Science.gov

Sample records for assessment insulin resistance

  1. Insulin and Insulin Resistance

    PubMed Central

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalisation, urbanisation and industrialisation have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits. PMID:16278749

  2. Utility of Early Insulin Response and Proinsulin to Assess Insulin Resistance

    PubMed Central

    Jean, Amy M.; Hassoun, Abeer; Hughes, Jennifer; Pomeranz, Christy; Fennoy, Ilene; Oberfield, Sharon E.; McMahon, Donald J.

    2010-01-01

    Objective To determine whether obesity and premature adrenarche are additive events increasing the risk of insulin resistance and β-cell failure, using early insulin response (EIR) or the insulinogenic index and proinsulin as markers. Study design Prospective case-control study at a tertiary care academic medical center; 81 prepubertal, predominantly Hispanic children (34 M/47 F): Lean Control [(4M, 6F) age(y), 6.5±1.2; BMI-z, 0.08±0.6], Obese Control [(20M, 10F) age(y), 7.2±1.5; BMI-z, 2.5±0.5], lean premature adrenarche [(3M, 11F) age(y), 7.1±1.2; BMI-z, 0.09±0.6], and obese premature adrenarche [(7M, 20F) age(y), 7.3±1.0; BMI-z, 2.2±0.4]. Fasting glucose (G0), insulin (I0), PI0, androgen levels, IGF-1, IGFBP-1, and lipids were obtained. OGTT was performed. EIR was calculated as (I30 – I0)/(G30 – G0). Between group differences were assessed with two-way analysis of variance with interactions and associations explored with correlation/regression. Results EIR was greater in all obese patients with and without premature adrenarche. Combined analysis of the independent variables, obesity and premature adrenarche, showed that obese premature adrenarche had the greatest EIR. Obese subjects with premature adrenarche had greater fasting PI levels than their lean counterparts. Fasting PI/I ratio showed no statistical significance between groups. Conclusion We have used EIR and PI as markers to assess risk of insulin resistance and impaired insulin secretion, and have shown that obese children with premature adrenarche may be at greater risk for the development of pre-diabetes and T2DM than their lean counterparts. PMID:19643436

  3. Insulin signaling and insulin resistance.

    PubMed

    Beale, Elmus G

    2013-01-01

    Insulin resistance or its sequelae may be the common etiology of maladies associated with metabolic syndrome (eg, hypertension, type 2 diabetes, atherosclerosis, heart attack, stroke, and kidney failure). It is thus important to understand those factors that affect insulin sensitivity. This review stems from the surprising discovery that interference with angiotensin signaling improves insulin sensitivity, and it provides a general overview of insulin action and factors that control insulin sensitivity.

  4. Assessing Psychological Insulin Resistance in Type 2 Diabetes: a Critical Comparison of Measures.

    PubMed

    Holmes-Truscott, E; Pouwer, F; Speight, J

    2017-07-01

    This study aims to examine the operationalisation of 'psychological insulin resistance' (PIR) among people with type 2 diabetes and to identify and critique relevant measures. PIR has been operationalised as (1) the assessment of attitudes or beliefs about insulin therapy and (2) hypothetical or actual resistance, or unwillingness, to use to insulin. Five validated PIR questionnaires were identified. None was fully comprehensive of all aspects of PIR, and the rigour and reporting of questionnaire development and psychometric validation varied considerably between measures. Assessment of PIR should focus on the identification of negative and positive attitudes towards insulin use. Actual or hypothetical insulin refusal may be better conceptualised as a potential consequence of PIR, as its assessment overlooks the attitudes that may prevent insulin use. This paper provides guidance on the selection of questionnaires for clinical or research purpose and the development of new, or improvement of existing, questionnaires.

  5. [Insulin signaling and insulin resistance].

    PubMed

    Ferré, Pascal

    2007-01-01

    Insulin controls carbohydrate and lipid metabolism. Among other things, it stimulates glucose storage as glycogen and lipid storage as triglycerides. Insulin acts through a membrane receptor which is a tyrosine kinase. When activated by insulin binding, the tyrosine kinase will recruit and phosphorylate intracellular substrates called IRS (insulin receptor substrate). Phosphorylated IRS will be used as docking sites for proteins which will transmit the insulin signal through several systems (e.g. PI3-kinase). The insulin resistance which is concomitant with type 2 diabetes and obesity is linked to an increased intracellular availability of fatty acids which are precursors of lipid mediators inducing a decreased efficiency of insulin signal transmission. Therapies aimed at improving insulin sensitivity could then target proteins involved in the regulation of intacellular fatty acid availibility.

  6. All about Insulin Resistance

    MedlinePlus

    Toolkit No. 2 All About Insulin Resistance Insulin resistance is a condition that raises your risk for type 2 diabetes and heart disease. ... Diabetes Association, Inc. 1/15 Toolkit No. 2: All About Insulin Resistance continued J Order the smallest ...

  7. Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review

    PubMed Central

    de Andrade, Maria Izabel Siqueira; Oliveira, Juliana Souza; Leal, Vanessa Sá; da Lima, Niedja Maria Silva; Costa, Emília Chagas; de Aquino, Nathalia Barbosa; de Lira, Pedro Israel Cabral

    2016-01-01

    Abstract Objective: To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. Data source: A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "adolescents", "insulin resistance" and "Receiver Operating Characteristics Curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using Receiver Operating Characteristics Curve to determine the index cutoff (HOMA-IR) were included. Data synthesis: A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a Receiver Operating Characteristics Curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff>2.5 for both genders. Conclusions: The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. PMID:26559605

  8. Insulin resistance and atherosclerosis

    PubMed Central

    Semenkovich, Clay F.

    2006-01-01

    Considerable evidence supports the association between insulin resistance and vascular disease, and this has led to wide acceptance of the clustering of hyperlipidemia, glucose intolerance, hypertension, and obesity as a clinical entity, the metabolic syndrome. While insulin resistance, by promoting dyslipidemia and other metabolic abnormalities, is part of the proatherogenic milieu, it is possible that insulin resistance itself in the vascular wall does not promote atherosclerosis. Recent findings suggest that insulin resistance and atherosclerosis could represent independent and ultimately maladaptive responses to the disruption of cellular homeostasis caused by the excess delivery of fuel. PMID:16823479

  9. Vitamin D supplementation has no effect on insulin resistance assessment in women with polycystic ovary syndrome and vitamin D deficiency.

    PubMed

    Ardabili, Hania R; Gargari, Bahram P; Farzadi, Laya

    2012-03-01

    Insulin resistance is one of the most common features of polycystic ovary syndrome (PCOS). Some studies suggest that vitamin D deficiency may have a role in insulin resistance; thus, the aim of the current study was to determine the effect of vitamin D supplementation on insulin resistance in women with PCOS and a vitamin D deficiency. We hypothesized that vitamin D supplementation would lower the glucose level and insulin resistance in women with PCOS and a vitamin D deficiency. The current study was a randomized, placebo-controlled, double-blinded trial with 50 women with PCOS and a vitamin D deficiency, 20 to 40 years old, assigned to receive 3 oral treatments consisting of 50,000 IU of vitamin D₃ or a placebo (1 every 20 days) for 2 months (vitamin D, n = 24; placebo, n = 26). The fasting blood glucose, insulin, 25-hydroxyvitamin D, and parathyroid hormone levels, as well as the homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were measured at baseline and after treatment. In the vitamin D group, the serum level of 25-hydroxyvitamin D increased (6.9 ± 2.8 to 23.4 ± 6.1 ng/mL, P < .0001), and the parathyroid hormone level decreased (70.02 ± 43.04 to 50.33 ± 21.99 μ IU/mL, P = .02). There were no significant changes in the placebo group. There was a significant increase in insulin secretion in the vitamin D group (P = .01), but this was not significant compared with the placebo group. The fasting serum insulin and glucose levels and the insulin sensitivity and homeostasis model assessment of insulin resistance did not change significantly by the end of the study. We were not able to demonstrate the effect of vitamin D supplementation on insulin sensitivity and insulin resistance in women with PCOS and vitamin D deficiency.

  10. Risk factors correlated with risk of insulin resistance using homeostasis model assessment in adolescents in Taiwan.

    PubMed

    Lin, Shiyng-Yu; Su, Chien-Tien; Hsieh, Yi-Chen; Li, Yu-Ling; Chen, Yih-Ru; Cheng, Shu-Yun; Hu, Chien-Ming; Chen, Yi-Hua; Hsieh, Fang-I; Chiou, Hung-Yi

    2015-03-01

    The study aims to discover risk factors significantly correlated with insulin resistance among adolescents in Taiwan. A total of 339 study subjects were recruited in this cross-sectional study. A self-administered questionnaire and physical examinations including anthropometrics and biochemistry profiles were collected. Insulin resistance was assessed using homeostasis model assessment for insulin resistance (HOMA-IR). Study subjects had a significantly increased risk of IR for those with abnormal level of body mass index (odds ratio [OR] = 3.54; 95% confidence interval [CI] = 1.81-6.91), body fat (OR = 2.71; 95% CI = 1.25-5.88), and waist circumference (OR = 25.04; 95% CI = 2.93-214.14) when compared with those who have normal values. Furthermore, a significantly joint effect of 10.86-fold risk for HOMA-IR abnormality among body fat, body mass index, and systolic blood pressure was observed. The identification of risk factors significantly correlated with IR will be important to prevent metabolic syndrome-related diseases and complications for adolescents in their future life.

  11. Infliximab and insulin resistance.

    PubMed

    Ursini, Francesco; Naty, Saverio; Grembiale, Rosa Daniela

    2010-06-01

    Insulin resistance is the most important pathophysiologic feature of obesity, type 2 diabetes mellitus and prediabetic states. TNF-alpha, a proinflammatory cytokine, plays a pivotal role in the pathogenesis of inflammation-associated insulin resistance during the course of rheumatic diseases. Therapies aimed at neutralizing TNF-alpha, such as the monoclonal antibody infliximab, represent a novel approach for the treatment of rheumatic diseases and allow to obtain significant results in terms of control of the inflammatory process. In this article we reviewed the scientific evidence published in the literature about a potential role of TNF-alpha blockade in improving insulin resistance in non-diabetic rheumatic patients.

  12. Chromium and insulin resistance.

    PubMed

    Anderson, Richard A

    2003-12-01

    Insulin resistance leads to the inability of insulin to control the utilization and storage of glucose. It is associated initially with elevated levels of circulating insulin followed by glucose intolerance which may progress to type 2 diabetes, hyperlipidaemia, hypertension, obesity and cardiovascular diseases. While the causes of these diseases are multifactorial, one nutrient that is associated with all of these abnormalities is Cr. In the presence of Cr, in a biologically active form, much lower levels of insulin are required. Modern diets, which are often high in refined carbohydrates, are not only low in Cr, but lead to enhanced Cr losses. In response to the consumption of refined carbohydrates, there is a rapid rise in blood sugar leading to elevations in insulin that cause a mobilization of Cr. Once mobilized, Cr is not reabsorbed but lost via the urine leading to decreased Cr stores. Several studies involving both human subjects and experimental animals have reported improvements in insulin sensitivity, blood glucose, insulin, lipids, haemoglobin A1c, lean body mass and related variables in response to improved Cr nutrition. However, not all studies have reported beneficial effects associated with improved Cr nutrition. Well-controlled human studies are needed to document an unequivocal effect of Cr on insulin sensitivity in human subjects. Studies need to involve a significant number of subjects with insulin resistance, glucose intolerance or early stages of diabetes, who have not been taking supplements containing Cr for at least 4 months, and involve at least 400 to 600 microg supplemental Cr daily or more. Studies should be at least 4 months to document sustained effects of supplemental Cr on insulin resistance and related variables. Cr is a nutrient and not a therapeutic agent and therefore will only be of benefit to those whose problems are due to suboptimal intake of Cr.

  13. Does Homeostasis Model Assessment of Insulin Resistance have a predictive value for post-coronary artery bypass grafting surgery outcomes?

    PubMed Central

    Aydin, Ebuzer; Ozkokeli, Mehmet

    2014-01-01

    Objective This study aims to investigate whether pre-operative Homeostasis Model Assessment Insulin Resistance (HOMA-IR) value is a predictor in non-diabetic coronary artery bypass grafting patients in combination with hemoglobin A1c, fasting blood glucose and insulin levels. Methods Eighty one patients who were admitted to Cardiovascular Surgery Clinic at our hospital between August 2012 and January 2013 with a coronary artery bypass grafting indication were included. Patients were non-diabetic with <6.3% hemoglobin A1c and were divided into two groups including treatment and control groups according to normal insulin resistance (HOMA-IR<2.5, Group A; n=41) and high insulin resistance (HOMA-IR>2.5, Group B; n=40), respectively. Pre-operative fasting blood glucose and insulin were measured and serum chemistry tests were performed. The Homeostasis Model Assessment Insulin Resistance values were calculated. Statistical analysis was performed. Results There was a statistically significant difference in fasting blood glucose and HOMA-IR values between the groups. Cross-clamping time, and cardiopulmonary bypass time were longer in Group B, compared to Group A (P=0.043 and P=0.031, respectively). Logistic regression analysis revealed that hemoglobin A1c was not a reliable determinant factor alone for pre-operative glucometabolic evaluation of non-diabetic patients. The risk factors of fasting blood glucose and cardiopulmonary bypass time were more associated with high Homeostasis Model Assessment Insulin Resistance levels. Conclusion Our study results suggest that preoperative screening of non-diabetic patients with Homeostasis Model Assessment Insulin Resistance may improve both follow-up visit schedule and short-term outcomes, and may be useful in risk stratification of the high-risk population for impending health problems. PMID:25372910

  14. Metabolic flexibility and insulin resistance.

    PubMed

    Galgani, Jose E; Moro, Cedric; Ravussin, Eric

    2008-11-01

    Metabolic flexibility is the capacity for the organism to adapt fuel oxidation to fuel availability. The inability to modify fuel oxidation in response to changes in nutrient availability has been implicated in the accumulation of intramyocellular lipid and insulin resistance. The metabolic flexibility assessed by the ability to switch from fat to carbohydrate oxidation is usually impaired during a hyperinsulinemic clamp in insulin-resistant subjects; however, this "metabolic inflexibility" is mostly the consequence of impaired cellular glucose uptake. Indeed, after controlling for insulin-stimulated glucose disposal rate (amount of glucose available for oxidation), metabolic flexibility is not altered in obesity regardless of the presence of type 2 diabetes. To understand how intramyocellular lipids accumulate and cause insulin resistance, the assessment of metabolic flexibility to high-fat diets is more relevant than metabolic flexibility during a hyperinsulinemic clamp. An impaired capacity to upregulate muscle lipid oxidation in the face of high lipid supply may lead to increased muscle fat accumulation and insulin resistance. Surprisingly, very few studies have investigated the response to high-fat diets. In this review, we discuss the role of glucose disposal rate, adipose tissue lipid storage, and mitochondrial function on metabolic flexibility. Additionally, we emphasize the bias of using the change in respiratory quotient to calculate metabolic flexibility and propose novel approaches to assess metabolic flexibility. On the basis of current evidence, one cannot conclude that impaired metabolic flexibility is responsible for the accumulation of intramyocellular lipid and insulin resistance. We propose to study metabolic flexibility in response to high-fat diets in individuals having contrasting degree of insulin sensitivity and/or mitochondrial characteristics.

  15. Immunologic insulin resistance.

    PubMed

    Davidson, J K; DeBra, D W

    1978-03-01

    The efficacy of sulfated beef insulin for plasma glucose control in 35 patients with immunologic insulin resistance was studied. Patients were on a mean dose of 550 U./day (range 200--2,000) of U-500 regular beef insulin. Mean maximum 125I-insulin-binding capacity was 191 mU./ml. serum (range 13--1,080). Mean in vivo half-life (T 1/2) of 125I-regular beef insulin was 614 minutes (range 114--1,300), as against a mean T 1/2 of 13.9 minutes (range 11.8--16.5) in normal controls. Treatment was successful in 34 patients and unsuccessful in one with lipoatrophic diabetes. The mean initial dose of sulfated insulin was 89 U./day (range 15--400) and at three months was 66 U./day (range 20--400). Twenty-eight patients who responded and survived have been on sulfated insulin for a mean of 39 months (range 2-66) and are on a mean dose of 25 U./day (range 0--100). The mean maximum binding capacity fell to 9 mU./ml. (range 0--34) during therapy (p less than 0.01). Mean 125I-insulin T 1/2 fell from 614 to 249 minutes after sulfated insulin therapy (p less than 0.001). A comparative study of 15 patients on consecutive days showed a 35 sulfated insulin T 1/2 of 60 minutes (range 15--94) and a mean 125I-regular insulin T 1/2 of 246 minutes (range 62--560, p less than 0.001). These results indicate that sulfated insulin is less antigenic than regular beef insulin and combines less avidly with human antibodies to regular beef insulin. The response to sulfated insulin therapy was significantly better than the response reported by other investigators to pork insulin or to steroid therapy in similar patients.

  16. Pancreatic fat content assessed by (1) H magnetic resonance spectroscopy is correlated with insulin resistance, but not with insulin secretion, in Japanese individuals with normal glucose tolerance.

    PubMed

    Komada, Hisako; Sakaguchi, Kazuhiko; Hirota, Yushi; Sou, Anna; Nakamura, Tomoaki; Kyotani, Katsusuke; Kawamitsu, Hideaki; Sugimura, Kazuro; Okuno, Yoko; Ogawa, Wataru

    2017-08-02

    Whereas some clinical studies have shown that excessive fat accumulation in the pancreas is associated with impairment of insulin secretion, others have not found such an association. (1) H magnetic resonance spectroscopy allows quantitative fat analysis in various tissues including the pancreas. The pathological relevance of pancreatic fat content (PFC) in Japanese individuals remains unclear, however. We analyzed PFC in 30 Japanese individuals with normal glucose tolerance by (1) H magnetic resonance spectroscopy, and then investigated the relationships between PFC and indexes of insulin secretion and insulin sensitivity-resistance determined by an oral glucose tolerance test. We also measured hepatic fat content and intramyocellular lipid content by (1) H magnetic resonance spectroscopy, as well as visceral fat area and subcutaneous fat area by magnetic resonance imaging, and we examined the relationships between these fat content measures and oral glucose tolerance test-derived parameters. PFC was correlated with indexes of insulin sensitivity-resistance, but not with those of insulin secretion. Hepatic fat content and visceral fat area were correlated with similar sets of parameters as was PFC, whereas subcutaneous fat area was correlated with parameters of insulin secretion, and intramyocellular lipid content was not correlated with any of the measured parameters. The correlation between PFC and homeostasis model assessment of insulin resistance remained significant after adjustment for age, body mass index and sex. Among fat content measures, PFC was most highly correlated with hepatic fat content and visceral fat area. PFC was correlated with indexes of insulin resistance, but not with those of insulin secretion in non-obese Japanese individuals with normal glucose tolerance. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  17. The 13C-Glucose Breath Test for Insulin Resistance Assessment in Adolescents: Comparison with Fasting and Post-Glucose Stimulus Surrogate Markers of Insulin Resistance

    PubMed Central

    Maldonado-Hernández, Jorge; Martínez-Basila, Azucena; Salas-Fernández, Alejandra; Navarro-Betancourt, José R.; Piña-Aguero, Mónica I.; Bernabe-García, Mariela

    2016-01-01

    Objective: To evaluate the use of the 13C-glucose breath test (13C-GBT) for insulin resistance (IR) detection in adolescents through comparison with fasting and post-glucose stimulus surrogates. Methods: One hundred thirty-three adolescents aged between 10 and 16 years received an oral glucose load of 1.75 g per kg of body weight dissolved in 150 mL of water followed by an oral dose of 1.5 mg/kg of U-13C-Glucose, without a specific maximum dose. Blood samples were drawn at baseline and 120 minutes, while breath samples were obtained at baseline and at 30, 60, 90, 120, 150, and 180 minutes. The 13C-GBT was compared to homeostasis model assessment (HOMA) IR (≥p95 adjusted by gender and age), fasting plasma insulin (≥p90 adjusted by gender and Tanner stage), results of 2-h oral glucose tolerance test (OGTT), insulin levels (≥65 μU/mL) in order to determine the optimal cut-off point for IR diagnosis. Results: 13C-GBT data, expressed as adjusted cumulative percentage of oxidized dose (A% OD), correlated inversely with fasting and post-load IR surrogates. Sexual development alters A% OD results, therefore individuals were stratified into pubescent and post-pubescent. The optimal cut-off point for the 13C-GBT in pubescent individuals was 16.3% (sensitivity=82.8% & specificity=60.6%) and 13.0% in post-pubescents (sensitivity=87.5% & specificity=63.6%), when compared to fasting plasma insulin. Similar results were observed against HOMA and 2-h OGTT insulin. Conclusion: The 13C-GBT is a practical and non-invasive method to screen for IR in adolescents with reasonable sensitivity and specificity. PMID:27354200

  18. Effect of Insulin Resistance in Assessing the Clinical Outcome of Clinical and Subclinical Hypothyroid Patients

    PubMed Central

    MN, Suma; KM, Srinath; Prashant, Akila; Doddamani, Parveen; SV, Shilpa

    2015-01-01

    Background: The effect of thyroid status on insulin sensitivity is of great interest but despite various studies there is conflicting data on this subject. Hypothyroidism has been associated with disorders of glucose and insulin metabolism involving defective insulin secretion in response to glucose, hyperinsulinemia, altered peripheral glucose disposal and insulin resistance. Thyroid dysfunction leads to alterations in glucose and lipid metabolism which is an important risk factor for cardiovascular diseases. The dyslipidemia and insulin resistance should be managed aggressively to reduce the impending risk. Objectives: The prime objectives of the study were as follows: 1. To compare and correlate insulin resistance levels with T3, T4, and TSH in hypothyroidism patients. 2. To compare and correlate lipid profile with T3, T4, and TSH in hypothyroidism patients with healthy controls. Materials and Methods: Forty hypothyroidism patients and Forty healthy age and sex matched controls in the age group of 18 to 45 years were taken for the study. The venous blood samples collected were used for estimation of thyroid hormones, insulin, glucose and lipid profile. Results and Discussion: There is significant increase in insulin, Homa-IR and glucose levels in hypothyroidism cases when compared to controls. Cholesterol, LDL, VLDL and triglycerides were significantly increased, whereas HDL was significantly decreased in hypothyroidism cases when compared with controls. Insulin was moderately correlated with cholesterol but there was no correlation with other lipid profile parameters in hypothyroidism patients. Homa-IR was significantly correlated with TSH in hypothyroidism cases when compared with controls. TSH was significantly correlated with cholesterol and LDL in hypothyroidism cases (both clinical and subclinical) when compared with controls. The present study helps to evaluate changes in insulin resistance and lipid risk factors. These factors should be managed

  19. Assessment of insulin resistance in lean women with polycystic ovary syndrome.

    PubMed

    Morciano, Andrea; Romani, Federica; Sagnella, Francesca; Scarinci, Elisa; Palla, Carola; Moro, Francesca; Tropea, Anna; Policola, Caterina; Della Casa, Silvia; Guido, Maurizio; Lanzone, Antonio; Apa, Rosanna

    2014-07-01

    To develop and validate a specific simple measure of insulin sensitivity using oral glucose tolerance test (OGTT) values for lean polycystic ovary syndrome (PCOS) women. Retrospective study. Gynecologic Outpatient Clinic of University Hospital, affiliated with Unit of Gynecologic Endocrinology. Totals of 201 lean and 198 overweight/obese (ov-ob) nondiabetic PCOS patients were retrospectively selected. None. All patients underwent OGTT, euglycemic-hyperinsulinemic clamp, and androgenic and biochemical assays. The predictive performance of each insulin resistance (IR) index was analyzed with the use of receiver operating characteristic (ROC) curves. Higher correlation coefficients with clamp studies were obtained with the Belfiore Area (RS=0.579) and the homeostasis-model assessment (HOMA)-M120 (RS=-0.576) in lean PCOS patients and with the Sib (RS=0.697) in ov-ob PCOS patients. The best predictive index of IR in lean PCOS was a HOMA-M120 value of ≥12.8 or more (area under the ROC curve [AUC] 92.4%). In the ov-ob PCOS population, the best predictive performance was obtained by a Sib of ≤10.2 or less (AUC 85.7%). IR should be assessed in all PCOS women, both lean and ov-ob subjects. The HOMA-M120 resulted as a very simple tool, validated specifically for the lean PCOS woman whose cardiometabolic impairment is more frequently misunderstood. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. No evidence of linkage between the very-low-density lipoprotein receptor gene and fasting serum insulin or homeostasis model assessment insulin resistance index: the National Heart, Lung, and Blood Institute Family Heart Study.

    PubMed

    Hong, Y; Leppert, M F; Lin, J; Hunt, S C; Rich, S S; Arnett, D K; Myers, R H; Eckfeldt, J; Williams, R R; Province, M A

    2000-03-01

    A major gene effect on the fasting insulin level and insulin resistance has been suggested in previous studies. Several candidate genes for insulin resistance in rare syndromes have been proposed. However, there has been limited success in finding genes for common forms of insulin resistance. There is accumulating evidence of a relationship between insulin resistance and a disturbance of free fatty acid (FFA) metabolism. The very-low-density lipoprotein (VLDL) receptor, which is associated with FFA metabolism, could serve as a possible candidate gene for insulin resistance. We performed linkage analyses between the VLDL receptor gene and fasting insulin and the homeostasis model assessment (HOMA) insulin resistance index (fasting insulin x fasting glucose/22.5) in 1,050 sibpairs participating in the phase II physical examination of the National Heart, Lung, and Blood Institute Family Heart Study (FHS). Data analyses were completed using the SIBPAL component of the SAGE software package (SAGE, Statistical Analysis for Genetic Epidemiology, Version 3.1; Computer program package available from the Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, 1997). We did not find evidence for linkage of the fasting insulin or the HOMA insulin resistance index with a polymorphic marker at the VLDL locus (P = .316 and .402, respectively). Adjustment of fasting insulin and the HOMA insulin resistance index for the body mass index (BMI) did not change the results (P = .319 and .472, respectively). In conclusion, no evidence was found for a linkage between a locus controlling the fasting insulin level or HOMA insulin resistance index and a VLDL polymorphism in the present study. Additional adjustment of fasting insulin or the HOMA insulin resistance index for the BMI did not change the linkage results significantly.

  1. Insulin resistance in liver cirrhosis.

    PubMed

    Goral, Vedat; Atalay, Roni; Kucukoner, Mehmet; Kucukoren, Mehmet

    2010-01-01

    Liver cirrhosis is a chronic disease by degeneration, regeneration and fibrosis in the liver parenchyma, caused by many diseases. Insulin resistance can be defined as any type of decrease in the effect that may occur at the phases following insulin's secretion from beta-cells of the pancreas, where it is produced, until it has the expected effects in the target cells. The aim of the present study is to demonstrate the presence of insulin resistance in LC, which is common in our country and region, and investigate the existence of association between insulin resistance occuring in LC and cytokine levels, age, gender, CRP, Hs-CRP, Child-Pugh score and etiology of LC. A total of 79 patients with liver cirrhosis (group 1) were included in the study, and 50 subjects as controls (group 2). Of liver cirrhosis patients, 49 (62%) were male and 30 (38%) were female, with a mean age of 54.71 +/- 14.68. Of the controls, 23 (46%) were male and 27 (54%) were female, with a mean age of 41.9 +/- 11.54. Severity of cirrhosis was assessed by Modified Child-Turcoutte-Pugh score. Seven cases (8.9%) were at the Child-Pugh stage A, 35 cases (44.3%) at the Child-Pough stage B, and 37 cases (46.8%) at the Child-Pough stage C. HOMA-IR was calculated and values > 2.7 were regarded as presence of insulin resistance (HOMA-IR +). Serum glucose, albumin, bilirubin values were studied with enzymatic method (Architect C-16000); serum CRP, Hs-CRP values with nephelometric method by Beckman Coulter Image Nephelometer (immunochemistry system); insulin, C-peptide with electrochemiluminance immunological method; prothrombin time with radiation method by ACL-Advance brand device. In this study, glucose (p = 0.004), insulin (p = 0.010), C-peptide (p < 0.001), HOMA-IR (p < 0.001), TNF-alpha (p < 0.001), IL-2RES (p < 0.001), IL-6 (p = 0.002), CRP (p < 0.001) and HsCRP (p = 0.006) levels are elevated in LC patients, compared to control group. Consequently, high HOMA-IR in LC supports the fact that insulin

  2. The threshold value of homeostasis model assessment for insulin resistance in Qazvin Metabolic Diseases Study (QMDS): assessment of metabolic syndrome.

    PubMed

    Ziaee, Amir; Esmailzadehha, Neda; Oveisi, Sonia; Ghorbani, Azam; Ghanei, Laleh

    2015-01-01

    The homeostasis model assessment of insulin resistance (HOMA-IR) is a useful model for application at large epidemiologic studies. The aim of this study was to determine the HOMA cut off values to identify insulin resistance (IR) and metabolic syndrome (MS) in Qazvin, central Iran. Overall, 480 men and 502 women aged 20-72 yr attended in this cross sectional study from September 2010 to April 2011. The diagnostic criteria proposed by national cholesterol education program third adult treatment panel (ATPIII), International Diabetes Federation (IDF) and new Joint Interim Societies (JIS); were applied to define MS. Lower limit of the top quintile of HOMA values in normal subjects was considered as the threshold of IR. The receiver operating characteristic (ROC) curves of HOMA for MS diagnosis were depicted. The optimal cut point to determine MS was assessed by maximum Youden index and the shortest distance from the point (0, 1) on the ROC curve. The threshold of HOMA for IR was 2.48. Fifty one percent of the subjects were insulin resistant. The cut point for diagnosis of JIS, IDF, ATP III and Persian IDF defined MS was 2.92, 2.91, 2.49 and 3.21, respectively. Sensitivity and specificity of ATP III defined MS to diagnose IR was 33.95% and 84.78%, of IDF defined MS was 39.13%, 81.29% and of JIS defined MS was 43.77% and 78.11% and of Persian IDF defined MS was 27.32% and 88.76%, in that order. The high prevalence of IR in the present study warns about the future burden of type 2 diabetes. Only the ATP III criteria introduced more specific cut point for putative manifestations of IR.

  3. Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers

    PubMed Central

    2013-01-01

    Objective The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among Chinese children and adolescents. Moreover, to determine the cut-off values for homeostasis model assessment of insulin resistance (HOMA-IR) at MS risk. Methods 3203 Chinese children aged 6 to 18 years were recruited. Anthropometric and biochemical parameters were measured. Metabolic syndrome (MS) was identified by a modified Adult Treatment Panel III (ATP III) definition. HOMA-IR index was calculated and the normal reference ranges were defined from the healthy participants. Receiver operating characteristic (ROC) analysis was used to find the optimal cutoff of HOMA-IR for diagnosis of MS. Results With the increase of insulin resistance (quintile of HOMA-IR value), the ORs of suffering MS or its related components were significantly increased. Participants in the highest quintile of HOMA-IR were about 60 times more likely to be classified with metabolic syndrome than those in the lowest quintile group. Similarly, the mean values of insulin and HOMA-IR increased with the number of MS components. The present HOMA-IR cutoff point corresponding to the 95th percentile of our healthy reference children was 3.0 for whole participants, 2.6 for children in prepubertal stage and 3.2 in pubertal period, respectively. The optimal point for diagnosis of MS was 2.3 in total participants, 1.7 in prepubertal children and 2.6 in pubertal adolescents, respectively, by ROC curve, which yielded high sensitivity and moderate specificity for a screening test. According to HOMA-IR > 3.0, the prevalence of insulin resistance in obese or MS children were 44.3% and 61.6% respectively. Conclusions Our data indicates insulin resistance is common among Chinese obese children and adolescents, and is strongly related to MS risk, therefore requiring consideration early in life. As a reliable measure of insulin resistance and

  4. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  5. Insulin resistance in Alzheimer's disease.

    PubMed

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-12-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Selective insulin resistance in adipocytes.

    PubMed

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C; Coster, Adelle C F; Stöckli, Jacqueline; James, David E

    2015-05-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  8. Mouse models of insulin resistance.

    PubMed

    Hribal, Marta Letizia; Oriente, Francesco; Accili, Domenico

    2002-05-01

    The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.

  9. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport.

    PubMed

    Perret, Pascale; Slimani, Lotfi; Briat, Arnaud; Villemain, Danièle; Halimi, Serge; Demongeot, Jacques; Fagret, Daniel; Ghezzi, Catherine

    2007-05-01

    Insulin resistance, characterised by an insulin-stimulated glucose transport defect, is an important feature of the pre-diabetic state that has been observed in numerous pathological disorders. The purpose of this study was to assess variations in glucose transport in rats using (125)I-6-deoxy-6-iodo-D-glucose (6DIG), a new tracer of glucose transport proposed as an imaging tool to assess insulin resistance in vivo. Two protocols were performed, a hyperinsulinaemic-euglycaemic clamp and a normoinsulinaemic-normoglycaemic protocol, in awake control and insulin-resistant fructose-fed rats. The tracer was injected at steady state, and activity in 11 tissues and the blood was assessed ex vivo at several time points. A multicompartmental mathematical model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the organs. Insulin sensitivity of fructose-fed rats, estimated by the glucose infusion rate, was reduced by 40% compared with control rats. At steady state, 6DIG uptake was significantly stimulated by insulin in insulin-sensitive tissues of control rats (basal versus insulin: diaphragm, p < 0.01; muscle, p<0.05; heart, p<0.001), whereas insulin did not stimulate 6DIG uptake in insulin-resistant fructose-fed rats. Moreover, in these tissues, the fractional transfer coefficients of entrance were significantly increased with insulin in control rats (basal vs insulin: diaphragm, p<0.001; muscle, p<0.001; heart, p<0.01) whereas no significant changes were observed in fructose-fed rats. This study sets the stage for the future use of 6DIG as a non-invasive means for the evaluation of insulin resistance by nuclear imaging.

  10. [Obesity, adipogenesis and insulin resistance].

    PubMed

    Ros Pérez, Manuel; Medina-Gómez, Gema

    2011-01-01

    Insulin resistance precedes the development of type 2 diabetes mellitus and is also a common denominator in the so-called metabolic syndrome. Although the cause of insulin resistance has not been fully elucidated, it seems clear that lifestyle changes, including little physical exercise and constant access to food, particularly in developed and economically emergent countries, as well as genetic factors, appear to have triggered the escalating incidence of diseases related to insulin resistance, including type 2 diabetes and metabolic syndrome. Obesity is considered as a risk factor for developing insulin resistance. Increased adipose tissue has been related to an increased production of pro-inflammatory cytokines which, together with fatty acids, appear to be responsible for the development of insulin resistance. Thus, a greater or lesser expansibility or ability of adipose tissue to store lipids also appears to play a significant role in the development of insulin resistance because overcoming of this capacity, which is variable in each case, would result in leaking of lipids to other tissues where they could interfere with insulin signaling. This article reviews various molecular mechanisms related to the development of insulin resistance and its relationship to expansibility of adipose tissue and obesity. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Acute Glucagon Induces Postprandial Peripheral Insulin Resistance

    PubMed Central

    Patarrão, Rita S.; Lautt, W. Wayne; Macedo, M. Paula

    2015-01-01

    Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions. PMID:25961284

  12. Acute glucagon induces postprandial peripheral insulin resistance.

    PubMed

    Patarrão, Rita S; Lautt, W Wayne; Macedo, M Paula

    2015-01-01

    Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions.

  13. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  14. Lipid mediators of insulin resistance.

    PubMed

    Holland, William L; Knotts, Trina A; Chavez, Jose A; Wang, Li-Ping; Hoehn, Kyle L; Summers, Scott A

    2007-06-01

    Lipid abnormalities such as obesity, increased circulating free fatty acid levels, and excess intramyocellular lipid accumulation are frequently associated with insulin resistance. These observations have prompted investigators to speculate that the accumulation of lipids in tissues not suited for fat storage (e.g., skeletal muscle and liver) is an underlying component of insulin resistance and the metabolic syndrome. We review the metabolic fates of lipids in insulin-responsive tissues and discuss the roles of specific lipid metabolites (e.g., ceramides, GM3 ganglioside, and diacylglycerol) as antagonists of insulin signaling and action.

  15. Effects of Aging on Visceral and Subcutaneous Fat Areas and on Homeostasis Model Assessment of Insulin Resistance and Insulin Secretion Capacity in a Comprehensive Health Checkup.

    PubMed

    Hirose, Hiroshi; Takayama, Michiyo; Iwao, Yasushi; Kawabe, Hiroshi

    2016-01-01

    The association between aging and insulin resistance has been unclear. We evaluated the effects of aging on visceral fat area (VFA) and subcutaneous fat area (SFA) measured by computed tomography, homeostasis model assessment of insulin resistance (HOMA-IR), and homeostasis model assessment of β-cell function (HOMA-β) among participants in a comprehensive health checkup. This study included 1,050 male and 700 female Japanese participants aged 35-84 years in our comprehensive health checkup program during a 2-year period. Participants who were on medication for diabetes mellitus or those who met the pre-determined exclusion criteria were excluded. The participants were divided into five groups according to age. As age increased from Group 1 to Group 5, both VFA and VFA/SFA ratio significantly increased in both male and female participants, whereas log[HOMA-IR] linearly and significantly decreased (p<0.0001 for each). Body mass index (BMI), waist circumference (WC), and SFA increased with age in female participants but decreased in male participants. Although age was not or only weakly correlated with log[glucose] and log[HbA1c] in both male and female participants, age showed significant negative correlations with log[insulin], log[HOMA-IR], and log[HOMA-β] even after adjusting for BMI and WC (p<0.0001 for each). Serum high-molecular-weight adiponectin (HMW-ADPN) levels were measured in 114 male and 87 female participants, and log[HMW-ADPN] was negatively correlated with log[HOMA-IR] and positively correlated with age in both male and female participants. In the present study, both male and female participants showed increases in VFA and VFA/SFA ratio and decreases in insulin, HOMA-IR, and HOMA-β with age.

  16. Caffeine and insulin resistance in pregnancy

    PubMed Central

    Laughon, S. Katherine; Powers, Robert W.; Roberts, James M.; Parana, Sarah; Catov, Janet

    2011-01-01

    Outside pregnancy, acute caffeine consumption is associated with insulin resistance. We investigated if during pregnancy plasma concentrations of caffeine and its metabolite, paraxanthine, were associated with insulin resistance. Caffeine, paraxanthine, glucose and insulin were measured and insulin resistance estimated by homeostasis model assessment (HOMA) in banked samples from 251 fasting subjects at mean gestational age of 20.3 ± 2.0 weeks. Analysis of covariance and adjusted logistic regression were performed. Most (96.4%) women had caffeine and/or paraxanthine present. Caffeine concentrations in the upper two quartiles (> 266 ng/ml) were associated with 3-fold higher odds of having higher insulin resistance estimated by log HOMA ≥ 75th percentile (3rd quartile OR, 3.02; 95% CI: 1.21 – 7.54 and 4th quartile OR, 2.95; 95% CI: 1.19 – 7.31). Paraxanthine concentrations in the upper quartile (> 392 ng/ml) were also associated with 3-fold higher odds of having higher insulin resistance (OR, 3.04; 95% CI: 1.28 – 7.25). Adjusted mean HOMA in the 1st caffeine to paraxanthine ratio quartile was 1.5 ± 2.2 versus 1.3 ± 2.3 in the 4th quartile (P < .01). Both high caffeine and paraxanthine concentrations were associated with insulin resistance, but slow versus fast metabolism did not make an important difference. PMID:21380987

  17. Paediatrics, insulin resistance and the kidney.

    PubMed

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  18. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. [Chromium and insulin resistance].

    PubMed

    Kleefstra, N; Bilo, H J; Bakker, S J; Houweling, S T

    2004-01-31

    Since as early as the 50s of the last century, it has been known that chromium is essential for normal glucose metabolism. Too little chromium in the diet may lead to insulin resistance. However, there is still no standard against which chromium deficiency can be established. Nevertheless, chromium supplements are becoming increasingly popular. Various systematic reviews have been unable to demonstrate any effects of chromium on glycaemic regulation (possibly due partly to the low dosages used), but there is a slight reduction in body weight averaging 1 kg. In a double-blind randomised placebo-controlled trial in a Chinese population with type-2 diabetes mellitus, supplementation with 1000 micrograms of chromium led to a fall in the glycosylated haemoglobin level (HbA1c) by 2%. Toxic effects of chromium are seldom seen; recently, however, the safety of one of the dosage forms of chromium, chromium picolinate, has been questioned. One should be aware that individual patients with type-2 diabetes mellitus may have an increased risk of hypoglycaemic episodes when taking chromium supplements as self-medication.

  20. Metabolic syndrome and insulin resistance in obese adolescents.

    PubMed

    Gobato, Amanda Oliva; Vasques, Ana Carolina J; Zambon, Mariana Porto; Barros Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-03-01

    To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  1. Plasma vitamin D is associated with fasting insulin and homeostatic model assessment of insulin resistance in young adult males, but not females, of the Jerusalem Perinatal Study.

    PubMed

    Moore, Amy; Hochner, Hagit; Sitlani, Colleen M; Williams, Michelle A; Hoofnagle, Andrew N; de Boer, Ian H; Kestenbaum, Bryan; Siscovick, David S; Friedlander, Yechiel; Enquobahrie, Daniel A

    2015-05-01

    To examine cross-sectional relationships between plasma vitamin D and cardiometabolic risk factors in young adults. Data were collected from interviews, physical examinations and biomarker measurements. Total plasma 25-hydroxyvitamin D (25(OH)D) was measured using LC-tandem MS. Associations between 25(OH)D and cardiometabolic risk factors were modelled using weighted linear regression with robust estimates of standard errors. Individuals born in Jerusalem during 1974-1976. Participants of the Jerusalem Perinatal Study (n 1204) interviewed and examined at age 32 years. Participants were oversampled for low and high birth weight and for maternal pre-pregnancy obesity. Mean total 25(OH)D concentration among participants was 21·7 (sd 8·9) ng/ml. Among males, 25(OH)D was associated with homeostatic model assessment of insulin resistance (natural log-transformed, β=-0·011, P=0·004) after adjustment for BMI. However, these associations were not present among females (P for sex interaction=0·005). We found evidence for inverse associations of 25(OH)D with markers of insulin resistance among males, but not females, in a healthy, young adult Caucasian population. Prospective studies and studies conducted on other populations investigating sex-specific effects of vitamin D on cardiometabolic risk factors are warranted.

  2. Insulin resistance and chronic liver disease

    PubMed Central

    Kawaguchi, Takumi; Taniguchi, Eitaro; Itou, Minoru; Sakata, Masahiro; Sumie, Shuji; Sata, Michio

    2011-01-01

    Increased insulin resistance is frequently associated with chronic liver disease and is a pathophysiological feature of hepatogenous diabetes. Distinctive factors including hepatic parenchymal cell damage, portal-systemic shunting and hepatitis C virus are responsible for the development of hepatogenous insulin resistance/diabetes. Although it remains unclear whether insulin secretion from pancreatic beta cells is impaired as it is in type 2 diabetes, retinopathic and cardiovascular risk is low and major causes of death in cirrhotic patients with diabetes are liver failure, hepatocellular carcinoma and gastrointestinal hemorrhage. Hemoglobin A1c is an inaccurate marker for the assessment and management of hepatogenous diabetes. Moreover, exogenous insulin or sulfonylureas may be harmful because these agents may promote hepatocarcinogenesis. Thus, pathogenesis, cause of death, assessment and therapeutic strategy for hepatogenous insulin resistance/diabetes differ from those for lifestyle-related type 2 diabetes. In this article, we review features of insulin resistance in relationship to chronic liver disease. We also discuss the impact of anti-diabetic agents on interferon treatment and hepatocarcinogenesis. PMID:21731901

  3. Psychological stress, insulin resistance, inflammation and the assessment of heart disease risk. Time for a paradigm shift?

    PubMed

    Ware, William R

    2008-01-01

    There is growing evidence that the present risk assessment protocol for coronary heart disease appears to underestimate the risk in general and the presence and progression of atherosclerosis in particular. Little or no correlation has been found between the 10-year risk based on the Framingham model and the extent or progression of coronary calcification. In addition, a number of studies find the protocol based on current guidelines leads to an under appreciation of the risk of symptomatic coronary heart disease or the associated fatal and non-fatal events, especially in younger asymptomatic individuals and women. Furthermore, the current guidelines give secondary importance to insulin resistance and inflammation and do not include psychosocial stress and depression, both of which are established and important risk factors for coronary heart disease. An alternative approach to risk assessment is proposed which emphasizes insulin resistance and psychological stress and depression and gives much greater recognition to inflammation as a root cause and target for intervention than is found in current guidelines. Consistent with this view, a revised assessment protocol is suggested which is still appropriate to the primary care setting and which might provide a different and perhaps more effective and relevant approach to primary prevention and risk reduction.

  4. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study.

    PubMed

    Hanley, Anthony J G; Williams, Ken; Stern, Michael P; Haffner, Steven M

    2002-07-01

    The prospective association between insulin levels and risk of cardiovascular disease (CVD) is controversial. The objective of the present study was to investigate the relationship of the homeostasis model assessment of insulin resistance (HOMA-IR), as well as insulin levels, with risk of nonfatal and fatal CVD over the 8-year follow-up of the San Antonio Heart Study. Between 1984 and 1988, randomly selected Mexican-American and non-Hispanic white residents of San Antonio participated in baseline examinations that included fasting blood samples for glucose, insulin, and lipids, a glucose tolerance test, anthropometric measurements, and a lifestyle questionnaire. Between 1991 and 1996, 2,569 subjects who were free of diabetes at baseline were reexamined using the same protocol. Over the follow-up period, 187 subjects experienced an incident cardiovascular event (heart attack, stroke, heart surgery, angina, or CVD death). Logistic regression analysis indicated that risk of a CVD event increased across quintiles of HOMA-IR after adjustment for age, sex, and ethnicity (P for trend <0.0001; quintile 5 vs. quintile 1, odds ratio [OR] 2.52, 95% CI 1.46-4.36). Additional adjustment for LDL, triglyceride, HDL, systolic blood pressure, smoking, alcohol consumption, exercise, and waist circumference only modestly reduced the magnitude of these associations (P for trend 0.02; quintile 5 vs. quintile 1, OR 1.94, 95% CI 1.05-3.59). Furthermore, there were no significant interactions between HOMA-IR and ethnicity, sex, hypertension, dyslipidemia, glucose tolerance (impaired glucose tolerance versus normal glucose tolerance), or obesity. The magnitude and direction of the relationship between insulin concentration and incident CVD were similar. We found a significant association between HOMA-IR and risk of CVD after adjustment for multiple covariates. The topic remains controversial, however, and additional studies are required, particularly among women and minority populations.

  5. Sleep disturbances and insulin resistance.

    PubMed

    Van Cauter, E

    2011-12-01

    The causes and risk factors of insulin resistance remain insufficiently understood. After taking into account the important roles of adiposity, age, sex and race/ethnicity, up to 50% of the individual variability in insulin resistance remains unexplained. In recent years, evidence has accumulated to support a role for sleep disturbances, including insufficient sleep, poor sleep quality and insomnia, and obstructive sleep apnoea, as independent risk factors for the development and exacerbation of insulin resistance. The present review summarizes the evidence. We will start with a brief introduction to sleep and its disorders and then examine in succession the role of the three major types of sleep disturbances of modern society, namely insufficient sleep, poor sleep quality and/or insomnia and obstructive sleep apnoea. Insulin resistance is a hallmark of the polycystic ovary syndrome, the most common endocrine pathology in women, and the last section of this review will discuss the role of obstructive sleep apnoea in the insulin resistance and metabolic disturbances of polycystic ovary syndrome. © 2011 The Author. Diabetic Medicine © 2011 Diabetes UK.

  6. Insulin action and insulin resistance in vascular endothelium.

    PubMed

    Muniyappa, Ranganath; Quon, Michael J

    2007-07-01

    Vasodilator actions of insulin are mediated by phosphatidylinositol 3-kinase dependent insulin signaling pathways in endothelium, which stimulate production of nitric oxide. Insulin-stimulated nitric oxide mediates capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in skeletal muscle. Distinct mitogen-activated protein kinase dependent insulin signaling pathways regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These vascular actions of insulin contribute to the coupling of metabolic and hemodynamic homeostasis that occurs under healthy conditions. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase dependent signaling in both metabolic and vascular insulin target tissues. Here we discuss consequences of pathway-specific insulin resistance in endothelium and therapeutic interventions targeting this selective impairment. Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation selectively impair phosphatidylinositol 3-kinase dependent insulin signaling pathways, creating reciprocal relationships between insulin resistance and endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously modulate phosphatidylinositol 3-kinase and mitogen-activated protein kinase dependent pathways, improving metabolic and vascular actions of insulin. Pathway-specific impairment in insulin action contributes to reciprocal relationships between endothelial dysfunction and insulin resistance, fostering clustering of metabolic and cardiovascular diseases in insulin-resistant states. Therapeutic interventions that target this selective impairment often simultaneously improve both metabolic and vascular function.

  7. Insulin resistance in obese children and adolescents.

    PubMed

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  8. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents

    PubMed Central

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-01-01

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = −0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents. PMID:27824069

  9. Insulin resistance and hypertension: new insights.

    PubMed

    Soleimani, Manoocher

    2015-03-01

    Insulin resistance is associated with hypertension. Nakamura et al. demonstrate in rodents and humans with insulin resistance that while the stimulatory effect of insulin on glucose uptake in adipocytes, mediated via insulin receptor substrate 1 (IRS1), was severely diminished, its effect on salt reabsorption in the kidney proximal tubule, mediated via IRS2, was preserved. Compensatory hyperinsulinemia in individuals with insulin resistance may enhance salt absorption in the proximal tubule, resulting in a state of salt overload and hypertension.

  10. Opportunities for Using Lipoprotein Subclass Profile by Nuclear Magnetic Resonance Spectroscopy in Assessing Insulin Resistance and Diabetes Prediction

    PubMed Central

    Garvey, W. Timothy; Dall, Tara; Honigberg, Robert; Pourfarzib, Ray

    2012-01-01

    Abstract The incidence of type 2 diabetes mellitus (T2DM) has reached epidemic levels, and current trends indicate that its prevalence will continue to rise. The development of T2DM can be delayed by several years, and may even be prevented, by identifying individuals at risk for T2DM and treating them with lifestyle modification and/or pharmacological therapies. There are a number of methods available for assessing the insulin resistance (IR) that characterizes, and is the precursor to, T2DM. However, current clinical methods for assessing IR, based on measures of plasma glucose and/or insulin are either laborious and time-consuming or show a low specificity. IR manifests its earliest measurable abnormalities through changes in lipoproteins, and thus we propose that by examining lipoprotein subclass profile, it may be possible to alert physicians and patients to a heightened risk of developing diabetes. This will allow us to institute appropriate lifestyle changes and treatment potentially to delay the onset or possibly prevent the progression to diabetes. PMID:22533466

  11. Measurement of insulin resistance in chronic kidney disease.

    PubMed

    Pham, Hien; Utzschneider, Kristina M; de Boer, Ian H

    2011-11-01

    Insulin resistance is a known complication of end-stage renal disease that also appears to be present in earlier stages of chronic kidney disease (CKD). It is a risk factor for cardiovascular disease and an important potential therapeutic target in this population. Measurement of insulin resistance is reviewed in the context of known pathophysiologic abnormalities in CKD. Insulin resistance in CKD is due to a high prevalence of known risk factors (e.g. obesity) and to unique metabolic abnormalities. The site of insulin resistance in CKD is localized to skeletal muscle. Estimates based on fasting insulin concentration may not adequately capture insulin resistance in CKD because they largely reflect hepatic defects and because CKD impairs insulin catabolism. A variety of dynamic tests are available to directly measure insulin-mediated glucose uptake. Insulin resistance may be an important therapeutic target in CKD. Complementary methods are available to assess insulin resistance, and each method has unique advantages, disadvantages, and levels of complexity. These characteristics, and the likelihood that CKD alters the performance of some insulin resistance measurements, must be considered when designing and interpreting clinical studies.

  12. Nutritional Modulation of Insulin Resistance

    PubMed Central

    Weickert, Martin O.

    2012-01-01

    Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts. PMID:24278690

  13. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance

    PubMed Central

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by homeostatic model assessment-estimated insulin resistance (HOMA-IR), insulin tolerance tests, and hyperinsulinemic-euglycemic clamps. Additionally, the improvements in glucose tolerance after blueberry consumption were assessed by glucose tolerance tests. However, firm conclusions regarding the anti-diabetic effect of blueberries cannot be drawn due to the small number of existing clinical studies. Although the current evidence is promising, more long-term, randomized, and placebo-controlled trials are needed to establish the role of blueberries in preventing or delaying T2DM. PMID:27916833

  14. Understanding insulin resistance. What are the clinical implications?

    PubMed

    Sivitz, William I

    2004-07-01

    Insulin resistance is an important clinical issue in patients with other prominent components of metabolic syndrome, such as central adiposity and diabetes. However, its presence may be less evident in patients who are neither obese nor diabetic. Is measurement of insulin resistance important in clinical practice? How might its presence change management in individual patients? In this concise review, Dr Sivitz discusses the underlying mechanisms involved in insulin resistance, the issues surrounding assessment, and the implications for management in patients in whom insulin resistance is either detected or suspected.

  15. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  16. Molecular mechanisms of insulin resistance in diabetes.

    PubMed

    Soumaya, Kouidhi

    2012-01-01

    Molecular components of impaired insulin signaling pathway have emerged with growing interest to understand how the environment and genetic susceptibility combine to cause defects in this fundamental pathway that lead to insulin resistance. When insulin resistance is combined with beta-cell defects in glucose-stimulated insulin secretion, impaired glucose tolerance, hyperglycemia, or Type 2 diabetes can result. The most common underlying cause is obesity, although primary insulin resistance in normal-weight individuals is also possible. The adipose tissue releases free fatty acids that contribute to insulin resistance and also acts as a relevant endocrine organ producing mediators (adipokines) that can modulate insulin signalling. This chapter deals with the core elements promoting, insulin resistance, associated with impaired insulin signalling pathway and adipocyte dysfunction. A detailed understanding of these basic pathophysiological mechanisms is critical for the development of novel therapeutic strategies to treat diabetes.

  17. Resistive Training Improves Insulin Sensitivity after Stroke

    PubMed Central

    Ivey, Frederick M.; Ryan, Alice S.

    2013-01-01

    Background Insulin resistance is highly prevalent after stroke, contributing to comorbid cardiovascular conditions that are the leading cause of death in the stroke population. This study determined the effects of unilateral resistive training (RT) of both the paretic and nonparetic legs on insulin sensitivity in stroke survivors. Methods We studied 10 participants (mean age 65 ± 2 years; mean body mass index 27 ± 4 kg/m2) with hemiparetic gait after remote (>6 months) ischemic stroke. All subjects underwent 1-repetition maximum (1-RM) strength testing, 9 had an oral glucose tolerance test (OGTT), and 7 completed a 2-hour hyperglycemic clamp (with glucose elevation targeted at 98 mg/dL above baseline fasting level) before and after 12 weeks (3×/week) of progressive, high repetition, high-intensity RT. Body composition was assessed by dual-energy x-ray absorbtiometry in all participants. Results Leg press and leg extension 1-RM increased in the paretic leg by 22% (P < .05) and 45% (P < .01), respectively. Fasting insulin decreased 23% (P < .05), with no change in fasting glucose. The 16% reduction in OGTT insulin area under the curve (AUC) across training was not statistically significant (P = .18). There was also no change in glucose AUC. First-phase insulin response during the hyperglycemic clamp (0–10 minutes) decreased 24% (P < .05), and second-phase insulin response (10–120 minutes) decreased 26% (P < .01). Insulin sensitivity increased by 31% after RT according to clamp calculations (P < .05). Conclusions These findings provide the first preliminary evidence that RT may reduce hyperinsulinemia and improve insulin sensitivity after disabling stroke. PMID:23352685

  18. Resistive training improves insulin sensitivity after stroke.

    PubMed

    Ivey, Frederick M; Ryan, Alice S

    2014-02-01

    Insulin resistance is highly prevalent after stroke, contributing to comorbid cardiovascular conditions that are the leading cause of death in the stroke population. This study determined the effects of unilateral resistive training (RT) of both the paretic and nonparetic legs on insulin sensitivity in stroke survivors. We studied 10 participants (mean age 65 ± 2 years; mean body mass index 27 ± 4 kg/m2) with hemiparetic gait after remote (>6 months) ischemic stroke. All subjects underwent 1-repetition maximum (1-RM) strength testing, 9 had an oral glucose tolerance test (OGTT), and 7 completed a 2-hour hyperglycemic clamp (with glucose elevation targeted at 98 mg/dL above baseline fasting level) before and after 12 weeks (3×/week) of progressive, high repetition, high-intensity RT. Body composition was assessed by dual-energy x-ray absorbtiometry in all participants. Leg press and leg extension 1-RM increased in the paretic leg by 22% (P < .05) and 45% (P < .01), respectively. Fasting insulin decreased 23% (P < .05), with no change in fasting glucose. The 16% reduction in OGTT insulin area under the curve (AUC) across training was not statistically significant (P = .18). There was also no change in glucose AUC. First-phase insulin response during the hyperglycemic clamp (0-10 minutes) decreased 24% (P < .05), and second-phase insulin response (10-120 minutes) decreased 26% (P < .01). Insulin sensitivity increased by 31% after RT according to clamp calculations (P < .05). These findings provide the first preliminary evidence that RT may reduce hyperinsulinemia and improve insulin sensitivity after disabling stroke. Published by Elsevier Inc.

  19. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  20. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    PubMed

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 μmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  1. Nitrosative stress and pathogenesis of insulin resistance.

    PubMed

    Kaneki, Masao; Shimizu, Nobuyuki; Yamada, Daisuke; Chang, Kyungho

    2007-03-01

    Insulin resistance is a major causative factor for type 2 diabetes and is associated with increased risk of cardiovascular disease. Despite intense investigation for a number of years, molecular mechanisms underlying insulin resistance remain to be determined. Recently, chronic inflammation has been highlighted as a culprit for obesity-induced insulin resistance. Nonetheless, upstream regulators and downstream effectors of chronic inflammation in insulin resistance remain unclarified. Inducible nitric oxide synthase (iNOS), a mediator of inflammation, has emerged as an important player in insulin resistance. Obesity is associated with increased iNOS expression in insulin-sensitive tissues in rodents and humans. Inhibition of iNOS ameliorates obesity-induced insulin resistance. However, molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Protein S-nitrosylation, a covalent attachment of NO moiety to thiol sulfhydryls, has emerged as a major mediator of a broad array of NO actions. S-nitrosylation is elevated in patients with type 2 diabetes, and increased S-nitrosylation of insulin signaling molecules, including insulin receptor, insulin receptor substrate-1, and Akt/PKB, has been shown in skeletal muscle of obese, diabetic mice. Akt/PKB is reversibly inactivated by S-nitrosylation. Based on these findings, S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance.

  2. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  3. Cerebral Blood Flow Links Insulin Resistance and Baroreflex Sensitivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Verstynen, Timothy D.; Onyewuenyi, Ikechukwu C.; Gianaros, Peter J.

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  4. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    PubMed

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-07-11

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk.Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer.Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio (Ptrend = 0.55 and Ptrend = 0.27, respectively).Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development.Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1-6. ©2017 AACR. ©2017 American Association for Cancer Research.

  5. Mechanisms of insulin resistance in obesity.

    PubMed

    Ye, Jianping

    2013-03-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy.

  6. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  7. Acrolein metabolites, diabetes and insulin resistance.

    PubMed

    Feroe, Aliya G; Attanasio, Roberta; Scinicariello, Franco

    2016-07-01

    Acrolein is a dietary and environmental pollutant that has been associated in vitro to dysregulate glucose transport. We investigated the association of urinary acrolein metabolites N-acetyl-S-(3-hydroxypropyl)-l-cysteine (3-HPMA) and N-acetyl-S-(carboxyethyl)-l-cysteine (CEMA) and their molar sum (∑acrolein) with diabetes using data from investigated 2027 adults who participated in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). After excluding participants taking insulin or other diabetes medication we, further, investigated the association of the compounds with insulin resistance (n=850), as a categorical outcome expressed by the homeostatic model assessment (HOMA-IR>2.6). As secondary analyses, we investigated the association of the compounds with HOMA-IR, HOMA-β, fasting insulin and fasting plasma glucose. The analyses were performed using urinary creatinine as independent variable in the models, and, as sensitivity analyses, the compounds were used as creatinine corrected variables. Diabetes as well as insulin resistance (defined as HOMA-IR>2.6) were positively associated with the 3-HPMA, CEMA and ∑Acrolein with evidence of a dose-response relationship (p<0.05). The highest 3rd and 4th quartiles of CEMA compared to the lowest quartile were significantly associated with higher HOMA-IR, HOMA-β and fasting insulin with a dose-response relationship. The highest 3rd quartile of 3-HPMA and ∑Acrolein were positively and significantly associated with HOMA-IR, HOMA-β and fasting insulin. These results suggest a need of further studies to fully understand the implications of acrolein with type 2 diabetes and insulin.

  8. Limited value of the homeostasis model assessment to predict insulin resistance in older men with impaired glucose tolerance.

    PubMed

    Ferrara, C M; Goldberg, A P

    2001-02-01

    Insulin resistance (IR) in older individuals is associated with risk factors for coronary artery disease. The glucose clamp measures IR directly, but the homeostasis model assessment (HOMA) of IR, referred to here as HOMA-IR, is based on fasting glucose and insulin and is less invasive and labor intensive. This method requires validation in the elderly. We assessed the validity of HOMA-IR as an index of IR by comparing it to glucose infusion rates (GIRs) measured by a glucose clamp (600 pmol x m(-2) x min(-1)) in 45 obese men (61 +/- 8 years of age, mean +/- SD) with normal glucose tolerance (NGT) (n = 21) or impaired glucose tolerance (IGT) (n = 24). We also evaluated relationships between body composition, exercise capacity, and IR. Subjects with NGT had lower BMI (28 +/- 3 vs. 31 +/- 3 kg/m2), waist circumference (97 +/- 9 vs. 105 +/- 9 cm), waist-to-hip ratio (WHR) (0.93 +/- 0.06 vs. 0.97 +/- 0.05), and percent body fat (25 +/- 6 vs. 30 +/- 6) than subjects with IGT. Subjects with NGT also had lower areas above basal during the 2-h oral glucose tolerance test for glucose (274 +/- 95 vs. 419 +/- 124 mmol x min/l) and insulin (38,142 +/- 18,206 vs. 58,383 +/- 34,408 pmol x min/l) and lower HOMA-IR values (2.2 +/- 0.8 vs. 4.2 +/- 2.6) than subjects with IGT. GIR (micromol x kg(-1) FFM x min(-1)) was higher in subjects with NGT than in subjects with IGT (53 +/- 11 vs. 43 +/- 14). HOMA-IR correlated with GIR in subjects with NGT (r = -0.59), but not in subjects with IGT (r = -0.13). GIR correlated with VO2max in subjects with NGT (r = 0.58) and IGT (r = 0.42), but with WHR only in subjects with NGT (r = -0.53). HOMA-IR correlated with VO2max (r = -0.57) and waist circumference (r = 0.54) in subjects with NGT, but with percent body fat in subjects with IGT (r = 0.54). These findings indicate that HOMA-IR should not be used as an index of IR in older individuals who may be at risk for IGT, and suggest that lifestyle changes that increase VO2max and decrease body fat

  9. Insulin Resistance and Metabolic Syndrome in Young Men With Acne.

    PubMed

    Nagpal, Mohit; De, Dipankar; Handa, Sanjeev; Pal, Arnab; Sachdeva, Naresh

    2016-04-01

    Robust evidence of the association of insulin resistance and metabolic syndrome with acne in male patients is lacking. To assess the prevalence of metabolic syndrome and insulin resistance in male patients 20 years or older with acne. We performed a cross-sectional study in 100 male patients with acne and 100 age-matched male controls without acne from a dermatology outpatient department of a tertiary care institute. Postadolescent patients were recruited only to negate the effects of physiologic insulin resistance that are seen at the time of puberty and adolescence. Twenty-five patients were included in each of the 4 individual severity groups according to the Global Acne Grading System and were age matched to 100 male controls without acne. Clinical examination, Global Acne Rating System, National Cholesterol Education Programme Adult Treatment Panel III (NCEP-ATP III), and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). Metabolic syndrome was diagnosed as per the criteria of the modified NCEP-ATP III. Insulin resistance was assessed by the HOMA-IR. A HOMA-IR value greater than 2.5 was arbitrarily considered as insulin resistance. Prevalence of insulin resistance was significantly higher in cases (22%) compared with controls (11%) (P = .03). The prevalence of metabolic syndrome was comparable between cases (17%) and controls (9%) (P = .09). Prevalence of insulin resistance and metabolic syndrome did not differ significantly among the acne severity groups. Postadolescent male patients with acne more commonly have insulin resistance. This resistance may be a stage of prediabetes, and the patients may develop hyperinsulinemia or type 2 diabetes in the future. These patients should be followed up for a prolonged time to determine whether they develop conditions associated with insulin resistance.

  10. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  11. Interactions of endothelin and insulin: expanding parameters of insulin resistance.

    PubMed

    Strawbridge, Andrew B; Elmendorf, Jeffrey S; Mather, Kieren J

    2006-08-01

    Since the discovery of endothelin peptides in the mid-1980s by Yanigasawa and colleagues, accumulating evidence demonstrates that these peptides may function beyond vasoconstriction. Strong epidemiologic associations between insulin resistance and increased endothelin levels or activity have been found, and these associations have prompted studies investigating the interactions of endothelin with insulin. In this review we explore the evidence for such interactions at multiple levels of physiology, ranging from effects on tissue perfusion through modulation of vascular tone to subcellular interactions of endothelin signaling with insulin signaling. The evidence implicating endothelin in insulin resistance and its associated vascular and metabolic abnormalities is reviewed.

  12. Insulin resistance and skin diseases.

    PubMed

    Napolitano, Maddalena; Megna, Matteo; Monfrecola, Giuseppe

    2015-01-01

    In medical practice, almost every clinician may encounter patients with skin disease. However, it is not always easy for physicians of all specialties to face the daily task of determining the nature and clinical implication of dermatologic manifestations. Are they confined to the skin, representing a pure dermatologic event? Or are they also markers of internal conditions relating to the patient's overall health? In this review, we will discuss the principal cutaneous conditions which have been linked to metabolic alterations. Particularly, since insulin has an important role in homeostasis and physiology of the skin, we will focus on the relationships between insulin resistance (IR) and skin diseases, analyzing strongly IR-associated conditions such as acanthosis nigricans, acne, and psoriasis, without neglecting emerging and potential scenarios as the ones represented by hidradenitis suppurativa, androgenetic alopecia, and hirsutism.

  13. Insulin Resistance and Skin Diseases

    PubMed Central

    Napolitano, Maddalena; Megna, Matteo; Monfrecola, Giuseppe

    2015-01-01

    In medical practice, almost every clinician may encounter patients with skin disease. However, it is not always easy for physicians of all specialties to face the daily task of determining the nature and clinical implication of dermatologic manifestations. Are they confined to the skin, representing a pure dermatologic event? Or are they also markers of internal conditions relating to the patient's overall health? In this review, we will discuss the principal cutaneous conditions which have been linked to metabolic alterations. Particularly, since insulin has an important role in homeostasis and physiology of the skin, we will focus on the relationships between insulin resistance (IR) and skin diseases, analyzing strongly IR-associated conditions such as acanthosis nigricans, acne, and psoriasis, without neglecting emerging and potential scenarios as the ones represented by hidradenitis suppurativa, androgenetic alopecia, and hirsutism. PMID:25977937

  14. Animal models of insulin resistance: A review.

    PubMed

    Sah, Sangeeta Pilkhwal; Singh, Barinder; Choudhary, Supriti; Kumar, Anil

    2016-12-01

    Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.

  15. No effect of modest selenium supplementation on insulin resistance in UK pregnant women, as assessed by plasma adiponectin concentration.

    PubMed

    Mao, Jinyuan; Bath, Sarah C; Vanderlelie, Jessica J; Perkins, Anthony V; Redman, Christopher W G; Rayman, Margaret P

    2016-01-14

    Concern has been expressed recently that Se may increase the risk of type 2 diabetes, but this has not been tested in a randomised-controlled trial (RCT) in pregnant women. We took advantage of having stored plasma samples from the Se in Pregnancy Intervention (SPRINT) RCT of Se supplementation in pregnancy to test the effect of Se supplementation on a marker of insulin resistance in UK pregnant women. Because our blood samples were not fasted, we measured plasma adiponectin concentration, a recognised marker of insulin resistance that gives valid measurements in non-fasted samples, as diurnal variability is minor and there is no noticeable effect of food intake. In SPRINT, 230 primiparous UK women were randomised to treatment with Se (60 μg/d) or placebo from 12 weeks of gestation until delivery. We hypothesised that supplementation with Se at a nutritional level would not exacerbate the fall in adiponectin concentration that occurs in normal pregnancy, indicating the lack of an adverse effect on insulin resistance. Indeed, there was no significant difference between the two groups in the change in adiponectin from 12 to 35 weeks (P=0·938), nor when the analysis was restricted to the bottom or top quartiles of baseline whole-blood Se (P=0·515 and 0·858, respectively). Cross-sectionally, adiponectin concentration was not associated with any parameter of Se status, either at 12 or 35 weeks. It is reassuring that a nutritional dose of Se had no adverse effect on the concentration of adiponectin, a biomarker of insulin resistance, in pregnant women of modest Se status.

  16. Steroids and insulin resistance in pregnancy.

    PubMed

    Vejrazkova, Daniela; Vcelak, Josef; Vankova, Marketa; Lukasova, Petra; Bradnova, Olga; Halkova, Tereza; Kancheva, Radmila; Bendlova, Bela

    2014-01-01

    Metabolism of glucose during pregnancy reflects the equilibrium between lactogenic hormones stimulating insulin production and counterregulatory hormones inducing insulin resistance. In physiological pregnancies, insulin-mediated glucose uptake is substantially decreased and insulin secretion increased to maintain euglycemia. This common state of peripheral insulin resistance arises also due to steroid spectra changes. In this review article, we have focused on the role of steroid hormones (androgens, estrogens, gestagens, mineralocorticoids, glucocorticoids, as well as secosteroid vitamin D) in the impairment of glucose tolerance in pregnancy and in the pathogenesis of gestational diabetes mellitus. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.

  17. Circadian disruption leads to insulin resistance and obesity

    PubMed Central

    Shi, Shu-qun; Ansari, Tasneem; McGuinness, Owen P.; Wasserman, David H.; Johnson, Carl Hirschie

    2013-01-01

    Summary Background Disruption of circadian (daily) timekeeping enhances the risk of metabolic syndrome, obesity, and Type 2 diabetes. While clinical observations have suggested that insulin action is not constant throughout the 24 hour cycle, its magnitude and periodicity have not been assessed. Moreover, when circadian rhythmicity is absent or severely disrupted, it is not known whether insulin action will lock to the peak, nadir or mean of the normal periodicity of insulin action. Results We used hyperinsulinemic-euglycemic clamps to show a bona fide circadian rhythm of insulin action; mice are most resistant to insulin during their daily phase of relative inactivity. Moreover, clock-disrupted Bmal1-knockout mice are locked into the trough of insulin action and lack rhythmicity in insulin action and activity patterns. When rhythmicity is rescued in the Bmal1-knockout mice by expression of the paralogous gene Bmal2, insulin action and activity patterns are restored. When challenged with a high fat diet, arhythmic mice (either Bmal1-knockout mice or wild type mice made arhythmic by exposure to constant light) were obese prone. Adipose tissue explants obtained from high-fat fed mice have their own periodicity that was longer than animals on a chow fed diet. Conclusions This study provides rigorous documentation for a circadian rhythm of insulin action and demonstrates that disturbing the natural rhythmicity of insulin action will disrupt the rhythmic internal environment of insulin sensitive tissue, thereby predisposing the animals to insulin resistance and obesity. PMID:23434278

  18. Synergistic interactions among metabolic syndrome components and homeostasis model assessment of insulin resistance in a middle-aged general population over time.

    PubMed

    Bonora, Benedetta Maria; Marescotti, Mariacristina; Marcuzzo, Giorgio; Avogaro, Angelo; Fadini, Gian Paolo

    2015-05-01

    Insulin resistance is considered a hallmark feature of the metabolic syndrome, but how metabolic syndrome components and insulin resistance measures interact over time is unclear. The homeostasis model assessment of insulin resistance (HOMA-IR) is a static index of insulin resistance typically used in epidemiological studies. We explored how HOMA-IR is affected by clustering metabolic syndrome components over time in a population of middle-aged, healthy subjects. A total of 1757 subjects aged 41.3±7.5 years (39% males) free from diabetes at baseline were followed-up for a median of 5.7 years. At baseline and at the end of observation, we determined metabolic syndrome components and HOMA-IR. Cross-sectionally, HOMA-IR was synergistically increased by clustering of at least two to three metabolic syndrome components as determined at baseline and at study end by departure from additivity. Some combinations of metabolic syndrome components were associated with a significant synergic increase in HOMA-IR, and some combinations of two components entailed a synergistic risk of developing metabolic syndrome. Over time, the average change in HOMA-IR was more than additively affected by change in the number of metabolic syndrome components. Baseline HOMA-IR values were predictive of incident metabolic syndrome independent from age, sex, and each metabolic syndrome component. We show synergistic interaction between clustering metabolic syndrome components and insulin resistance, estimated by HOMA-IR, cross-sectionally and over time. This more than additive effect explains the incremental value of HOMA-IR in predicting metabolic risk.

  19. Clinical trial to assess the effect of physical exercise on endothelial function and insulin resistance in pregnant women

    PubMed Central

    2009-01-01

    Background Preeclampsia (PE) is a common maternal disease that complicates 5 to 10% of pregnancies and remains as the major cause of maternal and neonatal mortality. Cost-effective interventions aimed at preventing the development of preeclampsia are urgently needed. However, the pathogenesis of PE is not well known. Multiple mechanisms such as oxidative stress, endothelial dysfunction and insulin resistance may contribute to its development. Regular aerobic exercise recovers endothelial function; improves insulin resistance and decreases oxidative stress. Therefore the purpose of this clinical trial is to determine the effect of regular aerobic exercise on endothelial function, on insulin resistance and on pregnancy outcome. Methods and design 64 pregnant women will be included in a blind, randomized clinical trial, and parallel assignment. The exercise group will do regular aerobic physical exercise: walking (10 minutes), aerobic exercise (30 minutes), stretching (10 minutes) and relaxation exercise (10 minutes) in three sessions per week. Control group will do the activities of daily living (bathing, dressing, eating, and walking) without counselling from a physical therapist. Trial registration NCT00741312. PMID:19919718

  20. Clinical trial to assess the effect of physical exercise on endothelial function and insulin resistance in pregnant women.

    PubMed

    Ramírez-Vélez, Robinson; Aguilar, Ana C; Mosquera, Mildrey; Garcia, Ronald G; Reyes, Laura M; López-Jaramillo, Patricio

    2009-11-17

    Preeclampsia (PE) is a common maternal disease that complicates 5 to 10% of pregnancies and remains as the major cause of maternal and neonatal mortality. Cost-effective interventions aimed at preventing the development of preeclampsia are urgently needed. However, the pathogenesis of PE is not well known. Multiple mechanisms such as oxidative stress, endothelial dysfunction and insulin resistance may contribute to its development. Regular aerobic exercise recovers endothelial function; improves insulin resistance and decreases oxidative stress. Therefore the purpose of this clinical trial is to determine the effect of regular aerobic exercise on endothelial function, on insulin resistance and on pregnancy outcome. 64 pregnant women will be included in a blind, randomized clinical trial, and parallel assignment. The exercise group will do regular aerobic physical exercise: walking (10 minutes), aerobic exercise (30 minutes), stretching (10 minutes) and relaxation exercise (10 minutes) in three sessions per week. Control group will do the activities of daily living (bathing, dressing, eating, and walking) without counselling from a physical therapist. NCT00741312.

  1. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    PubMed

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p < 0.001) and after the meal (-11%; p < 0.001). Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p < 0.01). Hyperinsulinemia and meal ingestion decrease SVR, which is directly associated with metabolic insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  2. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  3. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  4. Angiotensin and insulin resistance: conspiracy theory.

    PubMed

    Townsend, Raymond R

    2003-04-01

    Resistance to the metabolic effects of insulin is a contender for the short list of major cardiovascular risk factors. Since the elements of the syndrome of insulin resistance were first articulated together in 1988, numerous epidemiologic investigations and treatment endeavors have established a relationship between the metabolic disarray of impaired insulin action and cardiovascular disease. Angiotensin II, the primary effector of the renin-angiotensin system, has also achieved a place in the chronicles of cardiovascular risk factors. Conspiracy mechanisms by which angiotensin II and insulin resistance interact in the pathogenesis of cardiovascular disease are reviewed, with particular attention to recent developments in this engaging area of human research.

  5. Neferine enhances insulin sensitivity in insulin resistant rats.

    PubMed

    Pan, Yang; Cai, Baochang; Wang, Kelin; Wang, Sumin; Zhou, Shuyuan; Yu, Xiaochun; Xu, Bin; Chen, Long

    2009-07-06

    Neferine was isolated from green seed embryo of Nelumbo nucifera Gaertn which has been used as an anti-obesity agent in traditional Chinese herbal medicine. This study was conducted to investigate the effects of neferine on enhancing insulin sensitivity in insulin resistant rats compared with rosiglitazone and to potentially reveal its role in mediating the anti-obesity properties of Nelumbo nucifera Gaertn. Fasting blood glucose (FBG), fasting blood insulin (FINS), triglycerides (TG) and tumor necrosis factor-alpha (TNF-alpha) were measured, and the oral glucose tolerance test for 2-h plasma glucose level (2-h PG) was carried out. The glucose infusion rate (GIR) was used to measure the insulin sensitivity by hyperinsulinemic euglycemic clamp technique. The levels of FBG, FINS, TG, TNF-alpha and 2-h PG all decreased significantly in the rosiglitazone and neferine groups compared with the insulin resistance (IR) model group. Neferine diminished the 2-h PG more than did rosiglitazone treatment. Compared to the IR model group, the treatments of neferine and rosiglitazone remarkably increased GIRs but no difference between these two treatments themselves was evident. These data demonstrate that neferine has effects similar to rosiglitazone in decreasing fasting blood glucose, insulin, TG, TNF-alpha and enhancing insulin sensitivity in insulin resistant rats.

  6. Effect of fensuccinal on experimental insulin resistance.

    PubMed

    Gorbenko, N I; Poltorak, V V; Gladkikh, A I; Ivanova, O V

    2000-07-01

    The effects of new antioxidant fensuccinal on dexamethasone-induced insulin resistance in rats were studied. Oral administration of fensuccinal in a dose of 25 mg/kg for 2 weeks prevented basal hyperinsulinemia and insulin insensitivity of peripheral tissues. Fensuccinal also attenuated oxidative stress by decreasing the concentrations of primary and secondary lipid peroxidation products in liver homogenates. The ability of fensuccinal to prevent dexamethasone-induced insulin resistance is probably due to its antioxidant properties.

  7. [Insulin resistance pathogenesis in metabolic obesity].

    PubMed

    Litvinova, L S; Kirienkova, E V; Mazunin, I O; Vasilenko, M A; Fattakhov, N S

    2015-01-01

    In this review we discuss the molecular mechanisms of insulin resistance concomitant with metabolic inflammation. We also analyze the world results of experimental and clinical studies which aimed at identifying the molecular targets for the development of new prevention and treatment of insulin resistance.

  8. Genetics Home Reference: type A insulin resistance syndrome

    MedlinePlus

    ... Conditions type A insulin resistance syndrome type A insulin resistance syndrome Enable Javascript to view the expand/ ... PDF Open All Close All Description Type A insulin resistance syndrome is a rare disorder characterized by ...

  9. Skeletal Muscle Insulin Resistance and Absence of Inflammation Characterize Insulin-Resistant Grade I Obese Women

    PubMed Central

    Bourret, Annick; Lambert, Karen; Birot, Olivier; Fédou, Christine; Dupuy, Anne-Marie; Cristol, Jean-Paul; Sutra, Thibault; Molinari, Nicolas; Maimoun, Laurent; Mariano-Goulart, Denis; Galtier, Florence; Avignon, Antoine; Stanke-Labesque, Françoise; Mercier, Jacques; Sultan, Ariane; Bisbal, Catherine

    2016-01-01

    Context Obesity is associated with insulin-resistance (IR), the key feature of type 2 diabetes. Although chronic low-grade inflammation has been identified as a central effector of IR development, it has never been investigated simultaneously at systemic level and locally in skeletal muscle and adipose tissue in obese humans characterized for their insulin sensitivity. Objectives We compared metabolic parameters and inflammation at systemic and tissue levels in normal-weight and obese subjects with different insulin sensitivity to better understand the mechanisms involved in IR development. Methods 30 post-menopausal women were classified as normal-weight insulin-sensitive (controls, CT) and obese (grade I) insulin-sensitive (OIS) or insulin-resistant (OIR) according to their body mass index and homeostasis model assessment of IR index. They underwent a hyperinsulinemic-euglycemic clamp, blood sampling, skeletal muscle and subcutaneous adipose tissue biopsies, an activity questionnaire and a self-administrated dietary recall. We analyzed insulin sensitivity, inflammation and IR-related parameters at the systemic level. In tissues, insulin response was assessed by P-Akt/Akt expression and inflammation by macrophage infiltration as well as cytokines and IκBα expression. Results Systemic levels of lipids, adipokines, inflammatory cytokines, and lipopolysaccharides were equivalent between OIS and OIR subjects. In subcutaneous adipose tissue, the number of anti-inflammatory macrophages was higher in OIR than in CT and OIS and was associated with higher IL-6 level. Insulin induced Akt phosphorylation to the same extent in CT, OIS and OIR. In skeletal muscle, we could not detect any inflammation even though IκBα expression was lower in OIR compared to CT. However, while P-Akt/Akt level increased following insulin stimulation in CT and OIS, it remained unchanged in OIR. Conclusion Our results show that systemic IR occurs without any change in systemic and tissues

  10. Treatment Approach to Patients With Severe Insulin Resistance

    PubMed Central

    Church, Timothy J.

    2016-01-01

    In Brief Patients with severe insulin resistance require >2 units/kg of body weight or 200 units/day of insulin. Yet, many patients do not achieve glycemic targets despite using very high doses of insulin. Insulin can cause weight gain, which further contributes to worsening insulin resistance. This article describes the pharmacological options for managing patients with severe insulin resistance, including the use of U-500 insulin and newer agents in combination with insulin. PMID:27092020

  11. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND

  12. Noninvasive assessment of insulin resistance in the liver using the fasting (13)C-glucose breath test.

    PubMed

    Tanaka, Ken; Matsuura, Tomokazu; Shindo, Daisuke; Aida, Yuta; Matsumoto, Yoshihiro; Nagatsuma, Keisuke; Saito, Masaya; Ishii, Hirotaka; Abe, Hiroshi; Tanaka, Fumihiko; Shimada, Takao; Nakada, Koji; Ikewaki, Katsunori; Aizawa, Yoshio; Tajiri, Hisao; Suzuki, Masato

    2013-09-01

    Evaluating hepatic insulin resistance (IR) is the key to making a sensitive an accurate diagnosis of glucose intolerance. However, there is currently no suitable method to perform this procedure. This study was conducted to investigate whether the fasting (13)C-glucose breath test (FGBT) is useful as a convenient and highly sensitive clinical test for evaluating hepatic IR. Healthy nonobese subjects and a disease group consisting of patients with mild glucose intolerance were administered 100 mg (13)C-glucose after an overnight fast. A series of breath samples was collected until 360 minutes after ingestion, and the (13)CO2-to-(12)CO2 ratio was measured using an infrared spectrometer and was plotted as a kinetic curve of (13)C excretion. The area under the curve until 360 minutes (AUC360) of the (13)C excretion kinetic curve of the FGBT reflects the efficiency of energy production in the liver. First, we assessed the correlations between the AUC360 (or the (13)C excretion rate at 120 minutes) and the HOMA-IR and HbA1c levels as standard measurements of IR and diabetes mellitus (DM). There were relatively strong correlation coefficients (r = -0.49 to -0.81, r(2) = 0.24-0.66, P < 0.01; n = 35 males, n = 33 females). Second, we compared the AUC360 of healthy subjects and that of the patients with mild glucose intolerance. The AUC360 of the healthy subjects was consistently higher than that of the patients with mild glucose intolerance. The presence of IR or DM in males and females was diagnosed using cutoff values. The FGBT is a novel glucose metabolism test that can be used conveniently and safely to evaluate the balance of glucose metabolism in the liver. This test has excellent sensitivity for diagnosing alterations in hepatic glucose metabolism, particularly hepatic IR. Copyright © 2013 Mosby, Inc. All rights reserved.

  13. Urinary Phthalates and Increased Insulin Resistance in Adolescents

    PubMed Central

    Spanier, Adam J.; Sathyanarayana, Sheela; Attina, Teresa M.; Blustein, Jan

    2013-01-01

    BACKGROUND Di-2-ethylhexylphthalate (DEHP) is an environmental chemical commonly found in processed foods. Phthalate exposures, in particular to DEHP, have been associated with insulin resistance in adults, but have not been studied in adolescents. METHODS: Using cross-sectional data from 766 fasting 12- to 19-year-olds in the 2003–2008 NHANES, we examined associations of phthalate metabolites with continuous and categorical measures of homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: Controlling for demographic and behavioral factors, diet, continuous age, BMI category, and urinary creatinine, for each log (roughly threefold) increase in DEHP metabolites, a 0.27 increase (95% confidence interval 0.14–0.40; P < .001) in HOMA-IR was identified. Compared with the first tertile of DEHP metabolite in the study population (14.5% insulin resistant), the third tertile had 21.6% prevalence (95% confidence interval 17.2%–26.0%; P = .02). Associations persisted despite controlling for bisphenol A, another endocrine-disrupting chemical commonly found in foods, and HOMA-IR and insulin resistance were not significantly associated with metabolites of lower molecular weight phthalates commonly found in cosmetics and other personal care products. CONCLUSIONS: Urinary DEHP concentrations were associated with increased insulin resistance in this cross-sectional study of adolescents. This study cannot rule out the possibility that insulin-resistant children ingest food with higher phthalate content, or that insulin-resistant children excrete more DEHP. PMID:23958772

  14. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    PubMed

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  15. Visceral adipose tissue, adiponectin levels and insulin resistance are related to atherosclerosis as assessed by whole-body magnetic resonance angiography in an elderly population.

    PubMed

    Hansen, T; Ahlström, H; Söderberg, S; Hulthe, J; Wikström, J; Lind, L; Johansson, L

    2009-07-01

    The principal aim of this study was to determine whether the amount of visceral adipose tissue (VAT) is more related than subcutaneous adipose tissue (SAT) to atherosclerosis assessed by whole-body MRA (WBMRA). A further objective was to investigate whether traditional risk factors, inflammation, or adipokines could explain the hypothesized relationship between VAT and atherosclerosis. Men and women aged 70 were recruited from the general population into the Prospective Investigation of The Vasculature in Uppsala Seniors (PIVUS) and 306 of them underwent WBMRA in a clinical 1.5-T scanner. The arterial tree was assessed for degree of stenosis or occlusion and a total atherosclerotic score (TAS) was established. Information on risk factors and BMI and on SAT and VAT, segmented on an axial MR scan was collected. Adiponectin, leptin, and high sensitive C-reactive protein (hsCRP) were measured in serum. HOMA index was used as a marker of insulin resistance. VAT was related to TAS independently of gender, total obesity (BMI), amount of SAT, hsCRP and also to the traditional risk factors included in the Framingham risk score (FRS) in an elderly population. Adiponectin or the HOMA insulin resistance, but not leptin or VAT, together with FRS was significantly related to TAS in a multiple censored regression model. Adiponectin attenuated the relationship between VAT and TAS, suggesting that adiponectin and insulin resistance is an important link between visceral adiposity and atherosclerosis.

  16. Effect of curative parathyroidectomy on insulin resistance

    PubMed Central

    Putnam, Rachel; Dhibar, Deba Prasad; Varshney, Shweta; Behera, Arunanshu; Mittal, B. R.; Bhansali, Anil; Rao, Sudhaker D.; Bhadada, Sanjay Kumar

    2016-01-01

    Background: Primary hyperparathyroidism (PHPT) is characterized by inappropriately elevated serum parathyroid hormone (PTH) level despite elevated serum calcium. Insulin resistant is the basic pathophysiology, behind the higher prevalence of diabetes mellitus in patients with PHPT. However, the improvement in insulin resistance (IR) after curative parathyroidectomy (CPTX) has not been established yet, as the study results are conflicting. Materials and Methods: In this prospective interventional study, ten patients with mild PHPT (Group 1) and another ten patients with moderate to severe PHPT (Group 2) were undergone CPTX. The IR was assessed by homeostasis model assessment-IR (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), fasting plasma glucose (FPG), and fasting serum insulin (FSI), before and 3 months after CPTX. Results: There was no significant change of FPG and FSI, before and after CPTX in Group 1 (P = 0.179 and P = 0.104) and Group 2 (P = 0.376 and P = 0.488). Before surgery, HOMA-IR was higher, and QUICKI was significantly lower, in both Group 1 (P = 0.058 and P = 0.009) and Group 2 (P = 0.023 and P = 0.005) as compared to published normal reference mean, with no significant difference between the groups. Three months after surgery HOMA-IR increased further and QUICKI remained unchanged as compared to baseline, in both Group 1 (P = 0.072 and 0.082) and Group 2 (P = 0.54 and 0.56), but statistically insignificant. Conclusion: IR remained unchanged after CPTX in mild as well as moderate to severe PHPT. Asymptomatic PHPT with abnormal IR should not be used as criteria for parathyroidectomy. PMID:27867880

  17. Increased insulin translation from an insulin splice-variant overexpressed in diabetes, obesity, and insulin resistance.

    PubMed

    Minn, Alexandra H; Lan, Hong; Rabaglia, Mary E; Harlan, David M; Peculis, Brenda A; Attie, Alan D; Shalev, Anath

    2005-03-01

    Type 2 diabetes occurs when pancreatic beta-cells become unable to compensate for the underlying insulin resistance. Insulin secretion requires beta-cell insulin stores to be replenished by insulin biosynthesis, which is mainly regulated at the translational level. Such translational regulation often involves the 5'-untranslated region. Recently, we identified a human insulin splice-variant (SPV) altering only the 5'-untranslated region and conferring increased translation efficiency. We now describe a mouse SPV (mSPV) that is found in the cytoplasm and exhibits increased translation efficiency resulting in more normal (prepro)insulin protein per RNA. The RNA stability of mSPV is not increased, but the predicted secondary RNA structure is altered, which may facilitate translation. To determine the role of mSPV in insulin resistance and diabetes, mSPV expression was measured by quantitative real-time RT-PCR in islets from three diabetic and/or insulin-resistant, obese and nonobese, mouse models (BTBRob/ob, C57BL/6ob/ob, and C57BL/6azip). Interestingly, mSPV expression was significantly higher in all diabetic/insulin-resistant mice compared with wild-type littermates and was dramatically induced in primary mouse islets incubated at high glucose. This raises the possibility that the mSPV may represent a compensatory beta-cell mechanism to enhance insulin biosynthesis when insulin requirements are elevated by hyperglycemia/insulin resistance.

  18. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis.

    PubMed

    Wang, Feng; Han, Lili; Hu, Dayi

    2017-01-01

    Studies on the association of fasting insulin concentrations or insulin resistance with subsequent risk of hypertension have yielded conflicting results. To quantitatively assess the association of fasting insulin concentrations or homeostasis model assessment insulin resistance (HOMA-IR) with incident hypertension in a general population by performing a meta-analysis. We searched the PubMed and Embase databases until August 31, 2016 for prospective observational studies investigating the elevated fasting insulin concentrations or HOMA-IR with subsequent risk of hypertension in the general population. Pooled risk ratio (RR) and 95% confidence interval (CI) of hypertension was calculated for the highest versus the lowest category of fasting insulin or HOMA-IR. Eleven studies involving 10,230 hypertension cases were identified from 55,059 participants. Meta-analysis showed that the pooled adjusted RR of hypertension was 1.54 (95% CI 1.34-1.76) for fasting insulin concentrations and 1.43 (95% CI 1.27-1.62) for HOMA-IR comparing the highest to the lowest category. Subgroup analysis results showed that the association of fasting insulin concentrations with subsequent risk of hypertension seemed more pronounced in women (RR 2.07; 95% CI 1.19-3.60) than in men (RR 1.48; 95% CI 1.17-1.88). This meta-analysis suggests that elevated fasting insulin concentrations or insulin resistance as estimated by homeostasis model assessment is independently associated with an exacerbated risk of hypertension in the general population. Early intervention of hyperinsulinemia or insulin resistance may help clinicians to identify the high risk of hypertensive population. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Intrinsic Frequency and the Single Wave Biopsy: Implications for Insulin Resistance.

    PubMed

    Petrasek, Danny; Pahlevan, Niema M; Tavallali, Peyman; Rinderknecht, Derek G; Gharib, Morteza

    2015-07-16

    Insulin resistance is the hallmark of classical type II diabetes. In addition, insulin resistance plays a central role in metabolic syndrome, which astonishingly affects 1 out of 3 adults in North America. The insulin resistance state can precede the manifestation of diabetes and hypertension by years. Insulin resistance is correlated with a low-grade inflammatory condition, thought to be induced by obesity as well as other conditions. Currently, the methods to measure and monitor insulin resistance, such as the homeostatic model assessment and the euglycemic insulin clamp, can be impractical, expensive, and invasive. Abundant evidence exists that relates increased pulse pressure, pulse wave velocity (PWV), and vascular dysfunction with insulin resistance. We introduce a potential method of assessing insulin resistance that relies on a novel signal-processing algorithm, the intrinsic frequency method (IFM). The method requires a single pulse pressure wave, thus the term " wave biopsy."

  20. Insulin resistance during puberty and future fat accumulation.

    PubMed

    Travers, Sharon H; Jeffers, Barrett W; Eckel, Robert H

    2002-08-01

    Insulin resistance is a known sequela of obesity; however, the relationship of insulin resistance to future weight gain remains unclear. In several studies, insulin resistance has been associated with weight stabilization. For the most part, this relationship has been found in adults who are overweight. To evaluate the relationship of insulin resistance to future fat accumulation in pubertal children, a 3-yr prospective study was carried out. Insulin sensitivity (Si) was determined by Bergman's minimal model in 111 healthy children, aged 9.7-14.5 yr. All children were Tanner stage II or III pubertal development at baseline. Body composition was assessed by body mass index, skinfold thickness, hydrodensitometry, and bioelectric impedance analysis at baseline and annually thereafter for an additional 3 yr. A repeated-measures analysis showed that the change in percentage body fat estimated from skinfold thickness [%BF(SF)] over time changed with increasing Si (P < 0.0001). Si was divided into tertiles for each gender, with the lowest tertile representing the most insulin-resistant children. For girls, those in the lowest tertile maintained their %BF(SF) over 3 yr, whereas those girls in the middle and upper tertile had an increase in their %BF(SF). For boys, those in the lowest tertile showed a decrease in their %BF(SF), whereas those boys in the middle and upper tertile maintained their %BF(SF). These results suggest that during puberty, children who are more insulin resistant have decreased sc fat gain.

  1. Insulin resistance in porphyria cutanea tarda.

    PubMed

    Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R

    1989-06-01

    It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.

  2. Insulin Receptor Signaling in Normal and Insulin-Resistant States

    PubMed Central

    Boucher, Jérémie; Kleinridders, André; Kahn, C. Ronald

    2014-01-01

    In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications. PMID:24384568

  3. Salt sensitivity is associated with insulin resistance in essential hypertension.

    PubMed

    Fuenmayor, N; Moreira, E; Cubeddu, L X

    1998-04-01

    The relationship between salt sensitivity and insulin resistance was investigated in nondiabetic, nonobese (body mass index < or = 28) untreated patients with uncomplicated, mild-to-moderate essential hypertension. Alterations in insulin-mediated glucose disposal were assessed by means of the insulin suppression test. Subjects were classified as salt sensitive and salt resistant according to their blood pressure response to low and high salt intake. Fasting serum glucose levels were within normal limits and did not differ between salt sensitive and salt resistant hypertensives, irrespectively of the level of salt intake. Fasting serum insulin levels increased in salt sensitive patients when on a high intake of salt. The insulin suppression test revealed the existence of marked differences in insulin-mediated glucose uptake between salt sensitive and salt resistant hypertensives. Much higher steady-state glucose values (nanomoles of glucose/ liter) were obtained during the insulin suppression test in salt sensitive than in salt-resistant hypertensives (7.4+/-1.6 v 3.5+/-0.1 under low salt; and 12.5+/-1.1 v 4.3+/-0.1 under high salt intake). The product of glucose times insulin obtained at steady state during low and high salt intakes were 2.5 and 5 times greater, respectively, in salt sensitive than in salt resistant hypertensives. Therefore, the impairment in insulin-mediated glucose disposal observed in salt sensitive hypertensives was present both under low salt (60 to 70 mEq/day) and high salt intake (300 mEq/day). However, it was exacerbated under high salt intake. These results suggest that untreated salt sensitive hypertensives have a considerable impairment in insulin-mediated glucose disposal because of a state of insulin resistance. High salt intake increased BP, induced hyperinsulinemia, and worsened insulin-mediated glucose disposal only in salt sensitive patients. We propose that salt sensitivity contributes, separately from hypertension, to insulin

  4. Selective insulin resistance in hepatocyte senescence

    SciTech Connect

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  5. Insulin resistance in severe acne vulgaris.

    PubMed

    Emiroğlu, Nazan; Cengiz, Fatma Pelin; Kemeriz, Funda

    2015-08-01

    Acne vulgaris is a pilosebaceous gland disease that usually affects people from puberty to young adulthood. It is seen especially on the face, neck, trunk and arms. Its severity differs from patient to patient and its pathogenesis is multifactorial. The main pathogenic factors of acne are high sebaceous gland secretion, follicular hyperproliferation, high androgen effects, propionibacterium acnes colonization and inflammation. Diet is always thought a probable reason for acne and many studies are done about acne and diet. To determine the effect of insulin resistance in severe acne vulgaris. Two hundred and forty-three acne vulgaris patients and 156 healthy controls were enrolled into the study. The blood levels of insulin and glucose were measured. Homeostasis Model Assessment (HOMA) Index was calculated. The values were compared with the control group. All of the patients were in the severe acne group according to their scores on the global acne scoring scale. While fasting blood glucose levels were not different between the groups (p > 0.05, 82.91 ±9.76 vs. 80.26 ±8.33), the fasting insulin levels were significantly higher in the patient group than in the control group (p < 0.001, 14.01 ±11.94 vs. 9.12 ±3.53). Additionally, there was a highly significant difference between the patient and control groups in terms of HOMA values (p < 0.001, 2.87 ±2.56 vs. 1.63 ±0.65). These results suggest that insulin resistance may have a role in the pathogenesis of acne.

  6. Insulin resistance in severe acne vulgaris

    PubMed Central

    Cengiz, Fatma Pelin; Kemeriz, Funda

    2015-01-01

    Introduction Acne vulgaris is a pilosebaceous gland disease that usually affects people from puberty to young adulthood. It is seen especially on the face, neck, trunk and arms. Its severity differs from patient to patient and its pathogenesis is multifactorial. The main pathogenic factors of acne are high sebaceous gland secretion, follicular hyperproliferation, high androgen effects, propionibacterium acnes colonization and inflammation. Diet is always thought a probable reason for acne and many studies are done about acne and diet. Aim To determine the effect of insulin resistance in severe acne vulgaris. Material and methods Two hundred and forty-three acne vulgaris patients and 156 healthy controls were enrolled into the study. The blood levels of insulin and glucose were measured. Homeostasis Model Assessment (HOMA) Index was calculated. The values were compared with the control group. Results All of the patients were in the severe acne group according to their scores on the global acne scoring scale. While fasting blood glucose levels were not different between the groups (p > 0.05, 82.91 ±9.76 vs. 80.26 ±8.33), the fasting insulin levels were significantly higher in the patient group than in the control group (p < 0.001, 14.01 ±11.94 vs. 9.12 ±3.53). Additionally, there was a highly significant difference between the patient and control groups in terms of HOMA values (p < 0.001, 2.87 ±2.56 vs. 1.63 ±0.65). Conclusions These results suggest that insulin resistance may have a role in the pathogenesis of acne. PMID:26366152

  7. [Beyond immunopathogenesis. Insulin resistance and "epidermal dysfunction"].

    PubMed

    Boehncke, W-H; Boehncke, S; Buerger, C

    2012-03-01

    Insulin is a central player in the regulation of metabolic as well as non-metabolic cells: inefficient signal transduction (insulin resistance) not only represents the cornerstone in the pathogenesis of type 2 diabetes mellitus, but also drives atherosclerosis through inducing endothelial dysfunction. Last but not least epidermal homeostasis depends on insulin. We summarize the effects of insulin on proliferation and differentiation of human keratinocytes as well as the relevance of cytokine-induced insulin resistance for alterations in epidermal homeostasis characteristic for psoriasis. Kinases involved in both insulin- as well as cytokine-receptor signaling represent potential targets for innovative therapeutics. Such small molecules would primarily normalize "epidermal dysfunction", thus complementing the immunomodulatory strategies of today's biologics.

  8. Genetics of Insulin Resistance and the Metabolic Syndrome.

    PubMed

    Brown, Audrey E; Walker, Mark

    2016-08-01

    Insulin resistance and the metabolic syndrome are complex metabolic traits and key risk factors for the development of cardiovascular disease. They result from the interplay of environmental and genetic factors but the full extent of the genetic background to these conditions remains incomplete. Large-scale genome-wide association studies have helped advance the identification of common genetic variation associated with insulin resistance and the metabolic syndrome, and more recently, exome sequencing has allowed the identification of rare variants associated with the pathogenesis of these conditions. Many variants associated with insulin resistance are directly involved in glucose metabolism; however, functional studies are required to assess the contribution of other variants to the development of insulin resistance. Many genetic variants involved in the pathogenesis of the metabolic syndrome are associated with lipid metabolism.

  9. Identification of individuals with insulin resistance using routine clinical measurements.

    PubMed

    Stern, Steven E; Williams, Ken; Ferrannini, Eleuterio; DeFronzo, Ralph A; Bogardus, Clifton; Stern, Michael P

    2005-02-01

    Insulin resistance is a treatable precursor of diabetes and potentially of cardiovascular disease as well. To identify insulin-resistant patients, we developed decision rules from measurements of obesity, fasting glucose, insulin, lipids, and blood pressure and family history in 2,321 (2,138 nondiabetic) individuals studied with the euglycemic insulin clamp technique at 17 European sites; San Antonio, Texas; and the Pima Indian reservation. The distribution of whole-body glucose disposal appeared to be bimodal, with an optimal insulin resistance cutoff of <28 micromol/min . kg lean body mass. Using recursive partitioning, we developed three types of classification tree models: the first, based on clinical measurements and all available laboratory determinations, had an area under the receiver operator characteristic curve (aROC) of 90.0% and generated a simple decision rule: diagnose insulin resistance if any of the following conditions are met: BMI >28.9 kg/m(2), homeostasis model assessment of insulin resistance (HOMA-IR) >4.65, or BMI >27.5 kg/m(2) and HOMA-IR >3.60. The fasting serum insulin concentrations corresponding to these HOMA-IR cut points were 20.7 and 16.3 microU/ml, respectively. This rule had a sensitivity and specificity of 84.9 and 78.7%, respectively. The second model, which included clinical measurements but no laboratory determinations, had an aROC of 85.0% and generated a decision rule that had a sensitivity and specificity of 78.7 and 79.6%, respectively. The third model, which included clinical measurements and lipid measurements but not insulin (and thus excluded HOMA-IR as well), had a similar aROC (85.1%), sensitivity (81.3%), and specificity (76.3%). Thus, insulin-resistant individuals can be identified using simple decision rules that can be tailored to specific needs.

  10. Intake of polyphenol-rich pomegranate pure juice influences urinary glucocorticoids, blood pressure and homeostasis model assessment of insulin resistance in human volunteers

    PubMed Central

    Tsang, Catherine; Smail, Nacer F.; Almoosawi, S.; Davidson, I.; Al-Dujaili, Emad A. S.

    2012-01-01

    Pomegranate juice (PJ; also known as pomegreat pure juice) provides a rich and varied source of polyphenolic compounds that may offer cardioprotective, anti-atherogenic and antihypertensive effects. The aim of this study was to investigate the effect of PJ consumption on glucocorticoids levels, blood pressure (BP) and insulin resistance in volunteers at high CVD risk. Subjects (twelve males and sixteen females) participated in a randomised, placebo-controlled cross-over study (BMI: 26·77 (sd 3·36) kg/m2; mean age: 50·4 (sd 6·1) years). Volunteers were assessed at baseline, and at weeks 2 and 4 for anthropometry, BP and pulse wave velocity. Cortisol and cortisone levels in urine and saliva were determined by specific ELISA methods, and the cortisol/cortisone ratio was calculated. Fasting blood samples were obtained to assess plasma lipids, glucose, insulin and insulin resistance (homeostasis model assessment of insulin resistance). Volunteers consumed 500 ml of PJ or 500 ml of a placebo drink containing a similar amount of energy. Cortisol urinary output was reduced but not significant. However, cortisol/cortisone ratios in urine (P = 0·009) and saliva (P = 0·024) were significantly decreased. Systolic BP decreased from 136·4 (sd 6·3) to 128·9 (sd 5·1) mmHg (P = 0·034), and diastolic BP from 80·3 (sd 4·29) to 75·5 (sd 5·17) mmHg (P = 0·031) after 4 weeks of fruit juice consumption. Pulse wave velocity decreased from 7·5 (sd 0·86) to 7·44 (sd 0·94) m/s (P = 0·035). There was also a significant reduction in fasting plasma insulin from 9·36 (sd 5·8) to 7·53 (sd 4·12) mIU/l (P = 0·025) and of homeostasis model assessment of insulin resistance (from 2·216 (sd 1·43) to 1·82 (sd 1·12), P = 0·028). No significant changes were seen in the placebo arm of the study. These results suggest that PJ consumption can alleviate key cardiovascular risk factors in overweight and obese subjects that might be due to

  11. Binge Drinking Induces Whole-Body Insulin Resistance by Impairing Hypothalamic Insulin Action

    PubMed Central

    Lindtner, Claudia; Scherer, Thomas; Zielinski, Elizabeth; Filatova, Nika; Fasshauer, Martin; Tonks, Nicholas K.; Puchowicz, Michelle; Buettner, Christoph

    2013-01-01

    Individuals with a history of binge drinking have an increased risk of developing the metabolic syndrome and type 2 diabetes. Whether binge drinking impairs glucose homeostasis and insulin action is unknown. To test this, we treated Sprague-Dawley rats daily with alcohol (3 g/kg) for three consecutive days to simulate human binge drinking and found that these rats developed and exhibited insulin resistance even after blood alcohol concentrations had become undetectable. The animals were resistant to insulin for up to 54 hours after the last dose of ethanol, chiefly a result of impaired hepatic and adipose tissue insulin action. Because insulin regulates hepatic glucose production and white adipose tissue lipolysis, in part through signaling in the central nervous system, we tested whether binge drinking impaired brain control of nutrient partitioning. Rats that had consumed alcohol exhibited impaired hypothalamic insulin action, defined as the ability of insulin infused into the mediobasal hypothalamus to suppress hepatic glucose production and white adipose tissue lipolysis. Insulin signaling in the hypothalamus, as assessed by insulin receptor and AKT phosphorylation, decreased after binge drinking. Quantitative polymerase chain reaction showed increased hypothalamic inflammation and expression of protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling. Intracerebroventricular infusion of CPT-157633, a small-molecule inhibitor of PTP1B, prevented binge drinking–induced glucose intolerance. These results show that, in rats, binge drinking induces systemic insulin resistance by impairing hypothalamic insulin action and that this effect can be prevented by inhibition of brain PTP1B. PMID:23363978

  12. Psychological insulin resistance in type 2 diabetes patients regarding oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin.

    PubMed

    Petrak, Frank; Herpertz, Stephan; Stridde, Elmar; Pfützner, Andreas

    2013-08-01

    "Psychological insulin resistance" (PIR) is an obstacle to insulin treatment in type 2 diabetes, and patients' expectations regarding alternative ways of insulin delivery are poorly understood. PIR and beliefs regarding treatment alternatives were analyzed in patients with type 2 diabetes (n=532; mean glycated hemoglobin, 68±12 mmol/mol [8.34±1.5%]) comparing oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin. Questionnaires were used to assess barriers to insulin treatment (BIT), generic and diabetes-specific quality of life (Short Form 36 and Problem Areas in Diabetes, German version), diabetes knowledge, locus of control (Questionnaire for the Assessment of Diabetes-Specific Locus of Control, in German), coping styles (Freiburg Questionnaire of Illness Coping, 15-Items Short Form), self-esteem (Rosenberg Self-Esteem Scale, German version), and mental disorders (Patient Health Questionnaire, German version). Patients discussed treatment optimization options with a physician and were asked to make a choice about future diabetes therapy options in a two-step treatment choice scenario. Step 1 included oral antidiabetes drugs or subcutaneous insulin injection (SCI). Step 2 included an additional treatment alternative of inhaled insulin (INH). Subgroups were analyzed according to their treatment choice. Most patients perceived their own diabetes-related behavior as active, problem-focused, internally controlled, and oriented toward their doctors' recommendations, although their diabetes knowledge was limited. In Step 1, rejection of the recommended insulin was 82%, and in Step 2, it was 57%. Fear of hypoglycemia was the most important barrier to insulin treatment. Patients choosing INH (versus SCI) scored higher regarding fear of injection, expected hardship from insulin therapy, and BIT-Sumscore. The acceptance of insulin is very low in type 2 diabetes patients. The option to inhale insulin increases the acceptability for some but

  13. Resistin: insulin resistance to malignancy.

    PubMed

    Codoñer-Franch, Pilar; Alonso-Iglesias, Eulalia

    2015-01-01

    Adipose tissue is recognized as an endocrine organ that secretes bioactive substances known as adipokines. Excess adipose tissue and adipose tissue dysfunction lead to dysregulated adipokine production that can contribute to the development of obesity-related co-morbidities. Among the various adipokines, resistin, which was initially considered as a determinant of the emergence of insulin resistance in obesity, has appeared as an important link between obesity and inflammatory processes. Several experimental and clinical studies have suggested an association between increased resistin levels and severe conditions associated with obesity such as cardiovascular disease and malignancies. In this review, we present the growing body of evidence that human resistin is an inflammatory biomarker and potential mediator of obesity-associated diseases. A common pathway seems to involve the combined alteration of immune and inflammatory processes that favor metabolic disturbances, atherosclerosis and carcinogenesis. The mode of action and the signaling pathways utilized by resistin in its interactions with target cells could involve oxidative and nitrosative stress. Therefore, resistin could function as a key molecule in the complications of obesity development and could potentially be used as a diagnostic and prognostic marker. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fatty Acids, Obesity and Insulin Resistance.

    PubMed

    Arner, Peter; Rydén, Mikael

    2015-01-01

    Although elevated free fatty acid (FFA) levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888). Serum FFA (n = 3,306), plasma glycerol (n = 3,776), and insulin sensitivity index (HOMA-IR,n = 3,469) were determined. Obesity was defined as BMI ≥ 30 kg/m 2 and insulin resistance as HOMA-IR ≥ 2.21. In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p < 0.0001). Similar results were obtained if only men, women or medication-free subjects were investigated. Insulin resistance and type 2 diabetes were associated with a further minor increase in FFA/glycerol among obese subjects. When comparing insulin-sensitive non-obese with insulin-sensitive or -resistant obese individuals, FFA and glycerol were 21–29% and 43–49% higher in obese individuals, respectively. Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established

  15. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    PubMed Central

    Sun, Jian

    2016-01-01

    To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD) rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6), Zusanli (ST36), and Sanyinjiao (SP6); in contrast, acupuncture to Shenshu (BL23) was administered perpendicularly. For Neiguan (PC6) and Zusanli (ST36), needles were connected to an electroacupuncture (EA) apparatus. Fasting blood glucose (FPG) was measured by glucose oxidase method. Plasma fasting insulin (FINS) and serum C peptide (C-P) were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR), which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules. PMID:27738449

  16. Measuring psychological insulin resistance: barriers to insulin use.

    PubMed

    Larkin, Mary E; Capasso, Virginia A; Chen, Chien-Lin; Mahoney, Ellen K; Hazard, Barbara; Cagliero, Enrico; Nathan, David M

    2008-01-01

    The purpose of this study is to explore the attitudes that contribute to psychological insulin resistance (PIR) in insulin-naive patients with type 2 diabetes and to identify predictors of PIR. A prospective study using 2 self-report surveys and incorporating demographic and health variables was conducted to determine the prevalence of PIR among a sample of 100 adult, insulin-naive patients with type 2 diabetes at an outpatient diabetes center in a university-affiliated teaching hospital. Thirty-three percent of patients with type 2 diabetes were unwilling to take insulin. The most commonly expressed negative attitudes were concern regarding hypoglycemia, permanent need for insulin therapy, less flexibility, and feelings of failure. Less than 40% expressed fear of self-injection or thought that injections were painful. However, compared with willing subjects, unwilling subjects were more likely to fear injections and thought injections would be painful, life would be less flexible, and taking insulin meant health would deteriorate (P< .005 for all comparisons). Poorer general health and higher depression scores also correlated with PIR. The results of the surveys, which were generally consistent, identified several remediable misconceptions regarding insulin therapy and suggest targets for educational interventions.

  17. Related factors of insulin resistance in Korean children: adiposity and maternal insulin resistance.

    PubMed

    Cho, Young-Gyu; Kang, Jae-Heon; Hur, Yang-Im; Song, Jihyun; Lee, Kang-Sook

    2011-12-01

    Increased adiposity and unhealthy lifestyle augment the risk for type 2 diabetes in children with familial predisposition. Insulin resistance (IR) is an excellent clinical marker for identifying children at high risk for type 2 diabetes. This study was conducted to investigate parental, physiological, behavioral and socio-economic factors related to IR in Korean children. This study is a cross-sectional study using data from 111 children aged 7 years and their parents. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated using fasting glucose and insulin level as a marker of IR. All children's adiposity indices (r = 0.309-0.318, all P-value = 0.001) and maternal levels of fasting insulin (r = 0.285, P-value = 0.003) and HOMA-IR (r = 0.290, P-value = 0.002) were positively correlated with children's HOMA-IR level. There was no statistical difference of children's HOMA-IR level according to children's lifestyle habits and socioeconomic status of families. An increase of 1 percentage point in body fat was related to 2.7% increase in children's HOMA-IR (P-value < 0.001) and an increase of 1% of maternal level of HOMA-IR was related to 0.2% increase in children's HOMA-IR (P-value = 0.002). This study shows that children's adiposity and maternal IR are positively associated with children's IR.

  18. Insulin Resistance in Young Obese Subjects and Its Relation to Smoking (A Pilot Study).

    PubMed

    Juneja, Aarzoo; Dwivedi, Shridhar; Srivastava, D K; Chandra, Kailash

    2017-03-01

    Insulin resistance is a condition in which cells fail to respond to the normal actions of insulin. Dietary fat, obesity and smoking have been attributed to increase insulin resistance. However, the prevalence of insulin resistance in young obese subjects and its relation to smoking is not well established. This study comprising seventy-five healthy young adults was undertaken to find insulin resistance in obese smokers and non smokers both. Present study showed an overall prevalence of raised homeostatic model assessment of insulin resistance in 14.7 % otherwise healthy young subjects (20-30 years age group). Non-smokers did not show any significant correlation between insulin resistance and body mass index at either stage (normal, pre-obese as well as obese). Smokers also did not show any significant difference of insulin resistance in normal and pre-obese stages. However, marked increase in homeostatic model assessment of insulin resistance was observed in obese smokers. Homeostatic model assessment of insulin resistance showed a linear trend in relation to body mass index and its values were found to be higher in smokers. Obesity combined with smoking demonstrated statistically significant increase in homeostatic model assessment of insulin resistance.

  19. Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers.

    PubMed

    Stolzenberg-Solomon, Rachael Z; Graubard, Barry I; Chari, Suresh; Limburg, Paul; Taylor, Philip R; Virtamo, Jarmo; Albanes, Demetrius

    2005-12-14

    Obesity, diabetes mellitus, and glucose intolerance have been associated with increased pancreatic cancer risk; however, prediagnostic serum insulin concentration has not been evaluated as a predictor of this malignancy. To investigate whether prediagnostic fasting glucose and insulin concentrations and insulin resistance are associated with subsequent incidence of exocrine pancreatic cancer in a cohort of male smokers. A case-cohort prospective study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (1985-1988) cohort of 29,133 male Finnish smokers ages 50 to 69 years. The study included 400 randomly sampled subcohort control participants and 169 incident pancreatic cancer cases that occurred after the fifth year of follow-up. All participants were followed up through December 2001 (up to 16.7 years of follow-up). Incident exocrine pancreatic cancer identified from the Finnish Cancer Registry. After adjusting for age, smoking, and body mass index, higher baseline fasting serum concentrations of glucose, insulin, and insulin resistance were positively associated with pancreatic cancer. The presence of biochemically defined diabetes mellitus (glucose, > or =126 mg/dL [> or =6.99 mmol/L]) and insulin concentration in the highest vs lowest quartile both showed a significant 2-fold increased risk (hazard ratio [HR], 2.13; 95% confidence interval [CI], 1.04-4.35; and HR, 2.01; 95% CI, 1.03-3.93; respectively). There were significant interactions for all the biomarker exposures by follow-up time, such that the positive associations were stronger among the cases that occurred more than 10 years after baseline (highest vs lowest quartile: glucose, HR, 2.16; 95% CI, 1.05-4.42; P for trend = .02; insulin, HR, 2.90; 95% CI, 1.22-6.92; P for trend = .005; and insulin resistance, HR, 2.71; 95% CI, 1.19-6.18; P for trend = .006). These results support the hypothesis that exposure to higher insulin concentrations and insulin resistance predicts the risk of

  20. Insulin Resistance, Hyperinsulinemia, and Energy Intake in Overweight Children

    PubMed Central

    Han, Joan C.; Rutledge, Margaret S.; Kozlosky, Merel; Salaita, Christine G.; Gustafson, Jennifer K.; Keil, Margaret F.; Fleisch, Abby F.; Roberts, Mary D.; Ning, Cong; Yanovski, Jack A.

    2008-01-01

    Objective To examine the relationship between energy intake during a buffet meal and indices of insulin dynamics in overweight children. Study design 95 non-diabetic, overweight (BMI ≥95th percentile) children (age 10.3±1.4y) selected lunch from a 9,835kcal buffet eaten ad libitum after an overnight fast. The associations between energy intake and measures of insulin dynamics, in the post-absorptive state and during a 2h-hyperglycemic clamp, were determined. Covariates in the statistical model included race, sex, skeletal age, fat-free mass, fat mass, socioeconomic status, and number of foods in the buffet rated as acceptable. Results Energy intake was positively associated with the fasting homeostasis model assessment for insulin resistance index (HOMA-IR; β=0.24, p=0.042), fasting insulin/glucose ratio (β=0.24, p=0.044), 1st-phase insulin (β=0.23, p=0.032), and 1st-phase C-peptide (β=0.21, p=0.046); energy intake was negatively associated with clamp-derived insulin sensitivity (SIclamp; β= -0.29, p=0.042). Each 10% decrease in SIclamp predicted 27 kcal greater energy intake. Conclusions Insulin resistance and hyperinsulinemia are associated with greater energy intake after an overnight fast in overweight children. These associations suggest mechanisms whereby insulin resistance may contribute to excessive weight gain in children. PMID:18410761

  1. Insulin resistance and outcome in bipolar disorder.

    PubMed

    Calkin, Cynthia V; Ruzickova, Martina; Uher, Rudolf; Hajek, Tomas; Slaney, Claire M; Garnham, Julie S; O'Donovan, M Claire; Alda, Martin

    2015-01-01

    Little is known about the impact of insulin resistance on bipolar disorder. To examine the relationships between insulin resistance, type 2 diabetes and clinical course and treatment outcomes in bipolar disorder. We measured fasting glucose and insulin in 121 adults with bipolar disorder. We diagnosed type 2 diabetes and determined insulin resistance. The National Institute of Mental Health Life Chart was used to record the course of bipolar disorder and the Alda scale to establish response to prophylactic lithium treatment. Patients with bipolar disorder and type 2 diabetes or insulin resistance had three times higher odds of a chronic course of bipolar disorder compared with euglycaemic patients (50% and 48.7% respectively v. 27.3%, odds ratio (OR) = 3.07, P = 0.007), three times higher odds of rapid cycling (38.5% and 39.5% respectively v. 18.2%, OR = 3.13, P = 0.012) and were more likely to be refractory to lithium treatment (36.8% and 36.7% respectively v. 3.2%, OR = 8.40, P<0.0001). All associations remained significant after controlling for antipsychotic exposure and body mass index in sensitivity analyses. Comorbid insulin resistance may be an important factor in resistance to treatment in bipolar disorder. Royal College of Psychiatrists.

  2. Higher Fetal Insulin Resistance in Chinese Pregnant Women with Gestational Diabetes Mellitus and Correlation with Maternal Insulin Resistance

    PubMed Central

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    Objective The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Measurements Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Results Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Conclusions Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance. PMID:23560057

  3. The impact of marijuana use on glucose, insulin, and insulin resistance among US adults.

    PubMed

    Penner, Elizabeth A; Buettner, Hannah; Mittleman, Murray A

    2013-07-01

    There are limited data regarding the relationship between cannabinoids and metabolic processes. Epidemiologic studies have found lower prevalence rates of obesity and diabetes mellitus in marijuana users compared with people who have never used marijuana, suggesting a relationship between cannabinoids and peripheral metabolic processes. To date, no study has investigated the relationship between marijuana use and fasting insulin, glucose, and insulin resistance. We included 4657 adult men and women from the National Health and Nutrition Examination Survey from 2005 to 2010. Marijuana use was assessed by self-report in a private room. Fasting insulin and glucose were measured via blood samples after a 9-hour fast, and homeostasis model assessment of insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance. Associations were estimated using multiple linear regression, accounting for survey design and adjusting for potential confounders. Of the participants in our study sample, 579 were current marijuana users and 1975 were past users. In multivariable adjusted models, current marijuana use was associated with 16% lower fasting insulin levels (95% confidence interval [CI], -26, -6) and 17% lower HOMA-IR (95% CI, -27, -6). We found significant associations between marijuana use and smaller waist circumferences. Among current users, we found no significant dose-response. We found that marijuana use was associated with lower levels of fasting insulin and HOMA-IR, and smaller waist circumference. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effects of sleeve gastrectomy on insulin resistance

    PubMed Central

    CĂTOI, ADRIANA FLORINELA; PÂRVU, ALINA; MIRONIUC, AUREL; GALEA, ROMEO FLORIN; MUREŞAN, ADRIANA; BIDIAN, CRISTINA; POP, IOANA

    2016-01-01

    Background and aim Obesity is a major risk factor for the onset of insulin resistance (IR), hyperinsulinemia and type 2 diabetes mellitus (T2DM) Evidence data has proven that beyond important weight loss bariatric surgery especially Roux-en-Y gastric bypass (RYGB) and bilio-pancreatic diversion (BPD) leads to significant early reduction of insulinemia and of IR calculated through the homeostatic model assessment (HOMA-IR), independently of fat mass decrease. Sleeve gastrectomy (SG) is now used as a sole weight loss operation with good results. Therefore, the aim of the present study was to investigate the early changes of fasting blood glucose, insulin and HOMA-IR in a group of morbidly obese (MO) patients i.e. at 7, 30 and 90 days after SG. Methods The study included 20 MO patients (7 male and 13 female) submitted to SG. Anthropometrical (weight, body mass index –BMI, percent excess BMI loss -%EBMIL) and biochemical (plasma glucose, insulin and calculated HOMA-IR ) evaluation were performed before and at 7, 30 and 90 days after SG. In addition, a second group of 10 normal weight healthy subjects with a BMI ranging form 19 kg/m2 to 23.14 kg/m2, matched for age and gender was investigated. Results Plasma glucose (p=0.018), insulin (p=0.004) and HOMA-IR (p=0.006) values were statistically different between the studied groups. After surgery, at every follow-up point, there were statistically different weight and BMI mean values relative to the operation day (p<0.003). BMI, decreased at 7 days (estimated reduction=2.79; 95% CI:[2.12;3.45]), at 30 days (estimated reduction=5.65; 95% CI:[3.57;7.73]) and at 90 days (estimated reduction=10.88; 95% CI:[7.35;14.41]) respectively after SG. We noted a tendency toward statistical significant change of mean insulin values at 7 days after surgery (corrected p=0.075), no statistical change at 30 days (corrected p=0.327) and a significant change at 90 days (corrected p=0.027) after SG as compared to baseline. There was a

  5. Caffeine intake improves fructose-induced hypertension and insulin resistance by enhancing central insulin signaling.

    PubMed

    Yeh, Tung-Chen; Liu, Chun-Peng; Cheng, Wen-Han; Chen, Bo-Rong; Lu, Pei-Jung; Cheng, Pei-Wen; Ho, Wen-Yu; Sun, Gwo-Ching; Liou, Jau-Cheng; Tseng, Ching-Jiunn

    2014-03-01

    Recent clinical studies found that fructose intake leads to insulin resistance and hypertension. Fructose consumption promotes protein fructosylation and formation of superoxide. In a previous study, we revealed that inhibition of superoxide production in the nucleus tractus solitarii (NTS) reduces blood pressure. Caffeine displays significant antioxidant ability in protecting membranes against oxidative damage and can lower the risk of insulin resistance. However, the mechanism through which caffeine improves fructose-induced insulin resistance is unclear. The aim of this study was to investigate whether caffeine consumption can abolish superoxide generation to enhance insulin signaling in the NTS, thereby reducing blood pressure in rats with fructose-induced hypertension. Treatment with caffeine for 4 weeks decreased blood pressure, serum fasting glucose, insulin, homeostatic model assessment-insulin resistance, and triglyceride levels and increased the serum direct high-density lipoprotein level in fructose-fed rats but not in control rats. Caffeine treatment resulted in the recovery of fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that caffeine reduced the fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1(S307)) and reversed Akt(S473) and neuronal nitric oxide synthase phosphorylation. Similarly, caffeine was able to improve insulin sensitivity and decrease insulin levels in the NTS evoked by fructose. Caffeine intake also reduced the production of superoxide and expression of receptor of advanced glycation end product in the NTS. These results suggest that caffeine may enhance insulin receptor substrate 1-phosphatidylinositol 3-kinase-Akt-neuronal nitric oxide synthase signaling to decrease blood pressure by abolishing superoxide production in the NTS.

  6. Rhus coriaria ameliorates insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) rats.

    PubMed

    Anwer, Tarique; Sharma, Manju; Khan, Gyas; Iqbal, Muzaffar; Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Safhi, Mohammed Mohsen; Gupta, Nakul

    2013-01-01

    We have investigated the effect of methanolic extract of Rhus coriaria (RC) on hyperinsulinemia, glucose intolerance and insulin sensitivity in non-insulin-dependent diabetes mellitus (NIDDM) rats. NIDDM was induced by single intraperitoneal injection of streptozotocin (STZ, 100 mg/kg) to 2 days old rat pups. RC (200 mg/kg and 400 mg/kg) was administered orally once a day for 5 weeks after the animals were confirmed diabetic (i.e, 90 days after STZ injection). A group of citrate control rats were also maintained which has received citrate buffer on the 2nd day of their birth. There was a significant increase in blood glucose, glycosylated hemoglobin (HbA1c) and serum insulin levels were observed in NIDDM control rats. Treatment with RC reduced the elevated levels of blood glucose, HbA1c and insulin in the NIDDM rats. An oral glucose tolerance test (OGTT) was also performed in the same groups, in which we found a significant improvement in glucose tolerance in the rats treated with RC. The insulin sensitivity was assessed for both peripheral insulin resistance and hepatic insulin resistance. RC treatment significantly improved insulin sensitivity index (K(ITT)) which was significantly decreased in NIDDM control rats. There was significant rise in homeostasis model assessment of insulin resistance (HOMA-R) in NIDDM control rats whereas RC treatment significantly prevented the rise in HOMA-R in NIDDM treated rats. Our data suggest that methanolic extract of RC significantly delayed the onset of hyperinsulinemia and glucose intolerance and improved insulin sensitivity in NIDDM rats.

  7. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  8. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  9. Definition of insulin resistance using the homeostasis model assessment (HOMA-IR) in IVF patients diagnosed with polycystic ovary syndrome (PCOS) according to the Rotterdam criteria.

    PubMed

    Alebić, Miro Šimun; Bulum, Tomislav; Stojanović, Nataša; Duvnjak, Lea

    2014-11-01

    Polycystic ovary syndrome (PCOS) women are more insulin resistant than general population. Prevalence data on insulin resistance (IR) in PCOS vary depending on population characteristics and methodology used. The objectives of this study were to investigate whether IR in PCOS is exclusively associated with body mass and to assess the prevalence of IR in lean and overweight/obese PCOS. Study included 250 consecutive women who attended a Department of Human Reproduction diagnosed as having PCOS according to the Rotterdam criteria. Control group comprised 500 healthy women referred for male factor infertility evaluation during the same period as the PCOS women. PCOS women (n = 250) were more insulin resistant than controls (n = 500) even after adjustment for age and body mass index (BMI) (P = 0.03). Using logistic regression analysis, BMI ≥ 25 kg/m(2) (OR 6.0; 95 % CI 3.3-11.0), PCOS (OR 2.2; 95 % CI 1.4-3.5) and waist circumference ≥ 80 cm (OR 2.0; 95 % CI 1.1-3.8) were identified as independent determinants of IR (P < 0.001). IR was more prevalent in overweight/obese controls (n = 100) than in lean PCOS women (n = 150), 31 versus 9.3 %, but less prevalent than in overweight/obese PCOS (n = 100), 31 versus 57 %. The prevalence of IR between lean controls (5 %) and lean PCOS (9.3 %) did not significantly differ. Both PCOS-specific and obesity-related IR independently contribute to IR in PCOS. Using HOMA-IR cutoff value of 3.15 specific for Croatian women in our clinical setting, the assessed prevalence of IR in lean and overweight/obese PCOS women was 9.3 and 57 %, respectively.

  10. Cellular insulin resistance disrupts leptin-mediated control of neuronal signaling and transcription.

    PubMed

    Nazarians-Armavil, Anaies; Menchella, Jonathan A; Belsham, Denise D

    2013-06-01

    Central resistance to the actions of insulin and leptin is associated with the onset of obesity and type 2 diabetes mellitus, whereas leptin and insulin signaling is essential for both glucose and energy homeostasis. Although it is known that leptin resistance can lead to attenuated insulin signaling, whether insulin resistance can lead to or exacerbate leptin resistance is unknown. To investigate the molecular events underlying crosstalk between these signaling pathways, immortalized hypothalamic neuronal models, rHypoE-19 and mHypoA-2/10, were used. Prolonged insulin exposure was used to induce cellular insulin resistance, and thereafter leptin-mediated regulation of signal transduction and gene expression was assessed. Leptin directly repressed agouti-related peptide mRNA levels but induced urocortin-2, insulin receptor substrate (IRS)-1, IRS2, and IR transcription, through leptin-mediated phosphatidylinositol 3-kinase/Akt activation. Neuronal insulin resistance, as assessed by attenuated Akt phosphorylation, blocked leptin-mediated signal transduction and agouti-related peptide, urocortin-2, IRS1, IRS2, and insulin receptor synthesis. Insulin resistance caused a substantial decrease in insulin receptor protein levels, forkhead box protein 1 phosphorylation, and an increase in suppressor of cytokine signaling 3 protein levels. Cellular insulin resistance may cause or exacerbate neuronal leptin resistance and, by extension, obesity. It is essential to unravel the effects of neuronal insulin resistance given that both peripheral, as well as the less widely studied central insulin resistance, may contribute to the development of metabolic, reproductive, and cardiovascular disorders. This study provides improved understanding of the complex cellular crosstalk between insulin-leptin signal transduction that is disrupted during neuronal insulin resistance.

  11. Association of obesity and leptin with insulin resistance in type 2 diabetes mellitus in Indian population.

    PubMed

    Das, Piyali; Bhattacharjee, Debojyoti; Bandyopadhyay, Subir Kumar; Bhattacharya, Gorachand; Singh, Ramji

    2013-01-01

    Obesity and diabetes mellitus are two modern epidemics. But their interrelationship is debated. Here we explored the probable association among obesity, leptin and insulin resistance in type 2 diabetes mellitus. 60 recent onset (< 5 years) diabetics and age-sex matched 33 non diabetic controls were assessed for physical and chemical parameters like Body Mass Index, abdominal circumference, waist/hip ratio, fasting blood glucose, insulin and leptin. Degree of insulin resistance was calculated by HOMA-IR method (Homeostatic Model Assessment). All the physical parameters showed positive correlation with leptin and the HOMA-IR score, strength of association being highest between insulin resistance and abdominal circumference. Leptin and insulin resistance showed no correlation. Findings were lower in controls. Study concluded that, obesity mainly central type might be responsible for insulin resistance in type 2 diabetes mellitus where as leptin, a potential marker for obesity, may not. This perhaps points towards the multifactorial causation of insulin resistance in type 2 diabetes mellitus.

  12. RELATIONSHIP OF SERUM RESISTIN WITH INSULIN RESISTANCE AND OBESITY.

    PubMed

    Zaidi, Syeda Ijlal Zehra; Shirwany, Tanvir Ali Khan

    2015-01-01

    Adipokines have been implicated in the modulation of insulin sensitivity and glucose tolerance and have thus gained importance in the study of Type 2 diabetes mellitus (T2DM). Resistin, a unique signalling molecule, is being proposed as a significant factor in the pathogenesis of obesity-related insulin resistance. However, its relevance to human diabetes mellitus remains uncertain and controversial. This study was therefore planned to compare and correlate the potential role of resistin in obese patients with T2DM and obese non-diabetic controls and also to evaluate the correlation between resistin and marker of obesity and glycaemic parameters. Fasting serum resistin, glucose and insulin were measured in forty obese diabetics (mean±SD BMI 35±5 kg/m2) and forty obese non-diabetics (mean±SD BMI 33±3 kg/m2). Insulin resistance was assessed using the HOMA-IR formula derived from fasting insulin and glucose levels. Serum resistin levels (38±8 ng/ml) were significantly higher in type 2 diabetic patients as compared with the controls. Fasting blood glucose (164±46 mg/dl), serum insulin (37±7 µU/ml) and insulin resistance (19±8), were considerably higher among the studied diabetics than in the controls. Pearson's correlation analysis revealed positive correlation between serum resistin and BMI (p=0.001) and HOMA-IR (p=0.561) in diabetic subjects. Similarly, a correlation also existed between serum resistin and BMI (p=0.016) and HOMA-IR (p=0.307) in control obese subjects. However, it was highly significant in diabetics as compared to non-diabetic controls. A significant BMI-dependent association exists between resistin and insulin resistance in patients with T2DM. It appears that resistin may play a role in the pathogenesis of obesity and insulin resistance and that both of these may contribute to the development of T2DM.

  13. Effect of cigarette smoking on insulin resistance risk.

    PubMed

    Haj Mouhamed, D; Ezzaher, A; Neffati, F; Douki, W; Gaha, L; Najjar, M F

    2016-02-01

    Smoking is one of the main risk factors for cardiovascular disease (CVD). The mechanism(s) of the effects of smoking on CVD are not clearly understood; however, a number of atherogenic characteristics, such as insulin resistance have been reported. We aim to investigate the effects of cigarette smoking on insulin resistance and to determine the correlation between this parameter with smoking status characteristics. This study was conducted on 138 non-smokers and 162 smokers aged respectively 35.6±16.0 and 38.5±21.9 years. All subjects are not diabetic. Fasting glucose was determined by enzymatic methods and insulin by chemiluminescence method. Insulin resistance (IR) was estimated using the Homeostasis Model of Assessment equation: HOMA-IR=[fasting insulin (mU/L)×fasting glucose (mmol/L)]/22.5. IR was defined as the upper quartile of HOMA-IR. Values above 2.5 were taken as abnormal and reflect insulin resistance. Compared to non-smokers, smokers had significantly higher levels of fasting glucose, fasting insulin and HOMA-IR index. These associations remained significant after adjustment for confounding factors (age, gender, BMI and alcohol consumption). A statistically significant association was noted between the smoking status parameters, including both the number of cigarettes smoked/day and the duration of smoking, and fasting insulin levels as well for HOMA-IR index. Among smokers, we noted a positive correlation between HOMA-IR index and both plasma thiocyanates and urinary cotinine. Our results show that smokers have a high risk to developing an insulin resistance and hyperinsulinemia, compared with a matched group of non-smokers, and may help to explain the high risk of cardiovascular diseases in smokers. Copyright © 2015. Published by Elsevier SAS.

  14. Effect of non-surgical periodontal therapy on insulin resistance in patients with type II diabetes mellitus and chronic periodontitis, as assessed by C-peptide and the Homeostasis Assessment Index.

    PubMed

    Mammen, Jerry; Vadakkekuttical, Rosamma Joseph; George, Joseraj Manaloor; Kaziyarakath, Jaishid Ahadal; Radhakrishnan, Chandni

    2017-08-01

    A bidirectional relationship exists between diabetes and periodontitis. In the present clinical trial, we evaluated the effects of non-surgical periodontal therapy (NSPT) on insulin resistance in patients with type II diabetes mellitus (DM) and chronic periodontitis. Forty chronic periodontitis patients with type II DM were selected and equally allocated to case and control groups. All patients were assessed for periodontal parameters and systemic parameters. The case group received NSPT, and both groups were re-evaluated after 3 months. All periodontal parameters were found to be significantly improved in the case group compared to the control group 3 months after NSPT. The mean differences in systemic parameters, such as fasting serum C-peptide, Homeostasis Assessment (HOMA) Index-insulin resistance, and HOMA-insulin sensitivity, from baseline to 3 months for the case group were 0.544 ± 0.73, 0.54 ± 0.63, and -25.44 ± 36.81, respectively; for the control group, they were significant at -1.66 ± 1.89, -1.48 ± 1.86, and 31.42 ± 38.82 respectively (P < 0.05). There was a significant decrease in fasting blood glucose and glycosylated hemoglobin A1c from baseline to 3 months in the case group (P < 0.05). The present study showed that periodontal inflammation could affect glycemic control and insulin resistance. Effective periodontal therapy reduced insulin resistance and improved periodontal health status and insulin sensitivity in patients with type II DM and chronic periodontitis. © 2016 John Wiley & Sons Australia, Ltd.

  15. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  16. Insulin resistance in postmenopausal women: concurrent effects of hormone replacement therapy and coffee.

    PubMed

    Catalano, D; Trovato, G M; Spadaro, D; Martines, G F; Garufi, G; Tonzuso, A; Grasso, D; Sciacchitano, S G

    2008-10-01

    In postmenopausal women, an increase in insulin resistance is associated with an increased risk of diabetes, cardiovascular disease and breast cancer. Hormone replacement therapy (HRT) can reduce insulin resistance and coffee use is reported to decrease the incidence of diabetes. The aim of our study was to assess possible concurrent effects of HRT and espresso coffee intake on insulin resistance and on interdependent nutritional and clinical features. A total of 478 healthy postmenopausal, non-diabetic women (aged 54.5 +/- 4.2 years) were studied: 360 had been on HRT for at least 2 years and 118 were not treated. Insulin resistance was assessed by a conventional homeostasis model (HOMA-IR). Insulin resistance is directly related to body mass index (p < 0.0001), and not with age and blood pressure; hypertensive menopausal women have a slightly higher body mass index but the same degree of insulin resistance as normotensive women. Women on HRT show lower insulin resistance, but not lower prevalence of arterial hypertension. Coffee use is associated with a decrease in insulin resistance in non-obese women receiving HRT, but not in other subsets. The combination of coffee consumption and HRT could lower insulin resistance in postmenopausal women. In overweight women, greater insulin sensitivity is associated with intake of espresso coffee and not with HRT; in normal weight women, only HRT is associated with lower insulin resistance.

  17. Insulin resistance: pathophysiology and rationale for treatment.

    PubMed

    Muntoni, Sergio; Muntoni, Sandro

    2011-01-01

    After binding to its receptor and activating the β-subunit, insulin is faced with two divergent pathways: one is phosphatidylinositol 3-kinase (PI 3-K) dependent, while another is dependent upon activation of mitogen-activated protein kinase (MAP-K). The former is absolutely necessary for mediating most metabolic and antiapoptotic effects; the latter is linked to nonmetabolic, proliferative and mitogenic effects. In obese patients, especially with type 2 diabetes mellitus (DM2), only the PI 3-K, but not the MAP-K, is resistant to insulin stimulation: hence insulin resistance is better defined as metabolic insulin resistance. The resulting 'compensatory hyperinsulinemia' is an unsuccessful attempt to overcome the inhibition of the metabolic pathway at the price of unopposed stimulation of the MAP-K pathway, and the administration of exogenous insulin might worsen the metabolic dysfunction. As the preferential activation of the MAP-K pathway in insulin-resistant patients has atherogenic and mitogenic properties, this leads to atherosclerosis and cancer. Metformin may carry out direct protective action on human β cells, inasmuch as it improves both primary and secondary endpoints through selective inhibition of fatty acyl oxidation. Copyright © 2011 S. Karger AG, Basel.

  18. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance.

    PubMed Central

    Steinberg, H O; Chaker, H; Leaming, R; Johnson, A; Brechtel, G; Baron, A D

    1996-01-01

    To test the hypothesis that obesity/insulin resistance impairs both endothelium-dependent vasodilation and insulin-mediated augmentation of endothelium-dependent vasodilation, we studied leg blood flow (LBF) responses to graded intrafemoral artery infusions of methacholine chloride (MCh) or sodium nitroprusside (SNP) during saline infusion and euglycemic hyperinsulinemia in lean insulin-sensitive controls (C), in obese insulin-resistant subjects (OB), and in subjects with non-insulin-dependent diabetes mellitus (NIDDM). MCh induced increments in LBF were approximately 40% and 55% lower in OB and NIDDM, respectively, as compared with C (P < 0.05). Euglycemic hyperinsulinemia augmented the LBF response to MCh by - 50% in C (P < 0.05 vs saline) but not in OB and NIDDM. SNP caused comparable increments in LBF in all groups. Regression analysis revealed a significant inverse correlation between the maximal LBF change in response to MCh and body fat content. Thus, obesity/insulin resistance is associated with (a) blunted endothelium-dependent, but normal endothelium-independent vasodilation and (b) failure of euglycemic hyperinsulinemia to augment endothelium-dependent vasodilation. Therefore, obese/insulin-resistant subjects are characterized by endothelial dysfunction and endothelial resistance to insulin's effect on enhancement of endothelium-dependent vasodilation. This endothelial dysfunction could contribute to the increased risk of atherosclerosis in obese insulin-resistant subjects. PMID:8647954

  19. Insulin Resistance and Glucose Levels in Subjects with Subclinical Hypothyroidism.

    PubMed

    Khan, Sikandar Hayat; Fazal, Nadeem; Ijaz, Aamir; Manzoor, Syed Mohsin; Asif, Naveed; Rafi, Tariq; Yasir, Muhammad; Niazi, Najmusaquib Khan

    2017-06-01

    To compare insulin resistance and glycemic indicators among subjects with euthyroidism and subclinical hypothyroidism. Comparative cross-sectional study. Department of Pathology and Medicine, PNS Hafeez, Islamabad, in collaboration with the Department of Chemical Pathology and Endocrinology at the Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2015 to September 2016. Subjects referred for executive screening of apparently healthy population (without any known history of diabetes, hypertension, heart disease or other chronic ailments), were included. Subjects were grouped as euthyroidism and subclinical hypothyroidism. Median (IQR) insulin resistance indices including fasting insulin and Homeostasis Model Assessment for Insulin Resistance in subjects with group-1 (n=176, 87%, Thyroid Stimulating Hormone: 0.5 - 3.5 mIU/L) and group-2 (n=26, 13%, Thyroid Stimulating Hormone: 3.51 - 15 mIU/L) were 7.6 (6.70) vs. 11.4 (13.72, p=0.040) and 1.77 (1.79) vs. 2.8 (3.07, p=0.071). The median differences for fasting plasma glucose were 5.0 (1.0) in group-1 vs. 5.0 (1.47) for Group-2 [p=0.618], and glycated hemoglobin was 5.60 (1.1) vs. 5.60 (1.7, p=0.824). Homeostasis Model Assessment for beta sensitivity index in paradox showed slightly higher values for group-2 [median (IQR) 86.67 (92.94)] than group-1 [111.6 (189.64, p= 0.040)]. Measures of insulin resistance including Homeostasis Model Assessment for Insulin Resistance and fasting insulin levels were significantly different between subjects with euthyroidism and having subclinical hypothyroidism.

  20. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  1. Plasma Proteomic Signature in Overweight Girls Closely Correlates with Homeostasis Model Assessment (HOMA), an Objective Measure of Insulin Resistance

    PubMed Central

    Poth, Merrily; McIver, Harkirtin; Ayika, Chiedozie; Eidelman, Ofer; Jozwik, Catherine; Pollard, Harvey B.

    2011-01-01

    Obesity is known to be associated with a large number of long-term morbidities, and while in some cases the relationship of obesity and the consequences is clear (for example, excess weight and lower extremity orthopedic problems) in others the mechanism is not as clear. One common system of categorizing overweight in terms of the likelihood of negative consequences involves using the concept of “metabolic syndrome”. We hypothesized that the development of a plasma protein profile of overweight adolescents with and without the metabolic syndrome might give a more precise and informative picture of the disease process than the current clinical categorization and permit early targeted intervention. For this paper, we used antibody microarrays to analyze the plasma proteome of a group of 15 overweight female adolescent patients. Upon analysis of the proteome, the overweight patients diverged from the nonoverweight female controls. Furthermore, the overweight patients were divided by the analysis into two population clusters, each with distinctive protein expression patterns. Interestingly, the clusters were characterized by differences in insulin resistance, as measured by HOMA. Categorization according to the presence or absence of the metabolic syndrome did not yield such clusters. PMID:22442648

  2. Nonalcoholic steatohepatitis and insulin resistance in children

    PubMed Central

    Arata, Mikage; Nakajima, Junya; Nishimata, Shigeo; Nagata, Tomomi; Kawashima, Hisashi

    2014-01-01

    Various pathological conditions can cause fatty liver in children. Nonalcoholic steatohepatitis (NASH) in children has been known since 1983. However, NASH diagnosed in childhood does not have a favorable outcome. The pathological characteristics of NASH are significantly different between children and adults. Nonalcoholic fatty liver disease (NAFLD)/NASH is accompanied by insulin resistance, which plays a pivotal role in its pathophysiology in both children and adults. In NASH, a “two-hit” model involving triglyceride accumulation (first hit) and liver damage (second hit) has been accepted. Insulin resistance was found to correlate with changes in fat levels; however, it did not correlate with fibrosis or NAFLD activity score in children. Therefore, insulin resistance may be important in the first hit. Because there is obvious familial clustering in NASH, genetic predisposition as well as environmental factors including diet might be the second hit of NAFLD/NASH. PMID:25512797

  3. The value of different insulin resistance indices in assessment of non-alcoholic fatty liver disease in overweight/obese children.

    PubMed

    El-Karaksy, Hanaa M; El-Raziky, Mona S; Fouad, Hanan M; Anwar, Ghada M; El-Mougy, Fatma M; El-Koofy, Nehal M; El-Hennawy, Ahmad M

    2015-01-01

    The aim of the present study was to determine the association between insulin resistance (IR) and both non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) in a group of Egyptian overweight/obese children and adolescents and to evaluate different IR indices in detection of NAFLD. The study included 76 overweight/obese children aged 2-15 years; 52.6% were males. Laboratory analysis included fasting blood glucose, serum insulin, lipid profile, liver biochemical profile, and liver ultrasound. IR was calculated using the following indices; the homeostasis model assessment method (HOMA-IR), the quantitative insulin-sensitivity check index (QUICKI) and hepatic insulin sensitivity. The National Cholesterol Education Program Adult Treatment Panel III criteria were used to estimate prevalence of MetS. Liver biopsy was done when medically indicated and accepted by parents. IR was detected in 43.4% and 34.2% by using QUICKI and HOMA, respectively. MetS was detected in 36.8% and NAFLD was detected in 45.5% among those performing liver biopsy. Cases with NAFLD had more frequent IR than children with normal histology. QUICKI showed significant difference between normal subjects and both steatosis and non-alcoholic steatohepatitis; while HOMA-IR was sensitive in cases with NASH only. MetS was present in 100% of patients with NASH and in 75% of those with steatosis and they were all obese. Patients with NASH had significantly higher ALT than those with normal histology. IR was significantly associated with NAFLD. QUICKI is considered more sensitive than HOMA-IR in differentiating simple steatosis from normal liver histology. Copyright © 2013 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  4. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Prostate Cancer

    PubMed Central

    Weinstein, Stephanie J.; Wright, Margaret E.; Männistö, Satu; Limburg, Paul J.; Snyder, Kirk; Virtamo, Jarmo

    2009-01-01

    Background The mitogenic and growth-stimulatory effects of insulin-like growth factors appear to play a role in prostate carcinogenesis, yet any direct association of circulating insulin levels and risk of prostate cancer remains unclear. Methods We investigated the relationship of the level of serum insulin, glucose, and surrogate indices of insulin resistance (ie, the molar ratio of insulin to glucose and the homeostasis model assessment of insulin resistance [HOMA-IR]) to the development of prostate cancer in a case–cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort of Finnish men. We studied 100 case subjects with incident prostate cancer and 400 noncase subjects without prostate cancer from the larger cohort. Fasting serum was collected 5–12 years before diagnosis. We determined insulin concentrations with a double-antibody immunochemiluminometric assay and glucose concentrations with a hexokinase assay. Multivariable logistic regression models estimated relative risks as odds ratios (ORs), and all statistical tests were two-sided. Results Insulin concentrations in fasting serum that was collected on average 9.2 years before diagnosis among case subjects were 8% higher than among noncase subjects, and the molar ratio of insulin to glucose and HOMA-IR were 10% and 6% higher, respectively, but these differences were not statistically significant. Among subjects in the second through fourth insulin quartiles, compared with those in the first quartile, increased insulin levels were associated with statistically significantly increased risks of prostate cancer (OR = 1.50, 95% confidence interval [CI] = 0.75 to 3.03; OR = 1.75, 95% CI = 0.86 to 3.56; and OR = 2.55, 95% CI = 1.18 to 5.51; for the second through fourth insulin quartiles, respectively; Ptrend = .02). A similar pattern was observed with the HOMA-IR (OR = 2.10, 95% CI = 1.03 to 4.26; Ptrend = .02) for the highest vs lowest quartiles. Risk varied inconsistently with

  5. Serum insulin, glucose, indices of insulin resistance, and risk of prostate cancer.

    PubMed

    Albanes, Demetrius; Weinstein, Stephanie J; Wright, Margaret E; Männistö, Satu; Limburg, Paul J; Snyder, Kirk; Virtamo, Jarmo

    2009-09-16

    The mitogenic and growth-stimulatory effects of insulin-like growth factors appear to play a role in prostate carcinogenesis, yet any direct association of circulating insulin levels and risk of prostate cancer remains unclear. We investigated the relationship of the level of serum insulin, glucose, and surrogate indices of insulin resistance (ie, the molar ratio of insulin to glucose and the homeostasis model assessment of insulin resistance [HOMA-IR]) to the development of prostate cancer in a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort of Finnish men. We studied 100 case subjects with incident prostate cancer and 400 noncase subjects without prostate cancer from the larger cohort. Fasting serum was collected 5-12 years before diagnosis. We determined insulin concentrations with a double-antibody immunochemiluminometric assay and glucose concentrations with a hexokinase assay. Multivariable logistic regression models estimated relative risks as odds ratios (ORs), and all statistical tests were two-sided. Insulin concentrations in fasting serum that was collected on average 9.2 years before diagnosis among case subjects were 8% higher than among noncase subjects, and the molar ratio of insulin to glucose and HOMA-IR were 10% and 6% higher, respectively, but these differences were not statistically significant. Among subjects in the second through fourth insulin quartiles, compared with those in the first quartile, increased insulin levels were associated with statistically significantly increased risks of prostate cancer (OR = 1.50, 95% confidence interval [CI] = 0.75 to 3.03; OR = 1.75, 95% CI = 0.86 to 3.56; and OR = 2.55, 95% CI = 1.18 to 5.51; for the second through fourth insulin quartiles, respectively; P(trend) = .02). A similar pattern was observed with the HOMA-IR (OR = 2.10, 95% CI = 1.03 to 4.26; P(trend) = .02) for the highest vs lowest quartiles. Risk varied inconsistently with glucose concentration (P

  6. Urinary Arsenic and Insulin Resistance in US Adolescents

    PubMed Central

    Peng, Qing; Harlow, Siobán D.; Park, Sung Kyun

    2015-01-01

    Chronic arsenic exposure has been associated with increased diabetes risk in adults. Insulin resistance (IR) has been proposed as a mechanism of arsenic-related diabetes. Although limited evidence in adults found no association between arsenic and IR, the association in adolescents is largely unknown. We examined the association between urinary arsenic and insulin resistance in US adolescents. Eight hundred thirty five adolescents aged 12-19 years, with complete data on urinary arsenic (total arsenic, inorganic arsenic and dimethylarsenic acid (DMA)), fasting glucose, insulin and key covariates were identified from the National Health and Nutrition Examination Survey (NHANES) cycles 2003/2004 through 2009/2010. Generalized additive mixed models accounting for intra-cluster correlation arising from the complex survey design were used to estimate the association between the updated Homeostasis Model Assessment (HOMA2)-IR and each type of arsenic. After adjusting for potential confounders, including urinary creatinine, sociodemographic factors, BMI, waist circumference, and arsenobetaine, arsenic exposure was not associated with HOMA2-IR. Interquartile range increases in total arsenic, inorganic arsenic and DMA were associated with 1.5% (95% CI: -2.0, 5.2), 1.1% (95% CI: -1.5, 3.8) and 0.25% (95% CI: -2.3, 2.9) increases in HOMA2-IR, respectively. In conclusion, despite arsenic's association with diabetes in adults and potential role in insulin resistance, our findings do not support the hypothesis that arsenic exposure at levels common in the US contributes to insulin resistance in adolescents. Whether higher doses and longer exposure duration are required for appreciable influence on insulin resistance, or that arsenic does not act through insulin resistance to induce diabetes needs further investigation.1 PMID:25845984

  7. Urinary arsenic and insulin resistance in US adolescents.

    PubMed

    Peng, Qing; Harlow, Siobán D; Park, Sung Kyun

    2015-06-01

    Chronic arsenic exposure has been associated with increased diabetes risk in adults. Insulin resistance (IR) has been proposed as a mechanism of arsenic-related diabetes. Although limited evidence in adults found no association between arsenic and IR, the association in adolescents is largely unknown. We examined the association between urinary arsenic and insulin resistance in US adolescents. Eight hundred thirty five adolescents aged 12-19 years, with complete data on urinary arsenic (total arsenic, inorganic arsenic and dimethylarsenic acid (DMA)), fasting glucose, insulin and key covariates were identified from the National Health and Nutrition Examination Survey (NHANES) cycles 2003/2004 through 2009/2010. Generalized additive mixed models accounting for intra-cluster correlation arising from the complex survey design were used to estimate the association between the updated Homeostasis Model Assessment (HOMA2)-IR and each type of arsenic. After adjusting for potential confounders, including urinary creatinine, sociodemographic factors, BMI, waist circumference, and arsenobetaine, arsenic exposure was not associated with HOMA2-IR. Interquartile range increases in total arsenic, inorganic arsenic and DMA were associated with 1.5% (95% CI: -2.0, 5.2), 1.1% (95% CI: -1.5, 3.8) and 0.25% (95% CI: -2.3, 2.9) increases in HOMA2-IR, respectively. In conclusion, despite arsenic's association with diabetes in adults and potential role in insulin resistance, our findings do not support the hypothesis that arsenic exposure at levels common in the US contributes to insulin resistance in adolescents. Whether higher doses and longer exposure duration are required for appreciable influence on insulin resistance, or that arsenic does not act through insulin resistance to induce diabetes needs further investigation.

  8. Obstructive sleep apnea, insulin resistance, and steatohepatitis in severe obesity.

    PubMed

    Polotsky, Vsevolod Y; Patil, Susheel P; Savransky, Vladimir; Laffan, Alison; Fonti, Shannon; Frame, Leigh A; Steele, Kimberly E; Schweizter, Michael A; Clark, Jeanne M; Torbenson, Michael S; Schwartz, Alan R

    2009-02-01

    Obstructive sleep apnea is associated with insulin resistance and liver injury. It is unknown whether apnea contributes to insulin resistance and steatohepatitis in severe obesity. To examine whether sleep apnea and nocturnal hypoxemia predict the severity of insulin resistance, systemic inflammation, and steatohepatitis in severely obese individuals presenting for bariatric surgery. We performed sleep studies and measured fasting blood glucose, serum insulin, C-reactive protein, and liver enzymes in 90 consecutive severely obese individuals, 75 women and 15 men, without concomitant diabetes mellitus or preexistent diagnosis of sleep apnea or liver disease. Liver biopsies (n = 20) were obtained during bariatric surgery. Obstructive sleep apnea with a respiratory disturbance index greater than 5 events/hour was diagnosed in 81.1% of patients. The median respiratory disturbance index was 15 +/- 29 events/hour and the median oxygen desaturation during apneic events was 4.6 +/- 1.8%. All patients exhibited high serum levels of C-reactive protein, regardless of the severity of apnea, whereas liver enzymes were normal. Oxygen desaturation greater than 4.6% was associated with a 1.5-fold increase in insulin resistance, according to the homeostasis model assessment index. Histopathology data suggested that significant nocturnal desaturation might predispose to hepatic inflammation, hepatocyte ballooning, and liver fibrosis. Fasting blood glucose levels and steatosis scores were not affected by nocturnal hypoxia. There was no relationship between the respiratory disturbance index and insulin resistance or liver histopathology. Hypoxic stress of sleep apnea may be implicated in the development of insulin resistance and steatohepatitis in severe obesity.

  9. Effect of treatment of overt hypothyroidism on insulin resistance

    PubMed Central

    Nada, Aml Mohamed

    2013-01-01

    AIM: To investigate the impact of hypothyroidism and thyroxine therapy on insulin sensitivity in patients with overt hypothyroidism. METHODS: The study included twenty seven overtly hypothyroid and fifteen healthy euthyroid South Western Asian females. Both groups had matching age and body mass index. Physiological and pathological conditions as well as medications that may alter thyroid function, glucose homeostasis or serum lipids were ruled out. Serum thyrotropin (TSH), free tetraiodothyronine (FT4), free triiodothyronine (FT3), fasting insulin (FI), fasting plasma glucose (FPG), total cholesterol and triglycerides were measured before and six months after initiating thyroxine therapy for hypothyroid patients and once for the control group. Insulin resistance (IR) was estimated using homeostasis model assessment (HOMA-IR) and Body mass index (BMI) was calculated. RESULTS: Both study groups, hypothyroid patients and euthyroid control subjects, had matching age and body mass index (P-value 0.444, 0.607 respectively). No significant difference was found between the hypothyroid patients and the euthyroid control group regarding fasting plasma glucose, fasting insulin, insulin resistance, total cholesterol and triglycerides (P-values 0.432, 0.621, 0.883, 0.586, 0.05 respectively). In the hypothyroid patients, triglycerides showed direct correlation to TSH and inverse correlation to FT3. Similarly total cholesterol inversely correlated to FT3 but its direct correlation to TSH did not reach statistical significance. After thyroxine replacement and reaching an euthyroid state as confirmed by clinical and laboratory data, there was no significant change in fasting plasma glucose, insulin resistance or triglyceride level (P-value 0.216, 0.204, 0.175 respectively) while total cholesterol significantly decreased (P-value 0.043) and fasting insulin significantly increased (P-value 0.047). CONCLUSION: Hypothyroidism has no impact on insulin sensitivity. Correction of

  10. Effect of treatment of overt hypothyroidism on insulin resistance.

    PubMed

    Nada, Aml Mohamed

    2013-08-15

    To investigate the impact of hypothyroidism and thyroxine therapy on insulin sensitivity in patients with overt hypothyroidism. The study included twenty seven overtly hypothyroid and fifteen healthy euthyroid South Western Asian females. Both groups had matching age and body mass index. Physiological and pathological conditions as well as medications that may alter thyroid function, glucose homeostasis or serum lipids were ruled out. Serum thyrotropin (TSH), free tetraiodothyronine (FT4), free triiodothyronine (FT3), fasting insulin (FI), fasting plasma glucose (FPG), total cholesterol and triglycerides were measured before and six months after initiating thyroxine therapy for hypothyroid patients and once for the control group. Insulin resistance (IR) was estimated using homeostasis model assessment (HOMA-IR) and Body mass index (BMI) was calculated. Both study groups, hypothyroid patients and euthyroid control subjects, had matching age and body mass index (P-value 0.444, 0.607 respectively). No significant difference was found between the hypothyroid patients and the euthyroid control group regarding fasting plasma glucose, fasting insulin, insulin resistance, total cholesterol and triglycerides (P-values 0.432, 0.621, 0.883, 0.586, 0.05 respectively). In the hypothyroid patients, triglycerides showed direct correlation to TSH and inverse correlation to FT3. Similarly total cholesterol inversely correlated to FT3 but its direct correlation to TSH did not reach statistical significance. After thyroxine replacement and reaching an euthyroid state as confirmed by clinical and laboratory data, there was no significant change in fasting plasma glucose, insulin resistance or triglyceride level (P-value 0.216, 0.204, 0.175 respectively) while total cholesterol significantly decreased (P-value 0.043) and fasting insulin significantly increased (P-value 0.047). Hypothyroidism has no impact on insulin sensitivity. Correction of hypothyroidism is not associated with a

  11. Association Between Insulin Resistance and Luminal B Subtype Breast Cancer in Postmenopausal Women.

    PubMed

    Nam, Sanggeun; Park, Seho; Park, Hyung Seok; Kim, Sanghwa; Kim, Jee Ye; Kim, Seung Il

    2016-03-01

    Currently, there is limited information on the clinical characteristics of breast cancer patients with insulin resistance. Hence, the purpose of this study was to investigate the association between insulin resistance and clinicopathological factors in newly diagnosed breast cancer patients without diabetes. We assessed 760 patients with breast cancer treated between 2012 and 2014. We compared the clinicopathological characteristics between patients with and without insulin resistance using univariate and multivariate analyses, including after stratification by menopausal status. Insulin resistance was defined according to the homeostatic model assessment of insulin resistance. Of 760 patients, 26.4% had insulin resistance. Age, menopausal status, body mass index, tumor size, histologic grade, Ki-67 expression, and breast cancer subtype significantly differed according to the presence of insulin resistance. Multivariate analysis revealed that postmenopausal status and obesity were significantly associated with insulin resistance. In postmenopausal women, older age, obesity, larger tumor size, advanced stage, and high proliferative luminal B subtype were significantly associated with insulin resistance. In contrast, in premenopausal patients, only obesity was related to insulin resistance. Multivariate analysis indicated that insulin resistance was independently correlated with obesity, larger tumor size, and the luminal B/human epidermal growth factor receptor-2-negative subtype in postmenopausal but not premenopausal patients. Insulin resistance was significantly associated with larger tumors and proliferative luminal B subtype breast cancer in postmenopausal women only. These findings suggest that insulin resistance could mechanistically induce tumor progression and might be a good prognostic factor, and that it could represent a therapeutic target in postmenopausal patients with breast cancer.

  12. Association Between Insulin Resistance and Luminal B Subtype Breast Cancer in Postmenopausal Women

    PubMed Central

    Nam, Sanggeun; Park, Seho; Park, Hyung Seok; Kim, Sanghwa; Kim, Jee Ye; Kim, Seung Il

    2016-01-01

    Abstract Currently, there is limited information on the clinical characteristics of breast cancer patients with insulin resistance. Hence, the purpose of this study was to investigate the association between insulin resistance and clinicopathological factors in newly diagnosed breast cancer patients without diabetes. We assessed 760 patients with breast cancer treated between 2012 and 2014. We compared the clinicopathological characteristics between patients with and without insulin resistance using univariate and multivariate analyses, including after stratification by menopausal status. Insulin resistance was defined according to the homeostatic model assessment of insulin resistance. Of 760 patients, 26.4% had insulin resistance. Age, menopausal status, body mass index, tumor size, histologic grade, Ki-67 expression, and breast cancer subtype significantly differed according to the presence of insulin resistance. Multivariate analysis revealed that postmenopausal status and obesity were significantly associated with insulin resistance. In postmenopausal women, older age, obesity, larger tumor size, advanced stage, and high proliferative luminal B subtype were significantly associated with insulin resistance. In contrast, in premenopausal patients, only obesity was related to insulin resistance. Multivariate analysis indicated that insulin resistance was independently correlated with obesity, larger tumor size, and the luminal B/human epidermal growth factor receptor-2-negative subtype in postmenopausal but not premenopausal patients. Insulin resistance was significantly associated with larger tumors and proliferative luminal B subtype breast cancer in postmenopausal women only. These findings suggest that insulin resistance could mechanistically induce tumor progression and might be a good prognostic factor, and that it could represent a therapeutic target in postmenopausal patients with breast cancer. PMID:26945364

  13. Insulin resistance in young, lean male subjects with essential hypertension.

    PubMed

    Penesova, A; Cizmarova, E; Belan, V; Blazicek, P; Imrich, R; Vlcek, M; Vigas, M; Selko, D; Koska, J; Radikova, Z

    2011-06-01

    Impaired insulin action, frequently found in essential hypertension (HT), is modified by other factors, such as higher age, accumulation of body fat, dyslipidaemia, impaired glucose metabolism and endothelial dysfunction. In addition, antihypertensive and insulin-sensitizing medication itself may significantly affect cardiovascular and metabolic milieu. The aim of this study was to assess insulin sensitivity, acute insulin response, lipidaemic status and the adipokines' concentrations with regard to abdominal fat distribution in young, lean male subjects with treatment-naïve essential HT and in matched healthy normotensive (NT) subjects. We studied 27 HT patients (age: 19.9±0.6 years; body mass index (BMI): 22.9±0.5 kg m(-2)) and 15 NT controls (age: 22.3±1.0 years; BMI: 23.7±0.6 kg m(-2)). The subjects underwent an oral and an intravenous glucose tolerance test (OGTT, IVGTT) on separate days in random order. Higher fasting insulin (P<0.001), non-esterified fatty acids (P<0.05) and plasminogen activator inhibitor factor 1 concentrations (P<0.05) were found in HT patients when compared with NT patients. Despite comparable anthropometric parameters and body fat distribution assessed by magnetic resonance imaging in both groups, newly diagnosed untreated young hypertensive male subjects showed decreased insulin sensitivity, augmented insulin response to both oral and intravenous glucose load (P<0.01; P<0.05 respectively) and 'higher still normal' 2-h plasma glucose levels during OGTT. Untreated, young, lean hypertensive male subjects, with distribution of abdominal adipose tissue and lipid profile comparable with their healthy NT matched counterparts, showed considerable signs of insulin resistance and hyperinsulinaemia. We hypothesize that insulin resistance is the initial feature, which is influenced by several environmental factors, and HT is one of their common consequences.

  14. Acute disruption of leptin signaling in vivo leads to increased insulin levels and insulin resistance.

    PubMed

    Levi, Jasna; Gray, Sarah L; Speck, Madeleine; Huynh, Frank K; Babich, Sandra L; Gibson, William T; Kieffer, Timothy J

    2011-09-01

    Leptin, an adipocyte-derived hormone, plays an essential role in the maintenance of normal body weight and energy expenditure, as well as glucose homeostasis. Indeed, leptin-deficient ob/ob mice are obese with profound hyperinsulinemia, insulin resistance, and often hyperglycemia. Interestingly, low doses of exogenous leptin can reverse the hyperinsulinemia and hyperglycemia in these animals without altering body weight. The hyperinsulinemia in ob/ob mice may result directly from the absence of leptin signaling in pancreatic β-cells and, in turn, contribute to both obesity and insulin resistance. Here, we acutely attenuated endogenous leptin signaling in normal mice with a polyethylene glycol (PEG)ylated mouse leptin antagonist (PEG-MLA) to determine the contribution of leptin signaling in the regulation of glucose homeostasis. PEG-MLA was either injected or continuously administered via osmotic minipumps for several days, and various metabolic parameters were assessed. PEG-MLA-treated mice had increased fasting and glucose-stimulated plasma insulin levels, decreased whole-body insulin sensitivity, elevated hepatic glucose production, and impaired insulin-mediated suppression of hepatic glucose production. Moreover, PEG-MLA treatment resulted in increased food intake and increased respiratory quotient without significantly altering energy expenditure or body composition as assessed by the lean:lipid ratio. Our findings indicate that alterations in insulin sensitivity occur before changes in the lean:lipid ratio and energy expenditure during the acute disruption of endogenous leptin signaling.

  15. Treatment of insulin resistance in the neurodegeneration.

    PubMed

    Stefanelli, Manuela; Martocchia, Antonio; De Marinis, Elisabetta Adele; Falaschi, Giulia Maria; Romano, Gloria; Rufo, Maddalena; Falaschi, Paolo

    2014-04-01

    The association between diabetes and neurodegenerative diseases is increasing with aging. Several common mechanisms are involved in both these diseases. The endothelial cells of the blood brain barrier, neurons and glia express typical and different receptors of the glucose metabolism (glucose transporters, insulin receptors and glucagon-like peptide-1 receptors). The impairment in insulin signaling leads to an impairment of neuronal function and increases neurodegeneration, and, conversely, neurodegeneration causes a reduction of insulin signaling on neurons. Increased detailed knowledge of common physiological processes opens up the opportunities for developing new treatments that may prevent or reduce the onset of neurodegenerative diseases. The aim of the review is to discuss the potential neuroprotective effects of the antidiabetic drugs. The article presents some promising patents on the treatment of insulin resistance in the neurodegeneration.

  16. Liver enzymes are associated with hepatic insulin resistance, insulin secretion, and glucagon concentration in healthy men and women.

    PubMed

    Bonnet, Fabrice; Ducluzeau, Pierre-Henri; Gastaldelli, Amalia; Laville, Martine; Anderwald, Christian H; Konrad, Thomas; Mari, Andrea; Balkau, Beverley

    2011-06-01

    The pathophysiological mechanisms to explain the association between risk of type 2 diabetes and elevated concentrations of γ-glutamyltransferase (GGT) and alanineaminotransferase (ALT) remain poorly characterized. We explored the association of liver enzymes with peripheral and hepatic insulin resistance, insulin secretion, insulin clearance, and glucagon concentration. We studied 1,309 nondiabetic individuals from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study; all had a euglycemic-hyperinsulinemic clamp and an oral glucose tolerance test (OGTT) with assessment of insulin secretion and hepatic insulin extraction. The hepatic insulin resistance index was calculated in 393 individuals. In both men and women, plasma concentrations of GGT and ALT were inversely related with insulin sensitivity (M/I) (all P < 0.01). Likewise, the hepatic insulin resistance index was positively correlated with both GGT (r = 0.37, P < 0.0001, men; r = 0.36, P < 0.0001, women) and ALT (r = 0.25, P = 0.0005, men; r = 0.18, P = 0.01, women). These associations persisted in multivariable models. Increased GGT and ALT were significantly associated with higher insulin secretion rates and with both reduced endogenous clearance of insulin and hepatic insulin extraction during the OGTT (P = 0.0005 in men; P = 0.003 in women). Plasma fasting glucagon levels increased over ALT quartiles (men, quartile 4 vs. quartile 1 11.2 ± 5.1 vs. 9.3 ± 3.8 pmol/L, respectively, P = 0.0002; women, 9.0 ± 4.3 vs. 7.6 ± 3.1, P = 0.001). In healthy individuals, increased GGT and ALT were biomarkers of both systemic and hepatic insulin resistance with concomitant increased insulin secretion and decreased hepatic insulin clearance. The novel finding of a positive correlation between ALT and fasting glucagon level concentrations warrants confirmation in type 2 diabetes.

  17. Metabolic syndrome and insulin resistance: perioperative considerations.

    PubMed

    Bagry, Hema S; Raghavendran, Sreekrishna; Carli, Franco

    2008-03-01

    Metabolic syndrome represents a constellation of risk factors associated with increased incidence of cardiovascular disease and progression to diabetes mellitus. Insulin resistance, a state of decreased biologic response to physiologic concentrations of insulin, is a key component of this syndrome and seems to be the result of a primary defect at the skeletal muscle glucose transporter. Acute illness and the perioperative period are characterized by a state of insulin resistance that manifests as hyperglycemia and leads to various other metabolic and biochemical alterations that adversely affect end organ function. Hyperglycemia in acutely ill patients adversely affects outcome. Achieving euglycemia seems beneficial in certain clinical situations, but considerable disagreement exists regarding the target blood sugar levels, the duration of therapy, and the modality. Pharmacotherapy, exercise, and nutrition to improve insulin sensitivity seem promising but require further evaluation to confirm their efficacy for perioperative risk reduction. This review discusses the pathophysiology and the clinical implications of metabolic syndrome and insulin resistance in the acutely ill patient with an emphasis on perioperative modulation strategies.

  18. Assessment of Insulin Resistance in Subjects with Normal Glucose Tolerance, Hyperinsulinemia with Normal Blood Glucose Tolerance, Impaired Glucose Tolerance, and Newly Diagnosed Type 2 Diabetes (Prediabetes Insulin Resistance Research)

    PubMed Central

    Yang, Guang; Li, Chunlin; Gong, Yanping; Fang, Fusheng; Tian, Hui; Li, Jian; Cheng, Xiaoling

    2016-01-01

    Aim. To evaluate the differences in insulin resistance (IR) among subjects with normal glucose tolerance (NGT), hyperinsulinemia with NGT (HINS), impaired glucose tolerance (IGT), and newly diagnosed type 2 diabetes mellitus (T2DM). Methods. 5 NGT, 25 HINS, 25 IGT, and 25 T2DM subjects participated in this research. The hyperinsulinemic-euglycemic clamp technique (HECT) was performed in all of them to evaluate IR levels. The relative factors influencing IR were evaluated. The simple insulin sensitivity indices were calculated, and the correlation between each index and the M value was analyzed. Results. The M values of NGT, HINS, IGT, and T2DM groups were 11.88 ± 2.93 mg·kg−1·min−1, 6.23 ± 1.73 mg·kg−1·min−1, 6.37 ± 2.12 mg·kg−1·min−1, and 6.19 ± 1.89 mg·kg−1·min−1, respectively. M values in HINS, IGT, and T2DM groups were lower than those in the NGT group (P = 0.005); however, the differences among the HINS, IGT, and T2DM groups were not statistically significant (P = 0.835). The independent factors influencing the M value were waistline and fasting insulin level (FINS). The simple insulin sensitivity indices, especially Matsuda and Gutt index, were significantly associated with the M value (P < 0.01). Conclusion. IR existed in the HINS, IGT, and T2DM groups, and IR levels were consistent in the three groups. The independent factors influencing IR were waistline and FINS. PMID:26770991

  19. Dietary iron overload induces visceral adipose tissue insulin resistance.

    PubMed

    Dongiovanni, Paola; Ruscica, Massimiliano; Rametta, Raffaela; Recalcati, Stefania; Steffani, Liliana; Gatti, Stefano; Girelli, Domenico; Cairo, Gaetano; Magni, Paolo; Fargion, Silvia; Valenti, Luca

    2013-06-01

    Increased iron stores associated with elevated levels of the iron hormone hepcidin are a frequent feature of the metabolic syndrome. The aim of this study was to assess the effect of dietary iron supplementation on insulin resistance and the role of hepcidin in C57Bl/6 male mice fed a standard or iron-enriched diet for 16 weeks. Iron supplementation increased hepatic iron and serum hepcidin fivefold and led to a 40% increase in fasting glucose due to insulin resistance, as confirmed by the insulin tolerance test, and to threefold higher levels of triglycerides. Iron supplemented mice had lower visceral adipose tissue mass estimated by epididymal fat pad, associated with iron accumulation in adipocytes. Decreased insulin signaling, evaluated by the phospho-Akt/Akt ratio, was detected in the visceral adipose tissue of iron overloaded mice, and gene expression analysis of visceral adipose tissue showed that an iron-enriched diet up-regulated iron-responsive genes and adipokines, favoring insulin resistance, whereas lipoprotein lipase was down-regulated. This resulted in hyperresistinemia and increased visceral adipose tissue expression of suppressor of cytokine signaling-3 (Socs3), a target of resistin and hepcidin implicated in insulin resistance. Acute hepcidin administration down-regulated lipoprotein lipase and up-regulated Socs3 in visceral adipose tissue. In conclusion, we characterized a model of dysmetabolic iron overload syndrome in which an iron-enriched diet induces insulin resistance and hypertriglyceridemia and affects visceral adipose tissue metabolism by a mechanism involving hepcidin up-regulation. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. ADIPOQ polymorphisms are associated with insulin resistance in Japanese women.

    PubMed

    Kitamoto, Aya; Kitamoto, Takuya; So, Rina; Matsuo, Tomoaki; Nakata, Yoshio; Hyogo, Hideyuki; Ochi, Hidenori; Nakamura, Takahiro; Kamohara, Seika; Miyatake, Nobuyuki; Kotani, Kazuaki; Mineo, Ikuo; Wada, Jun; Ogawa, Yuji; Yoneda, Masato; Nakajima, Atsushi; Funahashi, Tohru; Miyazaki, Shigeru; Tokunaga, Katsuto; Masuzaki, Hiroaki; Ueno, Takato; Chayama, Kazuaki; Hamaguchi, Kazuyuki; Yamada, Kentaro; Hanafusa, Toshiaki; Oikawa, Shinichi; Sakata, Toshiie; Tanaka, Kiyoji; Matsuzawa, Yuji; Hotta, Kikuko

    2015-01-01

    Visceral fat accumulation contributes to the development of insulin resistance, leading to metabolic syndrome. Adiponectin provides a link between visceral fat accumulation and insulin resistance. In addition to environmental factors, genetic factors play important roles in visceral fat accumulation and circulating adiponectin levels. Genome-wide association studies (GWASs) have identified genetic variations in the adiponectin, C1Q and collagen domain containing (ADIPOQ) gene that are associated with adiponectin levels. In this study, we investigated whether ADIPOQ single nucleotide polymorphisms (SNPs) were associated with visceral fat accumulation and insulin resistance. We measured the visceral fat area (VFA) by computed tomography (CT) and examined the presence of the insulin resistance-related phenotype (fasting plasma glucose, fasting insulin, and homeostasis model assessment-insulin resistance [HOMA-IR]) in a set of Japanese individuals (731 men and 864 women) who were genotyped for seven ADIPOQ SNPs reported by recent GWASs (namely, rs6810075, rs10937273, rs1648707, rs864265, rs182052, rs17366568, and rs6773957). SNPs associated with the phenotype (P < 0.05) were then evaluated by association analysis using a second set of the study participants (383 men and 510 women). None of the SNPs was associated with body mass index (BMI) or VFA in men or women. However, the adiponectin-decreasing alleles of rs10937273 and rs1648707 were significantly associated with HOMA-IR (P = 0.0030 and P = 0.00074, respectively) in women, independently of BMI. These SNPs were significantly associated with decreased adiponectin levels in women. Our results suggested that rs10937273 and rs1648707 may affect insulin sensitivity by regulating adiponectin production by adipose tissue in women.

  1. Insulin resistance and acne: a new risk factor for men?

    PubMed

    Del Prete, Michela; Mauriello, Maria Chiara; Faggiano, Antongiulio; Di Somma, Carolina; Monfrecola, Giuseppe; Fabbrocini, Gabriella; Colao, Annamaria

    2012-12-01

    The purpose of this study is to investigate the relationship between acne and insulin resistance as well as other metabolic impairment in young males. Acne is a skin disease that can be influenced by endocrine abnormalities. In females, it is associated with polycystic ovary syndrome, with peripheral insulin resistance and hyperinsulinemia, whereas few data are available in males. For investigating this, 22 young males with acne have been compared to 22 controls of comparable age and gender. Acne was scored using the global acne grading system score. Clinical as well as biochemical parameters of glucose and lipid metabolism, circulating levels of androgens, and IGF-1 were evaluated. Oral glucose tolerance test was performed and homeostasis model assessment of insulin resistance was calculated. The results thus obtained are as follows, patients had higher BMI (p = 0.003), WC (p = 0.002), WHR (p = 0.02), SBP (p = 0.0001), DBP (p = 0.001), basal (p = 0.01) and 120 min. oGTT serum insulin concentrations (p = 0.002), basal glucose concentrations (p = 0.03), HOMA-IR (p = 0.016), and lower HDL-cholesterol than controls (p = 0.001). Among the subgroup of subjects with BMI <24.9, HDL-cholesterol (p = 0.05) and 120 min. oGTT serum insulin concentrations (p = 0.009) resulted to be independent predictors of acne at multivariate analysis. In conclusion, these findings highlight a metabolic imbalance in young males affected with acne. Insulin resistance seems to play the main role for the development of acne in these subjects. Insulin resistance could represent an effective target for therapy in male acne.

  2. Epidemiologic Behavior and Estimation of an Optimal Cut-Off Point for Homeostasis Model Assessment-2 Insulin Resistance: A Report from a Venezuelan Population

    PubMed Central

    Bermúdez, Valmore; Martínez, María Sofía; Apruzzese, Vanessa; Chávez-Castillo, Mervin; Gonzalez, Robys; Torres, Yaquelín; Bello, Luis; Añez, Roberto; Chacín, Maricarmen; Toledo, Alexandra; Cabrera, Mayela; Mengual, Edgardo; Ávila, Raquel; López-Miranda, José

    2014-01-01

    Background. Mathematical models such as Homeostasis Model Assessment have gained popularity in the evaluation of insulin resistance (IR). The purpose of this study was to estimate the optimal cut-off point for Homeostasis Model Assessment-2 Insulin Resistance (HOMA2-IR) in an adult population of Maracaibo, Venezuela. Methods. Descriptive, cross-sectional study with randomized, multistaged sampling included 2,026 adult individuals. IR was evaluated through HOMA2-IR calculation in 602 metabolically healthy individuals. For cut-off point estimation, two approaches were applied: HOMA2-IR percentile distribution and construction of ROC curves using sensitivity and specificity for selection. Results. HOMA2-IR arithmetic mean for the general population was 2.21 ± 1.42, with 2.18 ± 1.37 for women and 2.23 ± 1.47 for men (P = 0.466). When calculating HOMA2-IR for the healthy reference population, the resulting p75 was 2.00. Using ROC curves, the selected cut-off point was 1.95, with an area under the curve of 0.801, sensibility of 75.3%, and specificity of 72.8%. Conclusions. We propose an optimal cut-off point of 2.00 for HOMA2-IR, offering high sensitivity and specificity, sufficient for proper assessment of IR in the adult population of our city, Maracaibo. The determination of population-specific cut-off points is needed to evaluate risk for public health problems, such as obesity and metabolic syndrome. PMID:27379332

  3. Mechanistic interplay between ceramide and insulin resistance

    PubMed Central

    Reali, Federico; Morine, Melissa J.; Kahramanoğulları, Ozan; Raichur, Suryaprakash; Schneider, Hans-Christoph; Crowther, Daniel; Priami, Corrado

    2017-01-01

    Recent research adds to a growing body of literature on the essential role of ceramides in glucose homeostasis and insulin signaling, while the mechanistic interplay between various components of ceramide metabolism remains to be quantified. We present an extended model of C16:0 ceramide production through both the de novo synthesis and the salvage pathways. We verify our model with a combination of published models and independent experimental data. In silico experiments of the behavior of ceramide and related bioactive lipids in accordance with the observed transcriptomic changes in obese/diabetic murine macrophages at 5 and 16 weeks support the observation of insulin resistance only at the later phase. Our analysis suggests the pivotal role of ceramide synthase, serine palmitoyltransferase and dihydroceramide desaturase involved in the de novo synthesis and the salvage pathways in influencing insulin resistance versus its regulation. PMID:28112248

  4. Beneficial effects of ethanol consumption on insulin resistance are only applicable to subjects without obesity or insulin resistance; drinking is not necessarily a remedy for metabolic syndrome.

    PubMed

    Yokoyama, Hirokazu

    2011-07-01

    Although moderate drinking has been shown to lower insulin resistance levels, it is still unclear whether alcoholic beverages could be remedies for insulin resistance. To elucidate this, the correlation between levels of ethanol consumption and insulin resistance were cross-sectionally examined in 371 non-diabetic male Japanese workers. Multiple regression analysis demonstrated that the ethanol consumption level was inversely correlated with the insulin resistance level assessed by homeostatic model assessment (HOMA-IR, p = 0.0014), the serum insulin level (p = 0.0007), and pancreatic β-cell function, also assessed by HOMA (HOMA-β, p = 0.0002), independently from age, body mass index (BMI), and blood pressure, liver function tests, and lipid profiles status, as well as serum adiponectin. The correlations were true in subjects with normal BMIs (up to 25.0 kg/m(2), n = 301) or normal HOMA-IR (up to 2.0 μIU·mg/μL·dL n = 337), whereas all of them were non-significant in those with excessive BMIs (n = 70) or in those with HOMA-IR of more than 2.0 (n = 34). Although it is still unclear whether the reductions of these parameters by ethanol consumption are truly due to the improvement of insulin resistance, at least, these effects are not applicable to subjects with obesity and/or insulin resistance. Thus, alcoholic beverages could not be remedies for insulin resistance or metabolic syndrome.

  5. Beneficial Effects of Ethanol Consumption on Insulin Resistance Are Only Applicable to Subjects Without Obesity or Insulin Resistance; Drinking is not Necessarily a Remedy for Metabolic Syndrome

    PubMed Central

    Yokoyama, Hirokazu

    2011-01-01

    Although moderate drinking has been shown to lower insulin resistance levels, it is still unclear whether alcoholic beverages could be remedies for insulin resistance. To elucidate this, the correlation between levels of ethanol consumption and insulin resistance were cross-sectionally examined in 371 non-diabetic male Japanese workers. Multiple regression analysis demonstrated that the ethanol consumption level was inversely correlated with the insulin resistance level assessed by homeostatic model assessment (HOMA-IR, p = 0.0014), the serum insulin level (p = 0.0007), and pancreatic β-cell function, also assessed by HOMA (HOMA-β, p = 0.0002), independently from age, body mass index (BMI), and blood pressure, liver function tests, and lipid profiles status, as well as serum adiponectin. The correlations were true in subjects with normal BMIs (up to 25.0 kg/m2, n = 301) or normal HOMA-IR (up to 2.0 μIU·mg/μL·dL n = 337), whereas all of them were non-significant in those with excessive BMIs (n = 70) or in those with HOMA-IR of more than 2.0 (n = 34). Although it is still unclear whether the reductions of these parameters by ethanol consumption are truly due to the improvement of insulin resistance, at least, these effects are not applicable to subjects with obesity and/or insulin resistance. Thus, alcoholic beverages could not be remedies for insulin resistance or metabolic syndrome. PMID:21845171

  6. B-1a Lymphocytes Attenuate Insulin Resistance

    PubMed Central

    Shen, Lei; Chng, MH; Alonso, Michael N.; Yuan, Robert

    2015-01-01

    Obesity-associated insulin resistance, a common precursor of type 2 diabetes, is characterized by chronic inflammation of tissues, including visceral adipose tissue (VAT). Here we show that B-1a cells, a subpopulation of B lymphocytes, are novel and important regulators of this process. B-1a cells are reduced in frequency in obese high-fat diet (HFD)-fed mice, and EGFP interleukin-10 (IL-10) reporter mice show marked reductions in anti-inflammatory IL-10 production by B cells in vivo during obesity. In VAT, B-1a cells are the dominant producers of B cell–derived IL-10, contributing nearly half of the expressed IL-10 in vivo. Adoptive transfer of B-1a cells into HFD-fed B cell–deficient mice rapidly improves insulin resistance and glucose tolerance through IL-10 and polyclonal IgM-dependent mechanisms, whereas transfer of B-2 cells worsens metabolic disease. Genetic knockdown of B cell–activating factor (BAFF) in HFD-fed mice or treatment with a B-2 cell–depleting, B-1a cell–sparing anti-BAFF antibody attenuates insulin resistance. These findings establish B-1a cells as a new class of immune regulators that maintain metabolic homeostasis and suggest manipulation of these cells as a potential therapy for insulin resistance. PMID:25249575

  7. Epigenetic markers to further understand insulin resistance.

    PubMed

    Ling, Charlotte; Rönn, Tina

    2016-11-01

    Epigenetic variation in human adipose tissue has been linked to type 2 diabetes and its related risk factors including age and obesity. Insulin resistance, a key risk factor for type 2 diabetes, may also be associated with altered DNA methylation in visceral and subcutaneous adipose tissue. Furthermore, linking epigenetic variation in target tissues to similar changes in blood cells may identify new blood-based biomarkers. In this issue of Diabetologia, Arner et al studied the transcriptome and methylome in subcutaneous and visceral adipose tissue of 80 obese women who were either insulin-sensitive or -resistant (DOI 10.1007/s00125-016-4074-5 ). While they found differences in gene expression between the two groups, no alterations in DNA methylation were found after correction for multiple testing. Nevertheless, based on nominal p values, their methylation data overlapped with methylation differences identified in adipose tissue of individuals with type 2 diabetes compared with healthy individuals. Differential methylation of these overlapping CpG sites may predispose to diabetes by occurring already in the insulin-resistant state. Furthermore, some methylation changes may contribute to an inflammatory process in adipose tissue since the identified CpG sites were annotated to genes encoding proteins involved in inflammation. Finally, the methylation pattern in circulating leucocytes did not mirror the adipose tissue methylome of these 80 women. Together, identifying novel molecular mechanisms contributing to insulin resistance and type 2 diabetes may help advance the search for new therapeutic alternatives.

  8. Uncoupling Proteins: Role in Insulin Resistance and Insulin Insufficiency

    PubMed Central

    Chan, Catherine B.; Harper, Mary-Ellen

    2010-01-01

    Uncoupling proteins (UCPs) are modulators of mitochondrial metabolism that have been implicated in the development of both insulin resistance and insulin insufficiency, the two major pathophysiological events associated with type 2 diabetes. UCP2 mRNA is expressed in a wide range of tissues; however UCP2 protein expression is restricted to fewer tissues, including the endocrine pancreas, spleen, stomach, brain and the lung. To date, its role in the pathophysiology of diabetes has been most strongly associated with impaired glucose-stimulated insulin secretion from the β-cell, particularly after its induction by free fatty acids. The physiological role of UCP2 remains controversial, but it may act as a downstream signal transducer of superoxide. UCP3 mRNA and protein are expressed in relatively few tissues, predominately skeletal muscle, brown adipose tissue and heart. Increased expression of UCP3 in skeletal muscle is associated with protection from diet-induced insulin resistance in mice. In patients with type 2 diabetes UCP3 protein in muscle is reduced by 50% compared to healthy controls. The primary physiological role of the novel UCPs does not appear to be protection against positive energy balance and obesity; this is based largely on findings from studies of UCP2 and UCP3 knockout mice and from observed increases in UCP3 expression with fasting. The mechanism(s) of action of UCP2 and UCP3 are poorly understood. However, findings support roles for UCP2 and UCP3 as modifiers of fatty acid metabolism and in mitigating damage from reactive oxygen species. PMID:18220632

  9. Interplay of overweight and insulin resistance on hypertension development.

    PubMed

    Lytsy, Per; Ingelsson, Erik; Lind, Lars; Arnlöv, Johan; Sundström, Johan

    2014-04-01

    Obesity and hypertension are associated, possibly through causal pathways involving insulin resistance and metabolic derangements. We aimed to investigate in a whites sample if overweight or obese persons without insulin resistance are at risk of developing hypertension or blood pressure progression. In a meta-analysis, using multivariable-adjusted mixed-effects logistic regression models, we investigated the risks of hypertension development and blood pressure progression by combinations of relative weight classes and presence or absence of insulin resistance (defined as highest vs. lower three quartiles using the homeostatic model assessment method) in the Uppsala Longitudinal Study of Adult Men (n = 2322) and the Prospective Investigation of the Vasculature in Uppsala Seniors studies (n = 1066). These two samples, consisting mainly of middle-aged and elderly men, provided 1846 observations for the development of hypertension in normotensive individuals and 4223 observations for progressing to a higher blood pressure stage. During a median of 10 years of follow-up, 884 (47.9%) developed hypertension and 1639 (38.8%) progressed to a higher blood pressure stage. Overweight or obese persons without insulin resistance had an increased risk of hypertension development [odds ratio (OR) 1.46, 95% confidence interval 1.14-1.88] and blood pressure progression (OR 1.32, 1.10-1.59) compared with normal-weight persons without insulin resistance. According to this study, being overweight or obese without insulin resistance increases the risk of hypertension and blood pressure progression. This adds to the evidence that overweight and obesity may be harmful per se, and that overweight and obesity without glucometabolic derangements are not benign conditions.

  10. Effects of Dietary n-3 Fatty Acids on Hepatic and Peripheral Insulin Sensitivity in Insulin-Resistant Humans

    PubMed Central

    Lalia, Antigoni Z.; Johnson, Matthew L.; Jensen, Michael D.; Hames, Kazanna C.; Port, John D.

    2015-01-01

    OBJECTIVE Dietary n-3 polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), prevent insulin resistance and stimulate mitochondrial biogenesis in rodents, but the findings of translational studies in humans are thus far ambiguous. The aim of this study was to evaluate the influence of EPA and DHA on insulin sensitivity, insulin secretion, and muscle mitochondrial function in insulin-resistant, nondiabetic humans using a robust study design and gold-standard measurements. RESEARCH DESIGN AND METHODS Thirty-one insulin-resistant adults received 3.9 g/day EPA+DHA or placebo for 6 months in a randomized double-blind study. Hyperinsulinemic-euglycemic clamp with somatostatin was used to assess hepatic and peripheral insulin sensitivity. Postprandial glucose disposal and insulin secretion were measured after a meal. Measurements were performed at baseline and after 6 months of treatment. Abdominal fat distribution was evaluated by MRI. Muscle oxidative capacity was measured in isolated mitochondria using high-resolution respirometry and noninvasively by magnetic resonance spectroscopy. RESULTS Compared with placebo, EPA+DHA did not alter peripheral insulin sensitivity, postprandial glucose disposal, or insulin secretion. Hepatic insulin sensitivity, determined from the suppression of endogenous glucose production by insulin, exhibited a small but significant improvement with EPA+DHA compared with placebo. Muscle mitochondrial function was unchanged by EPA+DHA or placebo. CONCLUSIONS This study demonstrates that dietary EPA+DHA does not improve peripheral glucose disposal, insulin secretion, or skeletal muscle mitochondrial function in insulin-resistant nondiabetic humans. There was a modest improvement in hepatic insulin sensitivity with EPA+DHA, but this was not associated with any improvements in clinically meaningful outcomes. PMID:25852206

  11. Impact of obstructive sleep apnoea on insulin resistance in nonobese and obese children.

    PubMed

    Koren, Dorit; Gozal, David; Philby, Mona F; Bhattacharjee, Rakesh; Kheirandish-Gozal, Leila

    2016-04-01

    Obstructive sleep apnoea (OSA) has been inconsistently associated with insulin resistance and adverse metabolic states. We aimed to assess independent contributions of OSA to insulin resistance and dyslipidaemia in a large paediatric cohort.Habitually snoring children underwent overnight polysomnography, anthropometric measurements and fasting laboratory evaluations. Primary outcome measures included insulin, glucose, homeostasis model of insulin resistance, lipoproteins and sleep disturbance measures.Among 459 children aged 5-12 years, obesity was the primary driver of most associations between OSA and metabolic measures, but sleep duration was inversely associated with glucose levels, with N3 and rapid eye movement (REM) sleep being negatively associated and sleep fragmentation positively associated with insulin resistance measures. In children with mild OSA, the presence of obesity increased the odds for insulin resistance, while higher apnoea/hypopnoea index values emerged among obese children who were more insulin-resistant.The exclusive presence of interactions between OSA and obesity in the degree of insulin resistance is coupled with synergistic contributions by sleep fragmentation to insulin resistance in the context of obesity. Insufficient N3 or REM sleep may also contribute to higher glycaemia independently of obesity. Studies are needed to better delineate the roles of puberty and sleep fragmentation in insulin resistance and the metabolic syndrome. Copyright ©ERS 2016.

  12. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    PubMed Central

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  13. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    PubMed

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P < 0.05). Exercise reduced glucose iAUCOGTT in IGT only (P < 0.05), and the decrease in glucose iAUCOGTT was inversely correlated with the increase in peripheral but not hepatic insulin sensitivity (P < 0.01). Increased clamp-derived peripheral insulin sensitivity was also correlated with enhanced metabolic flexibility, reduced fasting RQ, and higher nonoxidative glucose disposal (P < 0.05). Adults with IFG + IGT had smaller gains in clamp-derived peripheral insulin sensitivity and metabolic flexibility, which was related to blunted improvements in postprandial glucose. Additional work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  14. MODELS OF INSULIN RESISTANCE AND HEART FAILURE

    PubMed Central

    Velez, Mauricio; Kohli, Smita; Sabbah, Hani N.

    2013-01-01

    The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models. PMID:23456447

  15. Investigation of the Relationship Between Chronic Stress and Insulin Resistance in a Chinese Population.

    PubMed

    Yan, Yu-Xiang; Xiao, Huan-Bo; Wang, Si-Si; Zhao, Jing; He, Yan; Wang, Wei; Dong, Jing

    2016-07-05

    Chronic stress may facilitate the development of metabolic diseases. Insulin resistance is present long before the clinical manifestations of individual metabolic abnormalities. To explore whether chronic stress is an independent risk factor of insulin resistance, we investigated the relationship between the stress system, selected parameters of energy homeostasis, and insulin resistance in a Chinese population. We recruited 766 workers employed at four companies in Beijing. The degree of insulin resistance was determined using the homeostasis model assessment of insulin resistance (HOMA-IR). The highest quartile of HOMA-IR among all study subjects was further defined as insulin resistance in our study. The short standard version of the Copenhagen Psychosocial Questionnaire (COPSOQ) was used to assess job-related psychosocial stress. Pearson's correlation coefficients were calculated between cortisol level and HOMA-IR and components of metabolic syndrome, with stratification by gender. The relationship between cortisol and HOMA-IR independent of obesity was analyzed using a linear mixed model with company as a cluster unit. The values of the two scales of COPSOQ, including "demands at work" and "insecurity at work", were significantly associated with insulin resistance and cortisol concentration (P < 0.05). Cortisol was significantly positively correlated with glucose, HOMA-IR, and waist circumference in males and females (P < 0.05). After adjusting for potential confounders, cortisol was an independent positive predictor for HOMA-IR (P < 0.05). These findings showed that chronic stress was associated with insulin resistance and may contribute to the development of insulin resistance.

  16. Acceptance of insulin therapy: a long shot? Psychological insulin resistance in primary care.

    PubMed

    Woudenberg, Y J C; Lucas, C; Latour, C; Scholte op Reimer, W J M

    2012-06-01

    To explore which factors are associated with psychological insulin resistance in insulin-naive patients with Type 2 diabetes in primary care. A sample of 101 insulin-naive patients with Type 2 diabetes completed self-administered questionnaires including demographic and clinical characteristics, the Insulin Treatment Appraisal Scale and the Center for Epidemiological Studies Depression scale. Psychological insulin resistance was denoted by negative appraisal of insulin (Insulin Treatment Appraisal Scale). Thirty-nine per cent of the sample were unwilling to accept insulin therapy. Unwilling participants perceived taking insulin more often as a failure to control their diabetes with tablets or lifestyle compared with willing participants (59 vs. 33%), unwilling participants were more reluctant to accept the responsibilities of everyday management of insulin therapy (49 vs. 24%). Multiple linear regression analysis revealed that depression and objection to lifelong insulin therapy were independently associated with psychological insulin resistance. In this study in primary care, depression and objection to lifelong insulin therapy are associated with psychological insulin resistance. Analysis of the objection to the indefiniteness of insulin therapy showed a sense of limitation of daily life and loss of independence that should not be underestimated. Insulin should be offered as a means to improve health as this might facilitate the acceptance of insulin therapy. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  17. Fluctuation of insulin resistance in a leprechaun with a primary defect in insulin binding.

    PubMed

    Kobayashi, M; Takata, Y; Sasaoka, T; Shigeta, Y; Goji, K

    1988-05-01

    A 3-month-old female leprechaun demonstrated extreme insulin resistance with hyperinsulinemia (330 mumol/L) and resistance to exogenous insulin. Insulin binding to erythrocytes, cultured lymphocytes, and fibroblasts from the patient were decreased to less than 20% of normal, whereas insulin-like growth factor I binding to fibroblasts was normal. Antiinsulin receptor antibody binding to cultured lymphocytes was also decreased to 20% of normal, indicating a decreased concentration of insulin receptors on the cell surface. The ability of insulin to stimulate D-[14C]glucose uptake was decreased to 35% of normal in the patient's fibroblasts, and the dose-response curve was shifted to the right. With time, the insulin resistance fluctuated from near normal (fasting insulin, 244.0 pmol/L) to severe resistance (fasting insulin, 5740-9328 pmol/L), and an insulin tolerance test revealed amelioration of insulin resistance during remission. However, insulin binding to erythrocytes and adipocytes was decreased persistently to 20% of normal. These results indicate that the patient had a primary defect in her insulin receptors, i.e. decreased insulin receptor concentration. The variable degree of insulin resistance was possibly due to variable receptor function in the signal transmission process.

  18. Influence of magnesium on insulin resistance in obese women.

    PubMed

    Cruz, Kyria Jayanne Clímaco; de Oliveira, Ana Raquel Soares; Pinto, Denise Pereira; Morais, Jennifer Beatriz Silva; Lima, Fabiana da Silva; Colli, Célia; Torres-Leal, Francisco Leonardo; Marreiro, Dilina do Nascimento

    2014-09-01

    The present study evaluated the influence of magnesium on insulin resistance in obese women. A case-control study involving 114 women on the age between 20 and 50 years old, divided into two groups: control (eutrophic women, n = 59) and case (obese women, n = 55). The analysis of magnesium intake was carried out through the 3-day food record and also NutWin software version 1.5. The plasma, erythrocyte, and urinary magnesium concentrations were determined by flame atomic absorption spectrophotometry. The determinations of serum glucose and serum insulin were performed by enzymatic colorimetric method and chemiluminescence, respectively. The insulin resistance was assessed by homeostasis model assessment insulin resistance (HOMA-IR). The mean values of magnesium intake were lower than those recommended, without difference between groups (p > 0.05). All the patients who were evaluated showed adequate mean concentrations of magnesium in the plasma and erythrocyte. The urinary excretion of this mineral was lower than the reference values in both groups and did not show significant difference (p > 0.05). The values of serum glucose, serum insulin, and HOMA-IR were higher in obese women compared to the control group. A negative correlation was observed between erythrocyte magnesium and glycemic parameters (p < 0.05). Obese patients take in foods with low dietary magnesium content, and they show hypomagnesuria as a compensatory mechanism to keep the plasma concentration of this mineral in adequate levels. The correlation between the erythrocyte magnesium concentration and the parameters of glycemic control suggests the influence of this mineral on the index of insulin resistance in obese women.

  19. Allergen exposure induces adipose tissue inflammation and insulin resistance.

    PubMed

    Jung, Chien-Cheng; Tsai, Yau-Sheng; Chang, Chih-Ching; Cheng, Tsun-Jen; Chang, Ching-Wen; Liu, Ping-Yen; Chiu, Yi-Jen; Su, Huey-Jen

    2014-11-01

    This study investigates whether exposure to allergen elicits insulin resistance as a result of adipose tissue inflammation. Male C57BL/6 mice were challenged with ovalbumin (OVA) allergen for 12 weeks, and blood and adipose tissue samples were collected at 24h after the last challenge. Levels of adhesion molecules, fasting insulin, fasting glucose, and adipokines in the blood were analyzed, and fasting homeostasis model assessment was applied to determine insulin resistance (HOMA-IR). The expression of pro- and anti-inflammatory genes in dissected adipose tissues was analyzed by real-time RT-PCR. Our results showed that OVA exposure increased insulin resistance as well as resistin and E-selectin, but reduced adiponectin in the serum. Resistin level was significantly correlated with HOMA-IR. Moreover, in adipose tissues of OVA-challenged mice, the pro-inflammatory M1 genes were more abundant while the anti-inflammatory M2 genes were less than those of PBS-treated mice. The expressional changes of both M1 and M2 genes were significantly associated with serum levels of adiponectin, resistin, and E-selectin. Hematoxylin and eosin (HE) and immunohistochemistry (IHC) stain also showed that there was more obvious inflammation in OVA-challenged mice. In conclusion, the current study suggests the relationship between allergen-elicited adipose tissue inflammation and circulating inflammatory molecules, which are possible mediators for the development of insulin resistance. Therefore, we propose that allergen exposure might be one risk factor for insulin resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects.

    PubMed Central

    Kolterman, O G; Insel, J; Saekow, M; Olefsky, J M

    1980-01-01

    To assess the mechanisms of the insulin resistance in human obesity, we have determined, using a modification of the euglycemic glucose clamp technique, the shape of the in vivo insulin-glucose disposal dose-response curves in 7 control and 13 obese human subjects. Each subject had at least three euglycemic studies performed at insulin infusion rates of 15, 40, 120, 240, or 1,200 mU/M2/min. The glucose disposal rate was decreased in all obese subjects compared with controls (101 +/- 16 vs. 186 +/- 16 mg/M2/min) during the 40 mU/M2/min insulin infusion. The mean dose-response curve for the obese subjects was displaced to the right, i.e., the half-maximally effective insulin concentration was 270 +/- 27 microU/ml for the obese compared with 130 +/- 10 microU/ml for controls. In nine of the obese subjects, the dose-response curves were shifted to the right, and maximal glucose disposal rates (at a maximally effective insulin concentration) were markedly decreased, indicating both a receptor and a postreceptor defect. On the other hand, four obese patients had right-shifted dose-response curves but reached normal maximal glucose disposal rates, consistent with decreased insulin receptors as the only abnormality. When the individual data were analyzed, it was found that the lease hyperinsulinemic, least insulin-resistant patients displayed only the receptor defect, whereas those with the greatest hyperinsulinemia exhibited the largest post-receptor defect, suggesting a continuous spectrum of defects as one advances from mild to severe insulin resistance. When insulin's ability to suppress hepatic glucose output was assessed, hyperinsulinemia produced total suppresssion in all subjects. The dose-response curve for the obese subjects was shifted to the right, indicating a defect in insulin receptors. Insulin binding to isolated adipocytes obtained from the obese subjects was decreased, and a highly significant inverse linear relationship was demonstrated between insulin

  1. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    PubMed

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. Copyright © 2016 the American Physiological Society.

  2. Fasting insulin has a stronger association with an adverse cardiometabolic risk profile than insulin resistance: the RISC study.

    PubMed

    de Rooij, Susanne R; Dekker, Jacqueline M; Kozakova, Michaela; Mitrakou, Asimina; Melander, Olle; Gabriel, Rafael; Guidone, Caterina; Højlund, Kurt; Murphy, Matthew S; Nijpels, Giel

    2009-08-01

    Fasting insulin concentrations are often used as a surrogate measure of insulin resistance. We investigated the relative contributions of fasting insulin and insulin resistance to cardiometabolic risk and preclinical atherosclerosis. The Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) cohort consists of 1326 European non-diabetic, overall healthy men and women aged 30-60 years. We performed standard oral glucose tolerance tests and hyperinsulinemic euglycemic clamps. As a general measure of cardiovascular risk, we assessed the prevalence of the metabolic syndrome in 1177 participants. Carotid artery intima media thickness (IMT) was measured by ultrasound to assess preclinical atherosclerosis. Fasting insulin was correlated with all elements of the metabolic syndrome. Insulin sensitivity (M/I) was correlated with most elements. The odds ratio for the metabolic syndrome of those in the highest quartile of fasting insulin compared with those in the lower quartiles was 5.4 (95% confidence interval (CI) 2.8-10.3, adjusted for insulin sensitivity) in men and 5.1 (2.6-9.9) in women. The odds ratio for metabolic syndrome of those with insulin sensitivity in the lowest quartile of the cohort compared with those in the higher quartiles was 2.4 (95% CI 1.3-4.7, adjusted for fasting insulin) in men and 1.6 (0.8-3.1) in women. Carotid IMT was only statistically significantly associated with fasting insulin in both men and women. Fasting insulin, a simple and practical measure, may be a stronger and independent contributor to cardiometabolic risk and atherosclerosis in a healthy population than hyperinsulinemic euglycemic clamp-derived insulin sensitivity.

  3. Insulin resistance and gray matter volume in neurodegenerative disease.

    PubMed

    Morris, J K; Vidoni, E D; Perea, R D; Rada, R; Johnson, D K; Lyons, K; Pahwa, R; Burns, J M; Honea, R A

    2014-06-13

    The goal of this study was to compare insulin resistance in aging and aging-related neurodegenerative diseases, and to determine the relationship between insulin resistance and gray matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance was estimated in apparently healthy elderly control (HC, n=21) and neurodegenerative disease (Alzheimer's disease (AD), n=20; Parkinson's disease (PD), n=22) groups using Homeostasis Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test (IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model multiple regression. We found that HOMA2 was increased in both AD and PD compared to the HC group (HC vs. AD, p=0.002, HC vs. PD, p=0.003), although only AD subjects exhibited increased fasting glucose (p=0.005). Furthermore, our voxel-based morphometry analysis revealed that HOMA2 was related to GMV in all cohorts in a region-specific manner (p<0.001, uncorrected). Significant relationships were observed in the medial prefrontal cortex (HC), medial temporal regions (AD), and parietal regions (PD). Finally, the directionality of the relationship between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased brain volume), while a positive relationship was observed in PD. This cross-sectional study suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia.

  4. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    SciTech Connect

    Androlewicz, M.J.; Straus, D.S. ); Brandenburg, D.F. )

    1989-12-12

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe {sup 125}I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37{degree}C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation.

  5. Insulin resistance and associated factors: a cross-sectional study of bank employees

    PubMed Central

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-01-01

    OBJECTIVE: Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. METHODS: A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. RESULTS: It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. CONCLUSION: The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals. PMID:28492722

  6. Insulin resistance and associated factors: a cross-sectional study of bank employees.

    PubMed

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria Del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-04-01

    Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals.

  7. Obesity, insulin resistance, and microvascular adaptation.

    PubMed

    Frisbee, Jefferson C

    2017-02-01

    Two of the primary risk factors for the progressive evolution of cardiovascular disease are obesity and impaired glycemic control-including both insulin resistance and overt type 2 diabetes mellitus, leading to increased research emphasis on these conditions, their mechanistic bases, and their health outcomes. This Special Topics Issue of the journal Microcirculation summarizes a symposium at the recent Joint Meeting of the American Physiological Society and the Physiological Society, held in Dublin, Ireland, on July 30, 2016. This symposium, "Adaptive outcomes of microvascular networks to obesity and type 2 diabetes mellitus/insulin resistance," presented four lectures, each of which addressed the larger issue from a different perspective. © 2016 John Wiley & Sons Ltd.

  8. Race and the insulin resistance syndrome.

    PubMed

    Kramer, Holly; Dugas, Lara; Rosas, Sylvia E

    2013-09-01

    Type 2 diabetes remains an important cause of morbidity and mortality. The metabolic syndrome affects 25% of the adult US population based on the Third Report of the Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults from the National Cholesterol Education Program. Knowledge on the impact of obesity on metabolic health parameters has increased greatly over the past decade. This review discusses the limitations of the National Cholesterol Education Program metabolic syndrome definition and the racial disparities in the clinical presentation of the insulin resistance syndrome. We also examine the current literature with particular emphasis on albuminuria, nonalcoholic fatty liver disease, and intramyocellular lipid content. This review explores potential environmental and genetic reasons for differences in the manifestation of insulin resistance across racial/ethnic groups and highlights several promising areas for further study.

  9. Fenretinide ameliorates insulin resistance and fatty liver in obese mice.

    PubMed

    Koh, In-uk; Jun, Hye-Seung; Choi, Joo Sun; Lim, Joo Hyun; Kim, Won Ho; Yoon, Jong Bok; Song, Jihyun

    2012-01-01

    Fenretinide (FEN), a ligand of retinol binding protein 4 (RBP4), has been suggested as a measure to reduce insulin resistance and its associated disorders such as obesity, and fatty liver by reducing serum RBP4. We investigated whether there is another possible mechanism by which fenretinide reduces insulin resistance and fatty liver in genetically obese (ob/ob) mice. Male obese mice fed a high-fat diet (45% of calories from fat) were divided into two groups (n=13 each). One (FEN) received fenretinide (20 mg/kg body weight, intraperitoneally) and the other (O) received vehicle three times weekly for 24 d. C57BL/6J mice fed a normal-fat diet (16% of calories from fat) were used as a control (C; n=13). No changes in fat weight and serum leptin level could be observed in FEN mice. Lower plasma RBP4 was observed in FEN mice compared with O mice. Fenretinide improved whole-body insulin sensitivity based on glucose and insulin tolerance tests and the homeostasis model assessment of insulin resistance. Fenretinide decreased the plasma lipid (triglyceride, cholesterol, and free-fatty acid) levels, hepatic TG level, and histological steatosis score. The mechanism by which fenretinide prevents fatty liver may be explained by an increased plasma adiponectin level, increased activation of hepatic AMP-activated protein kinase, and the expression of peroxisome proliferator-activated protein-α and peroxisomal acyl-CoA oxidase, which promote fat oxidation. FEN alleviated insulin resistance and fatty liver in obese mice and thus may act as an anti-lipidemic and anti-diabetic drug.

  10. Insulin signaling pathways in a patient with insulin resistance of difficult management - a case report

    PubMed Central

    2009-01-01

    Insulin signalling pathways were investigated in a 33 year-old woman with immunologic insulin resistance. Her past medical history was remarkable for intermittent use of insulin and allergic reactions to several drugs, and measure of plasma anti-insulin antibodies level corroborated the clinical suspicion of immune mediated insulin resistance (8074 nU/ml - RIA - Ref value: <60). Treatment with several immunosuppressive regimens was tried, however the results were disappointing. Possible subcellular mechanisms of insulin resistance were investigated by performing analysis of insulin receptor and post receptor signaling in skeletal muscle biopsy. The expression of insulin receptor (IR), insulin receptor substrate 1 (IRS-1) and glucose transporter 4 (GLUT-4) was evaluated in total extract from muscle tissue by Western blotting. Basal IR, IRS-1 and GLUT-4 expression was detected, however receptor autophosphorylation was not observed. A study of translocation of GLUT-4 to plasma membrane showed that tissue presented low levels of membrane-associated GLUT-4. When in vitro stimulation was undertaken, tissue was capable to be responsive to insulin. Our results suggest that even though IR expression was normally occurring, IR β-subunit tyrosine kinase activity in muscle was down-regulated leading to alterations in insulin post receptor signaling. Consistent with normal insulin receptor and post receptor signaling, our results were compatible with decreased insulin binding to IR probably due to neutralization by anti-insulin antibodies. In conclusion, this patient has immunologic insulin resistance and treatment should be based on immunosuppressive drugs as tolerated. PMID:19941665

  11. Serum leptin levels in gastric cancer patients and the relationship with insulin resistance

    PubMed Central

    Aslan, Mehmet; Dulger, Ahmet Cumhur; Emre, Habib; Kemik, Ahu; Kemik, Ozgur; Esen, Ramazan

    2015-01-01

    Introduction Serum leptin levels have been examined in various cancers, with conflicting results. However, there is limited information regarding serum leptin levels and insulin resistance in gastric cancer patients. Therefore, we aimed to investigate serum leptin levels, performance status, insulin levels and insulin resistance in patients with gastric cancer. In addition, we examined the relationship between these measurements and leptin levels. Material and methods Thirty-nine patients with gastric cancer and 30 control subjects were enrolled in the study. Serum leptin, total protein, albumin, growth hormone, insulin and glucose levels were measured. The homeostasis model assessment (HOMA) was used to assess insulin resistance. Results Serum levels of insulin, glucose and growth hormone and insulin resistance were significantly lower in gastric cancer patients than controls (p < 0.05 for all). In the Pearson correlation analysis, insulin resistance was found to be significantly correlated with serum leptin levels in gastric cancer patients (r = 0.320, p = 0.047). We observed a significant negative correlation between performance status and insulin resistance in patients with cachexia (r = –0.512, p = 0.030), while no association was found in non-cachectic patients. Conclusions We concluded that serum leptin levels are significantly lower in gastric cancer patients. In addition, gastric cancer patients have decreases in insulin levels, insulin resistance and growth hormone levels. This study found a positive association between serum leptin levels and insulin resistance. Moreover, there is a negative association between serum leptin levels and growth hormone levels. Thus, low insulin and growth hormone levels may suppress the production of leptin in gastric cancer patients. PMID:25995751

  12. Effect of HCV on fasting glucose, fasting insulin and peripheral insulin resistance in first 5 years of infection.

    PubMed

    Ahmed, Naeema; Rashid, Amir; Naveed, Abdul Khaliq; Bashir, Qudsia

    2016-02-01

    To assess the effects of hepatitis C virus infection in the first 5 years on fasting glucose, fasting insulin and peripheral insulin resistance. The case-control study was conducted at the Army Medical College, Rawalpindi, from December 2011 to November 2012, and comprised subjects recruited from a government hospital in Rawalpindi. The subjects included known cases of hepatitis C virus infection for at least 5 years, and normal healthy controls. Fasting blood samples of all the subjects were collected and analysed for serum fasting insulin and serum fasting glucose levels. Homeostatic model assessment-Insulin resistance was calculated SPSS 11 was used for statistical analysis. Of the 30 subjects, 20(66.6%) were cases, while 10(33.3%) were controls. Serum fasting glucose mean level in cases was 89.55±9.53 compared to 84.40±9.80 in the controls (p=0.188). The mean serum fasting insulin in controls was 7.52±3.23 and 6.79±3.30 in cases (p=0.567). Homeostatic model assessment-Insulin resistance level in controls was 1.60±0.76 and In the cases it was 1.49±0.74 (p=0.695). Peripheral insulin resistance and development of type 2 diabetes as a complication of hepatitis C virus infection was not likely at least within the first five years of infection.

  13. Association between thyroid hormones, insulin resistance, and metabolic syndrome.

    PubMed

    Kumar, Hari K; Yadav, Raj K; Prajapati, Jayaram; Reddy, Challa V K; Raghunath, Manchala; Modi, Kirtikumar D

    2009-07-01

    To determine the association between thyroid hormones, insulin resistance, and metabolic syndrome in euthyroid women. Forty-five women with no past medical history were studied in this cross-sectional study at the Department of Endocrinology, Medwin Hospitals, Hyderabad, India, from August 2008 to September 2008. The body fat was estimated using bio-impedance method, and fasting blood sample was analyzed for total triiodothyronine (T3), total thyroxine (T4), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), lipid profile, insulin, and glucose. The mean age of the participants was 32.6 +/= 9.6 years with a body mass index (BMI) of 29.9 +/= 3.8 kg/m2. Evidence of homeostasis model assessment index for insulin resistance (HOMA-IR) more than 3 was seen in 34 (75%) and metabolic syndrome in 29 (64%) participants. Total T3 showed a positive correlation with triglycerides, low density lipoprotein- cholesterol (LDL-C), total cholesterol, insulin, HOMA-IR and negatively with body fat. Thyroid-stimulating hormone correlated positively with BMI, insulin, HOMA-IR, LDL-C and negatively with HDL-cholesterol (p<0.05). Free triiodothyronine correlated positively with waist circumference and T4 did not correlate with metabolic syndrome parameters. Our preliminary data show an association between thyroid hormones and some components specific of the metabolic syndrome in euthyroid women. Total triiodothyronine and TSH correlated more with variables of metabolic syndrome than FT3 and T4.

  14. Psychological insulin resistance in geriatric patients with diabetes mellitus.

    PubMed

    Bahrmann, Anke; Abel, Amelie; Zeyfang, Andrej; Petrak, Frank; Kubiak, Thomas; Hummel, Jana; Oster, Peter; Bahrmann, Philipp

    2014-03-01

    To determine the extent to which geriatric patients with diabetes mellitus experience psychological insulin resistance (PIR). A total of 67 unselected geriatric patients with diabetes (mean age 82.8±6.7 years, diabetes duration 12.2 [0.04-47.2] years, 70.1% female) were recruited in a geriatric care center of a university hospital. A comprehensive geriatric assessment (CGA) was performed including WHO-5, Hospital Anxiety and Depression Scale (HADS), Mini Mental State Examination (MMSE) and Barthel-Index. We assessed PIR using the Barriers of Insulin Treatment Questionnaire (BIT) and the Insulin Treatment Appraisal Scale in a face-to-face interview. Insulin-naïve patients (INP) showed higher PIR scores than patients already on insulin therapy (BIT-sum score: 4.3±1.4 vs. 3.2±1.0; p<0.001). INP reported in the BIT increased fear of injection and self-testing (2.4±2.4 vs. 1.3±0.8; p=0.016), expect disadvantages from insulin treatment (2.7±1.6 vs. 1.9±1.4; p=0.04), and fear of stigmatization by insulin injection (5.2±2.3 vs. 3.6±2.6; p=0.008). Fear of hypoglycemia, however, did not differ significantly (6.3±2.8 vs. 5.1±3.1; p=0.11). Depression was not shown to be a barrier to insulin therapy. INP with diabetes have a significantly more negative attitude toward insulin therapy in comparison to patients already on insulin. Systematic assessment of barriers of insulin therapy, individualized diabetes treatment plans and information of patients may help to overcome such negative attitudes, leading to quicker initiation of therapy, improved adherence to treatment and a better quality of life. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance.

  16. Role of adiponectin in insulin-resistant hypertension and atherosclerosis.

    PubMed

    Murakami, Hideyuki; Ura, Nobuyuki; Furuhashi, Masato; Higashiura, Katsuhiro; Miura, Tetsuji; Shimamoto, Kazuaki

    2003-09-01

    Insulin resistance is one of the major risk factors associated with development of hypertension and atherosclerosis. Recent studies have shown that adiponectin, an adipocyte-derived hormone, may be involved in insulin resistance and development of atherosclerosis in diabetes patients. The aim of this study was to examine adiponectin levels in patients with essential hypertension to determine the relationships between adiponectin levels and insulin sensitivity and to examine the relationship of adiponectin with pulse wave velocity (PWV) in a general population based on the results of an epidemiological survey in Japan. In a clinical study, 20 normotensives (NT) and 30 non-treated essential hypertensives (EHT) were hospitalized, and euglycemic hyperinsulinemic glucose clamp (GC) was performed to evaluate insulin sensitivity defined as M value. EHT were divided into insulin-resistant EHT (EHT-R) and insulin-nonresistant EHT (EHT-N) according to the mean -1 SD of the M value of NT as a cut-off point. Fasting plasma glucose (FPG), immunoreactive insulin (IRI), and adiponectin concentrations were measured. There were no significant differences in body mass index (BMI) or FPG among the NT, EHT-N, and EHT-R groups. The M value and adiponectin concentration in EHT-R were significantly lower than those in the NT or EHT-N. The IRI level in the EHT-R was significantly higher than those in the other groups. A positive correlation between adiponectin concentration and M value was found in all subjects, and adiponectin concentration and M value were found to be significant determinants of each other in multiple regression analysis. In an epidemiological study, we studied 391 male inhabitants of rural communities in Hokkaido, Japan. Systolic blood pressure (SBP), BMI, FPG, IRI, and adiponectin were measured in all subjects early in the morning. Homeostasis model assessment (HOMA) values were calculated as an index of insulin sensitivity, and PWV was used as an index of

  17. VDR Gene variation and insulin resistance related diseases.

    PubMed

    Han, Fei-Fei; Lv, Ya-Li; Gong, Li-Li; Liu, He; Wan, Zi-Rui; Liu, Li-Hong

    2017-08-19

    Vitamin D status may influence the risk of Insulin resistance related diseases such as Type 2 diabetes (T2DM), metabolic syndrome (MetS), and polycystic ovarian syndrome (PCOS). Several studies have assessed vitamin D receptor (VDR) gene polymorphism in relationship with these diseases; however, results remain inconsistent. Our study was conducted to elucidate whether VDR Gene polymorphisms could predict insulin resistance on a large scale. A meta-analysis using MEDLINE and EMBASE, was performed up to December 16th, 2016. Studies reporting association of vitamin D gene polymorphism with incident T2DM, MetS and PCOS outcomes were included and sub-group analysis by pigment of skin and latitude were performed. A total of 28 articles based on four gene variation, and comprising 9232 participants with 5193 Insulin resistance related diseases patients were included. No significant associations of the VDR ApaI, BsmI, FokI and TaqI variant with Insulin resistance related diseases were found. However, sub-group analysis analysis showed that PCOS in TaqI (OR = 1.47, 95% CI = 1.03-2.09, P = 0.03) for T allele and MetS for G allele (OR = 1.41, 95% CI = 1.07-1.85, P = 0.01) in BsmI was significant association with VDR gene polymorphism. Simultaneously, sub-group analysis showed VDR ApaI rs7975232(G > T)variant was associated with insulin resistance related diseases in Asians (GG/GT + TT) (OR, 1.62; 95% CI, 1.03-2.53; P = 0.04) and population who lived in middle latitude district (30-60°) (GG/GT + TT) (OR, 1.22; 95% CI, 1.04-1.43; P = 0.02), VDR BsmI rs1544410 (A > G)and VDR Taq1rs731236 (T/C) variant were associated with insulin resistance related diseases in Caucasian (dark-pigmented). The results suggested that the association between insulin resistance related diseases and VDR ApaI, BsmI, FokI variant was more obvious in dark-pigmented Caucasians and Asians but not in Caucasian with white skin.

  18. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  19. Fasting serum insulin levels and insulin resistance are associated with blood rheology in Japanese young adults without diabetes.

    PubMed

    Yoshida, Kensuke; Kimura, Takao; Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Shoho, Yoshifumi; Nara, Makoto; Sumino, Hiroyuki; Murakami, Masami

    2016-06-01

    To evaluate fasting serum insulin levels and insulin resistance, and their association with blood rheology, in Japanese young adults without diabetes. Blood samples were analysed and blood rheology was estimated using haematological parameters. Whole blood passage time was measured using a Hitachi MC-FAN(©) microchannel array flow analyser. Out of 151 subjects (mean age, 24.1 ± 1.5 years), fasting serum insulin levels and insulin resistance (using homeostasis model assessment-estimated insulin resistance [HOMA-IR]), were positively correlated with longer whole blood passage times and higher values for haematocrit (Hct), haemoglobin (Hb), fibrinogen, body weight, body mass index (BMI), triglycerides, and low-density lipoprotein cholesterol (LDL-C)/high-density lipoprotein cholesterol (HDL-C) ratio, and were negatively correlated with HDL-C. Whole blood passage time correlated with body weight, BMI, LDL-C/HDL-C ratio, Hct, Hb, white blood cell (WBC) count, platelet count, fibrinogen, fasting serum insulin levels, and HOMA-IR. Multiple regression analysis revealed that whole blood passage time was independently associated with Hct, fibrinogen levels, and WBC count. Fasting serum insulin levels and insulin resistance were associated with blood rheology, and may influence blood rheology by modulating haematological parameters and lipid parameters in young adults without diabetes. © The Author(s) 2016.

  20. Lipid-induced insulin resistance: unravelling the mechanism

    PubMed Central

    Samuel, Varman T; Petersen, Kitt Falk; Shulman, Gerald I

    2010-01-01

    Insulin resistance has long been associated with obesity. More than 40 years ago, Randle and colleagues postulated that lipids impaired insulin-stimulated glucose use by muscles through inhibition of glycolysis at key points. However, work over the past two decades has shown that lipid-induced insulin resistance in skeletal muscle stems from defects in insulin-stimulated glucose transport activity. The steatotic liver is also resistant to insulin in terms of inhibition of hepatic glucose production and stimulation of glycogen synthesis. In muscle and liver, the intracellular accumulation of lipids—namely, diacylglycerol—triggers activation of novel protein kinases C with subsequent impairments in insulin signalling. This unifying hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, lipodystrophy, and ageing; and the insulin-sensitising effects of thiazolidinediones. PMID:20609972

  1. Adrenocortical tumors and insulin resistance: What is the first step?

    PubMed

    Altieri, Barbara; Tirabassi, Giacomo; Della Casa, Silvia; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors. © 2015 UICC.

  2. Insulin resistance in chronic kidney disease: a systematic review.

    PubMed

    Spoto, Belinda; Pisano, Anna; Zoccali, Carmine

    2016-12-01

    Insulin resistance (IR) is an early metabolic alteration in chronic kidney disease (CKD) patients, being apparent when the glomerular filtration rate is still within the normal range and becoming almost universal in those who reach the end stage of kidney failure. The skeletal muscle represents the primary site of IR in CKD, and alterations at sites beyond the insulin receptor are recognized as the main defect underlying IR in this condition. Estimates of IR based on fasting insulin concentration are easier and faster but may not be adequate in patients with CKD because renal insufficiency reduces insulin catabolism. The hyperinsulinemic euglycemic clamp is the gold standard for the assessment of insulin sensitivity because this technique allows a direct measure of skeletal muscle sensitivity to insulin. The etiology of IR in CKD is multifactorial in nature and may be secondary to disturbances that are prominent in renal diseases, including physical inactivity, chronic inflammation, oxidative stress, vitamin D deficiency, metabolic acidosis, anemia, adipokine derangement, and altered gut microbiome. IR contributes to the progression of renal disease by worsening renal hemodynamics by various mechanisms, including activation of the sympathetic nervous system, sodium retention, and downregulation of the natriuretic peptide system. IR has been solidly associated with intermediate mechanisms leading to cardiovascular (CV) disease in CKD including left ventricular hypertrophy, vascular dysfunction, and atherosclerosis. However, it remains unclear whether IR is an independent predictor of mortality and CV complications in CKD. Because IR is a modifiable risk factor and its reduction may lower CV morbidity and mortality, unveiling the molecular mechanisms responsible for the pathogenesis of CKD-related insulin resistance is of importance for the identification of novel therapeutic targets aimed at reducing the high CV risk of this condition.

  3. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension.

    PubMed

    Han, Tianshu; Lan, Li; Qu, Rongge; Xu, Qian; Jiang, Ruyue; Na, Lixin; Sun, Changhao

    2017-10-01

    Although hyperuricemia and insulin resistance significantly correlated, their temporal sequence and how the sequence influence on future risk of hypertension are largely unknown. This study assessed temporal relationship between uric acid and insulin resistance and its impact on future risk of hypertension by examining a longitudinal cohort including 8543 subjects aged 20 to 74 years from China, with an average follow-up of 5.3 years. Measurements of fasting uric acid, as well as fasting and 2-hour serum glucose and insulin, were obtained at baseline and follow-up. Indicators of hepatic and peripheral insulin resistance were calculated. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between uric acid and insulin resistance and its impact on follow-up hypertension. After adjusting for covariates, the cross-lagged path coefficients (β1 values) from baseline uric acid to follow-up insulin resistance indices were significantly greater than path coefficients (β2 values) from baseline insulin resistance indices to follow-up uric acid (β1=0.110 versus β2=0.017; P<0.001, for hepatic insulin resistance; β1=-0.208 versus β2=-0.021; P<0.001, for peripheral insulin resistance). The path coefficients from baseline uric acid to follow-up insulin resistance indices in the hypertensive group were significantly greater than that in the normotensive group (P<0.001 for the difference of β1 values in the 2 groups). Insulin resistance partially mediated the effect of uric acid on subsequent hypertension, and the mediation effect of peripheral insulin resistance was significantly greater than that of hepatic insulin resistance (31.3% versus 13.2%; P<0.001, for the difference of mediation effects). These findings provide evidence that higher uric acid levels probably precede insulin resistance, and peripheral insulin resistance likely plays a more important role in the development of hypertension than hepatic insulin resistance does.

  4. Tau deletion promotes brain insulin resistance

    PubMed Central

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F.; Amouyel, Philippe; Balschun, Detlef

    2017-01-01

    The molecular pathways underlying tau pathology–induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer’s disease patients. PMID:28652303

  5. Spirulina protects against rosiglitazone induced osteoporosis in insulin resistance rats.

    PubMed

    Gupta, Sumeet; Hrishikeshvan, H J; Sehajpal, Prabodh K

    2010-01-01

    The study was undertaken to assess the protective effect of Spirulina fusiformis extract against Rosiglitazone induced osteoporosis and pharmacodynamic effects of Rosiglitazone with Spirulina in treating hyperglycemia and hyperlipidemia of insulin resistance rat. For this aim, 30 Wistar albino rats were equally divided into five groups as control (C), diabetes mellitus (DM), diabetes mellitus+Rosiglitazone (DM+R), diabetes mellitus+Spirulina (DM+S), and diabetes mellitus+Rosiglitazone+Spirulina (DM+R+S). Serum glucose, triglyceride, HDL, LDL and insulin concentrations were estimated by routine standard methods in blood samples collected on 21th day. Integrity of the bone surface was examined by scanning electronic microscopy, and bone strength was measured by micro-hardness test on 45th day. A significant decrease in total bone mineral density was observed in group DM+R rats (p<0.05). The number and depth of resorptive pits on surface of the bone in Rosiglitazone treated rats improved clearly with Spirulina administration. The intactness and integrity of the bone surface as well as the bone strength improved due to the high content of calcium and phosphorous in Spirulina. Besides, chromium and gamma-linoleic acid in Spirulina helped to decrease the fasting serum glucose, HDL, LDL and triglycerides levels in insulin resistance rats. These findings suggest that combination therapy of Rosiglitazone with Spirulina reduced the risk of osteoporosis in insulin resistance rats. Additionally, Spirulina complemented the antihyperglycemic and antilipidemic activity of Rosiglitazone. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Assessment of insulin sensitivity in glucokinase-deficient subjects.

    PubMed

    Clément, K; Pueyo, M E; Vaxillaire, M; Rakotoambinina, B; Thuillier, F; Passa, P; Froguel, P; Robert, J J; Velho, G

    1996-01-01

    The chronic hyperglycaemia of glucokinase-deficient diabetes results from a glucose-sensing defect in pancreatic beta cells and abnormal hepatic glucose phosphorylation. We have evaluated the contribution of insulin resistance to this form of chronic hyperglycaemia. Insulin sensitivity, assessed by the homeostasis model assessment (HOMA) method in 35 kindreds with glucokinase mutations, was found to be significantly decreased in 125 glucokinase-deficient subjects as compared to 141 unaffected first-degree relatives. Logistic regression analysis showed that in glucokinase-deficient subjects a decrease in insulin sensitivity was associated with deterioration of the glucose tolerance status. A euglycaemic hyperinsulinaemic clamp was performed in 14 glucokinase-deficient subjects and 12 unrelated control subjects. In six patients and six control subjects the clamp was coupled to dideutero-glucose infusion to measure glucose turnover. Average glucose infusion rates (GIR) at 1 and 5 mU.kg body weight.min-1 insulin infusion rates were significantly lower in (the glucokinase-deficient) patients than in control subjects. Although heterogeneous results were observed, in 8 out of the 14 patients GIRs throughout the experiment were lower than 1 SD below the mean of the control subjects. Hepatic glucose production at 1 mU.kg body weight-1.min-1 insulin-infusion rate was significantly higher in patients than in control subjects. In conclusion, insulin resistance correlates with the deterioration of glucose tolerance and contributes to the hyperglycaemia of glucokinase-deficient diabetes. Taken together, our results are most consistent with insulin resistance being considered secondary to the chronic hyperglycaemia and/or hypoinsulinaemia of glucokinase-deficiency. Insulin resistance might also result from interactions between the unbalanced glucose metabolism and susceptibility gene(s) to low insulin sensitivity likely to be present in this population.

  7. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    PubMed Central

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  8. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle.

    PubMed

    Kolka, Cathryn M; Richey, Joyce M; Castro, Ana Valeria B; Broussard, Josiane L; Ionut, Viorica; Bergman, Richard N

    2015-06-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. Copyright © 2015 the American Physiological Society.

  9. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy

    PubMed Central

    Jia, Guanghong; DeMarco, Vincent G.; Sowers, James R.

    2016-01-01

    Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin-resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin–angiotensin–aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies. PMID:26678809

  10. β-Adrenergic Receptor and Insulin Resistance in the Heart.

    PubMed

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.

  11. β-Adrenergic Receptor and Insulin Resistance in the Heart

    PubMed Central

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Over-stimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR over-stimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs over-stimulation leads to induction of insulin resistance in the heart. PMID:28035081

  12. Daily Physical Activity Assessed by a Triaxial Accelerometer Is Beneficially Associated with Waist Circumference, Serum Triglycerides, and Insulin Resistance in Japanese Patients with Prediabetes or Untreated Early Type 2 Diabetes.

    PubMed

    Hamasaki, Hidetaka; Noda, Mitsuhiko; Moriyama, Sumie; Yoshikawa, Reo; Katsuyama, Hisayuki; Sako, Akahito; Mishima, Shuichi; Kakei, Masafumi; Ezaki, Osamu; Yanai, Hidekatsu

    2015-01-01

    To investigate the association between daily physical activity and metabolic risk factors in Japanese adults with prediabetes or untreated early type 2 diabetes (T2D). Daily physical activity level was measured using a triaxial accelerometer. We assessed correlations between physical activity level and waist circumference, blood pressure, fasting levels of plasma glucose, serum triglycerides, and insulin and homeostasis model assessment-insulin resistance (HOMA-IR). A total of 80 patients were studied. After adjustment for age and body mass index, in all subjects, physical activity level was negatively associated with waist circumference (β = -0.124, P = 0.018) and fasting serum triglycerides (β = -0.239, P = 0.035), insulin (β = -0.224, P = 0.022). In men, physical activity level was negatively associated with systolic blood pressure (β = -0.351, P = 0.044), fasting plasma glucose (β = -0.369, P = 0.025) and insulin (β = -0.362, P = 0.012), and HOMA-IR (β = -0.371, P = 0.011). No significant associations were found between physical activity level and metabolic risk factors in women. Objectively measured daily physical activity is beneficially associated with waist circumference, serum triglycerides, and insulin resistance in individuals with prediabetes or untreated early T2D. (This trial is registered with UMIN000015774.).

  13. Vitamin D Supplementation Does Not Impact Insulin Resistance in Black and White Children

    PubMed Central

    Ferira, Ashley J.; Laing, Emma M.; Hausman, Dorothy B.; Hall, Daniel B.; McCabe, George P.; Martin, Berdine R.; Hill Gallant, Kathleen M.; Warden, Stuart J.; Weaver, Connie M.; Peacock, Munro

    2016-01-01

    Context: Vitamin D supplementation trials with diabetes-related outcomes have been conducted almost exclusively in adults and provide equivocal findings. Objective: The objective of this study was to determine the dose-response of vitamin D supplementation on fasting glucose, insulin, and a surrogate measure of insulin resistance in white and black children aged 9–13 years, who participated in the Georgia, Purdue, and Indiana University (or GAPI) trial: a 12-week multisite, randomized, triple-masked, dose-response, placebo-controlled vitamin D trial. Design: Black and white children in the early stages of puberty (N = 323, 50% male, 51% black) were equally randomized to receive vitamin D3 (0, 400, 1000, 2000, or 4000 IU/day) for 12 weeks. Fasting serum 25-hydroxyvitamin D (25(OH)D), glucose and insulin were assessed at baseline and weeks 6 and 12. Homeostasis model assessment of insulin resistance was used as a surrogate measure of insulin resistance. Statistical analyses were conducted as intent-to-treat using a mixed effects model. Results: Baseline serum 25(OH)D was inversely associated with insulin (r = −0.140, P = 0.017) and homeostasis model assessment of insulin resistance (r = −0.146, P = 0.012) after adjusting for race, sex, age, pubertal maturation, fat mass, and body mass index. Glucose, insulin, and insulin resistance increased (F > 5.79, P < .003) over the 12 weeks, despite vitamin D dose-dependent increases in serum 25(OH)D. Conclusions: Despite significant baseline inverse relationships between serum 25(OH)D and measures of insulin resistance, vitamin D supplementation had no impact on fasting glucose, insulin, or a surrogate measure of insulin resistance over 12 weeks in apparently healthy children. PMID:26885880

  14. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  15. Evaluation of insulin resistance in idiopathic hirsutism compared with polycystic ovary syndrome patients and healthy individuals.

    PubMed

    Bonakdaran, Shokoufeh; Kiafar, Bita; Barazandeh Ahmadabadi, Fatemeh

    2016-02-01

    Hirsutism is defined as the excessive male-pattern growth of hair in women. Hirsutism is often idiopathic or the consequence of polycystic ovary syndrome (PCOS). Insulin resistance is common in PCOS (especially in obese patients) but the association between insulin resistance and idiopathic hirsutism (IH) is not clear. The aim of this study was to investigate the rate of insulin resistance in IH, compared with healthy individuals and patients with PCOS. The study included three groups, patients with idiopathic hirsutism, PCOS and healthy women. Each group included 30 non-obese women. Fasting blood sugar (FBS), insulin level and insulin resistance (estimated by the homeostasis model assessment [HOMA-IRIR]) were compared in the three groups. There was a significant difference between the age of the women with IH compared with two other groups. There were no significant difference in levels of serum insulin (P = 0.49, HOMA-IR (P = 0.47) and prevalence of insulin resistance (P = 0.07) in the three groups. The age-adjusted prevalence of insulin resistance was similar in the three groups. Insulin resistance was no more frequent in IH patients than in healthy control groups. © 2014 The Australasian College of Dermatologists.

  16. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance

    PubMed Central

    Aroor, Annayya R.; McKarns, Susan; DeMarco, Vincent G.; Guanghong, Jia; Sowers, James R.

    2013-01-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance are associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contribute to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. PMID:23932846

  17. Insulin Resistance Influences Central Opioid Activity in Polycystic Ovary Syndrome

    PubMed Central

    Berent-Spillson, Alison; Love, Tiffany; Pop-Busui, Rodica; Sowers, MaryFran; Persad, Carol C.; Pennington, Kathryn P.; Eyvazaddeh, Aimee D.; Padmanabhan, Vasantha; Zubieta, Jon-Kar; Smith, Yolanda R.

    2011-01-01

    This pilot study describes a relationship between insulin resistance and µ-opioid neurotransmission in limbic appetite and mood-regulating regions in women with polycystic ovary syndrome, suggesting that insulin-opioid interactions may contribute to behavioral and reproductive pathologies of PCOS. We found that 1) insulin resistant PCOS patients (n=7) had greater limbic µ-opioid receptor availability (non-displaceable binding potential) than controls (n=5), 2) receptor availability was correlated with severity of insulin resistance, and 3) receptor availability normalized after insulin-regulating treatment. PMID:21486668

  18. Insulin resistance influences central opioid activity in polycystic ovary syndrome.

    PubMed

    Berent-Spillson, Alison; Love, Tiffany; Pop-Busui, Rodica; Sowers, MaryFran; Persad, Carol C; Pennington, Kathryn P; Eyvazaddeh, Aimee D; Padmanabhan, Vasantha; Zubieta, Jon-Kar; Smith, Yolanda R

    2011-06-30

    This pilot study describes a relationship between insulin resistance and μ-opioid neurotransmission in limbic appetite and mood-regulating regions in women with polycystic ovary syndrome (PCOS), suggesting that insulin-opioid interactions may contribute to behavioral and reproductive pathologies of PCOS. We found that [1] patients with PCOS who are insulin-resistant (n = 7) had greater limbic μ-opioid receptor availability (nondisplaceable binding potential) than controls (n = 5); [2] receptor availability was correlated with severity of insulin resistance; and [3] receptor availability normalized after insulin-regulating treatment.

  19. Defective hepatic nitric oxide action results in HISS-dependent insulin resistance in spontaneously hypertensive rats.

    PubMed

    Afonso, Ricardo Alexandre; Ribeiro, Rogério Tavares; Macedo, Maria Paula

    2004-01-01

    Peripheral insulin sensitivity is dependent on the action of Hepatic Insulin Sensitizing Substance (HISS), in which hepatic NO (HNO) plays an important role. Insulin resistance has been associated with hypertension. NO action is known to be impaired in Spontaneously Hypertensive Rat (SHR) hypertension models. We tested the hypothesis that the HNO pathway is compromised in SHR, resulting in HISS-dependent insulin resistance. Wistar rats (Wis) were the normotensive controls. Insulin sensitivity was evaluated through the Rapid Insulin Sensitivity Test (RIST), a modified euglycemic clamp. A clamp was performed in basal state (control RIST), followed by ipv administration of the NO synthase (NOS) competitive antagonist L-NMMA (0.73 mg/kg) and a RIST post L-NMMA. HISS-dependent insulin sensitivity was assessed by subtracting the RIST post-L-NMMA from the control RIST and is represented as the resultant insulin sensitivity inhibition. In SHR ipv L-NMMA induced 26+/-5% insulin sensitivity inhibition (187.5+/-15.3 mg glucose/kg, n=6; P<0.05), whereas in Wis, ipv L-NMMA induced 53.8+/-5.9% insulin sensitivity inhibition (138.2+/-14.7 mg glucose/kg, n=6, P<0.05), significantly higher than in SHR (P<0.01). Our results suggest that functional HNO is essential to achieve maximal insulin sensitivity and that HNO action is compromised in hypertension, resulting in HISS-dependent insulin resistance.

  20. Homozygous nonsense mutation in the insulin receptor gene of a patient with severe congenital insulin resistance: leprechaunism and the role of the insulin-like growth factor receptor.

    PubMed

    Jospe, N; Kaplowitz, P B; Furlanetto, R W

    1996-08-01

    Severe congenital insulin resistance in the syndrome of leprechaunism is caused by mutations in the insulin receptor gene. We report a patient with leprechaunism who was homozygous for a mutation resulting in the absence of cell surface insulin receptors. To determine whether the receptor for Insulin-like growth factor-I (IGF-I) is involved in the phenotype of leprechaunism, we studied the effect of insulin and of IGF-I on cells from this patient. The patient had a homozygous C-->T substitution at base pair 8212 in exon 12 of the insulin receptor gene, creating a premature stop codon. This nonsense mutation is in the extracellular portion of the receptor and truncates the insulin receptor proximal to its transmembrane anchor, resulting in the absence of cell surface insulin receptors. This finding indicates that complete absence of the insulin receptor is compatible with life. Secondly, DNA synthesis was studied in skin derived fibroblasts in response to increasing concentrations of either insulin or Insulin-like growth factor-I (IGF-I), and was assessed by 3H-thymidine incorporation. In this patient's cells, both of these hormones increased 3H-thymidine incorporation, and the effect was blocked by alpha-IR3, a monoclonal antibody that blocks activation of the IGF-I receptor. These findings confirmed the absence of the insulin receptor and indicated that insulin acts here through activation of the IGF-I receptor. These data support the contention that the phenotypic and metabolic abnormalities of leprechaunism result from the combination of lack of insulin receptor action and over-activation by insulin of the type 1 IGF receptor.

  1. An Immunomodulatory Device Improves Insulin Resistance in Obese Porcine Model of Metabolic Syndrome

    PubMed Central

    Westover, Angela J.

    2016-01-01

    Obesity is associated with tissue inflammation which is a crucial etiology of insulin resistance. This inflammation centers around circulating monocytes which form proinflammatory adipose tissue macrophages (ATM). Specific approaches targeting monocytes/ATM may improve insulin resistance without the adverse side effects of generalized immunosuppression. In this regard, a biomimetic membrane leukocyte processing device, called the selective cytopheretic device (SCD), was evaluated in an Ossabaw miniature swine model of insulin resistance with metabolic syndrome. Treatment with the SCD in this porcine model demonstrated a decline in circulating neutrophil activation parameters and monocyte counts. These changes were associated with improvements in insulin resistance as determined with intravenous glucose tolerance testing. These improvements were also reflected in lowering of homeostatic model assessment- (HOMA-) insulin resistant (IR) scores for up to 2 weeks after SCD therapy. These results allow for the planning of first-in-man studies in obese type 2 diabetic patients. PMID:27819007

  2. Clinical and Biochemical Profiles according to Homeostasis Model Assessment-insulin Resistance (HOMA-IR) in Korean Women with Polycystic Ovary Syndrome

    PubMed Central

    Lee, Da Eun; Park, Soo Yeon; Park, So Yun; Lee, Sa Ra; Chung, Hye Won

    2014-01-01

    Objectives The aim of this study was to investigate the clinical and biochemical profiles according to homeostasis model assessment of insulin resistance (HOMA-IR) in Korean polycystic ovary syndrome (PCOS) patients. Methods In 458 PCOS patients diagnosed by the Rotterdam European Society for Human Reproduction and Embryology (ESHRE) criteria, measurements of somatometry, blood test of hormones, glucose metabolic and lipid profiles, and transvaginal or transrectal ultrasonogram were carried out. HOMA-IR was then calculated and compared with the clinical and biochemical profiles related to PCOS. The patients were divided into 4 groups by quartiles of HOMA-IR. Results The mean level of HOMA-IR was 2.18 ± 1.73. Among the four groups separated according to HOMA-IR, body weight, body mass index (BMI), waist-to-hip ratio (WHR), triglyceride (TG), total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, lipid accumulation product (LAP) index, high-sensitivity C-reactive protein (hs-CRP), Apoprotein B, free testosterone, and sex hormone binding globulin (SHBG) were found to be significantly different. TG, LAP index, glucose metabolic profiles, and hs-CRP were positively correlated with HOMA-IR after adjustment for BMI. Conclusion Our results suggest that the clinical and biochemical profiles which are applicable as cardiovascular risk factors are highly correlated with HOMA-IR in Korean women with PCOS. PMID:25580421

  3. Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2.

    PubMed

    Liu, Cuiqing; Xu, Xiaohua; Bai, Yuntao; Zhong, Jixin; Wang, Aixia; Sun, Lixian; Kong, Liya; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay

    2017-03-03

    Chronic exposure to fine ambient particulate matter (PM2.5) induces insulin resistance. CC-chemokine receptor 2 (CCR2) appears to be essential in diet-induced insulin resistance implicating an important role for systemic cellular inflammation in the process. We have previously suggested that CCR2 is important in PM2.5 exposure-mediated inflammation leading to insulin resistance under high fat diet situation. The present study assessed the importance of CCR2 in PM2.5 exposure-induced insulin resistance in the context of normal diet. C57BL/6 and CCR2(-/-) mice were subjected to exposure to concentrated ambient PM2.5 or filtered air for 6 months. In C57BL/6 mice, concentrated ambient PM2.5 exposure induced whole-body insulin resistance, macrophage infiltration into the adipose tissue, and upregulation of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. While CCR2 deficiency reduced adipose macrophage content in the PM2.5-exposed animals, it did not improve systemic insulin resistance. This lack of improvement in insulin resistance was paralleled by increased hepatic expression of genes in PEPCK and inflammation. CCR2 deletion failed to attenuate PM2.5 exposure-induced insulin resistance in mice fed on normal diet. The present study indicates that PM2.5 may dysregulate glucose metabolism directly without exerting proinflammatory effects.

  4. Fructose, insulin resistance, and metabolic dyslipidemia

    PubMed Central

    Basciano, Heather; Federico, Lisa; Adeli, Khosrow

    2005-01-01

    Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG) synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia. PMID:15723702

  5. Induction of heat shock proteins may combat insulin resistance.

    PubMed

    McCarty, Mark F

    2006-01-01

    The molecular mechanism responsible for obesity-associated insulin resistance has been partially clarified: increased fatty acid levels in muscle fibers promote diacylglycerol synthesis, which activates certain isoforms of protein kinase C (PKC). This in turn triggers a kinase cascade which activates both IkappaB kinase-beta (IKK-beta) and c-Jun N-terminal kinase (JNK), each of which can phosphorylate a key serine residue in IRS-1, rendering it a poor substrate for the activated insulin receptor. Heat shock proteins Hsp27 and Hsp72 have the potential to prevent the activation of IKK-beta and JNK, respectively; this suggests that induction of heat shock proteins may blunt the adverse impact of fat overexposure on insulin function. Indeed, bimoclomol--a heat shock protein co-inducer being developed for treatment of diabetic neuropathy--and lipoic acid--suspected to be a heat shock protein inducer--have each demonstrated favorable effects on the insulin sensitivity of obese rodents, and parenteral lipoic acid is reported to improve the insulin sensitivity of type 2 diabetics. Moreover, there is reason to believe that heat shock protein induction may have a favorable impact on the microvascular complications of diabetes, and on the increased risk for macrovascular disease associated with diabetes and insulin resistance syndrome. Heat shock protein induction may also have potential for preventing or treating neurodegenerative disorders, controlling inflammation, and possibly even slowing the aging process. The possible complementarity of bimoclomol and lipoic acid for heat shock protein induction should be assessed, and further efforts to identify well-tolerated agents active in this regard are warranted.

  6. Evaluation of body weight, insulin resistance, leptin and adiponectin levels in premenopausal women with hyperprolactinemia.

    PubMed

    Atmaca, Aysegul; Bilgici, Birsen; Ecemis, Gulcin Cengiz; Tuncel, Ozgur Korhan

    2013-12-01

    The effects of hyperprolactinemia on metabolic parameters are not clear and a few data evaluating adiponectin levels in prolactinoma and idiopathic hyperprolactinemia exist. The aim of this study was to evaluate the effects of hyperprolactinemia on body weight, insulin resistance, beta cell function, and leptin and adiponectin levels in premenopausal women with hyperprolactinemia. Forty premenopausal women with prolactinoma or idiopathic hyperprolactinemia were compared to 41 age-matched healthy premenopausal women with regard to body weight, body mass index, waist and hip circumferences, waist to hip ratio, fasting plasma glucose, insulin levels, insulin resistance measured by homeostasis model assessment (HOMA)-insulin resistance index, beta cell function measured by HOMA-β index, leptin and adiponectin levels. Plasma insulin levels and HOMA indexes (both insulin resistance and beta indexes) were significantly higher in hyperprolactinemic women. The other parameters were similar between both groups. There was a positive correlation between prolactin levels and fasting plasma glucose in hyperprolactinemic women. The results of this study showed that high prolactin levels may be associated with hyperinsulinemia and insulin resistance in premenopausal women. This effect seems to be independent of body weight, leptin and adiponectin levels. High prolactin levels may directly stimulate insulin secretion from pancreas and directly cause hepatic and whole-body insulin resistance.

  7. Improving insulin resistance in obese youth: choose your measures wisely.

    PubMed

    Shaibi, Gabriel Q; Davis, Jaimie N; Weigensberg, Marc J; Goran, Michael I

    2011-06-01

    The purpose of this investigation was to compare the homeostasis model assessment of insulin resistance (HOMA-IR) to more direct measures of insulin action before and after lifestyle interventions in obese Latino youth. Eleven obese Latino boys (age 15.1 ± 1.6 years, body mass index (BMI) percentile 97.3 ± 3.5%) and twenty obese Latina girls (age 14.7 ± 1.8 years, BMI percentile 96.6 ± 3.6%) participated in two distinct lifestyle interventions. Boys participated in a 16-week exercise intervention and girls participated in a 12-week nutrition education program. Insulin sensitivity was determined by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in boys and by a 3-hour oral glucose tolerance test with multiple sampling calculations for the whole-body insulin sensitivity index (WBISI) in girls. HOMA-IR was measured for both groups. HOMA-IR was correlated at baseline to the FSIVGTT (r = -0.57, p = 0.07) and the WBISI (r = -0.78, p<0.01) and at follow-up (FSIVGTT: r = -0.81, p<0.003; WBISI: r = -0.71, p = 0.001). Post-intervention, insulin sensitivity increased 45% in the boys and 34% in the girls; however, these improvements were not reflected by significant changes in HOMA-IR. Improvements in insulin sensitivity following an intervention measured either by the FSIVGTT or an OGTT were not detected by HOMA-IR. Researchers and clinicians should exercise caution in relying on fasting indices, such as HOMA-IR, to determine the impact of lifestyle interventions on insulin sensitivity in overweight youth.

  8. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis.

    PubMed

    Chen, Weiyi; Balland, Eglantine; Cowley, Michael A

    2017-01-01

    The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes. © 2017 S. Karger AG, Basel.

  9. [A case of leprechaunism with extreme insulin resistance due to a primary defect in insulin receptors].

    PubMed

    Goji, K; Takata, Y; Kobayashi, M

    1985-09-20

    This report describes a 3-month-old female infant with the typical physical features of leprechaunism. The patient demonstrated glucose intolerance and marked hyperinsulinemia (4600 microU/ml). Since an intravenous insulin injection (actrapid insulin: 0.15 U/kg) caused no significant decrease in the blood glucose level, the presence of insulin resistance was suggested. Neither insulin antibodies nor insulin receptor antibodies were were found in the patient's plasma, and other circulating insulin antagonists such as glucagon, growth hormone, and cortisol were within normal limits. [125I]Insulin binding to the erythrocytes from the patient was as low as 1.02% (control infants: 4.89 +/- 1.08% [mean +/- SD]). [125I]Insulin binding to the cultured transformed lymphocytes from the patient was similarly reduced to 3.58% (control: 20.9 +/- 2.71% [mean +/- SD]). From these findings we concluded that the insulin resistance was due to a primary defect in insulin receptors. Interestingly, transient remissions of the patient's glucose intolerance and hyperinsulinemia were observed during a year of follow-up study. The insulin tolerance test which was performed at the remission period showed an improvement in insulin resistance. However, the insulin binding defect to erythrocytes remained unchanged even at the remission period. The exact cause of these remissions was not clear and remained to be elucidated.

  10. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  11. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  12. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  13. Increase in homeostasis model assessment of insulin resistance (HOMA-IR) had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study.

    PubMed

    Morimoto, Akiko; Tatsumi, Yukako; Soyano, Fumie; Miyamatsu, Naomi; Sonoda, Nao; Godai, Kayo; Ohno, Yuko; Noda, Mitsuhiko; Deura, Kijyo

    2014-01-01

    Our aim was to assess the impact of increase in homeostasis model assessment of insulin resistance (HOMA-IR) on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion (IIS). This study included 2,209 participants aged 30-69 without diabetes at baseline who underwent comprehensive medical check-ups between April 2006 and March 2007 at Saku Central Hospital. Participants were classified into eight groups according to the combination of baseline IIS status (non-IIS and IIS) and category of HOMA-IR change between the baseline and follow-up examinations (decrease, no change/small increase, moderate increase, and large increase). Type 2 diabetes was determined from fasting and 2 h post-load plasma glucose concentrations at the follow-up examination between April 2009 and March 2011. At baseline, 669 individuals (30.3%) were classified as having IIS. At follow-up, 74 individuals developed type 2 diabetes. After adjusting for confounding factors including baseline HOMA-IR values, the multivariable-adjusted odds ratios (95% confidence intervals) for type 2 diabetes in the non-IIS with a decrease (mean change in HOMA-IR: -0.47), non-IIS with a moderate increase (mean change in HOMA-IR: 0.28), non-IIS with a large increase (mean change in HOMA-IR: 0.83), IIS with a decrease (mean change in HOMA-IR: -0.36), IIS with no change/small increase (mean change in HOMA-IR: 0.08), IIS with a moderate increase (mean change in HOMA-IR: 0.27), and IIS with a large increase (mean change in HOMA-IR: 0.73) groups, relative to the non-IIS with no change/small increase (mean change in HOMA-IR: 0.08) group were 0.23 (0.04, 1.11), 1.22 (0.26, 5.72), 2.01 (0.70, 6.46), 1.37 (0.32, 4.28), 3.60 (0.83, 15.57), 5.24 (1.34, 20.52), and 7.01 (1.75, 24.18), respectively. Moderate and large increases in HOMA-IR had a strong impact on the development of type 2 diabetes among individuals with IIS in this Japanese population.

  14. Increase in Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) Had a Strong Impact on the Development of Type 2 Diabetes in Japanese Individuals with Impaired Insulin Secretion: The Saku Study

    PubMed Central

    Morimoto, Akiko; Tatsumi, Yukako; Soyano, Fumie; Miyamatsu, Naomi; Sonoda, Nao; Godai, Kayo; Ohno, Yuko; Noda, Mitsuhiko; Deura, Kijyo

    2014-01-01

    Our aim was to assess the impact of increase in homeostasis model assessment of insulin resistance (HOMA-IR) on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion (IIS). This study included 2,209 participants aged 30–69 without diabetes at baseline who underwent comprehensive medical check-ups between April 2006 and March 2007 at Saku Central Hospital. Participants were classified into eight groups according to the combination of baseline IIS status (non-IIS and IIS) and category of HOMA-IR change between the baseline and follow-up examinations (decrease, no change/small increase, moderate increase, and large increase). Type 2 diabetes was determined from fasting and 2 h post-load plasma glucose concentrations at the follow-up examination between April 2009 and March 2011. At baseline, 669 individuals (30.3%) were classified as having IIS. At follow-up, 74 individuals developed type 2 diabetes. After adjusting for confounding factors including baseline HOMA-IR values, the multivariable-adjusted odds ratios (95% confidence intervals) for type 2 diabetes in the non-IIS with a decrease (mean change in HOMA-IR: −0.47), non-IIS with a moderate increase (mean change in HOMA-IR: 0.28), non-IIS with a large increase (mean change in HOMA-IR: 0.83), IIS with a decrease (mean change in HOMA-IR: −0.36), IIS with no change/small increase (mean change in HOMA-IR: 0.08), IIS with a moderate increase (mean change in HOMA-IR: 0.27), and IIS with a large increase (mean change in HOMA-IR: 0.73) groups, relative to the non-IIS with no change/small increase (mean change in HOMA-IR: 0.08) group were 0.23 (0.04, 1.11), 1.22 (0.26, 5.72), 2.01 (0.70, 6.46), 1.37 (0.32, 4.28), 3.60 (0.83, 15.57), 5.24 (1.34, 20.52), and 7.01 (1.75, 24.18), respectively. Moderate and large increases in HOMA-IR had a strong impact on the development of type 2 diabetes among individuals with IIS in this Japanese population. PMID:25166121

  15. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    PubMed Central

    Saito, Isao; Hitsumoto, Shinichi; Maruyama, Koutatsu; Nishida, Wataru; Eguchi, Eri; Kato, Tadahiro; Kawamura, Ryoichi; Takata, Yasunori; Onuma, Hiroshi; Osawa, Haruhiko; Tanigawa, Takeshi

    2015-01-01

    Background Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR) and Gutt’s insulin sensitivity index (ISI). Pulse was recorded for 5 min, and time-domain heart rate variability (HRV) indices were calculated: the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive difference (RMSSD). Power spectral analysis provided frequency domain measures of HRV: high frequency (HF) power, low frequency (LF) power, and the LF:HF ratio. Results Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10). Conclusions Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals. PMID:26277879

  16. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  17. Divergent role of sphingosine 1-phosphate on insulin resistance.

    PubMed

    Fayyaz, Susann; Japtok, Lukasz; Kleuser, Burkhard

    2014-01-01

    Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic β-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.

  18. Syndromic insulin resistance: Models for the therapeutic basis of the metabolic syndrome and other targets of insulin resistance

    PubMed Central

    Gorden, Phillip; Zadeh, Elika Safar; Cochran, Elaine; Brown, Rebecca J.

    2013-01-01

    Objective Insulin resistance is the key feature of the “metabolic syndrome,” a cluster of risk factors for cardiovascular disease and diabetes that includes hypertension, dyslipidemia, obesity, and hyperglycemia. Existing treatments target individual metabolic syndrome components, and act non-specifically with respect to disease pathophysiology. Our goal is to understand the link between insulin resistance and the metabolic syndrome, and how to develop treatment approaches. Methods We present three cases of extreme, syndromic insulin resistance: lipodystrophy, autoantibodies to the insulin receptor, and mutations of the insulin receptor, with discussion of pathophysiology and treatment. Results In lipodystrophy, insulin resistance is a direct consequence of leptin deficiency, and thus leptin replacement reverses metabolic syndrome abnormalities, including diabetes and hypertriglyeridemia. The insulin “receptoropathies”, including autoantibodies to the insulin receptor and insulin receptor mutations, are characterized by extreme insulin resistance and ovarian hyperandrogenism, without dyslipidemia or fatty liver disease. Autoantibodies to the insulin receptor can be treated using an immunosuppressive paradigm adapted from treatment of other autoimmune and neoplastic conditions. Leptin treatment has shown some success in treating hyperglycemia in insulin receptor mutations. Treatment for this condition remains inadequate, and novel therapies that bypass insulin receptor signaling, such as enhancers of brown adipose tissue, are needed. Conclusion We presented a clinical approach to treatment of syndromic insulin resistance. The study of rare diseases that replicate the metabolic syndrome, with clear-cut pathophysiology, allows the opportunity to understand novel physiology, and develop targeted therapies that may be applicable to the broader population with obesity, insulin resistance, and diabetes. PMID:23047930

  19. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease.

    PubMed

    Lomonaco, Romina; Ortiz-Lopez, Carolina; Orsak, Beverly; Webb, Amy; Hardies, Jean; Darland, Celia; Finch, Joan; Gastaldelli, Amalia; Harrison, Stephen; Tio, Fermin; Cusi, Kenneth

    2012-05-01

    The role of adipose tissue insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains unclear. To evaluate this, we measured in 207 patients with NAFLD (age = 51 ± 1, body mass index = 34.1 ± 0.3 kg/m(2) ) and 22 controls without NAFLD (no NAFLD) adipose tissue insulin resistance by means of a validated index (Adipo-IR(i) = plasma free fatty acids [FFA] x insulin [FPI] concentration) and as the suppression of plasma FFA during an oral glucose tolerance test and by a low-dose insulin infusion. We also explored the relationship between adipose tissue insulin resistance with metabolic and histological parameters by dividing them based on quartiles of adipose tissue insulin resistance (Adipo-IR(i) quartiles: Q1 = more sensitive; Q4 = more insulin resistant). Hepatic insulin resistance, measured as an index derived from endogenous glucose production x FPI (HIRi), and muscle insulin sensitivity, were assessed during a euglycemic insulin clamp with 3-[(3) H] glucose. Liver fat was measured by magnetic resonance imaging and spectroscopy, and a liver biopsy was performed to assess liver histology. Compared to patients without steatosis, patients with NAFLD were insulin resistant at the level of adipose tissue, liver, and skeletal muscle and had higher plasma aspartate aminotransferase and alanine aminotransferase, triglycerides, and lower high-density lipoprotein cholesterol and adiponectin levels (all P < 0.01). Metabolic parameters, hepatic insulin resistance, and liver fibrosis (but not necroinflammation) deteriorated as quartiles of adipose tissue insulin resistance worsened (all P < 0.01). Adipose tissue insulin resistance plays a key role in the development of metabolic and histological abnormalities of obese patients with NAFLD. Treatment strategies targeting adipose tissue insulin resistance (e.g., weight loss and thiazolidinediones) may be of value in this population. Copyright © 2012 American Association for the Study of Liver

  20. Obesity and insulin resistance associated with lower plasma vitamin B12 in PCOS.

    PubMed

    Kaya, Cemil; Cengiz, Sevim Dinçer; Satiroğlu, Hakan

    2009-11-01

    Polycystic ovary syndrome (PCOS) shares some or most components of metabolic cardiovascular syndrome, manifested by abdominal obesity, insulin resistance, dyslipidaemia and atherosclerosis. It has been previously demonstrated that folate and vitamin B(12) treatment improved insulin resistance in patients with metabolic syndrome. This study first investigated whether PCOS patients have lower or higher vitamin B(12), folate and homocysteine concentrations when compared with healthy, age and body mass index matched controls, and, then examined associations between vitamin B(12), folate, homocysteine and insulin resistance and obesity in PCOS patients. Homocysteine concentrations and homeostasis model assessment index were higher, whereas concentrations of vitamin B(12) were lower in PCOS patients with insulin resistance compared with those without insulin resistance. Serum vitamin B(12) concentrations were significantly lower in obese PCOS women in comparison with obese control women (P < 0.05). Fasting insulin, insulin resistance and homocysteine are independent determinants of serum vitamin B(12) concentrations in PCOS patients. Insulin resistance, obesity, and elevated homocysteine were associated with lower serum vitamin B(12) concentrations in PCOS patients.

  1. Relation of Circulating Oxidized LDL to Obesity and Insulin Resistance in Children

    PubMed Central

    Kelly, Aaron S.; Jacobs, David R.; Sinaiko, Alan R.; Moran, Antoinette; Steffen, Lyn M.; Steinberger, Julia

    2010-01-01

    Introduction Circulating oxidized LDL, a marker of oxidative stress, is associated with obesity, insulin resistance, metabolic syndrome, and cardiovascular disease in adults. However, little is known about its relation to insulin resistance and cardiovascular risk factors in children. The purpose of this study was to assess the relation of oxidative stress, measured by circulating oxidized LDL, with measures of adiposity and insulin resistance in children. Methods Oxidized LDL, measures of body fatness (body mass index: BMI, percent body fat, waist circumference, percent trunk fat, abdominal visceral and subcutaneous fat), insulin resistance with euglycemic insulin clamp (Mlbm), blood pressure, and blood lipids were obtained in 78 children. Oxidized LDL was compared between normal weight children (BMI < 85th percentile) and overweight/obese children (BMI ≥ 85th percentile) and levels were evaluated for associations with body fatness and insulin resistance. Results Oxidized LDL levels were significantly higher in overweight/obese vs. normal weight children (p < 0.0001). Oxidized LDL was significantly correlated with BMI, percent body fat, waist circumference, percent trunk fat, abdominal visceral fat, and abdominal subcutaneous fat (all p-values < 0.0001). Moreover, oxidized LDL was negatively correlated with Mlbm, even after adjustment for adiposity (p < 0.01). Conclusions Oxidized LDL is significantly associated with adiposity and with insulin resistance, independent of body fatness, in children. Oxidative stress may be independently related to the development of insulin resistance early in life, especially in obese youth. PMID:20102528

  2. Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile.

    PubMed

    León-Latre, Montserrat; Moreno-Franco, Belén; Andrés-Esteban, Eva M; Ledesma, Marta; Laclaustra, Martín; Alcalde, Víctor; Peñalvo, José L; Ordovás, José M; Casasnovas, José A

    2014-06-01

    To analyze the association between sitting time and biomarkers of insulin resistance and inflammation in a sample of healthy male workers. Cross-sectional study carried out in a sample of 929 volunteers belonging to the Aragon Workers' Health Study cohort. Sociodemographic, anthropometric, pharmacological and laboratory data were collected: lipids-total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoproteins A-1 and B-100, lipoprotein (a)-, insulin resistance-glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, insulin, and triglyceride/high-density lipoprotein cholesterol ratio-, and inflammatory profile-C-reactive protein and leukocytes. Information on sitting time and physical activity was assessed using a questionnaire. Sedentary behavior was analyzed in terms of prevalences and medians, according to tertiles, using a multivariate model (crude and adjusted linear regression) with biomarkers of inflammation and insulin resistance. The most sedentary individuals had higher body mass index, greater waist circumference, and higher systolic blood pressure, with a significant upward trend in each tertile. Likewise, they had a worse lipid profile with a higher C-reactive protein level, homeostasis model assessment of insulin resistance index, triglyceride/high-density lipoprotein cholesterol ratio, and insulin concentration. In the multivariate analysis, we observed a significant association between the latter parameters and sitting time in hours (log C-reactive protein [β = 0.07], log homeostasis model assessment of insulin resistance index [β = 0.05], triglyceride/high-density lipoprotein cholesterol ratio [β = 0.23], and insulin [β = 0.44]), which remained after adjustment for metabolic equivalents-h/week. Workers who spend more time sitting show a worse inflammatory and insulin resistance profile independently of the physical activity performed. Copyright © 2013

  3. Effect of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats.

    PubMed

    Anwar, Muhammad Khalid; Hussain, Muhammad Mazhar; Khan, Muhammad Alamgir; Ahmad, Tausif

    2013-03-01

    To compare the effects of combined and individual supplementation of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats. The randomised controlled trial was conducted at the Department of Physiology, Army Medical College, Rawalpindi, between October 2010 and April 2011. It comprised 80 healthy Sprague Dawley rats who were divided into four groups (n = 20 each). Rats were fed high-fat diet for 2 weeks followed by an intraperitoneal injection of streptozocin to induce type 2 diabetes mellitus. group I served as diabetic control; group II was given cholecalciferol; group III; levo carnitine; and group IV was administered cholecalciferol and levo carnitine together. After 6 days of supplementation, terminal intracardiac blood extraction was done and samples were analysed for fasting plasma glucose and plasma insulin. Insulin resistance was calculated by homeostatic model assessment for insulin resistance. SPSS 17.0 was used for statistical analysis. Fasting plasma glucose levels were significantly decreased (p < 0.001) in the combined supplementation group compared to the diabetic control and individual supplementation groups. Combined supplementation showed a significant increase in fasting plasma insulin levels when compared with diabetic control and levo carnitine groups (p < 0.001), and the effect of combined supplementation on ameliorating insulin resistance was significantly better (p < 0.001) as compared to the individual supplementation of cholecalciferol and levo carnitine. The combined supplementation of cholecalciferol and levo carnitine for 6 days markedly improved the glycaemic control, insulin secretion and insulin resistance in type 2 diabetic rats on high-fat diet A prolonged supplementation by both the compounds along with caloric restriction may yield a more promising outcome.

  4. Association of Serum Osteocalcin with Insulin Resistance and Coronary Atherosclerosis

    PubMed Central

    2016-01-01

    Background To determine the associations between serum osteocalcin level and insulin resistance, coronary atherosclerosis by using dual-source coronary computed tomography angiography. Methods A total of 98 subjects (24 men and 74 women) were selected for this retrospective cross-sectional study who voluntarily visited a health examination center for routine health check-up including the blood test for serum osteocalcin level and coronary computed tomography angiography. Multiple regression analysis was used to determine which variables were independently related to osteocalcin levels and coronary atherosclerosis. Results Stepwise multiple regression analysis adjusted for age, sex, menopausal status, body mass index, serum alkaline phosphatase, serum calcium and phosphate showed that osteocalcin negatively correlated with serum glucose (β=-0.145, P=0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) index (β=-1.794, P=0.027) independently. The age, serum glucose, smoking status but not osteocalcin level were independent risk factors for coronary atherosclerosis by use of multiple logistic regression analysis after controlling for other variables. Conclusions Serum osteocalcin level was inversely associated with fasting glucose level and insulin resistance measured by HOMA-IR, suggesting that osteocalcin is important for glucose metabolism. However, in this study, no significant difference was observed in the serum osteocalcin level according to the presence of coronary atherosclerotic plaques. PMID:27965939

  5. Acculturation and Insulin Resistance among US Chinese Immigrant Women.

    PubMed

    Tseng, Marilyn; Fang, Carolyn Y

    2015-11-05

    Chinese immigrants in the United States undergo a transition to increased chronic disease risk commonly attributed to acculturative changes. Longitudinal data to confirm this are lacking. We examined acculturation in relation to insulin resistance in a sample of Chinese immigrant women to determine differences by level of education and possible mediation by anthropometry and diet. Longitudinal study. Philadelphia, Pennsylvania. 305 Chinese immigrant women recruited October 2005 to April 2008 and followed until April 2010. Association of acculturation, measured using the General Ethnicity Questionnaire - American version (GEQA), with homeostasis model assessment (HOMA) score as an indicator of insulin resistance, modeled using generalized estimating equations to account for repeated measures over time. GEQA was associated with log HOMA score, but only in women with <9 years of education (beta [SE] = .09 [.04], P=.02; interaction P=.02). The association persisted with adjustment for body mass index, waist circumference, and dietary variables. These findings provide longitudinal evidence that insulin resistance increases with acculturation. However, the association was apparent only in less-educated immigrants and may be mediated by a pathway other than changes in anthropometry and diet.

  6. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  7. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    PubMed

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  8. Insulin, glucose, insulin resistance, and incident colorectal cancer in male smokers.

    PubMed

    Limburg, Paul J; Stolzenberg-Solomon, Rachael Z; Vierkant, Robert A; Roberts, Katherine; Sellers, Thomas A; Taylor, Philip R; Virtamo, Jarmo; Cerhan, James R; Albanes, Demetrius

    2006-12-01

    Hyperinsulinemia is a putative colorectal cancer (CRC) risk factor. Insulin resistance (IR) commonly precedes hyperinsulinemia and can be quantitatively measured by using the homeostasis model assessment-insulin resistance (HOMA-IR) index. To date, few studies have directly examined serum insulin as an indicator of CRC risk, and none have reported associations on the basis of HOMA-IR. We performed a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study (n=29,133). Baseline exposure and fasting serum biomarker data were available for 134 incident CRC case and 399 non-case subjects. HOMA-IR was derived as fasting insulin x fasting glucose/22.5. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by using age-adjusted and multivariable-adjusted Cox proportional hazards regression models. Median (interquartile range) values for serum insulin, glucose, and HOMA-IR were 4.1 (2.9-7.2) mIU/L, 101 (94-108) mg/dL, and 0.99 (0.69-1.98) for case subjects and 4.1 (2.7-6.1) mIU/L, 99 (93-107) mg/dL, and 1.02 (0.69-1.53) for non-case subjects, respectively. On the basis of comparison of the highest versus lowest quartiles for each biomarker, insulin (HR, 1.84; 95% CI, 1.03-3.30) and HOMA-IR (HR, 1.85; 95% CI, 1.06-3.24) were significantly associated with incident CRC, whereas glucose was marginally associated with incident CRC (HR, 1.70; 95% CI, 0.92-3.13) in age-adjusted risk models. However, trends across biomarker quartiles were somewhat inconsistent (P trend=.12, .04, and .12, respectively), and multivariable adjustment generally attenuated the observed risk estimates. Data from this prospective study of male smokers provide limited support for hyperinsulinemia, hyperglycemia, and/or insulin resistance as CRC risk factors.

  9. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    PubMed Central

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  10. Association of insulin resistance with breast, ovarian, endometrial and cervical cancers in non-diabetic women.

    PubMed

    Sun, Wanwan; Lu, Jieli; Wu, Shengli; Bi, Yufang; Mu, Yiming; Zhao, Jiajun; Liu, Chao; Chen, Lulu; Shi, Lixin; Li, Qiang; Yang, Tao; Yan, Li; Wan, Qin; Liu, Yan; Wang, Guixia; Luo, Zuojie; Tang, Xulei; Chen, Gang; Huo, Yanan; Gao, Zhengnan; Su, Qing; Ye, Zhen; Wang, Youmin; Qin, Guijun; Deng, Huacong; Yu, Xuefeng; Shen, Feixia; Chen, Li; Zhao, Liebin; Wang, Tiange; Sun, Jichao; Xu, Min; Xu, Yu; Chen, Yuhong; Dai, Meng; Zhang, Jie; Zhang, Di; Lai, Shenghan; Li, Donghui; Ning, Guang; Wang, Weiqing

    2016-01-01

    Hyperinsulinemia and insulin resistance were reported to play a crucial role in diabetes-cancer relationship. This study aimed to explore the associations between insulin resistance and several female cancers in a non-diabetic population. This cross-sectional study was conducted in 121,230 middle-aged and elderly non-diabetic women. Cancer diagnosis was self-reported and further validated by medical records. Insulin resistance was defined as homeostasis model assessment of insulin resistance (HOMA-IR) ≥ 2.50. The prevalence of both premenopausal and postmenopausal breast cancer, postmenopausal ovarian cancer and premenopausal endometrial cancer were higher in insulin-resistant participants than in insulin-sensitive participants (premenopausal breast cancer, 0.45 vs 0.28%; postmenopausal breast cancer, 0.86 vs 0.63%; postmenopausal ovarian cancer, 0.17 vs 0.09%; premenopausal endometrial cancer, 0.43 vs 0.25%, respectively, all P < 0.05). Individuals with insulin resistance had higher odds ratio (OR) of breast cancer, both premenopausal and postmenopausal (OR 1.98, 95% confidence interval (CI) 1.19-3.32; OR 1.29, 95% CI 1.01-1.63), postmenopausal ovarian cancer (OR 2.17, 95% CI 1.10-3.40) as well as total endometrial cancer (OR 1.47, 95% CI 1.02-2.12). Subgroup analysis revealed that the possitive association between insulin resistance and risk of prevalent breast cancer was observed in popualtion with younger age, overweight or obesity, higher education and impaired glucose tolerance (IGR). No relationships were observed for the risk of prevalent cervical cancers with insulin resistance. Non-diabetic women with insulin resistance had higher risk of prevalent breast, ovarian and endomatrial cancer, which suggests special attentions to these female cancer screening and prevention.

  11. Association of insulin resistance with breast, ovarian, endometrial and cervical cancers in non-diabetic women

    PubMed Central

    Sun, Wanwan; Lu, Jieli; Wu, Shengli; Bi, Yufang; Mu, Yiming; Zhao, Jiajun; Liu, Chao; Chen, Lulu; Shi, Lixin; Li, Qiang; Yang, Tao; Yan, Li; Wan, Qin; Liu, Yan; Wang, Guixia; Luo, Zuojie; Tang, Xulei; Chen, Gang; Huo, Yanan; Gao, Zhengnan; Su, Qing; Ye, Zhen; Wang, Youmin; Qin, Guijun; Deng, Huacong; Yu, Xuefeng; Shen, Feixia; Chen, Li; Zhao, Liebin; Wang, Tiange; Sun, Jichao; Xu, Min; Xu, Yu; Chen, Yuhong; Dai, Meng; Zhang, Jie; Zhang, Di; Lai, Shenghan; Li, Donghui; Ning, Guang; Wang, Weiqing

    2016-01-01

    Hyperinsulinemia and insulin resistance were reported to play a crucial role in diabetes-cancer relationship. This study aimed to explore the associations between insulin resistance and several female cancers in a non-diabetic population. This cross-sectional study was conducted in 121,230 middle-aged and elderly non-diabetic women. Cancer diagnosis was self-reported and further validated by medical records. Insulin resistance was defined as homeostasis model assessment of insulin resistance (HOMA-IR) ≥ 2.50. The prevalence of both premenopausal and postmenopausal breast cancer, postmenopausal ovarian cancer and premenopausal endometrial cancer were higher in insulin-resistant participants than in insulin-sensitive participants (premenopausal breast cancer, 0.45 vs 0.28%; postmenopausal breast cancer, 0.86 vs 0.63%; postmenopausal ovarian cancer, 0.17 vs 0.09%; premenopausal endometrial cancer, 0.43 vs 0.25%, respectively, all P < 0.05). Individuals with insulin resistance had higher odds ratio (OR) of breast cancer, both premenopausal and postmenopausal (OR 1.98, 95% confidence interval (CI) 1.19-3.32; OR 1.29, 95% CI 1.01-1.63), postmenopausal ovarian cancer (OR 2.17, 95% CI 1.10-3.40) as well as total endometrial cancer (OR 1.47, 95% CI 1.02-2.12). Subgroup analysis revealed that the possitive association between insulin resistance and risk of prevalent breast cancer was observed in popualtion with younger age, overweight or obesity, higher education and impaired glucose tolerance (IGR). No relationships were observed for the risk of prevalent cervical cancers with insulin resistance. Non-diabetic women with insulin resistance had higher risk of prevalent breast, ovarian and endomatrial cancer, which suggests special attentions to these female cancer screening and prevention. PMID:27822422

  12. Insulin resistance and metabolic syndrome in nonobese Indian patients with non-alcoholic fatty liver disease.

    PubMed

    Bhat, Ganesh; Baba, Chalamalasetty Sreenivasa; Pandey, Amaresh; Kumari, Neeraj; Choudhuri, Gourdas

    2013-01-01

    Insulin resistance has been recognized as a major factor in the development of non-alcoholic fatty liver disease (NAFLD). The association between insulin resistance and NAFLD, as a risk factor independent of obesity has been less well established. This study aims to determine presence of insulin resistance and components of metabolic syndrome in non-obese patients with NAFLD. 150 patients (mean age 42.25 _ 10.50 y; 115 (76%) male, 35 (24%) female) diagnosed with NAFLD participated in the study. We measured body mass index (BMI), waist circumference (WC), waist hip ratio (WHR), fasting lipid profile, fasting glucose, fasting insulin, and liver function. Insulin resistance was calculated using the homeostasis model of assessment (HOMA) formula. Insulin resistance was arbitrarily considered altered when it was >1.64. 120 (80%) of the 150 patients were pbese (BMI >23) according to the Asia Pacific criteria. 40 (30%) had metabolic syndrome. 97.5% (117/120) had insulin resistance with mean HOMA-insulin resistance (IR) of 10.9+/-5.3. Thirty (20%) were non-obese; of these, 7 had central obesity (WC > 90 cm for men, > 80 cm for women). Twenty-three (15.3%) patients were lean NAFLD with BMI 21.6+/-1.5, WC 82.9+/-4.7 (BMI< 23, WC <90 cm in men and < 80 cm in women) 80% of these 23 (18/23) had insulin resistance with mean HOMA-IR of 3.4+/-1.9. Only 4 (17%) did not have any component of metabolic syndrome. Insulin resistance often associated with metabolic syndrome is common and plays a key role amongst lean Indian patients with non-alcoholic fatty liver disease.

  13. Insulin resistance and metabolic syndrome in normal-weight individuals.

    PubMed

    Chen, Shanying; Chen, Youming; Liu, Xinyu; Li, Mi; Wu, Bide; Li, Yongqiang; Liang, Yan; Shao, Xiaofei; Holthöfer, Harry; Zou, Hequn

    2014-08-01

    We performed this study to investigate the prevalences of insulin resistance and metabolic syndrome (MetS) in a Chinese population with normal weight. We also examined whether fat mass is associated with insulin resistance and MetS in normal-weight individuals. Data were drawn from a cross-sectional study in China. Subjects with diabetes were excluded. The prevalences of insulin resistance and MetS were calculated. Multivariate logistic regression analysis was performed repeated separately for body mass index (BMI) and waist circumference (WC) in both men and women. We also used the combination of BMI and WC to predict insulin resistance and MetS. 8.55 % of normal-weight men and 12.62 % of normal-weight women had insulin resistance. 7.41 % of normal-weight men and 10.24 % of normal-weight women had MetS. WC was associated with incident insulin resistance and MetS independent of BMI in both men and women. BMI was independently associated with incident MetS in women. Normal-weight individuals with insulin resistance and/or MetS are not rare in the Chinese population. Fat mass is associated with insulin resistance and MetS in normal-weight subjects. The current findings support using both BMI and WC in clinical practice.

  14. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Insulin resistance is linked to increased acylcarnitine species in a number of tissues including skeletal muscle, due to incomplete fatty acid oxidation (FAO). It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aim of this stud...

  15. C16:0-Ceramide Signals Insulin Resistance

    PubMed Central

    Hla, Timothy; Kolesnick, Richard

    2015-01-01

    A substantive literature has accumulated implicating sphingolipids, in particular ceramides, as mediators of insulin resistance in metabolic syndrome. Thanks to recent technical advances in mouse genetics and lipidomics, two independent laboratories identify the same sphingolipid, C16:0-ceramide, as principal mediator of obesity-related insulin resistance. PMID:25440051

  16. Small heterodimer partner (SHP) contributes to insulin resistance in cardiomyocytes.

    PubMed

    Rodríguez-Calvo, Ricardo; Chanda, Dipanjan; Oligschlaeger, Yvonne; Miglianico, Marie; Coumans, Will A; Barroso, Emma; Tajes, Marta; Luiken, Joost Jfp; Glatz, Jan Fc; Vázquez-Carrera, Manuel; Neumann, Dietbert

    2017-05-01

    Small heterodimer partner (SHP) is an atypical nuclear receptor expressed in heart that has been shown to inhibit the hypertrophic response. Here, we assessed the role of SHP in cardiac metabolism and inflammation. Mice fed a high-fat diet (HFD) displayed glucose intolerance accompanied by increased cardiac mRNA levels of Shp. In HL-1 cardiomyocytes, SHP overexpression inhibited both basal and insulin-stimulated glucose uptake and impaired the insulin signalling pathway (evidenced by reduced AKT and AS160 phosphorylation), similar to insulin resistant cells generated by high palmitate/high insulin treatment (HP/HI; 500μM/100nM). In addition, SHP overexpression increased Socs3 mRNA and reduced IRS-1 protein levels. SHP overexpression also induced Cd36 expression (~6.2 fold; p<0.001) linking to the observed intramyocellular lipid accumulation. SHP overexpressing cells further showed altered expression of genes involved in lipid metabolism, i.e., Acaca, Acadvl or Ucp3, augmented NF-κB DNA-binding activity and induced transcripts of inflammatory genes, i.e., Il6 and Tnf mRNA (~4-fold induction, p<0.01). Alterations in metabolism and inflammation found in SHP overexpressing cells were associated with changes in the mRNA levels of Ppara (79% reduction, p<0.001) and Pparg (~58-fold induction, p<0.001). Finally, co-immunoprecipitation studies showed that SHP overexpression strongly reduced the physical interaction between PPARα and the p65 subunit of NF-κB, suggesting that dissociation of these two proteins is one of the mechanisms by which SHP initiates the inflammatory response in cardiac cells. Overall, our results suggest that SHP upregulation upon high-fat feeding leads to lipid accumulation, insulin resistance and inflammation in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Association of the Nonalcoholic Hepatic Steatosis and Its Degrees With the Values of Liver Enzymes and Homeostasis Model Assessment-Insulin Resistance Index

    PubMed Central

    Cruz, Mario Augusto Ferreira; Cruz, Josilda Ferreira; Macena, Larissa Baracho; de Santana, Demetrius Silva; Oliveira, Cristiane Costa da Cunha; Lima, Sonia Oliveira; Franca, Alex Vianey Callado

    2015-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is among the most common chronic diseases of the modern world with a wide variety of factors including genetic, environmental and metabolic. The aim of this study was to verify the association between the degrees of hepatic steatosis at the abdominal ultrasound and the values of aminotransferases (aspartate aminotransferase (AST) and alanine transferase (ALT)), gamma glutamyl transpeptidase (GGT) and homeostasis model assessment-insulin resistance (HOMA-IR) index. Methods A prospective, descriptive survey study, using a quantitative analytical examination, was conducted from July 2013 to July 2014. In the statistical analysis, values were expressed as median, first and third quartiles. We used the nonparametric Kruskal-Wallis test to compare the medians between the degrees of steatosis, adopted a statistical significance of 5% (P ≤ 0.05) and used the statistical program SPSS 22.0. Results We diagnosed 233/800 (29.1%) patients with hepatic steatosis on routine ultrasound, and 65.7% were female. Regarding degrees, 119 had grade 1 (51.0%), 94 grade 2 (40.4%) and 20 grade 3 (8.6%). The median age of the patients with grade 1, 2 or 3 did not vary significantly (P > 0.05). The median body mass index (BMI), although clinically important because of its elevation, did not differ significantly (P > 0.05). ALT levels increased as the degree of hepatic steatosis has advanced as well as the levels of AST, GGT and HOMA-IR. AST values showed a greater association with the severity of fatty liver (P = 0.0001) than the ALT (P = 0.001). Conclusions ALT, AST, GGT and HOMA-IR are associated to the degrees of hepatic steatosis on ultrasound and can help in the selection of patients for the liver histological evaluation. PMID:27785306

  18. Performance of individually-measured vs population-based C-peptide kinetics to assess β-cell function in presence and absence of acute insulin resistance.

    PubMed

    Varghese, Ron T; Dalla Man, Chiara; Laurenti, Marcello C; Piccinini, Francesca; Sharma, Anu; Shah, Meera; Bailey, Kent R; Rizza, Robert A; Cobelli, Claudio; Vella, Adrian

    2017-09-01

    Standardized, population-based kinetics of C-peptide distribution and clearance are used to estimate insulin secretion from plasma C-peptide concentrations without direct measurement of C-peptide kinetics. We then compared the performance of population-based kinetics to directly measured C-peptide kinetics when used to calculate β-cell responsivity indices. To ensure that population-based kinetics apply to all conditions where β-cell function is measured, subjects were studied in the presence and absence of acute insulin resistance. Somatostatin was used to inhibit endogenous insulin secretion in 56 nondiabetic subjects. Subsequently, a C-peptide bolus was administered and the changing concentrations used to calculate individual kinetic parameters of C-peptide clearance. In addition, they were studied on 2 occasions in random order using an oral glucose tolerance test (OGTT). On one occasion, free fatty acid (FFA) elevation to cause insulin resistance, was achieved by infusion of intralipid + heparin. Disposition Index (DI) was then estimated by the oral minimal model using either population-based or individual C-peptide kinetics. There were marked differences in the exchange parameters (k12 and k21 ) of the model describing C-peptide kinetics, but smaller differences in the fractional clearance, i.e. the irreversible loss from the accessible compartment (k01 ), obtained from population-based estimates compared to experimental measurement. Since it is predominantly influenced by k01 , DI estimated using individual kinetics correlated well with those estimated using population-based kinetics. These data support the use of population-based measures of C-peptide kinetics to estimate β-cell function during OGTT. This article is protected by copyright. All rights reserved.

  19. Insulin Resistance in Children: Consensus, Perspective, and Future Directions

    PubMed Central

    Levy-Marchal, Claire; Arslanian, Silva; Cutfield, Wayne; Sinaiko, Alan; Druet, Celine; Marcovecchio, M. Loredana; Chiarelli, Francesco

    2010-01-01

    Objective: Emerging data indicate that insulin resistance is common among children and adolescents and is related to cardiometabolic risk, therefore requiring consideration early in life. However, there is still confusion on how to define insulin resistance, how to measure it, what its risk factors are, and whether there are effective strategies to prevent and treat it. A consensus conference was organized in order to clarify these points. Participants: The consensus was internationally supported by all the major scientific societies in pediatric endocrinology and 37 participants. Evidence: An independent and systematic search of the literature was conducted to identify key articles relating to insulin resistance in children. Consensus Process: The conference was divided into five themes and working groups: background and definition; methods of measurement and screening; risk factors and consequences; prevention; and treatment. Each group selected key issues, searched the literature, and developed a draft document. During a 3-d meeting, these papers were debated and finalized by each group before presenting them to the full forum for further discussion and agreement. Conclusions: Given the current childhood obesity epidemic, insulin resistance in children is an important issue confronting health care professionals. There are no clear criteria to define insulin resistance in children, and surrogate markers such as fasting insulin are poor measures of insulin sensitivity. Based on current screening criteria and methodology, there is no justification for screening children for insulin resistance. Lifestyle interventions including diet and exercise can improve insulin sensitivity, whereas drugs should be implemented only in selected cases. PMID:20829185

  20. Silymarin Induces Insulin Resistance through an Increase of Phosphatase and Tensin Homolog in Wistar Rats

    PubMed Central

    Cheng, Kai-Chun; Asakawa, Akihiro; Li, Ying-Xiao; Chung, Hsien-Hui; Amitani, Haruka; Ueki, Takatoshi; Cheng, Juei-Tang; Inui, Akio

    2014-01-01

    Background and aims Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown. Methods Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection. Results Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake. Conclusions Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients. PMID:24404172

  1. Impact of treatment exposures on cardiovascular risk and insulin resistance in childhood cancer survivors.

    PubMed

    Baker, K Scott; Chow, Eric J; Goodman, Pamela J; Leisenring, Wendy M; Dietz, Andrew C; Perkins, Joanna L; Chow, Lisa; Sinaiko, Alan; Moran, Antoinette; Petryk, Anna; Steinberger, Julia

    2013-11-01

    Childhood cancer survivors (CCS) are more insulin resistant and have higher levels of several cardiovascular risk factors even while still children. This study examines specific treatment exposures associated with cardiovascular risk factors and insulin resistance. CCS of ages 9 to 18 years at study entry and in remission 5 years or more from diagnosis (n = 319) and 208 sibling controls were recruited into this cross-sectional study that included physiologic assessment of insulin resistance (hyperinsulinemic euglycemic clamp) and assessment of cardiovascular risk factors. Regression and recursive tree modeling were used to ascertain treatment combinations associated with insulin resistance and cardiovascular risk. Mean current age of CCS was 14.5 years and 54% were male (siblings 13.6 years, 54% male). Diagnoses included leukemia (35%), brain tumors (36%), solid tumors (33%), or lymphoma (6%). Among CCS, analysis of individual chemotherapy agents failed to find associations with cardiovascular risk factors or insulin resistance. Compared with siblings, insulin resistance was significantly higher in CCS who received platinum plus cranial radiotherapy (CRT, 92% brain tumors) and in those who received steroids but no platinum (majority leukemia). Insulin resistance did not differ between CCS who received surgery alone versus siblings. Within survivor comparisons failed to elucidate treatment combinations that increased insulin resistance compared with those who received surgery only. Exposure to platinum, CRT, or steroids is associated with insulin resistance and cardiovascular risk factors and should be taken into consideration in the development of screening recommendations for cardiovascular risk. Earlier identification of CCS who may benefit from targeted prevention efforts may reduce their future risk of cardiovascular disease. ©2013 AACR

  2. Investigation of the Relationship Between Chronic Stress and Insulin Resistance in a Chinese Population

    PubMed Central

    Yan, Yu-Xiang; Xiao, Huan-Bo; Wang, Si-Si; Zhao, Jing; He, Yan; Wang, Wei; Dong, Jing

    2016-01-01

    Background Chronic stress may facilitate the development of metabolic diseases. Insulin resistance is present long before the clinical manifestations of individual metabolic abnormalities. To explore whether chronic stress is an independent risk factor of insulin resistance, we investigated the relationship between the stress system, selected parameters of energy homeostasis, and insulin resistance in a Chinese population. Methods We recruited 766 workers employed at four companies in Beijing. The degree of insulin resistance was determined using the homeostasis model assessment of insulin resistance (HOMA-IR). The highest quartile of HOMA-IR among all study subjects was further defined as insulin resistance in our study. The short standard version of the Copenhagen Psychosocial Questionnaire (COPSOQ) was used to assess job-related psychosocial stress. Pearson’s correlation coefficients were calculated between cortisol level and HOMA-IR and components of metabolic syndrome, with stratification by gender. The relationship between cortisol and HOMA-IR independent of obesity was analyzed using a linear mixed model with company as a cluster unit. Results The values of the two scales of COPSOQ, including “demands at work” and “insecurity at work”, were significantly associated with insulin resistance and cortisol concentration (P < 0.05). Cortisol was significantly positively correlated with glucose, HOMA-IR, and waist circumference in males and females (P < 0.05). After adjusting for potential confounders, cortisol was an independent positive predictor for HOMA-IR (P < 0.05). Conclusions These findings showed that chronic stress was associated with insulin resistance and may contribute to the development of insulin resistance. PMID:26830350

  3. Pulmonary vascular function in insulin resistance and diabetes.

    PubMed

    Moral-Sanz, Javier; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco

    2014-05-01

    Insulin resistance and diabetes are current clinical concerns due to their increasing prevalence in western societies and in developing countries. Cardiovascular alterations, affecting both macro- and microcirculation, are among the major causes of illness and premature death within patients with insulin resistance or diabetes. However, the detrimental effects of insulin resistance and diabetes in the lungs are less clinically apparent, or at least masked by the progression of these metabolic diseases on other target organs. Epidemiological and experimental data suggest a link between pulmonary arterial hypertension and diabetes. Thereby, hemodynamic derangements in uncontrolled diabetes or insulin resistance are predisposing factors leading to early pulmonary alterations that in association with a second hit might accelerate the onset of pulmonary vascular disease and pulmonary hypertension. The present article reviewed the current knowledge about the effects of insulin resistance and diabetes in a territory which has received little attention until recently: the pulmonary circulation.

  4. Interaction of Insulin Resistance and Related Genetic Variants With Triglyceride-Associated Genetic Variants.

    PubMed

    Klimentidis, Yann C; Arora, Amit

    2016-04-01

    Several studies suggest that some triglyceride-associated single-nucleotide polymorphisms (SNPs) have pleiotropic and opposite effects on glycemic traits. This potentially implicates them in pathways such as de novo lipogenesis, which is presumably upregulated in the context of insulin resistance. We therefore tested whether the association of triglyceride-associated SNPs with triglyceride levels differs according to one's level of insulin resistance. In 3 cohort studies (combined n=12 487), we tested the interaction of established triglyceride-associated SNPs (individually and collectively) with several traits related to insulin resistance, on triglyceride levels. We also tested the interaction of triglyceride SNPs with fasting insulin-associated SNPs, individually and collectively, on triglyceride levels. We find significant interactions of a weighted genetic risk score for triglycerides with insulin resistance on triglyceride levels (Pinteraction=2.73×10(-11) and Pinteraction=2.48×10(-11) for fasting insulin and homeostasis model assessment of insulin resistance, respectively). The association of the triglyceride genetic risk score with triglyceride levels is >60% stronger among those in the highest tertile of homeostasis model assessment of insulin resistance compared with those in the lowest tertile. Individual SNPs contributing to this trend include those in/near GCKR, CILP2, and IRS1, whereas PIGV-NROB2 and LRPAP1 display an opposite trend of interaction. In the pooled data set, we also identify a SNP-by-SNP interaction involving a triglyceride-associated SNP, rs4722551 near MIR148A, with a fasting insulin-associated SNP, rs4865796 in ARL15 (Pinteraction=4.1×10(-5)). Our findings may thus provide genetic evidence for the upregulation of triglyceride levels in insulin-resistant individuals, in addition to identifying specific genetic loci and a SNP-by-SNP interaction implicated in this process. © 2016 American Heart Association, Inc.

  5. Acylcarnitines: potential implications for skeletal muscle insulin resistance.

    PubMed

    Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance.

  6. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.

    PubMed

    Saad, M J A; Santos, A; Prada, P O

    2016-07-01

    Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  7. Contribution of zinc deficiency to insulin resistance in patients with primary biliary cirrhosis.

    PubMed

    Himoto, Takashi; Yoneyama, Hirohito; Kurokochi, Kazutaka; Inukai, Michio; Masugata, Hisashi; Goda, Fuminori; Haba, Reiji; Watanabe, Seishiro; Senda, Shoichi; Masaki, Tsutomu

    2011-12-01

    The relationship between metabolic abnormalities of trace elements and insulin resistance has been established. Recent studies have revealed that insulin resistance is associated with autoimmune responses. The purpose of this study was to examine the correlation between zinc or copper metabolism and insulin resistance in patients with primary biliary cirrhosis (PBC). Sixteen patients with PBC were divided into two groups: early and advanced stage disease. The overall value of the homeostasis model assessment of insulin resistance (HOMA-IR) in patients with advanced stage PBC was significantly higher than that in patients with early stage PBC, although the mean value in advanced stage PBC was significantly lower than that in hepatitis C virus (HCV)-related liver cirrhosis. There was an inverse correlation between serum zinc concentrations and HOMA-IR values in patients with PBC, while we found no correlation between serum copper levels and HOMA-IR values. HOMA-IR values were inversely associated with peripheral platelet counts, indicating the relationship between insulin resistance and hepatic fibrosis. These results suggest that zinc deficiency plays important roles of insulin resistance and subsequent hepatic fibrosis in patients with PBC, although insulin resistance in advanced stage PBC was significantly milder than that in HCV-related liver cirrhosis.

  8. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity

    PubMed Central

    Kubota, Naoto; Kubota, Tetsuya; Kajiwara, Eiji; Iwamura, Tomokatsu; Kumagai, Hiroki; Watanabe, Taku; Inoue, Mariko; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kohjima, Motoyuki; Nakamuta, Makoto; Moroi, Masao; Sugi, Kaoru; Noda, Tetsuo; Terauchi, Yasuo; Ueki, Kohjiro; Kadowaki, Takashi

    2016-01-01

    Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as ‘selective insulin resistance'. Here, we show that ‘selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop ‘selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop ‘total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that ‘selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression. PMID:27708333

  9. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity.

    PubMed

    Kubota, Naoto; Kubota, Tetsuya; Kajiwara, Eiji; Iwamura, Tomokatsu; Kumagai, Hiroki; Watanabe, Taku; Inoue, Mariko; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kohjima, Motoyuki; Nakamuta, Makoto; Moroi, Masao; Sugi, Kaoru; Noda, Tetsuo; Terauchi, Yasuo; Ueki, Kohjiro; Kadowaki, Takashi

    2016-10-06

    Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as 'selective insulin resistance'. Here, we show that 'selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop 'selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop 'total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that 'selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression.

  10. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes.

    PubMed

    Gupta, Amit; Bisht, Bharti; Dey, Chinmoy Sankar

    2011-05-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Pharmacological treatments presently available can slow down the progression of symptoms but can not cure the disease. Currently there is widening recognition that AD is closely associated with impaired insulin signaling and glucose metabolism in brain, suggesting it to be a brain-specific form of diabetes and so also termed as "type 3 diabetes". Hence investigating the role of pharmacological agents that could ameliorate neuronal insulin resistance merit attention in AD therapeutics, however the therapeutics for pathophysiological condition like neuronal insulin resistance itself is largely unknown. In the present study we have determined the effect of metformin on neuronal insulin resistance and AD-associated characteristics in an in vitro model of "type 3 diabetes" by differentiating neuronal cell line Neuro-2a under prolonged presence of insulin. We observed that prolonged hyperinsulinemic conditions in addition to generating insulin resistance also led to development of hallmark AD-associated neuropathological changes. Treatment with metformin sensitized the impaired insulin actions and also prevented appearance of molecular and pathological characteristics observed in AD. The results thus demonstrate possible therapeutic efficacy of peripheral insulin-sensitizer drug metformin in AD by its ability to sensitize neuronal insulin resistance. These findings also provide direct evidences linking hyperinsulinemia and AD and suggest a unique opportunity for prevention and treatment of "type 3 diabetes".

  11. The Impact of Adipose Tissue on Insulin Resistance in Acromegaly.

    PubMed

    Olarescu, Nicoleta Cristina; Bollerslev, Jens

    2016-04-01

    Adipose tissue (AT) is recognized as key contributor to the systemic insulin resistance and overt diabetes seen in metabolic syndrome. Acromegaly is a disease characterized by excessive secretion of growth hormone (GH) and insulin-like growth factor I (IGF-I). GH is known both for its action on AT and for its detrimental effect on glucose metabolism and insulin signaling. In active acromegaly, while body fat deports are diminished, insulin resistance is increased. Early studies have demonstrated defects in insulin action, both at the hepatic and extrahepatic (i.e., muscle and fat) levels, in active disease. This review discusses recent data suggesting that AT inflammation, altered AT distribution, and impaired adipogenesis are potential mechanisms contributing to systemic insulin resistance in acromegaly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Insulin action and resistance in obesity and type 2 diabetes.

    PubMed

    Czech, Michael P

    2017-07-11

    Nutritional excess is a major forerunner of type 2 diabetes. It enhances the secretion of insulin, but attenuates insulin's metabolic actions in the liver, skeletal muscle and adipose tissue. However, conflicting evidence indicates a lack of knowledge of the timing of these events during the development of obesity and diabetes, pointing to a key gap in our understanding of metabolic disease. This Perspective reviews alternate viewpoints and recent results on the temporal and mechanistic connections between hyperinsulinemia, obesity and insulin resistance. Although much attention has addressed early steps in the insulin signaling cascade, insulin resistance in obesity seems to be largely elicited downstream of these steps. New findings also connect insulin resistance to extensive metabolic cross-talk between the liver, adipose tissue, pancreas and skeletal muscle. These and other advances over the past 5 years offer exciting opportunities and daunting challenges for the development of new therapeutic strategies for the treatment of type 2 diabetes.

  13. Docosahexaenoic acid affects insulin deficiency- and insulin resistance-induced alterations in cardiac mitochondria.

    PubMed

    Ovide-Bordeaux, Stéphanie; Grynberg, Alain

    2004-03-01

    The effect of docosahexaenoic acid (DHA) intake on cardiac mitochondrial function was evaluated in permeabilized fibers in insulin deficiency and insulin resistance in rats. The insulin-deficient state was obtained by streptozotocin injection 2 mo before investigations. Insulin resistance was obtained by feeding a 62% fructose diet for 3 mo. DHA was incorporated in the diet to modify the fatty acid composition of cardiac membranes, including mitochondria. Insulin deficiency decreased mitochondrial creatine kinase (mi-CK) activity and mitochondrial sensitivity to ADP. DHA intake prevented these alterations. Moreover, the insulin-deficient state significantly decreased n-3 polyunsaturated fatty acids (PUFA) and slightly increased n-6 PUFA in both cardiac and mitochondrial membranes, inducing a significant increase in the n-6-to-n-3 ratio. DHA intake maintained high myocardial and mitochondrial DHA content. Insulin deficiency also decreased glutamate- and palmitoylcarnitine-supported mitochondrial respiration, but DHA intake did not prevent these effects. In contrast, insulin resistance did not affect mi-CK activity or sensitivity to ADP. However, insulin resistance influenced the myocardial fatty acid composition with decreased n-6 and n-3 PUFA contents and increased monounsaturated fatty acid content. Only slight alterations were observed in mitochondrial fatty acid composition, and they were corrected by DHA intake. Moreover, insulin resistance decreased the glutamate-supported respiration, and DHA intake did not influence this effect. In conclusion, the impairment of cardiac mitochondrial function was more pronounced in the insulin-deficient state than in insulin resistance. The modification of fatty acid composition of cardiac and mitochondrial membranes by DHA partially prevented the mitochondrial alterations induced in the two models.

  14. Gestational Weight Gain in Insulin Resistant Pregnancies

    PubMed Central

    HARPER, Lorie M.; SHANKS, Anthony L.; ODIBO, Anthony O.; COLVIN, Ryan; MACONES, George A.; CAHILL, Alison G.

    2013-01-01

    Objective To examine the Institute of Medicine (IOM) guidelines for gestational weight gain (GWG) in insulin-resistant pregnancy. Study Design Secondary analysis of a prospective cohort of 435 women with type 2 or gestational diabetes from 2006–2010. The exposure was categorized as GWG less than, within, or greater than the IOM recommendations for body mass index. The maternal outcome was a composite of preeclampsia, eclampsia, 3rd–4th degree laceration, readmission, or wound infection. The neonatal outcome was a composite of preterm delivery, level 3 nursery admission, oxygen requirement >6 hours, shoulder dystocia, 5-minute Apgar≤3, umbilical cord arterial pH<7.1, or base excess <−12. Secondary outcomes were cesarean delivery (CD), macrosomia, and small for gestational age (SGA). Results Incidence of the maternal outcome did not differ with GWG (p=0.15). Women gaining more than recommended had an increased risk of CD (relative risk (RR) 1.31, 95% confidence interval (CI) 1.01–1.69) and the neonatal outcome (RR 1.40, 95% CI 1.01–1.95) compared to women gaining within the IOM recommendations. Women gaining less than recommended had an increased risk of SGA (RR 3.29, 95% CI 1.09–9.91) without a decrease in the risk of the maternal outcome (RR 0.93, 95% CI 0.49–1.78) or CD (RR 0.74-0.40-1.37) compared to women gaining within the IOM recommendations. Conclusions Women with insulin resistance should be advised to gain within the current IOM guidelines. PMID:23949833

  15. Hepatitis C Virus, Insulin Resistance, and Steatosis

    PubMed Central

    Kralj, Dominik; Jukić, Lucija Virović; Stojsavljević, Sanja; Duvnjak, Marko; Smolić, Martina; Čurčić, Ines Bilić

    2016-01-01

    Hepatitis C virus (HCV) is one of the main causes of liver disease worldwide. Liver steatosis is a common finding in many hepatic and extrahepatic disorders, the most common being metabolic syndrome (MS). Over time, it has been shown that the frequent coexistence of these two conditions is not coincidental, since many epidemiological, clinical, and experimental studies have indicated HCV to be strongly associated with liver steatosis and numerous metabolic derangements. Here, we present an overview of publications that provide clinical evidence of the metabolic effects of HCV and summarize the available data on the pathogenetic mechanisms of this association. It has been shown that HCV infection can induce insulin resistance (IR) in the liver and peripheral tissues through multiple mechanisms. Substantial research has suggested that HCV interferes with insulin signaling both directly and indirectly, inducing the production of several proinflammatory cytokines. HCV replication, assembly, and release from hepatocytes require close interactions with lipid droplets and host lipoproteins. This modulation of lipid metabolism in host cells can induce hepatic steatosis, which is more pronounced in patients with HCV genotype 3. The risk of steatosis depends on several viral factors (including genotype, viral load, and gene mutations) and host features (visceral obesity, type 2 diabetes mellitus, genetic predisposition, medication use, and alcohol consumption). HCV-related IR and steatosis have been shown to have a remarkable clinical impact on the prognosis of HCV infection and quality of life, due to their association with resistance to antiviral therapy, progression of hepatic fibrosis, and development of hepatocellular carcinoma. Finally, HCV-induced IR, oxidative stress, and changes in lipid and iron metabolism lead to glucose intolerance, arterial hypertension, hyperuricemia, and atherosclerosis, resulting in increased cardiovascular mortality. PMID:27047774

  16. Relationship between leptin, insulin resistance, insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in patients with chronic kidney disease.

    PubMed

    Atamer, A; Alisir Ecder, S; Akkus, Z; Kocyigit, Y; Atamer, Y; Ilhan, N; Ecder, T

    2008-01-01

    This study examined the relationship between leptin, insulin-like growth factor-1 (IGF-1), IGF binding protein-3 (IGFBP-3) and insulin resistance in patients with chronic kidney disease (CKD). Levels of leptin, insulin, IGF-1, IGFBP-3 and common routine parameters were measured in 45 patients (23 males and 22 females) with CKD and 45 healthy controls matched for age, gender and body mass index. IGF-1 and IGFBP-3 levels were measured using a two-site immunoradiometric assay. Leptin levels were measured using an enzyme-linked immunosorbent assay. A homeostasis model assessment computer-solved model was used to assess insulin resistance (HOMA-IR). Levels of serum leptin, insulin, IGF-1, IGFBP-3 and HOMA-IR were significantly increased in patients with CKD compared with healthy subjects, whereas fasting blood glucose was not significantly different between the two groups. In patients with CKD, the serum leptin level was significantly correlated with IGF-1, IGFBP-3 and HOMA-IR. In conclusion, this study suggests that there is an interaction between leptin, IGF-1, IGFBP-3 and insulin resistance in patients with CKD.

  17. Hypertension genes are genetic markers for insulin sensitivity and resistance.

    PubMed

    Guo, Xiuqing; Cheng, Suzanne; Taylor, Kent D; Cui, Jinrui; Hughes, Randall; Quiñones, Manuel J; Bulnes-Enriquez, Isabel; De la Rosa, Roxana; Aurea, George; Yang, Huiying; Hsueh, Willa; Rotter, Jerome I

    2005-04-01

    Insulin resistance is a determinant of blood pressure variation and risk factor for hypertension. Because insulin resistance and blood pressure cosegregate in Mexican American families, we thus investigated the association between variations in 9 previously reported hypertension genes (ACE, AGT, AGTRI, ADDI, NPPA, ADDRB2, SCNN1A, GNB3, and NOS3) and insulin resistance. Families were ascertained via a coronary artery disease proband in the Mexican American Coronary Artery Disease Project. Individuals from 100 Mexican American families (n=656) were genotyped for 14 polymorphisms in the 9 genes and all adult offspring and offspring spouses were phenotyped for insulin sensitivity by hyperinsulinemic euglycemic clamp (n=449). AGT M235T and NOS3 A(-922)G and E298D polymorphisms were significantly associated with insulin sensitivity (P=0.018, 0.036, 0.039) but were not significant after adjusting for body mass index. ADD1 G460W was associated with insulin sensitivity only after adjusting for body mass index. The NPPA T2238C and SCNN1A A663T were associated with decreased fasting insulin levels after adjusting for body mass index (P=0.015 and 0.028). In conclusion, AGT, NOS3, NPPA, ADRB2, ADD1, and SCNN1A may well be genetic markers for insulin resistance, and adiposity was a potential modifier for only some gene/trait combinations. Our data support the hypothesis that genes in the blood pressure pathway may play a role in insulin resistance in Mexican Americans.

  18. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis

    PubMed Central

    Semple, Robert K.; Sleigh, Alison; Murgatroyd, Peter R.; Adams, Claire A.; Bluck, Les; Jackson, Sarah; Vottero, Alessandra; Kanabar, Dipak; Charlton-Menys, Valentine; Durrington, Paul; Soos, Maria A.; Carpenter, T. Adrian; Lomas, David J.; Cochran, Elaine K.; Gorden, Phillip; O’Rahilly, Stephen; Savage, David B.

    2009-01-01

    Metabolic dyslipidemia is characterized by high circulating triglyceride (TG) and low HDL cholesterol levels and is frequently accompanied by hepatic steatosis. Increased hepatic lipogenesis contributes to both of these problems. Because insulin fails to suppress gluconeogenesis but continues to stimulate lipogenesis in both obese and lipodystrophic insulin-resistant mice, it has been proposed that a selective postreceptor defect in hepatic insulin action is central to the pathogenesis of fatty liver and hypertriglyceridemia in these mice. Here we show that humans with generalized insulin resistance caused by either mutations in the insulin receptor gene or inhibitory antibodies specific for the insulin receptor uniformly exhibited low serum TG and normal HDL cholesterol levels. This was due at least in part to surprisingly low rates of de novo lipogenesis and was associated with low liver fat content and the production of TG-depleted VLDL cholesterol particles. In contrast, humans with a selective postreceptor defect in AKT2 manifest increased lipogenesis, elevated liver fat content, TG-enriched VLDL, hypertriglyceridemia, and low HDL cholesterol levels. People with lipodystrophy, a disorder characterized by particularly severe insulin resistance and dyslipidemia, demonstrated similar abnormalities. Collectively these data from humans with molecularly characterized forms of insulin resistance suggest that partial postreceptor hepatic insulin resistance is a key element in the development of metabolic dyslipidemia and hepatic steatosis. PMID:19164855

  19. Relationship Between Glucocorticoids and Insulin Resistance in Healthy Individuals

    PubMed Central

    Zhou, Peng-Zhen; Zhu, Yong-Mei; Zou, Guang-Hui; Sun, Yu-Xia; Xiu, Xiao-Lin; Huang, Xin; Zhang, Qun-Hui

    2016-01-01

    Background The aim of this study was to determine the correlation between glucocorticoids (GCs) and insulin resistance (IR) in healthy individuals by conducting a systematic meta-analysis. Material/Methods A systematic literature review was conducted using 9 electronic databases. Only case-control studies investigating fasting plasma glucose (FPG) and IR were enrolled based on strictly established selection criteria. Statistical analyses were performed by Stata software, version 12.0 (Stata Corporation, College Station, Texas, USA). Results Among 496 initially retrieved articles, only 6 papers published in English were eventually included in this meta-analysis. A total of 201 healthy individuals (105 in GC group and 96 in control group) were included in the 6 studies. In 4 of these 6 studies, dexamethasone was used, and in the other 2 studies prednisolone was given. This meta-analysis revealed that the FPG, fasting insulin (FINS), and homeostasis model assessment of insulin resistance (HOMA-IR) levels in the GC group were all significantly higher than that in the control group (FPG: SMD=2.65, 95%CI=1.42~3.88, P<0.001; FINS: SMD=2.48, 95%CI=1.01~3.95, P=0.001; HOMA-IR: SMD=38.30, 95%CI=24.38~52.22, P<0.001). Conclusions In conclusion, our present study revealed that therapies using GCs might result in elevated FPG, FINS, and HOMA-IR, and thereby contribute to IR in healthy individuals. PMID:27258456

  20. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    SciTech Connect

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-10-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono-/sup 125/I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis.

  1. Cannabis use in relation to obesity and insulin resistance in the Inuit population.

    PubMed

    Ngueta, Gerard; Bélanger, Richard E; Laouan-Sidi, Elhadji A; Lucas, Michel

    2015-02-01

    To ascertain the relationship between cannabis use, obesity, and insulin resistance. Data on 786 Inuit adults from the Nunavik Inuit Health Survey (2004) were analyzed. Information on cannabis use was obtained from a self-completed, confidential questionnaire. Fasting blood glucose and insulin and homeostasis model assessment of insulin resistance (HOMA-IR) served as surrogate markers of insulin resistance. Analysis of covariance and multivariate logistic regression ascertained relationships between cannabis use and outcomes. Cannabis use was highly prevalent in the study population (57.4%) and was statistically associated with lower body mass index (BMI) (P < 0.001), lower % fat mass (P < 0.001), lower fasting insulin (P = 0.04), and lower HOMA-IR (P = 0.01), after adjusting for numerous confounding variables. Further adjustment for BMI rendered fasting insulin and HOMA-IR differences statistically nonsignificant between past-year cannabis users and nonusers. Mediation analysis showed that the effect of cannabis use on insulin resistance was indirect, through BMI. In multivariate analysis, past-year cannabis use was associated with 0.56 lower likelihood of obesity (95% confidence interval 0.37-0.84). Cannabis use was associated with lower BMI, and such an association did not occur through the glucose metabolic process or related inflammatory markers. The association between cannabis use and insulin resistance was mediated through its influence on weight. © 2014 The Obesity Society.

  2. Testosterone deficiency, insulin-resistant obesity and cognitive function.

    PubMed

    Pintana, Hiranya; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2015-08-01

    Testosterone is an androgenic steroid hormone, which plays an important role in the regulation of male reproduction and behaviors, as well as in the maintenance of insulin sensitivity. Several studies showed that testosterone exerted beneficial effects in brain function, including preventing neuronal cell death, balancing brain oxidative stress and antioxidant activity, improving synaptic plasticity and involving cognitive formation. Although previous studies showed that testosterone deficiency is positively correlated with cognitive impairment and insulin-resistant obesity, several studies demonstrated contradictory findings. Thus, this review comprehensively summarizes the current evidence from in vitro, in vivo and clinical studies of the relationship between testosterone deficiency and insulin-resistant obesity as well as the correlation between either insulin-resistant obesity or testosterone deficiency and cognitive impairment. Controversial reports and the mechanistic insights regarding the roles of testosterone in insulin-resistant obesity and cognitive function are also presented and discussed.

  3. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  4. Insulin Resistance and Environmental Pollutants: Experimental Evidence and Future Perspectives

    PubMed Central

    Vanparys, Caroline; Van Gaal, Luc F.; Jorens, Philippe G.; Covaci, Adrian; Blust, Ronny

    2013-01-01

    Background: The metabolic disruptor hypothesis postulates that environmental pollutants may be risk factors for metabolic diseases. Because insulin resistance is involved in most metabolic diseases and current health care prevention programs predominantly target insulin resistance or risk factors thereof, a critical analysis of the role of pollutants in insulin resistance might be important for future management of metabolic diseases. Objectives: We aimed to critically review the available information linking pollutant exposure to insulin resistance and to open the discussion on future perspectives for metabolic disruptor identification and prioritization strategies. Methods: We searched PubMed and Web of Science for experimental studies reporting on linkages between environmental pollutants and insulin resistance and identified a total of 23 studies as the prime literature. Discussion: Recent studies specifically designed to investigate the effect of pollutants on insulin sensitivity show a potential causation of insulin resistance. Based on these studies, a summary of viable test systems and end points can be composed, allowing insight into what is missing and what is needed to create a standardized insulin resistance toxicity testing strategy. Conclusions: It is clear that current research predominantly relies on top-down identification of insulin resistance–inducing metabolic disruptors and that the development of dedicated in vitro or ex vivo screens to allow animal sparing and time- and cost-effective bottom-up screening is a major future research need. Citation: Hectors TL, Vanparys C, Van Gaal LF, Jorens PG, Covaci A, Blust R. 2013. Insulin resistance and environmental pollutants: experimental evidence and future perspectives. Environ Health Perspect 121:1273–1281; http://dx.doi.org/10.1289/ehp.1307082 PMID:24058052

  5. The association between TNF-α and insulin resistance in euglycemic women.

    PubMed

    Walsh, Jennifer M; McGowan, Ciara A; Byrne, Jacinta A; Rath, Ann; McAuliffe, Fionnuala M

    2013-10-01

    Chronic low levels of inflammation have links to obesity, diabetes and insulin resistance. We sought to assess the relationship between cytokine tumor necrosis factor (TNF-α) and insulin resistance in a healthy, euglycemic population. This is a prospective study of 574 non-diabetic mother and infant pairs. Maternal body mass index (BMI), TNF-α, glucose and insulin were measured in early pregnancy and at 28 weeks. Insulin resistance was calculated by HOMA index. At delivery birthweight was recorded and cord blood analysed for fetal C-peptide and TNF-α. In a multivariate model, maternal TNF-α in early pregnancy was predicted by maternal insulin resistance at the same time-point, (β=0.54, p<0.01), and maternal TNF-α at 28 weeks was predicted by maternal insulin resistance in early pregnancy (β=0.24, p<0.01) and at 28 weeks (β=0.39, p<0.01). These results, in a large cohort of healthy, non-diabetic women have shown that insulin resistance, even at levels below those diagnostic of gestational diabetes, is associated with maternal and fetal inflammatory response. These findings have important implications for defining the pathways of fetal programming of later metabolic syndrome and childhood obesity.

  6. Oxidative stress and insulin resistance in policemen working shifts.

    PubMed

    Demir, Irfan; Toker, Aysun; Zengin, Selcuk; Laloglu, Esra; Aksoy, Hulya

    2016-04-01

    Shift work is a work schedule involving irregular or unusual hours, compared to those of a normal daytime work schedule. In developed countries, night shift work is very common. In several cities of our country, 12/24 shift system is implemented in police organization. While night shift work composes half of the 20 shift in a month, in ergonomic shift system, an alternative shift schedule, shift work can be performed in three shifts in a day. In this study, we aimed to investigate the effects of 12/24 shift work system on insulin resistance and oxidative stress and systemic inflammation. Two hundred and four 12/24 shift workers (age 44.3 ± 5.6 years) and 193 ergonomic shift workers (age 42.6 ± 5.5 years) were included to study. Serum oxidized LDL (ox-LDL), neutrophil gelatinase lipocalin-2 (NGAL) as oxidative stress markers, glucose, insulin, ferritin, high-sensitive C-reactive protein (hsCRP) and erythrocyte sedimentation rate values were measured. Homeostasis model assessment for insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance. Serum ox-LDL, HOMA-IR, hsCRP and NGAL levels in 12/24 shift system were found to be significantly higher compared with ergonomic shift workers (p < 0.0001, p = 0.02, p = 0.03, p = 0.02, respectively). When evaluated all subjects, weak but significant correlation was found between HOMA-IR with ox-LDL (r = 0.12, p = 0.01), hsCRP (r = 0.17, p = 0.001) and ferritin (r = 0.15, r = 0.003). Also in 12/24 shift work group, there were significant correlations between HOMA-IR with hsCRP (r = 0.17, p = 0.01) and ferritin (r = 0.25, p = 0.0001). It may be concluded that 12/24 shift system might give rise to insulin resistance and oxidative stress. Additionally, workers in this system may under risk of systemic inflammatory response. Working hours must be arranged in accordance with the physiological rhythm.

  7. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future.

    PubMed

    Park, Se Eun; Park, Cheol-Young; Sweeney, Gary

    2015-01-01

    Insulin resistance in insulin target tissues including liver, skeletal muscle and adipose tissue is an early step in the progression towards type 2 diabetes. Accurate diagnostic parameters reflective of insulin resistance are essential. Longstanding tests for fasting blood glucose and HbA1c are useful and although the hyperinsulinemic euglycemic clamp remains a "gold standard" for accurately determining insulin resistance, it cannot be implemented on a routine basis. The study of adipokines, and more recently myokines and hepatokines, as potential biomarkers for insulin sensitivity is now an attractive and relatively straightforward approach. This review discusses potential biomarkers including adiponectin, RBP4, chemerin, A-FABP, FGF21, fetuin-A, myostatin, IL-6, and irisin, all of which may play significant roles in determining insulin sensitivity. We also review potential future directions of new biological markers for measuring insulin resistance, including metabolomics and gut microbiome. Collectively, these approaches will provide clinicians with the tools for more accurate, and perhaps personalized, diagnosis of insulin resistance.

  8. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  9. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  10. Polyphenols activate energy sensing network in insulin resistant models.

    PubMed

    Mutlur Krishnamoorthy, Radika; Carani Venkatraman, Anuradha

    2017-09-25

    Unhealthy diet deficient in fruits and vegetables but rich in calories is considered to be one factor responsible for the increased prevalence of insulin resistance and type 2 diabetes (T2D). The consumption of fast foods and soft drinks increases fructose consumption per se and this is of major concern since prolonged fructose intake induces insulin resistance and thereby T2D. The energy homeostasis is regulated by a network consisting of "fuel gauze" called AMP-activated protein kinase (AMPK), the NAD(+) dependent type III deacetylase (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) which is disrupted in T2D. The present study was aimed to investigate the action of naringenin and quercetin on energy sensing molecules in insulin resistant models. L6 myotubes and albino Wistar rats were rendered insulin resistant with palmitate and fructose respectively. Naringenin, quercetin or metformin were used for treatment. Fructose and palmitate treatment resulted in insulin resistance as evidenced by decreased glucose transporter 4 (GLUT4) translocation. The translocation of GLUT4, phosphorylation of AMPK and the expression of SIRT1 and PGC-1α which were reduced in insulin resistant cells, were increased upon treatment with polyphenols. Further, naringenin and quercetin showed binding affinity with energy sensing molecules. We conclude that drugs from natural resources that target energy sensing molecules might be helpful to prevent insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Impact of Adiposity on Incident Hypertension Is Modified by Insulin Resistance in Adults: Longitudinal Observation From the Bogalusa Heart Study.

    PubMed

    Zhang, Tao; Zhang, Huijie; Li, Shengxu; Li, Ying; Liu, Yaozhong; Fernandez, Camilo; Harville, Emily; Bazzano, Lydia; He, Jiang; Chen, Wei

    2016-01-01

    Adiposity and insulin resistance are closely associated with hypertension. This study aims to investigate whether the association between adiposity and hypertension is modified by insulin resistance. The cohort consisted of 1624 middle-aged normotensive black and white adults aged 18 to 43 years at baseline who followed for 16 years on average. Overweight/obesity at baseline was defined as body mass index (BMI) ≥25, and insulin resistance was measured using homeostasis model assessment of insulin resistance. Prevalence of incident hypertension was compared between the insulin-sensitive adiposity and insulin-resistant adiposity groups. The prevalence of incident hypertension was higher in the insulin-resistant adiposity than in the insulin-sensitive adiposity group (32.1% versus 22.1%, P<0.001). In multivariable logistic analyses, adjusted for baseline age, race, sex, follow-up years, and smoking, baseline insulin-resistant obesity was associated with incident hypertension (odds ratio, 1.9; P=0.008). Odds ratios did not differ between blacks and whites (P=0.238). Of note, the odds ratios of BMI associated with hypertension significantly increased with increasing quartiles of baseline homeostasis model assessment (odds ratio, 1.3, 1.1, 1.5, and 2.5 in quartiles I, II, III, and IV, respectively; P=0.006 for trend). Slopes of increasing follow-up blood pressure with baseline BMI, measured as regression coefficients (β), were significantly greater in insulin-resistant than in insulin-sensitive individuals (β=0.74 versus β=0.35 for systolic blood pressure, P=0.004 for difference; β=0.51 versus β=0.23 for diastolic blood pressure, P=0.001 for difference). These findings suggest that insulin resistance has a synergistic effect on the obesity-hypertension association in young adults, indicating that the role of adiposity in the development of hypertension is modified by insulin resistance.

  12. Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction.

    PubMed

    Fu, Zhuo; Wu, Jing; Nesil, Tanseli; Li, Ming D; Aylor, Kevin W; Liu, Zhenqi

    2017-02-01

    Insulin action on hippocampus improves cognitive function, and obesity and type 2 diabetes are associated with decreased cognitive function. Cerebral microvasculature plays a critical role in maintaining cerebral vitality and function by supplying nutrients, oxygen, and hormones such as insulin to cerebral parenchyma, including hippocampus. In skeletal muscle, insulin actively regulates microvascular opening and closure, and this action is impaired in the insulin-resistant states. To examine insulin's action on hippocampal microvasculature and parenchyma and the impact of diet-induced obesity, we determined cognitive function and microvascular insulin responses, parenchyma insulin responses, and capillary density in the hippocampus in 2- and 8-mo-old rats on chow diet and 8-mo-old rats on a long-term high-fat diet (6 mo). Insulin infusion increased hippocampal microvascular perfusion in rats on chow diet by ~80-90%. High-fat diet feeding completely abolished insulin-mediated microvascular responses and protein kinase B phosphorylation but did not alter the capillary density in the hippocampus. This was associated with a significantly decreased cognitive function assessed using both the two-trial spontaneous alternation behavior test and the novel object recognition test. As the microvasculature provides the needed endothelial surface area for delivery of nutrients, oxygen, and insulin to hippocampal parenchyma, we conclude that hippocampal microvascular insulin resistance may play a critical role in the development of cognitive impairment seen in obesity and diabetes. Our results suggest that improvement in hippocampal microvascular insulin sensitivity might help improve or reverse cognitive function in the insulin-resistant states.

  13. Insulin resistance in penile arteries from a rat model of metabolic syndrome

    PubMed Central

    Contreras, Cristina; Sánchez, Ana; Martínez, Pilar; Raposo, Rafaela; Climent, Belén; García-Sacristán, Albino; Benedito, Sara; Prieto, Dolores

    2010-01-01

    BACKGROUND AND PURPOSE Metabolic and cardiovascular abnormalities accompanying metabolic syndrome, such as obesity, insulin resistance and hypertension, are all associated with endothelial dysfunction and are independent risk factors for erectile dysfunction. The purpose of the present study was to investigate the vascular effects of insulin in penile arteries and whether these effects are impaired in a rat model of insulin resistance and metabolic syndrome. EXPERIMENTAL APPROACH Penile arteries from obese Zucker rats (OZR) and their counterpart, lean Zucker rats (LZR), were mounted on microvascular myographs and the effects of insulin were assessed in the absence and presence of endothelium and of specific inhibitors of nitric oxide (NO) synthesis, phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). Insulin-induced changes in intracellular Ca2+ concentration [Ca2+]i were also examined. KEY RESULTS OZR exhibited mild hyperglycaemia, hypercholesterolemia, hypertryglyceridemia and hyperinsulinemia. Insulin induced endothelium- and NO-dependent relaxations in LZR that were impaired in OZR. Inhibition of PI3K reduced relaxation induced by insulin and by the β-adrenoceptor agonist isoprenaline, mainly in arteries from LZR. Antagonism of endothelin 1 (ET-1) receptors did not alter insulin-induced relaxation in either LZR or OZR, but MAPK blockade increased the responses in OZR. Insulin decreased [Ca2+]i, a response impaired in OZR. CONCLUSIONS AND IMPLICATIONS Insulin-induced relaxation was impaired in penile arteries of OZR due to altered NO release through the PI3K pathway and unmasking of a MAPK-mediated vasoconstriction. This vascular insulin resistance is likely to contribute to the endothelial dysfunction and erectile dysfunction associated with insulin resistant states. PMID:20735420

  14. Insulin Resistance: Metabolic mechanisms and consequences in the heart

    PubMed Central

    Abel, E. Dale; O'Shea, Karen M.; Ramasamy, Ravichandran

    2013-01-01

    Insulin resistance is a characteristic feature of obesity and Type 2 diabetes and impacts the heart in various ways. Impaired insulin-mediated glucose uptake is a uniformly observed characteristic of the heart in these states, although changes in upstream kinase signaling are variable and dependent on the severity and duration of the associated obesity or diabetes. The understanding of the physiological and pathophysiological role of insulin resistance in the heart is evolving. To maintain its high energy demands, the heart is capable of utilizing many metabolic substrates. Although, insulin signaling may directly regulate cardiac metabolism, its main role is likely the regulation of substrate delivery from the periphery to the heart. In addition to promoting glucose uptake, insulin regulates long chain fatty acid uptake, protein synthesis, and vascular function in the normal cardiovascular system. Recent advances in understanding the role of metabolic, signaling, and inflammatory pathways in obesity have provided opportunities to better understand the pathophysiology of insulin resistance in the heart. This review will summarize our current understanding of metabolic mechanisms for and consequences of insulin resistance in the heart and discuss potential new areas for investigating novel mechanisms that contribute to insulin resistance in the heart. PMID:22895668

  15. Insulin resistance: metabolic mechanisms and consequences in the heart.

    PubMed

    Abel, E Dale; O'Shea, Karen M; Ramasamy, Ravichandran

    2012-09-01

    Insulin resistance is a characteristic feature of obesity and type 2 diabetes mellitus and impacts the heart in various ways. Impaired insulin-mediated glucose uptake is a uniformly observed characteristic of the heart in these states, although changes in upstream kinase signaling are variable and dependent on the severity and duration of the associated obesity or diabetes mellitus. The understanding of the physiological and pathophysiological role of insulin resistance in the heart is evolving. To maintain its high energy demands, the heart is capable of using many metabolic substrates. Although insulin signaling may directly regulate cardiac metabolism, its main role is likely the regulation of substrate delivery from the periphery to the heart. In addition to promoting glucose uptake, insulin regulates long-chain fatty acid uptake, protein synthesis, and vascular function in the normal cardiovascular system. Recent advances in understanding the role of metabolic, signaling, and inflammatory pathways in obesity have provided opportunities to better understand the pathophysiology of insulin resistance in the heart. This review will summarize our current understanding of metabolic mechanisms for and consequences of insulin resistance in the heart and will discuss potential new areas for investigating novel mechanisms that contribute to insulin resistance in the heart.

  16. Exogenous thyroxine improves glucose intolerance in insulin-resistant rats.

    PubMed

    Vazquez-Anaya, Guillermo; Martinez, Bridget; Soñanez-Organis, José G; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2017-03-01

    Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T4) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T4 (8.0 µg/100 g BM/day × 5 weeks). T4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T4-treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T4 treatment increased the influx of T4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis.

  17. Intramyocellular lipid kinetics and insulin resistance

    PubMed Central

    Guo, ZengKui

    2007-01-01

    More than fifteen years ago it was discovered that intramyocellular triglyceride (imcTG) content in skeletal muscle is abnormally high in conditions of lipid oversupply (e.g. high fat feeding) and, later, obesity, type 2 diabetes (T2D) and other metabolic conditions. This imcTG excess is robustly associated with muscle insulin resistance (MIR). However, to date the pathways responsible for the imcTG excess and the mechanisms underlying the imcTG-MIR correlation remain unclear. A current hypothesis is based on a backward mechanism that impaired fatty acid oxidation by skeletal muscle causes imcTG to accumulate. As such, imcTG excess is considered a marker but not a player in MIR. However, recent results from kinetic studies indicated that imcTG pool in high fat-induced obesity (HFO) model is kinetically dynamic. On one hand, imcTG synthesis is accelerated and contributes to imcTG accumulation. On the other, the turnover of imcTG is also accelerated. A hyperdynamic imcTG pool can impose dual adverse effects on glucose metabolism in skeletal muscle. It increases the release and thus the availability of fatty acids in myocytes that may promote fatty acid oxidation and suppress glucose utilization. Meanwhile, it releases abundant fatty acid products (e.g. diacylglycerol, ceramides) that impair insulin actions via signal transduction, thereby causing MIR. Thus, intramyocellular fatty acids and their products released from imcTG appear to function as a link to MIR. Accordingly, a forward mechanism is proposed that explains the imcTG-MIR correlation. PMID:17650308

  18. Leptolide Improves Insulin Resistance in Diet-Induced Obese Mice

    PubMed Central

    Villa-Pérez, Pablo; Cueto, Mercedes; Moreno, Alfredo; Perdomo, Germán

    2017-01-01

    Type 2 diabetes (T2DM) is a complex disease linked to pancreatic beta-cell failure and insulin resistance. Current antidiabetic treatment regimens for T2DM include insulin sensitizers and insulin secretagogues. We have previously demonstrated that leptolide, a member of the furanocembranolides family, promotes pancreatic beta-cell proliferation in mice. Considering the beneficial effects of leptolide in diabetic mice, in this study, we aimed to address the capability of leptolide to improve insulin resistance associated with the pathology of obesity. To this end, we tested the hypothesis that leptolide should protect against fatty acid-induced insulin resistance in hepatocytes. In a time-dependent manner, leptolide (0.1 µM) augmented insulin-stimulated phosphorylation of protein kinase B (PKB) by two-fold above vehicle-treated HepG2 cells. In addition, leptolide (0.1 µM) counteracted palmitate-induced insulin resistance by augmenting by four-fold insulin-stimulated phosphorylation of PKB in HepG2 cells. In vivo, acute intraperitoneal administration of leptolide (0.1 mg/kg and 1 mg/kg) improved glucose tolerance and insulin sensitivity in lean mice. Likewise, prolonged leptolide treatment (0.1 mg/kg) in diet-induced obese mice improved insulin sensitivity. These effects were paralleled with an ~50% increased of insulin-stimulated phosphorylation of PKB in liver and skeletal muscle and reduced circulating pro-inflammatory cytokines in obese mice. We concluded that leptolide significantly improves insulin sensitivity in vitro and in obese mice, suggesting that leptolide may be another potential treatment for T2DM. PMID:28914811

  19. Insulin resistance is associated with gallstones even in non-obese, non-diabetic Korean men.

    PubMed

    Chang, Yoosoo; Sung, Eunju; Ryu, Seungho; Park, Yong-Woo; Jang, Yu Mi; Park, Minseon

    2008-08-01

    It remains unclear as to whether insulin resistance alone or in the presence of wellknown risk factors, such as diabetes or obesity, is associated with gallstones in men. The aim of this study was to determine whether insulin resistance is associated independently with gallstone disease in non-diabetic men, regardless of obesity. Study subjects were 19,503 Korean men, aged 30-69 yr, with fasting blood glucose level <126 mg/dL and without a documented history of diabetes. Gallbladder status was assessed via abdominal ultrasonography after overnight fast. Body mass index and waist circumference were measured. Insulin resistance was estimated by the Homeostasis Model Assessment of insulin resistance (HOMA-IR). The prevalence of obesity, abdominal obesity, and metabolic syndrome in the subjects with gallstones were higher than in those without. The prevalence of elevated HOMA (>75 percentile) in subjects with gallstones was significantly higher than in those without, and this association remained even after the obesity stratification was applied. In multiple logistic regression analyses, only age and HOMA proved to be independent predictors of gallstones. Insulin resistance was positively associated with gallstones in non-diabetic Korean men, and this occurred regardless of obesity. Gallstones appear to be a marker for insulin resistance, even in non-diabetic, nonobese men.

  20. Sex differences in the associations of visceral adiposity, homeostatic model assessment of insulin resistance, and body mass index with lipoprotein subclass analysis in obese adolescents.

    PubMed

    Hatch-Stein, Jacquelyn A; Kelly, Andrea; Gidding, Samuel S; Zemel, Babette S; Magge, Sheela N

    2016-01-01

    The relationship of lipoprotein particle subclasses to visceral adipose tissue area (VAT-area) in obese children has not been examined previously. The study aims were to compare the relationships of VAT-area, homeostatic model assessment of insulin resistance (HOMA-IR), and body mass index (BMI) with lipids and lipoprotein subclasses in obese adolescents and to determine whether these relationships vary by sex. This cross-sectional study of obese adolescents (BMI ≥ 95th percentile), aged 12 to 18 years, measured VAT-area by dual-energy X-ray absorptiometry, BMI, fasting lipids, lipoprotein subclasses, and HOMA-IR. Linear regression models evaluated the associations of VAT-area, HOMA-IR, and BMI with lipid cardiometabolic risk factors. Sex-stratified analyses further explored these associations. Included were 127 adolescents (age = 14.4 ± 1.5 years; 53.5% female; 88.2% African-American), mean BMI = 34.0 ± 5.1 kg/m(2). VAT-area was negatively associated with low-density lipoprotein particle (LDL-P) size (β = -0.28, P = .0001), high-density lipoprotein particle (HDL-P) size (β = -0.33, P < .0001), and large HDL-P concentration (β = -0.29, P < .0001) and positively associated with small LDL-P concentration (β = 0.23, P = .0005) and small HDL-P concentration (β = 0.25, P = .05). When VAT-area, HOMA-IR, and BMI associations were compared, VAT-area had the strongest associations with most of the lipoprotein subclasses. After sex stratification, the associations of VAT-area with HDL cholesterol, LDL-P size, and large LDL-P concentration were significant only for females (all P < .05). In a cohort of largely African-American obese adolescents, VAT-area was associated with a more atherogenic lipoprotein subclass profile. When compared with HOMA-IR and BMI, VAT-area had the strongest associations with most lipoprotein subclasses. The relationships between VAT-area and certain lipoprotein subclasses are significantly different in males

  1. D-Chiro-Inositol Glycans in Insulin Signaling and Insulin Resistance

    PubMed Central

    Larner, Joseph; Brautigan, David L; Thorner, Michael O

    2010-01-01

    Classical actions of insulin involve increased glucose uptake from the bloodstream and its metabolism in peripheral tissues, the most important and relevant effects for human health. However, nonoxidative and oxidative glucose disposal by activation of glycogen synthase (GS) and mitochondrial pyruvate dehydrogenase (PDH) remain incompletely explained by current models for insulin action. Since the discovery of insulin receptor Tyr kinase activity about 25 years ago, the dominant paradigm for intracellular signaling by insulin invokes protein phosphorylation downstream of the receptor and its primary Tyr phosphorylated substrates—the insulin receptor substrate family of proteins. This scheme accounts for most, but not all, intracellular actions of insulin. Essentially forgotten is the previous literature and continuing work on second messengers generated in cells in response to insulin. Treatment and even prevention of diabetes and metabolic syndrome will benefit from a more complete elucidation of cellular-signaling events activated by insulin, to include the actions of second messengers such as glycan molecules that contain D-chiro-inositol (DCI). The metabolism of DCI is associated with insulin sensitivity and resistance, supporting the concept that second messengers have a role in responses to and resistance to insulin. PMID:20811656

  2. Severe insulin resistance secondary to insulin antibodies: successful treatment with the immunosuppressant MMF.

    PubMed

    Segal, T; Webb, Ea; Viner, R; Pusey, C; Wild, G; Allgrove, J

    2008-06-01

    We have evaluated the use of the immunosuppressant mycophenolate mofetil (MMF) in the treatment of severe insulin resistance caused by neutralising anti-insulin antibodies in type 1 diabetes mellitus (T1DM). A 12-yr-old boy with a 5-month history of T1DM developed severe immunological insulin resistance secondary to human insulin antibodies. Various different treatment modalities, including lispro insulin, intravenous insulin, prednisolone and immunoabsorption, were tried, all without a sustained response to treatment. Although the introduction of the immunosuppressant MMF only resulted in a small reduction in haemoglobin A1c (from 10.9 to 9.8%), it did result in a significant reduction in insulin requirements from 6000 to 250 U/d (75 to 3.1 U/kg/d), disappearance of the severe nocturnal hypoglycaemia associated with high titres of insulin antibodies and a reduction in the level of these antibodies from 34.6 to 2.7 mg/dL. MMF may be considered as a means of immunosuppression in patients with markedly raised insulin antibodies whose diabetes cannot be controlled with insulin alone.

  3. Metabolic Acidosis-Induced Insulin Resistance and Cardiovascular Risk

    PubMed Central

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús

    2011-01-01

    Abstract Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosisworsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  4. Does Cardiorespiratory Fitness Modify the Association between Birth Weight and Insulin Resistance in Adult Life?

    PubMed Central

    Aoyama, Tomoko; Tsushita, Kazuyo; Miyatake, Nobuyuki; Numata, Takeyuki; Miyachi, Motohiko; Tabata, Izumi; Cao, Zhen-Bo; Sakamoto, Shizuo; Higuchi, Mitsuru

    2013-01-01

    Objective Lower birth weight is associated with higher insulin resistance in later life. The aim of this study was to determine whether cardiorespiratory fitness modifies the association of birth weight with insulin resistance in adults. Methods The subjects were 379 Japanese individuals (137 males, 242 females) aged 20–64 years born after 1943. Insulin resistance was assessed using a homeostasis model assessment of insulin resistance (HOMA-IR), which is calculated from fasting blood glucose and insulin levels. Cardiorespiratory fitness (maximal oxygen uptake, VO2max) was assessed by a maximal graded exercise test on a cycle ergometer. Birth weight was reported according to the Maternal and Child Health Handbook records or the subject’s or his/her mother’s memory. Results The multiple linear regression analysis revealed that birth weight was inversely associated with HOMA-IR (β = −0.141, p = 0.003), even after adjustment for gender, age, current body mass index, mean blood pressure, triglycerides, HDL cholesterol, and smoking status. Further adjustments for VO2max made little difference in the relationship between birth weight and HOMA-IR (β = −0.148, p = 0.001), although VO2max (β = −0.376, p<0.001) was a stronger predictor of HOMA-IR than birth weight. Conclusions The results showed that the association of lower birth weight with higher insulin resistance was little modified by cardiorespiratory fitness in adult life. However, cardiorespiratory fitness was found to be a stronger predictor of insulin resistance than was birth weight, suggesting that increasing cardiorespiratory fitness may have a much more important role in preventing insulin resistance than an individual’s low birth weight. PMID:24069257

  5. Gene-Specific DNA Methylation may Mediate Atypical Antipsychotic-Induced Insulin Resistance

    PubMed Central

    Burghardt, Kyle J.; Goodrich, Jacyln M.; Dolinoy, Dana C.; Ellingrod, Vicki L.

    2017-01-01

    Objectives Atypical Antipsychotics (AAPs) carry a significant risk of cardiometabolic side effects including insulin resistance. It is thought that the insulin resistance resulting from the use of AAP may be associated with changes in DNA methylation. We aimed to identify and validate a candidate gene associated with AAP-induced insulin resistance by using a multi-step approach that included an epigenome-wide association study (EWAS) and validation with site-specific methylation and metabolomics data. Methods Bipolar subjects treated with AAPs or lithium monotherapy were recruited for a cross-sectional visit to analyze peripheral blood DNA methylation and insulin resistance. Epigenome-wide DNA methylation was analyzed in a discovery sample (n=48) using the Illumina 450K BeadChip. Validation analyses of the epigenome-wide findings occurred in a separate sample (n=72) using site-specific methylation with pyrosequencing and untargeted metabolomics data. Regression analyses were conducted controlling for known confounders in all analyses and a mediation analysis was performed to investigate if AAP-induced insulin resistance occurs through changes in DNA methylation. Results A differentially methylated probe associated with insulin resistance was discovered and validated in the Fatty Acyl CoA Reductase 2 (FAR2) gene of Chromosome 12. Functional associations of this DNA methylation site on untargeted phospholipid-related metabolites were also detected. Our results identified a mediating effect of this FAR2 methylation site on AAP-induced insulin resistance. Conclusions Going forward, prospective, longitudinal studies assessing comprehensive changes in FAR2 DNA methylation, expression, and lipid metabolism before and after AAP treatment are required to assess its potential role in the development of insulin resistance. PMID:27542345

  6. Fast-food restaurants, park access, and insulin resistance among Hispanic youth.

    PubMed

    Hsieh, Stephanie; Klassen, Ann C; Curriero, Frank C; Caulfield, Laura E; Cheskin, Lawrence J; Davis, Jaimie N; Goran, Michael I; Weigensberg, Marc J; Spruijt-Metz, Donna

    2014-04-01

    Evidence of associations between the built environment and obesity risk has been steadily building, yet few studies have focused on the relationship between the built environment and aspects of metabolism related to obesity's most tightly linked comorbidity, type 2 diabetes. To examine the relationship between aspects of the neighborhood built environment and insulin resistance using accurate laboratory measures to account for fat distribution and adiposity. Data on 453 Hispanic youth (aged 8-18 years) from 2001 to 2011 were paired with neighborhood built environment and 2000 Census data. Analyses were conducted in 2011. Walking-distance buffers were built around participants' residential locations. Body composition and fat distribution were assessed using dual x-ray absorptiometry and waist circumference. Variables for park space, food access, walkability, and neighborhood sociocultural aspects were entered into a multivariate regression model predicting insulin resistance as determined by the homeostasis model assessment. Independent of obesity measures, greater fast-food restaurant density was associated with higher insulin resistance. Increased park space and neighborhood linguistic isolation were associated with lower insulin resistance among boys. Among girls, park space was associated with lower insulin resistance, but greater neighborhood linguistic isolation was associated with higher insulin resistance. A significant interaction between waist circumference and neighborhood linguistic isolation indicated that the negative association between neighborhood linguistic isolation and insulin resistance diminished with increased waist circumference. Reducing access to fast food and increasing public park space may be valuable to addressing insulin resistance and type 2 diabetes, but effects may vary by gender. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Predictors of insulin resistance and metabolic complications in polycystic ovarian syndrome in an eastern Indian population.

    PubMed

    Dasgupta, Anindya; Khan, Aparna; Banerjee, Ushasi; Ghosh, Mrinalkanti; Pal, Mrinal; Chowdhury, Kanika M; Dasgupta, Sayantan

    2013-04-01

    The purpose of this study was to assess the predictive values of central obesity and hyperandrogenemia in development of insulin resistance and dyslipidemia in the polycystic ovarian syndrome (PCOS) patients in our region. Differences of fasting blood glucose level, insulin resistance index HOMA-IR, lipid parameters, waist hip ratio (WHR), body mass index, LH/FSH ratio and testosterone levels between 45 PCOS cases and 35 age matched controls were obtained. Strength of association between different parameters in the case group was assayed by Pearson's correlation analysis. Dependence of insulin resistance and WHR on different predictors was assessed by multiple linear regression assay. Total cholesterol, LDL cholesterol, LH, FSH, LH/FSH ratio, WHR and insulin resistance were significantly higher in the case group (p < 0.05). Serum testosterone showed strong correlation with insulin resistance and LH/FSH ratio (r = 0.432 and 0.747, p = 0.01 and 0.001 respectively) in the PCOS patients while WHR and serum testosterone level stood out to be most significant predictors for the insulin resistance (β = 0.361 and 0.498; p = 0.048 and 0.049 respectively). Hyperandrogenemia and central obesity were the major factors predicting development of insulin resistance and its related metabolic and cardiovascular complications in our PCOS patients. We suggest early monitoring for androgen level and WHR in these patients for predicting an ensuing insulin resistance and modulating the treatment procedure accordingly to minimise future cardiovascular risks.

  8. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    PubMed Central

    Aguer, Céline; McCoin, Colin S.; Knotts, Trina A.; Thrush, A. Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H.; Adams, Sean H.; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20–30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2–3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance.—Aguer, C., McCoin, C. S., Knotts, T. A., Thrush, A. B., Ono-Moore, K., McPherson, R., Dent, R., Hwang, D. H., Adams, S. H., Harper, M.-E. Acylcarnitines: potential implications for skeletal muscle insulin resistance. PMID:25342132

  9. A prospective trial of U500 insulin delivered by Omnipod in patients with type 2 diabetes mellitus and severe insulin resistance.

    PubMed

    Lane, Wendy S; Weinrib, Stephen L; Rappaport, Jonathan M; Przestrzelski, Therese

    2010-01-01

    To test the effectiveness and safety of U500 regular insulin delivered by continuous subcutaneous insulin infusion (CSII) via the Omnipod insulin delivery system in patients with uncontrolled type 2 diabetes mellitus and severe insulin resistance. In this prospective, 1-year, proof-of-concept trial, patients with insulin-requiring type 2 diabetes who had a hemoglobin A1c level of 7.0% or higher and severe insulin resistance (average insulin requirement, 1.74 units of insulin per kilogram each day; range, 1.4 to 2.64 units of insulin per kilogram [average insulin dose, 196.4 units daily]) were identified at routine office visits at Mountain Diabetes and Endocrine Center in Asheville, North Carolina, between December 2007 and August 2008. All patients had been on intensive insulin therapy with or without oral agents for more than 3 months. All patients were switched from baseline failed therapy to U500 regular insulin by continuous subcutaneous insulin infusion via Omnipod. Effectiveness was assessed by hemoglobin A1c measurement and 72-hour continuous glucose monitoring at baseline and at weeks 13, 26, and, 52 and by treatment satisfaction assessed by the Insulin Delivery Rating System Questionnaire at baseline and at week 52 while on U500 via Omnipod. Twenty-one adults were enrolled (mean age, 54 years; mean duration of diabetes, 4 years; mean body mass index, 39.4 kg/m2; mean insulin requirement, 1.7 U/kg per day; and mean hemoglobin A1c, 8.6%) whose previous treatment with U100 insulin regimens had failed. Twenty patients completed the study. Treatment with U500 insulin via Omnipod significantly reduced hemoglobin A1c by 1.23% (P<.001) and significantly increased the percentage of time spent in the blood glucose target range (70-180 mg/dL) by 70.75% as assessed by continuous glucose monitoring (P<.001) without a significant increase in hypoglycemia. Patients were satisfied with treatment with U500 insulin via Omnipod, and 14 patients elected to remain on

  10. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    PubMed

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  11. Characteristics and contributions of hyperandrogenism to insulin resistance and other metabolic profiles in polycystic ovary syndrome.

    PubMed

    Huang, Rong; Zheng, Jun; Li, Shengxian; Tao, Tao; Ma, Jing; Liu, Wei

    2015-05-01

    To investigate the different characteristics in Chinese Han women with polycystic ovary syndrome, and to analyze the significance of hyperandrogenism in insulin resistance and other metabolic profiles. A cross-sectional study. Medical university hospital. A total of 229 women with polycystic ovary syndrome aged 18-45 years. Women with polycystic ovary syndrome, diagnosed by Rotterdam criteria, were divided into four groups according to the quartile intervals of free androgen index levels. Comparisons between groups were performed using one-way analysis of variance. Stepwise logistic regression analysis was performed to investigate the association between homeostasis model assessment-insulin resistance and independent variables. Within the four phenotypes, women with phenotype 1 (hyperandrogenism, oligo/anovulation, and polycystic ovaries) exhibited higher total testosterone, free androgen index, androstenedione, low-density lipoprotein, and lower quantitative insulin sensitivity check index (p < 0.05); women with phenotype 4 (oligo/anovulation and polycystic ovaries) showed lower total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance, but higher high-density lipoprotein (p < 0.05). The levels of triglycerides, total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance significantly increased, but high-density lipoprotein and quantitative insulin sensitivity check index decreased with the elevation of free androgen index intervals. After adjustment for lipid profiles, free androgen index was significantly associated with homeostasis model assessment-insulin resistance in both lean and overweight/obese women (odds ratio 1.302, p = 0.039 in lean vs. odds ratio 1.132, p = 0.036 in overweight/obese). Phenotypes 1 and 4 represent groups with the most and least severe metabolic profiles, respectively. Hyperandrogenism, particularly with elevated free androgen index, is likely a key contributing

  12. Insulin Resistance, Ceramide Accumulation, and Endoplasmic Reticulum Stress in Human Chronic Alcohol-Related Liver Disease

    PubMed Central

    Longato, Lisa; Ripp, Kelsey; Setshedi, Mashiko; Dostalek, Miroslav; Akhlaghi, Fatemeh; Branda, Mark; Wands, Jack R.; de la Monte, Suzanne M.

    2012-01-01

    Background. Chronic alcohol-related liver disease (ALD) is mediated by insulin resistance, mitochondrial dysfunction, inflammation, oxidative stress, and DNA damage. Recent studies suggest that dysregulated lipid metabolism with accumulation of ceramides, together with ER stress potentiate hepatic insulin resistance and may cause steatohepatitis to progress. Objective. We examined the degree to which hepatic insulin resistance in advanced human ALD is correlated with ER stress, dysregulated lipid metabolism, and ceramide accumulation. Methods. We assessed the integrity of insulin signaling through the Akt pathway and measured proceramide and ER stress gene expression, ER stress signaling proteins, and ceramide profiles in liver tissue. Results. Chronic ALD was associated with increased expression of insulin, IGF-1, and IGF-2 receptors, impaired signaling through IGF-1R and IRS1, increased expression of multiple proceramide and ER stress genes and proteins, and higher levels of the C14, C16, C18, and C20 ceramide species relative to control. Conclusions. In human chronic ALD, persistent hepatic insulin resistance is associated with dysregulated lipid metabolism, ceramide accumulation, and striking upregulation of multiple ER stress signaling molecules. Given the role of ceramides as mediators of ER stress and insulin resistance, treatment with ceramide enzyme inhibitors may help reverse or halt progression of chronic ALD. PMID:22577490

  13. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    PubMed

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMI<25) groups. Insulin resistance scores were calculated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) method. Physical parameters (BMI, abdominal circumference) as well as levels of insulin and MDA were found to be significantly higher in subjects with diabetes than their non diabetic controls. The said parameters also showed significant difference in obese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  14. Hyperandrogenism-Insulin Resistance-Acanthosis Nigricans Syndrome

    PubMed Central

    Dédjan, A. H.; Chadli, A.; El Aziz, S.; Farouqi, A.

    2015-01-01

    Introduction. Female hyperandrogenism is a frequent motive of consultation. It is revealed by hirsutism, acne or seborrhea, and disorders in menstruation cycle combined or not with virilisation signs. Several etiologies are incriminated but the hyperandrogenism-insulin resistance-acanthosis nigricans syndrome is rare. Observation. A 20-year-old girl, having had a five-year-old secondary amenorrhea. The exam revealed a patient, normotensive with a body mass index at 30 kg/m2 and a waist measurement of 120 cm, a severe hirsutism assessed to be 29 according to Ferriman Gallwey scale, virilisation signs of male morphotype, clitoridic hypertrophy and frontal alopecia, and an acanthosis nigricans behind the neck, in the armpits and elbows. The assessment carried out revealed testosteronemia at 1.28 ng/mL, which is more than twice the upper norm of the laboratory. Imaging studies were negative for both ovarian and adrenal masses. The retained diagnosis is HAIR-AN syndrome probably related to ovarian hyperthecosis and she was provided with androcur 50 mg/day and estradiol pills 2 mg/day and under hygiene-dietetic conditions. Conclusion. This case proves that HAIR-AN syndrome could be responsible for severe hyperandrogenism with virilisation signs. It must be retained after discarding the tumoral causes and when there are signs of insulin resistance. PMID:26229697

  15. Serum lipid changes and insulin resistance in familial Mediterranean fever

    PubMed Central

    Candan, Zehra; Akdoğan, Ali; Karadağ, Ömer; Kalyoncu, Umut; Şahin, Abdurrahman; Bilgen, Şule; Çalgüneri, Meral; Kiraz, Sedat; Ertenli, Ali

    2014-01-01

    Objective Inflammation is known to alter lipid profiles and to induce insulin resistance. This study was planned to test the hypothesis that familial Mediterranean ferver (FMF) patients and their first-degree asymptomatic relatives may have lipid profile changes and/or insulin resistance, similar to other inflammatory diseases. Material and Methods We studied 72 FMF patients, 30 asymptomatic first-degree relatives, and 75 healthy controls. Fasting and 2-hour postprandial glucose, insulin, apolipoprotein (Apo) A1, Apo B, acute phase reactants, and lipid profiles of all subjects were studied. Insulin resistance was determined by the HOMA (Homeostasis Model Assessment) index. Results There was no difference between the groups with regard to sex, mean systolic and diastolic blood pressure, body mass index, smoking status, fasting and postprandial 2-hour glucose, insulin, acute phase reactants, and HOMA index levels. High-density lipoprotein cholesterol (HDL-C) levels were similar between FMF patients and FMF relatives (48.9±12.4 mg/dL vs 49.3±13.8 mg/dL; p=NS), and both were lower than controls (48.9±12.4 mg/dL vs 59.6±15.1 mg/dL; p<0.001 and 49.3±13.8 mg/dL vs 59.8±15.1 mg/dL; p=0.001, respectively). Apo A1 levels in FMF patients and asymptomatic first-degree FMF relatives were both lower than in controls, similar to the HDL-C levels (126.1±25.7 mg/dL vs 151.2±31.4 mg/dL; p<0.001 and 129.5±29.0 mg/dL vs 151.2±31.4 mg/dL; p=0.002, respectively). TG levels were significantly higher in FMF relatives as compared to controls (113.4±53.6 mg/dL vs 97.1± 54.9 mg/dL; p=0.025). Conclusion Low HDL-C and low Apo A1 levels are found in FMF patients and their first-degree asymptomatic relatives. Low-grade inflammation caused by MEFV mutations may be responsible for these lipid profile changes. PMID:27708899

  16. Adipocytokine Profile and Insulin Resistance in Childhood Obesity

    PubMed Central

    GHERLAN, Iuliana; VLADOIU, Suzana; ALEXIU, Florin; GIURCANEANU, Mihaela; OROS, Sabina; BREHAR, Andreea; PROCOPIUC, Camelia; DUMITRACHE, Constantin

    2012-01-01

    ABSTRACT Background: Adipose tissue is a veritable "endocrine organ" due to its adipocytokines secretion implied in insulin sensitivity modulation and cardiovascular complications. Objective: To identify the adipocytokines' plasmatic profile (adiponectin, leptin, resistin, IL-6, TNFα) in obese children and adolescents and to assess their relationship with "classic" clinical/paraclinical markers of metabolic syndrome and insulin resistance. Material and Methods: A case-control study comparing a study group of 38 obese children and adolescents (age 13.5±2.3 years) to a normal weight age matched control group of 24 children. We measured body mass index (BMI) and waist circumference (WC), systolic and diastolic blood pressure (BP). The classical metabolic parameters (fasting glycemia, total cholesterol and its fractions, serum triglycerides) were measured in both groups. Insulin sensitivity was evaluated using fasting insulinemia, HOMA-index and insulin-resistance summary score (IRS). Adiponectin, leptin, resistin, IL-6 and TNFα were measured using ELISA method. Outcomes: Serum levels of leptin, resistin and IL-6 were signficantly higher (42.42±22.58 ng/ml versus 14.4±14.49 ng/ml, p <0.001; 9.69±3.47 ng/ml versus 7.92±2.13ng/ml, p = 0.029 and 2.66 ±2.87 pg/ml versus 0.89 ± 1.16 pg/ml, p = 0.006 respectively), while adiponectin levels were significantly lower (9.05±4.61 µg/ml versus 15.93±9.24 μg/ml, p <0.001) in the obese group compared to control group. TNFα was not statistical different between groups. In multivariate regression analysis adiponectin was negatively and significantly correlated with WC (r = - 0.463, p = 0.003); leptin was positively and significantly related to WC, diastolic BP, fasting insulinemia and resistin (r = 0.775, p <0.001); resistin was positively related to leptin and IL-6 (r = 0.499, p <0.001), IL-6 was positively and significantly related to diastolic blood pressure (r = 0.333, p = 0.008). Conclusions: Serum levels of

  17. Serum lipid changes and insulin resistance in familial Mediterranean fever.

    PubMed

    Candan, Zehra; Akdoğan, Ali; Karadağ, Ömer; Kalyoncu, Umut; Şahin, Abdurrahman; Bilgen, Şule; Çalgüneri, Meral; Kiraz, Sedat; Ertenli, Ali

    2014-12-01

    Inflammation is known to alter lipid profiles and to induce insulin resistance. This study was planned to test the hypothesis that familial Mediterranean ferver (FMF) patients and their first-degree asymptomatic relatives may have lipid profile changes and/or insulin resistance, similar to other inflammatory diseases. We studied 72 FMF patients, 30 asymptomatic first-degree relatives, and 75 healthy controls. Fasting and 2-hour postprandial glucose, insulin, apolipoprotein (Apo) A1, Apo B, acute phase reactants, and lipid profiles of all subjects were studied. Insulin resistance was determined by the HOMA (Homeostasis Model Assessment) index. There was no difference between the groups with regard to sex, mean systolic and diastolic blood pressure, body mass index, smoking status, fasting and postprandial 2-hour glucose, insulin, acute phase reactants, and HOMA index levels. High-density lipoprotein cholesterol (HDL-C) levels were similar between FMF patients and FMF relatives (48.9±12.4 mg/dL vs 49.3±13.8 mg/dL; p=NS), and both were lower than controls (48.9±12.4 mg/dL vs 59.6±15.1 mg/dL; p<0.001 and 49.3±13.8 mg/dL vs 59.8±15.1 mg/dL; p=0.001, respectively). Apo A1 levels in FMF patients and asymptomatic first-degree FMF relatives were both lower than in controls, similar to the HDL-C levels (126.1±25.7 mg/dL vs 151.2±31.4 mg/dL; p<0.001 and 129.5±29.0 mg/dL vs 151.2±31.4 mg/dL; p=0.002, respectively). TG levels were significantly higher in FMF relatives as compared to controls (113.4±53.6 mg/dL vs 97.1± 54.9 mg/dL; p=0.025). Low HDL-C and low Apo A1 levels are found in FMF patients and their first-degree asymptomatic relatives. Low-grade inflammation caused by MEFV mutations may be responsible for these lipid profile changes.

  18. A Novel Fasting Blood Test for Insulin Resistance and Prediabetes

    PubMed Central

    Cobb, Jeff; Gall, Walter; Adam, Klaus-Peter; Nakhle, Pamela; Button, Eric; Hathorn, James; Lawton, Kay; Milburn, Michael; Perichon, Regis; Mitchell, Matthew; Natali, Andrea; Ferrannini, Ele

    2013-01-01

    Background Insulin resistance (IR) can precede the dysglycemic states of prediabetes and type 2 diabetes mellitus (T2DM) by a number of years and is an early marker of risk for metabolic and cardiovascular disease. There is an unmet need for a simple method to measure IR that can be used for routine screening, prospective study, risk assessment, and therapeutic monitoring. We have reported several metabolites whose fasting plasma levels correlated with insulin sensitivity. These metabolites were used in the development of a novel test for IR and prediabetes. Methods Data from the Relationship between Insulin Sensitivity and Cardiovascular Disease Study were used in an iterative process of algorithm development to define the best combination of metabolites for predicting the M value derived from the hyperinsulinemic euglycemic clamp, the gold standard measure of IR. Subjects were divided into a training set and a test set for algorithm development and validation. The resulting calculated M score, MQ, was utilized to predict IR and the risk of progressing from normal glucose tolerance to impaired glucose tolerance (IGT) over a 3 year period. Results MQ correlated with actual M values, with an r value of 0.66. In addition, the test detects IR and predicts 3 year IGT progression with areas under the curve of 0.79 and 0.70, respectively, outperforming other simple measures such as fasting insulin, fasting glucose, homeostatic model assessment of IR, or body mass index. Conclusions The result, Quantose™, is a simple test for IR based on a single fasting blood sample and may have value as an early indicator of risk for the development of prediabetes and T2DM. PMID:23439165

  19. A novel fasting blood test for insulin resistance and prediabetes.

    PubMed

    Cobb, Jeff; Gall, Walter; Adam, Klaus-Peter; Nakhle, Pamela; Button, Eric; Hathorn, James; Lawton, Kay; Milburn, Michael; Perichon, Regis; Mitchell, Matthew; Natali, Andrea; Ferrannini, Ele

    2013-01-01

    Insulin resistance (IR) can precede the dysglycemic states of prediabetes and type 2 diabetes mellitus (T2DM) by a number of years and is an early marker of risk for metabolic and cardiovascular disease. There is an unmet need for a simple method to measure IR that can be used for routine screening, prospective study, risk assessment, and therapeutic monitoring. We have reported several metabolites whose fasting plasma levels correlated with insulin sensitivity. These metabolites were used in the development of a novel test for IR and prediabetes. Data from the Relationship between Insulin Sensitivity and Cardiovascular Disease Study were used in an iterative process of algorithm development to define the best combination of metabolites for predicting the M value derived from the hyperinsulinemic euglycemic clamp, the gold standard measure of IR. Subjects were divided into a training set and a test set for algorithm development and validation. The resulting calculated M score, M(Q), was utilized to predict IR and the risk of progressing from normal glucose tolerance to impaired glucose tolerance (IGT) over a 3 year period. M(Q) correlated with actual M values, with an r value of 0.66. In addition, the test detects IR and predicts 3 year IGT progression with areas under the curve of 0.79 and 0.70, respectively, outperforming other simple measures such as fasting insulin, fasting glucose, homeostatic model assessment of IR, or body mass index. The result, Quantose(TM), is a simple test for IR based on a single fasting blood sample and may have value as an early indicator of risk for the development of prediabetes and T2DM. © 2013 Diabetes Technology Society.

  20. Triglycerides and glucose index: a useful indicator of insulin resistance.

    PubMed

    Unger, Gisela; Benozzi, Silvia Fabiana; Perruzza, Fernando; Pennacchiotti, Graciela Laura

    2014-12-01

    Insulin resistance assessment requires sophisticated methodology of difficult application. Therefore, different estimators for this condition have been suggested. The aim of this study was to evaluate the triglycerides and glucose (TyG) index as a marker of insulin resistance and to compare it to the triglycerides/HDL cholesterol ratio (TG/HDL-C), in subjects with and without metabolic syndrome (MS). An observational, cross-sectional study was conducted on 525 adults of a population from Bahia Blanca, Argentina, who were divided into two groups: with MS (n=89) and without MS (n=436). The discriminating capacities for MS of the TyG index, calculated as Ln (TG [mg/dL] x glucose [mg/dL]/2), and the TG/HDL-C ratio were evaluated. Pre-test probability for MS was 30%. The mean value of the TyG index was higher in the group with MS as compared to the group without MS and its correlation with the TG/HDL-C ratio was good. The cut-off values for MS in the overall population were 8.8 for the TyG index (sensitivity=79%, specificity=86%), and 2.4 for the TG/HDL-C ratio (sensitivity=88%, specificity=72%). The positive likelihood ratios and post-test probabilities for these parameters were 5.8 vs 3.1 and 72% vs 58% respectively. The cut-off point for the TyG index was 8.8 in men and 8.7 in women; the respective values for TG/C-HDL were 3.1 in men and 2.2 in women. The TyG index was a good discriminant of MS. Its simple calculation warrants its further study as an alternative marker of insulin resistance. Copyright © 2014 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis.

    PubMed

    Bikman, Benjamin T; Guan, Yuguang; Shui, Guanghou; Siddique, M Mobin; Holland, William L; Kim, Ji Yun; Fabriàs, Gemma; Wenk, Markus R; Summers, Scott A

    2012-05-18

    Fenretinide is a synthetic retinoid that is being tested in clinical trials for the treatment of breast cancer and insulin resistance, but its mechanism of action has been elusive. Recent in vitro data indicate that fenretinide inhibits dihydroceramide desaturase, an enzyme involved in the biosynthesis of lipotoxic ceramides that antagonize insulin action. Because of this finding, we assessed whether fenretinide could improve insulin sensitivity and glucose homeostasis in vitro and in vivo by controlling ceramide production. The effect of fenretinide on insulin action and the cellular lipidome was assessed in a number of lipid-challenged models including cultured myotubes and isolated muscles strips incubated with exogenous fatty acids and mice fed a high-fat diet. Insulin action was evaluated in the various models by measuring glucose uptake or disposal and the activation of Akt/PKB, a serine/threonine kinase that is obligate for insulin-stimulated anabolism. The effects of fenretinide on cellular lipid levels were assessed by LC-MS/MS. Fenretinide negated lipid-induced insulin resistance in each of the model systems assayed. Simultaneously, the drug depleted cells of ceramide, while promoting the accumulation of the precursor dihydroceramide, a substrate for the reaction catalyzed by Des1. These data suggest that fenretinide improves insulin sensitivity, at least in part, by inhibiting Des1 and suggest that therapeutics targeting this enzyme may be a viable therapeutic means for normalizing glucose homeostasis in the overweight and diabetic.

  2. Fenretinide Prevents Lipid-induced Insulin Resistance by Blocking Ceramide Biosynthesis*

    PubMed Central

    Bikman, Benjamin T.; Guan, Yuguang; Shui, Guanghou; Siddique, M. Mobin; Holland, William L.; Kim, Ji Yun; Fabriàs, Gemma; Wenk, Markus R.; Summers, Scott A.

    2012-01-01

    Fenretinide is a synthetic retinoid that is being tested in clinical trials for the treatment of breast cancer and insulin resistance, but its mechanism of action has been elusive. Recent in vitro data indicate that fenretinide inhibits dihydroceramide desaturase, an enzyme involved in the biosynthesis of lipotoxic ceramides that antagonize insulin action. Because of this finding, we assessed whether fenretinide could improve insulin sensitivity and glucose homeostasis in vitro and in vivo by controlling ceramide production. The effect of fenretinide on insulin action and the cellular lipidome was assessed in a number of lipid-challenged models including cultured myotubes and isolated muscles strips incubated with exogenous fatty acids and mice fed a high-fat diet. Insulin action was evaluated in the various models by measuring glucose uptake or disposal and the activation of Akt/PKB, a serine/threonine kinase that is obligate for insulin-stimulated anabolism. The effects of fenretinide on cellular lipid levels were assessed by LC-MS/MS. Fenretinide negated lipid-induced insulin resistance in each of the model systems assayed. Simultaneously, the drug depleted cells of ceramide, while promoting the accumulation of the precursor dihydroceramide, a substrate for the reaction catalyzed by Des1. These data suggest that fenretinide improves insulin sensitivity, at least in part, by inhibiting Des1 and suggest that therapeutics targeting this enzyme may be a viable therapeutic means for normalizing glucose homeostasis in the overweight and diabetic. PMID:22474281

  3. Insulin resistance impairs nigrostriatal dopamine function.

    PubMed

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Obesity, insulin resistance, NASH and hepatocellular carcinoma.

    PubMed

    Yu, Jun; Shen, Jiayun; Sun, Ting Ting; Zhang, Xiang; Wong, Nathalie

    2013-12-01

    Epidemiological and clinical data have clearly demonstrated that non-alcoholic steatohepatitis (NASH) predisposes risk to the development of hepatocellular carcinoma (HCC). NASH is the liver manifestation of metabolic syndrome, which constellates obesity, insulin resistance and dyslipidemia. Although the percentage of patients diagnosed annually with NASH-associated HCC is still relatively low, this number signifies a large population due to the rapidly increasing incidence of obesity and diabetes globally. Fundamental studies on lipid storage, regulation of adipose factors, inflammatory cytokine recruitments and oxidative stress have provided insights into NASH as well as metabolic syndrome. Recent evidence also indicates the significant role of genetic factors in contributing to the pathogenesis of NASH and induced hepatic malignancy. In this review, we attempt to collate current research on NASH biology that lead to our understandings on how metabolic disorders may intersect with cancer development. We also discuss study models that have supported discoveries of molecular and cellular defects, and offered a perspective on therapeutic developments. These studies have collectively increased our knowledge on the complex signaling pathways involved in NASH and cancer, and provided the foundation for improved clinical management of patients with metabolic diseases.

  5. Insulin resistant diabetes mellitus without the presence of insulin antibodies. A case report.

    PubMed

    Páv, J; Srámková, J; Matys, Z

    1976-07-01

    A case of a 26-year old woman suffering from an insulin resistant diabetes mellitus for 14 years is described. Acanthosis nigricans was diagnosed in the patient's second year and the syndrome of Stein-Leventhal at the age of 15. Diabetes could not be properly controlled either with the daily dosis of insulin as high as 1140 U or with peroral tolbutamide. Fasting serum IRI concentrations were elevated, the secretoric response to the stimulation by glucose or tolbutamide was substantial and protracted. The hypoglycemic response to the i.v. application of commercial insulin was insignificant. Serum growth hormone levels were normal. No presence of insulin antibodies in the serum was detected.

  6. [Lipid metabolism and insulin resistance--clinical aspects and pathobiochemistry].

    PubMed

    Gries, F A; Hübinger, A

    1994-01-01

    About 3 decades ago insulin resistance has been described as the pathogenetic factor leading from abnormal fat metabolism to diabetes mellitus. Within the metabolic syndrome insulin resistance is related to the upper body (android) type of obesity, hypertriglyceridaemia, hypertension, and diabetes mellitus ("deadly quartet"). It precedes the development of arterial hypertension and the metabolic disorders. The pathomechanisms leading from obesity and hypertriglyceridaemia to insulin resistance may be described by the glucose fatty acid cycle of Randle et al. According to their metabolic scheme increased supply of fatty acids results in reduced glucose oxidation. Concomittantly hepatic glucose production is increased. On the other hand insulin resistance combined with hyperinsulinaemia may lead to an elevation of VLDL-triglycerides and to a decrease of HDL-cholesterol in blood, thus creating a vicious cycle, in which elevated VLDL-triglycerides reinforce insulin resistance via the glucose fatty acid cycle. Interventions to improve insulin sensitivity and thereby lower plasma insulin should reduce obesity and hypertriglyceridaemia by dietary treatment. They usually improve promptly diabetic metabolism. New developments in pharmacological inhibition of fatty acid oxidation are discussed.

  7. Polycystic ovarian syndrome and insulin resistance in white and Mexican American women: a comparison of two distinct populations.

    PubMed

    Kauffman, Robert P; Baker, Vicki M; Dimarino, Pamela; Gimpel, Terry; Castracane, V Daniel

    2002-11-01

    We sought to determine what differences, if any, existed between white and Mexican American women with polycystic ovary syndrome (PCOS) and whether the same values for fasting insulin, fasting glucose/insulin ratio, and homeostasis model assessment (HOMA) might be applied when screening both ethnic groups for insulin resistance. Eighty-three consecutive women suspected to have PCOS but who demonstrated absence of other endocrine disorders comprised the study population. Nineteen healthy ovulatory women volunteered as controls. Fasting serum samples were obtained for determination of thyroid-stimulating hormone (TSH), prolactin, glucose, insulin, free and total testosterone, 17-hydroxyprogesterone, and dehydroepiandrosterone sulfate in the early proliferative phase. An oral glucose load was administered, and blood samples for glucose and insulin were drawn at 1, 2, and 3 hours. Those with impaired glucose tolerance or diabetes mellitus were excluded from our final study population. Four different groups were defined: (1) women with PCOS and insulin resistance, (2) women with PCOS without insulin resistance, (3) women with irregular cycles but without PCOS or another identifiable endocrinopathy, and (4) regular, cycling control subjects. Each group was subdivided by ethnicity (white or Mexican American). A total of 65 white and 37 Mexican American women were studied, including control subjects. Among all study participants, Mexican American women with PCOS had significantly higher mean values for body mass index, fasting insulin, and HOMA but lower mean fasting glucose/insulin levels than white women. When group 1 patients (PCOS with insulin resistance) were compared between ethnic groups, mean fasting insulin and HOMA levels were significantly lower and glucose/insulin ratios higher in white than in Mexican American women. A single cutoff value for insulin resistance in PCOS was insensitive when applied to both ethnic groups. A fasting insulin value >20 micro

  8. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    PubMed Central

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  9. B lymphocytes as emerging mediators of insulin resistance

    PubMed Central

    Winer, D A; Winer, S; Shen, L; Chng, M H Y; Engleman, E G

    2012-01-01

    Obesity is associated with chronic inflammation of various tissues including visceral adipose tissue (VAT), which contributes to insulin resistance. T cells and macrophages infiltrate VAT in obesity and orchestrate this inflammation. Recently, we made the surprising discovery that B cells are important contributors to this process. Thus, some B cells and the antibodies they produce can promote VAT-associated and systemic inflammation, leading to insulin resistance. This report will focus on the properties of these B cells, and how they contribute to insulin resistance through T-cell modulation and production of pathogenic autoantibodies. Understanding the mechanisms by which B cells contribute to insulin resistance should lead to new antibody-based diagnostics and B-cell modulating therapeutics to manage this increasingly prevalent disease. PMID:25089193

  10. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  11. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism.

    PubMed

    Maratou, Eirini; Hadjidakis, Dimitrios J; Kollias, Anastasios; Tsegka, Katerina; Peppa, Melpomeni; Alevizaki, Maria; Mitrou, P; Lambadiari, V; Boutati, Eleni; Nikzas, Daniel; Tountas, Nikolaos; Economopoulos, Theofanis; Raptis, Sotirios A; Dimitriadis, George

    2009-05-01

    Although clinical hypothyroidism (HO) is associated with insulin resistance, there is no information on insulin action in subclinical hypothyroidism (SHO). To investigate this, we assessed the sensitivity of glucose metabolism to insulin both in vivo (by an oral glucose tolerance test) and in vitro (by measuring insulin-stimulated rates of glucose transport in isolated monocytes with flow cytometry) in 21 euthyroid subjects (EU), 12 patients with HO, and 13 patients with SHO. All three groups had comparable plasma glucose levels, with the HO and SHO having higher plasma insulin than the EU (P<0.05). Homeostasis model assessment index was increased in HO (1.97+/-0.22) and SHO (1.99+/-0.13) versus EU (1.27+/-0.16, P<0.05), while Matsuda index was decreased in HO (3.89+/-0.36) and SHO (4.26+/-0.48) versus EU (7.76+/-0.87, P<0.001), suggesting insulin resistance in both fasting and post-glucose state. At 100 microU/ml insulin: i) GLUT4 levels on the monocyte plasma membrane were decreased in both HO (215+/-19 mean fluorescence intensity, MFI) and SHO (218+/-24 MFI) versus EU (270+/-25 MFI, P=0.03 and 0.04 respectively), and ii) glucose transport rates in monocytes from HO (481+/-30 MFI) and SHO (462+/-19 MFI) were decreased versus EU (571+/-15 MFI, P=0.04 and 0.004 respectively). In patients with HO and SHO: i) insulin resistance was comparable; ii) insulin-stimulated rates of glucose transport in isolated monocytes were decreased due to impaired translocation of GLUT4 glucose transporters on the plasma membrane; iii) these findings could justify the increased risk for insulin resistance-associated disorders, such as cardiovascular disease, observed in patients with HO or SHO.

  12. Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance.

    PubMed

    Hoeks, Joris; van Herpen, Noud A; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K C; Schrauwen, Patrick

    2010-09-01

    Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible causes for the observed reduction in mitochondrial capacity.

  13. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible

  14. Vaspin gene in rat adipose tissue: relation to obesity-induced insulin resistance.

    PubMed

    Shaker, Olfat G; Sadik, Nermin Abdel Hamid

    2013-01-01

    Visceral adipose fat has been claimed to be the link between obesity and insulin resistance through the released adipokines. This study aimed to assess the expression of vaspin as one of the recent adipokines in rats abdominal subcutaneous and visceral fat in diet-induced obese (DIO) and in DIO performing 3 weeks swimming exercise (DIO + EXE) compared to control and control + exercise (C + EXE) groups. Vaspin mRNA and protein expression assessed using RT-PCR and Western blotting analysis revealed vaspin expression in DIO and DIO + EXE but not in controls groups. In DIO group, visceral vaspin expression was higher than in that of subcutaneous fat and was positively correlated with body weight. Upregulation of visceral vaspin expression in DIO was concomitant with the development of insulin resistance (increase in fasting serum insulin and HOMA-IR) and rise in serum leptin level. Unchanged visceral vaspin mRNA in DIO + EXE rats, with significant improvements of insulin resistance parameters and serum leptin compared to DIO group was found. In conclusion, increased visceral vaspin expression in obesity was associated with insulin resistance. Further investigations into the molecular links between vaspin and obesity may unravel innovative therapeutic strategies in people affected by obesity-linked insulin resistance, metabolic syndrome, and type 2 diabetes.

  15. Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats.

    PubMed

    Špolcová, Andrea; Mikulášková, Barbora; Kršková, Katarína; Gajdošechová, Lucia; Zórad, Štefan; Olszanecki, Rafał; Suski, Maciej; Bujak-Giżycka, Beata; Železná, Blanka; Maletínská, Lenka

    2014-09-25

    Insulin signaling and Tau protein phosphorylation in the hippocampi of young and old obese Zucker fa/fa rats and their lean controls were assessed to determine whether obesity-induced peripheral insulin resistance and aging are risk factors for central insulin resistance and whether central insulin resistance is related to the pathologic phosphorylation of the Tau protein. Aging and obesity significantly attenuated the phosphorylation of the insulin cascade kinases Akt (protein kinase B, PKB) and GSK-3β (glycogen synthase kinase 3β) in the hippocampi of the fa/fa rats. Furthermore, the hyperphosphorylation of Tau Ser396 alone and both Tau Ser396 and Thr231 was significantly augmented by aging and obesity, respectively, in the hippocampi of these rats. Both age-induced and obesity-induced peripheral insulin resistance are associated with central insulin resistance that is linked to hyperTau phosphorylation. Peripheral hyperinsulinemia, rather than hyperglycemia, appears to promote central insulin resistance and the Tau pathology in fa/fa rats.

  16. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  17. γ-Carboxylation of osteocalcin and insulin resistance in older men and women1234

    PubMed Central

    Shea, M Kyla; Gundberg, Caren M; Meigs, James B; Dallal, Gerard E; Saltzman, Edward; Yoshida, Makiko; Jacques, Paul F

    2009-01-01

    Background: The skeletal protein osteocalcin is γ-carboxylated by vitamin K. High serum uncarboxylated osteocalcin reflects low vitamin K status. In vitro and animal studies indicate that high uncarboxylated osteocalcin is associated with reduced insulin resistance. However, associations between osteocalcin and measures of insulin resistance in humans are less clear. Objective: Our aim was to examine cross-sectional and longitudinal associations between circulating forms of osteocalcin (total, uncarboxylated, and carboxylated) and insulin resistance in older men and women. Design: Cross-sectional associations between serum measures of total osteocalcin, carboxylated osteocalcin, and uncarboxylated osteocalcin and insulin resistance were examined in 348 nondiabetic men and women (mean age: 68 y; 58% female) by using the homeostasis model assessment of insulin resistance (HOMA-IR). Associations between each form of osteocalcin at baseline and 3-y change in HOMA-IR were examined in 162 adults (mean age: 69 y; 63% female) who did not receive vitamin K supplementation. Results: Lower circulating uncarboxylated osteocalcin was not associated with higher HOMA-IR at baseline or at 3-y follow-up. Those in the lowest tertiles of total osteocalcin and carboxylated osteocalcin at baseline had higher baseline HOMA-IR (P = 0.006 and P = 0.02, respectively). The concentration of carboxylated osteocalcin at baseline was inversely associated with a 3-y change in HOMA-IR (P = 0.002). Conclusions: In older adults, circulating uncarboxylated osteocalcin was not associated with insulin resistance. In contrast, elevated carboxylated osteocalcin and total osteocalcin were associated with lower insulin resistance, which supports a potential link between skeletal physiology and insulin resistance in humans. The role of vitamin K status in this association remains unclear and merits further investigation. This trial is registered at clinicaltrials.gov as NCT00183001. PMID:19776145

  18. Associations of erythrocyte fatty acid patterns with insulin resistance.

    PubMed

    Bigornia, Sherman J; Lichtenstein, Alice H; Harris, William S; Tucker, Katherine L

    2016-03-01

    Synergistic or additive effects or both on cardiometabolic risk may be missed by examining individual fatty acids (FAs). A pattern analysis may be a more useful approach. In addition, it remains unclear whether erythrocyte FA composition relates to insulin resistance among Hispanics/Latinos. We derived erythrocyte FA patterns for a Puerto Rican cohort and examined their association with diet and insulin resistance in cross-sectional and prospective analyses. At baseline, principal components analysis was used to derive factor patterns with the use of 24 erythrocyte FAs from 1157 participants of the Boston Puerto Rican Health Study (aged 45-75 y). Dietary intake was assessed with a validated semiquantitative food-frequency questionnaire. The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated at baseline and at the 2-y follow-up. Relations between FA patterns and HOMA-IR were analyzed in a sample of 922 participants with available data. Five FA patterns were derived, differentiated by 1) relatively high de novo lipogenesis (DNL) FAs and low n-6 (ω-6) FAs, 2) high very-long-chain saturated FAs, 3) high n-3 (ω-3) FAs, 4) high linoleic acid and low arachidonic acid, and 5) high trans FAs. The DNL pattern was positively correlated with sugar and inversely with n-6 and monounsaturated FA intakes. Only the DNL pattern was positively related to baseline HOMA-IR [adjusted geometric means (95% CIs) for quartiles 1 and 4: 1.72 (1.58, 1.87) and 2.20 (2.02, 2.39); P-trend < 0.0001]. Similar associations were observed at 2 y, after adjustment for baseline status [quartiles 1 and 4 means (95% CIs): 1.61 (1.48, 1.76) and 1.84 (1.69, 2.00); P-trend = 0.02]. These results remained consistent after the exclusion of participants with diabetes (n = 485). Our findings suggest that upregulated DNL associated with a diet high in sugar and relatively low in unsaturated FAs may adversely affect insulin sensitivity in a Hispanic/Latino cohort. © 2016 American

  19. Lipid-mediated muscle insulin resistance: different fat, different pathways?

    PubMed

    Ritter, Olesja; Jelenik, Tomas; Roden, Michael

    2015-08-01

    Increased dietary fat intake and lipolysis result in excessive lipid availability, which relates to impaired insulin sensitivity. Over the last years, several mechanisms possibly underlying lipid-mediated insulin resistance evolved. Lipid intermediates such as diacylglycerols (DAG) associate with changes in insulin sensitivity in many models. DAG activate novel protein kinase C (PKC) isoforms followed by inhibitory serine phosphorylation of insulin receptor substrate 1 (IRS1). Activation of Toll-like receptor 4 (TLR4) raises another lipid class, ceramides (CER), which induce pro-inflammatory pathways and lead to inhibition of Akt phosphorylation. Inhibition of glucosylceramide and ganglioside synthesis results in improved insulin sensitivity and increased activatory tyrosine phosphorylation of IRS1 in the muscle. Incomplete fat oxidation can increase acylcarnitines (ACC), which in turn stimulate pro-inflammatory pathways. This review analyzed the effects of lipid metabolites on insulin action in skeletal muscle of humans and rodents. Despite the evidence for the association of both DAG and CER with insulin resistance, its causal relevance may differ depending on the subcellular localization and the tested cohorts, e.g., athletes. Nevertheless, recent data indicate that individual lipid species and their degree of fatty acid saturation, particularly membrane and cytosolic C18:2 DAG, specifically activate PKCθ and induce both acute lipid-induced and chronic insulin resistance in humans.

  20. Association of sleep duration and insulin resistance in Taiwanese vegetarians

    PubMed Central

    2012-01-01

    Background Short sleep duration has been reported to associate with increased insulin resistance. However, no studies have investigated whether such association exists in vegetarians. The aim of this study was to investigate the association between sleep duration and insulin resistance in Taiwanese vegetarians. Methods A total of 1290 individuals were recruited from a regional hospital in south Taiwan during their regular routine physical examination. Only individuals who described themselves as Buddhist vegetarians were included in the study. Demographic information and clinical characteristics were collected and multiple logistic regression analysis was used to evaluate the association between sleep duration and insulin resistance. Results A total of 433 vegetarians were included in the study. Results from univariate logistic regression indicated that insulin resistance was significantly associated with male sex, greater waist circumference, higher triglyceride levels, lower high-density lipoprotein cholesterol levels, higher plasma creatinine levels, higher alanine transaminase levels, greater energy expenditure, and sleep duration of more than 8 hours per night. Multiple logistic regression revealed that insulin resistance was significantly and independently associated with sleep duration of more than 8 hours per night (odd ratios = 2.27, 95% confidence interval = 1.24, 4.11) after adjusting for waist circumference and levels of alanine transaminase. Conclusions Sleep duration of more than 8 hours per night is an independent risk factor associated with increased insulin resistance in vegetarians. PMID:22898005

  1. Association of sleep duration and insulin resistance in Taiwanese vegetarians.

    PubMed

    Chang, Jiunn-Kae; Koo, Malcolm; Kao, Vivia Yu-Ying; Chiang, Jui-Kun

    2012-08-16

    Short sleep duration has been reported to associate with increased insulin resistance. However, no studies have investigated whether such association exists in vegetarians. The aim of this study was to investigate the association between sleep duration and insulin resistance in Taiwanese vegetarians. A total of 1290 individuals were recruited from a regional hospital in south Taiwan during their regular routine physical examination. Only individuals who described themselves as Buddhist vegetarians were included in the study. Demographic information and clinical characteristics were collected and multiple logistic regression analysis was used to evaluate the association between sleep duration and insulin resistance. A total of 433 vegetarians were included in the study. Results from univariate logistic regression indicated that insulin resistance was significantly associated with male sex, greater waist circumference, higher triglyceride levels, lower high-density lipoprotein cholesterol levels, higher plasma creatinine levels, higher alanine transaminase levels, greater energy expenditure, and sleep duration of more than 8 hours per night. Multiple logistic regression revealed that insulin resistance was significantly and independently associated with sleep duration of more than 8 hours per night (odd ratios = 2.27, 95% confidence interval = 1.24, 4.11) after adjusting for waist circumference and levels of alanine transaminase. Sleep duration of more than 8 hours per night is an independent risk factor associated with increased insulin resistance in vegetarians.

  2. Acanthosis Nigricans as a Clinical Predictor of Insulin Resistance in Obese Children

    PubMed Central

    Koh, Young Kwon; Lee, Jae Hee; Kim, Eun Young

    2016-01-01

    Purpose This study aimed to evaluate the utility of acanthosis nigricans (AN) severity as an index for predicting insulin resistance in obese children. Methods The subjects comprised 74 obese pediatric patients who attended the Department of Pediatrics at Chosun University Hospital between January 2013 and March 2016. Waist circumference; body mass index; blood pressure; fasting glucose and fasting insulin levels; lipid profile; aspartate transaminase, alanine transaminase, glycated hemoglobin, C-peptide, and uric acid levels; and homeostatic model assessment insulin resistance (HOMA-IR) and quantitative insulin check sensitivity index (QUICKI) scores were compared between subjects with AN and those without AN. Receiver operating characteristic curves were used to investigate the utility of the AN score in predicting insulin resistance. HOMA-IR and QUICKI were compared according to AN severity. Results The With AN group had higher fasting insulin levels (24.1±21.0 mU/L vs. 9.8±3.6 mU/L, p<0.001) and HOMA-IR score (5.74±4.71 vs. 2.14±0.86, p<0.001) than the Without AN group. The AN score used to predict insulin resistance was 3 points or more (sensitivity 56.8%, specificity 83.9%). HOMA-IR scores increased with AN severity, from the Without AN group (mean, 2.15; 95% confidence interval [CI], 1.72-2.57) to the Mild AN (mean, 4.15; 95% CI, 3.04-5.25) and Severe AN groups (mean, 7.22; 95% CI, 5.08-9.35; p<0.001). Conclusion Insulin resistance worsens with increasing AN severity, and patients with Severe AN (AN score ≥3) are at increased risk of insulin resistance. PMID:28090470

  3. Insulin resistance in clinical and experimental alcoholic liver disease

    PubMed Central

    Carr, Rotonya M.; Correnti, Jason

    2015-01-01

    Alcoholic liver disease (ALD) is the number one cause of liver failure worldwide; its management costs billions of health care dollars annually. Since the advent of the obesity epidemic, insulin resistance and diabetes have become common clinical findings in patients with ALD; and the development of insulin resistance predicts the progression from simple steatosis to cirrhosis in ALD patients. Both clinical and experimental data implicate the impairment of several mediators of insulin signaling in ALD, and experimental data suggest that insulin-sensitizing therapies improve liver histology. This review explores the contribution of impaired insulin signaling in ALD and summarizes the current understanding of the synergistic relationship between alcohol and nutrient excess in promoting hepatic inflammation and disease. PMID:25998863

  4. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance

    PubMed Central

    McNay, Ewan C.; Ong, Cecilia T.; McCrimmon, Rory J.; Cresswell, James; Bogan, Jonathan S.; Sherwin, Robert S

    2010-01-01

    Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes. PMID:20176121

  5. High Fat Diet Produces Brain Insulin Resistance, Synaptodendritic Abnormalities and Altered Behavior in Mice

    PubMed Central

    Arnold, Steven E.; Lucki, Irwin; Brookshire, Bethany R.; Carlson, Gregory C.; Browne, Carolyn A.; Kazi, Hala; Bang, Sookhee; Choi, Bo-Ran; Chen, Yong; McMullen, Mary F.; Kim, Sangwon F.

    2014-01-01

    Insulin resistance and other features of the metabolic syndrome are increasingly recognized for their effects on cognitive health. To ascertain mechanisms by which this occurs, we fed mice a very high fat diet (60% kcal by fat) for 17 days or a moderate high fat diet (HFD, 45% kcal by fat) for 8 weeks and examined changes in brain insulin signaling responses, hippocampal synaptodendritic protein expression, and spatial working memory. Compared to normal control diet mice, cerebral cortex tissues of HFD mice were insulin-resistant as evidenced by failed activation of Akt, S6 and GSK3β with ex-vivo insulin stimulation. Importantly, we found that expression of brain IPMK, which is necessary for mTOR/Akt signaling, remained decreased in HFD mice upon activation of AMPK. HFD mouse hippocampus exhibited increased expression of serine-phosphorylated insulin receptor substrate 1 (IRS1-pS616), a marker of insulin resistance, as well as decreased expression of PSD-95, a scaffolding protein enriched in post-synaptic densities, and synaptopodin, an actin-associated protein enriched in spine apparatuses. Spatial working memory was impaired as assessed by decreased spontaneous alternation in a T-maze. These findings indicate that HFD is associated with telencephalic insulin resistance and deleterious effects on synaptic integrity and cognitive behaviors. PMID:24686304

  6. The relationship between left ventricular mass and insulin resistance in obese patients.

    PubMed

    Bulut, Cengiz; Helvaci, Aysen; Adas, Mine; Ozsoy, Neslihan; Bayyigit, Akif

    2016-01-01

    In this study, we investigated the relationship between left ventricular mass and insulin resistance in obese patients. A total of 90 subjects, 66 women, and 24 men, with an age range from 24 to 56 years, were enrolled in the study. Forty-nine patients were in the obesity group whose body mass index (BMI) was >29.9kg/m(2) and 41 subjects were in the control group with a BMI <25kg/m(2). All of them were normotensive, nondiabetic, and did not have any cardiovascular disease. They were not taking any medication. Weight, height, and waist circumference were measured and BMI was calculated. Plasma glucose, insulin, serum total, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and triglyceride levels were measured, and insulin resistance was calculated via homeostasis model of assessment-estimated insulin resistance (HOMA-IR). Subjects were examined by echocardiography and left ventricular mass (LVM) and index (LVMI) were calculated with Devereux formula. Insulin levels, HOMA-IR, LVM, and LVMI were significantly higher in obesity group (p<0.01). Fasting glucose, triglyceride, fasting insulin levels, and waist circumference did not correlate with LVMI. In conclusion, though findings of the present study suggest increased left ventricular hypertrophy (LVH) in obese subjects compared to controls, it appears that the increased LVM or LVH is not linked to BMI and insulin resistance in this study population. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  7. Serum Fetuin-A levels, insulin resistance and oxidative stress in women with polycystic ovary syndrome.

    PubMed

    Enli, Yasar; Fenkci, Semin Melahat; Fenkci, Veysel; Oztekin, Ozer

    2013-12-01

    This study was designed to determine serum Fetuin-A levels and establish whether serum Fetuin-A level is related with insulin resistance, oxidative stress, ovarian hyperandrogenism and dyslipidemia in women with polycystic ovary syndrome (PCOS). Twenty-two patients with PCOS and twenty-one healthy control women were evaluated in this controlled clinical study. Serum Fetuin-A, lipid fractions, glucose, insulin, malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), superoxide dismutase (SOD) and other hormone (gonadotropins, androgens) levels were measured. The estimate of insulin resistance was calculated by homeostasis model assessment (HOMA-R). The women with PCOS had significantly higher serum fasting glucose, insulin, luteinizing hormone (LH), MDA, Fetuin-A levels, and LH/follicle-stimulating hormone (FSH) ratio, free androgen index (FAI), HOMA-IR than healthy women. However, sex hormone-binding globulin (SHBG) and GSH levels were significantly lower in patients with PCOS compared with controls. Fetuin-A was positively correlated with insulin, HOMA-IR and FAI. Multiple regression analysis revealed that FAI was strong predictor of serum Fetuin-A level. Serum Fetuin-A level was related with insulin resistance and ovarian hyperandrogenism in women with PCOS. These results suggest that Fetuin-A may have a role in triggering the processes leading to insulin resistance and androgen excess in PCOS.

  8. Insulin resistance: Is it time for primary prevention?

    PubMed

    Mercurio, Valentina; Carlomagno, Guido; Fazio, Valeria; Fazio, Serafino

    2012-01-26

    Insulin resistance is a clinical condition characterized by a decrease in sensitivity and responsiveness to the metabolic actions of insulin, so that a given concentration of insulin produces a less-than-expected biological effect. As a result, higher levels of insulin are needed to maintain normal glucose tolerance. Hyperinsulinemia, indeed, is one of the principal characteristics of insulin resistance states. This feature is common in several pathologic conditions, such as type 2 diabetes, obesity, and dyslipidemia, and it is also a prominent component of hypertension, coronary heart disease, and atherosclerosis. The presence of endothelial dysfunction, related to insulin resistance, plays a key role in the development and progression of atherosclerosis in all of these disorders. Insulin resistance represents the earliest detectable abnormality in type 2 diabetes, and is one of the major underlying mechanisms of hypertension and cardiovascular diseases. Its early detection could be of great importance, in order to set a therapeutic attack and to counteract the higher risk of diabetes and cardiovascular diseases.

  9. New markers of insulin resistance in polycystic ovary syndrome.

    PubMed

    Polak, K; Czyzyk, A; Simoncini, T; Meczekalski, B

    2017-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disorder in women of reproductive age. The diagnostic criteria include two out of three features: hyperandrogenism, polycystic ovaries on ultrasound and menstrual irregularities (Rotterdam Criteria 2003). PCOS patients are more vulnerable to develop diabetes, cardiovascular diseases and metabolic syndrome. Insulin resistance (IR) is prevalent in women with PCOS independently of obesity and is critically involved in reproductive and metabolic complications of the syndrome. Several tests have been developed to measure IR, some very reliable but complex like the hyperinsulinemic euglycemic glucose clamp and others less precise but easier and less invasive like HOMA-IR. New markers are needed to reach a more reliable assessment of insulin resistance. To date, several surrogate markers have been proposed in the literature to facilitate and improve the determination of IR. Many new proteins are strongly involved with PCOS physiopathology and IR, such as some adipocytokines (adiponectin, visfatin, vaspin and apelin), copeptin, irisin, PAI-1 and zonulin. Many other proteins have been proposed as potential new markers of IR in PCOS, such as resistin, leptin, RBP4, kisspetin and ghrelin, but their role is still controversial. In this review, we provide a short characterization of these new markers, recently studied as indicators of metabolic state.

  10. Relationship between carnitine, fatty acids and insulin resistance.

    PubMed

    Lohninger, Alfred; Radler, U; Jinniate, S; Lohninger, S; Karlic, H; Lechner, S; Mascher, D; Tammaa, A; Salzer, H

    2009-01-01

    Increased plasma free fatty acid (FFA) levels are a feature of insulin resistance and type 2 diabetes. The aim of the present study was to assess the effect of L-carnitine supplementation on plasma lipids and the expression of enzymes in peripheral mononucleated cells (PMNC) involved in the regulation of fatty acid and glucose oxidation. L-Carnitine supplementation of 2 g/day resulted in a significant decrease in plasma FFA and in a less pronounced diminution of the plasma triacylglycerols. In addition, a concomitant increase in the relative mRNA abundances of carnitine acyltransferases (5- to 10-fold) and of the carnitine carrier OCTN2 (12-fold) in PMNC of pregnant women was found. The results of the present study provide evidence that L-carnitine supplementation in pregnancy (2 g/day) avoids a striking increase in plasma FFA, which are thought to be the main cause of insulin resistance and consequently gestational diabetes mellitus. Copyright (c) 2010 S. Karger AG, Basel.

  11. Insulin resistance: The linchpin between prediabetes and cardiovascular disease.

    PubMed

    Salazar, Martin R; Carbajal, Horacio A; Espeche, Walter G; Aizpurúa, Marcelo; Leiva Sisnieguez, Carlos E; Leiva Sisnieguez, Betty C; Stavile, Rodolfo N; March, Carlos E; Reaven, Gerald M

    2016-03-01

    The aim of this study was to test the hypothesis that cardiovascular disease occurs to the greatest extent in persons with prediabetes mellitus who are also insulin resistant. In 2003, 664 non-diabetic women (n = 457) and men (n = 207), aged 52 ± 16 and 53 ± 15 years, were surveyed during a programme for cardiovascular disease prevention. Fasting plasma glucose concentrations defined participants as having normal fasting plasma glucose (fasting plasma glucose <5.6 mmol/L) or prediabetes mellitus (fasting plasma glucose ⩾ 5.6 and <7.0 mmol/L). The tertile of prediabetes mellitus subjects with the highest fasting plasma insulin concentration was classified as insulin resistant. Baseline cardiovascular disease risk factors were accentuated in prediabetes mellitus versus normal fasting glucose, particularly in prediabetes mellitus/insulin resistant. In 2012, 86% of the sample were surveyed again, and the crude incidence for cardiovascular disease was higher in subjects with prediabetes mellitus versus normal fasting glucose (13.7 vs 6.0/100 persons/10 years; age- and sex-adjusted hazard ratio = 1.88, p = 0.052). In prediabetes mellitus, the crude incidences were 22.9 versus 9.6/100 persons/10 years in insulin resistant versus non-insulin resistant persons (age- and sex-adjusted hazard ratio = 2.36, p = 0.040). In conclusion, cardiovascular disease risk was accentuated in prediabetes mellitus/insulin resistant individuals, with a relative risk approximately twice as high compared to prediabetes mellitus/non-insulin resistant subjects.

  12. Childhood obesity and insulin resistance: how should it be managed?

    PubMed

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  13. Joint effect of insulin signalling genes on cardiovascular events and on whole body and endothelial insulin resistance

    PubMed Central

    Bacci, Simonetta; Prudente, Sabrina; Copetti, Massimiliano; Spoto, Belinda; Rizza, Stefano; Baratta, Roberto; Di Pietro, Natalia; Morini, Eleonora; Di Paola, Rosa; Testa, Alessandra; Mallamaci, Francesca; Tripepi, Giovanni; Zhang, Yuan-Yuan; Mercuri, Luana; Di Silvestre, Sara; Lauro, Renato; Malatino, Lorenzo; Consoli, Agostino; Pellegrini, Fabio; Pandolfi, Assunta; Frittitta, Lucia; Zoccali, Carmine; Federici, Massimo; Doria, Alessandro; Trischitta, Vincenzo

    2012-01-01

    Objective Insulin resistance (IR) and cardiovascular disease (CVD) share a common soil. We investigated the combined role of single nucleotide polymorphisms (SNPs) affecting insulin signaling (ENPP1 K121Q, rs1044498; IRS1 G972R, rs1801278; TRIB3 Q84R, rs2295490) on CVD, age at myocardial infarction (MI), in vivo insulin sensitivity and in vitro insulin-stimulated nitric oxide synthase (NOS) activity. Design and Setting 1. We first studied, incident cardiovascular events (a composite endpoint comprising myocardial infarction -MI-, stroke and cardiovascular death) in 733 patients (2,186 person-years, 175 events). 2. In a replication attempt, age at MI was tested in 331 individuals. 3. OGTT-derived insulin sensitivity index (ISI) was assessed in 829 individuals with fasting glucose < 126 mg/dl. 4. NOS activity was measured in 40 strains of human vein endothelial cells (HUVECs). Results 1. Risk variants jointly predicted cardiovascular events (HR=1.181; p=0.0009) and, when added to clinical risk factors, significantly improved survival C-statistics; they also allowed a significantly correct reclassification (by net reclassification index) in the whole sample (135/733 individuals) and, even more, in obese patients (116/204 individuals). 2. Risk variants were jointly associated with age at MI (p=0.006). 3. A significant association was also observed with ISI (p=0.02). 4. Finally, risk variants were jointly associated with insulin-stimulated NOS activity in HUVECs (p=0.009). Conclusions Insulin signaling genes variants jointly affect cardiovascular disease, very likely by promoting whole body and endothelium-specific insulin resistance. Further studies are needed to address whether their genotyping help identify very high-risk patients who need specific and/or more aggressive preventive strategies. PMID:23107043

  14. High dietary selenium intake is associated with less insulin resistance in the Newfoundland population.

    PubMed

    Wang, Yongbo; Lin, Meiju; Gao, Xiang; Pedram, Pardis; Du, Jianling; Vikram, Chandurkar; Gulliver, Wayne; Zhang, Hongwei; Sun, Guang

    2017-01-01

    As an essential nutrient, Selenium (Se) is involved in many metabolic activities including mimicking insulin function. Data on Se in various biological samples and insulin resistance are contradictory, moreover there is no large study available regarding the relationship of dietary Se intake with insulin resistance in the general population. To investigate the association between dietary Se intake and variation of insulin resistance in a large population based study, a total of 2420 subjects without diabetes from the CODING (Complex Diseases in the Newfoundland Population: Environment and Genetics) study were assessed. Dietary Se intake was evaluated from the Willett Food Frequency questionnaire. Fasting blood samples were used for the measurement of glucose and insulin. Insulin resistance was determined with the homeostasis model assessment (HOMA-IR). Body composition was measured using dual energy X-ray absorptiometry. Analysis of covariance showed that high HOMA-IR groups in both males and females had the lowest dietary Se intake (μg/kg/day) (p < 0.01), being 18% and 11% lower than low HOMA-IR groups respectively. Insulin resistance decreased with the increase of dietary Se intake in females but not in males after controlling for age, total calorie intake, physical activity level, serum calcium, serum magnesium, and body fat percentage (p < 0.01). Partial correlation analysis showed that dietary Se intake was negatively correlated with HOMA-IR after adjusting for the Se confounding factors in subjects whose dietary Se intake was below 1.6 μg/kg/day (r = -0.121 for males and -0.153 for females, p < 0.05). However, the negative correlation was no longer significant when dietary Se intake was above 1.6 μg/kg/day. Our findings suggest that higher dietary Se intake is beneficially correlated with lower insulin resistance when total dietary Se intake was below 1.6 μg/kg/day. Above this cutoff, this beneficial effect disappears.

  15. SEX DIFFERENCES IN THE ASSOCIATION BETWEEN DIETARY RESTRAINT, INSULIN RESISTANCE AND OBESITY

    PubMed Central

    Jastreboff, Ania M.; Gaiser, Edward C.; Gu, Peihua; Sinha, Rajita

    2014-01-01

    Background & Aims Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. Methods In this cross-sectional, observational study, we studied 487 individuals from the community (men N=222, women N=265), who ranged from lean (body mass index 18.5–24.9kg/m2, N=173), overweight (body mass index 25–29.9kg/m2, N=159) and obese (body mass index >30kg/m2, N=155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. Results In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p<0.0001). Furthermore, homeostatic model assessment of insulin resistance levels were significantly higher in men who were high-versus low-restrained eaters (p=0.0006). Conclusions This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restraint eating is associated with insulin resistance in men but not in women. PMID:24854820

  16. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia.

    PubMed

    Herzberg-Schäfer, S; Heni, M; Stefan, N; Häring, H-U; Fritsche, A

    2012-10-01

    One major risk factor of type 2 diabetes is the impairment of glucose-induced insulin secretion which is mediated by the individual genetic background and environmental factors. In addition to impairment of glucose-induced insulin secretion, impaired glucagon-like peptide (GLP)1-induced insulin secretion has been identified to be present in subjects with diabetes and impaired glucose tolerance, but little is known about its fundamental mechanisms. The state of GLP1 resistance is probably an important mechanism explaining the reduced incretin effect observed in type 2 diabetes. In this review, we address methods that can be used for the measurement of insulin secretion in response to GLP1 in humans, and studies showing that specific diabetes risk genes are associated with resistance of the secretory function of the β-cell in response to GLP1 administration. Furthermore, we discuss other factors that are associated with impaired GLP1-induced insulin secretion, for example, insulin resistance. Finally, we provide evidence that hyperglycaemia per se, the genetic background and their interaction result in the development of GLP1 resistance of the β-cell. We speculate that the response or the non-response to therapy with GLP1 analogues and/or dipeptidyl peptidase-4 (DPP-IV) inhibitors is critically dependent on GLP1 resistance.

  17. Effect of aerobic exercise intervention on markers of insulin resistance in breast cancer women.

    PubMed

    Bruno, E; Roveda, E; Vitale, J; Montaruli, A; Berrino, F; Villarini, A; Venturelli, E; Gargano, G; Galasso, L; Caumo, A; Carandente, F; Pasanisi, P

    2016-12-07

    Insulin may affect breast cancer (BC) risk and prognosis. Exercise reduces insulin in obese BC survivors. We designed a randomised controlled trial to test the effect of an aerobic exercise intervention (AEI) on insulin parameters and body composition in non-obese BC women without insulin resistance. Thirty-eight BC women were randomised into an intervention group (IG = 18) or control group (CG = 20). IG participated in a structured AEI for 3 months, while CG received only the Word Cancer Research Fund/American Institute Cancer Research (WCRF/AICR) recommendation to be physically active. Fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR) index, metabolic parameters and body composition were collected at baseline and after the AEI. IG reduced insulin and HOMA-IR index by 15% and 14%, while CG increased these parameters (+12% and +16%). Insulin changed differently over time in the two randomised groups (pinteraction  = .04). The between-group differences in the change of insulin (IG = -1.2 μU/ml versus CG = +0.8 μU/ml) and HOMA-IR index (IG = -0.26 versus CG = +0.25) were respectively significant (p = .04) and non-significant (p = .06). IG significantly improved lower limb muscle mass in comparison with CG (p = .03). A structured AEI may improve insulin, HOMA-IR index and body composition in non-obese BC survivors without insulin resistance.

  18. Insulin resistance: an emerging link in Alzheimer's disease.

    PubMed

    Medhi, Bikash; Chakrabarty, Mrinmoy

    2013-10-01

    Relentless progression of Alzheimer's disease (AD) poses a grave situation for the biomedical community to tackle. Agents starting as hot favorites in clinical trials have failed in later stages and it is time we reconsidered our approaches to intervene the disease. Quite some interesting work in the last decade has introduced a new school of thought which factors in neuronal glycemic imbalance as a major component for the development of AD. Insulin resistance in the brain has brought forward subsequent sequelae which might work towards amyloid accretion and/or tau hyperphosphorylation. It is also pointed out that insulin works by distributing iron to neuronal tissue and an insulin resistant state throws it off gear leading to iron overloading of neurons which is ultimately detrimental. A relatively recent investigation finds the role of c-Jun-N-terminal kinase (JNK3) in AD which also seems to bear a link with insulin resistance.

  19. Role of nutrition in preventing insulin resistance in children.

    PubMed

    Blasetti, Annalisa; Franchini, Simone; Comegna, Laura; Prezioso, Giovanni; Chiarelli, Francesco

    2016-03-01

    Nutrition during prenatal, early postnatal and pubertal period is crucial for the development of insulin resistance and its consequences. During prenatal period fetal environment and nutrition seems to interfere with metabolism programming later in life. The type of dietary carbohydrates, glycemic index, protein, fat and micronutrient content in maternal nutrition could influence insulin sensitivity in the newborn. The effects of lactation on metabolism and nutritional behavior later in life have been studied. Dietary habits and quality of diet during puberty could prevent the onset of a pathological insulin resistance through an adequate distribution of macro- and micronutrients, a diet rich in fibers and vegetables and poor in saturated fats, proteins and sugars. We want to overview the latest evidences on the risk of insulin resistance later in life due to both nutritional behaviors and components during the aforementioned periods of life, following a chronological outline from fetal development to adolescence.

  20. Glucose metabolism, insulin sensitivity and β-cell function in type A insulin resistance syndrome around puberty: a 9-year follow-up.

    PubMed

    Huang, Z; Liu, J; Ma, L; Wan, X; He, X; Fang, D; Liao, Z; Li, Y

    2014-01-01

    Diabetes mellitus is thought to be progressive. Insufficient insulin secretion in compensation for insulin resistance leads to glucose intolerance. A previously reported proband with type A insulin resistance syndrome and her younger twin brothers with and without the R1174W missense mutation in the insulin receptor gene were followed for 9 years to study the progression of glucose metabolism, insulin sensitivity, and β-cell function around puberty. Five-hour OGTT was performed in them at each visit. Areas under the curves of glucose, insulin and C-peptides, insulinogenic index, AIR, and Homa indices were assessed. Intramyocellular lipids (IMCLs) were quantified in the proband and compared to those of 12 nondiabetic subjects, 118 newly diagnosed type 2 diabetic patients. The proband maintained normal HbA1c (27-37 mmol/mol) and fasting plasma glucose (3.7-4.5 mmol/l), and her glucose tolerance ameliorated over years. The proband's Homa-IR decreased into adulthood, while her Homa-B, insulinogenic index, AIR, AUCs of insulin, and C-peptide decreased accordingly. Homa-B to Homa-IR ratios stayed significantly higher than normal. Homa-B, AUCs of insulin, and C-peptide of the twin brothers increased in response to the increment of Homa-IR as they entered middle and late puberty. The changes were more dramatic in the twin brothers carrying the mutation. IMCLs of the proband were lower than those of the nondiabetic counterparts and were disproportional for the degree of insulin resistance. Our longitudinal data of type A insulin resistance syndrome around puberty provide significant information for the study of insulin secretion in compensation for insulin resistance.

  1. Skin Manifestations of Insulin Resistance: From a Biochemical Stance to a Clinical Diagnosis and Management.

    PubMed

    González-Saldivar, Gloria; Rodríguez-Gutiérrez, René; Ocampo-Candiani, Jorge; González-González, José Gerardo; Gómez-Flores, Minerva

    2017-03-01

    Worldwide, more than 1.9 billion adults are overweight, and around 600 million people suffer from obesity. Similarly, ~382 million individuals live with diabetes, and 40-50% of the global population is labeled at "high risk" (i.e., prediabetes). The impact of these two chronic conditions relies not only on the burden of illnesses per se (i.e., associated increased morbidity and mortality), but also on their increased cost, burden of treatment, and decreased health-related quality of life. For this review a comprehensive search in several databases including PubMed (MEDLINE), Ovid EMBASE, Web of Science, and Scopus was conducted. In both diabetes and obesity, genetic, epigenetic, and environmental factors overlap and are inclusive rather than exclusive. De facto, 70-80% of the patients with obesity and virtually every patient with type 2 diabetes have insulin resistance. Insulin resistance is a well-known pathophysiologic factor in the development of type 2 diabetes, characteristically appearing years before its diagnosis. The gold standard for insulin resistance diagnosis (the euglycemic insulin clamp) is a complex, invasive, costly, and hence unfeasible test to implement in clinical practice. Likewise, laboratory measures and derived indexes [e.g., homeostasis model assessment of insulin resistance (HOMA-IR-)] are indirect, imprecise, and not highly accurate and reproducible tests. However, skin manifestations of insulin resistance (e.g., acrochordons, acanthosis nigricans, androgenetic alopecia, acne, hirsutism) offer a reliable, straightforward, and real-time way to detect insulin resistance. The objective of this review is to aid clinicians in recognizing skin manifestations of insulin resistance. Diagnosing these skin manifestations accurately may cascade positively in the patient's health by triggering an adequate metabolic evaluation, a timely treatment or referral with the ultimate objective of decreasing diabetes and obesity burden, and improving the

  2. Role of genetic variation in insulin-like growth factor 1 receptor on insulin resistance and arterial hypertension.

    PubMed

    Sookoian, Silvia; Gianotti, Tomas Fernandez; Gemma, Carolina; Burgueño, Adriana L; Pirola, Carlos J

    2010-06-01

    To perform a two-stage study to explore the role of gene variants in the risk of insulin resistance and arterial hypertension. The selection of variants was performed by a first stage of in-silico analysis of the original genome-wide association data sets on genes involved in metabolic syndrome components, granted by the Diabetes Genetics Initiative and the Wellcome Trust Case-Control Consortium. We started by identifying single-nucleotide polymorphisms with a cutoff for association (P < 0.05) in both data sets after the application of a computational algorithm of gene prioritization. Among the more promising variants, six single-nucleotide polymorphisms in IGF1R (rs11247362, rs10902606, rs1317459, rs11854132, rs2684761, and rs2715416) were selected for further evaluation in our population. Altogether, 1094 men, aged 34.4 +/- 8.6 years, were included in a population-based study. Genotypes of rs2684761 showed significant association with insulin resistance (as a discrete trait, odds ratio per G allele 1.27, 95% confidence interval 1.03-1.56, P = 0.026; and homeostasis model assessment-insulin resistance as a continuous trait, P = 0.01). A significant association of rs2684761 with arterial hypertension was also observed (odds ratio per G allele 1.29, 95% confidence interval 1.02-1.64, P = 0.037) after adjusting for age and homeostasis model assessment-insulin resistance. Our study suggests for the first time a putative role of IGF1R variants in individual susceptibility to metabolic syndrome-related phenotypes, in particular on the risk of having insulin resistance and arterial hypertension.

  3. HSP72 protects against obesity-induced insulin resistance.

    PubMed

    Chung, Jason; Nguyen, Anh-Khoi; Henstridge, Darren C; Holmes, Anna G; Chan, M H Stanley; Mesa, Jose L; Lancaster, Graeme I; Southgate, Robert J; Bruce, Clinton R; Duffy, Stephen J; Horvath, Ibolya; Mestril, Ruben; Watt, Matthew J; Hooper, Philip L; Kingwell, Bronwyn A; Vigh, Laszlo; Hevener, Andrea; Febbraio, Mark A

    2008-02-05

    Patients with type 2 diabetes have reduced gene expression of heat shock protein (HSP) 72, which correlates with reduced insulin sensitivity. Heat therapy, which activates HSP72, improves clinical parameters in these patients. Activation of several inflammatory signaling proteins such as c-jun amino terminal kinase (JNK), inhibitor of kappaB kinase, and tumor necrosis factor-alpha, can induce insulin resistance, but HSP 72 can block the induction of these molecules in vitro. Accordingly, we examined whether activation of HSP72 can protect against the development of insulin resistance. First, we show that obese, insulin resistant humans have reduced HSP72 protein expression and increased JNK phosphorylation in skeletal muscle. We next used heat shock therapy, transgenic overexpression, and pharmacologic means to overexpress HSP72 either specifically in skeletal muscle or globally in mice. Herein, we show that regardless of the means used to achieve an elevation in HSP72 protein, protection against diet- or obesity-induced hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance was observed. This protection was tightly associated with the prevention of JNK phosphorylation. These findings identify an essential role for HSP72 in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding.

  4. Susceptibility to oxidative stress, insulin resistance, and insulin secretory response in the development of diabetes from obesity.

    PubMed

    Kocić, Radivoj; Pavlović, Dusica; Kocić, Gordana; Pesić, Milica

    2007-06-01

    [corrected] Oxidative stress plays a critical role in the pathogenesis of various diseases. Recent reports indicate that obesity may induce systemic oxidative stress. The aim of the study was to potentiate oxidative stress as a factor which may aggravate peripheral insulin sensitivity and insulinsecretory response in obesity in this way to potentiate development of diabetes. The aim of the study was also to establish whether insulin-secretory response after glucagonstimulated insulin secretion is susceptible to prooxidant/antioxidant homeostasis status, as well as to determine the extent of these changes. A mathematical model of glucose/insulin interactions and C-peptide was used to indicate the degree of insulin resistance and to assess their possible relationship with altered antioxidant/prooxidant homeostasis. The study included 24 obese healthy and 16 obese newly diagnozed non-insulin dependent diabetic patients (NIDDM) as well as 20 control healthy subjects, matched in age. Total plasma antioxidative capacity, erythrocyte and plasma reduced glutathione level were significantly decreased in obese diabetic patients, but also in obese healthy subjects, compared to the values in controls. The plasma lipid peroxidation products and protein carbonyl groups were significantly higher in obese diabetics, more than in obese healthy subjects, compared to the control healthy subjects. The increase of erythrocyte lipid peroxidation at basal state was shown to be more pronounced in obese daibetics, but the apparent difference was obtained in both the obese healthy subjects and obese diabetics, compared to the control values, after exposing of erythrocytes to oxidative stress induced by H2O2. Positive correlation was found between the malondialdehyde (MDA) level and index of insulin sensitivity (FIRI). Increased oxidative stress together with the decreased antioxidative defence seems to contribute to decreased insulin sensitivity and impaired insulin secretory response in

  5. Hypolactasia is associated with insulin resistance in nonalcoholic steatohepatitis

    PubMed Central

    de Campos Mazo, Daniel Ferraz; Mattar, Rejane; Stefano, José Tadeu; da Silva-Etto, Joyce Matie Kinoshita; Diniz, Márcio Augusto; Duarte, Sebastião Mauro Bezerra; Rabelo, Fabíola; Lima, Rodrigo Vieira Costa; de Campos, Priscila Brizolla; Carrilho, Flair José; Oliveira, Claudia P

    2016-01-01

    AIM To assess lactase gene (LCT)-13910C>T polymorphisms in Brazilian non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) patients in comparison with healthy controls. METHODS This was a transverse observational clinical study with NAFLD patients who were followed at the Hepatology Outpatient Unit of the Hospital das Clínicas, São Paulo, Brazil. The polymorphism of lactase non-persistence/lactase persistence (LCT-13910C>T) was examined by PCR-restriction fragment length polymorphism technique in 102 liver biopsy-proven NAFLD patients (steatosis in 9 and NASH in 93) and compared to those of 501 unrelated healthy volunteers. Anthropometric, clinical, biochemical and liver histology data were analyzed. Continuous variables were compared using the t or Mann-Whitney tests, and categorical data were compared with the Fisher’s exact test. Univariate logistic regression and multivariate logistic regression adjusted for gender and age were performed. RESULTS No differences in the LCT-13910 genotype frequencies were noted between the NAFLD patients (66.67% of the patients with steatosis were CC, 33.33% were CT, and none were TT; 55.91% of the patients with NASH were CC, 39.78% were CT, and 4.3% were TT; P = 0.941) and the healthy controls (59.12% were CC, 35.67% were CT, and 5.21% were TT) or between the steatosis and NASH patients. That is, the distribution of the lactase non-persistence/lactase persistence polymorphism (LCT-13910C>T) in the patients with NAFLD was equal to that in the general population. In the NASH patients, the univariate analysis revealed that the lactase non-persistence (low lactase activity or hypolactasia) phenotype was associated with higher insulin levels (23.47 ± 15.94 μU/mL vs 15.8 ± 8.33 μU/mL, P = 0.027) and a higher frequency of insulin resistance (91.84% vs 72.22%, P = 0.02) compared with the lactase persistence phenotype. There were no associations between the LCT genotypes and diabetes (P = 0

  6. Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification

    PubMed Central

    Jorge-Galarza, Esteban; Torres-Tamayo, Margarita; Rodas-Díaz, Marco A.; Posadas-Sánchez, Rosalinda; González-Salazar, María del Carmen; Cardoso-Saldaña, Guillermo C.

    2016-01-01

    Background. Insulin resistance is involved in the pathogenesis of cardiovascular disease, but its relationship with cardiovascular calcification has yielded conflicting results. The purpose of the present study was to investigate the role of hepatic and adipose tissue insulin resistance on the presence of coronary artery (CAC > 0) and aortic valve calcification (AVC > 0). Methods. In 1201 subjects (52% women, 53.6 ± 9.3 years old) without familiar and personal history of coronary heart disease, CAC and AVC were assessed by multidetector-computed tomography. Cardiovascular risk factors were documented and lipid profile, inflammation markers, glucose, insulin, and free fatty acids were measured. Hepatic insulin resistance (HOMA-IR) and adipose tissue insulin resistance (Adipo-IR) indices were calculated. Results. There was a significant relationship between HOMA-IR and Adipo-IR indices (r = 0.758, p < 0.001). Participants in the highest quartiles of HOMA-IR and Adipo-IR indices had a more adverse cardiovascular profile and higher prevalence of CAC > 0 and AVC > 0. After full adjustment, subjects in the highest quartile of Adipo-IR index had higher odds of AVC > 0 (OR: 2.40; 95% CI: 1.30–4.43), as compared to those in the lowest quartile. Conclusions. Adipo-IR was independently associated with AVC > 0. This suggests that abnormal adipose tissue function favors insulin resistance that may promote the development and progression of AVC. PMID:28127113

  7. Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification.

    PubMed

    Jorge-Galarza, Esteban; Posadas-Romero, Carlos; Torres-Tamayo, Margarita; Medina-Urrutia, Aida X; Rodas-Díaz, Marco A; Posadas-Sánchez, Rosalinda; Vargas-Alarcón, Gilberto; González-Salazar, María Del Carmen; Cardoso-Saldaña, Guillermo C; Juárez-Rojas, Juan G

    2016-01-01

    Background. Insulin resistance is involved in the pathogenesis of cardiovascular disease, but its relationship with cardiovascular calcification has yielded conflicting results. The purpose of the present study was to investigate the role of hepatic and adipose tissue insulin resistance on the presence of coronary artery (CAC > 0) and aortic valve calcification (AVC > 0). Methods. In 1201 subjects (52% women, 53.6 ± 9.3 years old) without familiar and personal history of coronary heart disease, CAC and AVC were assessed by multidetector-computed tomography. Cardiovascular risk factors were documented and lipid profile, inflammation markers, glucose, insulin, and free fatty acids were measured. Hepatic insulin resistance (HOMA-IR) and adipose tissue insulin resistance (Adipo-IR) indices were calculated. Results. There was a significant relationship between HOMA-IR and Adipo-IR indices (r = 0.758, p < 0.001). Participants in the highest quartiles of HOMA-IR and Adipo-IR indices had a more adverse cardiovascular profile and higher prevalence of CAC > 0 and AVC > 0. After full adjustment, subjects in the highest quartile of Adipo-IR index had higher odds of AVC > 0 (OR: 2.40; 95% CI: 1.30-4.43), as compared to those in the lowest quartile. Conclusions. Adipo-IR was independently associated with AVC > 0. This suggests that abnormal adipose tissue function favors insulin resistance that may promote the development and progression of AVC.

  8. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle.

    PubMed

    Lailerd, Narissara; Saengsirisuwan, Vitoon; Sloniger, Julie A; Toskulkao, Chaivat; Henriksen, Erik J

    2004-01-01

    Stevioside (SVS), a natural sweetener extracted from Stevia rebaudiana, has been used as an antihyperglycemic agent. However, little is known regarding its potential action on skeletal muscle, the major site of glucose disposal. Therefore, the purpose of the present study was to determine the effect of SVS treatment on skeletal muscle glucose transport activity in both insulin-sensitive lean (Fa/-) and insulin-resistant obese (fa/fa) Zucker rats. SVS was administered (500 mg/kg body weight by gavage) 2 hours before an oral glucose tolerance test (OGTT). Whereas the glucose incremental area under the curve (IAUC(glucose)) was not affected by SVS in lean Zucker rats, the insulin incremental area under the curve (IAUC(insulin)) and the glucose-insulin index (product of glucose and insulin IAUCs and inversely related to whole-body insulin sensitivity) were decreased (P<.05) by 42% and 45%, respectively. Interestingly, in the obese Zucker rat, SVS also reduced the IAUC(insulin) by 44%, and significantly decreased the IAUC(glucose) (30%) and the glucose-insulin index (57%). Muscle glucose transport was assessed following in vitro SVS treatment. In lean Zucker rats, basal glucose transport in type I soleus and type IIb epitrochlearis muscles was not altered by 0.01 to 0.1 mmol/L SVS. In contrast, 0.1 mmol/L SVS enhanced insulin-stimulated (2 mU/mL) glucose transport in both epitrochlearis (15%) and soleus (48%). At 0.5 mmol/L or higher, the SVS effect was reversed. Similarly, basal glucose transport in soleus and epitrochlearis muscles in obese Zucker rats was not changed by lower doses of SVS (0.01 to 0.1 mmol/L). However, these lower doses of SVS significantly increased insulin-stimulated glucose transport in both obese epitrochlearis and soleus (15% to 20%). In conclusion, acute oral SVS increased whole-body insulin sensitivity, and low concentrations of SVS (0.01 to 0.1 mmol/L) modestly improved in vitro insulin action on skeletal muscle glucose transport in both lean

  9. Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells.

    PubMed

    Chan, Yee Kwan; Sung, Hye Kyoung; Jahng, James Won Suk; Kim, Grace Ha Eun; Han, Meng; Sweeney, Gary

    2016-07-15

    Lipocalin-2 (Lcn2; also known as neutrophil gelatinase associated lipocalin, NGAL) levels are increased in obesity and diabetes and associate with insulin resistance. Correlations exist between Lcn2 levels and various forms or stages of heart failure. Insulin resistance and autophagy both play well-established roles in cardiomyopathy. However, little is known about the impact of Lcn2 on insulin signaling in cardiomyocytes. In this study, we treated H9c2 cells with recombinant Lcn2 for 1 h followed by dose- and time-dependent insulin treatment and found that Lcn2 attenuated insulin signaling assessed via phosphorylation of Akt and p70S6K. We used multiple assays to demonstrate that Lcn2 reduced autophagic flux. First, Lcn2 reduced pULK1 S555, increased pULK1 S757 and reduced LC3-II levels determined by Western blotting. We validated the use of DQ-BSA to assess autolysosomal protein degradation and this together with MagicRed cathepsin B assay indicated that Lcn2 reduced lysosomal degradative activity. Furthermore, we generated H9c2 cells stably expressing tandem fluorescent RFP/GFP-LC3 and this approach verified that Lcn2 decreased autophagic flux. We also created an autophagy-deficient H9c2 cell model by overexpressing a dominant-negative Atg5 mutant and found that reduced autophagy levels also induced insulin resistance. Adding rapamycin after Lcn2 could stimulate autophagy and recover insulin sensitivity. In conclusion, our study indicated that acute Lcn2 treatment caused insulin resistance and use of gain and loss of function approaches elucidated a causative link between autophagy inhibition and regulation of insulin sensitivity by Lcn2. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Differences in Insulin Resistance in Mexican and U.S. Pima Indians with Normal Glucose Tolerance

    PubMed Central

    Esparza-Romero, Julian; Valencia, Mauro E.; Martinez, Maria Elena; Ravussin, Eric; Schulz, Leslie O.; Bennett, Peter H.

    2010-01-01

    Context: Insulin resistance is a major risk factor for the development of type 2 diabetes in Pima Indians, a population with the highest prevalence of type 2 diabetes mellitus in the world. Their Mexican counterpart, living a traditional lifestyle in the mountains of Sonora, have at least 5 times less diabetes than the U.S. Pima Indians. Objective: We evaluated whether Mexican Pima Indians had lower insulin resistance than U.S. Pima Indians. Design and Patients: We compared fasting insulin and homeostasis model assessment for insulin resistance (HOMA-IR) in 194 Mexican Pima Indians (100 females, 94 males) and 449 U.S. Pima Indians (246 females, 203 males) with normal glucose tolerance from a cross-sectional study. Adjusted differences of log-transformed outcomes (fasting insulin and HOMA-IR) between groups were evaluated using multiple linear regression models and paired t test in a matched subset. Results: Unadjusted fasting insulin and HOMA-IR were much lower in the Mexican Pima Indians than in their U.S. counterparts. After adjusting by obesity, age, and sex, mean (95% confidence interval) for fasting insulin was 6.22 (5.34–7.24) vs. 13.56 μU/ml (12.27–14.97) and for HOMA-IR 1.40 (1.20–1.64) vs. 3.07 (2.77–3.40), respectively, for Mexican Pima and U.S. Pima Indians. Results were confirmed in subset matched for age, sex, and body fat. Conclusion: Our results indicate that Mexican Pima Indians have lower insulin resistance in comparison with their genetically related U.S. counterparts, even after controlling for differences in obesity, age, and sex. This finding underscores the importance of lifestyle factors as protecting factors against insulin resistance in individuals with a high propensity to develop diabetes. PMID:20668044

  11. Physical inactivity and obesity underlie the insulin resistance of aging.

    PubMed

    Amati, Francesca; Dubé, John J; Coen, Paul M; Stefanovic-Racic, Maja; Toledo, Frederico G S; Goodpaster, Bret H

    2009-08-01

    OBJECTIVE Age-associated insulin resistance may underlie the higher prevalence of type 2 diabetes in older adults. We examined a corollary hypothesis that obesity and level of chronic physical inactivity are the true causes for this ostensible effect of aging on insulin resistance. RESEARCH DESIGN AND METHODS We compared insulin sensitivity in 7 younger endurance-trained athletes, 12 older athletes, 11 younger normal-weight subjects, 10 older normal-weight subjects, 15 younger obese subjects, and 15 older obese subjects using a glucose clamp. The nonathletes were sedentary. RESULTS Insulin sensitivity was not different in younger endurance-trained athletes versus older athletes, in younger normal-weight subjects versus older normal-weight subjects, or in younger obese subjects versus older obese subjects. Regardless of age, athletes were more insulin sensitive than normal-weight sedentary subjects, who in turn were more insulin sensitive than obese subjects. CONCLUSIONS Insulin resistance may not be characteristic of aging but rather associated with obesity and physical inactivity.

  12. Mechanisms involved in cholesterol-induced neuronal insulin resistance.

    PubMed

    Taghibiglou, Changiz; Bradley, Clarrisa A; Gaertner, Tara; Li, Yuping; Wang, Yushan; Wang, Yu Tian

    2009-09-01

    Insulin receptors (IRs) are highly expressed in the central nervous system (CNS) and play an important role in normal brain functions, such as learning and memory. Due to the increasing rate of obesity in western societies and overall high fat diets, the incidents of neuronal insulin resistance is also on the rise, but the underlying mechanism is still poorly characterized. We found that cholesterol treatment produces robust insulin signaling resistance that is characterized by the marked reduction in insulin-stimulated tyrosine phosphorylation of the IR and its downstream targets insulin receptor substrate 1 (IRS1) and 2 (IRS2). Surface expression of IRs was also decreased and was correlated with an increase in facilitated receptor endocytosis. Membrane fractionation showed that after cholesterol treatment, the proportion of IRs localized in the lipid raft increased and correspondingly there was a reduction of IRs in the non-raft membrane. Interestingly, we found that IRs in the lipid rafts, unlike their counterparts in the non-raft membrane domain, were essentially unresponsive to insulin stimulation and that a high level of tyrosine phosphatase activity was associated with these raft fractions. Our results suggest that the lipid raft microdomain of the neuronal plasma membrane has a strong influence on IR signaling, and that incorporation of high levels of cholesterol may reduce IR signaling by increasing their representation in lipid rafts. The trapping of the IR in the lipid raft domain may result in its inactivation and promote its endocytosis: effects that could contribute to neuronal insulin resistance in obesity.

  13. [Metabolic syndrome and insulin resistance in patients with prostate cancer treated with androgen deprivation hormone].

    PubMed

    Terrier, J-E; Mottet, N

    2013-02-01

    Androgen suppression in prostate cancer is responsible for many side effects. Many studies, mostly retrospective, have found an association between androgen deprivation and increased cardiovascular morbidity. If the cardiovascular impact was chosen, an etiological explanation would be the occurrence of metabolic disorders, particularly insulin resistance. The objective of our work was to conduct a review of the literature assessing the impact of androgen deprivation on the onset of insulin resistance, the metabolic syndrome and changes in key markers of insulin resistance. A systematic review of literature from the Pubmed database search was performed using the following keywords: androgen deprivation therapy, metabolic syndrome, insulin resistance, hyperglycemia, cardiovascular diseases, cardiovascular risk, abdominal obesity. Twelve studies were included, bringing into focus a 55% prevalence of metabolic syndrome in patients treated for more than 12 months, an increase in fat mass and decreased lean body mass, an increase in abdominal subcutaneous fat and in visceral adiposity. The insulin was increased in four studies (25 to 60% three months dice). The increased insulin resistance was assessed by the Homeostasis Model Assessment (HOMA) was postponed three times (12% in two prospective cohort studies of type). The increase in triglycerides (20 to 40% at 12 months) and total cholesterol (7 to 11%) was observed in five studies, and increased LDL cholesterol and HDL in three studies (9 to 22%). All studies of this analysis appeared to converge towards the development of insulin resistance and metabolic disorders, however, no prospective cohort study of good methodological quality were identified. It would be necessary to conduct a prospective multicenter study in order to have a causal quality. Copyright © 2012. Published by Elsevier Masson SAS.

  14. Perpetuating Effects of Androgen Deficiency on Insulin-resistance

    PubMed Central

    Cameron, Judy L.; Jain, Ruhee; Rais, Maham; White, Ashley E.; Beer, Tomasz M.; Kievit, Paul; Winters-Stone, Kerri; Messaoudi, Ilhem; Varlamov, Oleg

    2016-01-01

    Background/Objectives Androgen deprivation therapy (ADT) is commonly used for treatment of prostate cancer, but is associated with side effects such as sarcopenia and insulin resistance. The role of lifestyle factors such as diet and exercise on insulin sensitivity and body composition in testosterone-deficient males is poorly understood. The aim of the present study was to examine the relationships between androgen status, diet, and insulin sensitivity. Subjects/Methods Middle-aged (11–12-yo) intact and orchidectomized male rhesus macaques were maintained for two months on a standard chow diet, and then exposed for six months to a Western-style, high-fat/calorie-dense diet (WSD) followed by four months of caloric restriction (CR). Body composition, insulin sensitivity, physical activity, serum cytokine levels, and adipose biopsies were evaluated before and after each dietary intervention. Results Both intact and orchidectomized animals gained similar proportions of body fat, developed visceral and subcutaneous adipocyte hypertrophy, and became insulin resistant in response to the WSD. CR reduced body fat in both groups, but reversed insulin resistance only in intact animals. Orchidectomized animals displayed progressive sarcopenia, which persisted after the switch to CR. Androgen deficiency was associated with increased levels of interleukin-6 and macrophage-derived chemokine (CCL22), both of which were elevated during CR. Physical activity levels showed a negative correlation with body fat and insulin sensitivity. Conclusion Androgen deficiency exacerbated the negative metabolic side effects of the WSD, such that CR alone was not sufficient to improve altered insulin sensitivity, suggesting that ADT patients will require additional interventions to reverse insulin resistance and sarcopenia. PMID:27534842

  15. The insulin resistance syndrome: mechanisms of clustering of cardiovascular risk.

    PubMed

    Chan, Juliana C N; Tong, Peter C Y; Critchley, Julian A J H

    2002-02-01

    For more than a decade, insulin resistance has been proposed as the key linking factor for the metabolic syndrome disease cluster of glucose intolerance, hypertension, dyslipidemia, obesity, and cardiovascular disease. Although most of the epidemiological, experimental, and clinical evidence still support the role of insulin resistance as an important component of this multifaceted syndrome, there is evidence amassing that a neurohormonal mechanism, including an endocrine role for adipocytes, probably plays a more fundamental role. This is supported by the strong associations between obesity, especially central adiposity, and all components of the metabolic syndrome, in contrast to the inconsistent relationships between blood pressure and markers of insulin resistance. However, much of the effect of visceral fat on cardiovascular risk factors is mediated through the metabolic actions of free fatty acids (FFA) on insulin resistance, thus resolving any obesity versus insulin resistance controversy. In addition to the roles of obesity and FFA in the development of insulin resistance syndrome, the high prevalence rates of this disease cluster among subjects from low socioeconomic groups as well as from developing countries have led to alternative hypotheses to better our understanding of the contributory roles of socioeconomic, in utero, and genetic factors in this syndrome. More recently, the pathogenetic roles of iron overload and liver dysfunction have also been re-examined. In this article, the various hypotheses which have been put forward to explain the diverse clinical manifestations of the metabolic or insulin resistance syndrome are summarized and put into perspective. While there is clinical and experimental evidence to support many of these independent pathways, alternative statistical methods such as factor analysis or structural equation modeling may be needed to unravel the complex nature of these interacting pathways. Finally, these hypotheses, if proven

  16. Previous hypertensive disease of pregnancy is associated with alterations of markers of insulin resistance.

    PubMed

    Girouard, Joël; Giguère, Yves; Moutquin, Jean-Marie; Forest, Jean-Claude

    2007-05-01

    Insulin resistance syndrome has been observed in women with hypertensive disease of pregnancy, but few studies evaluated the presence of the syndrome a few years after delivery. The objective of this study was to evaluate the presence of insulin resistance and its metabolic alterations in these women compared with those who had a normal pregnancy. We performed an observational study in 168 women with previous hypertensive disease of pregnancy and 168 control subjects with normal pregnancy contacted, on average, 7.8 years after their first delivery (mean age: 34.8 years). Complete blood lipid profile, insulin, glucose, homocysteine, adipokins, and markers of inflammation were measured. Also, an oral glucose tolerance test was performed in 146 case and 135 control subjects. Case subjects were more overweight compared with control subjects. We found significantly lower high-density lipoprotein cholesterol and adiponectin levels and higher apolipoprotein (apo) apoB/apoA1 ratio, homocysteine, leptin, and insulin levels among case subjects compared with control subjects (Pinsulin resistant in the basal state estimated by homeostasis assessment model 2, as well as in the nonbasal state as estimated by insulin sensitivity indices calculated from the oral glucose tolerance test. Finally, in a multivariate regression model, leptin, apoB/apoA1 ratio, waist circumference, adiponectin, and free fatty acids explained 40% of homeostasis assessment model 2 variance. Young women with previous hypertensive disease of pregnancy show signs of insulin resistance within the first decade after delivery. These findings suggest that insulin resistance may be the link between hypertensive disease of pregnancy and increased cardiovascular risk later in life.

  17. Evolutionary origins of insulin resistance: a behavioral switch hypothesis

    PubMed Central

    Watve, Milind G; Yajnik, Chittaranjan S

    2007-01-01

    Background Insulin resistance, which can lead to a number of diseases including type 2 diabetes and coronary heart disease, is believed to have evolved as an adaptation to periodic starvation. The "thrifty gene" and "thrifty phenotype" hypotheses constitute the dominant paradigm for over four decades. With an increasing understanding of the diverse effects of impairment of the insulin signaling pathway, the existing hypotheses are proving inadequate. Presentation of the hypothesis We propose a hypothesis that insulin resistance is a socio-ecological adaptation that mediates two phenotypic transitions, (i) a transition in reproductive strategy from "r" (large number of offspring with little investment in each) to "K" (smaller number of offspring with more investment in each) and (ii) a transition from "stronger to smarter" or "soldier to diplomat" i.e. from relatively more muscle dependent to brain dependent lifestyle. A common switch could have evolved for the two transitions since the appropriate environmental conditions for the two transitions are highly overlapping and interacting. Testing the hypothesis Gestational insulin resistance diverts more energy through the placenta, resulting in increased investment per offspring. On the other hand, insulin resistance is associated with reduced ovulation. The insulin signaling pathway is also related to longevity. Insulin resistance diverts more nutrients to the brain as compared to muscle. Also, hyperinsulinemia has direct positive effects on cognitive functions of the brain. The hypothesis gets support from known patterns in human clinical data and recent research on the molecular interactions in the insulin signaling pathway. Further we state many predictions of the hypothesis that can be tested experimentally or epidemiologically. Implications of the hypothesis The hypothesis can bring about a significant change in the line of treatment as well as public health policies for the control of metabolic syndrome. PMID

  18. Latent associations of low serum amylase with decreased plasma insulin levels and insulin resistance in asymptomatic middle-aged adults

    PubMed Central

    2012-01-01

    Background Low serum amylase is likely to be associated with obesity and metabolic abnormalities, which are often accompanied by impaired insulin action. However, it is unclear whether low serum amylase is associated with impaired insulin action in clinical settings. Therefore, we investigated the associations of low serum amylase with plasma insulin levels, and obesity-related parameters, including leptin. Research design and methods We measured serum amylase, plasma insulin, obesity-related parameters such as leptin, cardiometabolic risk factors, and anthropometric parameters in a cross-sectional study of 54 asymptomatic subjects (mean age 48.6 ± 7.6 years) who were not being treated for diabetes. Results Body mass index (BMI) and plasma glucose at 120 min after a 75-g oral glucose tolerance test (OGTT) were significantly higher in subjects with low serum amylase (< 60 IU/l, n = 21) than in those with normal-to-high serum amylase (n = 33) (P = 0.04 and P = 0.004, respectively). In univariate correlation analysis, serum amylase was significantly correlated with BMI alone (r = –0.39, P = 0.004). By contrast, multivariate logistic analysis showed that each 1-SD increase in quantitative insulin sensitivity check index, and each 1-SD decrease in plasma insulin OGTT at 0 and 60 min, homeostasis model assessment of insulin resistance (HOMA)-R, and HOMA-β were significantly associated with low serum amylase, particularly after adjusting for BMI. When subjects were divided into three groups according to HOMA-R, serum amylase levels were significantly lower in subjects with HOMA-R > 2.5 (n = 23) compared with subjects with HOMA-R 1.6–2.5 (n = 10) (61.1 ± 13.6 U/ml versus 76.9 ± 20.5 U/ml, Bonferroni test, P = 0.02), but not compared with subjects with HOMA-R<1.6 (n = 21; 62.7 ± 17.6 U/ml). Similar trends were observed when subjects were divided according to plasma leptin and fasting plasma

  19. Latent associations of low serum amylase with decreased plasma insulin levels and insulin resistance in asymptomatic middle-aged adults.

    PubMed

    Muneyuki, Toshitaka; Nakajima, Kei; Aoki, Atsushi; Yoshida, Masashi; Fuchigami, Hiroshi; Munakata, Hiromi; Ishikawa, San-E; Sugawara, Hitoshi; Kawakami, Masanobu; Momomura, Shin-Ichi; Kakei, Masafumi

    2012-06-29

    Low serum amylase is likely to be associated with obesity and metabolic abnormalities, which are often accompanied by impaired insulin action. However, it is unclear whether low serum amylase is associated with impaired insulin action in clinical settings. Therefore, we investigated the associations of low serum amylase with plasma insulin levels, and obesity-related parameters, including leptin. We measured serum amylase, plasma insulin, obesity-related parameters such as leptin, cardiometabolic risk factors, and anthropometric parameters in a cross-sectional study of 54 asymptomatic subjects (mean age 48.6 ± 7.6 years) who were not being treated for diabetes. Body mass index (BMI) and plasma glucose at 120 min after a 75-g oral glucose tolerance test (OGTT) were significantly higher in subjects with low serum amylase (< 60 IU/l, n = 21) than in those with normal-to-high serum amylase (n = 33) (P = 0.04 and P = 0.004, respectively). In univariate correlation analysis, serum amylase was significantly correlated with BMI alone (r = -0.39, P = 0.004). By contrast, multivariate logistic analysis showed that each 1-SD increase in quantitative insulin sensitivity check index, and each 1-SD decrease in plasma insulin OGTT at 0 and 60 min, homeostasis model assessment of insulin resistance (HOMA)-R, and HOMA-β were significantly associated with low serum amylase, particularly after adjusting for BMI. When subjects were divided into three groups according to HOMA-R, serum amylase levels were significantly lower in subjects with HOMA-R > 2.5 (n = 23) compared with subjects with HOMA-R 1.6-2.5 (n = 10) (61.1 ± 13.6 U/ml versus 76.9 ± 20.5 U/ml, Bonferroni test, P = 0.02), but not compared with subjects with HOMA-R<1.6 (n = 21; 62.7 ± 17.6 U/ml). Similar trends were observed when subjects were divided according to plasma leptin and fasting plasma insulin levels. These results suggest that after

  20. Glycation and insulin resistance: novel mechanisms and unique targets?

    PubMed

    Song, Fei; Schmidt, Ann Marie

    2012-08-01

    Multiple biochemical, metabolic, and signal transduction pathways contribute to insulin resistance. In this review, we present evidence that the posttranslational process of protein glycation may play a role in insulin resistance. The posttranslational modifications, the advanced glycation end products (AGEs), are formed and accumulated by endogenous and exogenous mechanisms. AGEs may contribute to insulin resistance by a variety of mechanisms, including generation of tumor necrosis factor-α direct modification of the insulin molecule, thereby leading to its impaired action, generation of oxidative stress, and impairment of mitochondrial function, as examples. AGEs may stimulate signal transduction via engagement of cellular receptors, such as receptor for AGEs. AGE-receptor for AGE interaction perpetuates AGE formation and cellular stress via induction of inflammation, oxidative stress, and reduction in the expression and activity of the enzyme glyoxalase I that detoxifies the AGE precursor, methylglyoxal. Once set in motion, glycation-promoting mechanisms may stimulate ongoing AGE production and target tissue stresses that reduce insulin responsiveness. Strategies to limit AGE accumulation and action may contribute to the prevention of insulin resistance and its consequences.

  1. Perilipin polymorphism interacts with saturated fat and carbohydrates to modulate insulin resistance.

    PubMed

    Smith, C E; Arnett, D K; Corella, D; Tsai, M Y; Lai, C Q; Parnell, L D; Lee, Y C; Ordovás, J M

    2012-05-01

    Macronutrient intakes and genetic variants have been shown to interact to alter insulin resistance, but replications of gene-nutrient interactions across independent populations are rare, despite their critical importance in establishing credibility. We aimed to investigate a previously demonstrated saturated fat and carbohydrate interaction for insulin resistance for perilipin (PLIN1), a regulator of adipocyte metabolism. We investigated the previously shown interaction for PLIN1 11482G > A (rs894160) on insulin resistance in US men (n = 462) and women (n = 508) (mean ± SD, 49 ± 16 years). In multivariable linear regression models, we found an interaction (P < 0.05) between the ratio of saturated fat to carbohydrate intake as a continuous variable and PLIN1 11482G > A for HOMA-IR (homeostasis model assessment of insulin resistance) in women. For carriers of the minor allele but not for non-carriers, as the ratio of saturated fat to carbohydrate intake increased, predicted HOMA-IR increased (P = 0.002). By dichotomizing the ratio of saturated fat to carbohydrate intake into high and low, we found significant interaction terms for insulin and HOMA-IR (P < 0.05). When the ratio of saturated fat to carbohydrate was high, insulin and HOMA-IR were higher in minor allele carriers (P = 0.004 and P = 0.003, respectively), but did not differ when the ratio was low. Similar patterns or trends were observed when saturated fat and carbohydrate were dichotomized into high and low as individual macronutrients. Replication of the previously reported interaction between macronutrient intakes and PLIN1 genotype for insulin resistance reinforces the potential usefulness of applying genotype information in the dietary management of insulin resistance. Copyright © 2010. Published by Elsevier B.V.

  2. Adrenomedullin: possible predictor of insulin resistance in women with polycystic ovary syndrome.

    PubMed

    Sahin, I; Celik, O; Celik, N; Keskin, L; Dogru, A; Dogru, I; Yürekli, M; Yologlu, S

    2012-06-01

    The aim of the study was to investigate adrenomedullin (ADM) levels and its relation with insulin resistance in women with polycystic ovary syndrome (PCOS). Twenty-nine women with PCOS and 29 age- and body mass index (BMI)- matched control subjects were included in the study. PCOS was defined according to criteria by the Rotterdam European Society of Human Reproduction and Embryology/American Society for Reproductive Medicine (ESHRE/ASRM)-sponsored PCOS consensus workshop group. A full clinical and biochemical examination including basal hormones and metabolic profile was performed. Insulin resistance was calculated by using the homeostasis model assessment of insulin resistance index (HOMA-IR). Plasma ADM levels were measured by high performance liquid chromatographic (HPLC) method. Plasma ADM, fasting insulin levels and HOMA-IR were significantly higher in patients with PCOS than the control group. ADM levels were positively correlated with insulin levels and HOMA-IR index. The best cut-off value of ADM levels to identify the presence of insulin resistance (HOMA-IR≥2.7) was 30.44 ng/ml. Calculated odds ratio of insulin resistance by using logistic regression analysis, as predicted by ADM, was 0.15 (95% confidence interval, 0.037-0.628; p=0.009). In multiple regression analysis, ADM level was an independent predictor of HOMA-IR index. Our finding indicated that ADM levels increased in women with PCOS in accordance with HOMA-IR. ADM could be a significant independent determinant of insulin resistance in women with PCOS.

  3. Angelica acutiloba root attenuates insulin resistance induced by high-fructose diet in rats.

    PubMed

    Liu, I-Min; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Chia Ju

    2011-09-01

    Angelica acutiloba root (Japanese Dong Quai), used for treatment of gynecological disorders, is currently cultivated in Taiwan. The present study evaluated the preventative effect of Angelica acutiloba root (Japanese Dong Quai) on the induction of insulin resistance. Insulin resistance was induced in rats by feeding a high fructose diet for 6 weeks. Thereafter, the rats were maintained on the same diet and treated with oral A. acutiloba root extract or pioglitazone once daily for 8 weeks. At the end of treatment, the degree of basal insulin resistance was measured by homeostasis model assessment (HOMA-IR). Insulin sensitivity was calculated using the composite whole body insulin sensitivity index (ISIcomp). Protein expression was evaluated by immunoblotting. A. acutiloba (300 mg/kg/day) displayed similar characteristics to pioglitazone (20 mg/kg/day) in reducing HOMA-IR and elevating ISIcomp. Elevated glycosylated hemoglobin levels and hyperinsulinemia were ameliorated by A. acutiloba treatment without hepatotoxic or nephrotoxic effects. A. acutiloba treatment improved dyslipidemia, induced lipoprotein lipase activity and enhanced hepatic glycogen accumulation. Further, A. acutiloba treatment enhanced the action of insulin on muscle glucose transporter subtype 4 translocation and attenuated hepatic phosphoenolpyruvate carboxykinase expression. The findings suggest that A. acutiloba may be an effective ethnomedicine for improving insulin sensitivity.

  4. The Relationship between Serum 25-Hydroxyvitamin D Concentration, Cardiorespiratory Fitness, and Insulin Resistance in Japanese Men

    PubMed Central

    Sun, Xiaomin; Cao, Zhen-Bo; Tanisawa, Kumpei; Ito, Tomoko; Oshima, Satomi; Higuchi, Mitsuru

    2014-01-01

    Here, we aim to investigate the independent and combined associations of serum 25-hydroxyvitamin D (25(OH)D) and cardiorespiratory fitness (CRF) with glucose metabolism. Fasting blood samples of 107 men aged 40–79 years were analyzed for 25(OH)D, glucose, insulin, glycated hemoglobin, and lipid profile. Homeostasis model assessment of insulin resistance index (HOMA-IR) was calculated from the fasting concentrations of glucose and insulin. Visceral fat area (VFA) was determined by magnetic resonance imaging and CRF by measuring maximal oxygen uptake. Median 25(OH)D concentration was 36.3 nmol/L, while the prevalence of 25(OH)D deficiency was 74.8%. Participants with high CRF had significantly lower HOMA-IR, glycated hemoglobin, and insulin values than participants with low CRF (p < 0.05). Higher 25(OH)D concentration was strongly correlated with lower HOMA-IR and insulin values independent of VFA (p < 0.01) but significantly affected by CRF. In the high CRF group, participants with higher 25(OH)D concentration had lower HOMA-IR values than participants with low 25(OH)D concentration (p < 0.05). Higher 25(OH)D and CRF are crucial for reducing insulin resistance regardless of abdominal fat. In addition, higher 25(OH)D concentration may strengthen the effect of CRF on reducing insulin resistance in middle-aged and elderly Japanese men with high CRF. PMID:25551248

  5. Study of the role of insulin resistance as a risk factor in HCV related hepatocellular carcinoma.

    PubMed

    Ibrahim, Amany Ahmad; Abdel Aleem, Mostafa Hamed; Abdella, Heba Mohamed; Helmy, Amir

    2015-04-01

    Chronic HCV infection causes hepatic cirrhosis and approximately 10%-20% of cirrhotic patients may develop hepatocellular carcinoma within 5 years. Diabetes mellitus is associated with a 2-4-fold increase in the risk of HCC. Insulin resistance (IR) emerged as a risk factor for a variety of cancers, including endometrial and breast and various gastrointestinal cancers The role of IR in the development of HCC associated with chronic HCV infection has not, been established. This study elucidated the role of insulin resistance assessed by the homeostasis model (HOMA-IR) in development of hepatocellular carcinoma associated with chronic hepatitis C infection. The study included 3 groups: GI: 100 newly diagnosed cases of HCV related hepatocellular carcinoma GII: 60 patients with HCV related chronic liver disease. Forty healthy persons as a control group (GIII). All groups were subjected to full history taking, physical examination, laboratory investigations abdominal ultrasonography and Triphasic C.T examination. In addition to Calculation of Body mass Index, Measurement of fasting blood insulin and glucose, Calculation of insulin resistance using HOMA-IR. The results showed that fasting insulin and HOMA-IR were significantly higher among HCC group than HCV group & control group. Also, fasting insulin and HOMA-IR were significantly higher in HCV group than control group. HOMA-IR above 3.7, insulin above 9μU/L & DM were considered independent predictors of HCC.

  6. Peripheral Insulin Resistance and Impaired Insulin Signaling Contribute to Abnormal Glucose Metabolism in Preterm Baboons

    PubMed Central

    McGill-Vargas, Lisa L.; Gastaldelli, Amalia; Seidner, Steven R.; McCurnin, Donald C.; Leland, Michelle M.; Anzueto, Diana G.; Johnson, Marney C.; Liang, Hanyu; DeFronzo, Ralph A.; Musi, Nicolas

    2015-01-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons