indices and air quality standards are used to characterise air quality. We show that often the calculated changes in the different indices are closely inter-related. Indices using lower thresholds are more consistent between the models, and are recommended for global model analysis. Our analysis indicates that currently about two-thirds of the regions considered do not meet health air quality standards, whereas only 2-4 regions remain below the threshold. Calculated air quality exceedances show moderate deterioration by 2030 if current emissions legislation is followed and slight improvements if current emissions reduction technology is used optimally. For the "business as usual" scenario severe air quality problems are predicted. We show that model simulations of air quality indices are particularly sensitive to how well ozone is represented, and improved accuracy is needed for future projections. Additional measurements are needed to allow a more quantitative assessment of the risks to

  16. Ambient Air Quality Assessment 43-21-0170-81 Rocky Mountain Arsenal, Denver, Colorado

    DTIC Science & Technology

    1981-06-01

    AD-A285 551 AG . .iorm ApprovedIIIIh PAGE 0MB Nl. 0704-07 88r to averaqe I hour per response. including the time for review ng instructions...Washington. DC 20503. 1. AGENCY USE ONLY (Leave blank) (2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 106/00/81 1 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS...12a. DISTRIBUTION / AVAILABILITY STATEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED 13. ABSTRACT (Maximum 200 words) THE AIR QUALITY

  17. A Baseline Air Quality Assessment Onboard a Victoria Class Submarine: HMCS Windsor

    DTIC Science & Technology

    2006-05-01

    the degradation timeline of the atmosphere, replacement schedules for CO2 canisters and O2 candles , and no formula to accurately predict replacement...and O2 candles , and no formula to accurately predict replacement. Therefore, guidelines to assist in maintaining air quality are open to...availability of CO2 canisters and O2 candles , in addition to the further limitations for storage. Alternate and potentially more effective methods of

  18. Air Quality Management Process Cycle

    EPA Pesticide Factsheets

    Air quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of air pollution. The process of managing air quality can be illustrated as a cycle of inter-related elements.

  19. Hot air drying of apple slices: dehydration characteristics and quality assessment

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-08-01

    The main objectives of the present study were to investigate the drying characteristics and quality attributes of apple slices. The samples were dried at different air temperature levels (50, 60 and 70 °C) and a constant air velocity (1.5 m s-1). It was observed that the drying air temperature affected the dehydration rate significantly. The usefulness of eight different mathematical models to simulate the experimental drying curves was evaluated and the Midilli model provided the best simulation of the samples drying kinetics. The effective moisture diffusivity was determined to be 7.03 × 10-10, 8.48 × 10-10 and 1.08 × 10-9 m2 s-1 for drying air temperatures of 50, 60 and 70 °C, respectively. The shrinkage values of the dried samples at air temperatures of 50, 60 and 70 °C were 74.70, 82.35 and 80.78 %, respectively. The maximum value of rehydration ratio (4.527) and also the minimum value of ∆E (11.27) were obtained for the slices dried at 70 °C.

  20. Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Jams, John T.

    2010-01-01

    Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.

  1. Assessments of population exposure to environmental pollutants using air quality measurements during Commonwealth Games-2010.

    PubMed

    Chate, Dilip; Beig, G; Satpute, Trupti; Sahu, Saroj Kumar; Ali, K; Parkhi, Neha; Ghude, Sachin

    2013-05-01

    During the "Commonwealth Games" 2010 (CWG-2010) in Delhi, the Indian government has implemented an ambitious project "System of Air quality Forecasting And Research (SAFAR)" for monitoring and forecasting air-quality scenario. Using high-precision spatio-temporal measurements of criteria pollutants from the SAFAR network, the number of cases are estimated for total, cardiovascular and respiratory mortalities and hospital admissions. In a thinly populated airport area, the excess number of cases for total mortality show ∼10 for PM2.5 and 25 for PM10, whereas, ∼110 for PM2.5 and ∼300 for PM10 in most populous Delhi University (DU) area. Cardiovascular mortality in airport area show ∼5 and <10 for PM2.5 and PM10, respectively, but, in DU area show ∼55 for PM2.5 and ∼140 for PM10. In DU locality, respiratory mortality shows ∼7 and ∼20 for PM2.5 and PM10 and, hospital admissions show ∼11 and ∼30 for PM2.5 and PM10, respectively. In airport area, excess cases of respiratory mortality and hospital admission tends to one for exposure to PM2.5 or PM10 levels indicating effective exposure is the key factor for health hazards. As public health gains, low air pollution levels were observed before the CWG due to effective washout by monsoonal rain and during CWG under policy-induced air quality measures could increase the life expectancy as against to post-CWG period. These results are important for the megacities in developing world as the SAFAR project is internationally recognized by the Global Urban Research Meteorology and Environment of the World Meteorological Organization.

  2. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-05-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions resulting from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of fertilizer applied, local meteorology, and ambient air concentrations. An evaluation of EPIC-simulated crop management activities associated with fertilizer application at planting compared with similar USDA state-level event estimates shows temporally progressive spatial patterns that agree well with one another. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6 % low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  3. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  4. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.

    PubMed

    Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John

    2017-02-01

    The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <2.5μm (PM2.5). Compared to other studies in office buildings, the benzene, toluene, ethylbenzene, and xylene concentrations were lower in OFFICAIR buildings, while the α-pinene and d-limonene concentrations were higher, and the aldehyde, nitrogen dioxide and PM2.5 concentrations were of the same order of magnitude. When comparing summer and winter, significantly higher concentrations were measured in summer for formaldehyde and ozone, and in winter for benzene, α-pinene, d-limonene, and nitrogen dioxide. The terpene and 2-ethylhexanol concentrations showed heterogeneity within buildings regardless of the season. Considering the average of the summer and winter concentrations, the acetaldehyde and hexanal concentrations tended to increase by 4-5% on average with every floor level increase, and the nitrogen dioxide concentration tended to decrease by 3% on average with every floor level increase. A preliminary evaluation of IAQ in terms of potential irritative and respiratory health effects was performed. The 5-day median and maximum indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Air quality impact assessment of multiple open pit coal mines in northern Colombia.

    PubMed

    Huertas, José I; Huertas, María E; Izquierdo, Sebastián; González, Enrique D

    2012-01-01

    The coal mining region in northern Colombia is one of the largest open pit mining regions of the world. In 2009, there were 8 mining companies in operation with an approximate coal production of ∼70 Mtons/year. Since 2007, the Colombian air quality monitoring network has reported readings that exceed the daily and annual air quality standards for total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter smaller than 10 μm (PM₁₀) in nearby villages. This paper describes work carried out in order to establish an appropriate clean air program for this region, based on the Colombian national environmental authority requirement for modeling of TSP and PM(10) dispersion. A TSP and PM₁₀ emission inventory was initially developed, and topographic and meteorological information for the region was collected and analyzed. Using this information, the dispersion of TSP was modeled in ISC3 and AERMOD using meteorological data collected by 3 local stations during 2008 and 2009. The results obtained were compared to actual values measured by the air quality monitoring network. High correlation coefficients (>0.73) were obtained, indicating that the models accurately described the main factors affecting particle dispersion in the region. The model was then used to forecast concentrations of particulate matter for 2010. Based on results from the model, areas within the modeling region were identified as highly, fairly, moderately and marginally polluted according to local regulations. Additionally, the contribution particulate matter to the pollution at each village was estimated. Using these predicted values, the Colombian environmental authority imposed new decontamination measures on the mining companies operating in the region. These measures included the relocation of three villages financed by the mine companies based on forecasted pollution levels. Copyright © 2011. Published by Elsevier Ltd.

  6. Assessment of air quality management policies in China with integrated model framework: Case study for Hebei province

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Zhao, Q.; Zheng, B.; Hong, C.; Tong, D.; Yang, W.; He, K.

    2015-12-01

    The Chinese government has pledged to clean urban air within five years from 2013 to 2017, to promote annual average PM2.5 concentration decline by 25%, 20% and 15% in the North China Plain, Yangtze River Delta and Pearl River Delta, respectively. The national targets are disaggregated into provinces, where region-specific action plan is designed and implemented by local government. It is particularly important to timely assess the effectiveness of local emission control measures and guarantee local efforts are in line with the national goal. We develop an integrated model framework for air quality management and policy evaluation, by integrating a dynamic high-resolution emission model, an emission scenarios analysis tool, and a 3-D air quality model. We then put the model system into pilot use in Hebei province for policy making to achieve the air quality target of 2017. We first integrate over 3000 point source facilities into this system to develop a high-resolution emission inventory. Upon the base emission dataset, the efforts to mitigate emissions with current and enacted measures are tracked and quantified to dynamic account of emission changes monthly. Strict policies are designed within the model framework through analyzing the potential to cut emissions for each point source. The finalized policy package can reduce emissions of major air pollutants by 20%-40%, respectively, leading to large decrease of ambient PM2.5 concentration.

  7. Photochemical Grid Modelling Study to Assess Potential Air Quality Impacts Associated with Energy Development in Colorado and Northern New Mexico.

    NASA Astrophysics Data System (ADS)

    Parker, L. K.; Morris, R. E.; Zapert, J.; Cook, F.; Koo, B.; Rasmussen, D.; Jung, J.; Grant, J.; Johnson, J.; Shah, T.; Pavlovic, T.

    2015-12-01

    The Colorado Air Resource Management Modeling Study (CARMMS) was funded by the Bureau of Land Management (BLM) to predict the impacts from future federal and non-federal energy development in Colorado and Northern New Mexico. The study used the Comprehensive Air Quality Model with extensions (CAMx) photochemical grid model (PGM) to quantify potential impacts from energy development from BLM field office planning areas. CAMx source apportionment technology was used to track the impacts from multiple (14) different emissions source regions (i.e. field office areas) within one simulation, as well as to assess the cumulative impact of emissions from all source regions combined. The energy development emissions estimates were for the year 2021 for three different development scenarios: (1) low; (2) high; (3) high with emissions mitigation. Impacts on air quality (AQ) including ozone, PM2.5, PM10, NO2, SO2, and air quality related values (AQRVs) such as atmospheric deposition, regional haze and changes in Acid Neutralizing Capacity (ANC) of lakes were quantified, and compared to establish threshold levels. In this presentation, we present a brief summary of the how the emission scenarios were developed, we compare the emission totals for each scenario, and then focus on the ozone impacts for each scenario to assess: (1). the difference in potential ozone impacts under the different development scenarios and (2). to establish the sensitivity of the ozone impacts to different emissions levels. Region-wide ozone impacts will be presented as well as impacts at specific locations with ozone monitors.

  8. Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

    PubMed

    Zhao, Y; Shepherd, T A; Li, H; Xin, H

    2015-03-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  9. Environmental assessment of three egg production systems–Part I: Monitoring system and indoor air quality

    PubMed Central

    Zhao, Y.; Shepherd, T. A.; Li, H.; Xin, H.

    2015-01-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens’ activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  10. Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.

    1982-01-01

    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.

  11. Air Pollution Monitoring | Air Quality Planning & Standards ...

    EPA Pesticide Factsheets

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  12. Long term assessment of air quality from a background station on the Malaysian Peninsula.

    PubMed

    Latif, Mohd Talib; Dominick, Doreena; Ahamad, Fatimah; Khan, Md Firoz; Juneng, Liew; Hamzah, Firdaus Mohamad; Nadzir, Mohd Shahrul Mohd

    2014-06-01

    Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted.

  13. Tribal Air Quality Monitoring.

    ERIC Educational Resources Information Center

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  14. Tribal Air Quality Monitoring.

    ERIC Educational Resources Information Center

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  15. Assessing PM10 source reduction in urban agglomerations for air quality compliance.

    PubMed

    Aleksandropoulou, Victoria; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Torseth, Kjetil; Lazaridis, Mihalis

    2012-01-01

    The objective of this work was to study PM(10) and PM(2.5) concentration data available from monitoring stations in two large urban agglomerations in Greece and to estimate the emissions reduction required for compliance with the EU Air Quality Standards (AQS) for particulate matter. The cities studied are namely the Athens and Thessaloniki Metropolitan Areas (AMA and TMA, respectively). PM(10) concentrations during the period 2001-2010 have been evaluated for 15 air quality monitoring stations in the two urban areas. It was found that the concentrations of PM(10) during the period studied constantly exceeded the threshold values at the traffic and industrial stations in TMA and most of the traffic sites in AMA. Most of the occurrences of non-attainment to the daily AQSs were observed during the winter period at all stations (more pronounced for TMA stations). The reduction in current emission source strength to meet the air quality goal was calculated by the rollback equation using PM(10) day-averaged concentrations over the selected period at each station. Among the lognormal and Weibull distributions, the lognormal distribution was found to best fit the frequency distributions of PM(10) concentrations at the selected stations. The results showed that the minimum reduction required in order to meet the AQS in the AMA ranges from approximately 20 to 38% and up to 11% for traffic and background stations, respectively. Reductions in the range of 31% for traffic and 44% for industrial areas in TMA are also required. The same methodology was applied to PM(2.5) concentrations in the AMA and showed that emission reductions up to 31% are necessary in order to meet the 2020 EU AQS. Finally, continuous concentration data of organic (OC) and elementary carbon (EC) in PM(2.5) were used to study the possibility of achieving specific emission attenuation objectives in AMA.

  16. Global Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; hide

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  17. Global air quality and climate.

    PubMed

    Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang

    2012-10-07

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas

  18. Rethinking the assessment of photochemical modelin systems in air quality planning applications.

    PubMed

    Hogrefe, Christian; Civerolo, Kevin L; Hao, Winston; Ku, Jia-Yeong; Zalewsky, Eric E; Sistla, Gopal

    2008-08-01

    The U.S. Environmental Protection Agency provides guidelines for demonstrating that future 8-hr ozone (O3) design values will be at or below the National Ambient Air Quality Standards on the basis of the application of photochemical modeling systems to simulate the effect of emission reductions. These guidelines also require assessment of the model simulation against observations. In this study, we examined the link between the simulated relative responses to emission reductions and model performance as measured by operational evaluation metrics, a part of the model evaluation required by the guidance, which often is the cornerstone of model evaluation in many practical applications. To this end, summertime O3 concentrations were simulated with two modeling systems for both 2002 and 2009 emission conditions. One of these two modeling systems was applied with two different parameterizations for vertical mixing. Comparison of the simulated base-case 8-hr daily maximum O3 concentrations showed marked model-to-model differences of up to 20 ppb, resulting in significant differences in operational model performance measures. In contrast, only relatively minor differences were detected in the relative response of O3 concentrations to emission reductions, resulting in differences of a few ppb or less in estimated future year design values. These findings imply that operational model evaluation metrics provide little insight into the reliability of the actual model application in the regulatory setting (i.e., the estimation of relative changes). In agreement with the guidance, it is argued that more emphasis should be placed on the diagnostic evaluation of O3-precursor relationships and on the development and application of dynamic and retrospective evaluation approaches in which the response of the model to changes in meteorology and emissions is compared with observed changes. As an example, simulated relative O3 changes between 1995 and 2007 are compared against observed

  19. Increasing the spatial resolution of air quality assessments in urban areas: A comparison of biomagnetic monitoring and urban scale modelling

    NASA Astrophysics Data System (ADS)

    Hofman, Jelle; Lefebvre, Wouter; Janssen, Stijn; Nackaerts, Ruben; Nuyts, Siegmund; Mattheyses, Lars; Samson, Roeland

    2014-08-01

    Increasing the spatial resolution of air quality assessments in urban environments is designated as a priority area within current research. Biomagnetic monitoring and air quality modelling are both methodologies able to provide information about the spatial variation of particulate pollutant levels within urban environments. This study evaluates both methods by comparing results of a biomagnetic monitoring campaign at 110 locations throughout Antwerp, Belgium, with modelled pollutant concentrations of PM10 and NO2. Due to the relation of biomagnetic monitoring with railway traffic, analyses were conducted for both all locations (n = 110) and railway traffic excluded locations (n = 67). While the general spatial variation, land use comparison and the relation with traffic intensity were comparable between the two applied methodologies, an overall bad agreement is obtained when the methodologies are correlated to each other. While no correlation was found between SIRM and PM10 results (p = 0.75 for n = 110 and p = 0.68 for n = 67), a significant but low (r ≤ 0.33) correlation was found between SIRM and NO2 (p < 0.01 for n = 110 and p = 0.04 for n = 67). While biomagnetic monitoring and air quality modelling are both able to provide high spatial resolution information about urban pollutant levels, we need to take into account some considerations. While uncertainty in the biomagnetic monitoring approach might arise from the processes that determine leaf particulate deposition and the incorporation of multiple emission sources with diverging magnetic composition, air quality modelling remains an approximation of reality which implies its dependency on accurate emission factors, implication of atmospheric processes and representation of the urban morphology. Therefore, continuous evaluation of model performance against measured data is essential to produce reliable model results. Nevertheless, this study demonstrates that in addition to telemetric monitoring networks

  20. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  1. Assessing the performance of standard methods to predict the standard uncertainty of air quality data having incomplete time coverage.

    PubMed

    Brown, Richard J C; Harris, Peter M; Cox, Maurice G

    2014-07-01

    As a result of the complex nature of operating multi-station national air quality networks it is rare that complete data sets are produced from these networks. The reliance of most air quality legislation on the assessment of measured annual average concentrations against target or limit concentrations necessitates the use of methods to calculate an annual average value and the uncertainty in this value in the absence of a complete data set for the year in question. Standard procedures exist for performing these calculations, but it is not clear how effective these are when data having low time resolution are collected and missing data accounts for large periods of the year. This paper investigates the influence of these deficiencies using data from UK air quality networks in the form of monthly average concentrations for polycyclic aromatic hydrocarbons and for metals in the PM10 phase of ambient air. Whilst the standard methods currently employed produce good results on average, for individual cases the uncertainty in the annual average calculated when data is missing may be appreciably different from that obtained when full knowledge of the distribution of the data is known. These effects become more apparent as the quantity of missing data increases.

  2. Assessing the Association Between Asthma and Air Quality in the Presence of Wildfires

    NASA Technical Reports Server (NTRS)

    Young, L. J.; Lopiano, K. K.; Xu, X.; Holt, N. M.; Leary, E.; Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G.; Luvall, J. C.; Estes, S. M.; DuClos, C.; Jordan, M.; Gotway, C. A.

    2012-01-01

    Asthma hospital/emergency room (patient) data are used as the foundation for creating a health outcome indicator of human response to environmental air quality. Daily U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) fine particulates (PM2.5) ground data and the U.S. National Aeronautical Space Administration (NASA) MODIS aerosol optical depth (AOD) data were acquired and processed for years of 2007 and 2008. Figure 1 shows the PM2.5 annual mean composite of all the 2007 B-spline daily surfaces. Initial models for predicting the number of weekly asthma cases within a Florida county has focused on environmental variables. Weekly maximums of PM2.5, relative humidity, and the proportions of the county with smoke and fire were the environmental variables included in the model. Cosine and sine functions of time were used to account for seasonality in asthma cases. Counties were considered to be random effects, thereby adjusting for differences in socio ]demographics and other factors. The 2007 predictions for Miami ]Dade county when using B ]splines PM2.5 are displayed in Figures 2.

  3. Assessing the Association Between Asthma and Air Quality in the Presence of Wildfires

    NASA Astrophysics Data System (ADS)

    Young, L. J.; Al-Hamdan, M. Z.; Lopiano, K. K.; Crosson, W. L.; Gotway, C. A.; DuClos, C.; Jordan, M.; Estes, M. G.; Luvall, J. C.; Estes, S. M.; Xu, X.; Holt, N. M.; Leary, E.

    2012-12-01

    Asthma hospital/emergency room (patient) data are used as the foundation for creating a health outcome indicator of human response to environmental air quality. Daily U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) fine particulates (PM2.5) ground data and the U.S. National Aeronautical Space Administration (NASA) MODIS aerosol optical depth (AOD) data were acquired and processed for years of 2007 and 2008. Figure 1 shows the PM2.5 annual mean composite of all the 2007 B-spline daily surfaces. Initial models for predicting the number of weekly asthma cases within a Florida county has focused on environmental variables. Weekly maximums of PM2.5, relative humidity, and the proportions of the county with smoke and fire were the environmental variables included in the model. Cosine and sine functions of time were used to account for seasonality in asthma cases. Counties were considered to be random effects, thereby adjusting for differences in socio-demographics and other factors. The 2007 predictions for Miami-Dade county when using B-splines PM2.5 are displayed in Figures 2.; PM2.5 annual mean composite of all the 2007 daily surfaces developed using Al-Hamdan et al (2009) B-spline fitting algorithm ; Predicted and observed weekly asthma cases presenting to hospitals or emergency rooms in Miami-Dade county in Florida during 2007

  4. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  5. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF

    NASA Astrophysics Data System (ADS)

    Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca

    2012-12-01

    Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor

  6. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    SciTech Connect

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Reis, Lara Aleluia; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    The recent International Panel on Climate change (IPCC) report identifies significant co-benefits from climate policies on near-term ambient air pollution and related human health outcomes [1]. This is increasingly relevant for policy making as the health impacts of air pollution are a major global concern- the Global Burden of Disease (GBD) study identifies outdoor air pollution as the sixth major cause of death globally [2]. Integrated assessment models (IAMs) are an effective tool to evaluate future air pollution outcomes across a wide range of assumptions on socio-economic development and policy regimes. The Representative Concentration Pathways (RCPs) [3] were the first set of long-term global scenarios developed across multiple integrated assessment models that provided detailed estimates of a number of air pollutants until 2100. However these scenarios were primarily designed to cover a defined range of radiative forcing outcomes and thus did not specifically focus on the interactions of long-term climate goals on near-term air pollution impacts. More recently, [4] used the RCP4.5 scenario to evaluate the co-benefits of global GHG reductions on air quality and human health in 2030. [5-7] have further examined the interactions of more diverse pollution control regimes with climate policies. This paper extends the listed studies in a number of ways. Firstly it uses multiple IAMs to look into the co-benefits of a global climate policy for ambient air pollution under harmonized assumptions on near-term air pollution control. Multi-model frameworks have been extensively used in the analysis of climate change mitigation pathways, and the structural uncertainties regarding the underlying mechanisms (see for example [8-10]. This is to our knowledge the first time that a multi-model evaluation has been specifically designed and applied to analyze the co-benefits of climate change policy on ambient air quality, thus enabling a better understanding of at a detailed

  7. Agriculture: Agriculture and Air Quality

    EPA Pesticide Factsheets

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  8. Ozone - Current Air Quality Index

    MedlinePlus

    ... 0 - 50) Air quality is considered satisfactory, and air pollution poses little or no risk. AQI: Moderate (51 - ... number of people who are unusually sensitive to air pollution. AQI: Unhealthy for Sensitive Groups (101 - 150) Although ...

  9. Assessment of air quality and possible mitigation options in Kathmandu valley: An overview

    SciTech Connect

    Adhikary, S.P.

    1996-12-31

    Kathmandu is an elevated valley surrounded by high hills. The weather and climate patterns, though monsoonal, are influenced largely by topography. The city is growing rapidly but not in a well planned way. Construction industries, mainly residential houses and other building complex, are inducing direct suspension of dust particles. The brick kilns and cement factory in support of the construction works are major source of pollution. The rapid increase in population and subsequent increase of all types of vehicles (without emission controls) have further aggravated the situation. The topography restricts horizontal flushing out of the pollutants but intense convection may help to lift the pollutants up to the cloud base. Systematic measurements of the air quality along with other meteorological parameters should be initiated to understand fully the problem and possible means of ventilation.

  10. Computational fluid dynamics modeling to assess the impact of roadside barriers on near-road air quality

    EPA Science Inventory

    Near-road air quality is an issue of emerging concern, with field studies consistently showing elevated air pollutant concentrations adjacent to major roads, usually decreasing to background levels within several hundred meters. Roadside barriers, both vegetative and structural, ...

  11. Computational fluid dynamics modeling to assess the impact of roadside barriers on near-road air quality

    EPA Science Inventory

    Near-road air quality is an issue of emerging concern, with field studies consistently showing elevated air pollutant concentrations adjacent to major roads, usually decreasing to background levels within several hundred meters. Roadside barriers, both vegetative and structural, ...

  12. Performance assessment of future thermal infrared geostationary instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Gaubert, B.; Flaud, J.-M.

    2012-04-01

    Air quality (AQ) has a recognized onerous impact on human health and the environment, and then on society. It is more and more clear that constantly and efficiently monitoring AQ from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in this field have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations [1]. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a general simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAfit inversion module [2]. Note that to assess the

  13. Performance assessment and characterization of needed IR GEO instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Peuch, V.; Flaud, J.

    2011-12-01

    Efficiently monitoring air quality (AQ) from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in the field of atmospheric sounding from space have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary Earth orbit (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a comprehensive simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAFIT inversion module. Note that to assess the impact of the different instruments on the analyses and forecasts of AQ by means of models, our

  14. Alternate approaches for assessing impacts of oil sands development on air quality: A case study using the First Nation Community of Fort McKay.

    PubMed

    Davidson, Carla; Spink, David

    2017-09-25

    Previous analyses of continuously measured compounds in Fort McKay, an indigenous community in the Athabasca Oil Sands, have detected increasing concentrations of NO2 and total hydrocarbons (THC), but not of SO2, O3, total reduced sulfur compounds (TRS) or particulate matter (PM2.5). Yet the community frequently experiences odours, dust, and reduced air quality. We used Fort McKay's continuously monitored air quality data (1998-2014) as a case study to assess techniques for air quality analysis that make no assumptions regarding type of change. Linear trends analysis detected increasing concentrations of higher percentiles of NO2, NO and NOx, and THC. However, comparisons of all compounds between an early industrial expansion period (1998-2001) and current-day (2011-2014) show that concentrations of NO2, SO2, THC, TRS and PM2.5 have significantly increased, while concentrations of O3 are significantly lower. An assessment of the frequency and duration of periods when concentrations of each compound were above a variety of thresholds indicates that the frequency of air quality events is increasing for NO2, and THC. Assessment of change over time with odds ratios of the 25(th), 50(th), 75(th) and 90(th) percentile concentrations for each compound compared to an estimate of natural background variability showed that concentrations of TRS, SO2 and THC are dynamic, higher than background, and changes are non-linear and non-monotonic. An assessment of concentrations as a function of wind direction showed a clear and generally increasing influence of industry on air quality. This work shows that evaluating air quality without assumptions of linearity reveals dynamic changes in air quality in Fort McKay, and that it is increasingly being affected by oil sands operations. Implication Statement: Understanding the nature and types of air quality changes occurring in a community or region are essential for the development of appropriate air quality management policies. Time

  15. Air quality management in Mexico.

    PubMed

    Fernández-Bremauntz, Adrián

    2008-01-01

    Several significant program and policy measures have been implemented in Mexico over the past 15 yr to improve air quality. This article provides an overview of air quality management strategies in Mexico, including (1) policy initiatives such as vehicle use restrictions, air quality standards, vehicle emissions, and fuel quality standards, and (2) supporting programs including establishment of a national emission inventory, an air pollution episodes program, and the implementation of exposure and health effects studies. Trends in air pollution episodes and ambient air pollutant concentrations are described.

  16. Assessing air quality and climate impacts of future ground freight choice in United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Bond, T. C.; Smith, S.; Lee, B.; Ouyang, Y.; Hwang, T.; Barkan, C.; Lee, S.; Daenzer, K.

    2013-12-01

    The demand for freight transportation has continued to increase due to the growth of domestic and international trade. Emissions from ground freight (truck and railways) account for around 7% of the greenhouse gas emissions, 4% of the primary particulate matter emission and 25% of the NOx emissions in the U.S. Freight railways are generally more fuel efficient than trucks and cause less congestion. Freight demand and emissions are affected by many factors, including economic activity, the spatial distribution of demand, freight modal choice and routing decision, and the technology used in each modal type. This work links these four critical aspects of freight emission system to project the spatial distribution of emissions and pollutant concentration from ground freight transport in the U.S. between 2010 and 2050. Macroeconomic scenarios are used to forecast economic activities. Future spatial structure of employment and commodity demand in major metropolitan areas are estimated using spatial models and a shift-share model, respectively. Freight flow concentration and congestion patterns in inter-regional transportation networks are predicted from a four-step freight demand forecasting model. An asymptotic vehicle routing model is also developed to estimate delivery ton-miles for intra-regional freight shipment in metropolitan areas. Projected freight activities are then converted into impacts on air quality and climate. CO2 emissions are determined using a simple model of freight activity and fuel efficiency, and compared with the projected CO2 emissions from the Second Generation Model. Emissions of air pollutants including PM, NOx and CO are calculated with a vehicle fleet model SPEW-Trend, which incorporates the dynamic change of technologies. Emissions are projected under three economic scenarios to represent different plausible futures. Pollutant concentrations are then estimated using tagged chemical tracers in an atmospheric model with the emissions serving

  17. Indoor air quality assessment of daycare facilities with carbon dioxide, temperature, and humidity as indicators.

    PubMed

    Ferng, Shiaw-Fen; Lee, Li-Wen

    2002-11-01

    Poor indoor air quality (IAQ) in daycare facilities affects both attending children and care providers. Incident rates of upper-respiratory-tract infections have been reported to be higher in children who attend daycare. Excessive carbon dioxide (CO2) exposure can cause several health effects and even sudden infant death. For this study, 26 facilities were randomly selected in a Midwestern county of the United States. CO2, room temperature, and relative humidity were used as indicators for IAQ and comfort levels. These IAQ parameters were continuously monitored for eight hours at each facility by a direct-reading instrument that was calibrated before each measurement. More than 50 percent of the facilities had an average CO2 level over the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) standard of 1,000 parts per million (ppm). For temperature and relative humidity, respectively, 42.3 percent and 15.4 percent of facilities were outside of the ASHRAE-recommended comfort zones. The nap-time average CO2 level was about 117 ppm higher than the non-nap-time level. The increment of the nap-time CO2 level in the sleeping-only room over the level in multipurpose rooms was statistically significant (p < .05). According to stepwise multiple regression analysis, nap-time CO2 level was predicted by CO2 level before occupancy, nap-time average temperature, carbon monoxide, and child density (R2 = .83). It is recommended that an appropriate IAQ standard for daycare facilities be established and that children should not be placed in a completely isolated room during nap time.

  18. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment.

    PubMed

    Nielsen, Gunnar Damgård; Larsen, Søren Thor; Wolkoff, Peder

    2017-01-01

    In 2010, the World Health Organization (WHO) established an indoor air quality guideline for short- and long-term exposures to formaldehyde (FA) of 0.1 mg/m(3) (0.08 ppm) for all 30-min periods at lifelong exposure. This guideline was supported by studies from 2010 to 2013. Since 2013, new key studies have been published and key cancer cohorts have been updated, which we have evaluated and compared with the WHO guideline. FA is genotoxic, causing DNA adduct formation, and has a clastogenic effect; exposure-response relationships were nonlinear. Relevant genetic polymorphisms were not identified. Normal indoor air FA concentrations do not pass beyond the respiratory epithelium, and therefore FA's direct effects are limited to portal-of-entry effects. However, systemic effects have been observed in rats and mice, which may be due to secondary effects as airway inflammation and (sensory) irritation of eyes and the upper airways, which inter alia decreases respiratory ventilation. Both secondary effects are prevented at the guideline level. Nasopharyngeal cancer and leukaemia were observed inconsistently among studies; new updates of the US National Cancer Institute (NCI) cohort confirmed that the relative risk was not increased with mean FA exposures below 1 ppm and peak exposures below 4 ppm. Hodgkin's lymphoma, not observed in the other studies reviewed and not considered FA dependent, was increased in the NCI cohort at a mean concentration ≥0.6 mg/m(3) and at peak exposures ≥2.5 mg/m(3); both levels are above the WHO guideline. Overall, the credibility of the WHO guideline has not been challenged by new studies.

  19. FORECASTING AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    Increased awareness of national air quality issues on the part of the media and the general public have recently led to more demand for short-term (1-2 day) air quality forecasts for use in assessing potential health impacts (e.g., on children, the elderly, and asthmatics) and po...

  20. FORECASTING AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    Increased awareness of national air quality issues on the part of the media and the general public have recently led to more demand for short-term (1-2 day) air quality forecasts for use in assessing potential health impacts (e.g., on children, the elderly, and asthmatics) and po...

  1. Regional/Urban Air Quality Modeling Assessment over China Using the Models-3/CMAQ System

    NASA Astrophysics Data System (ADS)

    Fu, J. S.; Jang, C. C.; Streets, D. G.; Li, Z.; Wang, L.; Zhang, Q.; Woo, J.; Wang, B.

    2004-12-01

    simulations in the Beijing, Shanghai areas are presented with sensitivity analysis. A comparison against available ozone and PM measurement data in Beijing, Shanghai is presented. The local emission inventory improvement in China is to be suggested to investigate. The modeling configuration of the Beijing 4-km x 4-km domain is to demonstrate the development of cost-effective control strategies for the air pollution control such as 2008 Olympic Game air quality management plan.

  2. Air quality resolution for health impacts assessment: influence of regional characteristics

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Saari, R. K.; Selin, N. E.

    2013-05-01

    We evaluate how regional characteristics of weather, population, and background pollution might impact the selection of optimal model resolution when calculating the human health impacts of changes to air quality. Using an approach consistent with air quality policy evaluation, we use a regional chemical transport model (CAMx) and a health benefits mapping program (BenMAP) to calculate the human health impacts associated with changes in ozone and fine particulate matter resulting from an emissions reduction scenario. We evaluate this same scenario at 36, 12 and 4 km resolution for nine regions in the Eastern US representing varied characteristics. We find that the human health benefits associated with changes in ozone concentrations are sensitive to resolution, especially in urban areas where we estimate that benefits calculated using coarse resolution results are on average two times greater than benefits calculated using finer scale results. In three urban areas we analyzed, results calculated using 36 km resolution modeling fell outside the uncertainty range of results calculated using finer scale modeling. In rural areas the influence of resolution is less pronounced with only an 8% increase in the estimated health impacts when using 36 km resolution over finer scales. In contrast, health benefits associated with changes in PM2.5 concentrations were not sensitive to resolution and did not follow a pattern based on any regional characteristics evaluated. The largest difference between the health impacts estimated using 36 km modeling results and either 12 or 4 km results was at most ±10% in any region. Several regions showed increases in estimated benefits as resolution increased (opposite the impact seen with ozone modeling) due to a higher contribution of primary PM in those regions, while some regions showed decreases in estimated benefits as resolution increased due to a higher contribution of secondary PM. Given that changes in PM2.5 dominate the human

  3. Air quality assessment in Portugal and the special case of the Tâmega e Sousa region

    NASA Astrophysics Data System (ADS)

    de Almeida, Fátima; Correia, Aldina; Silva, Eliana Costa e.

    2017-06-01

    Air pollution is a major environmental problem which can present a significant risk for human health. This paper, presents the evaluation of the air quality in several region of Portugal. Special focus is given to the region of Tâmega e Sousa where ESTG/P. Porto is located. ANOVA and MANOVA techniques are applied to study the differences between air quality in the period between 2009 and 2012 in several regions of Portugal. The data includes altitude, area, expenditure of environmental measures on protection of air quality and climate, expenditure on protection of biodiversity and landscape, burned area, number of forest fires, extractive and manufacturing industries, per municipality and per year. Using information gathered by the project QualAr about concentrations of the pollutants: CO, NO2, O3, PM10 and SO2, an air quality indicator with five levels is consider. The results point to significant differences in the air quality for the regions and the years considered. Additionally, for identifying the factors that influence the air quality in 2012 a multivariate regression model was used. The results show statistical evidence that air quality in 2011, number of forest fires in 2012 and 2010, number of manufacturing industries per km2 in 2012 and number of forest fires in 2010 are the variables that present a larger contribution to the quality of the air in 2012.

  4. An assessment of atmospheric mercury in the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Voigt, C.; Morton, J.; Spak, S. N.; Rutter, A. P.; Schauer, J. J.

    2012-01-01

    Quantitative analysis of three atmospheric mercury species - gaseous elemental mercury (Hg0), reactive gaseous mercury (RGHg) and particulate mercury (PHg) - has been limited to date by lack of ambient measurement data as well as by uncertainties in numerical models and emission inventories. This study employs the Community Multiscale Air Quality Model version 4.6 with mercury chemistry (CMAQ-Hg), to examine how local emissions, meteorology, atmospheric chemistry, and deposition affect mercury concentration and deposition the Great Lakes Region (GLR), and two sites in Wisconsin in particular: the rural Devil's Lake site and the urban Milwaukee site. Ambient mercury exhibits significant biases at both sites. Hg0 is too low in CMAQ-Hg, with the model showing a 6% low bias at the rural site and 36% low bias at the urban site. Reactive mercury (RHg = RGHg + PHg) is over-predicted by the model, with annual average biases >250%. Performance metrics for RHg are much worse than for mercury wet deposition, ozone (O3), nitrogen dioxide (NO2), or sulfur dioxide (SO2). Sensitivity simulations to isolate background inflow from regional emissions suggests that oxidation of imported Hg0 dominates model estimates of RHg at the rural study site (91% of base case value), and contributes 55% to the RHg at the urban site (local emissions contribute 45%). Limited evidence on the lifetime of RHg transported to the rural site suggests that modeled dry deposition rates are too high, possibly compensating for the erroneously high RHg values.

  5. International Space Station Air Quality Assessed According to Toxicologically-Grouped Compounds

    NASA Technical Reports Server (NTRS)

    James, John T.; Limero, Thomas F.; Beck, Steve; Cheng, Patti F.; deVera, Vanessa J.; Hand, Jennifer; Macatangay, Ariel

    2010-01-01

    Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample acquisition. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.

  6. International Space Station Air Quality Assessed According to Toxicologically-Grouped Compounds

    NASA Technical Reports Server (NTRS)

    James, John T.; Limero, Tom; DeVera, Vanessa; Cheng, Patti; Hand, Jennifer; Macatangay, Ariel; Beck, Steve

    2009-01-01

    Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.

  7. International Space Station Air Quality Assessed According to Toxicologically-Grouped Compounds

    NASA Technical Reports Server (NTRS)

    James, John T.; Limero, Tom; DeVera, Vanessa; Cheng, Patti; Hand, Jennifer; Macatangay, Ariel; Beck, Steve

    2009-01-01

    Scores of compounds are found in the International Space Station (ISS) atmospheric samples that are returned to the Johnson Space Center Toxicology Laboratory for analysis. Spacecraft Maximum Allowable Concentrations (SMACs) are set with the view that each compound is present as if there were no other compounds present. In order to apply SMACs to the interpretation of the analytical data, the toxicologist must employ some method of combining the potential effects of the aggregate of compounds found in the atmospheric samples. The simplest approach is to assume that each quantifiable compound has the potential for some effect in proportion to the applicable SMAC, and then add all the proportions. This simple paradigm disregards the fact that most compounds have potential to adversely affect only a few physiological systems, and their effects would be independent rather than additive. An improved approach to dealing with exposure to mixtures is to add the proportions only for compounds that adversely affect the same physiological system. For example, toxicants that cause respiratory irritation are separated from those that cause neurotoxicity or cardio-toxicity. Herein we analyze ISS air quality data according to toxicological groups with a view that this could be used for understanding any crew symptoms occurring at the time of the sample. In addition, this approach could be useful in post-flight longitudinal surveys where the flight surgeon may need to identify post-flight, follow-up medical studies because of on-orbit exposures that target specific physiological systems.

  8. Characterizing Emissions from Prescribed Fires and Assessing Impacts to Air Quality in the Lake Tahoe Basin Using Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Malamakal, Tom M.

    A PM2.5 monitoring network was established around Lake Tahoe during fall 2011, which, in conjunction with measurements at prescribed burns and smoke dispersion modeling based on the Fire Emission Production Simulator and the Hybrid Single Particle Lagrangian Integrated Trajectory (FEPS-HYSPLIT) Model, served to evaluate the prescribed burning impacts on air quality. Emissions from pile and understory prescribed burns were characterized using a mobile air monitoring system. In field PM2.5 emission factors showed ranges consistent with laboratory combustion of wet and dry fuels. Measurements in the smoke plume showed progression from flaming to smoldering phase consistent with FEPS and PM2.5 emission factors generally increased with decreasing combustion efficiency. Model predicted smoke contributions are consistent with elevated ambient PM2.5 concentrations in three case studies, and high meteorological model resolution (2km x 2 km) seems to produce accurate smoke arriving times. In other cases, the model performance is difficult to evaluate due to low predicted smoke contributions relative to the typical ambient PM2.5 level. Synergistic assessment of modeling and measurement can be used to determine basin air quality impact. The findings from this study will help land management agencies better understand the implications of managing fire at the wildland-urban interface.

  9. National-Scale Air Quality Data Assessment: Initial Findings from the Near-Road NO2 Monitoring Program

    NASA Astrophysics Data System (ADS)

    DeWinter, J. L.

    2015-12-01

    In 2010, the U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2) to include a primary health-based standard for hourly NO2. NO2 is a reactive gas that is emitted from motor vehicles, such as cars, trucks, and off-road equipment, as well as non-mobile sources, and is known to adversely affect human respiratory health. In conjunction with the NAAQS revision, EPA has mandated air quality monitoring next to selected major roadways throughout the United States that are in large urban areas where peak hourly NO2 concentrations are expected. Monitoring began in phases during 2012-2015 and included nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter smaller than 2.5 microns (PM2.5) at 40 monitoring sites nationwide. We conducted a national-scale review of near-road air pollutant concentrations, identified areas where high concentrations of NO2, PM2.5, and CO occurred, and evaluated how concentrations varied by factors such as location, distance to roadway, fleet mix characteristics, and traffic volume. We present the findings from our national near-road data assessment for the 2014 monitoring year.

  10. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    EPA Science Inventory

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality m...

  11. Review of the Primary National Ambient Air Quality Standards for Nitrogen Dioxide: Risk and Exposure Assessment Planning Document

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the primary (health-based) national ambient air quality standards (NAAQS) for nitrogen dioxide (NO2). The major phases of the process for reviewing NAAQS include the following: (...

  12. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    EPA Science Inventory

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality m...

  13. A pharmacoeconomic approach to assessing the costs and benefits of air quality interventions that improve health: a case study

    PubMed Central

    Lomas, James; Schmitt, Laetitia; Jones, Sally; McGeorge, Maureen; Bates, Elizabeth; Holland, Mike; Cooper, Duncan; Crowther, Richard; Ashmore, Mike; Rojas-Rueda, David; Weatherly, Helen; Richardson, Gerry; Bojke, Laura

    2016-01-01

    Objective This paper explores the use of pharmacoeconomic methods of valuation to health impacts resulting from exposure to poor air quality. In using such methods, interventions that reduce exposure to poor air quality can be directly compared, in terms of value for money (or cost-effectiveness), with competing demands for finite resources, including other public health interventions. Design Using results estimated as part of a health impact assessment regarding a West Yorkshire Low Emission Zone strategy, this paper quantifies cost-saving and health-improving implications of transport policy through its impact on air quality. Data source Estimates of health-related quality of life and the National Health Service (NHS)/Personal Social Services (PSS) costs for identified health events were based on data from Leeds and Bradford using peer-reviewed publications or Office for National Statistics releases. Population Inhabitants of the area within the outer ring roads of Leeds and Bradford. Main outcomes measures NHS and PSS costs and quality-adjusted life years (QALYs). Results Averting an all-cause mortality death generates 8.4 QALYs. Each coronary event avoided saves £28 000 in NHS/PSS costs and generates 1.1 QALYs. For every fewer case of childhood asthma, there will be NHS/PSS cost saving of £3000 and a health benefit of 0.9 QALYs. A single term, low birthweight birth avoided saves £2000 in NHS/PSS costs. Preventing a preterm birth saves £24 000 in NHS/PSS costs and generates 1.3 QALYs. A scenario modelled in the West Yorkshire Low Emission Zone Feasibility Study, where pre-EURO 4 buses and HGVs are upgraded to EURO 6 by 2016 generates an annual benefit of £2.08 million and a one-off benefit of £3.3 million compared with a net present value cost of implementation of £6.3 million. Conclusions Interventions to improve air quality and health should be evaluated and where improvement of population health is the primary objective, cost-effectiveness analysis

  14. Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  15. Air Quality System (AQS) Metadata

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency compiles air quality monitoring data in the Air Quality System (AQS). Ambient air concentrations are measured at a national network of more than 4,000 monitoring stations and are reported by state, local, and tribal

  16. Development and Evaluation of an Air Quality Modeling Approach to Assess Near-Field Impacts of Lead Emissions from Piston-Engine Aircraft Operating on Leaded Aviation Gasoline

    EPA Science Inventory

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality m...

  17. Development and Evaluation of an Air Quality Modeling Approach to Assess Near-Field Impacts of Lead Emissions from Piston-Engine Aircraft Operating on Leaded Aviation Gasoline

    EPA Science Inventory

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality m...

  18. 6S Return Samples: Assessment of Air Quality in the International Space Station (ISS) Based on Solid Sorbent Air Sampler (SSAS) and Formaldehyde Monitoring Kit (FMK) Analyses

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.

  19. Assessment of the impact of emissions reductions on air quality over North China Plain

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen

    2016-04-01

    The production rate of secondary pollutants was highly non-linear with the emission intensity of their precursors. In this study, the air quality modeling system RAMS-CMAQ with zero-out sensitivity test was applied to conduct source sensitivity approaches of PM2.5 for four source categories (industry, power plants, transport, and residential) over the North China Plain (NCP) in January and July of 2013. The results show that the residential and industry emission sector were the greatest contributors to domain-wide PM2.5 in January and July, respectively. The largest variation could exceed 200 μg m-3 attributed to the residential sector in January when a heavy pollution period appeared, and could reach 40-60 μg m-3 attributed to the industry sector in July in the heavy pollution area, respectively. The nonlinear relationship between the secondary pollutant formation and its precursors was reflected by this source sensitivity approaches, as the summation of the secondary pollutant variations attributed to the four sources was obviously different from the simulated baseline concentration and the mass burden of nitrate would increase upon removal of the power plants or transport emission sector in the heavy pollution regions in January. Further analysis indicated that the improvement of atmospheric oxidation capacity due to emission sector removal coupled with the sufficient precursor nitrogen oxide under severe pollution background should be the main reason of the negative variation of nitrate appeared in the sensitivity test. This feature indicates that the atmospheric oxidation capacity is an important impact factor in determining the production rate of nitrate formation, and could further influence the variation feature of PM2.5 mass burden during the pollution episode. Thus, it is suggested that the comprehensive pollution control strategies should be implemented based on the specific pollution condition. Additionally, the nonlinearity of secondary pollutants

  20. THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS: METHODOLOGY AND CASE STUDY

    EPA Science Inventory

    It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of U.S. crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular concern as...

  1. THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS: METHODOLOGY AND CASE STUDY

    EPA Science Inventory

    It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of U.S. crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular concern as...

  2. Chemical Transport and Reduced-Form Models for Assessing Air Quality Impacts of Current and Future Energy Scenarios

    NASA Astrophysics Data System (ADS)

    Adams, P. J.

    2015-12-01

    Though essential for informed decision-making, it is challenging to estimate the air quality and public health impacts associated with current and future energy generation scenarios because the analysis must address the complicated atmospheric processes that air pollutants undergo: emissions, dispersion, chemistry, and removal. Employing a chemical transport model (CTM) is the most rigorous way to address these atmospheric processes. However, CTMs are expensive from a computational standpoint and, therefore, beyond the reach of policy analysis for many types of problems. On the other hand, previously available reduced-form models used for policy analysis fall short of the rigor of CTMs and may lead to biased results. To address this gap, we developed the Estimating Air pollution Social Impacts Using Regression (EASIUR) method, which builds parameterizations that predict per-tonne social costs and intake fractions for pollutants emitted from any location in the United States. Derived from a large database of tagged CTM simulations, the EASIUR method predicts social costs almost indistinguishable from a full CTM but with negligible computational requirements. We found that the average mortality-related social costs from inorganic PM2.5 and its precursors in the United States are 150,000-180,000/t EC, 21,000-34,000/t SO2, 4,200-15,000/t NOx, and 29,000-85,000/t NH3. This talk will demonstrate examples of using both CTMs and reduced-form models for assessing air quality impacts associated with current energy production activities as well as a future deployment of carbon capture and sequestration.

  3. Managing Air Quality - Program Implementation

    EPA Pesticide Factsheets

    Describes elements for the set of activities to ensure that control strategies are put into effect and that air quality goals and standards are fulfilled, permitting programs, and additional resources related to implementation under the Clean Air Act.

  4. EVALUATING AND USING AIR QUALITY MODELS

    EPA Science Inventory

    Grid-based models are being used to assess the magnitude of the pollution problem and to design emission control strategies to achieve compliance with the relevant air quality standards in the United States.

  5. Indoor Air Quality and Energy Efficiency

    EPA Pesticide Factsheets

    EPA completed an extensive modeling study to assess the compatibilities and trade-offs between energy, indoor air quality, and thermal comfort objectives for HVAC systems and to formulate strategies for superior performance across all areas.

  6. Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.

  7. Assessing Public Health Impacts of Heat and Air Quality Under a Changing Climate in the New York City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Knowlton, K.; Kinney, P. L.; Rosenthal, J. E.; Lynn, B.; Gaffin, S.; Hogrefe, C.; Biswas, J.; Civerolo, K.; Ku, J.; Rosenzweig, C.; Goldberg, R.

    2003-12-01

    New tools are needed for assessing public health impacts of climate change. This paper describes the results of an integrated assessment of the health impacts of global climate change in the New York metropolitan region, projected for the decade of the 2050s. The model systems used for this study are the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model; the Penn State/NCAR MM5 mesoscale meteorological model; the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE); and the Community Multiscale Air Quality (CMAQ) model for simulating air quality. Simulations are performed for five summer seasons each during the 1990s and the 2050s, using greenhouse gas emissions projections from the Intergovernmental Panel on Climate Change (IPCC) A2 scenario. The GISS global climate model at 4 x 5 degree horizontal resolution is used as input to the MM5 model run at nested grids down to 36 km resolution. The MM5 at 36 km subsequently serves as input for the CMAQ ozone simulations. A risk assessment modeling framework is used to estimate summer heat- and ozone-related mortality in the region, with a focus on comparing respective estimates for the 1990s versus the 2050s. These endpoints represent two potentially appreciable public health impacts resulting from climate change-induced alterations in regional temperature and air quality profiles. Concentration-response functions from the epidemiological literature describing temperature-mortality and ozone-mortality relationships are applied in the risk assessment, to estimate numbers of regional deaths in a typical 1990s summer and a typical 2050s summer. An evaluation to define ozone-related mortality uses a minimum-value threshold applied across the 1-hour daily maximum ozone model outputs, to identify days that pose an elevated relative risk of ozone mortality. A parallel evaluation of heat-related mortality applies a 23.08° C (73.54° F) threshold value, above which the relative risk of heat

  8. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    NASA Astrophysics Data System (ADS)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  9. Indoor Air Quality in Schools

    EPA Pesticide Factsheets

    This web site will educate the public about indoor environmental issues specific to educational facilities and the importance of developing and sustaining comprehensive indoor air quality management programs.

  10. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  11. Air Quality Modeling Needs for Exposure Assessment form the Source-To-Outcome Perspective

    EPA Science Inventory

    Humans are exposed continuously to mixtures of air pollutants. The compositions of these mixtures vary with time and location and their components originate from many types of sources, both local and distant, including industrial facilities, vehicles, consumer products, and more....

  12. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  13. Air Quality Modeling Needs for Exposure Assessment form the Source-To-Outcome Perspective

    EPA Science Inventory

    Humans are exposed continuously to mixtures of air pollutants. The compositions of these mixtures vary with time and location and their components originate from many types of sources, both local and distant, including industrial facilities, vehicles, consumer products, and more....

  14. Assessment of PM10 enhancement by yellow sand on the air quality of Taipei, Taiwan in 2001.

    PubMed

    Chang, Shuenn-Chin; Lee, Chung-Te

    2007-09-01

    The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM(10) during yellow sand periods. In order to estimate PM(10) enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM(10) level was high, and the CO and NOx levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM(10) levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM(10) enhancement during the YS periods is then calculated by subtracting the simulated PM(10) from the observed PM(10) levels. Based on our calculations, the PM(10) enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM(10) were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM(10) enhancement caused by yellow sand.

  15. Building-integrated agriculture: A first assessment of aerobiological air quality in rooftop greenhouses (i-RTGs).

    PubMed

    Ercilla-Montserrat, Mireia; Izquierdo, Rebeca; Belmonte, Jordina; Montero, Juan Ignacio; Muñoz, Pere; De Linares, Concepción; Rieradevall, Joan

    2017-11-15

    Building-integrated rooftop greenhouse (i-RTG) agriculture has intensified in recent years, due to the growing interest in the development of new agricultural spaces and in the promotion of food self-sufficiency in urban areas. This paper provides a first assessment of the indoor dynamics of bioaerosols in an i-RTG, with the aim of evaluating biological air quality in a tomato greenhouse near Barcelona. It evaluates the greenhouse workers' exposure to airborne pollen and fungal spores in order to prevent allergy problems associated with occupational tasks. Moreover, it evaluates whether the quality of the hot air accumulated in the i-RTG is adequate for recirculation to heat the building. Daily airborne pollen and fungal spore concentrations were measured simultaneously in the indoor and outdoor environments during the warm season. A total of 4,924pollengrains/m(3) were observed in the i-RTG, with a peak of 334pollengrains/m(3)day, and a total of 295,038 fungal spores were observed, reaching a maximum concentration of 26,185spores/m(3)day. In general, the results showed that the most important source of pollen grains and fungal spores observed indoors was the outdoor environment. However, Solanaceae pollen and several fungal spore taxa, such as the allergenic Aspergillus/Penicillium, largely originated inside the greenhouses or were able to colonize the indoor environment under favourable growing conditions. Specific meteorological conditions and agricultural management tasks are related to the highest observed indoor concentrations of pollen grains and fungal spores. Therefore, preventive measures have been suggested in order to reduce or control the levels of bioaerosols indoors (to install a system to interrupt the recirculation of air to the building during critical periods or to implement appropriate air filters in ventilation air ducts). This first evaluation could help in making decisions to prevent the development of fungal diseases, specifically those due

  16. Near-rail yard air quality--assessment through field measurements and computational fluid dynamics modeling

    EPA Science Inventory

    Compared to truck transport, goods movement by rail produces generally lower air pollutant emissions (e.g., particulate matter, carbon dioxide) per ton of freight transported. Emissions associated with rail transport are also confined to rail corridors which may lower the risk of...

  17. Assessing the Public Health Impact of Regional-Scale Air Quality Regulations

    EPA Science Inventory

    The Clean Air Interstate Rule (CAIR) will further reduce regional emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx), thus reducing fine particulate matter (PM2.5) and ground-level ozone pollution. The U.S. Environmental Protection Agency (EPA) estimates that CAIR will ...

  18. Toxicological Assessment of ISS Air Quality: SpaceX-2 First Ingress

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie

    2013-01-01

    One mini-grab sample container (M-GSC) was collected by crew members onboard ISS during first ingress into SpaceX-2 on March 3, 2013, three days after late cargo loading and a pre-launch clean air purge. Recoveries of the three surrogate standards from the m-GSC were: 13C-acetone, 97%; fluorobenzene, 95%; and chlorobenzene, 68%.

  19. Near-rail yard air quality--assessment through field measurements and computational fluid dynamics modeling

    EPA Science Inventory

    Compared to truck transport, goods movement by rail produces generally lower air pollutant emissions (e.g., particulate matter, carbon dioxide) per ton of freight transported. Emissions associated with rail transport are also confined to rail corridors which may lower the risk of...

  20. STS 127 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-127) and International Space Station (2J/A)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. The toxicological assessment of 9 GSCs and 6 pairs of formaldehyde badges from the ISS is also reported. Other than a problem with traces of acrolein in the samples, the air quality was acceptable for respiration.

  1. Indoor Air Quality

    MedlinePlus

    ... are especially vulnerable to the harmful effects of air pollution. Cleaning up pollution in their schools will help ... nothing else matters ® . Help us fight to reduce pollution in the air we breathe. Donate

  2. [Air quality and climate change].

    PubMed

    Loft, Steffen

    2009-10-26

    Air quality, health and climate change are closely connected. Ozone depends on temperature and the greenhouse gas methane from cattle and biomass. Pollen presence depends on temperature and CO2. The effect of climate change on particulate air pollution is complex, but the likely net effect is greater health risks. Reduction of greenhouse-gas emissions by reduced livestock production and use of combustion for energy production, transport and heating will also improve air quality. Energy savings in buildings and use of CO2 neutral fuels should not deteriorate indoor and outdoor air quality.

  3. New Federal Air Quality Standards.

    ERIC Educational Resources Information Center

    Stopinski, O. W.

    The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)

  4. New Federal Air Quality Standards.

    ERIC Educational Resources Information Center

    Stopinski, O. W.

    The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)

  5. Building Air Quality. Action Plan.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Indoor Air Div.

    Building managers and owners often confront competing demands to reduce operating costs and increase revenues that can siphon funds and resources from other building management concerns such as indoor air quality (IAQ). This resource booklet, designed for use with the "Building Air Quality Guide," provides building owners and managers with an…

  6. Indoor air quality medicolegal issues.

    PubMed

    Ross, C S; Lockey, J E

    1994-08-01

    The regulatory and legal communities have begun only recently to address the medicolegal issues surrounding indoor air quality. No single governmental agency is responsible for indoor air quality issues. The focus of the federal government's indoor air quality programs is on the gathering and dissemination of information rather than on the regulation of indoor air pollution. State and local regulatory controls vary but may include antismoking ordinances, building codes, and contractor certification programs. Numerous lawsuits involving various parties and legal theories have been filed on the basis of illness allegedly related to indoor air quality. Further regulatory and legal review of indoor air problems will likely occur in the near future, particularly as a result of the characterization of environmental tobacco smoke as a class A carcinogen.

  7. THE GOBAL CHANGE AIR QUALITY ASSESSMENT: BACKGROUND AND OVERVIEW OF INTRAMURAL WORK

    EPA Science Inventory

    Factors such as population growth and migration, economic expansion, land use, resource availability, climate change, and technology change impact environmental quality and human health. With populations expected to continue to grow, and with additional countries joining the ran...

  8. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room.

    PubMed

    O'Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D

    2015-05-06

    Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality.

  9. An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room

    PubMed Central

    O’Connell, Grant; Colard, Stéphane; Cahours, Xavier; Pritchard, John D.

    2015-01-01

    Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality. PMID:25955526

  10. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  11. A multiyear assessment of air quality benefits from China's emerging shale gas revolution: Urumqi as a case study.

    PubMed

    Song, Wei; Chang, Yunhua; Liu, Xuejun; Li, Kaihui; Gong, Yanming; He, Guixiang; Wang, Xiaoli; Christie, Peter; Zheng, Mei; Dore, Anthony J; Tian, Changyan

    2015-02-17

    China is seeking to unlock its shale gas in order to curb its notorious urban air pollution, but robust assessment of the impact on PM2.5 pollution of replacing coal with natural gas for winter heating is lacking. Here, using a whole-city heating energy shift opportunity offered by substantial reductions in coal combustion during the heating periods in Urumqi, northwest China, we conducted a four-year study to reveal the impact of replacing coal with natural gas on the mass concentrations and chemical components of PM2.5. We found a significant decline in PM2.5, major soluble ions and metal elements in PM2.5 in January of 2013 and 2014 compared with the same periods in 2012 and 2011, reflecting the positive effects on air quality of using natural gas as a heating fuel throughout the city. This occurred following complete replacement with natural gas for heating energy in October 2012. The weather conditions during winter did not show any significant variation over the four years of the study. Our results indicate that China and other developing nations will benefit greatly from a change in energy source, that is, increasing the contribution of either natural gas or shale gas to total energy consumption with a concomitant reduction in coal consumption.

  12. Use of High Resolution Mobile Monitoring Techniques to Assess Near Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  13. Use of High Resolution Mobile Monitoring Techniques to Assess Near-Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  14. Use of High Resolution Mobile Monitoring Techniques to Assess Near Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  15. Use of High Resolution Mobile Monitoring Techniques to Assess Near-Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  16. Case study of odor and indoor air quality assessment in the dewatering building at the Stickney Water Reclamation Plant.

    PubMed

    Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna

    2012-01-01

    Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops.

  17. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China from space

    NASA Astrophysics Data System (ADS)

    Hao, N.; Ding, A.; Valks, P.; Safieddine, S.; Clerbaux, C.; Trautmann, T.

    2013-12-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. Due to huge consumption of fossil fuels and rapid increase of traffic emissions in the past decades, many regions in China have been experiencing heavy air pollution. In China, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Publicly available in situ observations cannot provide sufficient spatial coverage and high consistence in data quality for a long-term period. Therefore, knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. Satellite retrievals with high spatial coverage and high consistence for a long period can well document the change of air pollution with monsoon. We apply multi-platform satellite observations by the GOME, SCIAMACHY, GOME-2, IASI, GOMOS, MIPAS and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NOx, HCHO and CH4) and other related trace gases over China. The potential of using the current generation of satellite instruments to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  18. Assessing the impact of a wood stove replacement program on air quality and children's health.

    PubMed

    Noonan, Curtis W; Ward, Tony J; Navidi, William; Sheppard, Lianne; Bergauff, Megan; Palmer, Chris

    2011-12-01

    Many rural mountain valley communities experience elevated ambient levels of fine particulate matter (PM*) in the winter, because of contributions from residential wood-burning appliances and sustained temperature inversion periods during the cold season. A wood stove change-out program was implemented in a community heavily affected by wood-smoke-derived PM2.5 (PM < or = 2.5 microm in aerodynamic diameter). The objectives of this study were to evaluate the impact of this intervention program on ambient and indoor PM2.5 concentrations and to identify possible corresponding changes in the frequency of childhood respiratory symptoms and infections and illness-related school absences. Over 1100 old wood stoves were replaced with new EPA-certified wood stoves or other heating sources. Ambient PM2.5 concentrations were 30% lower in the winter after the changeout program, compared with baseline winters, which brought the community's ambient air within the PM2.5 standards of the U.S. Environmental Protection Agency (U.S. EPA). The installation of a new wood stove resulted in an overall reduction in indoor PM2.5 concentrations in a small sample of wood-burning homes, but the effects were highly variable across homes. Community-level reductions in wood-smoke-derived PM2.5 concentration were associated with decreased reports of childhood wheeze and of other childhood respiratory health conditions. The association was not limited to children living in homes with wood stoves nor does it appear to be limited to susceptible children (e.g., children with asthma). Community-level reductions in wood-smoke-derived PM2.5 concentration were also associated with lower illness-related school absences among older children, but this finding was not consistent across all age-groups. This community-level intervention provided a unique opportunity to prospectively observe exposure and outcome changes resulting from a targeted air pollution reduction strategy.

  19. Colorado Air Quality Control Regulations and Ambient Air Quality Standards.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Health, Denver. Div. of Air Pollution Control.

    Regulations and standards relative to air quality control in Colorado are defined in this publication. Presented first are definitions of terms, a statement of intent, and general provisions applicable to all emission control regulations adopted by the Colorado Air Pollution Control Commission. Following this, three regulations are enumerated: (1)…

  20. The use of levoglucosan to assess the environmental impact of residential wood-burning on air quality

    SciTech Connect

    Locker, H.B.

    1988-01-01

    Levoglucosan, a product of the incomplete combustion of cellulose, is present in relatively high concentrations in the particle matter generated from wood-burning stoves. This fact has been exploited to develop a source apportionment method whereby measurements of levoglucosan in ambient air may be used to estimate the contribution of residential wood-burning activities to the Total Suspended Particulate (TSP) and Polycyclic Aromatic Hydrocarbon (PAH) concentrations. Analysis of the emissions from wood-burning stoves, both in controlled laboratory burns and from stoves as actually operated in the field, indicates that the percentage of levoglucosan on wood smoke particles is relatively insensitive to burn rate and operating conditions. For a representative group of stoves operated in the home under actual operating conditions, they found that typical wood smoke particles contain 4.6 ({plus minus} 1.7) percent w/w levoglucosan. The average PAH contribution to wood smoke particulate composition was also determined for the field operated stoves and results were used for source assessment of ambient PAH. This application to PAH estimates is complicated by the fact that PAH emissions are sensitive to stove operating conditions. Under controlled laboratory dilution tunnel conditions it was demonstrated that the PAH emission factor from wood-burning stoves increased with increasing burn rate. Application of their source assessment method to the winter-time ambient Hanover, NH airshed indicates that up to 60 ({plus minus} 21)% of the ambient TSP and 70 ({plus minus} 25)% of the PAH may be attributed to wood-burning activities. Given the current concern regarding the contribution of wood-burning to air quality, it should be noted that this analytical scheme provides a rapid and convenient method of determining the environmental impact of residential wood combustion.

  1. Toxicological Assessment of ISS Air Quality: December 2011 to May 2012

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    The toxicological assessment of 17 GSCs returned aboard Soyuz 28 and 29 from the ISS is shown in Table 1. The average recoveries of the 3 surrogate standards from the GSCs were as follows: (C-13)-acetone, 110%; fluorobenzene, 107%; and chlorobenzene, 99%. Recoveries from formaldehyde badges, which were returned on 29S, averaged 101%.

  2. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  3. Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Pesticide Factsheets

    CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.

  4. Assessing the effect of Michigan's smoke-free law on air quality inside restaurants and casinos: a before-and-after observational study

    PubMed Central

    Shamo, Farid; Wilson, Teri; Kiley, Janet; Repace, James

    2015-01-01

    Objectives To assess the effect of Michigan's smoke-free air (SFA) law on the air quality inside selected restaurants and casinos. The hypothesis of the study: if the SFA law is effectively implemented in restaurants and casinos, there will be a significant reduction in the particulate matter PM2.5 measured in the same establishments after the law is implemented. Setting Prelaw and postlaw design study. Participants 78 restaurants in 14 Michigan cities from six major regions of the state, and three Detroit casinos. Methods We monitored the real-time PM2.5 in 78 restaurants and three Detroit casinos before the SFA law, and again monitored the same restaurants and casinos after implementation of the law, which was enacted on 1 May 2010. Primary and secondary outcome measures Concentration measurements of secondhand smoke (SHS) fine particles (PM2.5) were compared in each restaurant in the prelaw period to measurements of PM2.5 in the same restaurants during the postlaw period. A second comparison was made for PM2.5 levels in three Detroit casinos prelaw and postlaw; these casinos were exempted from the SFA law. Results Prelaw data indicated that 85% of the restaurants had poor to hazardous air quality, with the average venue having ‘unhealthy’ air according to Michigan's Air Quality Index for PM2.5. Postlaw, air quality in 93% of the restaurants improved to ‘good’. The differences were statistically significant (p<0.0001). By comparison, the three casinos measured had ‘unhealthy’ air both before and after the law. Conclusions The significant air quality improvement in the Michigan restaurants after implementation of the SFA law indicates that the law was very effective in reducing exposure to SHS. Since the Detroit casinos were exempted from the law, the air quality was unchanged, and remained unhealthy in both prelaw and postlaw periods. PMID:26185176

  5. Assessing the effect of Michigan's smoke-free law on air quality inside restaurants and casinos: a before-and-after observational study.

    PubMed

    Shamo, Farid; Wilson, Teri; Kiley, Janet; Repace, James

    2015-07-16

    To assess the effect of Michigan's smoke-free air (SFA) law on the air quality inside selected restaurants and casinos. The hypothesis of the study: if the SFA law is effectively implemented in restaurants and casinos, there will be a significant reduction in the particulate matter PM2.5 measured in the same establishments after the law is implemented. Prelaw and postlaw design study. 78 restaurants in 14 Michigan cities from six major regions of the state, and three Detroit casinos. We monitored the real-time PM2.5 in 78 restaurants and three Detroit casinos before the SFA law, and again monitored the same restaurants and casinos after implementation of the law, which was enacted on 1 May 2010. Concentration measurements of secondhand smoke (SHS) fine particles (PM2.5) were compared in each restaurant in the prelaw period to measurements of PM2.5 in the same restaurants during the postlaw period. A second comparison was made for PM2.5 levels in three Detroit casinos prelaw and postlaw; these casinos were exempted from the SFA law. Prelaw data indicated that 85% of the restaurants had poor to hazardous air quality, with the average venue having 'unhealthy' air according to Michigan's Air Quality Index for PM2.5. Postlaw, air quality in 93% of the restaurants improved to 'good'. The differences were statistically significant (p<0.0001). By comparison, the three casinos measured had 'unhealthy' air both before and after the law. The significant air quality improvement in the Michigan restaurants after implementation of the SFA law indicates that the law was very effective in reducing exposure to SHS. Since the Detroit casinos were exempted from the law, the air quality was unchanged, and remained unhealthy in both prelaw and postlaw periods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  7. Soyuz 24 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Fifteen mini-grab sample containers (m-GSCs) were returned aboard Soyuz. This is the first time all samples were acquired with the mini-grab samplers. The toxicological assessment of 15 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C(13)-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 75, 97 and 79%, respectively. Formaldehyde badges were not returned on Soyuz 24

  8. Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3.

    PubMed

    Wang, Hua; Zhu, Yun; Jang, Carey; Lin, Che-Jen; Wang, Shuxiao; Fu, Joshua S; Gao, Jian; Deng, Shuang; Xie, Junping; Ding, Dian; Qiu, Xuezhen; Long, Shicheng

    2015-03-01

    Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy. Copyright © 2015. Published by Elsevier B.V.

  9. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-102 at the Conclusion of 5A.1

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-102 (5A.1) flight to the ISS is reported. ISS air samples were taken in late February 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges . A "first-entry" sample of the multipurpose logistics module (MPLM) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 contribution). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample. Formaldehyde is quantified separately.

  10. Soyuz 7 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of one grab sample canister (GSC), 6 dual sorbent tubes (DSTs), and 20 formaldehyde badges returned aboard Soyuz 7 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSC were 84-89%. The recoveries of the less volatile surrogates from the DSTs were 87 to 112%; however, 13C-acetone was only recovered at 53-59%. Formaldehyde recoveries from 2 lab controls were 87 and 95%; trip controls were not returned to ground.

  11. Managing Air Quality - Emissions Inventories

    EPA Pesticide Factsheets

    This page describes the role of emission inventories in the air quality management process, a description of how emission inventories are developed, and where U.S. emission inventory information can be found.

  12. C-PORT: A Community-Scale Near-Source Air Quality System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    With increasing activity in global trade, there has been increased activity in transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission source at the ports may impact local air qu...

  13. C-PORT: A Community-Scale Near-Source Air Quality System to Assess Port-Related Air Quality Impacts

    EPA Science Inventory

    With increasing activity in global trade, there has been increased activity in transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission source at the ports may impact local air qu...

  14. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health.

  15. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  16. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  17. Assessing the Culture and Climate for Quality Improvement in the Work Environment. AIR 1994 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Cameron, Kim; And Others

    This study attempted to develop a reliable and valid instrument for assessing work environment and continuous quality improvement efforts in the non-academic sectors of colleges and universities particularly those institutions who have adopted Total Quality Management programs. A model of a work environment for continuous quality improvement was…

  18. Nested-grid modeling approach for assessing urban ozone air quality

    SciTech Connect

    Rao, S.T.; Sistla, G.; Ku, J.Y.; Scheffe, R.D.; Schere, K.L.

    1989-06-01

    The paper describes an effort to interface the modeled concentrations and other outputs of the Regional Oxidant Model (ROM) as an alternative set of input files to apply in Urban Airshed Model (UAM) simulations. Five different days exhibiting high ozone concentrations during the 1980 ozone season were simulated by the UAM for the New York metropolitan area for a base scenario and for different sets of initial and boundary conditions and winds from the ROM. The methodology of integrating the ROM results into the UAM processor system is discussed. The modeled UAM ozone concentrations are compared with measured values for the various model input data scenarios in assessing the performance of the nested grid modeling approach.

  19. Application of GPS data for benefits of air quality assessment and fleet management

    NASA Astrophysics Data System (ADS)

    Hao, Song; Fat Lam, Yun; Cheong Ying, Chi; Chan, Ka Lok

    2017-04-01

    In the modern digitizedsociety, traffic data can be easily collected for use in roadway development, urban planning and vehicle emission. These data are then further parameterized to support traffic simulation and roadside emission calculations. With the commercialization of AGPS/GPS technology, GPS data are widely utilized to study habit and travelling behaviors. GPS on franchised buses can provide not only positioning information for fleet management but also raw data to analyze traffic situations. In HK, franchised buses account for 6% of RSP and 20% of NOx emissions among the whole vehicle fleet. Being the most heavily means of public transport, the setting up of bus travelling trajectories and service frequency always raise concern from citizens. On this basis, there is an increasing interest and as well as to design and realize an effective cost benefit fleet management strategy. In this study, data collection analysis is carried out on all bus routes (i.e. 112) in Shatin district, one of the 18 districts in Hong Kong. The GPS/AGPS data through Esri ArcGIS investigate the potential benefit of GPS data in different emission scenarios (such as engine type over whole bus fleet). Building on the emission factors from EMFC-HK model, we accounted for factors like travelling distance, idling time, occupancy rate, service frequency, tire and break emissions. Through the simple emission developed model we demonstrate how GPS are data are utilized to assess bus fleet emissions. Further amelioration on the results involve tuning the model with field measurement so as to assess district level emission change after fleet optimization.

  20. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  1. Analysis of air quality management with emphasis on transportation sources

    NASA Technical Reports Server (NTRS)

    English, T. D.; Divita, E.; Lees, L.

    1980-01-01

    The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.

  2. Air quality assessment in the periurban area of Mexico Megacity during dry hot season in 2011 and 2012

    NASA Astrophysics Data System (ADS)

    Garcia-Reynoso, Agustin; Santos Garcia-Yee, Jose; Barrera-Huertas, Hugo; Gerardo Ruiz-Suárez, Luis

    2016-04-01

    Air quality is a human health threat not only in urbanized areas, it also affects the surrounding zones. Interaction between urban and rural areas can be evaluated by measurements and using models for regional areas that includes in its domain the peri-urban regions. The use of monitoring sites in remote areas is useful however it is not possible to cover all the region the use of models can provide valuable information about the source and fate of the pollution and its transformation. In order to evaluate the influence of the Mexico Megacity in the air quality of the region, two field campaigns were performed during the dry hot season during 2011 and 2012. Meterological and pollutant measurements were made during February and march 2011, in three sites towards the south east of Mexico Megacity, and from march to April 2012 towards the west after the Popocatepetl-Iztaccihuatl mountain range. Air quality modeling were performed by using the National Emissions Inventory 2008 during the studied periods, a comparison between measurements and the air quality model was performed. This type of studies can offer information about the pollutant distribution, the meteorological conditions and the exactness of emissions inventories. The latest can be useful for emissions inventory developers and policy makers.

  3. Air quality and climate connections.

    PubMed

    Fiore, Arlene M; Naik, Vaishali; Leibensperger, Eric M

    2015-06-01

    Multiple linkages connect air quality and climate change. Many air pollutant sources also emit carbon dioxide (CO2), the dominant anthropogenic greenhouse gas (GHG). The two main contributors to non-attainment of U.S. ambient air quality standards, ozone (O3) and particulate matter (PM), interact with radiation, forcing climate change. PM warms by absorbing sunlight (e.g., black carbon) or cools by scattering sunlight (e.g., sulfates) and interacts with clouds; these radiative and microphysical interactions can induce changes in precipitation and regional circulation patterns. Climate change is expected to degrade air quality in many polluted regions by changing air pollution meteorology (ventilation and dilution), precipitation and other removal processes, and by triggering some amplifying responses in atmospheric chemistry and in anthropogenic and natural sources. Together, these processes shape distributions and extreme episodes of O3 and PM. Global modeling indicates that as air pollution programs reduce SO2 to meet health and other air quality goals, near-term warming accelerates due to "unmasking" of warming induced by rising CO2. Air pollutant controls on CH4, a potent GHG and precursor to global O3 levels, and on sources with high black carbon (BC) to organic carbon (OC) ratios could offset near-term warming induced by SO2 emission reductions, while reducing global background O3 and regionally high levels of PM. Lowering peak warming requires decreasing atmospheric CO2, which for some source categories would also reduce co-emitted air pollutants or their precursors. Model projections for alternative climate and air quality scenarios indicate a wide range for U.S. surface O3 and fine PM, although regional projections may be confounded by interannual to decadal natural climate variability. Continued implementation of U.S. NOx emission controls guards against rising pollution levels triggered either by climate change or by global emission growth. Improved

  4. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  5. Technical and Non-Technical Measures for air pollution emission reduction: The integrated assessment of the regional Air Quality Management Plans through the Italian national model

    NASA Astrophysics Data System (ADS)

    D'Elia, I.; Bencardino, M.; Ciancarella, L.; Contaldi, M.; Vialetto, G.

    2009-12-01

    The Italian Air Quality legislation underwent sweeping changes with the implementation of the 1996 European Air Quality Framework Directive when the Italian administrative Regions were entrusted with air quality management tasks. The most recent Regional Air Quality Management Plans (AQMPs) highlighted the importance of Non-Technical Measures (NTMs), in addition to Technical Measures (TMs), in meeting environmental targets. The aim of the present work is to compile a list of all the TMs and NTMs taken into account in the Italian Regional AQMPs and to give in the target year, 2010, an estimation of SO 2, NO x and PM 10 emission reductions, of PM 10 concentration and of the health impact of PM 2.5 concentrations in terms of Life Expectancy Reduction. In order to do that, RAINS-Italy, as part of the National Integrated Modeling system for International Negotiation on atmospheric pollution (MINNI), has been applied. The management of TMs and NTMs inside RAINS have often obliged both the introduction of exogenous driving force scenarios and the control strategy modification. This has inspired a revision of the many NTM definitions and a clear choice of the definition adopted. It was finally highlighted that only few TMs and NTMs implemented in the AQMPs represent effective measures in reaching the environmental targets.

  6. Evaluating the effectiveness of air quality interventions.

    PubMed

    van Erp, Annemoon M M; O'Keefe, Robert; Cohen, Aaron J; Warren, Jane

    2008-01-01

    Evaluating the extent to which air quality regulations improve public health--sometimes referred to as accountability--is part of an emerging effort to assess the effectiveness of environmental regulatory policies. Air quality has improved substantially in the United States and Western Europe in recent decades, with far less visible pollution and decreasing concentrations of several major pollutants. In large part, these gains were achieved through increasingly stringent air quality regulations. The costs associated with compliance and, importantly, the need to ensure that the regulations are achieving the intended public health benefits underscore the importance of accountability research. To date, accountability research has emphasized measuring the effects of actions already taken to improve air quality. Such research may also contribute to estimating the burden of disease that might be avoided in the future if certain actions are taken. The Health Effects Institute (HEI) currently funds eight ongoing studies on accountability, which cover near-term interventions to improve air quality including (1) a ban on the sale of coal, (2) replacing old wood stoves with cleaner ones, (3) decreasing sulfur content in fuel, (4) measures to reduce traffic, and (5) longer term, wide-ranging actions or events (such as complex changes associated with the reunification of Germany). HEI is also funding the development of methods and research to assess regulations that are implemented incrementally over extended periods of time, such as Title IV of the 1990 Clean Air Act Amendments, which reduces sulfur dioxide emissions from power plants in the eastern United States.

  7. The use of lidar as optical remote sensors in the assessment of air quality near oil refineries and petrochemical sites

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; Landulfo, Eduardo; Guardani, Roberto; Oller do Nascimento, Cláudio A.; Moreira, Andréia

    2008-10-01

    Petrochemical and oil refining facilities play an increasingly important role in the industrial context. The corresponding need for monitoring emissions from these facilities as well as in their neighborhood has raised in importance, leading to the present tendency of creating real time data acquisition and analysis systems. The use of LIDAR-based techniques, both for air quality and emissions monitoring purposes is currently being developed for the area of Cubatao, Sao Paulo, one of the largest petrochemical and industrial sites in Brazil. In a partnership with the University of SÃ#o Paulo (USP) the Brazilian oil company PETROBRAS has implemented an Environmental Research Center - CEPEMA - located in the industrial site, in which the development of fieldwork will be carried out. The current joint R&D project focuses on the development of a real time acquisition system, together with automated multicomponent chemical analysis. Additionally, fugitive emissions from oil processing and storage sites will be measured, together with the main greenhouse gases (CO2, CH4), and aerosols. Our first effort is to assess the potential chemical species coming out of an oil refinery site and to verify which LIDAR technique, DIAL, Raman, fluorescence would be most efficient in detecting and quantifying the specific atmospheric emissions.

  8. Manual on indoor air quality

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  9. Aeromicrobiology/air quality

    USGS Publications Warehouse

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  10. Air Quality Criteria for Ozone and Related Photochemical ...

    EPA Pesticide Factsheets

    In February 2006, EPA released the final document, Air Quality Criteria for Ozone and Other Photochemical Oxidants. Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S. Clean Air Act. As mandated by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) must periodically review the scientific bases (or criteria) for the various NAAQS by assessing newly available scientific information on a given criteria air pollutant. This document, Air Quality Criteria for Ozone and Other Photochemical Oxidants, is an updated revision of the 1996 Ozone Air Quality Criteria Document (O3 AQCD) that provided scientific bases for the current O3 NAAQS set in 1997. The Clean Air Act mandates periodic review of the National Ambient Air Quality Standards (NAAQS) for six common air pollutants, also referred to as criteria pollutants, including ozone.

  11. Urban air quality

    NASA Astrophysics Data System (ADS)

    Fenger, Jes

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  12. Comprehensive Monitoring Program, Final Air Quality Data Assessment Report for 1989, Version 2.1. Volume 4

    DTIC Science & Technology

    1990-06-01

    nqtwn Pmloauyarm S•mkcs ’mrae o r ine Sio opff.,.•,,Jre-•-_.-&- Rp s..’’’. 12 is,,,,,,.,,A - 2 9 3 102. &Wdto thl offk* t~p ~~e MW isudg;NeL poperwoc...words) THE PURPOSE OF THE AIR ELEMENT OF THE COMPREHENSIVE MONITORING PROGRAM IS TO ESTABLISH AN ON-GOING BASELINE TO 1) VERIFY AMBIENT AIR QUALITY AND 2 ...MONITORING OF PM-10, VOC, SVOC, TSP, OTSP, ASSIST, AND METALS 2 . OHIGH EVENT" MONITORING DURING SPECIFIED METEOROLOGICAL CONDITIONS 3- SUPPLEMENTAL MONITORING

  13. Outdoor air pollution and sperm quality.

    PubMed

    Lafuente, Rafael; García-Blàquez, Núria; Jacquemin, Bénédicte; Checa, Miguel Angel

    2016-09-15

    Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. CRD42015007175. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality.

    PubMed

    Sari, Deniz; Bayram, Abdurrahman

    2014-08-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO2), nitrogen dioxides (NO2), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) in İzmir for 2008-2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Assessment of indoor air quality exposures and impacts on respiratory outcomes in River Rouge and Dearborn, Michigan.

    PubMed

    Cleary, Erika; Asher, Mary; Olawoyin, Richard; Zhang, Kuangyuan

    2017-11-01

    Ambient air pollution is a public health issue which could potentially exacerbate pre-existing respiratory conditions and contribute to increases in asthma incidence. This study aims to address gaps in understanding how IAQ is impacted by outdoor air quality, which was done by sampling for indoor gaseous and particulate pollutants in residence and facilities near the sources of pollution. The study areas were selected due to non-attainment status with air quality standards, as well as demographic and socioeconomic status of those residing in these areas. Samples are obtained from five locations around the study areas. The sampling procedure involves active sampling methodologies for particulate matter (PM) and gases. Average volatile organic compounds (VOC) levels of 2.71 ppm were measured at a location, while the average particulate matter (PM) concentrations in three study locations were; 15,979 pt/cc, 9533 pt/cc, 5267 pt/cc respectively, which exceeded clean background environment level of 500-2000 pt/cc. All locations had average CO concentrations above 0.3 ppm, which is potentially associated with elevated asthma symptoms. Results demonstrated that facilities in the study area have increased levels of indoor air pollutants that potentially increase asthma and respiratory issues. The study concludes that particulate and gaseous pollutant levels in the study areas are a concerning human health issue. The study outcomes have significant implications for air quality exposure modeling and potential exposure mitigation strategies, which are expected to facilitate the implementation of public policies for improved human health conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    PubMed

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta.

  17. Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2011-12-01

    Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.

  18. A self-consistent method to assess air quality co-benefits from U.S. climate policies.

    PubMed

    Saari, Rebecca K; Selin, Noelle E; Rausch, Sebastian; Thompson, Tammy M

    2015-01-01

    Air quality co-benefits can potentially reduce the costs of greenhouse gas mitigation. However, whereas many studies of the cost of greenhouse gas mitigation model the macroeconomic welfare impacts of mitigation, most studies of air quality co-benefits do not. We employ a U.S. computable general equilibrium economic model previously linked to an air quality modeling system and enhance it to represent the economy-wide welfare impacts of fine particulate matter. We present a first application of this method to explore the efficiency and distributional implications of a Clean Energy Standard (CES) and a Cap and Trade (CAT) program that both reduce CO₂emissions by 10% in 2030 relative to 2006. We find that co-benefits from fine particulate matter reduction (median $6; $2 to $10/tCO₂) completely offset policy costs by 110% (40% to 190%), transforming the net welfare impact of the CAT into a gain of $1 (-$5 to $7) billion 2005$. For the CES, the corresponding co-benefit (median $8; $3 to $14/tCO₂) is a smaller fraction (median 5%; 2% to 9%) of its higher policy cost. The eastern United States garners 78% and 71% of co-benefits for the CES and CAT, respectively. By representing the effects of pollution-related morbidities and mortalities as an impact to labor and the demand for health services, we find that the welfare impact per unit of reduced pollution varies by region. These interregional differences can enhance the preference of some regions, such as Texas, for a CAT over a CES, or switch the calculation of which policy yields higher co-benefits, compared with an approach that uses one valuation for all regions. This framework could be applied to quantify consistent air quality impacts of other pricing instruments, subnational trading programs, or green tax swaps.

  19. Comprehensive monitoring program: Final air quality data assessment report for FY90, version 3.1 volume 2. Final report

    SciTech Connect

    1991-09-01

    The objective of this CMP is to verify and evaluate potential air quality health hazards, to verify progress that has been made to date in removing contaminants resulting from previous activities, to provide baseline data for the evaluation of progress that will be made in future remedial activities, to develop real-time guidelines, standard procedures, and data collection methods, as appropriate, to indicate impacts of ongoing, remedial actions, and to validate and document database reliability.

  20. Comprehensive monitoring program: Final air quality data assessment report for FY90, version 3.1 volume 3. Final report

    SciTech Connect

    1991-09-01

    The objective of this CMP is to verify and evaluate potential air quality health hazards, to verify progress that has been made to date in removing contaminats resulting from previous activities, to provide baseline data for the evaluation of progress that will be made in future remedial activities, to develop real-time guidelines, standard procedures, and data collection methods, as appropriate, to indicate impacts of ongoing, remedial actions, and to validate and document database reliability.

  1. Air-quality-model update

    SciTech Connect

    Penner, J.E.; Walton, J.J.

    1982-01-15

    The Livermore Regional Air Quality Model (LIRAQ) has been updated and improved. This report describes the changes that have been made in chemistry, species treatment, and boundary conditions. The results of smog chamber simulations that were used to verify the chemistry as well as simulations of the entire air quality model for two prototype days in the Bay Area are reported. The results for the prototype day simulations are preliminary due to the need for improvement in meteorology fields, but they show the dependence and sensitivity of high hour ozone to changes in selected boundary and initial conditions.

  2. A multi-objective assessment of an air quality monitoring network using environmental, economic, and social indicators and GIS-based models.

    PubMed

    Pope, Ronald; Wu, Jianguo

    2014-06-01

    In the United States, air pollution is primarily measured by Air Quality Monitoring Networks (AQMN). These AQMNs have multiple objectives, including characterizing pollution patterns, protecting the public health, and determining compliance with air quality standards. In 2006, the U.S. Environmental Protection Agency issued a directive that air pollution agencies assess the performance of their AQMNs. Although various methods to design and assess AQMNs exist, here we demonstrate a geographic information system (GIS)-based approach that combines environmental, economic, and social indicators through the assessment of the ozone (O3) and particulate matter (PM10) networks in Maricopa County, Arizona. The assessment was conducted in three phases: (1) to evaluate the performance of the existing networks, (2) to identify areas that would benefit from the addition of new monitoring stations, and (3) to recommend changes to the AQMN. A comprehensive set of indicators was created for evaluating differing aspects of the AQMNs' objectives, and weights were applied to emphasize important indicators. Indicators were also classified according to their sustainable development goal. Our results showed that O3 was well represented in the county with some redundancy in terms of the urban monitors. The addition of weights to the indicators only had a minimal effect on the results. For O3, urban monitors had greater social scores, while rural monitors had greater environmental scores. The results did not suggest a need for adding more O3 monitoring sites. For PM10, clustered urban monitors were redundant, and weights also had a minimal effect on the results. The clustered urban monitors had overall low scores; sites near point sources had high environmental scores. Several areas were identified as needing additional PM10 monitors. This study demonstrates the usefulness of a multi-indicator approach to assess AQMNs. Network managers and planners may use this method to assess the

  3. On the possibility of real time air quality and toxicology assessment using multi-wavelength photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Pinter, Mate; Utry, Noemi; Kiss-Albert, Gergely; Palagyi, Andrea; Manczinger, Laszlo; Vagvölgyi, Csaba; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    In this study we present results of field measurement campaigns focusing on the in-situ characterization of absorption spectra and the health relevance of light absorbing carbonaceous (LAC) in the ambient. The absorption spectra is measured @ 266, 355, 532 and 1064 nm by our state-of-the-art four-wavelength photoacoustic instrument, while for health relevance the eco- cito and genotoxicity parameters were measured using standardized methodologies. We experimentally demonstrated a correlation between the toxicities and the measured absorption spectra quantified by its wavelength dependency. Based on this correlation, we present novel possibilities on real-time air quality monitoring. LAC is extensively studied not only because of its considerable climate effects but as a serious air pollutant too. Gradually increasing number of studies demonstrated experimentally that the health effect of LAC is more serious than it is expected based on its share in total atmospheric aerosol mass. Furthermore during many local pollution events LAC not only has dominancy but it is close to exclusivity. Altogether due to its climate and health effects many studies and proposed regulations focus on the physical, chemical and toxicological properties of LAC as well as on its source apportionment. Despites of its importance, there is not yet a widely accepted standard methodology for the real-time and selective identification of LAC. There are many different reasons of that: starting from its complex inherent physicochemical features including many unknown constituents, via masking effect of ambient on the inherent physicochemical properties taking place even in case of a short residence, ending with the lack of reliable instrumentation for its health or source relevant parameters. Therefore, the methodology and instrument development for selective and reliable identification of LAC is timely and important issues in climate and air quality researches. Recently, many studies demonstrated

  4. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  5. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  6. Climate change, air quality, and human health.

    PubMed

    Kinney, Patrick L

    2008-11-01

    Weather and climate play important roles in determining patterns of air quality over multiple scales in time and space, owing to the fact that emissions, transport, dilution, chemical transformation, and eventual deposition of air pollutants all can be influenced by meteorologic variables such as temperature, humidity, wind speed and direction, and mixing height. There is growing recognition that development of optimal control strategies for key pollutants like ozone and fine particles now requires assessment of potential future climate conditions and their influence on the attainment of air quality objectives. In addition, other air contaminants of relevance to human health, including smoke from wildfires and airborne pollens and molds, may be influenced by climate change. In this study, the focus is on the ways in which health-relevant measures of air quality, including ozone, particulate matter, and aeroallergens, may be affected by climate variability and change. The small but growing literature focusing on climate impacts on air quality, how these influences may play out in future decades, and the implications for human health is reviewed. Based on the observed and anticipated impacts, adaptation strategies and research needs are discussed.

  7. Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy)

    NASA Astrophysics Data System (ADS)

    Schiavon, Marco; Redivo, Martina; Antonacci, Gianluca; Rada, Elena Cristina; Ragazzi, Marco; Zardi, Dino; Giovannini, Lorenzo

    2015-11-01

    Simulations of emission and dispersion of nitrogen oxides (NOx) are performed in an urban area of Verona (Italy), characterized by street canyons and typical sources of urban pollutants. Two dominant source categories are considered: road traffic and, as an element of novelty, domestic heaters. Also, to assess the impact of urban air pollution on human health and, in particular, the cancer risk, simulations of emission and dispersion of benzene are carried out. Emissions from road traffic are estimated by the COPERT 4 algorithm, whilst NOx emission factors from domestic heaters are retrieved by means of criteria provided in the technical literature. Then maps of the annual mean concentrations of NOx and benzene are calculated using the AUSTAL2000 dispersion model, considering both scenarios representing the current situation, and scenarios simulating the introduction of environmental strategies for air pollution mitigation. The simulations highlight potentially critical situations of human exposure that may not be detected by the conventional network of air quality monitoring stations. The proposed methodology provides a support for air quality policies, such as planning targeted measurement campaigns, re-locating monitoring stations and adopting measures in favour of better air quality in urban planning. In particular, the estimation of the induced cancer risk is an important starting point to conduct zoning analyses and to detect the areas where population is more directly exposed to potential risks for health.

  8. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-110 (ISS-8A) in April 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2002-01-01

    The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.

  9. Updated methods for assessing the impacts of nearby gas drilling and production on neighborhood air quality and human health.

    PubMed

    Olaguer, Eduardo P; Erickson, Matthew; Wijesinghe, Asanga; Neish, Brad; Williams, Jeff; Colvin, John

    2016-02-01

    An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions. Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.

  10. Indoor Air Quality Management Program.

    ERIC Educational Resources Information Center

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  11. Indoor Air Quality Management Program.

    ERIC Educational Resources Information Center

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  12. Indoor Air Quality and Disease

    EPA Science Inventory

    Concern over the quality of indoor (i.e., residential) as well as outdoor (i.e., environmental) air is increasing. Accordingly, owners of companion animals may approach their veterinarian about the potential for airborne irritants, allergens, pollutants, or infectious agents to n...

  13. Indoor Air Quality and Disease

    EPA Science Inventory

    Concern over the quality of indoor (i.e., residential) as well as outdoor (i.e., environmental) air is increasing. Accordingly, owners of companion animals may approach their veterinarian about the potential for airborne irritants, allergens, pollutants, or infectious agents to n...

  14. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  15. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  16. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  17. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  18. 32 CFR 989.30 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1....

  19. Community Multi-scale Air Quality (CMAQ) Modeling System for Air Quality Management

    EPA Pesticide Factsheets

    CMAQ simultaneously models multiple air pollutants including ozone, particulate matter and a variety of air toxics to help air quality managers determine the best air quality management scenarios for their communities, regions and states.

  20. Remote Sensing and Spatial Growth Modeling Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80 percent of the world s population will live in cities. Directly aligned with the expansion of cities is urban sprawl. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes. A reduction in air quality over cities is a major result of these impacts. Strategies that can be directly or indirectly implemented to help remediate air quality problems in cities and that can be accepted by political decision makers and the general public are now being explored to help bring down air pollutants and improve air quality. The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how ozone and air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat

  1. Remote Sensing and Spatial Growth Modeling Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80 percent of the world s population will live in cities. Directly aligned with the expansion of cities is urban sprawl. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes. A reduction in air quality over cities is a major result of these impacts. Strategies that can be directly or indirectly implemented to help remediate air quality problems in cities and that can be accepted by political decision makers and the general public are now being explored to help bring down air pollutants and improve air quality. The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how ozone and air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat

  2. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    NASA Astrophysics Data System (ADS)

    Giordano, L.; Brunner, D.; Flemming, J.; Hogrefe, C.; Im, U.; Bianconi, R.; Badia, A.; Balzarini, A.; Baró, R.; Chemel, C.; Curci, G.; Forkel, R.; Jiménez-Guerrero, P.; Hirtl, M.; Hodzic, A.; Honzak, L.; Jorba, O.; Knote, C.; Kuenen, J. J. P.; Makar, P. A.; Manders-Groot, A.; Neal, L.; Pérez, J. L.; Pirovano, G.; Pouliot, G.; San José, R.; Savage, N.; Schröder, W.; Sokhi, R. S.; Syrakov, D.; Torian, A.; Tuccella, P.; Werhahn, J.; Wolke, R.; Yahya, K.; Žabkar, R.; Zhang, Y.; Galmarini, S.

    2015-08-01

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality models to simulate the year 2010 over one European and one North American domain. The MACC re-analysis has been used as chemical initial (IC) and boundary conditions (BC) by all participating regional models in AQMEII-2. The aim of the present work is to evaluate the MACC re-analysis along with the participating regional models against a set of ground-based measurements (O3, CO, NO, NO2, SO2, SO42-) and vertical profiles (O3 and CO). Results indicate different degrees of agreement between the measurements and the MACC re-analysis, with an overall better performance over the North American domain. The influence of BC on regional air quality simulations is analyzed in a qualitative way by contrasting model performance for the MACC re-analysis with that for the regional models. This approach complements more quantitative approaches documented in the literature that often have involved sensitivity simulations but typically were limited to only one or only a few regional scale models. Results suggest an important influence of the BC on ozone for which the underestimation in winter in the MACC re-analysis is mimicked by the regional models. For CO, it is found that background concentrations near the domain boundaries are rather close to observations while those over the interior of the two continents are underpredicted by both MACC and the regional models over Europe but only by MACC over North America. This indicates that emission differences between the MACC re-analysis and the regional models can have a profound impact on model performance and points to the need for harmonization of inputs in future linked global/regional modeling studies.

  3. Managing Air Quality - Air Pollutant Types

    EPA Pesticide Factsheets

    Describes the types of air pollutants, including common or criteria pollutants, and hazardous air pollutants and links to additional information. Also links to resources on other air pollution issues.

  4. STS 129 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-129) and International Space Station (ULF3)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    Reports on the air quality aboard the Space Shuttle (STS-129), and the International Space station (ULF3). NASA analyzed the grab sample canisters (GSCs) and the formaldehyde badges aboard both locations for carbon monoxide levels. The three surrogates: (sup 13)C-acetone, fluorobenzene, and chlorobenzene registered 109, 101, and 109% in the space shuttle and 81, 87, and 55% in the International Space Station (ISS). From these results the atmosphere in both the Space Shuttle and the International Space Station (ISS) was found to be breathable.

  5. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  6. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  7. 78 FR 10589 - Revision of Air Quality Implementation Plan; California; Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... AGENCY 40 CFR Part 52 Revision of Air Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District; Stationary Source Permits AGENCY: Environmental Protection Agency... by California as a revision to the Sacramento Metropolitan Air Quality Management District (SMAQMD...

  8. Assessing the impact of the forthcoming decrease in diesel exhaust particulate matter emissions on air quality: implications for black carbon concentrations in ambient air

    NASA Astrophysics Data System (ADS)

    González, Y.; Rodríguez, S.; Cuevas, E.; Ramos, R.; Abreu-Afonso, J.; Baldasano, J. M.

    2009-04-01

    Forthcoming regulations (e.g. EURO 5 and EURO 6) are planned to reduce particulate matter emissions (PM) in the exhaust of forthcoming vehicles. In this study we assess the impact of such reduction in the diesel PM exhaust emissions on the urban ambient air PM concentrations. This has been done by studying the relationship between black carbon (BC) and carbon monoxide (CO) in urban ambient air and in the exhaust of current and forthcoming vehicles. The slope of the BC-vs-CO linear relationship is mainly affected by the percentage (%) of diesel automobiles in the urban vehicles fleet. This slope is a better indicator of the diesel PM emissions than bulk BC concentrations in urban ambient air. BC-vs-CO slopes within the range 1-3 and 7-14 ngBC/µgCO are typically observed in urban areas with low (<25%) and high (≥50%) proportions of diesel-fuel consumption for on road transportation, respectively. The entry into force of forthcoming regulations will decrease the BC-vs-CO slope in urban ambient air from about 10 to 5 ngBC/µgCO in the next decade, according to calculations based on the current data on diesel vehicles in urban fleets in Spanish cities. However, this will not necessary prompt a significant decrease in the urban BC concentrations if road traffic volume follows the increasing trend of the last decade. The results of this study shows that the analysis of the BC-vs-CO slope trend in ambient air is an useful tool for understanding the involvement "of the changes in the vehicle exhaust emissions rates" and "of the changes in the road traffic volume" in the BC and PMx trends in urban ambient air.

  9. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    PubMed

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way.

  10. Asthma and domestic air quality.

    PubMed

    Jones, A P

    1998-09-01

    In recent years, there has been a global increase in the prevalence of asthma. This has coincided with many modifications to the home environment, resulting in changes to the quality of indoor air. This article considers the links between indoor air pollution and asthma. Exposure to a range of pollutants is examined. Airborne allergens such as those from house dust mites and cockroaches, domestic pets and moulds and fungal spores may be important. Pollution from particulate materials associated with bio-fuel combustion and smoking is discussed, as is the role of chemical vapours and gases including nitrogen dioxide, formaldehyde and volatile organic compounds. The efficacy of various environmental controls to limit the impact of these pollutants is explored. It is concluded that indoor air pollution may be an important risk for asthma and the health impacts of building design and management require greater recognition and further research.

  11. Understanding the relationships between air quality and human health

    SciTech Connect

    S.T. Rao

    2006-09-15

    Although there has been substantial progress in improving ambient air quality in the United States, atmospheric concentrations of ozone and fine particulate matter (PM2.5) continue to exceed the National Ambient Air Quality Standards in many locations. Consequently, a large portion of the U.S. population continues to be exposed to unhealthful levels of ozone and fine particles. This issue of EM, entitled 'Understanding the relationships between air quality and human health' presents a series of articles that focus on the relationships between air quality and human health - what we know so far and the challenges that remain. Their titles are: Understanding the effects of air pollution on human health; Assessing population exposures in studies of human health effects of PM2.5; Establishing a national environmental public health tracking network; Linking air quality and exposure models; and On alert: air quality forecasting and health advisory warnings.

  12. Local Air Quality Conditions and Forecasts

    MedlinePlus

    ... 0 - 50) Air quality is considered satisfactory, and air pollution poses little or no risk. AQI: Moderate (51 - ... number of people who are unusually sensitive to air pollution. AQI: Unhealthy for Sensitive Groups (101 - 150) Although ...

  13. Ozone, Air Quality, and Asthma (For Parents)

    MedlinePlus

    ... How Poor Air Quality Affects People With Asthma Air pollution is a problem for everyone — not just people ... asthma. Studies have shown that high levels of air pollution can be associated with decreased lung function and ...

  14. National Air Toxics Assessment

    EPA Pesticide Factsheets

    NATA is an ongoing comprehensive evaluation of air toxics in the U.S. As a screening tool, it helps air agencies prioritize pollutants, emission sources and locations of interest for further study to gain a better understanding of risks.

  15. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-100 at the Conclusion of 6A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-100 (6A) flight to the ISS is reported. ISS air samples were taken in March and April 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. An unplanned "first-entry" sample of the MPLM2 (multipurpose logistics module) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Endeavour using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contribution). Because of the Freon 218 (octafluoropropane, OFP) leak, its contribution to the NMVOC is indicated in brackets. When comparing the NMVOC values with the 25 mg/cubic m guideline, the OFP contributions should be subtracted. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample.

  16. Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port.

    PubMed

    Lonati, Giovanni; Cernuschi, Stefano; Sidi, Shelina

    2010-12-01

    This work is intended to assess the impact on local air quality due to atmospheric emissions from port area activities for a new port in project in the Mediterranean Sea. The sources of air pollutants in the harbour area are auxiliary engines used by ships at berth during loading/offloading operations. A fleet activity-based methodology is first applied to evaluate annual pollutant emissions (NO(X), SO(X), PM, CO and VOC) based on vessel traffic data, ships tonnage and in-port hotelling time for loading/offloading operations. The 3-dimensional Calpuff transport and dispersion model is then applied for the subsequent assessment of the ground level spatial distribution of atmospheric pollutants for both long-term and short-term averaging times. Compliance with current air quality standards in the port area is finally evaluated and indications for port operation are provided. Some methodological aspects of the impact assessment procedure, namely those concerning the steps of emission scenario definitions and model simulations set-up at the project stage, are specifically addressed, suggesting a pragmatic approach for similar evaluations for small new ports in project.

  17. Fundamentals of Indoor Air Quality in Buildings

    EPA Pesticide Factsheets

    This module provides the fundamentals to understanding indoor air quality. It provides a rudimentary framework for understanding how indoor and outdoor sources of pollution affect the indoor air quality of buildings.

  18. Federal Interagency Committee on Indoor Air Quality

    EPA Pesticide Factsheets

    The Federal Interagency Committee on Indoor Air Quality (CIAQ), which meets three times a year, was established by Congress to coordinate the activities of the Federal Government on issues relating to Indoor Air Quality.

  19. SPATIAL PREDICTION OF AIR QUALITY DATA

    EPA Science Inventory

    Site-specific air quality monitoring data have been used extensively in both scientific and regulatory programs. As such, these data provide essential information to the public, environmental managers, and the atmospheric research community. Currently, air quality management prac...

  20. SPATIAL PREDICTION OF AIR QUALITY DATA

    EPA Science Inventory

    Site-specific air quality monitoring data have been used extensively in both scientific and regulatory programs. As such, these data provide essential information to the public, environmental managers, and the atmospheric research community. Currently, air quality management prac...

  1. Remote Sensing and Spatial Growth Modeling Coupled With Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Estes, M. G.; Crosson, W. L.; Johnson, H.; Khan, M.

    2006-05-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world's population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as

  2. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared

  3. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared

  4. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  5. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  6. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  7. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  8. 30 CFR 75.321 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away...

  9. The State of Ambient Air Quality in Two Ugandan Cities: A Pilot Cross-Sectional Spatial Assessment

    PubMed Central

    Kirenga, Bruce J.; Meng, Qingyu; van Gemert, Frederik; Aanyu-Tukamuhebwa, Hellen; Chavannes, Niels; Katamba, Achilles; Obai, Gerald; van der Molen, Thys; Schwander, Stephan; Mohsenin, Vahid

    2015-01-01

    Air pollution is one of the leading global public health risks but its magnitude in many developing countries’ cities is not known. We aimed to measure the concentration of particulate matter with aerodynamic diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) pollutants in two Ugandan cities (Kampala and Jinja). PM2.5, O3, temperature and humidity were measured with real-time monitors, while NO2 and SO2 were measured with diffusion tubes. We found that the mean concentrations of the air pollutants PM2.5, NO2, SO2 and O3 were 132.1 μg/m3, 24.9 µg/m3, 3.7 µg/m3 and 11.4 μg/m3, respectively. The mean PM2.5 concentration is 5.3 times the World Health Organization (WHO) cut-off limits while the NO2, SO2 and O3 concentrations are below WHO cut-off limits. PM2.5 levels were higher in Kampala than in Jinja (138.6 μg/m3 vs. 99.3 μg/m3) and at industrial than residential sites (152.6 μg/m3 vs. 120.5 μg/m3) but residential sites with unpaved roads also had high PM2.5 concentrations (152.6 μg/m3). In conclusion, air pollutant concentrations in Kampala and Jinja in Uganda are dangerously high. Long-term studies are needed to characterize air pollution levels during all seasons, to assess related public health impacts, and explore mitigation approaches. PMID:26184273

  10. The State of Ambient Air Quality in Two Ugandan Cities: A Pilot Cross-Sectional Spatial Assessment.

    PubMed

    Kirenga, Bruce J; Meng, Qingyu; van Gemert, Frederik; Aanyu-Tukamuhebwa, Hellen; Chavannes, Niels; Katamba, Achilles; Obai, Gerald; van der Molen, Thys; Schwander, Stephan; Mohsenin, Vahid

    2015-07-15

    Air pollution is one of the leading global public health risks but its magnitude in many developing countries' cities is not known. We aimed to measure the concentration of particulate matter with aerodynamic diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) pollutants in two Ugandan cities (Kampala and Jinja). PM2.5, O3, temperature and humidity were measured with real-time monitors, while NO2 and SO2 were measured with diffusion tubes. We found that the mean concentrations of the air pollutants PM2.5, NO2, SO2 and O3 were 132.1 μg/m3, 24.9 µg/m3, 3.7 µg/m3 and 11.4 μg/m3, respectively. The mean PM2.5 concentration is 5.3 times the World Health Organization (WHO) cut-off limits while the NO2, SO2 and O3 concentrations are below WHO cut-off limits. PM2.5 levels were higher in Kampala than in Jinja (138.6 μg/m3 vs. 99.3 μg/m3) and at industrial than residential sites (152.6 μg/m3 vs. 120.5 μg/m3) but residential sites with unpaved roads also had high PM2.5 concentrations (152.6 μg/m3). In conclusion, air pollutant concentrations in Kampala and Jinja in Uganda are dangerously high. Long-term studies are needed to characterize air pollution levels during all seasons, to assess related public health impacts, and explore mitigation approaches.

  11. Indoor Air Quality in Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  12. Workshop on indoor air quality research needs

    SciTech Connect

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  13. Temporal and spatial variation in allocating annual traffic activity across an urban region and implications for air quality assessments

    PubMed Central

    Batterman, Stuart

    2015-01-01

    Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671

  14. The Use of OMPS Near Real Time Products in Volcanic Cloud Risk Mitigation and Smoke/Dust Air Quality Assessments

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Durbin, P. B.

    2015-12-01

    Near real time (NRT) SO2 and aerosol index (AI) imagery from Aura's Ozone Monitoring Instrument (OMI) has proven invaluable in mitigating the risk posed to air traffic by SO2 and ash clouds from volcanic eruptions. The OMI products, generated as part of NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) NRT system and available through LANCE and both NOAA's NESDIS and ESA's Support to Aviation Control Service (SACS) portals, are used to monitor the current location of volcanic clouds and to provide input into Volcanic Ash (VA) advisory forecasts. NRT products have recently been developed using data from the Ozone Mapping and Profiler Suite onboard the Suomi NPP platform; they are currently being made available through the SACS portal and will shortly be incorporated into the LANCE NRT system. We will show examples of the use of OMPS NRT SO2 and AI imagery to monitor recent volcanic eruption events. We will also demonstrate the usefulness of OMPS AI imagery to detect and track dust storms and smoke from fires, and how this information can be used to forecast their impact on air quality in areas far removed from their source. Finally, we will show SO2 and AI imagery generated from our OMPS Direct Broadcast data to highlight the capability of our real time system.

  15. Linking Air Quality and Watershed Models for Environmental Assessments: Analysis of the Effects of Model-Specific Precipitation Estimates on Calculated Water Flux

    EPA Science Inventory

    Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each mod...

  16. Linking Air Quality and Watershed Models for Environmental Assessments: Analysis of the Effects of Model-Specific Precipitation Estimates on Calculated Water Flux

    EPA Science Inventory

    Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each mod...

  17. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  18. Health impact assessment of decreases in PM10 and ozone concentrations in the Mexico City Metropolitan Area: a basis for a new air quality management program.

    PubMed

    Riojas-Rodríguez, Horacio; Álamo-Hernández, Urinda; Texcalac-Sangrador, José Luis; Romieu, Isabelle

    2014-01-01

    To conduct a health impact assessment (HIA) to quantify health benefits for several PM and O3 air pollution reduction scenarios in the Mexico City Metropolitan Area (MCMA). Results from this HIA will contribute to the scientific support of the MCMA air quality management plan (PROAIRE) for the period 2011-2020. The HIA methodology consisted of four steps: 1) selection of the air pollution reduction scenarios, 2) identification of the at-risk population and health outcomes for the 2005 baseline scenario, 3) selection of concentration-response functions and 4) estimation of health impacts. Reductions of PM10 levels to 20 μg/m³ and O3 levels to 0.050ppm (98 µg/m³) would prevent 2300 and 400 annual deaths respectively. The greatest health impact was seen in the over-65 age group and in mortality due to cardiopulmonary and cardiovascular disease. Improved air quality in the MCMA could provide significant health benefits through focusing interventions by exposure zones.

  19. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  20. Metal-air battery assessment

    SciTech Connect

    Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

    1988-05-01

    The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

  1. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.

    PubMed

    Wang, N; Lyu, X P; Deng, X J; Guo, H; Deng, T; Li, Y; Yin, C Q; Li, F; Wang, S Q

    2016-12-15

    To evaluate the impact of emission control measures on the air quality in the Pearl River Delta (PRD) region of South China, statistic data including atmospheric observations, emissions and energy consumptions during 2006-2014 were analyzed, and a Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model was used for various scenario simulations. Although energy consumption doubled from 2004 to 2014 and vehicle number significantly increased from 2006 to 2014, ambient SO2, NO2 and PM10 were reduced by 66%, 20% and 24%, respectively, mainly due to emissions control efforts. In contrast, O3 increased by 19%. Model simulations of three emission control scenarios, including a baseline (a case in 2010), a CAP (a case in 2020 assuming control strength followed past control tendency) and a REF (a case in 2020 referring to the strict control measures based on recent policy/plans) were conducted to investigate the variations of air pollutants to the changes in NOx, VOCs and NH3 emissions. Although the area mean concentrations of NOx, nitrate and PM2.5 decreased under both NOx CAP (reduced by 1.8%, 0.7% and 0.2%, respectively) and NOx REF (reduced by 7.2%, 1.8% and 0.3%, respectively), a rising of PM2.5 was found in certain areas as reducing NOx emissions elevated the atmospheric oxidizability. Furthermore, scenarios with NH3 emission reductions showed that nitrate was sensitive to NH3 emissions, with decreasing percentages of 0-10.6% and 0-48% under CAP and REF, respectively. Controlling emissions of VOCs reduced PM2.5 in the southwestern PRD where severe photochemical pollution frequently occurred. It was also found that O3 formation in PRD was generally VOCs-limited while turned to be NOx-limited in the afternoon (13:00-17:00), suggesting that cutting VOCs emissions would reduce the overall O3 concentrations while mitigating NOx emissions in the afternoon could reduce the peak O3 levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ground cloud air quality effects

    NASA Technical Reports Server (NTRS)

    Brubaker, K. L.

    1980-01-01

    The effects of the ground cloud associated with launching of a large rocket on air quality are discussed. The ground cloud consists of the exhaust emitted by the rocket during the first 15 to 25 seconds following ignition and liftoff, together with a large quantity of entrained air, cooling water, dust and other debris. Immediately after formation, the ground cloud rises in the air due to the buoyant effect of its high thermal energy content. Eventually, at an altitude typically between 0.7 and 3 km, the cloud stabilizes and is carried along by the prevailing wind at that altitude. For the use of heavy lift launch vehicles small quantities of nitrogen oxides, primarily nitric oxide and nitrogen dioxide, are expected to be produced from a molecular nitrogen impurity in the fuel or liquid oxygen, or from entrainment and heating of ambient air in the hot rocket exhaust. In addition, possible impurities such as sulfur in the fuel would give rise to a corresponding amount of oxidation products such as sulfur dioxide.

  3. Assessing concentrations and health impacts of air quality management strategies: Framework for Rapid Emissions Scenario and Health impact ESTimation (FRESH-EST).

    PubMed

    Milando, Chad W; Martenies, Sheena E; Batterman, Stuart A

    2016-09-01

    In air quality management, reducing emissions from pollutant sources often forms the primary response to attaining air quality standards and guidelines. Despite the broad success of air quality management in the US, challenges remain. As examples: allocating emissions reductions among multiple sources is complex and can require many rounds of negotiation; health impacts associated with emissions, the ultimate driver for the standards, are not explicitly assessed; and long dispersion model run-times, which result from the increasing size and complexity of model inputs, limit the number of scenarios that can be evaluated, thus increasing the likelihood of missing an optimal strategy. A new modeling framework, called the "Framework for Rapid Emissions Scenario and Health impact ESTimation" (FRESH-EST), is presented to respond to these challenges. FRESH-EST estimates concentrations and health impacts of alternative emissions scenarios at the urban scale, providing efficient computations from emissions to health impacts at the Census block or other desired spatial scale. In addition, FRESH-EST can optimize emission reductions to meet specified environmental and health constraints, and a convenient user interface and graphical displays are provided to facilitate scenario evaluation. The new framework is demonstrated in an SO2 non-attainment area in southeast Michigan with two optimization strategies: the first minimizes emission reductions needed to achieve a target concentration; the second minimizes concentrations while holding constant the cumulative emissions across local sources (e.g., an emissions floor). The optimized strategies match outcomes in the proposed SO2 State Implementation Plan without the proposed stack parameter modifications or shutdowns. In addition, the lower health impacts estimated for these strategies suggest that FRESH-EST could be used to identify potentially more desirable pollution control alternatives in air quality management planning

  4. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment.

    PubMed

    Su, Jason G; Jerrett, Michael; Meng, Ying-Ying; Pickett, Melissa; Ritz, Beate

    2015-02-15

    Epidemiological studies investigating relationships between environmental exposures from air pollution and health typically use residential addresses as a single point for exposure, while environmental exposures in transit, at work, school or other locations are largely ignored. Personal exposure monitors measure individuals' exposures over time; however, current personal monitors are intrusive and cannot be operated at a large scale over an extended period of time (e.g., for a continuous three months) and can be very costly. In addition, spatial locations typically cannot be identified when only personal monitors are used. In this paper, we piloted a study that applied momentary location tracking services supplied by smart phones to identify an individual's location in space-time for three consecutive months (April 28 to July 28, 2013) using available Wi-Fi networks. Individual exposures in space-time to the traffic-related pollutants Nitrogen Oxides (NOX) were estimated by superimposing an annual mean NOX concentration surface modeled using the Land Use Regression (LUR) modeling technique. Individual's exposures were assigned to stationary (including home, work and other stationary locations) and in-transit (including commute and other travel) locations. For the individual, whose home/work addresses were known and the commute route was fixed, it was found that 95.3% of the time, the individual could be accurately identified in space-time. The ambient concentration estimated at the home location was 21.01 ppb. When indoor/outdoor infiltration, indoor sources of air pollution and time spent outdoors were taken into consideration, the individual's cumulative exposures were 28.59 ppb and 96.49 ppb, assuming a respective indoor/outdoor ratio of 1.33 and 5.00. Integrating momentary location tracking services with fixed-site field monitoring, plus indoor-outdoor air exchange calibration, makes exposure assessment of a very large population over an extended time period

  5. Environmental control: operating room air quality.

    PubMed

    Bartley, J M

    1993-01-01

    1. OR staff members should familiarize themselves with basic air handling system terminology to better manage their own environment (eg, HVAC, air changes, air balancing, HEPA filtration). A working relationship with building engineers is an important skill for the OR nurse. 2. Knowledge of the standards on which air quality in the OR is based should assist in the process of planning for improved design--as well as in monitoring existing air quality. 3. Current standards balance energy savings with air changes and high levels of filtration to achieve optimum outcomes. Recommendations from design and engineering authorities (even for implant surgery) are based on average air changes and HEPA filtration, not laminar air flow. 4. The daily, operational role of the OR staff in maintaining high air quality includes managing traffic, using low-lint barrier materials, monitoring air quality indicators, and investigating unusual variances with the engineering staff for appropriate follow-up (eg, filter changes).

  6. Metrics for the Evaluation the Utility of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Sumo, T. M.; Stockwell, W. R.

    2013-12-01

    Global warming is expected to lead to higher levels of air pollution and therefore the forecasting of both long-term and daily air quality is an important component for the assessment of the costs of climate change and its impact on human health. Some of the risks associated with poor air quality days (where the Air Pollution Index is greater than 100), include hospital visits and mortality. Accurate air quality forecasting has the potential to allow sensitive groups to take appropriate precautions. This research builds metrics for evaluating the utility of air quality forecasting in terms of its potential impacts. Our analysis of air quality models focuses on the Washington, DC/Baltimore, MD region over the summertime ozone seasons between 2010 and 2012. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our evaluation of the performance of air quality forecasts include those forecasts of ozone and particulate matter and data available from the U.S. Environmental Protection Agency (EPA)'s AIRNOW. We also examined observational ozone and particulate matter data available from Clean Air Partners. Overall the forecast models perform well for our region and time interval.

  7. An initial assessment of spatial relationships between respiratory cases, soil metal content, air quality and deprivation indicators in Glasgow, Scotland, UK: relevance to the environmental justice agenda.

    PubMed

    Morrison, S; Fordyce, F M; Scott, E Marian

    2014-04-01

    There is growing interest in links between poor health and socio-environmental inequalities (e.g. inferior housing, crime and industrial emissions) under the environmental justice agenda. The current project assessed associations between soil metal content, air pollution (NO2/PM10) and deprivation and health (respiratory case incidence) across Glasgow. This is the first time that both chemical land quality and air pollution have been assessed citywide in the context of deprivation and health for a major UK conurbation. Based on the dataset 'averages' for intermediate geography areas, generalised linear modelling of respiratory cases showed significant associations with overall soil metal concentration (p = 0.0367) and with deprivation (p < 0.0448). Of the individual soil metals, only nickel showed a significant relationship with respiratory cases (p = 0.0056). Whilst these associations could simply represent concordant lower soil metal concentrations and fewer respiratory cases in the rural versus the urban environment, they are interesting given (1) possible contributions from soil to air particulate loading and (2) known associations between airborne metals like nickel and health. This study also demonstrated a statistically significant correlation (-0.213; p < 0.05) between soil metal concentration and deprivation across Glasgow. This highlights the fact that despite numerous regeneration programmes, the legacy of environmental pollution remains in post-industrial areas of Glasgow many decades after heavy industry has declined. Further epidemiological investigations would be required to determine whether there are any causal links between soil quality and population health/well-being. However, the results of this study suggest that poor soil quality warrants greater consideration in future health and socio-environmental inequality assessments.

  8. Air Quality Analysis for PSD

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  9. Air Pollution Emissions Overview | Air Quality Planning & ...

    EPA Pesticide Factsheets

    2016-06-08

    Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.

  10. Low-Cost Air Quality Monitoring Methods to Assess Compliance With Smoke-Free Regulations: A Multi-Center Study in Six Low- and Middle-Income Countries.

    PubMed

    Jackson-Morris, Angela; Bleymann, Kayleigh; Lyall, Elaine; Aslam, Fouad; Bam, Tara Singh; Chowdhury, Ishrat; Daouda, Elhadj Adam; Espinosa, Mariana; Romo, Jonathan; Singh, Rana J; Semple, Sean

    2016-05-01

    Many low- and middle-income countries (LMICs) have enacted legislation banning smoking in public places, yet enforcement remains challenging. The aim of this study was to assess the feasibility of using a validated low-cost methodology (the Dylos DC1700) to provide objective evidence of smoke-free (SF) law compliance in hospitality venues in urban LMIC settings, where outdoor air pollution levels are generally high. Teams measured indoor fine particulate matter (PM2.5) concentrations and systematically observed smoking behavior and SF signage in a convenience sample of hospitality venues (bars, restaurants, cafes, and hotels) covered by existing SF legislation in Mexico, Pakistan, Indonesia, Chad, Bangladesh, and India. Outdoor air PM2.5 was also measured on each sampling day. Data were collected from 626 venues. Smoking was observed during almost one-third of visits with substantial differences between countries-from 5% in India to 72% in Chad. After excluding venues where other combustion sources were observed, secondhand smoke (SHS) derived PM2.5 was calculated by subtracting outdoor ambient PM2.5 concentrations from indoor measurements and was, on average, 34 µg/m(3) in venues with observed smoking-compared to an average value of 0 µg/m(3) in venues where smoking was not observed (P < .001). In over one-quarter of venues where smoking was observed the difference between indoor and outdoor PM2.5 concentrations exceeded 64 µg/m(3). This study suggests that low-cost air quality monitoring is a viable method for improving knowledge about environmental SHS and can provide indicative data on compliance with local and national SF legislation in hospitality venues in LMICs. Air quality monitoring can provide objective scientific data on SHS and air quality levels in venues to assess the effectiveness of SF laws and identify required improvements. Equipment costs and high outdoor air pollution levels have hitherto limited application in LMICs. This study tested the

  11. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  12. Indoor air quality in Virginia waterpipe cafes.

    PubMed

    Cobb, Caroline Oates; Vansickel, Andrea Rae; Blank, Melissa D; Jentink, Kade; Travers, Mark J; Eissenberg, Thomas

    2013-09-01

    A revised indoor air quality law has been implemented in Virginia to protect the public from the harmful effects of secondhand smoke exposure. This legislation contains exemptions that include allowances for smoking in a room that is structurally separated and separately ventilated. The objective of the current study was to examine the impact of this law on air quality in waterpipe cafés, as well as to compare the air quality in these cafés to restaurants that allow cigarette smoking and those where no smoking is permitted. Indoor air quality in 28 venues (17 waterpipe cafés, five cigarette smoking-permitted restaurants and six smoke-free restaurants (five with valid data)) in Virginia was assessed during 4 March to 27 May 2011. Real-time measurements of particulate matter (PM) with 2.5 μm aerodynamic diameter or smaller (PM2.5) were obtained and occupant behaviour/venue characteristics were assessed. The highest mean PM2.5 concentration was observed for waterpipe café smoking rooms (374 μg/m(3), n=17) followed by waterpipe café non-smoking rooms (123 μg/m(3), n=11), cigarette smoking-permitted restaurant smoking rooms (119 μg/m(3), n=5), cigarette smoking-permitted restaurant non-smoking rooms (26 μg/m(3), n=5) and smoke-free restaurants (9 μg/m(3), n=5). Smoking density was positively correlated with PM2.5 across smoking rooms and the smoke-free restaurants. In addition, PM2.5 was positively correlated between smoking and non-smoking rooms of venues. The PM2.5 concentrations observed among the waterpipe cafés sampled here indicated air quality in the waterpipe café smoking rooms was worse than restaurant rooms in which cigarette smoking was permitted, and state-required non-smoking rooms in waterpipe cafés may expose patrons and employees to PM2.5 concentrations above national and international air quality standards. Reducing the health risks of secondhand smoke may require smoke-free establishments in which tobacco smoking sources such as water

  13. Development and evaluation of an air quality modeling approach to assess near-field impacts of lead emissions from piston-engine aircraft operating on leaded aviation gasoline

    NASA Astrophysics Data System (ADS)

    Carr, Edward; Lee, Mark; Marin, Kristen; Holder, Christopher; Hoyer, Marion; Pedde, Meredith; Cook, Rich; Touma, Jawad

    2011-10-01

    Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality modeling approach using U.S. Environmental Protection Agency's (EPA) American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was developed and evaluated for estimating atmospheric concentrations of Pb at and near general aviation airports where leaded aviation gasoline (avgas) is used. These detailed procedures were made to accurately characterize emissions and dispersion leading to improved model performance for a pollutant with concentrations that vary rapidly across short distances. The new aspects of this work included a comprehensive Pb emission inventory that incorporated sub-daily time-in-mode (TIM) activity data for piston-engine aircraft, aircraft-induced wake turbulence, plume rise of the aircraft exhaust, and allocation of approach and climb-out emissions to 50-m increments in altitude. To evaluate the modeling approach used here, ambient Pb concentrations were measured upwind and downwind of the Santa Monica Airport (SMO) and compared to modeled air concentrations. Modeling results paired in both time and space with monitoring data showed excellent overall agreement (absolute fractional bias of 0.29 winter, 0.07 summer). The modeling results on individual days show Pb concentration gradients above the urban background concentration of 10 ng m-3 extending downwind up to 900 m from the airport, with a crosswind extent of 400 m. Three-month average modeled concentrations above the background were found to extend to a maximum distance of approximately 450 m beyond the airport property in summer and fall. Modeling results show aircraft engine “run-up” is the most important source contribution to the maximum Pb concentration. Sensitivity analysis

  14. Monitoring the impact of the indoor air quality on silver cultural heritage objects using passive and continuous corrosion rate assessments

    NASA Astrophysics Data System (ADS)

    `t Hart, Lucy; Storme, Patrick; Anaf, Willemien; Nuyts, Gert; Vanmeert, Frederik; Dorriné, Walter; Janssens, Koen; de Wael, Karolien; Schalm, Olivier

    2016-10-01

    There is a long tradition in evaluating industrial atmospheres by measuring the corrosion rate of exposed metal coupons. The heritage community also uses this method, but the interpretation of the corrosion rate often lacks clarity due to the low corrosivity in indoor museum environments. This investigation explores the possibilities and drawbacks of different silver corrosion rate assessments. The corrosion rate is determined by three approaches: (1) chemical characterization of metal coupons using analytical techniques such as electrochemical measurements, SEM-EDX, XRD, and µ-Raman spectroscopy, (2) continuous corrosion monitoring methods based on electrical resistivity loss of a corroding nm-sized metal wire and weight gain of a corroding silver coated quartz crystal, and (3) characterization of the visual degradation of the metal coupons. This study confirms that subtle differences in corrosivity between locations inside a museum can be determined on condition that the same corrosion rate assessment is used. However, the impact of the coupon orientation with respect to the prevailing direction of air circulation can be substantially larger than the impact of the coupon location.

  15. Indoor air quality and human health

    SciTech Connect

    Turiel, I.

    1985-01-01

    The air inside buildings can contain various threats to human health: cigarette smoke, fumes from fires and cookers, microbes, gases, allergens and fumes produced by household products or building materials. Higher standards of insulation and draught-proofing and more use of air conditioning can increase the problems. This book provides a summary of indoor air quality problems in homes, offices and public buildings. Contents: Preface; Introduction; Formaledhyde and other household contaminants; Radon; Particulates; Combustion products; Involuntary smoking; Energy-efficient buildings and indoor air quality; Control of indoor air pollutants; Indoor air quality problems in office buildings; Legal and regulatory issues; Appendices; Sources and suggested reading; Glossary; Index.

  16. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  17. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  18. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable

  19. Probe into gaseous pollution and assessment of air quality benefit under sector dependent emission control strategies over megacities in Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, Guoshun; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China's 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg m-3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg m-3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-h standard (160 μg m-3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable

  20. Review of the national ambient air quality standards for carbon monoxide assessment of scientific and technical information. OAQPS staff paper. Final report

    SciTech Connect

    McKee, D.J.; McCurdy, T.R.; Richmond, H.M.

    1992-08-01

    The paper evaluates and interprets the updated scientific and technical information that EPA staff believes is most relevant to the review of primary (health) national ambient air quality standards for carbon monoxide. The assessment is intended to bridge the gap between the scientific review in the EPA criteria document for carbon monoxide and the judgements required of the Administrator in setting ambient air quality standards for carbon monoxide. The major recommendations of the staff paper include the following: (1) There continues to be a need to control ambient levels of carbon monoxide to protect public health; (2) Both 1-hour and 8-hour averaging times should be retained for primary carbon monoxide standards; (3) Exposure analysis results indicate relatively few individuals with angina pectoris would experience carboxyhemoglobin (COHb) levels of 2.1% or greater when exposed to carbon monoxide levels in ambient air only if current standards are attained; (4) Public health risk for COHb levels of 2.0% or lower appears to be small, if any; (5) Current 1-hour (35 ppm) and 8-hour (9 ppm) standards for carbon monoxide should be reaffirmed.

  1. EPA Pushing Improved Air Quality in Schools.

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2002-01-01

    Discusses how, in response to the growing problem of poor air quality in schools, the Environmental Protection Agency (EPA) has set new voluntary air-quality guidelines for schools. Addresses common air-related irritants; successful efforts at Guerrero Elementary School in Mesa, Arizona; preventive maintenance; and a sample of the EPA's…

  2. EPA Pushing Improved Air Quality in Schools.

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2002-01-01

    Discusses how, in response to the growing problem of poor air quality in schools, the Environmental Protection Agency (EPA) has set new voluntary air-quality guidelines for schools. Addresses common air-related irritants; successful efforts at Guerrero Elementary School in Mesa, Arizona; preventive maintenance; and a sample of the EPA's…

  3. Air Quality Criteria for Particulate Matter.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  4. MODELING ASSESSMENT OF THE IMPACT OF NITROGEN OXIDES EMISSION REDUCTIONS ON OZONE AIR QUALITY IN THE EASTERN UNITED STATES: OFFSETTING INCREASES IN ENERGY USE

    EPA Science Inventory

    The objective of this study is to examine changes in ambient ozone concentrations estimated by a photochemical air quality model in response to the NOx emission reductions imposed on the utility sector. To accomplish this task, CMAQ air quality model simulations were performe...

  5. MODELING ASSESSMENT OF THE IMPACT OF NITROGEN OXIDES EMISSION REDUCTIONS ON OZONE AIR QUALITY IN THE EASTERN UNITED STATES: OFFSETTING INCREASES IN ENERGY USE

    EPA Science Inventory

    The objective of this study is to examine changes in ambient ozone concentrations estimated by a photochemical air quality model in response to the NOx emission reductions imposed on the utility sector. To accomplish this task, CMAQ air quality model simulations were performe...

  6. 78 FR 63934 - Approval of Air Quality Implementation Plans; California; El Dorado County Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... AGENCY 40 CFR Part 52 Approval of Air Quality Implementation Plans; California; El Dorado County Air... Plan (SIP) revision submitted by California for the El Dorado County Air Quality Management District... Ambient Air Quality Standards (NAAQS). We are proposing to approve the submitted SIP revision under...

  7. Indoor air quality in hair salons: Screening of volatile organic compounds and indicators based on health risk assessment

    NASA Astrophysics Data System (ADS)

    de Gennaro, Gianluigi; de Gennaro, Lucrezia; Mazzone, Antonio; Porcelli, Francesca; Tutino, Maria

    2014-02-01

    Volatile organic compounds (VOCs) are common ingredients in cosmetic products which can impact human health. This study monitored 12 hairdressing salons in order to assess the individual exposure of the people working in or frequenting these environments as well as identify the main products or activities responsible for the presence of these compounds. In each site halogenated, oxygenated, aliphatic and aromatic compounds were monitored during the work week with diffusive samplers suitable for thermal desorption and analysed using GC-MS. The study of indoor-outdoor concentration ratios and a knowledge of the composition of most of the products, whether ecological or traditional, used in the hair salons verified the presence of compounds linked to hairdressing activities. In particular, compounds widely used in products for hair care as spray lacquer and foam (butane), shampoo, balms, hair masks and oils (camphene, camphor, limonene, eucalyptol, alpha pinene, 1-methoxy-2-propanol, n-butanol and menthol), and hair dye (benzyl alcohol, isopropanol, limonene, hexane and methyl ethyl ketone) were found at much higher levels inside rather than outside the salons (mean I/O > 10). The importance of this finding is linked to the potential health hazards of some of the VOCs detected. Integrated indicators of health risk were proposed in this study to assess the criticality level and rank the investigated environments accordingly. The results of this study indicate that the level of VOC concentrations was most affected by the type of products used while the size of the environment, the efficiency of air exchange and the number of customers had less impact on those levels.

  8. Air quality analysis and related risk assessment for the Bonneville Power Administration's Resource Program Environmental Impact Statement

    SciTech Connect

    Glantz, C S; Burk, K W; Driver, C J; Liljegren, J C; Neitzel, D A; Schwartz, M N; Dana, M T; Laws, G L; Mahoney, L A; Rhoads, K

    1992-04-01

    The Bonneville Power Administration (BPA) is considering 12 different alternatives for acquiring energy resources over the next 20 years. Each of the alternatives utilizes a full range of energy resources (e.g., coal, cogeneration, conservation, and nuclear); however, individual alternatives place greater emphases on different types of power-producing resources and employ different timetables for implementing these resources. The environmental impacts that would result from the implementation of each alternative and the economic valuations of these impacts, will be an important consideration in the alternative selection process. In this report we discuss the methods used to estimate environmental impacts from the resource alternatives. We focus on pollutant emissions rates, ground-level air concentrations of basic criteria pollutants, the acidity of rain, particulate deposition, ozone concentrations, visibility attenuation, global warming, human health effects, agricultural and forest impacts, and wildlife impacts. For this study, pollutant emission rates are computed by processing BPA data on power production and associated pollutant emissions. The assessment of human health effects from ozone indicated little variation between the resource alternatives. Impacts on plants, crops, and wildlife populations from power plant emissions are projected to be minimal for all resource alternatives.

  9. Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Tyagi, Sushil K; Mor, Suman; Van Grieken, René

    2006-04-01

    Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM(10), CO, SO(2) and NO(x)) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO(2) and CO concentrations, while the NO(x) level was increased in comparison to those before the implementation of CNG. Further, SPM, PM(10), and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi.

  10. Biogenic organic emissions, air quality and climate

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2015-12-01

    Living organisms produce copious amounts of a diverse array of metabolites including many volatile organic compounds that are released into the atmosphere. These compounds participate in numerous chemical reactions that influence the atmospheric abundance of important air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. The production and release of these organics are strongly influenced by environmental conditions including air pollution, temperature, solar radiation, and water availability and they are highly sensitive to stress and extreme events. As a result, releases of biogenic organics to the atmosphere have an impact on, and are sensitive to, air quality and climate leading to potential feedback couplings. Their role in linking air quality and climate is conceptually clear but an accurate quantitative representation is needed for predictive models. Progress towards this goal will be presented including numerical model development and assessments of the predictive capability of the Model of Emission of Gases and Aerosols from Nature (MEGAN). Recent studies of processes controlling the magnitude and variations in biogenic organic emissions will be described and observations of their impact on atmospheric composition will be shown. Recent advances and priorities for future research will be discussed including laboratory process studies, long-term measurements, multi-scale regional studies, global satellite observations, and the development of a next generation model for simulating land-atmosphere chemical exchange.

  11. Region 7 States Air Quality Monitoring Plans - Kansas

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  12. Region 7 States Air Quality Monitoring Plans - Nebraska

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  13. Region 7 States Air Quality Monitoring Plans - Missouri

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  14. Bayesian Analysis of a Reduced-Form Air Quality Model

    EPA Science Inventory

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  15. Bayesian Analysis of a Reduced-Form Air Quality Model

    EPA Science Inventory

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  16. Region 7 States Air Quality Monitoring Plans - Iowa

    EPA Pesticide Factsheets

    National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo

  17. Urban Air Quality Forecasting in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Menard, Sylvain; Cousineau, Sophie; Stroud, Craig; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada has been providing air quality (AQ) forecasts for major Canadian urban centers since 2001. Over this period, the Canadian AQ Forecast Program has expanded and evolved. It currently uses the Regional Air Quality Deterministic Prediction System (RAQDPS) modelling framework. At the heart of the RAQDPS is the GEM-MACH model, an on-line coupled meteorology‒chemistry model configured for a North American domain with 10 km horizontal grid spacing and 80 vertical levels. A statistical post-processing model (UMOS-AQ) is then applied to the RAQDPS hourly forecasts for locations with AQ monitors to reduce point forecast bias and error. These outputs provide the primary guidance from which operational meteorologists disseminate Air Quality Health Index (AQHI) forecasts to the public for major urban centres across Canada. During the 2015 summer Pan Am and Parapan Am Games, which were held in Ontario, Canada, an experimental version of the RAQDPS at 2.5 km horizontal grid spacing was run for a domain over the greater Toronto area. Currently, there is ongoing research to develop and assess AQ systems run at 1 km resolution. This presentation will show analyses of operational AQ forecast performance for several pollutants over the last few years in major Canadian urban centres such as Toronto, Montreal, Vancouver, Ottawa, and Calgary. Trends in observed pollution along with short- and long-term development plans for urban AQ forecasting will also be presented.

  18. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution

  19. Air Quality Monitoring And Forecasting In China

    NASA Astrophysics Data System (ADS)

    Van Der A, Ronald; Mijling, Bas; De Smedt, Isabelle; Van Roozendael, Michel; Kelder, Hennie

    2010-10-01

    For the last decade the industrial activity of China has been growing at rapid pace, bringing economic wealth to its 1300 million inhabitants, but also generating an unprecedented level of air pollution. This deteriorates the air quality of the densely populated and industrialized areas such as Beijing, Shanghai and the Pearl River Delta, and increases the background pollution levels world-wide [1]. The AMFIC project aims at monitoring and forecasting the air quality in China by using satellite observations and model simulations, together with ground observations in China. The combination of these instruments and tools offers a unique possibility to investigate trends in air pollution and the effectiveness of air quality policy.

  20. Performance assessment of a solar-powered air quality and weather station placed on a school rooftop in Hong Kong

    EPA Science Inventory

    Emerging air pollution measurement technologies that require minimal infrastructure to deploy may lead to new insights on air pollution spatial variability in urban areas. Through a collaboration between the USEPA and HKEPD, this study evaluates the performance of a compact, roo...

  1. Performance assessment of a solar-powered air quality and weather station placed on a school rooftop in Hong Kong

    EPA Science Inventory

    Emerging air pollution measurement technologies that require minimal infrastructure to deploy may lead to new insights on air pollution spatial variability in urban areas. Through a collaboration between the USEPA and HKEPD, this study evaluates the performance of a compact, roo...

  2. Indoor air quality: A psychosocial perspective

    SciTech Connect

    Boxer, P.A. )

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  3. Indoor air quality: a psychosocial perspective.

    PubMed

    Boxer, P A

    1990-05-01

    The incidence of indoor air quality problems has increased dramatically over the past decade. Investigation of these problems has yielded a definitive cause in only one third of the cases. Psychosocial factors may play a key role in the development and propagation of symptoms attributed to poor indoor air quality. Guidelines for managing indoor air quality problems from the organizational perspective are based upon psychosocial principles and elements of risk perception.

  4. The Economic Value of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with

  5. Air Quality Monitoring and Sensor Technologies

    EPA Pesticide Factsheets

    EPA scientist Ron Williams presented on the features, examination, application, examples, and data quality of continuous monitoring study designs at EPA's Community Air Monitoring Training in July 2015.

  6. Managing Air Quality - Ongoing Evaluation of Progress

    EPA Pesticide Factsheets

    Describes the importance of evaluating if air quality programs are achieving the desired results to inform environmental program managers, regulated industry and the public, and provides EPA examples.

  7. WSN based indoor air quality monitoring in classrooms

    NASA Astrophysics Data System (ADS)

    Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.

    2017-03-01

    Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.

  8. Air Quality Index (AQI) -- A Guide to Air Quality and Your Health

    MedlinePlus

    ... the AQI value, the greater the level of air pollution and the greater the health concern. For example, ... to 50. Air quality is considered satisfactory, and air pollution poses little or no risk. "Moderate" AQI is ...

  9. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  10. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Hogrefe, Christian; Mathur, Rohit; Pleim, Jonathan; Xing, Jia; Wong, David; Gilliam, Robert; Pouliot, George; Wei, Chao

    2016-05-01

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.

  11. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.1929 Section 52.1929 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) Regulation for preventing significant deterioration of air... preventing significant deterioration of air quality....

  12. Biological air filter for air-quality control

    NASA Astrophysics Data System (ADS)

    van Ras, Niels; Krooneman, Janneke; Ogink, Nico; Willers, Hans; D'Amico, Arnaldo; di Natale, Corrado; Godia, F.; Albiol, J.; Perez, J.; Martinez, N.; Dixon, Mike; Llewellyn, David; Eckhard, Fir; Zona, G.; Fachecci, L.; Kraakman, Bart; Demey, Dries; Michel, Noelle; Darlington, Alan

    2005-10-01

    Biological air filtration is a promising technique for air-quality control in closed environments in space and on Earth, and it offers several advantages over existing techniques. However, to apply it in these environments, specific criteria have to be met. A concept for biological air filtration in closed environments was developed and tested by an international team of specialists. Several model systems for closed environments in space and on Earth were used as a source of contaminated air. Conventional and new analytical techniques were used to determine odour composition and removal efficiency of the filter, including an "electronic nose". The results show that the developed biological air filter is suitable for treating contaminated air in closed environments. The developed electronic nose was shown to be a promising method for air-quality monitoring.

  13. Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal.

    PubMed

    Ribeiro, Manuel C; Pinho, P; Branquinho, C; Llop, Esteve; Pereira, Maria J

    2016-08-15

    In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n=227) and exposure data were collected in Sines (Portugal) during 2007-2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n=1), we used lichen data as an ecological indicator of air quality (n=83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their

  14. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the

  15. 78 FR 30770 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air... National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM). EPA is approving a... Implementation Plan at 35 Illinois Administrative Code part 243, which updates National Ambient Air...

  16. Trends in air quality in the UK.

    PubMed

    Ayres, J G

    1997-01-01

    Many problems are encountered when assessing trends in air quality, including changes in methods of measuring pollutants over time, different sampling timeframes, and the number and distribution of monitoring sites. Nevertheless, reasonable projections have been established for trends in sulphur dioxide (SO2), particulate matter, nitrogen dioxide (NO2), and ozone levels in the UK, which allow some estimate of future levels. The major source of SO2 is coal-fired power stations. Since the Clean Air Act of 1956, SO2 levels have decreased substantially. Nevertheless, a small but progressive increase in SO2 emissions is predicted over the next 15 years, but this is unlikely to exceed current UK air quality standards on a frequent basis. Particulate pollution (as black smoke) has also decreased dramatically since the 1960s, when the main source was fossil fuel burning. In the 1990s, the main source of particle emissions is from heavy goods vehicles. If measures currently under consideration in the UK are implemented, annual emissions may decrease to below 60 kT over the next decade, but a progressive increase is predicted thereafter. No significant changes have occurred with respect to oxides of nitrogen (NOx) and ozone levels over the last 20 years. It is predicted that NOx emissions will decline in the future due in part to the introduction of catalytic converters, while trends in ozone levels will depend on substrate supply (NOx and hydrocarbons) and weather conditions. Despite short-term trends downwards in air pollutant levels, trends may reverse in the next millennium, and continued efforts must be made to develop new ways of reducing ambient air pollutant levels.

  17. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  18. Biodiversity, air quality and human health

    Treesearch

    David J. Nowak; Sarah Jovan; Christina Branquinho; Sofia Augusto; Manuel C. Ribeiro; Conor E. Kretsch

    2015-01-01

    Air pollution is a significant problem in cities across the world. It affects human health and well-being, ecosystem health, crops, climate, visibility and human-made materials. Health effects related to air pollution include its impact on the pulmonary, cardiac, vascular and neurological systems (Section 2). Trees affect air quality through a number of means (Section...

  19. Air quality on biomass harvesting operations

    Treesearch

    Dana Mitchell

    2011-01-01

    The working environment around logging operations can be very dusty. But, air quality around logging operations is not well documented. Equipment movements and trafficking on the landing can cause dust to rise into the air. The addition of a biomass chipper creates different air flow patterns and may stir up additional dust. This project addresses two topics related to...

  20. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP)...

  1. 78 FR 30829 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... current national ambient air quality standards (NAAQS) for ozone, lead, and particulate matter. EPA...

  2. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under...

  3. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule... air quality standards in a new chapter of rules and adjusted the rule references accordingly...

  4. Introduction to Indoor Air Quality

    MedlinePlus

    ... as conditions caused by outdoor impacts (such as climate change). Many reports and studies indicate that the following ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup IAQ at Home Indoor airPLUS Mold ...

  5. Current Indoor Air Quality in Japan.

    PubMed

    Jinno, Hideto

    2016-01-01

    People spend more than two thirds of their daily time indoors. Hence, maintaining a healthy indoor environment is indispensable for the prevention of building related illness. In Japan, guidelines for indoor air quality have been established for 13 volatile/semi-volatile organic compounds (VOCs/SVOCs). These guidelines are now under revision by the Committee on Sick House Syndrome: Indoor Air Pollution. In order to gain information on the current indoor air pollutants and their levels, we carried out a nation-wide survey of VOCs and aldehydes in indoor residential air during 2012-2013. In this review, I concisely summarized the current indoor air quality of Japan.

  6. Breaking the Mold on Air Quality.

    ERIC Educational Resources Information Center

    NEA Today, 2001

    2001-01-01

    Indoor air quality is a growing problem in aging school buildings. The Environmental Protection Agency (EPA) offers an Indoor Air Quality Tools for Schools kit which is being used at schools nationwide to improve school maintenance. Profiles an aging school in Connecticut in which teachers were becoming ill to illustrate the use of the kit to…

  7. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  8. Agricultural Air Quality: A USDA Perspective

    USDA-ARS?s Scientific Manuscript database

    Agricultural air quality concerns have broadened recently because of the increasing urban-rural interface; greater understanding of the impact of air quality on health, visibility and safety, and coincident regulation increases; and increasing size and density of some farming operations. The USDA h...

  9. Indoor Air Quality: Maryland Public Schools.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, College Park. Office of Administration and Finance.

    Less than adequate indoor air quality in schools can lead to a higher risk of health problems, an increase in student and teacher absenteeism, diminished learning, and even hazardous conditions. An indoor air quality program that addresses the planning, design, maintenance, and operation of public school buildings should be implemented at the…

  10. Source Emissions in Multipollutant Air Quality Management

    EPA Science Inventory

    Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...

  11. Indoor Air Quality: A Guide for Educators.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Indoor air quality is a major concern for educators involved in the development of new school facilities, or the remodeling and maintenance of existing ones. This guide addresses the issue of air quality, the health concerns involved, and procedures for minimizing the impact of pollutants in the school environment. It defines common indoor air…

  12. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  13. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  14. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  15. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  16. Breaking the Mold on Air Quality.

    ERIC Educational Resources Information Center

    NEA Today, 2001

    2001-01-01

    Indoor air quality is a growing problem in aging school buildings. The Environmental Protection Agency (EPA) offers an Indoor Air Quality Tools for Schools kit which is being used at schools nationwide to improve school maintenance. Profiles an aging school in Connecticut in which teachers were becoming ill to illustrate the use of the kit to…

  17. 40 CFR 240.205 - Air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  18. Communicating Instantaneous Air Quality Data: Pilot Project

    EPA Pesticide Factsheets

    Communicating Instantaneous Air Quality Data: Pilot ProjectEPA is launching a pilot project to test a new tool for making instantaneous outdoor air quality data useful for the public. The new “sensor scale” is designed to be used with sensors

  19. Source Emissions in Multipollutant Air Quality Management

    EPA Science Inventory

    Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...

  20. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  1. An assessment of mineral dust impact from China and Mongolia on air quality in the Seoul Metropolitan Area with a full year simulation for 2009

    NASA Astrophysics Data System (ADS)

    Koo, Youn-Seo; Kim, Sung-Tae; Yun, Hui-Young; Choi, Dae-Ryun; Cho, Jin-Sik

    2013-04-01

    Asian mineral dust from Gobi Desert, sand desert, Loess Plateau and barren mixed soil in Northern China and Mongolia has a major impact on the air quality in the SMA (Seoul Metropolitan Area). These mineral aerosols increase PM10 concentration over 1000 μg/m3 during the dust storm event and they also increase PM10 background concentrations as the fugitive soil dust during the non-dust period in Korea. The mineral dust modifies the formation mechanism of inorganic aerosols via the chemical interactions with atmospheric gas species. The PM10 prediction by a regional chemical transport model without the dust emission shows an intrinsic tendency to underestimation according to previous studies in this region, especially for the soil originated coarse PM. This is partially due to the uncertainty of fugitive dust emissions. The US EPA Models-3/CMAQ (Community Multiscale Air Quality model) v5.0 by modifying the fugitive dust module was used to simulate the chemical transport including the mineral aerosols. The Asian Dust Aerosol Model 2 (ADAM2) and Westpal schemes for the dust emission with CMAQ were tested for their applicability in assessing the impact of mineral dust on air quality in the SMA for a full year of 2009. The performance of available dust emission schemes to depict not only the high PM10 concentrations and onset time for the dust storm period but also the level of background PM10 concentration for the non-dust event were evaluated against the surface measurements of and satellite measurements over East Asia. The surface observations were from EANET (Acid Deposition Monitoring NETwork in East Asia), API (Air Pollution Index) monitoring sites in China and the intensive monitoring stations in the SMA. The results show that the CMAQ predictions of PM10 with ADAM2 and Westpal scheme are relatively in a good agreement with the observations and influence of mineral dusts on the sulfate and nitrate formations is significant when the dust mixes with anthropogenic

  2. Using synoptic classification and trajectory analysis to assess air quality during the winter heating period in Ürümqi, China

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Wang, Yuesi; Sun, Yang; Li, Yuanyuan

    2012-03-01

    Synoptic patterns identified by an automated procedure employing principal-component analysis and a two-stage cluster analysis, and backward trajectory analysis clustered by the HYSPLIT4.9 model were used to examine air quality patterns over Ürümqi, China, one of the most heavily polluted cities in the world. Six synoptic patterns representing different atmospheric circulation patterns and air-mass characteristics were classified during the winter heating periods from 2001 to 2008, and seven trajectory clusters representing different paths of air masses arriving at Ürümqi were calculated during the winter heating periods from 2005 to 2008. Then air quality was evaluated using these two approaches, and significant variations were found across both synoptic patterns and trajectory clusters. The heaviest air-pollution episodes occurred when Ürümqi was either in an extremely cold, strong anticyclone or at the front of a migrating cyclone. Both conditions were characterized by with light winds, cold, wet surface air, and relatively dry upper air. Ürümqi was predominately influenced by air masses from the southwest and from local areas. Air pollution index (API) levels were highest for air masses originating from the southwest with a longer path or for the local area, because of transport from semi-desert/desert regions by strong winds and because of local heavy pollution emissions, respectively. The interactions between these two analytical approaches showed that poor diffusion conditions, together with local circulation, enhanced air pollution, besides, regional air-mass transport caused by strong winds contributed to serious air quality under relatively good diffusion conditions.

  3. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-ll1 (UF2) in June 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2003-01-01

    The toxicological assessments of grab sample canisters (GSCs) and 2 solid sorbent air samplers (SSASs) returned aboard STS-111 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSCs were 86-106% and 62% to 136 % from the SSASs; 2 tubes with low surrogate recoveries were not reported. Pressure tracking indicated no leaks in the canisters during analysis. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), Its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. The table shows that the air quality in general was acceptable for crew respiration; however, certain values shown in bold require further explanation. The 1.05 T value on 2/28/02 was caused by an unusually high measurement ofhexamethylcyc1otrisiloxane (T value = 0.50), which is not a concern. The MPLM T value of 1.42 and the alcohol level of 7.5 mg/cu m were due to an overall polluted atmosphere, which was expected at first entry. The major T-value component was carbon monoxide at a contribution of 0.44 units. Since the crew was only exposed momentarily to the polluted atmosphere, no health effects are expected. The formaldehyde value of 0.060 mg/cu m found in the Lab sample from 3/27/02 is cause for concern because the Lab consistently shows higher concentrations of formaldehyde than the SM and occasionally the concentrations are above the acceptable guideline. Levels of OFP have remained low, suggesting

  4. Air Quality Monitoring: Risk-Based Choices

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  5. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  6. Indoor air quality in a dentistry clinic.

    PubMed

    Helmis, C G; Tzoutzas, J; Flocas, H A; Halios, C H; Stathopoulou, O I; Assimakopoulos, V D; Panis, V; Apostolatou, M; Sgouros, G; Adam, E

    2007-05-15

    The purpose of this work is to assess, both experimentally and theoretically the status of air quality in a dentistry clinic of the Athens University Dentistry Faculty with respect to chemical pollutants and identify the indoor sources associated with dental activities. Total VOCs, CO(2), PM(10), PM(2.5), NO(x) and SO(2) were measured over a period of approximately three months in a selected dentistry clinic. High pollution levels during the operation hours regarding CO(2), total VOCs and Particulate Matter were found, while in the non-working periods lower levels were recorded. On the contrary, NO(x) and SO(2) remained at low levels for the whole experimental period. These conditions were associated with the number of occupants, the nature of the dental clinical procedures, the materials used and the ventilation schemes, which lead to high concentrations, far above the limits that are set by international organizations and concern human exposure. The indoor environmental conditions were investigated using the Computational Fluid Dynamics (CFD) model PHOENICS for inert gases simulation. The results revealed diagonal temperature stratification and low air velocities leading to pollution stratification, accompanied by accumulation of inert gaseous species in certain areas of the room. Different schemes of natural ventilation were also applied in order to examine their effect on the indoor comfort conditions for the occupants, in terms of air renewal and double cross ventilation was found to be most effective. The relative contribution of the indoor sources, which are mainly associated with indoor activities, was assessed by application of the Multi Chamber Indoor Air Quality Model (MIAQ) to the experimental data. It was found that deposition onto indoor surfaces is an important removal mechanism while a great amount of particulate matter emitted in the Clinic burdened severely the indoor air quality. The natural ventilation of the room seemed to reduce the levels of

  7. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  8. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  9. Health Impact Assessment of a Predicted Air Quality Change by Moving Traffic from an Urban Ring Road into a Tunnel. The Case of Antwerp, Belgium

    PubMed Central

    Van Brusselen, Daan; Arrazola de Oñate, Wouter; Maiheu, Bino; Vranckx, Stijn; Lefebvre, Wouter; Janssen, Stijn; Nawrot, Tim S; Nemery, Ben; Avonts, Dirk

    2016-01-01

    Background The Antwerp ring road has a traffic density of 300,000 vehicles per day and borders the city center. The ‘Ringland project’ aims to change the current ‘open air ring road’ into a ‘filtered tunneled ring road’, putting the entire urban ring road into a tunnel and thus filtering air pollution. We conducted a health impact assessment (HIA) to quantify the possible benefit of a ‘filtered tunneled ring road’, as compared to the ‘open air ring road’ scenario, on air quality and its long-term health effects. Materials and Methods We modeled the change in annual ambient PM2.5 and NO2 concentrations by covering 15 kilometers of the Antwerp ring road in high resolution grids using the RIO-IFDM street canyon model. The exposure-response coefficients used were derived from a literature review: all-cause mortality, life expectancy, cardiopulmonary diseases and childhood Forced Vital Capacity development (FVC). Results Our model predicts changes between -1.5 and +2 μg/m³ in PM2.5 within a 1,500 meter radius around the ring road, for the ‘filtered tunneled ring road’ scenario as compared to an ‘open air ring road’. These estimated annual changes were plotted against the population exposed to these differences. The calculated change of PM2.5 is associated with an expected annual decrease of 21 deaths (95% CI 7 to 41). This corresponds with 11.5 deaths avoided per 100,000 inhabitants (95% CI 3.9–23) in the first 500 meters around the ring road every year. Of 356 schools in a 1,500 meter perimeter around the ring road changes between -10 NO2 and + 0.17 μg/m³ were found, corresponding to FVC improvement of between 3 and 64ml among school-age children. The predicted decline in lung cancer mortality and incidence of acute myocardial infarction were both only 0.1 per 100,000 inhabitants or less. Conclusion The expected change in PM2,5 and NO2 by covering the entire urban ring road in Antwerp is associated with considerable health gains for

  10. Health Impact Assessment of a Predicted Air Quality Change by Moving Traffic from an Urban Ring Road into a Tunnel. The Case of Antwerp, Belgium.

    PubMed

    Van Brusselen, Daan; Arrazola de Oñate, Wouter; Maiheu, Bino; Vranckx, Stijn; Lefebvre, Wouter; Janssen, Stijn; Nawrot, Tim S; Nemery, Ben; Avonts, Dirk

    2016-01-01

    The Antwerp ring road has a traffic density of 300,000 vehicles per day and borders the city center. The 'Ringland project' aims to change the current 'open air ring road' into a 'filtered tunneled ring road', putting the entire urban ring road into a tunnel and thus filtering air pollution. We conducted a health impact assessment (HIA) to quantify the possible benefit of a 'filtered tunneled ring road', as compared to the 'open air ring road' scenario, on air quality and its long-term health effects. We modeled the change in annual ambient PM2.5 and NO2 concentrations by covering 15 kilometers of the Antwerp ring road in high resolution grids using the RIO-IFDM street canyon model. The exposure-response coefficients used were derived from a literature review: all-cause mortality, life expectancy, cardiopulmonary diseases and childhood Forced Vital Capacity development (FVC). Our model predicts changes between -1.5 and +2 μg/m³ in PM2.5 within a 1,500 meter radius around the ring road, for the 'filtered tunneled ring road' scenario as compared to an 'open air ring road'. These estimated annual changes were plotted against the population exposed to these differences. The calculated change of PM2.5 is associated with an expected annual decrease of 21 deaths (95% CI 7 to 41). This corresponds with 11.5 deaths avoided per 100,000 inhabitants (95% CI 3.9-23) in the first 500 meters around the ring road every year. Of 356 schools in a 1,500 meter perimeter around the ring road changes between -10 NO2 and + 0.17 μg/m³ were found, corresponding to FVC improvement of between 3 and 64ml among school-age children. The predicted decline in lung cancer mortality and incidence of acute myocardial infarction were both only 0.1 per 100,000 inhabitants or less. The expected change in PM2,5 and NO2 by covering the entire urban ring road in Antwerp is associated with considerable health gains for the approximate 352,000 inhabitants living in a 1,500 meter perimeter around the

  11. Air Quality | Air Quality Planning & Standards | US EPA

    EPA Pesticide Factsheets

    2016-06-08

    Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.

  12. Managing Air Quality - Control Strategies to Achieve Air Pollution Reduction

    EPA Pesticide Factsheets

    Considerations in designing an effective control strategy related to air quality, controlling pollution sources, need for regional or national controls, steps to developing a control strategy, and additional EPA resources.

  13. Deep learning architecture for air quality predictions.

    PubMed

    Li, Xiang; Peng, Ling; Hu, Yuan; Shao, Jing; Chi, Tianhe

    2016-11-01

    With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.

  14. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC).

    PubMed

    Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M

    2014-12-01

    In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.

  15. Clearing the air: a model for investigating indoor air quality in Texas schools.

    PubMed

    Petronella, Sharon A; Thomas, Rachel; Stone, James A; Goldblum, Randall M; Brooks, Edward G

    2005-06-01

    This pilot project focused on the assessment of indoor air quality at a local high school in Galveston, Texas, using methods based on guidelines for the U.S. Environmental Protection Agency's Indoor Air Quality Tools for Schools program. Tools for Schools, developed for evaluating and ensuring acceptable air quality for schools, takes a low-cost, minimal-involvement, primarily educational approach. The authors also compared the findings from this approach with the results of an air-sampling program. The overall goal was to determine if use of Tools for Schools was sufficient to identify conditions with the potential to cause adverse health effects. The primary objectives were to 1) establish an indoor air quality committee for the school to implement Tools for Schools assessments and management strategies, 2) collect air quality data in high-risk areas identified within the school by the indoor air quality committee, 3) collect outdoor air quality data at or in close proximity to the school, and 4) develop methods and instruments for assessing environmental risks associated with daily school attendance. Data were gathered on levels of formaldehyde and other volatile organic compounds (VOCs), ozone, particulate matter (PM10), mold, relative humidity, and temperature. Data values for each sampled pollutant were compared with federal standards, recommended values established by the American Conference of Governmental Industrial Hygienists for non-industrial populations, and effects screening levels developed by the Texas Commission on Environmental Quality. Levels of all VOCs except formaldehyde were found to be well within guidelines, as were ozone and particulate-matter levels. Mold, however, was widespread, including both common species and species associated with allergy and asthma, such as Aspergillus and Alternaria. In general, Tools for Schools provides an excellent foundation for a school indoor air quality program, although the authors did find it necessary

  16. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  17. Humidification and perceived indoor air quality in the office environment.

    PubMed Central

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P < 0.001). The differences in odour and stuffiness between humidified and non-humidified air were greater for women and for non-smokers, and greatest differences were in the youngest age group, and least in the oldest age group. The differences were not significant. CONCLUSIONS: An untrained panel of 20 members is able to differentiate a slight malodour and stuffiness in indoor air. The results suggest that steam air humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  18. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  19. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  20. Air quality inside subway metro indoor environment worldwide: A review.

    PubMed

    Xu, Bin; Hao, Jinliang

    2017-10-01

    The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A joint modelling exercise designed to assess the respective impact of emission changes and meteorological variability on the observed air quality trends in major urban hotspots.

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Bessagnet, Bertrand; Dangiola, Ariela; D'Isidoro, Massimo; Gauss, Michael; Granier, Claire; Hodnebrog, Øivind; Jakobs, Hermann; Kanakidou, Maria; Khokhar, Fahim; Law, Kathy; Maurizi, Alberto; Meleux, Frederik; Memmesheimer, Michael; Nyiri, Agnes; Rouil, Laurence; Stordal, Frode; Tampieri, Francesco

    2010-05-01

    With the growth of urban agglomerations, assessing the drivers of variability of air quality in and around the main anthropogenic emission hotspots has become a major societal concern as well as a scientific challenge. These drivers include emission changes and meteorological variability; both of them can be investigated by means of numerical modelling of trends over the past few years. A collaborative effort has been developed in the framework of the CityZen European project to address this question. Several chemistry and transport models (CTMs) are deployed in this activity: four regional models (BOLCHEM, CHIMERE, EMEP and EURAD) and three global models (CTM2, MOZART, and TM4). The period from 1998 to 2007 has been selected for the historic reconstruction. The focus for the present preliminary presentation is Europe. A consistent set of emissions is used by all partners (EMEP for the European domain and IPCC-AR5 beyond) while a variety of meteorological forcing is used to gain robustness in the ensemble spread amongst models. The results of this experiment will be investigated to address the following questions: - Is the envelope of models able to reproduce the observed trends of the key chemical constituents? - How the variability amongst models changes in time and space and what does it tell us about the processes driving the observed trends? - Did chemical regimes and aerosol formation processes changed in selected hotspots? Answering the above questions will contribute to fulfil the ultimate goal of the present study: distinguishing the respective contribution of meteorological variability and emissions changes on air quality trends in major anthropogenic emissions hotspots.

  2. “A Modeling Framework for Improved Characterization of Near-Road Air Quality at Fine Scales for Nationwide Exposure Assessment.”

    EPA Science Inventory

    Communities at the proximity of roadways are exposed to high levels of air pollution from automobile exhaust and are under potential risk of adverse health effects. To understand the relationship between air pollution and adverse health effects, exposure and risk assessment studi...

  3. “A Modeling Framework for Improved Characterization of Near-Road Air Quality at Fine Scales for Nationwide Exposure Assessment.”

    EPA Science Inventory

    Communities at the proximity of roadways are exposed to high levels of air pollution from automobile exhaust and are under potential risk of adverse health effects. To understand the relationship between air pollution and adverse health effects, exposure and risk assessment studi...

  4. Predicting Air Quality in Smart Environments

    PubMed Central

    Deleawe, Seun; Kusznir, Jim; Lamb, Brian; Cook, Diane J.

    2011-01-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. As aspect of daily life that is often overlooked in maintaining a healthy lifestyle is the air quality of the environment. In this paper we investigate the use of machine learning technologies to predict CO2 levels as an indicator of air quality in smart environments. We introduce techniques for collecting and analyzing sensor information in smart environments and analyze the correlation between resident activities and air quality levels. The effectiveness of our techniques is evaluated using three physical smart environment testbeds. PMID:21617739

  5. Performance of WRF for Simulation of Mesoscale Meteorological Characteristics for Air Quality Assessment over Tropical Coastal City, Chennai

    NASA Astrophysics Data System (ADS)

    Madala, Srikanth; Srinivas, C. V.; Satyanarayana, A. N. V.

    2017-09-01

    The land-sea breezes (LSBs) play an important role in transporting air pollution from urban areas on the coast. In this study, the Advanced Research WRF (ARW) mesoscale model is used for predicting boundary layer features to understand the transport of pollution in different seasons over the coastal region of Chennai in Southern India. Sensitivity experiments are conducted with two non-local [Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2)] and three turbulence kinetic energy (TKE) closure [Mellor-Yamada-Nakanishi and Niino Level 2.5 (MYNN2) and Mellor-Yamada-Janjic (MYJ) and quasi-normal scale elimination (QNSE)], planetary boundary layer (PBL) parameterization schemes for simulating the thermodynamic structure, and low-level atmospheric flow in different seasons. Comparison of simulations with observations from a global positioning system (GPS) radiosonde, meteorological tower, automated weather stations, and Doppler weather radar (DWR)-derived wind data reveals that the characteristics of LSBs vary widely in different seasons and are more prominent during the pre-monsoon and monsoon seasons (March-September) with large horizontal and vertical extents compared to the post-monsoon and winter seasons. The qualitative and quantitative results indicate that simulations with ACM2 followed by MYNN2 and YSU produced various features of the LSBs, boundary layer parameters and the thermo-dynamical structure in better agreement with observations than other tested physical parameterization schemes. Simulations revealed seasonal variation of onset time, vertical extent of LSBs, and mixed layer depth, which would influence the air pollution dispersion in different seasons over the study region.

  6. Analysis for the Accuracy Definition of the Air Quality Assessment Model (AQAM) at Williams Air Force Base, Arizona. Volume II Appendices.

    DTIC Science & Technology

    1980-03-01

    VERIFICATION OF SHORT-’TtERM AIP QUALITY MODELS USING THE GAUSSIAN DISPERSION APPROACH by Karl ZcIler, EPA* (January 1977) 1. INTRODUCTION A need exists to... modeling of complex gi.o- metric situations, it is currently necessary to use empirical dispersion parameter values (standard deviations of plume spread as a...subjective modifications. For example, models used for airports or highways use the same dispersion parameters as models used for elevated area or point

  7. Gestational Age Assessment in the Ghana Randomized Air Pollution and Health Study (GRAPHS): Ultrasound Capacity Building, Fetal Biometry Protocol Development, and Ongoing Quality Control

    PubMed Central

    Boamah, Ellen A; Asante, KP; Ae-Ngibise, KA; Kinney, Patrick L; Jack, Darby W; Manu, Grace; Azindow, Irene T; Owusu-Agyei, Seth

    2014-01-01

    Background Four million premature deaths occur yearly as a result of smoke from cooking fires. The Ghana Randomized Air Pollution and Health Study (GRAPHS) is underway in the Kintampo North municipality and South district of rural Ghana to evaluate the impact of improved cook stoves introduced during pregnancy on birth weight and childhood pneumonia. These hypotheses are being tested in a cluster-randomized intervention trial among 1415 maternal-infant pairs within 35 communities assigned to a control arm (traditional cooking) or one of two intervention arms (cooking with an improved biomass stove; cooking with liquefied petroleum gas stoves). Objective The trial is designed to ensure delivery of the stove intervention prior to the period of maximal fetal growth. To answer questions about the impact of household air pollution on pregnancy outcome, accurate gestational age assessment is critical. This manuscript describes in detail the development of the gestational dating protocol, intensive ultrasound training involved, ultrasound capacity building, and ultrasound quality control program. Methods Ultrasound training occurred in several phases over the course of 2 years. Training included a basic obstetric ultrasound course offered to all midwives performing antenatal care at the two study hospitals, followed by a more intense period of hands-on training focused on fetal biometry for a select group of providers demonstrating aptitude in the basic course. A standard operating procedure was developed describing how to obtain all fetal biometric measurements. Consensus was obtained on how biometric images are used in the trial to establish gestational age and estimate the delivery date. An ongoing ultrasound quality control program including the use of an image scorecard was also designed. Results Publication of trial results is anticipated in late 2016. Conclusions Use of ultrasound should be strongly considered in field-based trials involving pregnant women to

  8. STS 132 Return Samples: Assessment of Air Quality Aboard the Shuttle (STS-132) and International Space Station (ULF4)

    NASA Technical Reports Server (NTRS)

    James. John T.

    2010-01-01

    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (13C-acetone, fluorobenzene, and chlorobenzene) from the 2 Shuttle GSCs averaged 93, 85%, and 88%, respectively. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration. The toxicological assessment of 7 GSCs from the ISS is also shown. The recoveries of the 3 standards (as listed above) from the GSCs averaged 78, 96 and 90%, respectively. Recovery from formaldehyde control badges ranged from 90 to 112%.

  9. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    NASA Astrophysics Data System (ADS)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  10. Proactive management of air quality.

    PubMed

    Angle, R P; Sandhu, H S

    2001-02-01

    Traditional air resource management systems have difficulty in addressing global issues, sustainable development, direct citizen participation, and integration with broad economic interests. As reactive management systems, they tend to be compliance-driven, static, and rigid. In contrast, proactive management systems are principle-driven, innovative, and flexible. Bridge scientists play a key role in supporting the transformation of raw data into wise action. Decision-makers need to integrate social values with knowledge about emissions, atmospheric processes, and potential environmental effects using the primary tools of measurements, monitoring, and modeling. The Alberta Clean Air Strategic Alliance, a unique partnership of governments, industry, and public interest groups formed in 1994, operates a comprehensive air management system that is capable of addressing air issues of greater complexity and uncertainty. Its success is measured by the satisfaction of its diverse stakeholders and by the number and scope of its initiatives. Copyright 2001 Springer-Verlag

  11. Indoor Air Quality in Apartments

    EPA Pesticide Factsheets

    Apartments can have the same indoor air problems as single-family homes because many of the pollution sources, such as the interior building materials, furnishings, and household products, are similar.

  12. Ambient air quality in Slovak Republic

    SciTech Connect

    Violova, A.; Cremonini, M.G.; Lombardo, P.; Stenhouse, I.A.; Kocan, A.

    1998-07-01

    The National Government of the Slovak Republic is committed to develop an integrated strategy that will take into account global, regional and local aspects of the national emissions of pollutants. Priority is given to ambient air quality, with particular reference to human health protection. Only limited information on ambient air concentrations of hazardous air pollutants (HAP) was available in Slovakia. A comprehensive ambient air quality project has been recently funded by the European Union Phare Programme. The project was performed under the technical supervision of the Slovak Ministry of the Environment and aimed at monitoring the ambient air quality with respect to Volatile Organic Compounds (VOCs), persistent Organic Pollutants (POPs) and heavy metals (HMs), identifying and evaluating main potential pollution sources, and defining general strategies to reduce impacts.

  13. Call for improving air quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    The European Environmental Bureau (EEB), a federation of citizen organizations, has called for stricter policies in Europe to protect human health and the environment. "Air pollution emanates from sources all around us, be they cars, industrial plants, shipping, agriculture, or waste. The [European Union] must propose ambitious legislation to address all of these sources if it is to tackle the grave public health consequences of air pollution," EEB secretary general Jeremy Wates said on 8 January.

  14. STS 120 Return Samples: Assessment of Air Quality Aboard the Shuttle (STS-120) and International Space Station (10A)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Formaldehyde badges were not used. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 GSCs averaged 111, 82, and 78%, respectively. The Shuttle atmosphere was acceptable for human respiration.

  15. Assessment of the Impacts of Global Change on Regional U.S. Air Quality (External Review Draft)

    EPA Science Inventory

    This report was prepared by the Global Change Research Program (GCRP) in the National Center for Environmental Assessment (NCEA) of the Office of Research and Development (ORD) at the U.S. Environmental Protection Agency (EPA). It is intended for managers and scientists worki...

  16. STS 119 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-119) and International Space Station (15A)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    The toxicological assessments of 2 grab sample canisters (GSCs) from the Shuttle are reported. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the 2 GSCs averaged 106, 106, and 101 %,respectively. Based on the end-of-mission sample, the Shuttle atmosphere was acceptable for human respiration.

  17. Assessment of the Impacts of Global Change on Regional U.S. Air Quality (External Review Draft)

    EPA Science Inventory

    This report was prepared by the Global Change Research Program (GCRP) in the National Center for Environmental Assessment (NCEA) of the Office of Research and Development (ORD) at the U.S. Environmental Protection Agency (EPA). It is intended for managers and scientists worki...

  18. Assessing the Impact of a Faculty Development Program on Teaching Quality in a Mexican University. AIR 1991 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Rizo, Felipe Martinez; And Others

    Responding to enormous enrollment increases, Mexican universities were forced to hire faculty without a Licenciatura degree (corresponds to a United States bachelors degree) and so initiated faculty development activities (FDA) to enhance the performance of underqualified and new teachers. This study assessed the impact of one of these FDAs at the…

  19. Air Quality Planning Unit | Ground-level Ozone | New England ...

    EPA Pesticide Factsheets

    2017-04-10

    Looking for answers about a specific air quality issue? Here's a list of topics and programs related to air quality and Air Quality Planning (AQP) staff who can answer questions and provide information about them.

  20. Air Quality Planning Unit | Ground-level Ozone | New England ...

    EPA Pesticide Factsheets

    2017-09-05

    Looking for answers about a specific air quality issue? Here's a list of topics and programs related to air quality and Air Quality Planning (AQP) staff who can answer questions and provide information about them.