Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert
2013-01-01
We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts resulting from analyses using the AIRS T(p) assimilation system were superior to those from the Radiance assimilation system, both with regard to global 7 day forecast skill and also the ability to predict storm tracks and intensity.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); daSilva, Arlindo; Dee, Dick; Bloom, Stephen; Bosilovich, Michael; Pawson, Steven; Schubert, Siegfried; Wu, Man-Li; Sienkiewicz, Meta; Stajner, Ivanka
2005-01-01
This document describes the structure and validation of a frozen version of the Goddard Earth Observing System Data Assimilation System (GEOS DAS): GEOS-4.0.3. Significant features of GEOS-4 include: version 3 of the Community Climate Model (CCM3) with the addition of a finite volume dynamical core; version two of the Community Land Model (CLM2); the Physical-space Statistical Analysis System (PSAS); and an interactive retrieval system (iRET) for assimilating TOVS radiance data. Upon completion of the GEOS-4 validation in December 2003, GEOS-4 became operational on 15 January 2004. Products from GEOS-4 have been used in supporting field campaigns and for reprocessing several years of data for CERES.
Sensitivity of Assimilated Tropical Tropospheric Ozone to the Meteorological Analyses
NASA Technical Reports Server (NTRS)
Hayashi, Hiroo; Stajner, Ivanka; Pawson, Steven; Thompson, Anne M.
2002-01-01
Tropical tropospheric ozone fields from two different experiments performed with an off-line ozone assimilation system developed in NASA's Data Assimilation Office (DAO) are examined. Assimilated ozone fields from the two experiments are compared with the collocated ozone profiles from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. Results are presented for 1998. The ozone assimilation system includes a chemistry-transport model, which uses analyzed winds from the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The two experiments use wind fields from different versions of GEOS DAS: an operational version of the GEOS-2 system and a prototype of the GEOS-4 system. While both versions of the DAS utilize the Physical-space Statistical Analysis System and use comparable observations, they use entirely different general circulation models and data insertion techniques. The shape of the annual-mean vertical profile of the assimilated ozone fields is sensitive to the meteorological analyses, with the GEOS-4-based ozone being closest to the observations. This indicates that the resolved transport in GEOS-4 is more realistic than in GEOS-2. Remaining uncertainties include quantification of the representation of sub-grid-scale processes in the transport calculations, which plays an important role in the locations and seasons where convection dominates the transport.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo
1995-01-01
This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Suarez, Max J. (Editor); Schubert, Siegfried D.
1998-01-01
First ISLSCP Field Experiment (FIFE) observations have been used to validate the near-surface proper- ties of various versions of the Goddard Earth Observing System (GEOS) Data Assimilation System. The site- averaged FIFE data set extends from May 1987 through November 1989, allowing the investigation of several time scales, including the annual cycle, daily means and diurnal cycles. Furthermore, the development of the daytime convective planetary boundary layer is presented for several days. Monthly variations of the surface energy budget during the summer of 1988 demonstrate the affect of the prescribed surface soil wetness boundary conditions. GEOS data comes from the first frozen version of the assimilation system (GEOS-1 DAS) and two experimental versions of GEOS (v. 2.0 and 2.1) with substantially greater vertical resolution and other changes that influence the boundary layer. This report provides a baseline for future versions of the GEOS data assimilation system that will incorporate a state-of-the-art land surface parameterization. Several suggestions are proposed to improve the generality of future comparisons. These include the use of more diverse field experiment observations and an estimate of gridpoint heterogeneity from the new land surface parameterization.
Assimilation of SBUV Version 8 Radiances into the GEOS Ozone DAS
NASA Technical Reports Server (NTRS)
Mueller, Martin D.; Stajner, Ivanka; Bhartia, Pawan K.
2004-01-01
In operational weather forecasting, the assimilation of brightness temperatures from satellite sounders, instead of assimilation of 1D-retrievals has become increasingly common practice over the last two decades. Compared to these systems, assimilation of trace gases is still at a relatively early stage of development, and efforts to directly assimilate radiances instead of retrieved products have just begun a few years ago, partially because it requires much more computation power due to the employment of a radiative transport forward model (FM). This paper will focus on a method to assimilate SBUV/2 radiances (albedos) into the Global Earth Observation System Ozone Data Assimilation Scheme (GEOS-03DAS). While SBUV-type instruments cannot compete with newer sensors in terms of spectral and horizontal resolution, they feature a continuous data record back to 1978, which makes them very valuable for trend studies. Assimilation can help spreading their ground coverage over the whole globe, as has been previously demonstrated with the GEOS-03DAS using SBUV Version 6 ozone profiles. Now, the DAS has been updated to use the newly released SBUV Version 8 data. We will compare pre]lmlnarv results of SBUV radiance assimilation with the assimilation of retrieved ozone profiles, discuss methods to deal with the increased computational load, and try to assess the error characteristics and future potential of the new approach.
Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
SUsskind, Joel
2008-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.
Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste
2009-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.
The NASA Modern Era Reanalysis for Research and Applications, Version-2 (MERRA-2)
NASA Astrophysics Data System (ADS)
Gelaro, R.; McCarty, W.; Molod, A.; Suarez, M.; Takacs, L.; Todling, R.
2014-12-01
The NASA Modern Era Reanalysis for Research Applications Version-2 (MERRA-2) is a reanalysis for the satellite era using an updated version of the Goddard Earth Observing System Data Assimilation System Version-5 (GEOS-5) produced by the Global Modeling and Assimilation Office (GMAO). MERRA-2 will assimilate meteorological and aerosol observations not available to MERRA and includes improvements to the GEOS-5 model and analysis scheme so as to provide an ongoing climate analysis beyond MERRA's terminus. MERRA-2 will also serve as a development milestone for a future GMAO coupled Earth system analysis. Production of MERRA-2 began in June 2014 in four processing streams, with convergence to a single near-real time climate analysis expected by early 2015. This talk provides an overview of the MERRA-2 system developments and key science results. For example, compared with MERRA, MERRA-2 exhibits a well-balanced relationship between global precipitation and evaporation, with significantly reduced sensitivity to changes in the global observing system through time. Other notable improvements include reduced biases in the tropical middle- and upper-tropospheric wind and near-surface temperature over continents.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Takacs, Lawrence L.; Molod, Andrea; Wang, Tina
1994-01-01
This technical report documents Version 1 of the Goddard Earth Observing System (GEOS) General Circulation Model (GCM). The GEOS-1 GCM is being used by NASA's Data Assimilation Office (DAO) to produce multiyear data sets for climate research. This report provides a documentation of the model components used in the GEOS-1 GCM, a complete description of model diagnostics available, and a User's Guide to facilitate GEOS-1 GCM experiments.
Long-Term Model Assimilated Aerosols from MERRA-2: Data and Services at NASA GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana; Huwe, Paul; Vollmer, Bruce; Kempler, Steve
2016-01-01
The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is the atmospheric reanalysis conducted with NASA assimilation system GEOS-5. Alongside the meteorological data assimilation, MERRA-2 includes an interactive analysis of aerosols, land, ocean, and ice that feed back into circulation.
Version 3 of the SMAP Level 4 Soil Moisture Product
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Liu, Qing; Ardizzone, Joe; Crow, Wade; De Lannoy, Gabrielle; Kolassa, Jana; Kimball, John; Koster, Randy
2017-01-01
The NASA Soil Moisture Active Passive (SMAP) Level 4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root zone (0-100 cm) soil moisture as well as related land surface states and fluxes from 31 March 2015 to present with a latency of 2.5 days. The ensemble-based L4_SM algorithm is a variant of the Goddard Earth Observing System version 5 (GEOS-5) land data assimilation system and ingests SMAP L-band (1.4 GHz) Level 1 brightness temperature observations into the Catchment land surface model. The soil moisture analysis is non-local (spatially distributed), performs downscaling from the 36-km resolution of the observations to that of the model, and respects the relative uncertainties of the modeled and observed brightness temperatures. Prior to assimilation, a climatological rescaling is applied to the assimilated brightness temperatures using a 6 year record of SMOS observations. A new feature in Version 3 of the L4_SM data product is the use of 2 years of SMAP observations for rescaling where SMOS observations are not available because of radio frequency interference, which expands the impact of SMAP observations on the L4_SM estimates into large regions of northern Africa and Asia. This presentation investigates the performance and data assimilation diagnostics of the Version 3 L4_SM data product. The L4_SM soil moisture estimates meet the 0.04 m3m3 (unbiased) RMSE requirement. We further demonstrate that there is little bias in the soil moisture analysis. Finally, we illustrate where the assimilation system overestimates or underestimates the actual errors in the system.
CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation
NASA Technical Reports Server (NTRS)
Nowottnick, E. P.; Yorks, J. E.; Selmer, P. A.; Palm, S. P.; Hlavka, D. L.; Pauly, R. M.; Ozog, S.; McGill, M. J.; Da Silva, A.
2017-01-01
The Cloud Aerosol Transport System (CATS) lidar has been operating onboard the International Space Station (ISS) since February 2015 and provides vertical observations of clouds and aerosols using total attenuated backscatter and depolarization measurements. From February March 2015, CATS operated in Mode 1, providing backscatter and depolarization measurements at 532 and 1064 nm. CATS began operation in Mode 2 in March 2015, providing backscatter and depolarization measurements at 1064 nm and has continued to operate to the present in this mode. CATS level 2 products are derived from these measurements, including feature detection, cloud aerosol discrimination, cloud and aerosol typing, and optical properties of cloud and aerosol layers. Here, we present changes to our level 2 algorithms, which were aimed at reducing several biases in our version 1 level 2 data products. These changes will be incorporated into our upcoming version 2 level 2 data release in summer 2017. Additionally, owing to the near real time (NRT) data downlinking capabilities of the ISS, CATS provides expedited NRT data products within 6 hours of observation time. This capability provides a unique opportunity for supporting field campaigns and for developing data assimilation techniques to improve simulated cloud and aerosol vertical distributions in models. We additionally present preliminary work toward assimilating CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) global atmospheric model and data assimilation system.
Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel
2008-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.
Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon (L4_C) Product Specification Document
NASA Technical Reports Server (NTRS)
Glassy, Joe; Kimball, John S.; Jones, Lucas; Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.
2015-01-01
This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project.
NASA Technical Reports Server (NTRS)
Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe
2014-01-01
Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations
2015-08-14
assimilated directly into a free surface ocean model using NCOM 4DVAR methods without generating gravity waves. The latter is a serious problem that... The bias of buoyancy frequency in the left plot of figure 4‐19 reveals that the NCOM 4DVAR is doing fairly well at predicting the stratification ...Test Report for the Navy Coastal Ocean Model Four-Dimensional Variational Assimilation (NCOM 4DVAR) System Version 1.0 Scott Smith matthew carrier
Randles, C A; Da Silva, A M; Buchard, V; Colarco, P R; Darmenov, A; Govindaraju, R; Smirnov, A; Holben, B; Ferrare, R; Hair, J; Shinozuka, Y; Flynn, C J
2017-09-01
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA's previous satellite era (1980 - onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne instruments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.
An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields
NASA Astrophysics Data System (ADS)
Zelenko, A. A.; Vil'fand, R. M.; Resnyanskii, Yu. D.; Strukov, B. S.; Tsyrulnikov, M. D.; Svirenko, P. I.
2016-07-01
A new version of the ocean data assimilation system (ODAS) developed at the Hydrometcentre of Russia is presented. The assimilation is performed following the sequential scheme analysis-forecast-analysis. The main components of the ODAS are procedures for operational observation data processing, a variational analysis scheme, and an ocean general circulation model used to estimate the first guess fields involved in the analysis. In situ observations of temperature and salinity in the upper 1400-m ocean layer obtained from various observational platforms are used as input data. In the new ODAS version, the horizontal resolution of the assimilating model and of the output products is increased, the previous 2D-Var analysis scheme is replaced by a more general 3D-Var scheme, and a more flexible incremental analysis updating procedure is introduced to correct the model calculations. A reanalysis of the main World Ocean hydrophysical fields over the 2005-2015 period has been performed using the updated ODAS. The reanalysis results are compared with data from independent sources.
Variational assimilation of VAS data into the mass model
NASA Technical Reports Server (NTRS)
Cram, J. M.; Kaplan, M. L.
1984-01-01
Experiments are reported in which VAS data at 1200, 1500, and 1800 GMT 20 July 1981 were assimilated using both the adiabatic and full physics version of the Mesoscale Atmospheric Simulation System (MASS). A nonassimilation forecast is compared with forecasts assimilating temperature gradients only and forecasts assimilating both temperature and humidity gradients. The effects of successive vs single assimilations are also examined. It is noted that the greatest improvements to the forecast resulted when the VAS data resolved the mesoscale structure of the temperature and relative humidity fields. When this structure was assimilated into MASS, the ensuing simulations more clearly defined a mesoscale structure in the developing instabilities.
NASA Astrophysics Data System (ADS)
Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe
2013-04-01
A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.
Experimenting with the GMAO 4D Data Assimilation
NASA Technical Reports Server (NTRS)
Todling, R.; El Akkraoui, A.; Errico, R. M.; Guo, J.; Kim, J.; Kliest, D.; Parrish, D. F.; Suarez, M.; Trayanov, A.; Tremolet, Yannick;
2012-01-01
The Global Modeling and Assimilation Office (GMAO) has been working to promote its prototype four-dimensional variational (4DVAR) system to a version that can be exercised at operationally desirable configurations. Beyond a general circulation model (GeM) and an analysis system, traditional 4DV AR requires availability of tangent linear (TL) and adjoint (AD) models of the corresponding GeM. The GMAO prototype 4DVAR uses the finite-volume-based GEOS GeM and the Grid-point Statistical Interpolation (GSI) system for the first two, and TL and AD models derived ITom an early version of the finite-volume hydrodynamics that is scientifically equivalent to the present GEOS nonlinear GeM but computationally rather outdated. Specifically, the TL and AD models hydrodynamics uses a simple (I-dimensional) latitudinal MPI domain decomposition, which has consequent low scalability and prevents the prototype 4DV AR ITom being used in realistic applications. In the near future, GMAO will be upgrading its operational GEOS GCM (and assimilation system) to use a cubed-sphere-based hydrodynamics. This versions of the dynamics scales to thousands of processes and has led to a decision to re-derive the TL and AD models for this more modern dynamics, thus taking advantage of a two-dimensional MPI decomposition and improved scalability properties. With the aid of the Transformation of Algorithms in FORTRAN (l'AF) automatic adjoint generation tool and some hand-coding, a version of the cubed-sphere-based TL and AD models, with a simplified vertical diffusion scheme, is now available, enabling multiple configurations of standard implementations of 4DV AR in GEOS. Concurrent to this development, collaboration with the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory (ESRL) has allowed GMAO to implement a hybrid-ensemble capability within the GEOS data assimilation system. Both 3Dand 4D-ensemble capabilities are presently available thus allowing GMAO to now evaluate the performance and benefit of various ensemble and variational assimilation strategies. This presentation will cover the most recent developments taking place at GMAO and show results from various comparisons from traditional techniques to more recent ensemble-based ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randles, C. A.; da Silva, A. M.; Buchard, V.
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA’s previous satellite era (1980 – onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimila-tion of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCARTmore » aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations rom ground, aircraft, and shipborne instruments. We demonstrate the pos-itive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not in-clude AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.« less
The GMAO Hybrid Ensemble-Variational Atmospheric Data Assimilation System: Version 2.0
NASA Technical Reports Server (NTRS)
Todling, Ricardo; El Akkraoui, Amal
2018-01-01
This document describes the implementation and usage of the Goddard Earth Observing System (GEOS) Hybrid Ensemble-Variational Atmospheric Data Assimilation System (Hybrid EVADAS). Its aim is to provide comprehensive guidance to users of GEOS ADAS interested in experimenting with its hybrid functionalities. The document is also aimed at providing a short summary of the state-of-science in this release of the hybrid system. As explained here, the ensemble data assimilation system (EnADAS) mechanism added to GEOS ADAS to enable hybrid data assimilation applications has been introduced to the pre-existing machinery of GEOS in the most non-intrusive possible way. Only very minor changes have been made to the original scripts controlling GEOS ADAS with the objective of facilitating its usage by both researchers and the GMAO's near-real-time Forward Processing applications. In a hybrid scenario two data assimilation systems run concurrently in a two-way feedback mode such that: the ensemble provides background ensemble perturbations required by the ADAS deterministic (typically high resolution) hybrid analysis; and the deterministic ADAS provides analysis information for recentering of the EnADAS analyses and information necessary to ensure that observation bias correction procedures are consistent between both the deterministic ADAS and the EnADAS. The nonintrusive approach to introducing hybrid capability to GEOS ADAS means, in particular, that previously existing features continue to be available. Thus, not only is this upgraded version of GEOS ADAS capable of supporting new applications such as Hybrid 3D-Var, 3D-EnVar, 4D-EnVar and Hybrid 4D-EnVar, it remains possible to use GEOS ADAS in its traditional 3D-Var mode which has been used in both MERRA and MERRA-2. Furthermore, as described in this document, GEOS ADAS also supports a configuration for exercising a purely ensemble-based assimilation strategy which can be fully decoupled from its variational component. We should point out that Release 1.0 of this document was made available to GMAO in mid-2013, when we introduced Hybrid 3D-Var capability to GEOS ADAS. This initial version of the documentation included a considerably different state-of-science introductory section but many of the same detailed description of the mechanisms of GEOS EnADAS. We are glad to report that a few of the desirable Future Works listed in Release 1.0 have now been added to the present version of GEOS EnADAS. These include the ability to exercise an Ensemble Prediction System that uses the ensemble analyses of GEOS EnADAS and (a very early, but functional version of) a tool to support Ensemble Forecast Sensitivity and Observation Impact applications.
A Global Data Assimilation System for Atmospheric Aerosol
NASA Technical Reports Server (NTRS)
daSilva, Arlindo
1999-01-01
We will give an overview of an aerosol data assimilation system which combines advances in remote sensing of atmospheric aerosols, aerosol modeling and data assimilation methodology to produce high spatial and temporal resolution 3D aerosol fields. Initially, the Goddard Aerosol Assimilation System (GAAS) will assimilate TOMS, AVHRR and AERONET observations; later we will include MODIS and MISR. This data assimilation capability will allows us to integrate complementing aerosol observations from these platforms, enabling the development of an assimilated aerosol climatology as well as a global aerosol forecasting system in support of field campaigns. Furthermore, this system provides an interactive retrieval framework for each aerosol observing satellites, in particular TOMS and AVHRR. The Goddard Aerosol Assimilation System (GAAS) takes advantage of recent advances in constituent data assimilation at DAO, including flow dependent parameterizations of error covariances and the proper consideration of model bias. For its prognostic transport model, GAAS will utilize the Goddard Ozone, Chemistry, Aerosol, Radiation and Transport (GOCART) model developed at NASA/GSFC Codes 916 and 910.3. GOCART includes the Lin-Rood flux-form, semi-Langrangian transport model with parameterized aerosol chemistry and physical processes for absorbing (dust and black carbon) and non-absorbing aerosols (sulfate and organic carbon). Observations and model fields are combined using a constituent version of DAO's Physical-space Statistical Analysis System (PSAS), including its adaptive quality control system. In this talk we describe the main components of this assimilation system and present preliminary results obtained by assimilating TOMS data.
Impact of Flow-Dependent Error Correlations and Tropospheric Chemistry on Assimilated Ozone
NASA Technical Reports Server (NTRS)
Wargan, K.; Stajner, I.; Hayashi, H.; Pawson, S.; Jones, D. B. A.
2003-01-01
The presentation compares different versions of a global three-dimensional ozone data assimilation system developed at NASA's Data Assimilation Office. The Solar Backscatter Ultraviolet/2 (SBUV/2) total and partial ozone column retrievals are the sole data assimilated in all of the experiments presented. We study the impact of changing the forecast error covariance model from a version assuming static correlations with a one that captures a short-term Lagrangian evolution of those correlations. This is further combined with a study of the impact of neglecting the tropospheric ozone production, loss and dry deposition rates, which are obtained from the Harvard GEOS-CHEM model. We compare statistical characteristics of the assimilated data and the results of validation against independent observations, obtained from WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres. On the other hand, the main sensitivity to tropospheric chemistry is in the Tropics and sub-Tropics. The best agreement between the assimilated ozone and the in-situ sonde data is in the experiment using both flow-dependent error covariances and tropospheric chemistry.
Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.
Akella, Santha; Todling, Ricardo; Suarez, Max
2017-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.
Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Akella, Santha; Todling, Ricardo; Suarez, Max
2017-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.
2013-01-01
Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.
Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel
2009-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM, at a spatial resolution of 0.5 deg by 0.5 deg. Assimilation of Quality Controlled AIRS temperature profiles down to pg resulted in significantly improved forecast skill compared to that obtained from experiments when all data used operationally by NCEP, except for AIRS data, is assimilated. These forecasts were also significantly better than to those obtained when AIRS radiances (rather than temperature profiles) are assimilated, which is the way AIRS data is used operationally by NCEP and ECMWF.
NASA Astrophysics Data System (ADS)
Massart, S.; Agusti-Panareda, A.; Aben, I.; Butz, A.; Chevallier, F.; Crevosier, C.; Engelen, R.; Frankenberg, C.; Hasekamp, O.
2014-06-01
The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Météorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly positive but more pronounced and effective when combined with version v.2.0 of the TANSO products. The resulting analysis globally underestimates the column-averaged dry-air mole fractions of methane (xCH4) just under 1 ppb on average compared to the TCCON data, whereas in the tropics it overestimates xCH4 by about 3 ppb. The random error is estimated to be less than 7 ppb when compared to TCCON data.
Estimating Evapotranspiration with Land Data Assimilation Systems
NASA Technical Reports Server (NTRS)
Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.
2011-01-01
Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.
Ensemble-Based Assimilation of Aerosol Observations in GEOS-5
NASA Technical Reports Server (NTRS)
Buchard, V.; Da Silva, A.
2016-01-01
MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.
NASA Astrophysics Data System (ADS)
Mehra, A.; Nadiga, S.; Bayler, E. J.; Behringer, D.
2014-12-01
Recently available satellite sea-surface salinity (SSS) fields provide an important new global data stream for assimilation into ocean forecast systems. In this study, we present results from assimilating satellite SSS fields from NASA's Aquarius mission into the National Oceanic and Atmospheric Administration's (NOAA) operational Modular Ocean Model version 4 (MOM4), the oceanic component of NOAA's operational seasonal-interannual Climate Forecast System (CFS). Experiments on the sensitivity of the ocean's overall state to different relaxation time periods were run to evaluate the importance of assimilating high-frequency (daily to mesoscale) and low-frequency (seasonal) SSS variability. Aquarius SSS data (Aquarius Data Processing System (ADPS) version 3.0), mapped daily fields at 1-degree spatial resolution, were used. Four model simulations were started from the same initial ocean condition and forced with NOAA's daily Climate Forecast System Reanalysis (CFSR) fluxes, using a relaxation technique to assimilate daily satellite sea surface temperature (SST) fields and selected SSS fields, where, except as noted, a 30-day relaxation period is used. The simulations are: (1) WOAMC, the reference case and similar to the operational setup, assimilating monthly climatological SSS from the 2009 NOAA World Ocean Atlas; (2) AQ_D, assimilating daily Aquarius SSS; (3) AQ_M, assimilating monthly Aquarius SSS; and (4) AQ_D10, assimilating daily Aquarius SSS, but using a 10-day relaxation period. The analysis focuses on the tropical Pacific Ocean, where the salinity dynamics are intense and dominated by El Niño interannual variability in the cold tongue region and by high-frequency precipitation events in the western Pacific warm pool region. To assess the robustness of results and conclusions, we also examine the results for the tropical Atlantic and Indian Oceans. Preliminary validation studies are conducted using observations, such as satellite sea-surface height (SSH) fields and in situ Argo buoy vertical profiles of temperature and salinity, to demonstrate that SSS data assimilation improves ocean state representation of the following variables: ocean heat content (0-300m), dynamic height (0-1000m), mixed-layer depth, sea surface heigh, and surface buoyancy fluxes.
NASA Astrophysics Data System (ADS)
Albergel, Clément; Munier, Simon; Leroux, Delphine; Fairbairn, David; Dorigo, Wouter; Decharme, Bertrand; Calvet, Jean-Christophe
2017-04-01
Modelling platforms including Land Surface Models (LSMs), forced by gridded atmospheric variables and coupled to river routing models are necessary to increase our understanding of the terrestrial water cycle. These LSMs need to simulate biogeophysical variables like Surface and Root Zone Soil Moisture (SSM, RZSM), Leaf Area Index (LAI) in a way that is fully consistent with the representation of surface/energy fluxes and river discharge simulations. Global SSM and LAI products are now operationally available from spaceborne instruments and they can be used to constrain LSMs through Data Assimilation (DA) techniques. In this study, an offline data assimilation system implemented in Météo-France's modelling platform (SURFEX) is tested over Europe and the Mediterranean basin to increase prediction accuracy for land surface variables. The resulting Land Data Assimilation System (LDAS) makes use of a simplified Extended Kalman Filter (SEKF). It is able to ingests information from satellite derived (i) SSM from the latest version of the ESA Climate Change Initiative as well as (ii) LAI from the Copernicus GLS project to constrain the multilayer, CO2-responsive version of the Interactions Between Soil, Biosphere, and Atmosphere model (ISBA) coupled with Météo-France's version of the Total Runoff Integrating Pathways continental hydrological system (ISBA-CTRIP). ERA-Interim observations based atmospheric forcing with precipitations corrected from Global Precipitation Climatology Centre observations (GPCC) is used to force ISBA-CTRIP at a resolution of 0.5 degree over 2000-2015. The model sensitivity to the assimilated observations is presented and a set of statistical diagnostics used to evaluate the impact of assimilating SSM and LAI on different model biogeophysical variables are provided. It is demonstrated that the assimilation scheme works effectively. The SEKF is able to extract useful information from the data signal at the grid scale and distribute the RZSM and LAI increments throughout the model impacting soil moisture, terrestrial vegetation and water cycle, surface carbon and energy fluxes.
NASA Technical Reports Server (NTRS)
Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.
1999-01-01
Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.
Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.
2010-01-01
Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper.
Recent Updates to the GEOS-5 Linear Model
NASA Technical Reports Server (NTRS)
Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul
2014-01-01
Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.
The Impact of AMSR-E Soil Moisture Assimilation on Evapotranspiration Estimation
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Kumar, Sujay; Mocko, David; Tian, Yudong
2012-01-01
An assessment ofETestimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 CNLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.
Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system
Akella, Santha; Todling, Ricardo; Suarez, Max
2018-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531
NASA Technical Reports Server (NTRS)
Zhang, Yong-Fei; Hoar, Tim J.; Yang, Zong-Liang; Anderson, Jeffrey L.; Toure, Ally M.; Rodell, Matthew
2014-01-01
To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a compromise between computational cost and the data assimilation performance. The localization distance, a parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly ameliorated in the lower-middle latitudes (2345N). Only minimal modifications are made in the higher-middle (4566N) and high latitudes, part of which is due to the agreement between model and observation when snow cover is nearly 100. In some regions it also reveals that CLM4-modeled snow cover lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snowmove poleward mainly due to the northward movement of the snowline (i.e., where largest SCF uncertainty is and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with vegetation types, with mixed performance over forest regions and consistently good performance over grass, which can partly be explained by the linearity of the relationship between SCF and SWE in the model ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data. Differences between CMC and CLM4 are generally reduced in densely monitored regions.
NASA Technical Reports Server (NTRS)
Cullather, Richard; Bosilovich, Michael
2017-01-01
The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is a global atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Office (GMAO). It spans the satellite observing era from 1980 to the present. The goals of MERRA-2 are to provide a regularly-gridded, homogeneous record of the global atmosphere, and to incorporate additional aspects of the climate system including trace gas constituents (stratospheric ozone), and improved land surface representation, and cryospheric processes. MERRA-2 is also the first satellite-era global reanalysis to assimilate space-based observations of aerosols and represent their interactions with other physical processes in the climate system. The inclusion of these additional components are consistent with the overall objectives of an Integrated Earth System Analysis (IESA). MERRA-2 is intended to replace the original MERRA product, and reflects recent advances in atmospheric modeling and data assimilation. Modern hyperspectral radiance and microwave observations, along with GPS-Radio Occultation and NASA ozone datasets are now assimilated in MERRA-2. Much of the structure of the data files remains the same in MERRA-2. While the original MERRA data format was HDF-EOS, the MERRA-2 supplied binary data format is now NetCDF4 (with lossy compression to save space).
NASA Technical Reports Server (NTRS)
Da Silva, A. M.; Randles, C. A.; Buchard, V.; Darmenov, A.; Colarco, P. R.; Govindaraju, R.
2015-01-01
This document describes the gridded output files produced by the Goddard Earth Observing System version 5 (GEOS-5) Goddard Aerosol Assimilation System (GAAS) from July 2002 through December 2014. The MERRA Aerosol Reanalysis (MERRAero) is produced with the hydrostatic version of the GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), ozone, carbon monoxide and carbon dioxide. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic emission sources. Meteorology is replayed from the MERRA Reanalysis.
The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0
NASA Technical Reports Server (NTRS)
Suarez, Max J.; Rienecker, M. M.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H. C.; Gu, W.; Sienkiewicz, M.; Koster, R. D.; Gelaro, R.;
2008-01-01
This report documents the GEOS-5 global atmospheric model and data assimilation system (DAS), including the versions 5.0.1, 5.1.0, and 5.2.0, which have been implemented in products distributed for use by various NASA instrument team algorithms and ultimately for the Modem Era Retrospective analysis for Research and Applications (MERRA). The DAS is the integration of the GEOS-5 atmospheric model with the Gridpoint Statistical Interpolation (GSI) Analysis, a joint analysis system developed by the NOAA/National Centers for Environmental Prediction and the NASA/Global Modeling and Assimilation Office. The primary performance drivers for the GEOS DAS are temperature and moisture fields suitable for the EOS instrument teams, wind fields for the transport studies of the stratospheric and tropospheric chemistry communities, and climate-quality analyses to support studies of the hydrological cycle through MERRA. The GEOS-5 atmospheric model has been approved for open source release and is available from: http://opensource.gsfc.nasa.gov/projects/GEOS-5/GEOS-5.php.
Assimilation of enterprise technology upgrades: a factor-based study
NASA Astrophysics Data System (ADS)
Claybaugh, Craig C.; Ramamurthy, Keshavamurthy; Haseman, William D.
2017-02-01
The purpose of this study is to gain a better understanding of the differences in the propensity of firms to initiate and commit to the assimilation of an enterprise technology upgrade. A research model is proposed that examines the influences that four technological and four organisational factors have on predicting assimilation of a technology upgrade. Results show that firms with a greater propensity to assimilate the new enterprise resource planning (ERP) version have a higher assessment of relative advantage, IS technical competence, and the strategic role of IS relative to those firms with a lower propensity to assimilate a new ERP version.
McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina
2015-12-01
This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.
Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model
NASA Technical Reports Server (NTRS)
daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)
2000-01-01
At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.
NASA Astrophysics Data System (ADS)
Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.
2017-12-01
The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.
The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric
2015-01-01
Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.
Examples of data assimilation in mesoscale models
NASA Technical Reports Server (NTRS)
Carr, Fred; Zack, John; Schmidt, Jerry; Snook, John; Benjamin, Stan; Stauffer, David
1993-01-01
The keynote address was the problem of physical initialization of mesoscale models. The classic purpose of physical or diabatic initialization is to reduce or eliminate the spin-up error caused by the lack, at the initial time, of the fully developed vertical circulations required to support regions of large rainfall rates. However, even if a model has no spin-up problem, imposition of observed moisture and heating rate information during assimilation can improve quantitative precipitation forecasts, especially early in the forecast. The two key issues in physical initialization are the choice of assimilating technique and sources of hydrologic/hydrometeor data. Another example of data assimilation in mesoscale models was presented in a series of meso-beta scale model experiments with and 11 km version of the MASS model designed to investigate the sensitivity of convective initiation forced by thermally direct circulations resulting from differential surface heating to four dimensional assimilation of surface and radar data. The results of these simulations underscore the need to accurately initialize and simulate grid and sub-grid scale clouds in meso- beta scale models. The status of the application of the CSU-RAMS mesoscale model by the NOAA Forecast Systems Lab for producing real-time forecasts with 10-60 km mesh resolutions over (4000 km)(exp 2) domains for use by the aviation community was reported. Either MAPS or LAPS model data are used to initialize the RAMS model on a 12-h cycle. The use of MAPS (Mesoscale Analysis and Prediction System) model was discussed. Also discussed was the mesobeta-scale data assimilation using a triply-nested nonhydrostatic version of the MM5 model.
NASA Technical Reports Server (NTRS)
Bosilovich, M. G.; Lucchesi, R.; Suarez, M.
2015-01-01
The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is a NASA atmospheric reanalysis that begins in 1980. It replaces the original MERRA reanalysis (Rienecker et al., 2011) using an upgraded version of the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system. The file collections for MERRA-2 are described in detail in this document, including some important changes from those of the MERRA dataset (Lucchesi, 2012).
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2008-01-01
This talk will review the status and progress of the NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project called the Modern Era Retrospective-Analysis for Research and Applications (MERRA). An overview of NASA's emerging capabilities for assimilating a variety of other Earth Science observations of the land, ocean, and atmospheric constituents will also be presented. MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a climate data context (covering the period 1979-present), and by providing the science and applications communities with of a broad range of weather and climate data with an emphasis on improved estimates of the hydrological cycle. MERRA is based on a major new version of the Goddard Earth Observing System Data Assimilation System (GEOS-5), that includes the Earth System Modeling Framework (ESMF)-based GEOS-5 atmospheric general circulation model and the new NOAA National Centers for Environmental Prediction (NCEP) unified grid-point statistical interpolation (GST) analysis scheme developed as a collaborative effort between NCEP and the GMAO. In addition to MERRA, the GMAO is developing new capabilities in aerosol and constituent assimilation, ocean, ocean biology, and land surface assimilation. This includes the development of an assimilation capability for tropospheric air quality monitoring and prediction, the development of a carbon-cycle modeling and assimilation system, and an ocean data assimilation system for use in coupled short-term climate forecasting.
A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.
2007-01-01
The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.
A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16
NASA Astrophysics Data System (ADS)
Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien
2015-04-01
The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to begin with. There were two flights on 26 October and thus RASTA data were assimilated at 2+2 consecutive analysis times (06, 09, 12, and 15 UTC). This task involved a preliminary step to convert the original data into vertical profiles that are suitable for assimilation: the data were averaged to remove noise and match the model's resolution, they were converted to appropriate physical quantities and in a format that is readable by the DA system, etc.). The presentation will show the impact of RASTA data on Arome-WMed analyses and forecasts, both with respect to RASTA data and to independent data (either also assimilated or not).
Global Soil Moisture Estimation through a Coupled CLM4-RTM-DART Land Data Assimilation System
NASA Astrophysics Data System (ADS)
Zhao, L.; Yang, Z. L.; Hoar, T. J.
2016-12-01
Very few frameworks exist that estimate global-scale soil moisture through microwave land data assimilation (DA). Toward this goal, we have developed such a framework by linking the Community Land Model version 4 (CLM4) and a microwave radiative transfer model (RTM) with the Data Assimilation Research Testbed (DART). The deterministic Ensemble Adjustment Kalman Filter (EAKF) within the DART is utilized to estimate global multi-layer soil moisture by assimilating brightness temperature observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). A 40-member of Community Atmosphere Model version 4 (CAM4) reanalysis is adopted to drive CLM4 simulations. Spatial-specific time-invariant microwave parameters are pre-calibrated to minimize uncertainties in RTM. Besides, various methods are designed in consideration of computational efficiency. A series of experiments are conducted to quantify the DA sensitivity to microwave parameters, choice of assimilated observations, and different CLM4 updating schemes. Evaluation results indicate that the newly established CLM4-RTM-DART framework improves the open-loop CLM4 simulated soil moisture. Pre-calibrated microwave parameters, rather than their default values, can ensure a more robust global-scale performance. In addition, updating near-surface soil moisture is capable of improving soil moisture in deeper layers, while simultaneously updating multi-layer soil moisture fails to obtain intended improvements. We will show in this presentation the architecture of the CLM4-RTM-DART system and the evaluations on AMSR-E DA. Preliminary results on multi-sensor DA that integrates various satellite observations including GRACE, MODIS, and AMSR-E will also be presented. ReferenceZhao, L., Z.-L. Yang, and T. J. Hoar, 2016. Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4-RTM-DART System. Journal of Hydrometeorology, DOI: 10.1175/JHM-D-15-0218.1.
Improving Forecast Skill by Assimilation of AIRS Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste
2010-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best on the average from the perspective of improving Global 7 day forecast skill.
NASA Technical Reports Server (NTRS)
Mocko, David M.; Kumar, S. V.; Peters-Lidard, C. D.; Tian, Y.
2011-01-01
This presentation will include results from data assimilation simulations using the NASA-developed Land Information System (LIS). Using the ensemble Kalman filter in LIS, two satellite-based soil moisture products from the AMSR-E instrument were assimilated, one a NASA-based product and the other from the Land Parameter Retrieval Model (LPRM). The domain and land-surface forcing data from these simulations were from the North American Land Data Assimilation System Phase-2, over the period 2002-2008. The Noah land-surface model, version 3.2, was used during the simulations. Changes to estimates of land surface states, such as soil moisture, as well as changes to simulated runoff/streamflow will be presented. Comparisons over the NLDAS domain will also be made to two global reference evapotranspiration (ET) products, one an interpolated product based on FLUXNET tower data and the other a satellite- based algorithm from the MODIS instrument. Results of an improvement metric show that assimilating the LPRM product improved simulated ET estimates while the NASA-based soil moisture product did not.
High-Frequency Planetary Waves in the Polar Middle Atmosphere as seen in a data Assimilation System
NASA Technical Reports Server (NTRS)
Coy, L.; Stajner, I.; DaSilva, A. M.; Joiner, J.; Rood, R. B.; Pawson, S.; Lin, S. J.
2003-01-01
This study examines the winter southern hemisphere vortex of 1998 using four times daily output from a data assimilation system to focus on the polar 2-day, wave number 2 component of the 4-day wave. The data assimilation system products are from a test version of the finite volume data assimilation system (fvDAS) being developed at Goddard Space Flight Center (GSFC) and include an ozone assimilation system. Results show that the polar 2-day wave dominates during July 1998 at 70 degrees. The period of the quasi 2-day wave is somewhat shorter than 2 days (about 1.7 days) during July 1998 with an average perturbation temperature amplitude for the month of over 2.5 K. The 2-day wave propagates more slowly than the zonal mean zonal wind, consistent with Rossby wave theory, and has EP flux divergence regions associated with regions of negative horizontal potential vorticity gradients, as expected from linear instability theory. Results for the assimilation-produced ozone mixing ratio show that the 2-day wave represents a major source of ozone variation in this region. The ozone wave in the assimilation system is in good agreement with the wave seen in the POAM (Polar Ozone and Aerosol Measurement) ozone observations for the same time period. Some differences with linear instability theory are noted as well as spectral peaks in the ozone field, not seen in the temperature field, that may be a consequence of advection.
Applying Ensemble Kalman Filter to Regional Ocean Circulation Model in the East Asian Marginal Sea
NASA Astrophysics Data System (ADS)
Pak, Gyun-Do; Kim, Young Ho; Chang, Kyung-Il
2010-05-01
We successfully apply the ensemble Kalman filter (EnKF) data assimilation scheme to the East Sea Regional Ocean Model (ESROM). The ESROM solves the three dimensional ocean primitive equations with the hydrostatic and Boussinesq approximations. The domain of ESROM fully covers East Sea with grid intervals of approximately 0.1˚. The ESROM has one inflow port, the Korea Strait, and two outflow ports, the Tsugaru and Soya straits. High resolution bathymetry of 1/60˚ (Choi et al., 2002) is adopted for the model topography. The ESROM is initialized using hydrographic data from World Ocean Atlas (WOA), and forced by monthly mean surface and open boundary conditions supplied from European Centre for Medium-Range Weather Forecast data, WOA and so on. The EnKF system is composed of 16 ensembles and thousands of observation data are assimilated at every assimilation step into its parallel version, which significantly reduces the required memory and computational time more than 3-fold compared with its serial version. To prevent the collapse of ensembles due to rank deficiency, we employ various schemes such as localization and inflation of the background error covariance and disturbance of observations. Sea surface temperature from the Advanced Very High Resolution Radiometer and in-situ temperature profiles from various sources including Argo floats have been assimilated into the EnKF system. For cyclonic circulation in the northern East Sea and paths of the East Korean Warm Current and the Nearshore Branch, the EnKF system reproduces the mean surface circulation more realistically than that in the case without data assimilation. Simulated area-averaged vertical temperature profiles also agrees well with the Generalized Digital Environmental Model data, which indicates that the EnKF system corrects the warming of subsurface temperature and the erosion of the permanent thermocline that are usually observed in numerical models without data assimilation. We also quantitatively validate the EnKF system by comparing its results with observed temperatures at 100 m for two years in the southwestern East Sea. We find that spatial and temporal correlations are higher and root-mean-square errors are lower in the EnKF system as compared with those systems without data assimilation.
The Tangent Linear and Adjoint of the FV3 Dynamical Core: Development and Applications
NASA Technical Reports Server (NTRS)
Holdaway, Daniel
2018-01-01
GMAO (NASA's Global Modeling and Assimilation Office) has developed a highly sophisticated adjoint modeling system based on the most recent version of the finite volume cubed sphere (FV3) dynamical core. This provides a mechanism for investigating sensitivity to initial conditions and examining observation impacts. It also allows for the computation of singular vectors and for the implementation of hybrid 4DVAR (4-Dimensional Variational Assimilation). In this work we will present the scientific assessment of the new adjoint system and show results from a number of research application of the adjoint system.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste
2003-01-01
We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.
NASA Technical Reports Server (NTRS)
Prive, Nikki; Errico, R. M.; Carvalho, D.
2018-01-01
The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo; Redder, Christopher
2010-01-01
MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.
NASA Astrophysics Data System (ADS)
da Silva, A.; Redder, C. R.
2010-12-01
MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.
GEOS S2S-2_1 File Specification: GMAO Seasonal and Sub-Seasonal Forecast Output
NASA Technical Reports Server (NTRS)
Kovach, Robin M.; Marshak, Jelena; Molod, Andrea; Nakada, Kazumi
2018-01-01
The NASA GMAO seasonal (9 months) and subseasonal (45 days) forecasts are produced with the Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model and Data Assimilation System Version S2S-2_1. The new system replaces version S2S-1.0 described in Borovikov et al (2017), and includes upgrades to many components of the system. The atmospheric model includes an upgrade from a pre-MERRA-2 version running on a latitude-longitude grid at approx. 1 degree resolution to a current version running on a cubed sphere grid at approximately 1/2 degree resolution. The important developments are related to the dynamical core (Putman et al., 2011), the moist physics (''two-moment microphysics'' of Barahona et al., 2014) and the cryosphere (Cullather et al., 2014). As in the previous GMAO S2S system, the land model is that of Koster et al (2000). GMAO S2S-2_1 now includes the Goddard Chemistry Aerosol Radiation and Transport (GOCART, Colarco et al., 2010) single moment interactive aerosol model that includes predictive aerosols including dust, sea salt and several species of carbon and sulfate. The previous version of GMAO S2S specified aerosol amounts from climatology, which were used to inform the atmospheric radiation only. The ocean model includes an upgrade from MOM4 to MOM5 (Griffies 2012), and continues to be run on the tripolar grid at approximately 1/2 degree resolution in the tropics with 40 vertical levels. As in S2S-1.0, the sea ice model is from the Los Alamos Sea Ice model (CICE4, Hunke and Lipscomb 2010). The Ocean Data Assimilation System (ODAS) has been upgraded from the one described in Borovikov et al., 2017 to one that uses a modified version of the Penny, 2014 Local Ensemble Transform Kalman Filter (LETKF), and now assimilates along-track altimetry. The ODAS also does a nudging to MERRA-2 SST and sea ice boundary conditions. The atmospheric data assimilation fields used to constrain the atmosphere in the ODAS have been upgraded from MERRA to a MERRA-2 like system. The system is initialized using a MERRA-2-like atmospheric reanalysis (Gelaro et al. 2017) and the GMAO S2S-2_1 ocean analysis. Additional ensemble members for forecasts are produced with initial states at 5-day intervals, with additional members based on perturbations of the atmospheric and ocean states. Both subseasonal and seasonal forecasts are submitted to the National MultiModel Ensemble (NMME) project, and are part of the US/Canada multimodel seasonal forecasts (http://www.cpc.ncep.noaa.gov/products/NMME/). A large suite of retrospective forecasts (''hindcasts'') have been completed, and contribute to the calculation of the model's baseline climatology and drift, anomalies from which are the basis of the seasonal forecasts.
NASA Technical Reports Server (NTRS)
Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El
2014-01-01
The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.
NASA Astrophysics Data System (ADS)
Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.
2014-12-01
The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of assimilating all-sky GMI data on GEOS-5 forecasts are discussed.
NASA Astrophysics Data System (ADS)
Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.
2016-02-01
Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.
CATS Near Real Time Data Products: Applications for Assimilation Into the NASA GEOS-5 AGCM
NASA Technical Reports Server (NTRS)
Hlavka, D. L.; Nowottnick, E. P.; Yorks, J. E.; Da Silva, A.; McGill, M. J.; Palm, S. P.; Selmer, P. A.; Pauly, R. M.; Ozog, S.
2017-01-01
From February 2015 through October 2017, the NASA Cloud-Aerosol Transport System (CATS) backscatter lidar operated on the International Space Station (ISS) as a technology demonstration for future Earth Science Missions, providing vertical measurements of cloud and aerosols properties. Owing to its location on the ISS, a cornerstone technology demonstration of CATS was the capability to acquire, process, and disseminate near-real time (NRT) data within 6 hours of observation time. CATS NRT data has several applications, including providing notification of hazardous events for air traffic control and air quality advisories, field campaign flight planning, as well as for constraining cloud and aerosol distributions in via data assimilation in aerosol transport models. Â Recent developments in aerosol data assimilation techniques have permitted the assimilation of aerosol optical thickness (AOT), a 2-dimensional column integrated quantity that is reflective of the simulated aerosol loading in aerosol transport models. While this capability has greatly improved simulated AOT forecasts, the vertical position, a key control on aerosol transport, is often not impacted when 2-D AOT is assimilated. Here, we present preliminary efforts to assimilate CATS aerosol observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system using a 1-D Variational (1-D VAR) ensemble approach, demonstrating the utility of CATS for future Earth Science Missions.
NASA Astrophysics Data System (ADS)
O'Dea, Enda; Furner, Rachel; Wakelin, Sarah; Siddorn, John; While, James; Sykes, Peter; King, Robert; Holt, Jason; Hewitt, Helene
2017-08-01
We describe the physical model component of the standard Coastal Ocean version 5 configuration (CO5) of the European north-west shelf (NWS). CO5 was developed jointly between the Met Office and the National Oceanography Centre. CO5 is designed with the seamless approach in mind, which allows for modelling of multiple timescales for a variety of applications from short-range ocean forecasting to climate projections. The configuration constitutes the basis of the latest update to the ocean and data assimilation components of the Met Office's operational Forecast Ocean Assimilation Model (FOAM) for the NWS. A 30.5-year non-assimilating control hindcast of CO5 was integrated from January 1981 to June 2012. Sensitivity simulations were conducted with reference to the control run. The control run is compared against a previous non-assimilating Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) hindcast of the NWS. The CO5 control hindcast is shown to have much reduced biases compared to POLCOMS. Emphasis in the system description is weighted to updates in CO5 over previous versions. Updates include an increase in vertical resolution, a new vertical coordinate stretching function, the replacement of climatological riverine sources with the pan-European hydrological model E-HYPE, a new Baltic boundary condition and switching from directly imposed atmospheric model boundary fluxes to calculating the fluxes within the model using a bulk formula. Sensitivity tests of the updates are detailed with a view toward attributing observed changes in the new system from the previous system and suggesting future directions of research to further improve the system.
Improving Forecast Skill by Assimilation of AIRS Cloud Cleared Radiances RiCC
NASA Technical Reports Server (NTRS)
Susskind, Joel; Rosenberg, Robert I.; Iredell, Lena
2015-01-01
ECMWF, NCEP, and GMAO routinely assimilate radiosonde and other in-situ observations along with satellite IR and MW Sounder radiance observations. NCEP and GMAO use the NCEP GSI Data Assimilation System (DAS).GSI DAS assimilates AIRS, CrIS, IASI channel radiances Ri on a channel-by-channel, case-by-case basis, only for those channels i thought to be unaffected by cloud cover. This test excludes Ri for most tropospheric sounding channels under partial cloud cover conditions. AIRS Version-6 RiCC is a derived quantity representative of what AIRS channel i would have seen if the AIRS FOR were cloud free. All values of RiCC have case-by-case error estimates RiCC associated with them. Our experiments present to the GSI QCd values of AIRS RiCC in place of AIRS Ri observations. GSI DAS assimilates only those values of RiCC it thinks are cloud free. This potentially allows for better coverage of assimilated QCd values of RiCC as compared to Ri.
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Song, Hyo-Jong; Jung, Jaehee; Lim, Gyu-Ho
2017-04-01
This study introduces a altered version of the incremental analysis updates (IAU), called the nonstationary IAU (NIAU) method, to enhance the assimilation accuracy of the IAU while retaining the continuity of the analysis. Analogous to the IAU, the NIAU is designed to add analysis increments at every model time step to improve the continuity in the intermittent data assimilation. Still, unlike the IAU, the NIAU method applies time-evolved forcing employing the forward operator as rectifications to the model. The solution of the NIAU is better than that of the IAU, of which analysis is performed at the start of the time window for adding the IAU forcing, in terms of the accuracy of the analysis field. It is because, in the linear systems, the NIAU solution equals that in an intermittent data assimilation method at the end of the assimilation interval. To have the filtering property in the NIAU, a forward operator to propagate the increment is reconstructed with only dominant singular vectors. An illustration of those advantages of the NIAU is given using the simple 40-variable Lorenz model.
NASA Astrophysics Data System (ADS)
Kwon, Y.; Forman, B. A.; Yoon, Y.; Kumar, S.
2017-12-01
High Mountain Asia (HMA) has been progressively losing ice and snow in recent decades, which could negatively impact regional water supply and native ecosystems. One goal of this study is to characterize the spatiotemporal variability of snow (and ice) across the HMA region. In addition, modeled snow water equivalent (SWE) estimates will be enhanced through the assimilation of passive microwave brightness temperatures (TB) collected by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) as part of a radiance assimilation system. The radiance assimilation framework includes the NASA Land Information System (LIS) in conjunction with a well-trained support vector machine (SVM) that acts as the observation operator. The Noah Land Surface Model with multi-parameterization options (Noah-MP) is used as the prior model for simulating snow dynamics. Noah-MP is forced by meteorological fields from the NASA Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) atmospheric reanalysis for the periods 01 Sep. 2002 to 01 Sep. 2011. The radiance assimilation system requires two separate phases: 1) training and 2) assimilation. During the training phase, a nonlinear SVM is generated for three different AMSR-E frequencies - 10.65, 18.7, and 36.5 GHz - at both vertical and horizontal polarization. The trained SVM is then used to predict TB during the assimilation phase. An ensemble Kalman filter will be used to condition the model on AMSR-E brightness temperatures not used during SVM training. The performance of the Noah-MP (with and without radiance assimilation) will be assessed via comparison to in-situ measurements, remotely-sensing geophysical retrievals, and other reanalysis products.
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)
NASA Technical Reports Server (NTRS)
Gelaro, Ronald; McCarty, Will; Randles, Cynthia; Darmenov, Anton; Bosilovich, Michael G.; Cullather, Richard; Buchard, Virginie; Gu, Wei; Putman, William; Schubert, Siegfried D.;
2017-01-01
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASAs Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRAs terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GESDISC).
New and Improved GLDAS Data Sets and Data Services at NASA GES DISC
NASA Technical Reports Server (NTRS)
Rui, Hualan; Beaudoing, Hiroko; Teng, William; Vollmer, Bruce; Rodell, Matthew; Lei, Guang-Dih
2012-01-01
The goal of a Land Data Assimilation System (LDAS) is to ingest satellite- and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes data and, thereby, facilitate hydrology and climate modeling, research, and forecast. With the motivation of creating more climatologically consistent data sets, NASA GSFC's Hydrological Sciences Laboratory has generated more than 60 years (Jan. 1948-- Dec. 2008) of Global LDAS Version 2 (GLDAS-2) data, by using the Princeton Forcing Data Set and upgraded versions of Land Surface Models (LSMs). GLDAS data and data services are provided at NASA GES DISC Hydrology Data and Information Services Center (HDISC), in collaboration with HSL and LDAS.
NASA Astrophysics Data System (ADS)
Counillon, Francois; Kimmritz, Madlen; Keenlyside, Noel; Wang, Yiguo; Bethke, Ingo
2017-04-01
The Norwegian Climate Prediction Model combines the Norwegian Earth System Model and the Ensemble Kalman Filter data assimilation method. The prediction skills of different versions of the system (with 30 members) are tested in the Nordic Seas and the Arctic region. Comparing the hindcasts branched from a SST-only assimilation run with a free ensemble run of 30 members, we are able to dissociate the predictability rooted in the external forcing from the predictability harvest from SST derived initial conditions. The latter adds predictability in the North Atlantic subpolar gyre and the Nordic Seas regions and overall there is very little degradation or forecast drift. Combined assimilation of SST and T-S profiles further improves the prediction skill in the Nordic Seas and into the Arctic. These lead to multi-year predictability in the high-latitudes. Ongoing developments of strongly coupled assimilation (ocean and sea ice) of ice concentration in idealized twin experiment will be shown, as way to further enhance prediction skill in the Arctic.
Decadal Prediction Efforts in GMAO (Global Modeling and Assimilation Office)
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Suarez, Max; Schubert, Siegfried
2010-01-01
The Global Modeling and Assimilation Office (GMAO) plans to use our GEOS-5 atmosphere-ocean general circulation model (AOGCM) to explore issues associated with predictability on decadal time scales and to contribute to the decadal prediction project that is part ofCMIP5. The GEOS-5 AOGCM is comprised of the GEOS-5 AGCM with the Catchment Land Surface Model, coupled to GFDL's MOM, version 4. We have assimilation systems for both the atmosphere and ocean. For our climate prediction efforts, the atmosphere will be initialized from the GEOS-5 Modem Era Retrospective-analysis for Research and Applications (MERRA), available from 1979 to present at 112 resolution, and from 1948 to present at 2 resolution. The ocean assimilation is conducted within the coupled model framework, using the MERRA as a constraint for both the atmosphere and the ocean. The decadal prediction experiments will be conducted with a 1 atmosphere and a 112 ocean. Some initial results will be presented, focusing on initialization aspects of the GEOS-5 system.
GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System
NASA Technical Reports Server (NTRS)
Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal;
2017-01-01
A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.
CATS Near Real Time Data Products: Applications for Assimilation into the NASA GEOS-5 AGCM
NASA Astrophysics Data System (ADS)
Nowottnick, E. P.; Hlavka, D. L.; Yorks, J. E.; da Silva, A. M., Jr.; McGill, M. J.; Palm, S. P.; Selmer, P. A.; Pauly, R.; Ozog, S.
2017-12-01
Since February 2015, the NASA Cloud-Aerosol Transport System (CATS) backscatter lidar has been operating on the International Space Station (ISS) as a technology demonstration for future Earth Science Missions, providing vertical measurements of cloud and aerosols properties. Owing to its location on the ISS, a cornerstone technology demonstration of CATS is the capability to acquire, process, and disseminate near-real time (NRT) data within 6 hours of observation time. Here, we present CATS NRT data products and outline improved CATS algorithms used to discriminate clouds from aerosols, and subsequently identify cloud and aerosol type. CATS NRT data has several applications, including providing notification of hazardous events for air traffic control and air quality advisories, field campaign flight planning, as well as for constraining cloud and aerosol distributions in via data assimilation in aerosol transport models. Recent developments in aerosol data assimilation techniques have permitted the assimilation of aerosol optical thickness (AOT), a 2-dimensional column integrated quantity that is reflective of the simulated aerosol loading in aerosol transport models. While this capability has greatly improved simulated AOT forecasts, the vertical position, a key control on aerosol transport, is often not impacted when 2-D AOT is assimilated. Here, we also present preliminary efforts to assimilate CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system using a 1-D Variational (1-D VAR) approach, demonstrating the utility of CATS for future Earth Science Missions.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard; Park, Chung-Kyu; Wu, Chung-Yu; Kondratyeva, Yelena; Molod, Andrea; Takacs, Lawrence; Seablom, Michael; Higgins, Wayne
1995-01-01
The Data Assimilation Office (DAO) at Goddard Space Flight Center has produced a multiyear global assimilated data set with version 1 of the Goddard Earth Observing System Data Assimilation System (GEOS-1 DAS). One of the main goals of this project, in addition to benchmarking the GEOS-1 system, was to produce a research quality data set suitable for the study of short-term climate variability. The output, which is global and gridded, includes all prognostic fields and a large number of diagnostic quantities such as precipitation, latent heating, and surface fluxes. Output is provided four times daily with selected quantities available eight times per day. Information about the observations input to the GEOS-1 DAS is provided in terms of maps of spatial coverage, bar graphs of data counts, and tables of all time periods with significant data gaps. The purpose of this document is to serve as a users' guide to NASA's first multiyear assimilated data set and to provide an early look at the quality of the output. Documentation is provided on all the data archives, including sample read programs and methods of data access. Extensive comparisons are made with the corresponding operational European Center for Medium-Range Weather Forecasts analyses, as well as various in situ and satellite observations. This document is also intended to alert users of the data about potential limitations of assimilated data, in general, and the GEOS-1 data, in particular. Results are presented for the period March 1985-February 1990.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tribbia, Joseph
NCAR brought the latest version of the Community Earth System Model (version 1, CESM1) into the mix of models in the NMME effort. This new version uses our newest atmospheric model CAM5 and produces a coupled climate and ENSO that are generally as good or better than those of the Community Climate System Model version 4 (CCSM4). Compared to CCSM4, the new coupled model has a superior climate response with respect to low clouds in both the subtropical stratus regimes and the Arctic. However, CESM1 has been run to date using a prognostic aerosol model that more than doubles itsmore » computational cost. We are currently evaluating a version of the new model using prescribed aerosols and expect it will be ready for integrations in summer 2012. Because of this NCAR has not been able to complete the hindcast integrations using the NCAR loosely-coupled ensemble Kalman filter assimilation method nor has it contributed to the current (Stage I) NMME operational utilization. The expectation is that this model will be included in the NMME in late 2012 or early 2013. The initialization method will utilize the Ensemble Kalman Filter Assimilation methods developed at NCAR using the Data Assimilation Research Testbed (DART) in conjunction with Jeff Anderson’s team in CISL. This methodology has been used in our decadal prediction contributions to CMIP5. During the course of this project, NCAR has setup and performed all the needed hindcast and forecast simulations and provide the requested fields to our collaborators. In addition, NCAR researchers have participated fully in research themes (i) and (ii). Specifically, i) we have begun to evaluate and optimize our system in hindcast mode, focusing on the optimal number of ensemble members, methodologies to recalibrate individual dynamical models, and accessing our forecasts across multiple time scales, i.e., beyond two weeks, and ii) we have begun investigation of the role of different ocean initial conditions in seasonal forecasts. The completion of the calibration hindcasts for Seasonal to Interannual (SI) predictions and the maintenance of the data archive associated with the NCAR portion of this effort has been the responsibility of the Project Scientist I (Alicia Karspeck) that was partially supported on this project.« less
Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste; Iredell, Lena
2010-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. Also included are the clear column radiances used to derive these products which are representative of the radiances AIRS would have seen if there were no clouds in the field of view. All products also have error estimates. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20 percent, in cases with up to 90 percent effective cloud cover. The products are designed for data assimilation purposes for the improvement of numerical weather prediction, as well as for the study of climate and meteorological processes. With regard to data assimilation, one can use either the products themselves or the clear column radiances from which the products were derived. The AIRS Version 5 retrieval algorithm is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates for retrieved quantities and clear column radiances, and the use of these error estimates for Quality Control. The temperature profile error estimates are used to determine a case-by-case characteristic pressure pbest, down to which the profile is considered acceptable for data assimilation purposes. The characteristic pressure p(sub best) is determined by comparing the case dependent error estimate (delta)T(p) to the threshold values (Delta)T(p). The AIRS Version 5 data set provides error estimates of T(p) at all levels, and also profile dependent values of pbest based on use of a Standard profile dependent threshold (Delta)T(p). These Standard thresholds were designed as a compromise between optimal use for data assimilation purposes, which requires highest accuracy (tighter Quality Control), and climate purposes, which requires more spatial coverage (looser Quality Control). Subsequent research using Version 5 sounding and error estimates showed that tighter Quality Control performs better for data assimilation proposes, while looser Quality Control better spatial coverage) performs better for climate purposes. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 degree latitude x 0.67 degree longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates (delta)T(p) were used as the uncertainty for each measurement in the data assimilation process.
Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela
2014-01-01
The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.
Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances
2006-01-01
In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.
Examination of Observation Impacts derived from OSEs and Adjoint Models
NASA Technical Reports Server (NTRS)
Gelaro, Ronald
2008-01-01
With the adjoint of a data assimilation system, the impact of any or all assimilated observations on measures of forecast skill can be estimated accurately and efficiently. The approach allows aggregation of results in terms of individual data types, channels or locations, all computed simultaneously. In this study, adjoint-based estimates of observation impact are compared with results from standard observing system experiments (OSEs) in the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) GEOS-5 system. The two approaches are shown to provide unique, but complimentary, information. Used together, they reveal both redundancies and dependencies between observing system impacts as observations are added or removed. Understanding these dependencies poses a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.
Impact of glider data assimilation on the Monterey Bay model
NASA Astrophysics Data System (ADS)
Shulman, Igor; Rowley, Clark; Anderson, Stephanie; DeRada, Sergio; Kindle, John; Martin, Paul; Doyle, James; Cummings, James; Ramp, Steve; Chavez, Francisco; Fratantoni, David; Davis, Russ
2009-02-01
Glider observations were essential components of the observational program in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during summer of 2003. This paper is focused on the impact of the assimilation of glider temperature and salinity observations on the Navy Coastal Ocean Model (NCOM) predictions of surface and subsurface properties. The modeling system consists of an implementation of the NCOM model using a curvilinear, orthogonal grid with 1-4 km resolution, with finest resolution around the bay. The model receives open boundary conditions from a regional (9 km resolution) NCOM implementation for the California Current System, and surface fluxes from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model at 3 km resolution. The data assimilation component of the system is a version of the Navy Coupled Ocean Data Assimilation (NCODA) system, which is used for assimilation of the glider data into the NCOM model of the Monterey Bay area. The NCODA is a fully 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity. Assimilation of glider data improves the surface temperature at the mooring locations for the NCOM model hindcast and nowcasts, and for the short-range (1-1.5 days) forecasts. It is shown that it is critical to have accurate atmospheric forcing for more extended forecasts. Assimilation of glider data provided better agreement with independent observations (for example, with aircraft measured SSTs) of the model-predicted and observed spatial distributions of surface temperature and salinity. Mooring observations of subsurface temperature and salinity show sharp changes in the thermocline and halocline depths during transitions from upwelling to relaxation and vice versa. The non-assimilative run also shows these transitions in subsurface temperature; but they are not as well defined. For salinity, the non-assimilative run significantly differs from the observations. However, the glider data assimilating run is able to show comparable results with observations of thermocline as well as halocline depths during upwelling and relaxation events in the Monterey Bay area. It is also shown that during the relaxation of wind, the data assimilative run has higher value of subsurface velocity complex correlation with observations than the non-assimilative run.
Impact of Assimilated and Interactive Aerosol on Tropical Cyclogenesis
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, K. M.; daSilva, A.; Matsui, T.
2014-01-01
This article investigates the impact 3 of Saharan dust on the development of tropical cyclones in the Atlantic. A global data assimilation and forecast system, the NASA GEOS-5, is used to assimilate all satellite and conventional data sets used operationally for numerical weather prediction. In addition, this new GEOS-5 version includes assimilation of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis so obtained comprises atmospheric quantities and a realistic 3-d aerosol and cloud distribution, consistent with the meteorology and validated against Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data. These improved analyses are used to initialize GEOS-5 forecasts, explicitly accounting for aerosol direct radiative effects and their impact on the atmospheric dynamics. Parallel simulations with/without aerosol radiative effects show that effects of dust on static stability increase with time, becoming highly significant after day 5 and producing an environment less favorable to tropical cyclogenesis.
NASA Technical Reports Server (NTRS)
Rui, Hualan; Vollmer, B.; Teng, W.; Beaudoing, H.; Rodell, M.; Silberstein, D.
2015-01-01
GLDAS-2.0 data have been reprocessed with updated Princeton meteorological forcing data within the Land Information System (LIS) Version 7, and temporal coverage have been extended to 1948-2012.Global Land Data Assimilation System Version 2 (GLDAS-2) has two components: GLDAS-2.0: entirely forced with the Princeton meteorological forcing data GLDAS-2.1: forced with atmospheric analysis and observation-based data after 2001In order to create more climatologically consistent data sets, NASA GSFC's Hydrological Sciences Laboratory (HSL) has recently reprocessed the GLDAS-2.0, by using updated Princeton meteorological forcing data within the LIS Version 7.GLDAS-2.0 data and data services are provided at NASA GES DISC Hydrology Data and Information Services Center (HDISC), in collaboration with HSL.
NASA Astrophysics Data System (ADS)
Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.
2014-12-01
We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.
Regional Data Assimilation Using a Stretched-Grid Approach and Ensemble Calculations
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, M. S.; Takacs, L. L.; Govindaraju, R. C.; Atlas, Robert (Technical Monitor)
2002-01-01
The global variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) incorporating the GEOS SG-GCM (Fox-Rabinovitz 2000, Fox-Rabinovitz et al. 2001a,b), has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The major area of interest with enhanced regional resolution used in different SG-DAS experiments includes a rectangle over the U.S. with 50 or 60 km horizontal resolution. The analyses and diagnostics are produced for all mandatory levels from the surface to 0.2 hPa. The assimilated regional mesoscale products are consistent with global scale circulation characteristics due to using the SG-approach. Both the stretched grid and basic uniform grid DASs use the same amount of global grid-points and are compared in terms of regional product quality.
The GEOS-5 Neural Network Retrieval for AOD
NASA Astrophysics Data System (ADS)
Castellanos, P.; da Silva, A. M., Jr.
2017-12-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
The GEOS-5 Neural Network Retrieval (NNR) for AOD
NASA Technical Reports Server (NTRS)
Castellanos, Patricia; Da Silva, Arlindo
2017-01-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J. M.; Reichle, Rolf H.
2016-01-01
Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.
Assimilation of sea ice concentration data in the Arctic via DART/CICE5 in the CESM1
NASA Astrophysics Data System (ADS)
Zhang, Y.; Bitz, C. M.; Anderson, J. L.; Collins, N.; Hendricks, J.; Hoar, T. J.; Raeder, K.
2016-12-01
Arctic sea ice cover has been experiencing significant reduction in the past few decades. Climate models predict that the Arctic Ocean may be ice-free in late summer within a few decades. Better sea ice prediction is crucial for regional and global climate prediction that are vital to human activities such as maritime shipping and subsistence hunting, as well as wildlife protection as animals face habitat loss. The physical processes involved with the persistence and re-emergence of sea ice cover are found to extend the predictability of sea ice concentration (SIC) and thickness at the regional scale up to several years. This motivates us to investigate sea ice predictability stemming from initial values of the sea ice cover. Data assimilation is a useful technique to combine observations and model forecasts to reconstruct the states of sea ice in the past and provide more accurate initial conditions for sea ice prediction. This work links the most recent version of the Los Alamos sea ice model (CICE5) within the Community Earth System Model version 1.5 (CESM1.5) and the Data Assimilation Research Testbed (DART). The linked DART/CICE5 is ideal to assimilate multi-scale and multivariate sea ice observations using an ensemble Kalman filter (EnKF). The study is focused on the assimilation of SIC data that impact SIC, sea ice thickness, and snow thickness. The ensemble sea ice model states are constructed by introducing uncertainties in atmospheric forcing and key model parameters. The ensemble atmospheric forcing is a reanalysis product generated with DART and the Community Atmosphere Model (CAM). We also perturb two model parameters that are found to contribute significantly to the model uncertainty in previous studies. This study applies perfect model observing system simulation experiments (OSSEs) to investigate data assimilation algorithms and post-processing methods. One of the ensemble members of a CICE5 free run is chosen as the truth. Daily synthetic observations are obtained by adding 15% random noise to the truth. Experiments assimilating the synthetic observations are then conducted to test the effectiveness of different data assimilation algorithms (e.g., localization and inflation) and post-processing methods (e.g., how to distribute the total increment of SIC into each ice thickness category).
NASA Astrophysics Data System (ADS)
Albergel, Clément; Munier, Simon; Leroux, Delphine Jennifer; Dewaele, Hélène; Fairbairn, David; Lavinia Barbu, Alina; Gelati, Emiliano; Dorigo, Wouter; Faroux, Stéphanie; Meurey, Catherine; Le Moigne, Patrick; Decharme, Bertrand; Mahfouf, Jean-Francois; Calvet, Jean-Christophe
2017-10-01
In this study, a global land data assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the interactions between soil-biosphere-atmosphere (ISBA, Interactions between Soil, Biosphere and Atmosphere) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is more effective in modifying soil moisture (SM) from the top layers of soil, as model sensitivity to SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of the assimilation impact is conducted using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observation-based estimates of upscaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.
The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis
NASA Astrophysics Data System (ADS)
Montabone, Luca; Read, Peter; Lewis, Stephen; Steele, Liam; Holmes, James; Valeanu, Alexandru
2016-07-01
The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office. The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") at the following URL: http://macdap.physics.ox.ac.uk/ MACDA is an ongoing collaborative project, and work is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust and water ice.
Description of the GMAO OSSE for Weather Analysis Software Package: Version 3
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Errico, Ronald M.; Prive, Nikki C.; Carvalho, David; Sienkiewicz, Meta; El Akkraoui, Amal; Guo, Jing; Todling, Ricardo; McCarty, Will; Putman, William M.;
2017-01-01
The Global Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center has developed software and products for conducting observing system simulation experiments (OSSEs) for weather analysis applications. Such applications include estimations of potential effects of new observing instruments or data assimilation techniques on improving weather analysis and forecasts. The GMAO software creates simulated observations from nature run (NR) data sets and adds simulated errors to those observations. The algorithms employed are much more sophisticated, adding a much greater degree of realism, compared with OSSE systems currently available elsewhere. The algorithms employed, software designs, and validation procedures are described in this document. Instructions for using the software are also provided.
Assimilation of MLS and OMI Ozone Data
NASA Technical Reports Server (NTRS)
Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.
2005-01-01
Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).
NASA Astrophysics Data System (ADS)
Le Galloudec, Olivier; Lellouche, Jean-Michel; Greiner, Eric; Garric, Gilles; Régnier, Charly; Drévillon, Marie; Drillet, Yann
2017-04-01
Since May 2015, Mercator Ocean opened the Copernicus Marine Environment and Monitoring Service (CMEMS) and is in charge of the global eddy resolving ocean analyses and forecast. In this context, Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. R&D activities have been conducted at Mercator Ocean these last years to improve the real-time 1/12° global system for recent updated CMEMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefited of the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting, … This presentation will show the impact of some updates separately, with a particular focus on adaptive tuning experiments of satellite Sea Level Anomaly (SLA) and Sea Surface Temperature (SST) observations errors. For the SLA, the a priori prescribed observation error is globally greatly reduced. The median value of the error changed from 5cm to 2.5cm in a few assimilation cycles. For the SST, we chose to maintain the median value of the error to 0.4°C. The spatial distribution of the SST error follows the model physics and atmospheric variability. Either for SLA or SST, we improve the performances of the system using this adaptive tuning. The overall behavior of the system integrating all updates reporting on the products quality improvements will be also discussed, highlighting the level of performance and the reliability of the new system.
NASA Technical Reports Server (NTRS)
El Akkraoui, Amal; Todling, Ricardo
2017-01-01
The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) is the latest reanalysis produced by GMAO, and provides global data spanning the period 1980-present. The atmospheric data assimilation component of MERRA-2 used a 3D-Var scheme, which was operational at the time of its design. Since then, a Hybrid 3D-Var, then a Hybrid 4D-EnVar were implemented, adding an ensemble component to the data assimilation scheme. In this work, we will be examining the benefits of using hybrid ensemble flow-dependent covariances to represent errors and uncertainties in historic periods. Specifically, periods of pre- and post-satellites, as well as periods of active tropical cyclone seasons. Finally, we will also be exploring the use of adaptive localization scales.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; deSilva, Arlindo M.
2000-01-01
Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a "1+1"D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the "1+1"D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+lD scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSM/I rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.
1999-01-01
Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a 1+1D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the 1+1D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+1D scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSW rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.
Development of KIAPS Observation Processing Package for Data Assimilation System
NASA Astrophysics Data System (ADS)
Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin
2015-04-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.
Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Zavodsky, Brad; Blackwell, William
2014-01-01
Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.
Preliminary Results from an Assimilation of Saharan Dust Using TOMS Radiances and the GOCART Model
NASA Technical Reports Server (NTRS)
Weaver, C. J.; daSilva, Arlindo; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)
2000-01-01
At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions. Surface mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from .08-10 microns and only simulates Saharan dust. We draw the assimilation to two observables in this study: the TOMS aerosol index (Al) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance alone. The forward model that simulates the observables requires the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer from the GOCART fields. The forward model also requires a refractive index for the dust. We test three index values to see which best fits the TOMS observables. These are 1) for Saharan dust reported by Patterson, 2) for a mixture of Saharan dust and a highly reflective material (sea salt or sulfate) and 3) for pure illite. The assimilation works best assuming either pure illite or the dust mixture. Our assimilation cycle first determines values of the aerosol index (Al) and the radiance at 380 nm based on the GOCART aerosol fields. Differences between the observed and GOCART model calculated Al and 380 nm radiance are first analyzed horizontally using the Physical-space Statistical Analysis System (PSAS). A quasi-Newton iteration is then performed to produce analyzed 3D aerosol fields according to parameterized background and observation error covariances. We only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols are dominant and carbonaceous aerosols are minimal.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard
1995-01-01
The primary objective of the three-day workshop on results from the Data Assimilation Office (DAO) five-year assimilation was to provide timely feedback from the data users concerning the strengths and weaknesses of version 1 of the Goddard Earth Observing System (GEOS-1) assimilated products. A second objective was to assess user satisfaction with the current methods of data access and retrieval. There were a total of 49 presentations, with about half (23) of the presentations from scientists from outside of Goddard. The first two days were devoted to applications of data: studies of the energy diagnostics, precipitation and diabatic heating, hydrological modeling and moisture transport, cloud forcing and validation, various aspects of intraseasonal, seasonal, and interannual variability, ocean wind stress applications, and validation of surface fluxes. The last day included talks from the National Meteorological Center (NMC), the National Center for Atmospheric Research (NCAR), the Center for Ocean-Land-Atmosphere Studies (COLA), the United States Navy, and the European Center for Medium Range Weather Forecasts (ECMWF).
NASA Technical Reports Server (NTRS)
Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo
2004-01-01
The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.
MERRA-2 Input Observations: Summary and Assessment
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); McCarty, Will; Coy, Lawrence; Gelaro, Ronald; Huang, Albert; Merkova, Dagmar; Smith, Edmond B.; Sienkiewicz, Meta; Wargan, Krzysztof
2016-01-01
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is an atmospheric reanalysis, spanning 1980 through near-realtime, that uses state-of-the-art processing of observations from the continually evolving global observing system. The effectiveness of any reanalysis is a function not only of the input observations themselves, but also of how the observations are handled in the assimilation procedure. Relevant issues to consider include, but are not limited to, data selection, data preprocessing, quality control, bias correction procedures, and blacklisting. As the assimilation algorithm and earth system models are fundamentally fixed in a reanalysis, it is often a change in the character of the observations, and their feedbacks on the system, that cause changes in the character of the reanalysis. It is therefore important to provide documentation of the observing system so that its discontinuities and transitions can be readily linked to discontinuities seen in the gridded atmospheric fields of the reanalysis. With this in mind, this document provides an exhaustive list of the input observations, the context under which they are assimilated, and an initial assessment of selected core observations fundamental to the reanalysis.
NASA Astrophysics Data System (ADS)
Fortin, Vincent; Roy, Guy; Donaldson, Norman; Mahidjiba, Ahmed
2015-12-01
The Canadian Precipitation Analysis (CaPA) is a data analysis system used operationally at the Canadian Meteorological Center (CMC) since April 2011 to produce gridded 6-h and 24-h precipitation accumulations in near real-time on a regular grid covering all of North America. The current resolution of the product is 10-km. Due to the low density of the observational network in most of Canada, the system relies on a background field provided by the Regional Deterministic Prediction System (RDPS) of Environment Canada, which is a short-term weather forecasting system for North America. For this reason, the North American configuration of CaPA is known as the Regional Deterministic Precipitation Analysis (RDPA). Early in the development of the CaPA system, weather radar reflectivity was identified as a very promising additional data source for the precipitation analysis, but necessary quality control procedures and bias-correction algorithms were lacking for the radar data. After three years of development and testing, a new version of CaPA-RDPA system was implemented in November 2014 at CMC. This version is able to assimilate radar quantitative precipitation estimates (QPEs) from all 31 operational Canadian weather radars. The radar QPE is used as an observation source and not as a background field, and is subject to a strict quality control procedure, like any other observation source. The November 2014 upgrade to CaPA-RDPA was implemented at the same time as an upgrade to the RDPS system, which brought minor changes to the skill and bias of CaPA-RDPA. This paper uses the frequency bias indicator (FBI), the equitable threat score (ETS) and the departure from the partial mean (DPM) in order to assess the improvements to CaPA-RDPA brought by the assimilation of radar QPE. Verification focuses on the 6-h accumulations, and is done against a network of 65 synoptic stations (approximately two stations per radar) that were withheld from the station data assimilated by CaPA-RDPA. It is shown that the ETS and the DPM scores are both improved for precipitation events between 0.2 mm and 25 mm per 6-h, and that the FBI is unchanged.
Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled Data Assimilation
NASA Astrophysics Data System (ADS)
Metzger, E. J.; Barton, N. P.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T. R.; Ridout, J. A.; Franklin, D. S.; Zamudio, L.; Posey, P. G.; Reynolds, C. A.; Phelps, M.
2016-12-01
The US Navy is developing an Earth System Prediction Capability (ESPC) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. It will be a fully coupled global atmosphere/ocean/ice/wave/land prediction system providing daily deterministic forecasts out to 16 days at high horizontal and vertical resolution, and daily probabilistic forecasts out to 45 days at lower resolution. The system will run at the Navy DoD Supercomputing Resource Center with an initial operational capability scheduled for the end of FY18 and the final operational capability scheduled for FY22. The individual model and data assimilation components include: atmosphere - NAVy Global Environmental Model (NAVGEM) and Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR); ocean - HYbrid Coordinate Ocean Model (HYCOM) and Navy Coupled Ocean Data Assimilation (NCODA); ice - Community Ice CodE (CICE) and NCODA; WAVEWATCH III™ and NCODA; and land - NAVGEM Land Surface Model (LSM). Currently, NAVGEM/HYCOM/CICE are three-way coupled and each model component is cycling with its respective assimilation scheme. The assimilation systems do not communicate with each other, but future plans call for these to be coupled as well. NAVGEM runs with a 6-hour update cycle while HYCOM/CICE run with a 24-hour update cycle. The T359L50 NAVGEM/0.08° HYCOM/0.08° CICE system has been integrated in hindcast mode and verification/validation metrics have been computed against unassimilated observations and against stand-alone versions of NAVGEM and HYCOM/CICE. This presentation will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled ESPC system is performing with comparable skill to the stand-alone systems at the nowcast time.
GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Kovach, Robin; Marshak, Jelena
2018-01-01
The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.
Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2007-01-01
AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary
2012-01-01
Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.
Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012
NASA Astrophysics Data System (ADS)
van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.
2015-07-01
The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite data sets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6-hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite data sets are collected and then are corrected for biases as a function of solar zenith angle (SZA), viewing zenith angle (VZA), time (trend), and stratospheric temperature using surface observations of the ozone column from Brewer and Dobson spectrophotometers from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Subsequently the de-biased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM. The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43-year period 1970-2012. The chemistry transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. Backscatter ultraviolet (BUV) satellite observations have been included for the period 1970-1977. The total record is extended by 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° × 3° to 1° × 1°. The analysis is driven by 3-hourly meteorology from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) starting from 1979, and ERA-40 before that date. The chemistry parameterization has been updated. The performance of the MSR2 analysis is studied with the help of observation-minus-forecast (OmF) departures from the data assimilation, by comparisons with the individual station observations and with ozone sondes. The OmF statistics show that the mean bias of the MSR2 analyses is less than 1 % with respect to de-biased satellite observations after 1979.
Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model
NASA Technical Reports Server (NTRS)
Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.
2014-01-01
The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.
NASA Technical Reports Server (NTRS)
Cohn, S. E.
1982-01-01
Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.
Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments
NASA Astrophysics Data System (ADS)
Griessinger, Nena; Seibert, Jan; Magnusson, Jan; Jonas, Tobias
2016-09-01
In Alpine catchments, snowmelt is often a major contribution to runoff. Therefore, modeling snow processes is important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow monitoring system. As a framework for our tests we have used the hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) in the version HBV-light, which has been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a temperature-index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three variations of this external snow model were applied: (a) the full model with assimilation of observational snow data from a dense monitoring network, (b) the same snow model but with data assimilation switched off and (c) a downgraded version of the same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid-elevations the performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with increasing elevation and the correspondingly increased contribution of snowmelt to runoff, the accurate estimation of snow water equivalent (SWE) and snowmelt rates has gained importance.
2014-08-01
Using real-time weather data from an unmanned aircraft system to support the advanced research version of the weather research and forecast model... system that is used to transmit some MDCRS observations, the Aircraft Communications Addressing and Reporting System (ACARS). A new network of aircraft ...Technical Analysis and Applications Center, and AirDat LLC developed a modified TAMDAR sensor referred to as TAMDAR- Unmanned Aerial System (TAMDAR-U) for
NASA Astrophysics Data System (ADS)
Lamouroux, Julien; Testut, Charles-Emmanuel; Lellouche, Jean-Michel; Perruche, Coralie; Paul, Julien
2017-04-01
The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service. In that framework - and with the April 2018 CMEMS V4 release as a target - Mercator Ocean is in charge of improving the realism of its global ¼° BIOMER coupled physical-biogeochemical (NEMO/PISCES) simulations, analyses and re-analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, through the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions. The assimilation of BGC data will rely on a simplified version of the SEEK filter, where the error statistics do not evolve with the model dynamics. The associated forecast error covariances are based on the statistics of a collection of 3D ocean state anomalies. The anomalies are computed from a multi-year numerical experiment (free run without assimilation) with respect to a running mean in order to estimate the 7-day scale error on the ocean state at a given period of the year. These forecast error covariances rely thus on a fixed-basis seasonally variable ensemble of anomalies. This methodology, which is currently implemented in the "blue" component of the CMEMS operational forecast system, is now under adaptation to be applied to the biogeochemical part of the operational system. Regarding observations - and as a first step - the system shall rely on the CMEMS GlobColour Global Ocean surface chlorophyll concentration products, delivered in NRT. The objective of this poster is to provide a detailed overview of the implementation of the aforementioned data assimilation methodology in the CMEMS BIOMER forecasting system. Focus shall be put on (1) the assessment of the capabilities of this data assimilation methodology to provide satisfying statistics of the model variability errors (through space-time analysis of dedicated representers of satellite surface Chla observations), (2) the dedicated features of the data assimilation configuration that have been implemented so far (e.g. log-transformation of the analysis state, multivariate Chlorophyll-Nutrient control vector, etc.) and (3) the assessment of the performances of this future operational data assimilation configuration.
NOAA HRD's HEDAS Data Assimilation System's performance for the 2010 Atlantic Hurricane Season
NASA Astrophysics Data System (ADS)
Sellwood, K.; Aksoy, A.; Vukicevic, T.; Lorsolo, S.
2010-12-01
The Hurricane Ensemble Data Assimilation System (HEDAS) was developed at the Hurricane Research Division (HRD) of NOAA, in conjunction with an experimental version of the Hurricane Weather and Research Forecast model (HWRFx), in an effort to improve the initial representation of the hurricane vortex by utilizing high resolution in-situ data collected during NOAA’s Hurricane Field Program. HEDAS implements the “ensemble square root “ filter of Whitaker and Hamill (2002) using a 30 member ensemble obtained from NOAA/ESRL’s ensemble Kalman filter (EnKF) system and the assimilation is performed on a 3-km nest centered on the hurricane vortex. As part of NOAA’s Hurricane Forecast Improvement Program (HFIP), HEDAS will be run in a semi-operational mode for the first time during the 2010 Atlantic hurricane season and will assimilate airborne Doppler radar winds, dropwindsonde and flight level wind, temperature, pressure and relative humidity, and Stepped Frequency Microwave Radiometer surface wind observations as they become available. HEDAS has been implemented in an experimental mode for the cases of Hurricane Bill, 2009 and Paloma, 2008 to confirm functionality and determine the optimal configuration of the system. This test case demonstrates the importance of assimilating thermodynamic data in addition to wind observations and the benefit of increasing the quantity and distribution of observations. Applying HEDAS to a larger sample of storm forecasts would provide further insight into the behavior of the model when inner core aircraft observations are assimilated. The main focus of this talk will be to present a summary of HEDAS performance in the HWRFx model for the inaugural season. The HEDAS analyses and the resulting HWRFx forecasts will be compared with HWRFx analyses and forecasts produced concurrently using the HRD modeling group’s vortex initialization which does not employ data assimilation. The initial vortex and subsequent forecasts will be evaluated based on the thermodynamic structure, wind field, track and intensity. Related HEDAS research to be presented by HRD’s data assimilation group include evaluations of the geostrophic wind balance and covariance structures for the Bill experiments, and Observation System Simulation experiments (OSSEs) for the case of hurricane Paloma using both model generated and real observations.
NASA Technical Reports Server (NTRS)
Rukhovets, Leonid; Sienkiewicz, M.; Tenenbaum, J.; Kondratyeva, Y.; Owens, T.; Oztunali, M.; Atlas, Robert (Technical Monitor)
2001-01-01
British Airways flight data recorders can provide valuable meteorological information, but they are not available in real-time on the Global Telecommunication System. Information from the flight recorders was used in the Global Aircraft Data Set (GADS) experiment as independent observations to estimate errors in wind analyses produced by major operational centers. The GADS impact on the Goddard Earth Observing System Data Assimilation System (GEOS DAS) analyses was investigated using GEOS-1 DAS version. Recently, a new Data Assimilation System (fvDAS) has been developed at the Data Assimilation Office, NASA Goddard. Using fvDAS , the, GADS impact on analyses and forecasts was investigated. It was shown the GADS data intensify wind speed analyses of jet streams for some cases. Five-day forecast anomaly correlations and root mean squares were calculated for 300, 500 hPa and SLP for six different areas: Northern and Southern Hemispheres, North America, Europe, Asia, USA These scores were obtained as averages over 21 forecasts from January 1998. Comparisons with scores for control experiments without GADS showed a positive impact of the GADS data on forecasts beyond 2-3 days for all levels at the most areas.
NASA Astrophysics Data System (ADS)
Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan
2017-04-01
More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.
NASA Astrophysics Data System (ADS)
Munier, Simon; Albergel, Clément; Leroux, Delphine; Calvet, Jean-Christophe
2017-04-01
In the past decades, large efforts have been made to improve our understanding of the dynamics of the terrestrial water cycle, including vertical and horizontal water fluxes as well as water stored in the biosphere. The soil water content is closely related to the development of the vegetation, which is in turn closely related to the water and energy exchanges with the atmosphere (through evapotranspiration) as well as to carbon fluxes. Land Surface Models (LSMs) are usually designed to represent biogeophysical variables, such as Surface and Root Zone Soil Moisture (SSM, RZSM) or Leaf Area Index (LAI), in order to simulate water, energy and carbon fluxes at the interface between land and atmosphere. With the recent increase of satellite missions and derived products, LSMs can benefit from Earth Observations via Data Assimilation systems to improve their representation of different biogeophysical variables. This study, which is part of the eartH2Observe European project (http://www.earth2observe.eu), presents LDAS-Monde, a global Land Data Assimilation System using an implementation of the Simplified Extended Kalman Filter (SEKF) in the Météo-France's modelling platform (SURFEX). SURFEX is based on the coupling of the multilayer, CO2-responsive version of the Interactions Between Soil, Biosphere, and Atmosphere model (ISBA) coupled with Météo-France's version of the Total Runoff Integrating Pathways continental hydrological system (CTRIP). Two global operational datasets derived from satellite observations are assimilated simultaneously: (i) SSM from the ESA Climate Change Initiative and (ii) LAI from the Copernicus Global Land Service project. Atmospheric forcing used in SURFEX are derived from the ERA-Interim reanalysis and corrected from GPCC precipitations. The simulations are conducted at the global scale at a 1 degree spatial resolution over the period 2000-2014. An analysis of the model sensitivity to the assimilated observations is performed over different regions of the globe under various hydro-climatic conditions. The impact of the SEKF on different biogeophysical and hydrological variables is assessed. It is shown that the assimilation scheme greatly improves the representation of the observed variables (SSM and LAI) and that it effectively affects most of the other variables related to the terrestrial water and vegetation cycles. Future developments include the optimization of LDAS-Monde in order to improve the spatial resolution and then take full advantage of the potential of Earth Observations.
Exploring and Analyzing Climate Variations Online by Using MERRA-2 data at GES DISC
NASA Astrophysics Data System (ADS)
Shen, S.; Ostrenga, D.; Vollmer, B.; Kempler, S.
2016-12-01
NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) (http://giovanni.sci.gsfc.nasa.gov/giovanni/) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Recently, long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, and preprocessing the data. Example data include climate reanalysis from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS) which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM) which assimilates data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.
2002-09-01
weather conditions (1999 Christmas storm in Europe , January 2000 snow storm over the eastern coast of the US) can be attributed to the inaccuracies in...over the normal modes of a linearized version of the model equations. These 5 normal modes can be classified (at least for the extratropics ) based
Recent Advances in Ozone Data Assimilation at the GMAO - Towards a New Reanalysis
NASA Technical Reports Server (NTRS)
Krzysztof, Wargan; Pawson, S.; Nielsen, J. E.; Witte, J.; Douglass, A.; Strahan, S.; Joiner, J.; Bhartia, P. K.; Livesey, N.; Read, W.;
2012-01-01
This presentation summarized ongoing work on improving the representation of ozone in the GEOS Data Assimilation Systems. Data from two EOS Aura sensors was used: the total column ozone from the Ozone Monitoring Instrument (OMI) and high vertical resolution stratospheric profiles from Microwave Limb Sounder (MLS, version 3.3). As several previous studies have demonstrated, assimilation of this data can constrain the stratospheric and tropospheric ozone columns with relatively good accuracy. However, the representation of the vertical structures in the troposphere and near tropopause region is often deficient. Since both these layers of the atmosphere are critical to the understanding of the radiative forcing as well as the ozone budget in the troposphere, current work will focus on improving the assimilated product between the surface and the 50 hPa pressure level. The discussion included recent steps that have been taken towards refining the treatment of ozone in GEOS-5. Impacts of improved tropospheric chemistry model were discussed including the introduction of efficiency factors ("averaging kernels") for OMI total ozone, and direct assimilation of radiances from the MLS instrument. In particular, advantages and challenges involved in assimilating limb radiances rather than retrieved product were discussed. This work is, in part, a preparation for a planned reanalysis of the EOS Aura data from 2005 to present.
NASA Technical Reports Server (NTRS)
Rui, Hualan; Vollmer, Bruce; Teng, Bill; Jasinski, Michael; Mocko, David; Loeser, Carlee; Kempler, Steven
2016-01-01
The National Climate Assessment-Land Data Assimilation System (NCA-LDAS) is an Integrated Terrestrial Water Analysis, and is one of NASAs contributions to the NCA of the United States. The NCA-LDAS has undergone extensive development, including multi-variate assimilation of remotely-sensed water states and anomalies as well as evaluation and verification studies, led by the Goddard Space Flight Centers Hydrological Sciences Laboratory (HSL). The resulting NCA-LDAS data have recently been released to the general public and include those from the Noah land-surface model (LSM) version 3.3 (Noah-3.3) and the Catchment LSM version Fortuna-2.5 (CLSM-F2.5). Standard LSM output variables including soil moistures temperatures, surface fluxes, snow cover depth, groundwater, and runoff are provided, as well as streamflow using a river routing system. The NCA-LDAS data are archived at and distributed by the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The data can be accessed via HTTP, OPeNDAP, Mirador search and download, and NASA Earth data Search. To further facilitate access and use, the NCA-LDAS data are integrated into the NASA Giovanni, for quick visualization and analysis, and into the Data Rods system, for retrieval of time series of long time periods. The temporal and spatial resolutions of the NCA-LDAS data are, respectively, daily-averages and 0.125x0.125 degree, covering North America (25N 53N; 125W 67W) and the period January 1979 to December 2015. The data files are in self-describing, machine-independent, CF-compliant netCDF-4 format.
Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2007-01-01
The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.
NASA Astrophysics Data System (ADS)
Tang, Youhua; Pagowski, Mariusz; Chai, Tianfeng; Pan, Li; Lee, Pius; Baker, Barry; Kumar, Rajesh; Delle Monache, Luca; Tong, Daniel; Kim, Hyun-Cheol
2017-12-01
This study applies the Gridpoint Statistical Interpolation (GSI) 3D-Var assimilation tool originally developed by the National Centers for Environmental Prediction (NCEP), to improve surface PM2.5 predictions over the contiguous United States (CONUS) by assimilating aerosol optical depth (AOD) and surface PM2.5 in version 5.1 of the Community Multi-scale Air Quality (CMAQ) modeling system. An optimal interpolation (OI) method implemented earlier (Tang et al., 2015) for the CMAQ modeling system is also tested for the same period (July 2011) over the same CONUS. Both GSI and OI methods assimilate surface PM2.5 observations at 00:00, 06:00, 12:00 and 18:00 UTC, and MODIS AOD at 18:00 UTC. The assimilations of observations using both GSI and OI generally help reduce the prediction biases and improve correlation between model predictions and observations. In the GSI experiments, assimilation of surface PM2.5 (particle matter with diameter < 2.5 µm) leads to stronger increments in surface PM2.5 compared to its MODIS AOD assimilation at the 550 nm wavelength. In contrast, we find a stronger OI impact of the MODIS AOD on surface aerosols at 18:00 UTC compared to the surface PM2.5 OI method. GSI produces smoother result and yields overall better correlation coefficient and root mean squared error (RMSE). It should be noted that the 3D-Var and OI methods used here have several big differences besides the data assimilation schemes. For instance, the OI uses relatively big model uncertainties, which helps yield smaller mean biases, but sometimes causes the RMSE to increase. We also examine and discuss the sensitivity of the assimilation experiments' results to the AOD forward operators.
NASA Astrophysics Data System (ADS)
Schürmann, Gregor J.; Kaminski, Thomas; Köstler, Christoph; Carvalhais, Nuno; Voßbeck, Michael; Kattge, Jens; Giering, Ralf; Rödenbeck, Christian; Heimann, Martin; Zaehle, Sönke
2016-09-01
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the JSBACH land-surface scheme, which is part of the MPI-Earth System Model v1. The simulated phenology and net land carbon balance were constrained by globally distributed observations of the fraction of absorbed photosynthetically active radiation (FAPAR, using the TIP-FAPAR product) and atmospheric CO2 at a global set of monitoring stations for the years 2005 to 2009. When constrained by FAPAR observations alone, the system successfully, and computationally efficiently, improved simulated growing-season average FAPAR, as well as its seasonality in the northern extra-tropics. When constrained by atmospheric CO2 observations alone, global net and gross carbon fluxes were improved, despite a tendency of the system to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, thereby increasing the overall appropriateness of the simulated biosphere dynamics and underlying parameter values. Our study thus demonstrates the value of multiple-data-stream assimilation for the simulation of terrestrial biosphere dynamics. It further highlights the potential role of remote sensing data, here the TIP-FAPAR product, in stabilising the strongly underdetermined atmospheric inversion problem posed by atmospheric transport and CO2 observations alone. Notwithstanding these advances, the constraint of the observations on regional gross and net CO2 flux patterns on the MPI-CCDAS is limited through the coarse-scale parametrisation of the biosphere model. We expect improvement through a refined initialisation strategy and inclusion of further biosphere observations as constraints.
I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)
NASA Technical Reports Server (NTRS)
Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.
1998-01-01
The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.
NASA Astrophysics Data System (ADS)
Susskind, J.; Rosenberg, R. I.
2016-12-01
The GEOS-5 Data Assimilation System (DAS) generates a global analysis every six hours by combining the previous six hour forecast for that time period with contemporaneous observations. These observations include in-situ observations as well as those taken by satellite borne instruments, such as AIRS/AMSU on EOS Aqua and CrIS/ATMS on S-NPP. Operational data assimilation methodology assimilates observed channel radiances Ri for IR sounding instruments such as AIRS and CrIS, but only for those channels i in a given scene whose radiances are thought to be unaffected by clouds. A limitation of this approach is that radiances in most tropospheric sounding channels are affected by clouds under partial cloud cover conditions, which occurs most of the time. The AIRS Science Team Version-6 retrieval algorithm generates cloud cleared radiances (CCR's) for each channel in a given scene, which represent the radiances AIRS would have observed if the scene were cloud free, and then uses them to determine quality controlled (QC'd) temperature profiles T(p) under all cloud conditions. There are potential advantages to assimilate either AIRS QC'd CCR's or QC'd T(p) instead of Ri in that the spatial coverage of observations is greater under partial cloud cover. We tested these two alternate data assimilation approaches by running three parallel data assimilation experiments over different time periods using GEOS-5. Experiment 1 assimilated all observations as done operationally, Experiment 2 assimilated QC'd values of AIRS CCRs in place of AIRS radiances, and Experiment 3 assimilated QC'd values of T(p) in place of observed radiances. Assimilation of QC'd AIRS T(p) resulted in significant improvement in seven day forecast skill compared to assimilation of CCR's or assimilation of observed radiances, especially in the Southern Hemisphere Extra-tropics.
NASA Astrophysics Data System (ADS)
Stauffer, David R.
1990-01-01
The application of dynamic relationships to the analysis problem for the atmosphere is extended to use a full-physics limited-area mesoscale model as the dynamic constraint. A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or "nudging" is developed and evaluated in the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model, which is used here as a dynamic-analysis tool. The thesis is to determine what assimilation strategies and what meterological fields (mass, wind or both) have the greatest positive impact on the 72-h numerical simulations (dynamic analyses) of two mid-latitude, real-data cases. The basic FDDA methodology is tested in a 10-layer version of the model with a bulk-aerodynamic (single-layer) representation of the planetary boundary layer (PBL), and refined in a 15-layer version of the model by considering the effects of data assimilation within a multi-layer PBL scheme. As designed, the model solution can be relaxed toward either gridded analyses ("analysis nudging"), or toward the actual observations ("obs nudging"). The data used for assimilation include standard 12-hourly rawinsonde data, and also 3-hourly mesoalpha-scale surface data which are applied within the model's multi-layer PBL. Continuous assimilation of standard-resolution rawinsonde data into the 10-layer model successfully reduced large-scale amplitude and phase errors while the model realistically simulated mesoscale structures poorly defined or absent in the rawinsonde analyses and in the model simulations without FDDA. Nudging the model fields directly toward the rawinsonde observations generally produced results comparable to nudging toward gridded analyses. This obs -nudging technique is especially attractive for the assimilation of high-frequency, asynoptic data. Assimilation of 3-hourly surface wind and moisture data into the 15-layer FDDA system was most effective for improving the simulated precipitation fields because a significant portion of the vertically integrated moisture convergence often occurs in the PBL. Overall, the best dynamic analyses for the PBL, mass, wind and precipitation fields were obtained by nudging toward analyses of rawinsonde wind, temperature and moisture (the latter uses a weaker nudging coefficient) above the model PBL and toward analyses of surface-layer wind and moisture within the model PBL.
The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...
The Perception of Assimilation in Newly Learned Novel Words
ERIC Educational Resources Information Center
Snoeren, Natalie D.; Gaskell, M. Gareth; Di Betta, Anna Maria
2009-01-01
The present study investigated the mechanisms underlying perceptual compensation for assimilation in novel words. During training, participants learned canonical versions of novel spoken words (e.g., "decibot") presented in isolation. Following exposure to a second set of novel words the next day, participants carried out a phoneme…
Sea Ice in the NCEP Seasonal Forecast System
NASA Astrophysics Data System (ADS)
Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.
2017-12-01
Sea ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of sea ice is represented. Sea ice prediction is challenging; sea ice can form or melt, it can move with wind and/or ocean current; sea ice interacts with both the air above and ocean underneath, it influences by, and has impact on the air and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a sea ice model. In this work, we present the NCEP coupled model, the CFSv2 sea ice component that includes a dynamic thermodynamic sea ice model and a simple "assimilation" scheme, how sea ice has been assimilated in CFSR, the characteristics of the sea ice from CFSR and CFSv2, and the improvements of sea ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including sea ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.
Harmonisation and diagnostics of MIPAS ESA CH4 and N2O profiles using data assimilation
NASA Astrophysics Data System (ADS)
Errera, Quentin; Ceccherini, Simone; Christophe, Yves; Chabrillat, Simon; Hegglin, Michaela I.; Lambert, Alyn; Ménard, Richard; Raspollini, Piera; Skachko, Sergey; van Weele, Michiel; Walker, Kaley A.
2016-12-01
This paper discusses assimilation experiments of methane (CH4) and nitrous oxide (N2O) profiles retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Here we focus on data versions 6 and 7 provided by the ESA processor. These data sets have been assimilated by the Belgian Assimilation System for Chemical ObsErvations (BASCOE). The CH4 and N2O retrieved profiles can oscillate, especially in the tropical lower stratosphere. Using the averaging kernels of the observations and a background error covariance matrix, which has previously been calibrated, allows the system to partly remedy this issue and provide assimilated fields that are more regular vertically. In general, there is a good agreement between the BASCOE analyses and independent observations from ACE-FTS (CH4 and N2O) and MLS (N2O), demonstrating the general good quality of CH4 and N2O retrievals provided by MIPAS ESA. Nevertheless, this study also identifies two issues in these data sets. First, time series of the observations show unexpected discontinuities due to an abrupt change in the gain of MIPAS band B, generally occurring after the instrument decontamination. Since the calibration is performed weekly, the abrupt change in the gain affects the measurements until the subsequent calibration is performed. Second, the correlations between BASCOE analyses and independent observations are poor in the lower stratosphere, especially in the tropics, probably due to the presence of outliers in the assimilated data. In this region, we recommend using MIPAS CH4 and N2O retrievals with caution.
SMAP Data Assimilation at the GMAO
NASA Technical Reports Server (NTRS)
Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.
2016-01-01
The NASA Soil Moisture Active Passive (SMAP) mission has been providing L-band (1.4 GHz) passive microwave brightness temperature (Tb) observations since April 2015. These observations are sensitive to surface(0-5 cm) soil moisture. Several of the key applications targeted by SMAP, however, require knowledge of deeper-layer, root zone (0-100 cm) soil moisture, which is not directly measured by SMAP. The NASA Global Modeling and Assimilation Office (GMAO) contributes to SMAP by providing Level 4 data, including the Level 4 Surface and Root Zone Soil Moisture(L4_SM) product, which is based on the assimilation of SMAP Tb observations in the ensemble-based NASA GEOS-5 land surface data assimilation system. The L4_SM product offers global data every three hours at 9 km resolution, thereby interpolating and extrapolating the coarser- scale (40 km) SMAP observations in time and in space (both horizontally and vertically). Since October 31, 2015, beta-version L4_SM data have been available to the public from the National Snow and Ice Data Center for the period March 31, 2015, to near present, with a mean latency of approx. 2.5 days.
NASA Astrophysics Data System (ADS)
Holt, C. R.; Szunyogh, I.; Gyarmati, G.; Hoffman, R. N.; Leidner, M.
2011-12-01
Tropical cyclone (TC) track and intensity forecasts have improved in recent years due to increased model resolution, improved data assimilation, and the rapid increase in the number of routinely assimilated observations over oceans. The data assimilation approach that has received the most attention in recent years is Ensemble Kalman Filtering (EnKF). The most attractive feature of the EnKF is that it uses a fully flow-dependent estimate of the error statistics, which can have important benefits for the analysis of rapidly developing TCs. We implement the Local Ensemble Transform Kalman Filter algorithm, a vari- ation of the EnKF, on a reduced-resolution version of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model and the NCEP Regional Spectral Model (RSM) to build a coupled global-limited area anal- ysis/forecast system. This is the first time, to our knowledge, that such a system is used for the analysis and forecast of tropical cyclones. We use data from summer 2004 to study eight tropical cyclones in the Northwest Pacific. The benchmark data sets that we use to assess the performance of our system are the NCEP Reanalysis and the NCEP Operational GFS analyses from 2004. These benchmark analyses were both obtained by the Statistical Spectral Interpolation, which was the operational data assimilation system of NCEP in 2004. The GFS Operational analysis assimilated a large number of satellite radiance observations in addition to the observations assimilated in our system. All analyses are verified against the Joint Typhoon Warning Center Best Track data set. The errors are calculated for the position and intensity of the TCs. The global component of the ensemble-based system shows improvement in po- sition analysis over the NCEP Reanalysis, but shows no significant difference from the NCEP operational analysis for most of the storm tracks. The regional com- ponent of our system improves position analysis over all the global analyses. The intensity analyses, measured by the minimum sea level pressure, are of similar quality in all of the analyses. Regional deterministic forecasts started from our analyses are generally not significantly different from those started from the GFS operational analysis. On average, the regional experiments performed better for longer than 48 h sea level pressure forecasts, while the global forecast performed better in predicting the position for longer than 48 h.
Improving Navigation information for the Rotterdam Harbour access through a 3D Model and HF radar
NASA Astrophysics Data System (ADS)
Schroevers, Marinus
2015-04-01
The Port of Rotterdam is one of the largest harbours in the world and a gateway to Europe. For the access to Rotterdam harbour, information on hydrodynamic and meteorological conditions is of vital importance for safe and swift navigation. This information focuses on the deep navigation channel in the shallow foreshore, which accommodates large seagoing vessels. Due to a large seaward extension of the Port of Rotterdam area in 2011, current patterns have changed. A re-evaluation of the information needed, showed a need for an improved accuracy of the cross channel currents and swell, and an extended forecast horizon. To obtain this, new information system was designed based on a three dimensional hydrodynamic model which produces a 72 hour forecast. Furthermore, the system will assimilate HF radars surface current to optimize the short term forecast. The project has started in 2013 by specifying data needed from the HF radar. At the same time (temporary) buoys were deployed to monitor vertical current profiles. The HF radar will be operational in July 2015, while the model development starts beginning 2015. A pre operational version of the system is presently planned for the end of 2016. A full operational version which assimilates the HF radar data is planned for 2017.
[Revision of the primary care version of the ICD-10. Mental disorders].
Varela-González, O; López-Ibor, J J
2007-01-01
Although the difficulty of applying psychiatric classifications to primary care has been widely criticized, there have been few investigations up to now to define and systematize the real demands in regards to these nosological systems. Recently, the revised version of the Mental and Behavior Disorders Chapter of the ICD 10 has been published. The new tool is the result of an elaboration process mainly developed by a group of 971 primary care physicians coordinated by 55 psychiatrists. The project was organized into three phases: a) evaluation of the current version and collection of proposals for change; b) definition of objectives for an optimized version; and c) writing a proposal of revised text. The result is a text that is more assimilable to a diagnostic and therapeutic guide than a mere coding system, more adapted to the role that the primary care physician can play in each disorder, more up-dated (especially in the treatment section) and more specific in many aspects.
The Reanalysis for Stratospheric Trace-gas Studies
NASA Technical Reports Server (NTRS)
Pawson, Steven; Li, Shuhua
2002-01-01
In order to re-examine trace gas transport in the middle atmosphere for the period May 1991 until April 1995, a "reanalysis" is being performed using an up-to-date version of the DAO's "GEOS" assimilation system. The Reanalysis for Stratospheric Trace-gas Studies (ReSTS) is intended to provide state-of-the-art estimates of the atmosphere during a period when the Upper Atmospheric Research Satellite provided a high density of trace-gas observations, and when the aerosol loading from the eruption of Mount Pinatubo contaminated the lower stratosphere, at the same time performing a natural tracer transport experiment. This study will present the first results from ReSTS, focussing on the improvements over the meteorological analyses produced by the then-operational GEOS-1 data assimilation system; emphasis will be placed on the improved representations of physical processes between GEOS-1 and the current GEOS-4 systems, highlighting the transport properties of the datasets. Alongside the production of a comprehensive atmospheric dataset, important components of ReSTS include performing sensitivity studies to the formulation of the assimilation system (including the representation of physical processes in the GCM, such as feedbacks between ozone/aerosols and meteorology) and to the inclusion of additional data types (including limb-sounding temperature data alongside the TOVS observations). Impacts of some of these factors on the analyzed meteorology and transport will be discussed. Of particular interest are attempts to determine the relative importance of various steps in the assimilation process to the quality of the final analyses.
Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max
2016-01-01
This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.
Improved Decadal Climate Prediction in the North Atlantic using EnOI-Assimilated Initial Condition
NASA Astrophysics Data System (ADS)
Li, Q.; Xin, X.; Wei, M.; Zhou, W.
2017-12-01
Decadal prediction experiments of Beijing Climate Center climate system model version 1.1(BCC-CSM1.1) participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) had poor skill in extratropics of the North Atlantic, the initialization of which was done by relaxing modeled ocean temperature to the Simple Ocean Data Assimilation (SODA) reanalysis data. This study aims to improve the prediction skill of this model by using the assimilation technique in the initialization. New ocean data are firstly generated by assimilating the sea surface temperature (SST) of the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset to the ocean model of BCC-CSM1.1 via Ensemble Optimum Interpolation (EnOI). Then a suite of decadal re-forecasts launched annually over the period 1961-2005 is carried out with simulated ocean temperature restored to the assimilated ocean data. Comparisons between the re-forecasts and previous CMIP5 forecasts show that the re-forecasts are more skillful in mid-to-high latitude SST of the North Atlantic. Improved prediction skill is also found for the Atlantic multi-decadal Oscillation (AMO), which is consistent with the better skill of Atlantic meridional overturning circulation (AMOC) predicted by the re-forecasts. We conclude that the EnOI assimilation generates better ocean data than the SODA reanalysis for initializing decadal climate prediction of BCC-CSM1.1 model.
NASA Astrophysics Data System (ADS)
Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.
2015-03-01
This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA) systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART); the Belgian Assimilation System for Chemical ObsErvations (BASCOE); the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA); and the Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases < 5%) and have a realistic seasonal cycle, except for BASCOE analyses, which underestimate total ozone in the tropics all year long by 7 to 10%, and SACADA analyses, which overestimate total ozone in polar night regions by up to 30%. The validation of the vertical distribution is based on independent observations from ozonesondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. It cannot be performed with TM3DAM, which is designed only to deliver analyses of total ozone columns. Vertically alternating positive and negative biases are found in the IFS-MOZART analyses as well as an overestimation of 30 to 60% in the polar lower stratosphere during polar ozone depletion events. SACADA underestimates lower stratospheric ozone by up to 50% during these events above the South Pole and overestimates it by approximately the same amount in the tropics. The three-dimensional (3-D) analyses delivered by BASCOE are found to have the best quality among the three systems resolving the vertical dimension, with biases not exceeding 10% all year long, at all stratospheric levels and in all latitude bands, except in the tropical lowermost stratosphere. The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.
Multi-RTM-based Radiance Assimilation to Improve Snow Estimates
NASA Astrophysics Data System (ADS)
Kwon, Y.; Zhao, L.; Hoar, T. J.; Yang, Z. L.; Toure, A. M.
2015-12-01
Data assimilation of microwave brightness temperature (TB) observations (i.e., radiance assimilation (RA)) has been proven to improve snowpack characterization at relatively small scales. However, large-scale applications of RA require a considerable amount of further efforts. Our objective in this study is to explore global-scale snow RA. In a RA scheme, a radiative transfer model (RTM) is an observational operator predicting TB; therefore, the quality of the assimilation results may strongly depend upon the RTM used as well as the land surface model (LSM). Several existing RTMs show different sensitivities to snowpack properties and thus they simulate significantly different TB. At the global scale, snow physical properties vary widely with local climate conditions. No single RTM has been shown to be able to accurately reproduce the observed TB for such a wide range of snow conditions. In this study, therefore, we hypothesize that snow estimates using a microwave RA scheme can be improved through the use of multiple RTMs (i.e., multi-RTM-based approaches). As a first step, here we use two snowpack RTMs, i.e., the Dense Media Radiative Transfer-Multi Layers model (DMRT-ML) and the Microwave Emission Model for Layered Snowpacks (MEMLS). The Community Land Model version 4 (CLM4) is used to simulate snow dynamics. The assimilation process is conducted by the Data Assimilation Research Testbed (DART), which is a community facility developed by the National Center for Atmospheric Research (NCAR) for ensemble-based data assimilation studies. In the RA experiments, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB at 18.7 and 36.5 GHz vertical polarization channels are assimilated into the RA system using the ensemble adjustment Kalman filter. The results are evaluated using the Canadian Meteorological Centre (CMC) daily snow depth, the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction, and in-situ snowpack and river discharge observations.
Application of Aura OMI L2G Products Compared with NASA MERRA-2 Assimilation
NASA Technical Reports Server (NTRS)
Zeng, Jian; Shen, Suhung; Wei, Jennifer; Johnson, James E.; Su, Jian; Meyer, David J.
2018-01-01
The Ozone Monitoring Instrument (OMI) is one of the instruments aboard NASA's Aura satellite. It measures ozone total column and vertical profile, aerosols, clouds, and trace gases including NO2, SO2, HCHO, BrO, and OClO using absorption in the ultraviolet electromagnetic spectrum (280 - 400 nm). OMI Level-2G (L2G) products are based on the pixel-level OMI granule satellite measurements stored within global 0.25 deg. X 0.25 deg. grids, therefore they conserve all the Level 2 (L2) spatial and temporal details for 24 hours of scientific data in one file. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis, using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. MERRA-2 includes aerosol data reanalysis and improved representations of stratospheric ozone, compared with its predecessor MERRA, in both instantaneous and time-averaged collections. It is found that simply comparing satellite Level-3 products might cause biases, due to lack of detailed temporal and original retrieval information. It is therefore preferable to inter-compare or implement satellite derived physical quantities directly with/to model assimilation with as high temporal and spatial resolutions as possible. This study will demonstrate utilization of OMI L2G daily aerosol and ozone products by comparing them with MERRA-2 hourly aerosol/ozone simulations, matched in both space and time aspects. Both OMI and MERRA-2 products are accessible online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/).
NASA Technical Reports Server (NTRS)
Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos
2017-01-01
A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.
Is 30-second update fast enough for convection-resolving data assimilation?
NASA Astrophysics Data System (ADS)
Miyoshi, Takemasa; Ruiz, Juan; Lien, Guo-Yuan; Teramura, Toshiki; Kondo, Keiichi; Maejima, Yasumitsu; Honda, Takumi; Otsuka, Shigenori
2017-04-01
For local severe weather forecasting at 100-m resolution with 30-minute lead time, we have been working on the "Big Data Assimilation" (BDA) effort for super-rapid 30-second cycle of an ensemble Kalman filter. We have presented two papers with the concept and case studies (Miyoshi et al. 2016, BAMS; Proceedings of the IEEE). We focus on the non-Gaussian PDF in this study. We were hoping that we could assume the Gaussian error distribution in 30-second forecasts before strong nonlinear dynamics distort the error distribution for rapidly-changing convective storms. However, using 1000 ensemble members, the reduced-resolution version of the BDA system at 1-km grid spacing with 30-second updates showed ubiquity of highly non-Gaussian PDF. Although our results so far with multiple case studies were quite successful, this gives us a doubt about our Gaussian assumption even if the data assimilation interval is short enough compared with the system's chaotic time scale. We therefore pose a question if the 30-second update is fast enough for convection-resolving data assimilation under the Gaussian assumption. To answer this question, we aim to gain combined knowledge from BDA case studies, 1000-member experiments, 30-second breeding experiments, and toy-model experiments with dense and frequent observations. In this presentation, we will show the most up-to-date results of the BDA research, and will discuss about the question if the 30-second update is fast enough for convective-scale data assimilation.
NASA Astrophysics Data System (ADS)
Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos
2017-03-01
A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.
Development of the WRF-CO2 4D-Var assimilation system v1.0
NASA Astrophysics Data System (ADS)
Zheng, Tao; French, Nancy H. F.; Baxter, Martin
2018-05-01
Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.
The dynamic radiation environment assimilation model (DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L
2010-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate resultsmore » than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.« less
Troposphere-Stratosphere Connections in Recent Northern Winters in NASA GEOS Assimilated Datasets
NASA Technical Reports Server (NTRS)
Pawson, Steven
2000-01-01
The northern winter stratosphere displays a wide range of interannual variability, much of which is believed to result from the response to the damping of upward-propagating waves. However, there is considerable (growing) evidence that the stratospheric state can also impact the tropospheric circulation. This issue will be examined using datasets generated in the Data Assimilation Office (DAO) at NASA's Goddard Space Flight Center. Just as the tropospheric circulation in each of these years was dominated by differing synoptic-scale structures, the stratospheric polar vortex also displayed different evolutions. The two extremes are the winter 1998/1999, when the stratosphere underwent a series of warming events (including two major warmings), and the winter 1999/2000, which was dominated by a persistent, cold polar vortex, often distorted by a dominant blocking pattern in the troposphere. This study will examine several operational and research-level versions of the DAO's systems. The 70-level-TRMM-system with a resolution of 2-by-2.5 degrees and the 48-level, 1-by-l-degree resolution ''Terra'' system were operational in 1998/1999 and 1999/2000, respectively. Research versions of the system used a 48-level, 2-by-2.5-degree configuration, which facilitates studies of the impact of vertical resolution. The study includes checks against independent datasets and error analyses, as well as the main issue of troposphere-stratosphere interactions.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Chang, Yehui; Schubert, Siegfried D.; Lin, Shian-Jiann; Nebuda, Sharon; Shen, Bo-Wen
2001-01-01
This document describes the climate of version 1 of the NASA-NCAR model developed at the Data Assimilation Office (DAO). The model consists of a new finite-volume dynamical core and an implementation of the NCAR climate community model (CCM-3) physical parameterizations. The version of the model examined here was integrated at a resolution of 2 degrees latitude by 2.5 degrees longitude and 32 levels. The results are based on assimilation that was forced with observed sea surface temperature and sea ice for the period 1979-1995, and are compared with NCEP/NCAR reanalyses and various other observational data sets. The results include an assessment of seasonal means, subseasonal transients including the Madden Julian Oscillation, and interannual variability. The quantities include zonal and meridional winds, temperature, specific humidity, geopotential height, stream function, velocity potential, precipitation, sea level pressure, and cloud radiative forcing.
NASA Astrophysics Data System (ADS)
Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.
2017-12-01
Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.
Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data
NASA Technical Reports Server (NTRS)
Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.
2003-01-01
Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Takacs, Lawrence L.
1995-01-01
A detailed description of the numerical formulation of Version 2 of the ARIES/GEOS 'dynamical core' is presented. This code is a nearly 'plug-compatible' dynamics for use in atmospheric general circulation models (GCMs). It is a finite difference model on a staggered latitude-longitude C-grid. It uses second-order differences for all terms except the advection of vorticity by the rotation part of the flow, which is done at fourth-order accuracy. This dynamical core is currently being used in the climate (ARIES) and data assimilation (GEOS) GCMs at Goddard.
CATS Aerosol Typing and Future Directions
NASA Technical Reports Server (NTRS)
McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie;
2016-01-01
The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.
NASA Astrophysics Data System (ADS)
Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.
2017-12-01
Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at fine scales that are required for local water management. In addition, Open Loop and GRACE-assimilation simulations of water table depth were compared to in-situ data over the state of California, derived from observation wells operated/maintained by the U.S. Geological Service.
Recent developments of DMI's operational system: Coupled Ecosystem-Circulation-and SPM model.
NASA Astrophysics Data System (ADS)
Murawski, Jens; Tian, Tian; Dobrynin, Mikhail
2010-05-01
ECOOP is a pan- European project with 72 partners from 29 countries around the Baltic Sea, the North Sea, the Iberia-Biscay-Ireland region, the Mediterranean Sea and the Black Sea. The project aims at the development and the integration of the different coastal and regional observation and forecasting systems. The Danish Meteorological Institute DMI coordinates the project and is responsible for the Baltic Sea regional forecasting System. Over the project period, the Baltic Sea system was developed from a purely hydro dynamical model (version V1), running operationally since summer 2009, to a coupled model platform (version V2), including model components for the simulation of suspended particles, data assimilation and ecosystem variables. The ECOOP V2 model is currently tested and validated, and will replace the V1 version soon. The coupled biogeochemical- and circulation model runs operationally since November 2009. The daily forecasts are presented at DMI's homepage http:/ocean.dmi.dk. The presentation includes a short description of the ECOOP forecasting system, discusses the model results and shows the outcome of the model validation.
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.
2009-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.
Quadratic Polynomial Regression using Serial Observation Processing:Implementation within DART
NASA Astrophysics Data System (ADS)
Hodyss, D.; Anderson, J. L.; Collins, N.; Campbell, W. F.; Reinecke, P. A.
2017-12-01
Many Ensemble-Based Kalman ltering (EBKF) algorithms process the observations serially. Serial observation processing views the data assimilation process as an iterative sequence of scalar update equations. What is useful about this data assimilation algorithm is that it has very low memory requirements and does not need complex methods to perform the typical high-dimensional inverse calculation of many other algorithms. Recently, the push has been towards the prediction, and therefore the assimilation of observations, for regions and phenomena for which high-resolution is required and/or highly nonlinear physical processes are operating. For these situations, a basic hypothesis is that the use of the EBKF is sub-optimal and performance gains could be achieved by accounting for aspects of the non-Gaussianty. To this end, we develop here a new component of the Data Assimilation Research Testbed [DART] to allow for a wide-variety of users to test this hypothesis. This new version of DART allows one to run several variants of the EBKF as well as several variants of the quadratic polynomial lter using the same forecast model and observations. Dierences between the results of the two systems will then highlight the degree of non-Gaussianity in the system being examined. We will illustrate in this work the differences between the performance of linear versus quadratic polynomial regression in a hierarchy of models from Lorenz-63 to a simple general circulation model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compo, Gilbert P
As an important step toward a coupled data assimilation system for generating reanalysis fields needed to assess climate model projections, the Ocean Atmosphere Coupled Reanalysis for Climate Applications (OARCA) project assesses and improves the longest reanalyses currently available of the atmosphere and ocean: the 20th Century Reanalysis Project (20CR) and the Simple Ocean Data Assimilation with sparse observational input (SODAsi) system, respectively. In this project, we make off-line but coordinated improvements in the 20CR and SODAsi datasets, with improvements in one feeding into improvements of the other through an iterative generation of new versions. These datasets now span from themore » 19th to 21st centuries. We then study the extreme weather and variability from days to decades of the resulting datasets. A total of 24 publications have been produced in this project.« less
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Evaluation of the Impact of AIRS Radiance and Profile Data Assimilation in Partly Cloudy Regions
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary
2013-01-01
Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of a long-term series of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary
2013-01-01
Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.
The hourly updated US High-Resolution Rapid Refresh (HRRR) storm-scale forecast model
NASA Astrophysics Data System (ADS)
Alexander, Curtis; Dowell, David; Benjamin, Stan; Weygandt, Stephen; Olson, Joseph; Kenyon, Jaymes; Grell, Georg; Smirnova, Tanya; Ladwig, Terra; Brown, John; James, Eric; Hu, Ming
2016-04-01
The 3-km convective-allowing High-Resolution Rapid Refresh (HRRR) is a US NOAA hourly updating weather forecast model that use a specially configured version of the Advanced Research WRF (ARW) model and assimilate many novel and most conventional observation types on an hourly basis using Gridpoint Statistical Interpolation (GSI). Included in this assimilation is a procedure for initializing ongoing precipitation systems from observed radar reflectivity data (and proxy reflectivity from lightning and satellite data), a cloud analysis to initialize stable layer clouds from METAR and satellite observations, and special techniques to enhance retention of surface observation information. The HRRR is run hourly out to 15 forecast hours over a domain covering the entire conterminous United States using initial and boundary conditions from the hourly-cycled 13km Rapid Refresh (RAP, using similar physics and data assimilation) covering North America and a significant part of the Northern Hemisphere. The HRRR is continually developed and refined at NOAA's Earth System Research Laboratory, and an initial version was implemented into the operational NOAA/NCEP production suite in September 2014. Ongoing experimental RAP and HRRR model development throughout 2014 and 2015 has culminated in a set of data assimilation and model enhancements that will be incorporated into the first simultaneous upgrade of both the operational RAP and HRRR that is scheduled for spring 2016 at NCEP. This presentation will discuss the operational RAP and HRRR changes contained in this upgrade. The RAP domain is being expanded to encompass the NAM domain and the forecast lengths of both the RAP and HRRR are being extended. RAP and HRRR assimilation enhancements have focused on (1) extending surface data assimilation to include mesonet observations and improved use of all surface observations through better background estimates of 2-m temperature and dewpoint including projection of 2-m temperature observations through the model boundary layer and (2) extending the use of radar observations to include both radial velocity and 3-D retrieval of rain hydrometeors from observed radar reflectivities in the warm-season. The RAP hybrid EnKF 3D-variational data assimilation will increase weighting of GFS ensemble-based background error covariance estimation and introduce this hybrid data assimilation configuration in the HRRR. Enhancement of RAP and HRRR model physics include improved land surface and boundary layer prediction using the updated Mellor-Yamada-Nakanishi-Niino (MYNN) parameterization scheme, Grell-Freitas-Olson (GFO) shallow and deep convective parameterization, aerosol-aware Thompson microphysics and upgraded Rapid Update Cycle (RUC) land-surface model. The presentation will highlight improvements in the RAP and HRRR model physics to reduce certain systematic forecast biases including a warm and dry daytime bias over the central and eastern CONUS during the warm season along with improved convective forecasts in more weakly-forced diurnally-driven events. Examples of RAP and HRRR forecast improvements will be demonstrated through both retrospective and real-time verification statistics and case-study examples.
NASA Astrophysics Data System (ADS)
Szunyogh, Istvan; Kostelich, Eric J.; Gyarmati, G.; Patil, D. J.; Hunt, Brian R.; Kalnay, Eugenia; Ott, Edward; Yorke, James A.
2005-08-01
The accuracy and computational efficiency of the recently proposed local ensemble Kalman filter (LEKF) data assimilation scheme is investigated on a state-of-the-art operational numerical weather prediction model using simulated observations. The model selected for this purpose is the T62 horizontal- and 28-level vertical-resolution version of the Global Forecast System (GFS) of the National Center for Environmental Prediction. The performance of the data assimilation system is assessed for different configurations of the LEKF scheme. It is shown that a modest size (40-member) ensemble is sufficient to track the evolution of the atmospheric state with high accuracy. For this ensemble size, the computational time per analysis is less than 9 min on a cluster of PCs. The analyses are extremely accurate in the mid-latitude storm track regions. The largest analysis errors, which are typically much smaller than the observational errors, occur where parametrized physical processes play important roles. Because these are also the regions where model errors are expected to be the largest, limitations of a real-data implementation of the ensemble-based Kalman filter may be easily mistaken for model errors. In light of these results, the importance of testing the ensemble-based Kalman filter data assimilation systems on simulated observations is stressed.
NASA Astrophysics Data System (ADS)
McCormack, J. P.; Sassi, F.; Hoppel, K.; Ma, J.; Eckermann, S. D.
2015-12-01
We investigate the evolution of neutral atmospheric dynamics in the 10-100 km altitude range before, during, and after recent stratospheric sudden warmings (SSWs) using a prototype high-altitude version of the Navy Global Environmental Model (NAVGEM), which combines a 4-dimensional variational (4DVAR) data assimilation system with a 3-time-level semi-Lagrangian semi-implicit global forecast model. In addition to assimilating conventional meteorological observations, NAVGEM also assimilates middle atmospheric temperature and constituent observations from both operational and research satellite platforms to provide global synoptic meteorological analyses of winds, temperatures, ozone, and water vapor from the surface to ~90 km. In this study, NAVGEM analyses are used to diagnose the spatial and temporal evolution of the main dynamical drivers in the mesosphere and lower thermosphere (MLT) before, during, and after specific SSW events during the 2009-2013 period when large disturbances were observed in the thermosphere/ionosphere (TI) region. Preliminary findings show strong modulation of the semidiurnal tide in the MLT during the onset of an SSW. To assess the impact of the neutral atmosphere dynamical variability on the TI system, NAVGEM analyses are used to constrain simulations of select SSW events using the specified dynamics (SD) configuration of the extended Whole Atmosphere Community Climate Model (WACCM-X).
NASA Astrophysics Data System (ADS)
Huijnen, V.; Bouarar, I.; Chabrillat, S. H.; Christophe, Y.; Thierno, D.; Karydis, V.; Marecal, V.; Pozzer, A.; Flemming, J.
2017-12-01
Operational atmospheric composition analyses and forecasts such as developed in the Copernicus Atmosphere Monitoring Service (CAMS) rely on modules describing emissions, chemical conversion, transport and removal processing, as well as data assimilation methods. The CAMS forecasts can be used to drive regional air quality models across the world. Critical analyses of uncertainties in any of these processes are continuously needed to advance the quality of such systems on a global scale, ranging from the surface up to the stratosphere. With regard to the atmospheric chemistry to describe the fate of trace gases, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere combined with the Cariolle scheme to describe stratospheric ozone, as integrated in ECMWF's Integrated Forecasting System (IFS). It is further constrained by assimilation of satellite observations of CO, O3 and NO2. As part of CAMS we have recently developed three fully independent schemes to describe the chemical conversion throughout the atmosphere. These parameterizations originate from parent model codes in MOZART, MOCAGE and a combination of TM5/BASCOE. In this contribution we evaluate the correspondence and elemental differences in the performance of the three schemes in an otherwise identical model configuration (excluding data-assimilation) against a large range of in-situ and satellite-based observations of ozone, CO, VOC's and chlorine-containing trace gases for both troposphere and stratosphere. This analysis aims to provide a measure of model uncertainty in the operational system for tracers that are not, or poorly, constrained by data assimilation. It aims also to provide guidance on the directions for further model improvement with regard to the chemical conversion module.
NASA Astrophysics Data System (ADS)
McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.
2017-12-01
The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.
NASA Astrophysics Data System (ADS)
Mecikalski, John; Smith, Tracy; Weygandt, Stephen
2014-05-01
Latent heating profiles derived from GOES satellite-based cloud-top cooling rates are being assimilated into a retrospective version of the Rapid Refresh system (RAP) being run at the Global Systems Division. Assimilation of these data may help reduce the time lag for convection initiation (CI) in both the RAP model forecasts and in 3-km High Resolution Rapid Refresh (HRRR) model runs that are initialized off of the RAP model grids. These data may also improve both the location and organization of developing convective storm clusters, especially in the nested HRRR runs. These types of improvements are critical for providing better convective storm guidance around busy hub airports and aviation corridor routes, especially in the highly congested Ohio Valley - Northeast - Mid-Atlantic region. Additional work is focusing on assimilating GOES-R CI algorithm cloud-top cooling-based latent heating profiles directly into the HRRR model. Because of the small-scale nature of the convective phenomena depicted in the cloud-top cooling rate data (on the order of 1-4 km scale), direct assimilation of these data in the HRRR may be more effective than assimilation in the RAP. The RAP is an hourly assimilation system developed at NOAA/ESRL and was implemented at NCEP as a NOAA operational model in May 2012. The 3-km HRRR runs hourly out to 15 hours as a nest within the ESRL real-time experimental RAP. The RAP and HRRR both use the WRF ARW model core, and the Gridpoint Statistical Interpolation (GSI) is used within an hourly cycle to assimilate a wide variety of observations (including radar data) to initialize the RAP. Within this modeling framework, the cloud-top cooling rate-based latent heating profiles are applied as prescribed heating during the diabatic forward model integration part of the RAP digital filter initialization (DFI). No digital filtering is applied on the 3-km HRRR grid, but similar forward model integration with prescribed heating is used to assimilate information from radar reflectivity, lightning flash density and the satellite based cloud-top cooling rate data. In the current HRRR configuration, 4 15-min cycles of latent heating are applied during a pre-forecast hour of integration. This is followed by a final application of GSI at 3-km to fit the latest conventional observation data. At the conference, results from a 5-day retrospective period (July 5-10, 2012) will be shown, focusing on assessment of data impact for both the RAP and HRRR, as well as the sensitivity to various assimilation parameters, including assumed heating strength. Emphasis will be given to documenting the forecast impacts for aviation applications in the Eastern U.S.
Soil Moisture Active Passive Mission L4_SM Data Product Assessment (Version 2 Validated Release)
NASA Technical Reports Server (NTRS)
Reichle, Rolf Helmut; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Chen, Fan; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas; Kimball, John;
2016-01-01
During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public Version 2 validated release scheduled for 29 April 2016. The assessment of the Version 2 L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to up-scaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the wide geographic range of the sparse network sites, and the global assessment of the assimilation diagnostics, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 2 validation and supports the validated release of the data. An analysis of the time average surface and root zone soil moisture shows that the global pattern of arid and humid regions are captured by the L4_SM estimates. Results from the core validation site comparisons indicate that "Version 2" of the L4_SM data product meets the self-imposed L4_SM accuracy requirement, which is formulated in terms of the ubRMSE: the RMSE (Root Mean Square Error) after removal of the long-term mean difference. The overall ubRMSE of the 3-hourly L4_SM surface soil moisture at the 9 km scale is 0.035 cubic meters per cubic meter requirement. The corresponding ubRMSE for L4_SM root zone soil moisture is 0.024 cubic meters per cubic meter requirement. Both of these metrics are comfortably below the 0.04 cubic meters per cubic meter requirement. The L4_SM estimates are an improvement over estimates from a model-only SMAP Nature Run version 4 (NRv4), which demonstrates the beneficial impact of the SMAP brightness temperature data. L4_SM surface soil moisture estimates are consistently more skillful than NRv4 estimates, although not by a statistically significant margin. The lack of statistical significance is not surprising given the limited data record available to date. Root zone soil moisture estimates from L4_SM and NRv4 have similar skill. Results from comparisons of the L4_SM product to in situ measurements from nearly 400 sparse network sites corroborate the core validation site results. The instantaneous soil moisture and soil temperature analysis increments are within a reasonable range and result in spatially smooth soil moisture analyses. The O-F residuals exhibit only small biases on the order of 1-3 degrees Kelvin between the (re-scaled) SMAP brightness temperature observations and the L4_SM model forecast, which indicates that the assimilation system is largely unbiased. The spatially averaged time series standard deviation of the O-F residuals is 5.9 degrees Kelvin, which reduces to 4.0 degrees Kelvin for the observation-minus-analysis (O-A) residuals, reflecting the impact of the SMAP observations on the L4_SM system. Averaged globally, the time series standard deviation of the normalized O-F residuals is close to unity, which would suggest that the magnitude of the modeled errors approximately reflects that of the actual errors. The assessment report also notes several limitations of the "Version 2" L4_SM data product and science algorithm calibration that will be addressed in future releases. Regionally, the time series standard deviation of the normalized O-F residuals deviates considerably from unity, which indicates that the L4_SM assimilation algorithm either over- or under-estimates the actual errors that are present in the system. Planned improvements include revised land model parameters, revised error parameters for the land model and the assimilated SMAP observations, and revised surface meteorological forcing data for the operational period and underlying climatological data. Moreover, a refined analysis of the impact of SMAP observations will be facilitated by the construction of additional variants of the model-only reference data. Nevertheless, the “Version 2” validated release of the L4_SM product is sufficiently mature and of adequate quality for distribution to and use by the larger science and application communities.
2009-10-20
standard deviation. The y axis indicates the scaled MB, MB95 MB 1 N N j51 (O j O)2 2 4 3 5 1/2 , (12) or the biweight version, MBbw9 5 MBbw hhO j iibw...RMSEbw9unbiased 5 RMSEbwunbiased hhO j iibw . (15) To investigate the impact of outliers, results from both the Gaussian statistics [Eqs. (12) and
2010-01-01
indicates the scaled MB, MB95 MB 1 N N j51 (O j O)2 2 4 3 5 1/2 , (12) or the biweight version, MBbw9 5 MBbw hhO j iibw , (13) and the x axis denotes...RMSEbwunbiased hhO j iibw . (15) To investigate the impact of outliers, results from both the Gaussian statistics [Eqs. (12) and (14)] and the non- parametric
Atmospheric Soundings from AIRS/AMSU in Partial Cloud Cover
NASA Technical Reports Server (NTRS)
Susskind, Joel; Atlas, Robert
2005-01-01
Simultaneous use of AIRS/AMSU-A observations allow for the determination of accurate atmospheric soundings under partial cloud cover conditions. The methodology involves the determination of the radiances AIRS would have seen if the AIRS fields of view were clear, called clear column radiances, and use of these radiances to infer the atmospheric and surface conditions giving rise to these clear column radiances. Susskind et al. demonstrate via simulation that accurate temperature soundings and clear column radiances can be derived from AIRS/AMSU-A observations in cases of up to 80% partial cloud cover, with only a small degradation in accuracy compared to that obtained in clear scenes. Susskind and Atlas show that these findings hold for real AIRS/AMSU-A soundings as well. For data assimilation purposes, this small degradation in accuracy is more than offset by a significant increase in spatial coverage (roughly 50% of global cases were accepted, compared to 3.6% of the global cases being diagnosed as clear), and assimilation of AIRS temperature soundings in partially cloudy conditions resulted in a larger improvement in forecast skill than when AIRS soundings were assimilated only under clear conditions. Alternatively, derived AIRS clear column radiances under partial cloud cover could also be used for data assimilation purposes. Further improvements in AIRS sounding methodology have been made since the results shown in Susskind and Atlas . A new version of the AIRS/AMSU-A retrieval algorithm, Version 4.0, was delivered to the Goddard DAAC in February 2005 for production of AIRS derived products, including clear column radiances. The major improvement in the Version 4.0 retrieval algorithm is with regard to a more flexible, parameter dependent, quality control. Results are shown of the accuracy and spatial distribution of temperature-moisture profiles and clear column radiances derived from AIRS/AMSU-A as a function of fractional cloud cover using the Version 4.0 algorithm. Use of the Version 4.0 AIRS temperature profiles increased the positive forecast impact arising from AIRS retrievals relative to what was shown in Susskind and Atlas .
Integrated Modeling of the Battlespace Environment
2010-10-01
Office of Counsel.Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only). Code 7030 4 Division, Code...ESMF: the Hakamada- Akasofu-Fry version 2 (HAFv2) solar wind model and the global assimilation of ionospheric mea- surements (GAIM1) forecast...ground-truth measurements for comparison with the solar wind predictions. Global Assimilation of Ionospheric Measurements The GAIMv2.3 effort
Prediction Activities at NASA's Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2010-01-01
The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the climate community. An improved understanding of the nature of decadal variability and its predictability has important implications for efforts to assess the impacts of global change in the coming decades. In fact, the GMAO has taken on the challenge of carrying out experimental decadal predictions in support of the IPCC AR5 effort.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard
2016-01-01
In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard
2016-01-01
In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.
Exploring and Analyzing Climate Variations Online by Using NASA MERRA-2 Data at GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Kempler, Steven J.
2016-01-01
NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) (http:giovanni.sci.gsfc.nasa.govgiovanni) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, preprocessing, and learning data. Example data include climate reanalysis data from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning in 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS), which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM), which provides data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.
Assimilation of Sentinel-1 and SMAP observations to improve GEOS-5 soil moisture
NASA Astrophysics Data System (ADS)
Lievens, Hans; Reichle, Rolf; Wagner, Wolfgang; De Lannoy, Gabrielle; Liu, Qing; Verhoest, Niko
2017-04-01
The SMAP (Soil Moisture Active and Passive) mission carries an L-band radiometer that provides brightness temperature observations at a nominal resolution of 40 km. These radiance observations are routinely assimilated into GEOS-5 (Goddard Earth Observing System version 5) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (potentially every 3 days for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into GEOS-5, either separately from or simultaneously with SMAP radiometer observations. The assimilation can be performed if either or both Sentinel-1 or SMAP observations are available, and is thus not restricted to synchronised overpasses. To facilitate the assimilation of the radar observations, GEOS-5 is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The model runs are performed at 9-km spatial and 3-hourly temporal resolution, over the period from May 2015 to October 2016. The impact of the assimilation on surface and root-zone soil moisture simulations is assessed using in situ measurements from SMAP core validation sites and sparse networks. The assimilation of Sentinel-1 backscatter is found to consistently improve surface and root-zone soil moisture, relative to the open loop (no assimilation). However, the improvements are less pronounced than those with the assimilation of SMAP observations, likely because of less frequent observations. The best performance was obtained with the simultaneous assimilation of Sentinel-1 and SMAP data, indicating the complementary value of both types of observations for improving hydrologic simulations.
NASA Technical Reports Server (NTRS)
Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.
2015-01-01
We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations.Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure
NASA Astrophysics Data System (ADS)
Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.
2016-01-01
We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure.
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.
1999-01-01
Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of rainfall and total precipitable water (TPW) observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve these fields in reanalyses. The DAO has developed a "1+1"D procedure to assimilate 6-hr averaged rainfall and TPW into the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS. The "1+1" designation refers to one spatial dimension plus one temporal dimension. The scheme minimizes the least-square differences between the satellite-retrieved rain rates and those produced by the column model over the 6-hr analysis window. The control variables are analysis increments of moisture within the Incremental Analysis Update (IAU) framework of the GEOS DAS. This 1+1D scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but differs in its choice of the control variable. Instead of estimating the initial condition at the beginning of the assimilation cycle, it estimates the constant IAU forcing applied over a 6-hr assimilation cycle. In doing so, it imposes the forecast model as a weak constraint in a manner similar to the variational continuous assimilation techniques. We present results from an experiment in which the observed rain rate and TPW are assumed to be "perfect". They show that assimilating the TMI and SSM/I-derived surface precipitation and TPW observations improves not only the precipitation and moisture fields but also key climate parameters directly linked to convective activities such as clouds, the outgoing longwave radiation, and the large-scale circulation in the tropics. In particular, assimilating these data types reduce the state-dependent systematic errors in the assimilated products. The improved analysis also leads to a better short-range forecast, but the impact is modest compared with improvements in the time-averaged fields. These results suggest that, in the presence of biases and other errors of the forecast model, it is possible to improve the time-averaged "climate content" in the assimilated data without comparable improvements in the short-range forecast skill. Results of this experiment provide a useful benchmark for evaluating error covariance models for optimal use of these data types.
Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity
NASA Technical Reports Server (NTRS)
Blakenship, Clay; Zavodsky, Bradley; Blackwell, William
2014-01-01
The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.
A Variational Assimilation Method for Satellite and Conventional Data: Model 2 (version 1)
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1991-01-01
The Model II variational data assimilation model is the second of the four variational models designed to blend diverse meteorological data into a dynamically constrained data set. Model II differs from Model I in that it includes the thermodynamic equation as the fifth dynamical constraint. Thus, Model II includes all five of the primative equations that govern atmospheric flow for a dry atmosphere.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max
1999-01-01
A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.
An incremental knowledge assimilation system (IKAS) for mine detection
NASA Astrophysics Data System (ADS)
Porway, Jake; Raju, Chaitanya; Varadarajan, Karthik Mahesh; Nguyen, Hieu; Yadegar, Joseph
2010-04-01
In this paper we present an adaptive incremental learning system for underwater mine detection and classification that utilizes statistical models of seabed texture and an adaptive nearest-neighbor classifier to identify varied underwater targets in many different environments. The first stage of processing uses our Background Adaptive ANomaly detector (BAAN), which identifies statistically likely target regions using Gabor filter responses over the image. Using this information, BAAN classifies the background type and updates its detection using background-specific parameters. To perform classification, a Fully Adaptive Nearest Neighbor (FAAN) determines the best label for each detection. FAAN uses an extremely fast version of Nearest Neighbor to find the most likely label for the target. The classifier perpetually assimilates new and relevant information into its existing knowledge database in an incremental fashion, allowing improved classification accuracy and capturing concept drift in the target classes. Experiments show that the system achieves >90% classification accuracy on underwater mine detection tasks performed on synthesized datasets provided by the Office of Naval Research. We have also demonstrated that the system can incrementally improve its detection accuracy by constantly learning from new samples.
Generalized Background Error covariance matrix model (GEN_BE v2.0)
NASA Astrophysics Data System (ADS)
Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.
2014-07-01
The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model to allow for a simpler, flexible, robust, and community-oriented framework that gathers methods used by meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks and showing some of the new features on data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to involve new control variables. While the generation of the background errors statistics code has been first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily extended to other domains of science and be chosen as a testbed for diagnostic and new modeling of B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.
Generalized background error covariance matrix model (GEN_BE v2.0)
NASA Astrophysics Data System (ADS)
Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.; Barré, J.
2015-03-01
The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model. GEN_BE allows for a simpler, flexible, robust, and community-oriented framework that gathers methods used by some meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks of different modeling of B and showing some of the new features in data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to implement new control variables. While the generation of the background errors statistics code was first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily applied to other domains of science and chosen to diagnose and model B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.
Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment
NASA Technical Reports Server (NTRS)
Prive, N. C.; Errico, Ronald M.
2015-01-01
The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.
NASA Astrophysics Data System (ADS)
Shaikh, M. M.; Notarpietro, R.; Yin, P.; Nava, B.
2013-12-01
The Multi-Instrument Data Analysis System (MIDAS) algorithm is based on the oceanographic imaging techniques first applied to do the imaging of 2D slices of the ionosphere. The first version of MIDAS (version 1.0) was able to deal with any line-integral data such as GPS-ground or GPS-LEO differential-phase data or inverted ionograms. The current version extends tomography into four dimensional (lat, long, height and time) spatial-temporal mapping that combines all observations simultaneously in a single inversion with the minimum of a priori assumptions about the form of the ionospheric electron-concentration distribution. This work is an attempt to investigate the Radio Occultation (RO) data assimilation into MIDAS by assessing the ionospheric asymmetry and its impact on RO data inversion, when the Onion-peeling algorithm is used. Ionospheric RO data from COSMIC mission, specifically data collected during 24 September 2011 storm over mid-latitudes, has been used for the data assimilation. Using output electron density data from Midas (with/without RO assimilation) and ideal RO geometries, we tried to assess ionospheric asymmetry. It has been observed that the level of asymmetry was significantly increased when the storm was active. This was due to the increased ionization, which in turn produced large gradients along occulted ray path in the ionosphere. The presence of larger gradients was better observed when Midas was used with RO assimilated data. A very good correlation has been found between the evaluated asymmetry and errors related to the inversion products, when the inversion is performed considering standard techniques based on the assumption of spherical symmetry of the ionosphere. Errors are evaluated considering the peak electron density (NmF2) estimate and the Vertical TEC (VTEC) evaluation. This work highlights the importance of having a tool which should be able to state the effectiveness of Radio Occultation data inversion considering standard algorithms, like Onion-peeling, which are based on ionospheric spherical symmetry assumption. The outcome of this work will lead to find a better inversion algorithm which will deal with the ionospheric asymmetry in more realistic way. This is foreseen as a task for future research. This work has been done under the framework of TRANSMIT project (ITN Marie Curie Actions - GA No. 264476).
Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var
NASA Technical Reports Server (NTRS)
Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William
2008-01-01
The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture data for each profile location and pressure level. Analyses are run to produce quasi-real-time regional weather forecasts over the continental U.S. The preliminary assessment of the impact of the AIRS profiles will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes.
The GEOS-iODAS: Description and Evaluation
NASA Technical Reports Server (NTRS)
Vernieres, Guillaume; Rienecker, Michele M.; Kovach, Robin; Keppenne, Christian L.
2012-01-01
This report documents the GMAO's Goddard Earth Observing System sea ice and ocean data assimilation systems (GEOS iODAS) and their evolution from the first reanalysis test, through the implementation that was used to initialize the GMAO decadal forecasts, and to the current system that is used to initialize the GMAO seasonal forecasts. The iODAS assimilates a wide range of observations into the ocean and sea ice components: in-situ temperature and salinity profiles, sea level anomalies from satellite altimetry, analyzed SST, and sea-ice concentration. The climatological sea surface salinity is used to constrain the surface salinity prior to the Argo years. Climatological temperature and salinity gridded data sets from the 2009 version of the World Ocean Atlas (WOA09) are used to help constrain the analysis in data sparse areas. The latest analysis, GEOS ODAS5.2, is diagnosed through detailed studies of the statistics of the innovations and analysis departures, comparisons with independent data, and integrated values such as volume transport. Finally, the climatologies of temperature and salinity fields from the Argo era, 2002-2011, are presented and compared with the WOA09.
The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis
NASA Astrophysics Data System (ADS)
Montabone, Luca; Lewis, Stephen R.; Steele, Liam J.; Holmes, James; Read, Peter L.; Valeanu, Alexandru; Smith, Michael D.; Kass, David; Kleinboehl, Armin; LMD Team, MGS/TES Team, MRO/MCS Team
2016-10-01
The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This four-dimensional dataset has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office.The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") located at the following URL: http://macdap.physics.ox.ac.uk/The first paper about MACDA reanalysis of TES retrievals appeared in 2006, although the acronym MACDA was not yet used at that time. Ten years later, MACDA v1.0 has been used by several researchers worldwide and has contributed to the advancement of the knowledge about the martian atmosphere in critical areas such as the radiative impact of water ice clouds, the solsticial pause in baroclinic wave activity, and the climatology and dynamics of polar vortices, to cite only a few. It is therefore timely to review the scientific results obtained by using such Mars reference atmospheric reanalysis, in order to understand what priorities the user community should focus on in the next decade.MACDA is an ongoing collaborative project, and work funded by NASA MDAP Programme is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust.
Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)
2000-01-01
A method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters. Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (Delta)T to about 20% for (Delta)q(sub t). Our initial application of the methodology employed an early CERES-TRMM data set (CLR and Radwn) to assess the quality of the GEOS2 data. The results showed that over the tropical and subtropical oceans GEOS2 is, in general, too wet in the upper troposphere (mean bias of 0.99 mm) and too dry in the lower troposphere (mean bias of -4.7 mm). We note that these errors, as well as a cold bias in the Tg, have largely been corrected in the current version of GEOS-2 with the introduction of a land surface model, a moist turbulence scheme and the assimilation of SSTM/I total precipitable water.
Overview and Evaluation of the Community Multiscale Air ...
The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In late 2016 or early 2017, CMAQ version 5.2 will be released. This new version of CMAQ will contain important updates from the current CMAQv5.1 modeling system, along with several instrumented versions of the model (e.g. decoupled direct method and sulfur tracking). Some specific model updates include the implementation of a new wind-blown dust treatment in CMAQv5.2, a significant improvement over the treatment in v5.1 which can severely overestimate wind-blown dust under certain conditions. Several other major updates to the modeling system include an update to the calculation of aerosols; implementation of full halogen chemistry (CMAQv5.1 contains a partial implementation of halogen chemistry); the new carbon bond 6 (CB6) chemical mechanism; updates to cloud model in CMAQ; and a new lightning assimilation scheme for the WRF model which significant improves the placement and timing of convective precipitation in the WRF precipitation fields. Numerous other updates to the modeling system will also be available in v5.2.
Assessment of Forecast Sensitivity to Observation and Its Application to Satellite Radiances
NASA Astrophysics Data System (ADS)
Ide, K.
2017-12-01
The Forecast sensitivity to observation provides practical and useful metric for the assessment of observation impact without conducting computationally intensive data denial experiments. Quite often complex data assimilation systems use a simplified version of the forecast sensitivity formulation based on ensembles. In this talk, we first present the comparison of forecast sensitivity for 4DVar, Hybrid-4DEnVar, and 4DEnKF with or without such simplifications using a highly nonlinear model. We then present the results of ensemble forecast sensitivity to satellite radiance observations for Hybrid-4DEnVart using NOAA's Global Forecast System.
2014-09-23
conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere
NASA Astrophysics Data System (ADS)
Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.
2014-05-01
This paper evaluates the performance of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3 year period between September 2009 and September 2012. Ozone analyses produced by four different chemistry transport models and data assimilation techniques are examined: the ECMWF Integrated Forecast System (IFS) coupled to MOZART-3 (IFS-MOZART), the BIRA-IASB Belgian Assimilation System for Chemical ObsErvations (BASCOE), the DLR/RIU Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA), and the KNMI Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system: SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. The stratospheric ozone analyses are compared to independent ozone observations from ground-based instruments, ozone sondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. All analyses show total column values which are generally in good agreement with groundbased observations (biases <5%) and a realistic seasonal cycle. The only exceptions are found for BASCOE which systematically underestimates total ozone in the Tropics with about 7-10% at Chengkung (Taiwan, 23.1° N/121.365° E), resulting from the fact that BASCOE does not include any tropospheric processes, and for SACADA which overestimates total ozone in the absence of UV observations for the assimilation. Due to the large weight given to column observations in the assimilation procedure, IFS-MOZART is able to reproduce total column observations very well, but alternating positive and negative biases compared to ozonesonde and ACE-FTS satellite data are found in the vertical as well as an overestimation of 30 to 60% in the polar lower stratosphere during ozone depletion events. The assimilation of near real-time (NRT) Microwave Limb Sounder (MLS) profiles which only go down to 68 hPa is not able to correct for the deficiency of the underlying MOZART model, which may be related to the applied meteorological fields. Biases of BASCOE compared to ozonesonde or ACE-FTS ozone profiles do not exceed 10% over the entire vertical stratospheric range, thanks to the good performance of the model in ozone hole conditions and the assimilation of offline MLS profiles going down to 215 hPa. TM3DAM provides very realistic total ozone columns, but is not designed to provide information on the vertical distribution of ozone. Compared to ozonesondes and ACE-FTS satellite data, SACADA performs best in the Arctic, but shows large biases (>50%) for ozone in the lower stratosphere in the Tropics and in the Antarctic, especially during ozone hole conditions. This study shows that ozone analyses with realistic total ozone column densities do not necessarily yield good agreement with the observed ozone profiles. It also shows the large benefit obtained from the assimilation of a single limb-scanning instrument (Aura MLS) with a high density of observations. Hence even state-of-the-art models of stratospheric chemistry still require the assimilation of limb observations for a correct representation of the vertical distribution of ozone in the stratosphere.
NASA Technical Reports Server (NTRS)
Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Brewer, Michael; Mocko, David; Kumar, Sujay V.; Wei, Helin; Meng, Jesse;
2016-01-01
The purpose of this study is to evaluate the components of the land surface water budget in the four land surface models (Noah, SAC-Sacramento Soil Moisture Accounting Model, (VIC) Variable Infiltration Capacity Model, and Mosaic) applied in the newly implemented National Centers for Environmental Prediction (NCEP) operational and research versions of the North American Land Data Assimilation System version 2 (NLDAS-2). This work focuses on monthly and annual components of the water budget over 12 National Weather Service (NWS) River Forecast Centers (RFCs). Monthly gridded FLUX Network (FLUXNET) evapotranspiration (ET) from the Max-Planck Institute (MPI) of Germany, U.S. Geological Survey (USGS) total runoff (Q), changes in total water storage (dS/dt, derived as a residual by utilizing MPI ET and USGS Q in the water balance equation), and Gravity Recovery and Climate Experiment (GRACE) observed total water storage anomaly (TWSA) and change (TWSC) are used as reference data sets. Compared to these ET and Q benchmarks, Mosaic and SAC (Noah and VIC) in the operational NLDAS-2 overestimate (underestimate) mean annual reference ET and underestimate (overestimate) mean annual reference Q. The multimodel ensemble mean (MME) is closer to the mean annual reference ET and Q. An anomaly correlation (AC) analysis shows good AC values for simulated monthly mean Q and dS/dt but significantly smaller AC values for simulated ET. Upgraded versions of the models utilized in the research side of NLDAS-2 yield largely improved performance in the simulation of these mean annual and monthly water component diagnostics. These results demonstrate that the three intertwined efforts of improving (1) the scientific understanding of parameterization of land surface processes, (2) the spatial and temporal extent of systematic validation of land surface processes, and (3) the engineering-oriented aspects such as parameter calibration and optimization are key to substantially improving product quality in various land data assimilation systems.
Evaluating Surface Flux Results from CERES-FLASHFlux
NASA Technical Reports Server (NTRS)
Wilber, Anne C.; Stackhouse, Paul W., Jr.; Kratz, David P.; Gupta, Shashi K.; Sawaengphokhai, Parnchai K.
2015-01-01
The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was developed to provide a rapid release version of the Clouds and Earth's Radiant Energy System (CERES) results, which could be made available to the research and applications communities within one week of the satellite observations by exchanging some accuracy for speed of processing. Unlike standard CERES products, FLASHFlux does not maintain a long-term consistent record. Therefore the latest algorithm changes and input data can be incorporated into processing. FLASHFlux released Version3A (January 2013) and Version 3B (August 2014) which include the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.9.1), the latest spectral response functions and gains for the CERES instruments, and aerosol climatology based on the latest MATCH data. Version 3B included a slightly updated calibration and some changes to the surface albedo over snow/ice. Typically FLASHFlux does not reprocess earlier versions when a new version is released. The combined record of Time Interpolated Space Averaged (TISA) surface flux results from Versions3A and 3B for July 2012 to October 2015 have been compared to the ground-based measurements. The FLASHFlux results are also compared to two other CERES gridded products, SYN1deg and EBAF surface fluxes.
NASA Astrophysics Data System (ADS)
Bohrson, Wendy A.; Spera, Frank J.
2007-11-01
Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.
2015-01-01
This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.
NASA Astrophysics Data System (ADS)
Garric, Gilles; Parent, Laurent; Greiner, Eric; Drévillon, Marie; Hamon, Mathieu; Lellouche, Jean-Michel; Régnier, Charly; Desportes, Charles; Le Galloudec, Olivier; Bricaud, Clement; Drillet, Yann; Hernandez, Fabrice; Le Traon, Pierre-Yves
2017-04-01
The purpose of this presentation is to give an overview of the recent upgrade of GLORYS2 (version 4 and GLORYS2V4 hereafter), the latest ocean reanalysis produced at Mercator Ocean that covers the altimetry era (1993-2015) in the framework of Copernicus Marine Environment Monitoring Service (CMEMS; http://marine.copernicus.eu/). The reanalysis is run at eddy-permitting resolution (¼° horizontal resolution and 75 vertical levels) with the NEMO model and driven at the surface by ERA-Interim reanalysis from ECMWF (European Centre for Medium-Range Weather Forecasts). The reanalysis system uses a multi-data and multivariate reduced order Kalman filter based on the singular extended evolutive Kalman (SEEK) filter formulation together with a 3D-VAR large scale bias correction. The assimilated observations are along-track satellite altimetry, sea surface temperature, sea ice concentration and in-situ profiles of temperature and salinity. With respect to the previous version (GLORYS2V3), GLORYS2V4 contains a number of improvements. In particular: a) new initial temperature and salinity conditions derived from EN4 data base with a better mass equilibrium with altimetry, b) the use of the updated delayed mode CORA in situ observations from CMEMS, c) a new hybrid Mean Dynamical Topography (MDT) for the assimilation scheme referenced over the 1993-2013 period, d) a better observation operator for altimetry observations for the data assimilation scheme: e) A correction of large scale ERA-Interim atmospheric surface (precipitations and radiative) fluxes as in GLORYS2V3 but towards new satellite data set f) an update of the climatological runoff data base by using the latest version of Dai's 2009 data set for the global ocean together with better account of freshwater fluxes from polar ice sheet's glaciers. The presentation will show that the new reanalysis outperforms the previous version in many aspects such as biases and root mean squared error and, especially in representing the variability of global heat and salt content and associated steric sea level in the last two decades. The dataset is available in NetCDF format and GLORYS2V4 best analysis products are distributed onto the CMEMS data portal.
NASA Astrophysics Data System (ADS)
Ham, S. H.; Loeb, N. G.; Kato, S.; Rose, F. G.; Bosilovich, M. G.; Rutan, D. A.; Huang, X.; Collow, A.
2017-12-01
Global Modeling Assimilation Office (GMAO) GEOS assimilated datasets are used to describe temperature and humidity profiles in the Clouds and the Earth's Radiant Energy System (CERES) data processing. Given that advance versions of the assimilated data sets known as of Forward Processing (FP), FP Parallel (FPP), and Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) datasets are available, we examine clear-sky irradiance calculation to see if accuracy is improved with these newer versions of GMAO datasets when their temperature and humidity profiles are used in computing irradiances. Two older versions, GEOS-5.2.0 and GEOS-5.4.1 are used for producing, respectively, Ed3 and Ed4 CERES data products. For the evaluation, CERES-derived TOA irradiances and observed ground-based surface irradiances are compared with the computed irradiances for clear skies identified by Moderate Resolution Imaging Spectroradiometer (MODIS). Surface type dependent spectral emissivity is taken from an observationally-based monthly gridded emissivity dataset. TOA longwave (LW) irradiances computed with GOES-5.2.0 temperature and humidity profiles are biased low, up to -5 Wm-2, compared to CERES-derived TOA longwave irradiance over tropical oceans. In contrast, computed longwave irradiances agree well with CERES observations with the biases less than 2 W m-2 when GOES-5.4.1, FP v5.13, or MERRA-2 temperature and humidity are used. The negative biases of the TOA LW irradiance computed with GOES-5.2.0 appear to be related to a wet bias at 500-850 hPa layer. This indicates that if the input of CERES algorithm switches from GOES-5.2.0 to FP v5.13 or MERRA-2, the bias in clear-sky longwave TOA fluxes over tropical oceans is expected to be smaller. At surface, downward LW irradiances computed with FP v5.13 and MERRA-2 are biased low, up to -10 Wm-2, compared to ground observations over tropical oceans. The magnitude of the bias in the longwave surface irradiances cannot be explained by uncertainties related to aerosol, which is estimated to be less than 2.5 W m-2. Therefore, the negative biases are likely caused by cold or dry biases in FP v5.13 and MERRA-2 datasets. We plan to continue the investigation with more ground sites.
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary
2017-01-01
We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASAs Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASAs EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.
Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis
Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary
2018-01-01
We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies. PMID:29527096
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis.
Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary
2017-04-01
We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA's Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA's EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.
Building an Evaluation Framework for the VIC Model in the NLDAS Testbed
NASA Astrophysics Data System (ADS)
Xia, Y.; Mocko, D. M.; Wang, S.; Pan, M.; Kumar, S.; Peters-Lidard, C. D.; Wei, H.; Ek, M. B.
2017-12-01
Since the second phase of North American Land Data Assimilation System (NLDAS-2) was operationally implemented at NCEP in August 2014, developing the third phase of NLDAS system (NLDAS-3) has been a key task for the NCEP and NASA NLDAS team. The Variable Infiltration Capacity (VIC) model is one major component of the NLDAS system. The current operational NLDAS-2 uses version 4.0.3 (VIC403), research NLDAS-2 uses version 4.0.5 (VIC405), and LIS-based (Land Information System) NLDAS uses version 4.1.2 (VIC412). The purpose of this study is to compressively evaluate three versions and document changes in model behavior towards VIC412 for NLDAS-3. To do that, we develop a relatively comprehensive framework including multiple variables and metrics to assess the performance of different versions. This framework is being incorporated into the NASA Land Verification Toolkit (LVT) for evaluation of other LSMs for NLDAS-3 development. The evaluation results show that there are large and significant improvements for VIC412 in southeastern United States when compared with VIC403 and VIC405. In the other regions, there are very limited improvements or even some degree of deteriorations. Potential reasons are due to: (1) few USGS streamflow observations for soil and hydrologic parameter calibration, (2) the lack of re-calibration of VIC412 in the NLDAS domain, and (3) changes in model physics from VIC403 to VIC412. Overall, the model version upgrade largely/significantly enhances model performance and skill score for all United States except for the Great Plains, suggesting a right direction for VIC model development. Some further efforts are needed for science understanding of land surface physical processes in GP and a re-calibration for VIC412 using reasonable reference datasets is suggested.
Status of the NASA GMAO Observing System Simulation Experiment
NASA Technical Reports Server (NTRS)
Prive, Nikki C.; Errico, Ronald M.
2014-01-01
An Observing System Simulation Experiment (OSSE) is a pure modeling study used when actual observations are too expensive or difficult to obtain. OSSEs are valuable tools for determining the potential impact of new observing systems on numerical weather forecasts and for evaluation of data assimilation systems (DAS). An OSSE has been developed at the NASA Global Modeling and Assimilation Office (GMAO, Errico et al 2013). The GMAO OSSE uses a 13-month integration of the European Centre for Medium- Range Weather Forecasts 2005 operational model at T511/L91 resolution for the Nature Run (NR). Synthetic observations have been updated so that they are based on real observations during the summer of 2013. The emulated observation types include AMSU-A, MHS, IASI, AIRS, and HIRS4 radiance data, GPS-RO, and conventional types including aircraft, rawinsonde, profiler, surface, and satellite winds. The synthetic satellite wind observations are colocated with the NR cloud fields, and the rawinsondes are advected during ascent using the NR wind fields. Data counts for the synthetic observations are matched as closely as possible to real data counts, as shown in Figure 2. Errors are added to the synthetic observations to emulate representativeness and instrument errors. The synthetic errors are calibrated so that the statistics of observation innovation and analysis increments in the OSSE are similar to the same statistics for assimilation of real observations, in an iterative method described by Errico et al (2013). The standard deviations of observation minus forecast (xo-H(xb)) are compared for the OSSE and real data in Figure 3. The synthetic errors include both random, uncorrelated errors, and an additional correlated error component for some observational types. Vertically correlated errors are included for conventional sounding data and GPS-RO, and channel correlated errors are introduced to AIRS and IASI (Figure 4). HIRS, AMSU-A, and MHS have a component of horizontally correlated error. The forecast model used by the GMAO OSSE is the Goddard Earth Observing System Model, Version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) DAS. The model version has been updated to v. 5.13.3, corresponding to the current operational model. Forecasts are run on a cube-sphere grid with 180 points along each edge of the cube (approximately 0.5 degree horizontal resolution) with 72 vertical levels. The DAS is cycled at 6-hour intervals, with 240 hour forecasts launched daily at 0000 UTC. Evaluation of the forecasting skill for July and August is currently underway. Prior versions of the GMAO OSSE have been found to have greater forecasting skill than real world forecasts. It is anticipated that similar forecast skill will be found in the updated OSSE.
Acculturation and well-being among Arab-European mixed-ethnic adolescents in Israel.
Abu-Rayya, Hisham Motkal
2006-11-01
To examine the relationship between two ethnic dimensions (Arab and European), and between a modified version of Berry's four acculturation styles (integration, assimilation into the Arab heritage, assimilation into the European heritage, and marginalization) and measures of psychological well-being among adolescents born to European mothers and Israeli Arab fathers. A total of 127 Arab-European adolescents (aged 13 to 18 years; 64 males and 63 females) in Israel completed ethnic identification and well-being measures. Arab and European ethnic identifications emerged as being uncorrelated among the participants, providing a basis to use four acculturation styles to describe participants' variations in ethnic identification. The study found that integration and assimilation into the Arab heritage were connected with higher levels of desirable well-being correlates (self-esteem and positive relations with others) and with lower levels of undesirable correlates (depression and anxiety). The study also found that although assimilation into the European heritage was linked with high levels of self-esteem and low levels of depression, this style was linked with high levels of anxiety and low levels of positive relations with others. The marginalization style was consistently positively associated with high levels of poor mental health. The underlying assumption of Berry's four-fold model, notably the independence of ethnic identifications, tends to be borne out among mixed-ethnic individuals. On the basis of this independence the study revealed that a modified version of Berry's four acculturation styles could prevail among Arab-European individuals over the period of adolescence and that these styles play a predictive role in well-being measures of the individuals. Specifically, integration and assimilation into the Arab heritage emerged to be the best options for individuals' well-being; individuals' assimilation into their European heritage seemed to be simultaneously connected with high and low well-being outcomes; and ethnic marginalization of individuals was consistently correlated with poor well-being.
CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation
NASA Technical Reports Server (NTRS)
Nowottnick, Ed; Yorks, John; McGill, Matt; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Selmer, Patrick; Kupchock, Andrew; Pauly, Rebecca
2017-01-01
Using GEOS-5, we are developing a 1D ENS approach for assimilating CATS near real time observations of total attenuated backscatter at 1064 nm: a) After performing a 1-ENS assimilation of a cloud-free profile, the GEOS-5 analysis closely followed observed total attenuated backscatter. b) Vertical localization length scales were varied for the well-mixed PBL and the free troposphere After assimilating a cloud free segment of a CATS granule, the fine detail of a dust event was obtained in the GEOS-5 analysis for both total attenuated backscatter and extinction. Future Work: a) Explore horizontal localization and test within a cloudy aerosol layer. b) Address noisy analysis increments in the free troposphere where both CATS and GEOS-5 aerosol loadings are low. c) Develop a technique to screen CATS ground return from profiles. d) "Dynamic" lidar ratio that will evolve in conjunction with simulated aerosol mixtures.
The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna
NASA Technical Reports Server (NTRS)
Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew
2012-01-01
This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.
NASA Astrophysics Data System (ADS)
McCreight, J. L.; Wu, Y.; Gochis, D.; Rafieeinasab, A.; Dugger, A. L.; Yu, W.; Cosgrove, B.; Cui, Z.; Oubeidillah, A.; Briar, D.
2016-12-01
The streamflow (discharge) data assimilation capability in version 1 of the National Water Model (NWM; a WRF-Hydro configuration) is applied and evaluated in a 5-year (2011-2015) retrospective study using NLDAS2 forcing data over CONUS. This talk will describe the NWM V1 operational nudging (continuous-time) streamflow data assimilation approach, its motivation, and its relationship to this retrospective evaluation. Results from this study will provide a an analysis-based (not forecast-based) benchmark for streamflow DA in the NWM. The goal of the assimilation is to reduce discharge bias and improve channel initial conditions for discharge forecasting (though forecasts are not considered here). The nudging method assimilates discharge observations at nearly 7,000 USGS gages (at frequency up to 1/15 minutes) to produce a (univariate) discharge reanalysis (i.e. this is the only variable affected by the assimilation). By withholding 14% nested gages throughout CONUS in a separate validation run, we evaluate the downstream impact of assimilation at upstream gages. Based on this sample, we estimate the skill of the streamflow reanalysis at ungaged locations and examine factors governing the skill of the assimilation. Comparison of assimilation and open-loop runs is presented. Performance of DA under both high and low flow regimes and selected flooding events is examined. Preliminary evaluation of nudging parameter sensitivity and its relationship to flow regime will be presented.
NASA Astrophysics Data System (ADS)
Pu, Z.; Zhang, H.
2013-12-01
Near-surface atmospheric observations are the main conventional observations for weather forecasts. However, in modern numerical weather prediction, the use of surface observations, especially those data over complex terrain, remains a unique challenge. There are fundamental difficulties in assimilating surface observations with three-dimensional variational data assimilation (3DVAR). In our early study[1] (Pu et al. 2013), a series of observing system simulation experiments was performed with the ensemble Kalman filter (EnKF) and compared with 3DVAR for its ability to assimilate surface observations with 3DVAR. Using the advanced research version of the Weather Research and Forecasting (WRF) model, results demonstrate that the EnKF can overcome some fundamental limitations that 3DVAR has in assimilating surface observations over complex terrain. Specifically, through its flow-dependent background error term, the EnKF produces more realistic analysis increments over complex terrain in general. Over complex terrain, the EnKF clearly performs better than 3DVAR, because it is more capable of handling surface data in the presence of terrain misrepresentation. With this presentation, we further examine the impact of EnKF data assimilation on the predictability of atmospheric conditions over complex terrain with the WRF model and the observations obtained from the most recent field experiments of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. The MATERHORN program provides comprehensive observations over mountainous regions, allowing the opportunity to study the predictability of atmospheric conditions over complex terrain in great details. Specifically, during fall 2012 and spring 2013, comprehensive observations were collected of soil states, surface energy budgets, near-surface atmospheric conditions, and profiling measurements from multiple platforms (e.g., balloon, lidar, radiosondes, etc.) over Dugway Proving Ground (DPG), Utah. With the near-surface observations and sounding data obtained during the MATERHORN fall 2012 field experiment, a month-long cycled EnKF analysis and forecast was produced with the WRF model and an advanced EnKF data assimilation system. Results are compared with the WRF near real-time forecasting during the same month and a set of analysis with 3DVAR data assimilation. Overall evaluation suggests some useful insights on the impacts of different data assimilation methods, surface and soil states, terrain representation on the predictability of atmospheric conditions over mountainous terrain. Details will be presented. References [1] Pu, Z., H. Zhang, and J. A. Anderson,. 'Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts.' Tellus A, vol. 65,19620. 2013. http://dx.doi.org/10.3402/tellusa.v65i0. 19620.
Data Assimilation using Artificial Neural Networks for the global FSU atmospheric model
NASA Astrophysics Data System (ADS)
Cintra, Rosangela; Cocke, Steven; Campos Velho, Haroldo
2015-04-01
Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. Uncertainty is the characteristic of the atmosphere, coupled with inevitable inadequacies in observations and computer models and increase errors in weather forecasts. Data assimilation is a technique to generate an initial condition to a weather or climate forecasts. This paper shows the results of a data assimilation technique using artificial neural networks (ANN) to obtain the initial condition to the atmospheric general circulation model (AGCM) for the Florida State University in USA. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model with a vertical sigma coordinate. All variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. The LETKF data assimilation experiments are based in synthetic observations data (surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity). For the ANN data assimilation scheme, we use Multilayer Perceptron (MLP-DA) with supervised training algorithm where ANN receives input vectors with their corresponding response or target output from LETKF scheme. An automatic tool that finds the optimal representation to these ANNs configures the MLP-DA in this experiment. After the training process, the scheme MLP-DA is seen as a function of data assimilation where the inputs are observations and a short-range forecast to each model grid point. The ANNs were trained with data from each month of 2001, 2002, 2003, and 2004. A hind-casting experiment for data assimilation cycle using MLP-DA was performed with synthetic observations for January 2005. The numerical results demonstrate the effectiveness of the ANN technique for atmospheric data assimilation, since the analyses (initial conditions) have similar quality to LETKF analyses. The major advantage of using MLP-DA is the computational performance, which is faster than LETKF. The reduced computational cost allows the inclusion of greater number of observations and new data sources and the use of high resolution of models, which ensures the accuracy of analysis and of its weather prediction
NASA Technical Reports Server (NTRS)
Kishcha, Pavel; Da Silva, Arlindo M.; Starobinets, Boris; Alpert, Pinhas
2014-01-01
The MERRA Aerosol Reanalysis (MERRAero) has been recently developed at NASA's Global Modeling Assimilation Office. This reanalysis is based on a version of the Goddard Earth Observing System-5 (GEOS-5) model radiatively coupled with Goddard Chemistry, Aerosol, Radiation, and Transport aerosols, and it includes assimilation of bias-corrected aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on both Terra and Aqua satellites. In October over the period 2002-2009, MERRAero showed that AOT was lower over the east of the Ganges basin than over the northwest of the Ganges basin: this was despite the fact that the east of the Ganges basin should have produced higher anthropogenic aerosol emissions because of higher population density, increased industrial output, and transportation. This is evidence that higher aerosol emissions do not always correspond to higher AOT over the areas where the effects of meteorological factors on AOT dominate those of aerosol emissions. MODIS AOT assimilation was essential for correcting modeled AOT mainly over the northwest of the Ganges basin, where AOT increments were maximal. Over the east of the Ganges basin and northwest Bay of Bengal (BoB), AOT increments were low and MODIS AOT assimilation did not contribute significantly to modeled AOT. Our analysis showed that increasing AOT trends over northwest BoB (exceeding those over the east of the Ganges basin) were reproduced by GEOS-5, not because of MODIS AOT assimilation butmainly because of the model capability of reproducing meteorological factors contributing to AOT trends. Moreover, vertically integrated aerosol mass flux was sensitive to wind convergence causing aerosol accumulation over northwest BoB.
Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)
2000-01-01
A method is developed to retrieve surface ground temperature (T(sub g)) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing longwave radiation (CLR) is sensitive to upper level moisture (q(sub l)) over wet regions and (T(sub g)) over dry regions The clear sky window flux from 800 to 1200/cm (RadWn) is sensitive to low level moisture (q(sub t)) and T(sub g). Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub l) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in T(sub g), q(sub h) and q(sub l). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing Delta(T(sub g)) and broad layer Delta(q(sub l) from .500 hPa to surface and Delta(q(sub h)) from 200 to .300 hPa provides a good approximation to the full radiative transfer calculations. typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters. Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for Delta(T(sub g)) to about 20% for Delta(q(sub l)). Our initial application of the methodology employed an early CERES-TRMM data set (CLR and Radwn) to assess the quality of the GEOS2 data. The results showed that over the tropical and subtropical oceans GEOS2 is, in general, too wet in the upper troposphere (mean bias of 0.99 mm) and too dry in the lower troposphere (mean bias of -4.7 min). We note that these errors, as well as a cold bias in the T(sub g). have largely been corrected in the current version of GEOS-2 with the introduction of a land surface model, a moist turbulence scheme and the assimilation of SSM/I total precipitable water.
GEOS S2S-2_1: The GMAO new high resolution Seasonal Prediction System
NASA Astrophysics Data System (ADS)
Molod, A.; Vikhliaev, Y. V.; Hackert, E. C.; Kovach, R. M.; Zhao, B.; Cullather, R. I.; Marshak, J.; Borovikov, A.; Li, Z.; Barahona, D.; Andrews, L. C.; Chang, Y.; Schubert, S. D.; Koster, R. D.; Suarez, M.; Akella, S.
2017-12-01
A new version of the modeling and analysis system used to produce subseasonalto seasonal forecasts has just been released by the NASA/Goddard GlobalModeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 1/2 degree globally), contains a subtantially improvedmodel description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilationsystem has been replaced with a Local Ensemble Transform Kalman Filter.Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will alsopresent results from a free-running coupled simulation with the new system and resultsfrom a series of retrospective seasonal forecasts.Results from retrospective forecasts show significant improvements in surface temperaturesover much of the northern hemisphere and a much improved prediction of sea ice extent in bothhemispheres. The precipitation forecast skill is comparable to previous S2S systems, andthe only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution.
Martian Polar Vortices: Comparison of Reanalyses
NASA Technical Reports Server (NTRS)
Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.
2016-01-01
The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.
Martian polar vortices: Comparison of reanalyses
NASA Astrophysics Data System (ADS)
Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.
2016-09-01
The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.
NASA Astrophysics Data System (ADS)
Raeder, K.; Anderson, J. L.; Lauritzen, P. H.; Hoar, T. J.; Collins, N.
2010-12-01
DART (www.image.ucar.edu/DAReS/DART) is a general purpose, freely available, ensemble Kalman filter, data assimilation system, which is being used to generate state-of-the-art, partially coupled, ocean-atmosphere re-analyses in support of the decadal predictions planned for the next IPCC report. The resulting gridded product is directly comparable to the state variables output by POP and CAM (oceanic and atmospheric components of NCAR's Community Earth System Model climate model) because those are the assimilating models. Other models could also benefit from comparison against these reanalyses, since the ocean analyses are at the leading edge of ocean state estimation, and the atmospheric analyses are competitive with operational centers'. Such comparisons can reveal model biases and predictability characteristics, and do so in a quantitative way, since the ensemble nature of the analyses provides an objective estimate of the analysis error. The analyses will also be used as initial conditions for the decadal forecasts because they are the most realistic available. The generation of such analyses has revealed errors in model formulation for several versions of the finite volume core CAM, which has led to model improvements in each case. New models can be incorporated into DART in a matter of weeks, allowing them to be compared directly against available observations. The observations currently used in the assimilations include, for the ocean; temperature and salinity from the World Ocean Database (floats, drifters, moorings, autonomous pinipeds, and others), and for the atmosphere; temperature and winds from radiosondes, satellite drift winds, ACARS and aircraft. Observations of ocean currents and atmospheric moisture and pressure are also available. Global Positioning System profiles of atmospheric temperature and moisture are available for recent years. All that is required to add new observations to the suite is the forward operator, which generates an estimate of the observation from the model state. In summary, DART provides a flexible, convenient, rigorous environment for evaluating models in the context of real observations.
Mean Field Variational Bayesian Data Assimilation
NASA Astrophysics Data System (ADS)
Vrettas, M.; Cornford, D.; Opper, M.
2012-04-01
Current data assimilation schemes propose a range of approximate solutions to the classical data assimilation problem, particularly state estimation. Broadly there are three main active research areas: ensemble Kalman filter methods which rely on statistical linearization of the model evolution equations, particle filters which provide a discrete point representation of the posterior filtering or smoothing distribution and 4DVAR methods which seek the most likely posterior smoothing solution. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the most probably posterior distribution over the states, within the family of non-stationary Gaussian processes. Our original work on variational Bayesian approaches to data assimilation sought the best approximating time varying Gaussian process to the posterior smoothing distribution for stochastic dynamical systems. This approach was based on minimising the Kullback-Leibler divergence between the true posterior over paths, and our Gaussian process approximation. So long as the observation density was sufficiently high to bring the posterior smoothing density close to Gaussian the algorithm proved very effective, on lower dimensional systems. However for higher dimensional systems, the algorithm was computationally very demanding. We have been developing a mean field version of the algorithm which treats the state variables at a given time as being independent in the posterior approximation, but still accounts for their relationships between each other in the mean solution arising from the original dynamical system. In this work we present the new mean field variational Bayesian approach, illustrating its performance on a range of classical data assimilation problems. We discuss the potential and limitations of the new approach. We emphasise that the variational Bayesian approach we adopt, in contrast to other variational approaches, provides a bound on the marginal likelihood of the observations given parameters in the model which also allows inference of parameters such as observation errors, and parameters in the model and model error representation, particularly if this is written as a deterministic form with small additive noise. We stress that our approach can address very long time window and weak constraint settings. However like traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem. We finish with a sketch of the future directions for our approach.
An Overview of the GEOS-5 Aerosol Reanalysis
NASA Technical Reports Server (NTRS)
da Silva, Arlindo; Colarco, Peter Richard; Damenov, Anton Spasov; Buchard-Marchant, Virginie; Randles, Cynthia A.; Gupta, Pawan
2011-01-01
GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. MERRA is a NASA meteorological reanalysis for the satellite era (1979-present) using GEOS-5. This project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales. As a first step towards an integrated Earth System Analysis (IESA), the GMAO is extending MERRA with reanalyses for other components of the earth system: land, ocean, bio-geochemistry and atmospheric constituents. In this talk we will present results from the MERRA-driven aerosol reanalysis covering the Aqua period (2003-present). The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this reanalysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at approx. 8Skm). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We will present a summary of our efforts to validate such dataset. The GEOS-5 assimilated aerosol fields are first validated by comparison to independent in-situ measurements (AERONET and PM2.5 surface concentrations). In order to asses aerosol absorption on a global scale, we perform a detailed radiative transfer calculation to simulate the UV aerosol index, comparing our results to OMI measurements. By simulating aerosol attenuated backscatter, we use CALIPSO measurements to evaluate the vertical structure of our aerosol estimates, in particular in regions where we have larger discrepancies with OMI. Finally, the consistency of our AOD estimates with estimates from MISR, MODIS/Deep Blue, OMI and PARASOL will be briefly discussed.
The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles
NASA Technical Reports Server (NTRS)
Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.
2017-01-01
The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.
NASA Astrophysics Data System (ADS)
Silvestro, Paolo Cosmo; Casa, Raffaele; Pignatti, Stefano; Castaldi, Fabio; Yang, Hao; Guijun, Yang
2016-08-01
The aim of this work was to develop a tool to evaluate the effect of water stress on yield losses at the farmland and regional scale, by assimilating remotely sensed biophysical variables into crop growth models. Biophysical variables were retrieved from HJ1A, HJ1B and Landsat 8 images, using an algorithm based on the training of artificial neural networks on PROSAIL.For the assimilation, two crop models of differing degree of complexity were used: Aquacrop and SAFY. For Aquacrop, an optimization procedure to reduce the difference between the remotely sensed and simulated CC was developed. For the modified version of SAFY, the assimilation procedure was based on the Ensemble Kalman Filter.These procedures were tested in a spatialized application, by using data collected in the rural area of Yangling (Shaanxi Province) between 2013 and 2015Results were validated by utilizing yield data both from ground measurements and statistical survey.
NASA Technical Reports Server (NTRS)
Pawson, S.; Lamich, David; Ledvina, Andrea; Conaty, Austin; Newman, Paul A.; Lait, Leslie R.; Waugh, Darryn
2000-01-01
As part of NASA's support for the Terra satellite, which became operational in January 2000, the Data Assimilation Office introduced a new version of the GEOS data assimilation system (DAS) in November 1999. This system, GEOS-3/Terra, differs from its predecessor in several ways, notably through an increase in horizontal resolution (from 2-by-2.5 degrees to 1-by-1 degree), a slightly lower upper boundary (0.1 instead of 0.01hPa) with fewer levels (48 as opposed to 70), and substantial changes to the tropospheric physics package. This paper will address the performance of the GEOS-3/Terra DAS in the stratosphere. it focusses on the analyses (produced four times daily) and the five-day forecasts (produced twice daily). These were important for the meteorological support of the SAGE-3 Ozone Loss and Validation Experiment, based in Kiruna, Northern Sweden, in the winter of 1999/2000. It is shown that the analyses of basic meteorological fields (temperature, geopotential height, and horizontal wind) are in good agreement with those from other centers. The analyses captured the cold polar vortex which persisted through most of the winter. It is shown that forecasts (up to five days) tend to have a warm bias, which is important for the prediction of polar stratospheric clouds, which are triggered by temperatures of 195K (or lower). The importance of accurate upper tropospheric forecasts in predicting the stratospheric flow is highlighted in the context of the evolution of the shape of the stratospheric polar vortex. A prominent blocking high in the Atlantic region in January was an important factor determining the shape of the distorted lower stratospheric vortex; the predictive skill of these features was strongly coupled in the GEOS-3/Terra system.
Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation
NASA Technical Reports Server (NTRS)
Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew
2016-01-01
This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.
Global Real-Time Nowcasting of Ionosphere with Giro-Driven Assimilative IRI
NASA Astrophysics Data System (ADS)
Galkin, I. A.; Reinisch, B. W.; Huang, X. A.; Vesnin, A.; Bilitza, D.; Song, P.
2014-12-01
Real-time prediction of the ionosphere beyond its quiet-time median behavior has proved to be a great challenge: low-latency sensor data streams are scarce, and early comparisons conducted within the CEDAR ETI Assessment framework showed that, on average, the assimilative physics-based models perform on par with the long-term empirical predictions. This rather surprising result led to the formation of the Real-Time Task Force of the International Reference Ionosphere (IRI) science team in 2011, with a simple objective to develop a method for correcting the IRI long-term climatology definitions on the fly, i.e., in near real-time, using suitable observations. Three years later, a pilot version of the IRI-based Real-Time Assimilative Model "IRTAM" started its continuous operations at the Global Ionosphere Radio Observatory (GIRO) Data Center, using online feeds from the ionosondes contributing data to GIRO. The IRTAM version 0.1B builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate. Incidentally, the IRTAM verification and validation efforts shed light on the forecasting capabilities of the assimilative IRI extension, even though it has not yet involved external activity indicators. At the core of the assimilative computations, a Non-linear Error Compensation Technique for Associative Restoration (NECTAR) seeks agreement between IRI prediction and the 24-hour history of latest observations at GIRO sensor sites to produce the one map frame. The NECTAR first evaluates the diurnal harmonics of the observed deviations from the IRI climatology at each GIRO site to then independently compute the spatial maps for each diurnal harmonic. Thus obtained "corrective" coefficients of the spatial-diurnal expansion are added to the original IRI set of coefficients to obtain the IRTAM specification. We are intrigued by the IRTAM capability to glean ionospheric dynamics over no-data areas, and the potential for short-term forecasting.
Overview of Chinese GRAPES Data Assimilation System
NASA Astrophysics Data System (ADS)
Liu, Yan
2017-04-01
The development of data assimilation system of Global and Regional Assimilation and Prediction System (GRAPES in short) which is Chinese new generation operational numerical weather prediction system completed in recent years is reviewed in this paper, including the design scheme and main characteristics. GRAPES adopts the variational approach with stresses at application of various remote sensing observational data. Its development path is from three dimensional to four dimensional assimilation. It may be implemented with limited area or global configurations. The three dimensional variational data assimilation systems have been operational in the national and a few of regional meteorological centers. The global four dimensional assimilation system is in pre-operational experiments, and will be upgraded. After a brief introduction to the GRAPES data assimilation system, results of a series of validations of GRAPES analyses against the observation data and analyses derived from other operational NWP center to assess its performance are presented.
Ocean Data Assimilation Systems for GODAE
2009-09-01
we describe some of the ocean data assimilation systems that have been developed within the Global Ocean Data Assimilation Experiment (GODAE...assimilation systems in the post-GODAF. time period beyond 2008. 15. SUBJECT TERMS Global Ocean Data Assimilation Experiment, ARGO, subsurface...E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4 yj ?>-* i o’ 1. Release of this paper is approved. 2. To the
Peylin, Philippe; Bacour, Cédric; MacBean, Natasha; ...
2016-09-20
Here, large uncertainties in land surface models (LSMs) simulations still arise from inaccurate forcing, poor description of land surface heterogeneity (soil and vegetation properties), incorrect model parameter values and incomplete representation of biogeochemical processes. The recent increase in the number and type of carbon cycle-related observations, including both in situ and remote sensing measurements, has opened a new road to optimize model parameters via robust statistical model–data integration techniques, in order to reduce the uncertainties of simulated carbon fluxes and stocks. In this study we present a carbon cycle data assimilation system that assimilates three major data streams, namely themore » Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) observations of vegetation activity, net ecosystem exchange (NEE) and latent heat (LE) flux measurements at more than 70 sites (FLUXNET), as well as atmospheric CO 2 concentrations at 53 surface stations, in order to optimize the main parameters (around 180 parameters in total) of the Organizing Carbon and Hydrology in Dynamics Ecosystems (ORCHIDEE) LSM (version 1.9.5 used for the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations). The system relies on a stepwise approach that assimilates each data stream in turn, propagating the information gained on the parameters from one step to the next. Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, which suggests that current LSMs have reached the level of development to assimilate these observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for temperate ecosystems). The assimilation of atmospheric CO 2, using the general circulation model (GCM) of the Laboratoire de Météorologie Dynamique (LMDz; step 3), provides an overall constraint (i.e., constraint on large-scale net CO 2 fluxes), resulting in an improvement of the fit to the observed atmospheric CO 2 growth rate. Thus, the optimized model predicts a land C (carbon) sink of around 2.2 PgC yr -1 (for the 2000–2009 period), which is more compatible with current estimates from the Global Carbon Project (GCP) than the prior value. The consistency of the stepwise approach is evaluated with back-compatibility checks. The final optimized model (after step 3) does not significantly degrade the fit to MODIS-NDVI and FLUXNET data that were assimilated in the first two steps, suggesting that a stepwise approach can be used instead of the more “challenging” implementation of a simultaneous optimization in which all data streams are assimilated together. Most parameters, including the scalar of the initial soil carbon pool size, changed during the optimization with a large error reduction. This work opens new perspectives for better predictions of the land carbon budgets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peylin, Philippe; Bacour, Cédric; MacBean, Natasha
Here, large uncertainties in land surface models (LSMs) simulations still arise from inaccurate forcing, poor description of land surface heterogeneity (soil and vegetation properties), incorrect model parameter values and incomplete representation of biogeochemical processes. The recent increase in the number and type of carbon cycle-related observations, including both in situ and remote sensing measurements, has opened a new road to optimize model parameters via robust statistical model–data integration techniques, in order to reduce the uncertainties of simulated carbon fluxes and stocks. In this study we present a carbon cycle data assimilation system that assimilates three major data streams, namely themore » Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) observations of vegetation activity, net ecosystem exchange (NEE) and latent heat (LE) flux measurements at more than 70 sites (FLUXNET), as well as atmospheric CO 2 concentrations at 53 surface stations, in order to optimize the main parameters (around 180 parameters in total) of the Organizing Carbon and Hydrology in Dynamics Ecosystems (ORCHIDEE) LSM (version 1.9.5 used for the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations). The system relies on a stepwise approach that assimilates each data stream in turn, propagating the information gained on the parameters from one step to the next. Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, which suggests that current LSMs have reached the level of development to assimilate these observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for temperate ecosystems). The assimilation of atmospheric CO 2, using the general circulation model (GCM) of the Laboratoire de Météorologie Dynamique (LMDz; step 3), provides an overall constraint (i.e., constraint on large-scale net CO 2 fluxes), resulting in an improvement of the fit to the observed atmospheric CO 2 growth rate. Thus, the optimized model predicts a land C (carbon) sink of around 2.2 PgC yr -1 (for the 2000–2009 period), which is more compatible with current estimates from the Global Carbon Project (GCP) than the prior value. The consistency of the stepwise approach is evaluated with back-compatibility checks. The final optimized model (after step 3) does not significantly degrade the fit to MODIS-NDVI and FLUXNET data that were assimilated in the first two steps, suggesting that a stepwise approach can be used instead of the more “challenging” implementation of a simultaneous optimization in which all data streams are assimilated together. Most parameters, including the scalar of the initial soil carbon pool size, changed during the optimization with a large error reduction. This work opens new perspectives for better predictions of the land carbon budgets.« less
NASA Astrophysics Data System (ADS)
Rhodes, R. C.; Barron, C. N.; Fox, D. N.; Smedstad, L. F.
2001-12-01
A global implementation of the Navy Coastal Ocean Model (NCOM), developed by the Naval Research Laboratory (NRL) at Stennis Space Center is currently running in real-time and is planned for transition to the Naval Oceanographic Office (NAVOCEANO) in 2002. The model encompasses the open ocean to 5 m depth on a curvilinear global model grid with 1/8 degree grid spacing at 45N, extending from 80 S to a complete arctic cap with grid singularities mapped into Canada and Russia. Vertically, the model employs 41 sigma-z levels with sigma in the upper-ocean and coastal regions and z in the deeper ocean. The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides 6-hourly wind stresses and heat fluxes for forcing, while the operational Modular Ocean Data Assimilation System (MODAS) provides the background climatology and tools for data pre-processing. Operationally available sea surface temperature (SST) and altimetry (SSH) data are assimilated into the NAVOCEANO global 1/8 degree MODAS 2-D analysis and the 1/16 degree Navy Layered Ocean Model (NLOM) to provide analyses and forecasts of SSH and SST. The 2-D SSH and SST nowcast fields are used as input to the MODAS synthetic climatology database to yield three-dimensional fields of synthetic temperature and salinity for assimilation into global NCOM. The synthetic profiles are weighted higher at depth in the assimilation process to allow the numerical model to properly develop the mixed-layer structure driven by the real-time atmospheric forcing. Global NCOM nowcasts and forecasts provide a valuable resource for rapid response to the varied and often unpredictable operational requests for 3-dimensional fields of ocean temperature, salinity, and currents. In some cases, the resolution of the global product is sufficient for guidance. In cases requiring higher resolution, the global product offers a quick overview of local circulation and provides initial and boundary conditions for higher resolution coastal models that may be more specialized for a particular task or domain. Nowcast and forecast results are presented globally and in selected areas of interest and model results are compared with historical and concurrent observations and analyses.
NASA Astrophysics Data System (ADS)
Gentemann, C. L.; Akella, S.
2018-02-01
An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume; Koster, Randal D. (Editor)
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory. SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume
2014-01-01
An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.
Recent results of the Global Precipitation Measurement (GPM) mission in Japan
NASA Astrophysics Data System (ADS)
Kubota, Takuji; Oki, Riko; Furukawa, Kinji; Kaneko, Yuki; Yamaji, Moeka; Iguchi, Toshio; Takayabu, Yukari
2017-04-01
The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The GPM Core Observatory, launched on February 2014, carries the Dual-frequency Precipitation Radar (DPR) by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. The Japan Meteorological Agency (JMA) started the DPR assimilation in the meso-scale Numerical Weather Prediction (NWP) system on March 24 2016. This was regarded as the world's first "operational" assimilation of spaceborne radar data in the NWP system of meteorological agencies. JAXA also develops the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. The GSMaP_NRT product gives higher priority to data latency than accuracy, and has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There is, however, a requirement for shortening of data latency time from GSMaP users. To reduce data latency, JAXA has developed the GSMaP realtime version (GSMaP_NOW) product for observation area of the geostationary satellite Himawari-8 operated by the Japan Meteorological Agency (JMA). GSMaP_NOW product was released to public in November 2, 2015 through the "JAXA Realtime Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP_NOW/). All GPM standard products and the GPM-GSMaP product have been released to the public since September 2014 as Version 03. The GPM products can be downloaded via the internet through the JAXA G-Portal (https://www.gportal.jaxa.jp). On Mar. 2016, the DPR, the GMI, and the DPR-GMI combined algorithms were updated and the first GPM latent heating product (in the TRMM coverage) were released. Therefore, the GPM Version 04 standard products have been provided since Mar. 2016. Furthermore, the GPM-GSMaP algorithms were updated and the GPM-GSMaP Version 04 products have been provided since Jan. 2017.
NASA Astrophysics Data System (ADS)
Pan, Yujie; Xue, Ming; Zhu, Kefeng; Wang, Mingjun
2018-05-01
A dual-resolution (DR) version of a regional ensemble Kalman filter (EnKF)-3D ensemble variational (3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution (HR) deterministic background forecast with lower-resolution (LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/˜13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation (GSI) 3D variational (3DVar) analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar. Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.
NASA Astrophysics Data System (ADS)
Ghimire, B.; Riley, W. J.; Koven, C.
2013-12-01
Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.
NASA Astrophysics Data System (ADS)
Nijssen, B.; Hamman, J.; Bohn, T. J.
2015-12-01
The Variable Infiltration Capacity (VIC) model is a macro-scale semi-distributed hydrologic model. VIC development began in the early 1990s and it has been used extensively, applied from basin to global scales. VIC has been applied in a many use cases, including the construction of hydrologic data sets, trend analysis, data evaluation and assimilation, forecasting, coupled climate modeling, and climate change impact analysis. Ongoing applications of the VIC model include the University of Washington's drought monitor and forecast systems, and NASA's land data assimilation systems. The development of VIC version 5.0 focused on reconfiguring the legacy VIC source code to support a wider range of modern modeling applications. The VIC source code has been moved to a public Github repository to encourage participation by the model development community-at-large. The reconfiguration has separated the physical core of the model from the driver, which is responsible for memory allocation, pre- and post-processing and I/O. VIC 5.0 includes four drivers that use the same physical model core: classic, image, CESM, and Python. The classic driver supports legacy VIC configurations and runs in the traditional time-before-space configuration. The image driver includes a space-before-time configuration, netCDF I/O, and uses MPI for parallel processing. This configuration facilitates the direct coupling of streamflow routing, reservoir, and irrigation processes within VIC. The image driver is the foundation of the CESM driver; which couples VIC to CESM's CPL7 and a prognostic atmosphere. Finally, we have added a Python driver that provides access to the functions and datatypes of VIC's physical core from a Python interface. This presentation demonstrates how reconfiguring legacy source code extends the life and applicability of a research model.
Multi-centennial upper-ocean heat content reconstruction using online data assimilation
NASA Astrophysics Data System (ADS)
Perkins, W. A.; Hakim, G. J.
2017-12-01
The Last Millennium Reanalysis (LMR) provides an advanced paleoclimate ensemble data assimilation framework for multi-variate climate field reconstructions over the Common Era. Although reconstructions in this framework with full Earth system models remain prohibitively expensive, recent work has shown improved ensemble reconstruction validation using computationally inexpensive linear inverse models (LIMs). Here we leverage these techniques in pursuit of a new multi-centennial field reconstruction of upper-ocean heat content (OHC), synthesizing model dynamics with observational constraints from proxy records. OHC is an important indicator of internal climate variability and responds to planetary energy imbalances. Therefore, a consistent extension of the OHC record in time will help inform aspects of low-frequency climate variability. We use the Community Climate System Model version 4 (CCSM4) and Max Planck Institute (MPI) last millennium simulations to derive the LIMs, and the PAGES2K v.2.0 proxy database to perform annually resolved reconstructions of upper-OHC, surface air temperature, and wind stress over the last 500 years. Annual OHC reconstructions and uncertainties for both the global mean and regional basins are compared against observational and reanalysis data. We then investigate differences in dynamical behavior at decadal and longer time scales between the reconstruction and simulations in the last-millennium Coupled Model Intercomparison Project version 5 (CMIP5). Preliminary investigation of 1-year forecast skill for an OHC-only LIM shows largely positive spatial grid point local anomaly correlations (LAC) with a global average LAC of 0.37. Compared to 1-year OHC persistence forecast LAC (global average LAC of 0.30), the LIM outperforms the persistence forecasts in the tropical Indo-Pacific region, the equatorial Atlantic, and in certain regions near the Antarctic Circumpolar Current. In other regions, the forecast correlations are less than the persistence case but still positive overall.
Detection of Ice Polar Stratospheric Clouds from Assimilation of Atmospheric Infrared Sounder Data
NASA Technical Reports Server (NTRS)
Stajner, Ivanka; Benson, Craig; Liu, Hui-Chun; Pawson, Steven; Chang, Ping; Riishojgaard, Lars Peter
2006-01-01
A novel technique is presented for detection of ice polar stratospheric clouds (PSCs) that form at extremely low temperatures in the lower polar stratosphere during winter. Temperature is a major factor in determining abundance of PSCs, which in turn provide surfaces for heterogeneous chemical reactions leading to ozone loss and radiative cooling. The technique infers the presence of ice PSCs using radiances from the Atmospheric Infrared Sounder (AIRS) in the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. Brightness temperatures are computed from short-term GEOS-5 forecasts for several hundred AIRS channels, using a radiation transfer module. The differences between collocated AIRS observations and these computed values are the observed-minus-forecast (O-F) residuals in the assimilation system. Because the radiation model assumes clear-sky conditions, we hypothesize that these O-F residuals contain quantitative information about PSCs. This is confirmed using sparse data from the Polar Ozone and Aerosol Measurement (POAM) III occultation instrument. The analysis focuses on 0-F residuals for the 6.79pm AIRS moisture channel. At coincident locations, when POAM III detects ice clouds, the AIRS O-F residuals for this channel are lower than -2K. When no ice PSCs are evident in POAM III data, the AIRS 0-F residuals are larger. Given this relationship, the high spatial density of AIRS data is used to construct maps of regions where 0-F residuals are lower than -2K, as a proxy for ice PSCs. The spatial scales and spatio-temporal variations of these PSCs in the Antarctic and Arctic are discussed on the basis of these maps.
Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.
Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A
2017-01-01
A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; King, Robert; Martin, Matthew; Hines, Adrian
2015-04-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HadGEM3 (Hadley Centre Global Environment Model, version 3). At present the analysis from separate ocean and atmosphere DA systems are combined to produced coupled forecasts. The aim of coupled DA is to produce a more consistent analysis for coupled forecasts which may lead to less initialisation shock and improved forecast performance. The HadGEM3 coupled model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modelling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To isolate the impact of the coupled DA, 13-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day and 10-day forecast runs, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA SST data. The performance of the coupled DA is similar to the existing separate ocean and atmosphere DA systems. This is despite the fact that the assimilation error covariances have not yet been tuned for coupled DA. In addition, the coupled model also exhibits some biases which do not affect the uncoupled models. An example is precipitation and run off errors affecting the ocean salinity. This of course impacts the performance of the ocean data assimilation. This does, however, highlight a particular benefit of data assimilation in that it can help to identify short term model biases by using, for example, the differences between the observations and model background (innovations) and the mean increments. Coupled DA has the distinct advantage that this gives direct information about the coupled model short term biases. By identifying the biases and developing solutions this will improve the short range coupled forecasts, and may also improve the coupled model on climate timescales.
File Specification for GEOS-5 FP (Forward Processing)
NASA Technical Reports Server (NTRS)
Lucchesi, R.
2013-01-01
The GEOS-5 FP Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with NOAA's National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS-5 AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS-5 FP incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS-5 ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS-5 system actively assimilates roughly 2 × 10(exp 6) observations for each analysis, including about 7.5 × 10(exp 5) AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS-5 FP uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). More details of this procedure are given in Appendix A. The assimilation is performed at a horizontal resolution of 0.3125-degree longitude by 0.25- degree latitude and at 72 levels, extending to 0.01 hPa. All products are generated at the native resolution of the horizontal grid. The majority of data products are time-averaged, but four instantaneous products are also available. Hourly data intervals are used for two-dimensional products, while 3-hourly intervals are used for three-dimensional products. These may be on the model's native 72-layer vertical grid or at 42 pressure surfaces extending to 0.1 hPa. This document describes the gridded output files produced by the GMAO near real-time operational FP, using the most recent version of the GEOS-5 assimilation system. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GMAO products page: http://gmao.gsfc.nasa.gov/products/.
NASA Astrophysics Data System (ADS)
Hanafin, J. A.; Whelan, E.; McGrath, R.; Jennings, S. G.; O'Dowd, C.
2009-12-01
Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications is the focus of the European EUMETNET GPS water vapour programme. The results presented here are the first from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. A system to retrieve column-integrated atmospheric water vapour from the data they provide has been developed. Data quality has been assessed using co-located radiosondes at Valentia and observations from a microwave profiling radiometer at Mace Head. Results from the data processing and comparisons with independent observations will be presented. Water vapour retrievals from such sensors can provide good quality observations at hourly intervals of this essential climate variable for assimilation into numerical nowcast and forecast systems. Previous studies have shown that using these data to constrain initial model conditions can improve the accuracy of precipitation forecasts, particularly for heavy rainfall. The current operational forecast model in use at Met Éireann for the region is the new version 7.2 HIRLAM (High-Resolution Limited Area Model). The effects on the forecast for Ireland have been evaluated by assimilating the data into 48-hour forecast runs of this model and results of this study will also be presented.
Exploring coupled 4D-Var data assimilation using an idealised atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Smith, Polly; Fowler, Alison; Lawless, Amos; Haines, Keith
2014-05-01
The successful application of data assimilation techniques to operational numerical weather prediction and ocean forecasting systems has led to an increased interest in their use for the initialisation of coupled atmosphere-ocean models in prediction on seasonal to decadal timescales. Coupled data assimilation presents a significant challenge but offers a long list of potential benefits including improved use of near-surface observations, reduction of initialisation shocks in coupled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts across all timescales. In this work we explore some of the fundamental questions in the design of coupled data assimilation systems within the context of an idealised one-dimensional coupled atmosphere-ocean model. The system is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) atmosphere model and a K-Profile Parameterisation (KKP) mixed layer ocean model developed by the National Centre for Atmospheric Science (NCAS) climate group at the University of Reading. It employs a strong constraint incremental 4D-Var scheme and is designed to enable the effective exploration of various approaches to performing coupled model data assimilation whilst avoiding many of the issues associated with more complex models. Working with this simple framework enables a greater range and quantity of experiments to be performed. Here, we will describe the development of our simplified single-column coupled atmosphere-ocean 4D-Var assimilation system and present preliminary results from a series of identical twin experiments devised to investigate and compare the behaviour and sensitivities of different coupled data assimilation methodologies. This includes comparing fully and weakly coupled assimilations with uncoupled assimilation, investigating whether coupled assimilation can eliminate or lessen initialisation shock in coupled model forecasts, and exploring the effect of the assimilation window length in coupled assimilations. These experiments will facilitate a greater theoretical understanding of the coupled atmosphere-ocean data assimilation problem and thus help guide the design and implementation of different coupling strategies within operational systems. This research is funded by the European Space Agency (ESA) and the UK Natural Environment Research Council (NERC). The ESA funded component is part of the Data Assimilation Projects - Coupled Model Data Assimilation initiative whose goal is to advance data assimilation techniques in fully coupled atmosphere-ocean models (see http://www.esa-da.org/). It is being conducted in parallel to the development of prototype weakly coupled data assimilation systems at both the UK Met Office and ECMWF.
Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Zaitchik, Benjamin F.; Rodell, Matt
2008-01-01
The NASA Gravity Recovery and Climate Experiment (GRACE) system of satellites provides observations of large-scale, monthly terrestrial water storage (TWS) changes. In. this presentation we describe a land data assimilation system that ingests GRACE observations and show that the assimilation improves estimates of water storage and fluxes, as evaluated against independent measurements. The ensemble-based land data assimilation system uses a Kalman smoother approach along with the NASA Catchment Land Surface Model (CLSM). We assimilated GRACE-derived TWS anomalies for each of the four major sub-basins of the Mississippi into the Catchment Land Surface Model (CLSM). Compared with the open-loop (no assimilation) CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with respect to measured groundwater. Assimilation also significantly increased the correlation between simulated TWS and gauged river flow for all four sub-basins and for the Mississippi River basin itself. In addition, model performance was evaluated for watersheds smaller than the scale of GRACE observations, in the majority of cases, GRACE assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data assimilation has considerable potential to downscale GRACE data for hydrological applications. We will also describe how the output from the GRACE land data assimilation system is now being prepared for use in the North American Drought Monitor.
Air Quality Modeling Using the NASA GEOS-5 Multispecies Data Assimilation System
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Pawson, Steven; Wargan, Krzysztof; Weir, Brad
2018-01-01
The NASA Goddard Earth Observing System (GEOS) data assimilation system (DAS) has been expanded to include chemically reactive tropospheric trace gases including ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). This system combines model analyses from the GEOS-5 model with detailed atmospheric chemistry and observations from MLS (O3), OMI (O3 and NO2), and MOPITT (CO). We show results from a variety of assimilation test experiments, highlighting the improvements in the representation of model species concentrations by up to 50% compared to an assimilation-free control experiment. Taking into account the rapid chemical cycling of NO2 when applying the assimilation increments greatly improves assimilation skills for NO2 and provides large benefits for model concentrations near the surface. Analysis of the geospatial distribution of the assimilation increments suggest that the free-running model overestimates biomass burning emissions but underestimates lightning NOx emissions by 5-20%. We discuss the capability of the chemical data assimilation system to improve atmospheric composition forecasts through improved initial value and boundary condition inputs, particularly during air pollution events. We find that the current assimilation system meaningfully improves short-term forecasts (1-3 day). For longer-term forecasts more emphasis on updating the emissions instead of initial concentration fields is needed.
Maintaining Atmospheric Mass and Water Balance Within Reanalysis
NASA Technical Reports Server (NTRS)
Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo
2015-01-01
This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.
THE AGWA – KINEROS2 SUITE OF MODELING TOOLS
USDA-ARS?s Scientific Manuscript database
A suite of modeling tools ranging from the event-based KINEROS2 flash-flood forecasting tool to the continuous (K2-O2) KINEROS-OPUS biogeochemistry tool. The KINEROS2 flash flood forecasting tool is being tested with the National Weather Service (NEW) is described. Tne NWS version assimilates Dig...
The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William
2007-01-01
The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS, intelligent use of the quality indicators, and forecast verification.
The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System
NASA Astrophysics Data System (ADS)
Lea, Daniel; Mirouze, Isabelle; Martin, Matthew; Hines, Adrian; Guiavarch, Catherine; Shelly, Ann
2014-05-01
The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HADGEM3 (Hadley Centre Global Environment Model, version 3). This model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modeling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To show the impact of coupled DA, one-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day forecast runs, started twice a day, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA data. These all show the coupled DA system functioning well. Evidence of imbalances and initialisation shocks has also been looked for.
NASA Astrophysics Data System (ADS)
Bytheway, Janice L.
Forecast models have seen vast improvements in recent years, via increased spatial and temporal resolution, rapid updating, assimilation of more observational data, and continued development and improvement of the representation of the atmosphere. One such model is the High Resolution Rapid Refresh (HRRR) model, a 3 km, hourly-updated, convection-allowing model that has been in development since 2010 and running operationally over the contiguous US since 2014. In 2013, the HRRR became the only US model to assimilate radar reflectivity via diabatic assimilation, a process in which the observed reflectivity is used to induce a latent heating perturbation in the model initial state in order to produce precipitation in those areas where it is indicated by the radar. In order to support the continued development and improvement of the HRRR model with regard to forecasts of convective precipitation, the concept of an assessment is introduced. The assessment process aims to connect model output with observations by first validating model performance then attempting to connect that performance to model assumptions, parameterizations and processes to identify areas for improvement. Observations from remote sensing platforms such as radar and satellite can provide valuable information about three-dimensional storm structure and microphysical properties for use in the assessment, including estimates of surface rainfall, hydrometeor types and size distributions, and column moisture content. A features-based methodology is used to identify warm season convective precipitating objects in the 2013, 2014, and 2015 versions of HRRR precipitation forecasts, Stage IV multisensor precipitation products, and Global Precipitation Measurement (GPM) core satellite observations. Quantitative precipitation forecasts (QPFs) are evaluated for biases in hourly rainfall intensity, total rainfall, and areal coverage in both the US Central Plains (29-49N, 85-105W) and US Mountain West (29-49N, 105-125W). Features identified in the model and Stage IV were tracked through time in order to evaluate forecasts through several hours of the forecast period. The 2013 version of the model was found to produce significantly stronger convective storms than observed, with a slight southerly displacement from the observed storms during the peak hours of convective activity (17-00 UTC). This version of the model also displayed a strong relationship between atmospheric water vapor content and cloud thickness over the central plains. In the 2014 and 2015 versions of the model, storms in the western US were found to be smaller and weaker than the observed, and satellite products (brightness temperatures and reflectivities) simulated using model output indicated that many of the forecast storms contained too much ice above the freezing level. Model upgrades intended to decrease the biases seen in early versions include changes to the reflectivity assimilation, the addition of sub-grid scale cloud parameterizations, changes to the representation of surface processes and the addition of aerosol processes to the microphysics. The effects of these changes are evident in each successive version of the model, with reduced biases in intensity, elimination of the southerly bias, and improved representation of the onset of convection.
NASA Astrophysics Data System (ADS)
Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.
2017-12-01
Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.
Reduction of initial shock in decadal predictions using a new initialization strategy
NASA Astrophysics Data System (ADS)
He, Yujun; Wang, Bin; Liu, Mimi; Liu, Li; Yu, Yongqiang; Liu, Juanjuan; Li, Ruizhe; Zhang, Cheng; Xu, Shiming; Huang, Wenyu; Liu, Qun; Wang, Yong; Li, Feifei
2017-08-01
A novel full-field initialization strategy based on the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) is proposed to alleviate the well-known initial shock occurring in the early years of decadal predictions. It generates consistent initial conditions, which best fit the monthly mean oceanic analysis data along the coupled model trajectory in 1 month windows. Three indices to measure the initial shock intensity are also proposed. Results indicate that this method does reduce the initial shock in decadal predictions by Flexible Global Ocean-Atmosphere-Land System model, Grid-point version 2 (FGOALS-g2) compared with the three-dimensional variational data assimilation-based nudging full-field initialization for the same model and is comparable to or even better than the different initialization strategies for other fifth phase of the Coupled Model Intercomparison Project (CMIP5) models. Better hindcasts of global mean surface air temperature anomalies can be obtained than in other FGOALS-g2 experiments. Due to the good model response to external forcing and the reduction of initial shock, higher decadal prediction skill is achieved than in other CMIP5 models.
Efficient Mean Field Variational Algorithm for Data Assimilation (Invited)
NASA Astrophysics Data System (ADS)
Vrettas, M. D.; Cornford, D.; Opper, M.
2013-12-01
Data assimilation algorithms combine available observations of physical systems with the assumed model dynamics in a systematic manner, to produce better estimates of initial conditions for prediction. Broadly they can be categorized in three main approaches: (a) sequential algorithms, (b) sampling methods and (c) variational algorithms which transform the density estimation problem to an optimization problem. However, given finite computational resources, only a handful of ensemble Kalman filters and 4DVar algorithms have been applied operationally to very high dimensional geophysical applications, such as weather forecasting. In this paper we present a recent extension to our variational Bayesian algorithm which seeks the ';optimal' posterior distribution over the continuous time states, within a family of non-stationary Gaussian processes. Our initial work on variational Bayesian approaches to data assimilation, unlike the well-known 4DVar method which seeks only the most probable solution, computes the best time varying Gaussian process approximation to the posterior smoothing distribution for dynamical systems that can be represented by stochastic differential equations. This approach was based on minimising the Kullback-Leibler divergence, over paths, between the true posterior and our Gaussian process approximation. Whilst the observations were informative enough to keep the posterior smoothing density close to Gaussian the algorithm proved very effective on low dimensional systems (e.g. O(10)D). However for higher dimensional systems, the high computational demands make the algorithm prohibitively expensive. To overcome the difficulties presented in the original framework and make our approach more efficient in higher dimensional systems we have been developing a new mean field version of the algorithm which treats the state variables at any given time as being independent in the posterior approximation, while still accounting for their relationships in the mean solution arising from the original system dynamics. Here we present this new mean field approach, illustrating its performance on a range of benchmark data assimilation problems whose dimensionality varies from O(10) to O(10^3)D. We emphasise that the variational Bayesian approach we adopt, unlike other variational approaches, provides a natural bound on the marginal likelihood of the observations given the model parameters which also allows for inference of (hyper-) parameters such as observational errors, parameters in the dynamical model and model error representation. We also stress that since our approach is intrinsically parallel it can be implemented very efficiently to address very long data assimilation time windows. Moreover, like most traditional variational approaches our Bayesian variational method has the benefit of being posed as an optimisation problem therefore its complexity can be tuned to the available computational resources. We finish with a sketch of possible future directions.
Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction
NASA Technical Reports Server (NTRS)
Li, Zhijin; Chao, Yi; Li, P. Peggy
2012-01-01
A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.
Optimal A-Train Data Utilization: A Use Case of Aura OMI L2G and MERRA-2 Aerosol Products
NASA Technical Reports Server (NTRS)
Zeng, Jian; Shen, Suhung; Wei, Jennifer; Meyer, David J.
2017-01-01
Ozone Monitoring Instrument (OMI) aboard NASA's Aura mission measures ozone column and profile, aerosols, clouds, surface UV irradiance, and the trace gases including NO2, SO2, HCHO, BrO, and OClO using UltraViolet electromagnetic spectrum (280 - 400 nm) with a daily global coverage and a pixel spatial resolution of 13 km × 24 km at nadir, and it's been one of the key instruments to study the Earth's atmospheric composition and chemistry. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. Compared to its predecessor MERRA, MERRA-2 is enhanced with more aspects of the Earth system among which is aerosol assimilation. When comparing between satellite pixel measurements and modeled grid data, how to properly handle counterpart pairing is critical considering their spatial and temporal variations. The comparison between satellite and model data by simply using Level 3 (L3) products may result biases due to lack of detailed temporal information. It has been preferred to inter-compare or implement satellite derived physical quantity (i.e., Level 2 (L2) Swath type) directly with/to model measurements with higher temporal and spatial resolution as possible. However, this has posed a challenge in the community to handle. Rather than directly handling the L2 or L3 data, there is a Level 2G (L2G) product conserving L2 pixel scientific data quality but in Grid type with the global coverage. In this presentation, we would like to demonstrate the optimal utilization of OMI L2G daily aerosol products by comparing with MERRA-2 hourly aerosol simulations matched well in both space and time.
Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France
NASA Astrophysics Data System (ADS)
Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.
2011-12-01
This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.
NASA Astrophysics Data System (ADS)
Attada, Raju; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.
2018-04-01
This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003-2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.
Evaluating Surface Flux Results from CERES-FLASHFlux
NASA Astrophysics Data System (ADS)
Wilber, A. C.; Stackhouse, P. W., Jr.; Kratz, D. P.; Gupta, S. K.; Sawaengphokhai, P.
2016-12-01
The Clouds and Earth's Radiant Energy System (CERES) mission provides TOA (Top-of-Atmosphere) and surface radiative flux products for each CERES footprint (Single Scanner Footprint) and also time integrated and spatially averaged (TISA) to provide 1ox1o fluxes at various temporal averages. The CERES TISA products are available to the public within 3-6 months of observation. The CERES Fast Longwave and SHortwave radiative Flux (FLASHFlux) data products were developed to provide a rapid release version of the CERES data products. FLASHFlux data products are made available to the research and applications communities within one week of the satellite observations. Over the last several years, the CERES team has contributed to a section on the variability of radiation budget at the Top-of-Atmosphere in the annual "State of the Climate Report" published in BAMS using CERES TISA and FLASHFlux data products. Recently, the FLASHFlux data were used to investigate the radiative impacts of the intense 2015-2016 El Nino event. In addition FLASHFlux date are routinely used by applied science in energy related and agricultural sectors. The current version of FLASHFlux is being upgraded to FLASHFlux Version4A to improve consistency with the climate quality Edition 4 CERES data products. This presentation will describe the planned changes including the change to the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.12.4). GEOS 5.12.4 is an assimilation that is consistent with MERRA-2. We present comparisons of global and regional changes in the TOA and surface radiative fluxes as a result of the upgrade for both longwave (LW) and shortwave (SW) surface fluxes. We also compare the data products against ground measurements using data from the Baseline Surface Radiation Network (BSRN) - including NOAA SURFRAD, Atmospheric Radiation Measurement (ARM) and Ocean buoy measurements from Woods Hole Oceanographic Institute (WHOI).
A Global Carbon Assimilation System using a modified EnKF assimilation method
NASA Astrophysics Data System (ADS)
Zhang, S.; Zheng, X.; Chen, Z.; Dan, B.; Chen, J. M.; Yi, X.; Wang, L.; Wu, G.
2014-10-01
A Global Carbon Assimilation System based on Ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 abundance data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is based on the ensemble Kalman filter (EnKF), but with several new developments, including using analysis states to iteratively estimate ensemble forecast errors, and a maximum likelihood estimation of the inflation factors of the forecast and observation errors. The proposed assimilation approach is tested in observing system simulation experiments and then used to estimate the terrestrial ecosystem carbon fluxes and atmospheric CO2 distributions from 2002 to 2008. The results showed that this assimilation approach can effectively reduce the biases and uncertainties of the carbon fluxes simulated by the ecosystem model.
New Nuclear Emergency Prognosis system in Korea
NASA Astrophysics Data System (ADS)
Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee
2016-04-01
This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology incorporate the dose assessment methods of IAEA, WHO, and USNRC. The dose assessment result will express on the GIS (GIS (Geographic Information System) to provide to the local- governments and the central government. Acknowledgements This research has been supported by the Nuclear Safety and Security Commission [Reference No.1305020-0315-SB110
NASA Technical Reports Server (NTRS)
Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof
2014-01-01
The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.
Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...
2015-01-20
Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less
Construction of Covariance Functions with Variable Length Fields
NASA Technical Reports Server (NTRS)
Gaspari, Gregory; Cohn, Stephen E.; Guo, Jing; Pawson, Steven
2005-01-01
This article focuses on construction, directly in physical space, of three-dimensional covariance functions parametrized by a tunable length field, and on an application of this theory to reproduce the Quasi-Biennial Oscillation (QBO) in the Goddard Earth Observing System, Version 4 (GEOS-4) data assimilation system. These Covariance models are referred to as multi-level or nonseparable, to associate them with the application where a multi-level covariance with a large troposphere to stratosphere length field gradient is used to reproduce the QBO from sparse radiosonde observations in the tropical lower stratosphere. The multi-level covariance functions extend well-known single level covariance functions depending only on a length scale. Generalizations of the first- and third-order autoregressive covariances in three dimensions are given, providing multi-level covariances with zero and three derivatives at zero separation, respectively. Multi-level piecewise rational covariances with two continuous derivatives at zero separation are also provided. Multi-level powerlaw covariances are constructed with continuous derivatives of all orders. Additional multi-level covariance functions are constructed using the Schur product of single and multi-level covariance functions. A multi-level powerlaw covariance used to reproduce the QBO in GEOS-4 is described along with details of the assimilation experiments. The new covariance model is shown to represent the vertical wind shear associated with the QBO much more effectively than in the baseline GEOS-4 system.
Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble
NASA Astrophysics Data System (ADS)
Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong
2016-05-01
As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.
NASA Astrophysics Data System (ADS)
Liu, Junjie; Fung, Inez; Kalnay, Eugenia; Kang, Ji-Sun; Olsen, Edward T.; Chen, Luke
2012-03-01
This study is our first step toward the generation of 6 hourly 3-D CO2 fields that can be used to validate CO2 forecast models by combining CO2 observations from multiple sources using ensemble Kalman filtering. We discuss a procedure to assimilate Atmospheric Infrared Sounder (AIRS) column-averaged dry-air mole fraction of CO2 (Xco2) in conjunction with meteorological observations with the coupled Local Ensemble Transform Kalman Filter (LETKF)-Community Atmospheric Model version 3.5. We examine the impact of assimilating AIRS Xco2 observations on CO2 fields by comparing the results from the AIRS-run, which assimilates both AIRS Xco2 and meteorological observations, to those from the meteor-run, which only assimilates meteorological observations. We find that assimilating AIRS Xco2 results in a surface CO2 seasonal cycle and the N-S surface gradient closer to the observations. When taking account of the CO2 uncertainty estimation from the LETKF, the CO2 analysis brackets the observed seasonal cycle. Verification against independent aircraft observations shows that assimilating AIRS Xco2 improves the accuracy of the CO2 vertical profiles by about 0.5-2 ppm depending on location and altitude. The results show that the CO2 analysis ensemble spread at AIRS Xco2 space is between 0.5 and 2 ppm, and the CO2 analysis ensemble spread around the peak level of the averaging kernels is between 1 and 2 ppm. This uncertainty estimation is consistent with the magnitude of the CO2 analysis error verified against AIRS Xco2 observations and the independent aircraft CO2 vertical profiles.
NASA Astrophysics Data System (ADS)
Khaki, M.; Hoteit, I.; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A. I. J. M.; Schumacher, M.; Pattiaratchi, C.
2017-09-01
The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.
An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System
NASA Astrophysics Data System (ADS)
Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong
2018-03-01
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.
NASA Astrophysics Data System (ADS)
Yang, Chun; Liu, Zhiquan; Gao, Feng; Childs, Peter P.; Min, Jinzhong
2017-05-01
The Geostationary Operational Environmental Satellite (GOES) imager data could provide a continuous image of the evolutionary pattern of severe weather phenomena with its high spatial and temporal resolution. The capability to assimilate the GOES imager radiances has been developed within the Weather Research and Forecasting model's data assimilation system. Compared to the benchmark experiment with no GOES imager data, the impact of assimilating GOES imager radiances on the analysis and forecast of convective process over Mexico in 7-10 March 2016 was assessed through analysis/forecast cycling experiments using rapid refresh assimilation system with hybrid-3DEnVar scheme. With GOES imager radiance assimilation, better analyses were obtained in terms of the humidity, temperature, and simulated water vapor channel brightness temperature distribution. Positive forecast impacts from assimilating GOES imager radiance were seen when verified against the Tropospheric Airborne Meteorological Data Reporting observation, GOES imager observation, and Mexico station precipitation data.
Impact of DYNAMO observations on NASA GEOS-5 reanalyses and the representation of MJO initiation
NASA Astrophysics Data System (ADS)
Achuthavarier, D.; Wang, H.; Schubert, S. D.; Sienkiewicz, M.
2017-01-01
This study examines the impact of the Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign in situ observations on NASA Goddard Earth Observing System version 5 (GEOS-5) reanalyses and the improvements gained thereby in the representation of the Madden-Julian Oscillation (MJO) initiation processes. To this end, we produced a global, high-resolution (1/4° spatially) reanalysis that assimilates the level-4, quality-controlled DYNAMO upper air soundings from about 87 stations in the equatorial Indian Ocean region along with a companion data-denied control reanalysis. The DYNAMO reanalysis produces a more realistic vertical structure of the temperature and moisture in the central tropical Indian Ocean by correcting the model biases, namely, the cold and dry biases in the lower troposphere and warm bias in the upper troposphere. The reanalysis horizontal winds are substantially improved, in that, the westerly acceleration and vertical shear of the zonal wind are enhanced. The DYNAMO reanalysis shows enhanced low-level diabatic heating, moisture anomalies and vertical velocity during the MJO initiation. Due to the warmer lower troposphere, the deep convection is invigorated, which is evident in convective cloud fraction. The GEOS-5 atmospheric general circulation model (AGCM) employed in the reanalysis is overall successful in assimilating the additional DYNAMO observations, except for an erroneous model response for medium rain rates, between 700 and 600 hPa, reminiscent of a bias in earlier versions of the AGCM. The moist heating profile shows a sharp decrease there due to the excessive convective rain re-evaporation, which is partly offset by the temperature increment produced by the analysis.
NASA Technical Reports Server (NTRS)
Buchard, Virginie; Da Silva, Arlindo; Todling, Ricardo
2017-01-01
In the GEOS near real-time system, as well as in MERRA-2 which is the latest reanalysis produced at NASAs Global Modeling and Assimilation Office(GMAO), the assimilation of aerosol observations is performed by means of a so-called analysis splitting method. In line with the transition of the GEOS meteorological data assimilation system to a hybrid Ensemble-Variational formulation, we are updating the aerosol component of our assimilation system to an ensemble square root filter(EnSRF; Whitaker and Hamill (2002)) type of scheme.We present a summary of our preliminary results of the assimilation of column integrated aerosol observations (Aerosol Optical Depth; AOD) using an Ensemble Square Root Filters (EnSRF) scheme and the ensemble members produced routinely by the meteorological assimilation.
NASA Astrophysics Data System (ADS)
Singh, Sanjeev Kumar; Prasad, V. S.
2018-02-01
This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.
Accelerating assimilation development for new observing systems using EFSO
NASA Astrophysics Data System (ADS)
Lien, Guo-Yuan; Hotta, Daisuke; Kalnay, Eugenia; Miyoshi, Takemasa; Chen, Tse-Chun
2018-03-01
To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.
GRACE-Assimilated Drought Indicators for the U.S. Drought Monitor
NASA Technical Reports Server (NTRS)
Rui, Hualan; Vollmer, Bruce; Teng, Bill; Loeser, Carlee; Beaudoing, Hiroko; Rodell, Matt
2018-01-01
The Gravity Recovery and Climate Experiment (GRACE) mission detects changes in Earth's gravity field by precisely monitoring the changes in distance between two satellites orbiting the Earth in tandem. Scientists at NASA's Goddard Space Flight Center generate GRACE-assimilated groundwater and soil moisture drought indicators each week, for drought monitor-related studies and applications. The GRACE-assimilated Drought Indicator Version 2.0 data product (GRACE-DA-DM V2.0) is archived at, and distributed by, the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center). More information about the data and data access is available on the data product landing page at https://disc.gsfc.nasa.gov/datasets /GRACEDADM_CLSM0125US_7D_2.0/summary. The GRACE-DA-DM V2.0 data product contains three drought indicators: Groundwater Percentile, Root Zone Soil Moisture Percentile, and Surface Soil Moisture Percentile. The drought indicators are of wet or dry conditions, expressed as a percentile, indicating the probability of occurrence within the period of record from 1948 to 2012. These GRACE-assimilated drought indicators, with improved spatial and temporal resolutions, should provide a more comprehensive and objective identification of drought conditions. This presentation describes the basic characteristics of the data and data services at NASA GES DISC and collaborative organizations, and uses a few examples to demonstrate the simple ways to explore the GRACE-assimilated drought indicator data.
Assessment of Two Types of Observations (SATWND and GPSRO) for the Operational Global 4DVAR System
NASA Astrophysics Data System (ADS)
Leng, H.
2017-12-01
The performance of a data assimilation system is significantly dependent on the quality and quantity of observations assimilated. In these years, more and more satellite observations have been applied in many operational assimilation systems. In this paper, the assessment of satellite-derived winds (SATWND) and GPS radio occultation (GPSRO) bending angles has been performed using a range of diagnostics. The main positive impacts are made when satellite-derived cloud data (GOES cloud data and MODIS cloud data) is assimilated, but benefit is hardly obtained from GPSRO data in the Operational Global 4DVAR System. In a full system configuration, the assimilation of satellite-derived observations is globally beneficial on the analysis, and the benefit can be well propagated into the forecast. The assimilation of the GPSRO observations has a slightly positive impact in the Tropics, but is neutral in the Northern Hemisphere and in the Southern Hemisphere. To assess the synergies of satellite-derived observations with other types of observation, experiments assimilating satellite-derived data and AMSU-A and AMSU-B observations were run. The results show that the analysis increments structure is not modified when AMSU-A and AMSU-B observations are also assimilated. This suggests that the impact of satellite-derived observations is not limited by the large impact of satellite radiance observations.
A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea
NASA Astrophysics Data System (ADS)
Li, Yi; Toumi, Ralf
2017-08-01
In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.
Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis
NASA Astrophysics Data System (ADS)
Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.
2017-12-01
Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.
Reduction of initial shock in decadal predictions using a new initialization strategy
NASA Astrophysics Data System (ADS)
He, Yujun; Wang, Bin
2017-04-01
Initial shock is a well-known problem occurring in the early years of a decadal prediction when assimilating full-field observations into a coupled model, which directly affects the prediction skill. For the purpose to alleviate this problem, we propose a novel full-field initialization method based on dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar). Different from the available solution strategies including anomaly assimilation and bias correction, it substantially reduces the initial shock through generating more consistent initial conditions for the coupled model, which, along with the model trajectory in one-month windows, best fit the monthly mean analysis data of oceanic temperature and salinity. We evaluate the performance of initialized hindcast experiments according to three proposed indices to measure the intensity of the initial shock. The results indicate that this strategy can obviously reduce the initial shock in decadal predictions by FGOALS-g2 (the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2) compared with the commonly-used nudging full-field initialization for the same model as well as the different full-field initialization strategies for other CMIP5 (the fifth phase of the Coupled Model Intercomparison Project) models whose decadal prediction results are available. It is also comparable to or even better than the anomaly initialization methods. Better hindcasts of global mean surface air temperature anomaly are obtained due to the reduction of initial shock by the new initialization scheme.
Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction
NASA Astrophysics Data System (ADS)
Baatz, Roland; Hendricks Franssen, Harrie-Jan; Han, Xujun; Hoar, Tim; Reemt Bogena, Heye; Vereecken, Harry
2017-05-01
In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm-3 for the assimilation period and 0.05 cm3 cm-3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm-3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.
Personality trait inferences of Turkish immigrant and neutral targets: an experimental study.
Sandal, Gro M; Bye, Hege H; Pallesen, Ståle
2012-12-01
The study investigated whether personality traits attributed to immigrant targets differ from personality inferences made for a neutral target, and whether trait attributions differ for assimilated and integrated immigrant targets. Participants (n = 340) were randomized to one of three conditions in which they read the same story about a person, but where the person was described as either: (a) an assimilated Turkish immigrant; (b) an integrated Turkish immigrant; or (c) neutral (no nationality or religious practice indicated). Subsequently, they rated the personality of the described person on the NEO-Five Factor Inventory (observer rating version) and completed the Balanced Inventory of Desirable Responding (Impression Management scale) with reference to themselves. Both immigrant targets were rated as significantly higher on extraversion and lower on neuroticism than the neutral target. The integrated target was rated as more open than the neutral target, and as higher than the assimilated target on neuroticism when controlling for impression management. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.
PyPanda: a Python package for gene regulatory network reconstruction
van IJzendoorn, David G.P.; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L.
2016-01-01
Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of ‘omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. Availability and implementation: The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda. Contact: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl PMID:27402905
PyPanda: a Python package for gene regulatory network reconstruction.
van IJzendoorn, David G P; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L
2016-11-01
PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of 'omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda CONTACT: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.
2014-12-01
A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.
NASA Astrophysics Data System (ADS)
Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.
2015-05-01
A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons. Finally, during a period where the Asian region was mainly dominated by anthropogenic aerosols, we have performed a qualitative analysis in which the specification of anthropogenic emissions in GEOS-5 is adjusted to provide insight into discrepancies observed in AI comparisons.
USDA-ARS?s Scientific Manuscript database
Real-time rainfall accumulation estimates at the global scale is useful for many applications. However, the real-time versions of satellite-based rainfall products are known to contain errors relative to real rainfall observed in situ. Recent studies have demonstrated how information about rainfall ...
NASA Technical Reports Server (NTRS)
Arellano, A. F., Jr.; Raeder, K.; Anderson, J. L.; Hess, P. G.; Emmons, L. K.; Edwards, D. P.; Pfister, G. G.; Campos, T. L.; Sachse, G. W.
2007-01-01
We present a global chemical data assimilation system using a global atmosphere model, the Community Atmosphere Model (CAM3) with simplified chemistry and the Data Assimilation Research Testbed (DART) assimilation package. DART is a community software facility for assimilation studies using the ensemble Kalman filter approach. Here, we apply the assimilation system to constrain global tropospheric carbon monoxide (CO) by assimilating meteorological observations of temperature and horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument. We verify the system performance using independent CO observations taken on board the NSFINCAR C-130 and NASA DC-8 aircrafts during the April 2006 part of the Intercontinental Chemical Transport Experiment (INTEX-B). Our evaluations show that MOPITT data assimilation provides significant improvements in terms of capturing the observed CO variability relative to no MOPITT assimilation (i.e. the correlation improves from 0.62 to 0.71, significant at 99% confidence). The assimilation provides evidence of median CO loading of about 150 ppbv at 700 hPa over the NE Pacific during April 2006. This is marginally higher than the modeled CO with no MOPITT assimilation (-140 ppbv). Our ensemble-based estimates of model uncertainty also show model overprediction over the source region (i.e. China) and underprediction over the NE Pacific, suggesting model errors that cannot be readily explained by emissions alone. These results have important implications for improving regional chemical forecasts and for inverse modeling of CO sources and further demonstrate the utility of the assimilation system in comparing non-coincident measurements, e.g. comparing satellite retrievals of CO with in-situ aircraft measurements. The work described above also brought to light several short-comings of the data assimilation approach for CO profiles. Because of the limited vertical resolution of the measurement, the retrievals at different altitudes are correlated which can lead to problems with numerical error and overall efficiency. This has resulted in a manuscript that is about to be submitted to JGR:
IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter
NASA Astrophysics Data System (ADS)
Cho, K.; Hyoung-Wook, C.; Jo, Y.
2016-12-01
Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.
The Global Observing System in the Assimilation Context
NASA Technical Reports Server (NTRS)
Reinecker, Michele M.; Gelaro, R.; Pawson, S.; Reichle, R.; McCarty, W.
2011-01-01
Weather and climate analyses and predictions all rely on the global observing system. However, the observing system, whether atmosphere, ocean, or land surface, yields a diverse set of incomplete observations of the different components of Earth s environment. Data assimilation systems are essential to synthesize the wide diversity of in situ and remotely sensed observations into four-dimensional state estimates by combining the various observations with model-based estimates. Assimilation, or associated tools and products, are also useful in providing guidance for the evolution of the observing system of the future. This paper provides a brief overview of the global observing system and information gleaned through assimilation tools, and presents some evaluations of observing system gaps and issues.
Assimilation or Ethnicization: An Exploration of Inland Tibet Class Education Policy and Practice
ERIC Educational Resources Information Center
Miaoyan, Yang; Dunzhu, Nima
2015-01-01
Assimilation and ethnicization are mainstream voices in current studies of ethnic relations. The former suspects that current social system arrangements are meant to assimilate minority groups into the cultural system of the mainstream ethnic group, while the latter believes that current systemic arrangements will cause minority groups to tend…
NASA Astrophysics Data System (ADS)
Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin
2017-12-01
Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.
NASA Astrophysics Data System (ADS)
Pervez, M. S.; McNally, A.; Arsenault, K. R.
2017-12-01
Convergence of evidence from different agro-hydrologic sources is particularly important for drought monitoring in data sparse regions. In Africa, a combination of remote sensing and land surface modeling experiments are used to evaluate past, present and future drought conditions. The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) routinely simulates daily soil moisture, evapotranspiration (ET) and other variables over Africa using multiple models and inputs. We found that Noah 3.3, Variable Infiltration Capacity (VIC) 4.1.2, and Catchment Land Surface Model based FLDAS simulations of monthly soil moisture percentile maps captured concurrent drought and water surplus episodes effectively over East Africa. However, the results are sensitive to selection of land surface model and hydrometeorological forcings. We seek to identify sources of uncertainty (input, model, parameter) to eventually improve the accuracy of FLDAS outputs. In absence of in situ data, previous work used European Space Agency Climate Change Initiative Soil Moisture (CCI-SM) data measured from merged active-passive microwave remote sensing to evaluate FLDAS soil moisture, and found that during the high rainfall months of April-May and November-December Noah-based soil moisture correlate well with CCI-SM over the Greater Horn of Africa region. We have found good correlations (r>0.6) for FLDAS Noah 3.3 ET anomalies and Operational Simplified Surface Energy Balance (SSEBop) ET over East Africa. Recently, SSEBop ET estimates (version 4) were improved by implementing a land surface temperature correction factor. We re-evaluate the correlations between FLDAS ET and version 4 SSEBop ET. To further investigate the reasons for differences between models we evaluate FLDAS soil moisture with Advanced Scatterometer and SMAP soil moisture and FLDAS outputs with MODIS and AVHRR normalized difference vegetation index. By exploring longer historic time series and near-real time products we will be aiding convergence of evidence for better understanding of historic drought, improved monitoring and forecasting, and better understanding of uncertainties of water availability estimation over Africa
NASA Astrophysics Data System (ADS)
Chatterjee, A.; Anderson, J. L.; Moncrieff, M.; Collins, N.; Danabasoglu, G.; Hoar, T.; Karspeck, A. R.; Neale, R. B.; Raeder, K.; Tribbia, J. J.
2014-12-01
We present a quantitative evaluation of the simulated MJO in analyses produced with a coupled data assimilation (CDA) framework developed at the National Center for Atmosphere Research. This system is based on the Community Earth System Model (CESM; previously known as the Community Climate System Model -CCSM) interfaced to a community facility for ensemble data assimilation (Data Assimilation Research Testbed - DART). The system (multi-component CDA) assimilates data into each of the respective ocean/atmosphere/land model components during the assimilation step followed by an exchange of information between the model components during the forecast step. Note that this is an advancement over many existing prototypes of coupled data assimilation systems, which typically assimilate observations only in one of the model components (i.e., single-component CDA). The more realistic treatment of air-sea interactions and improvements to the model mean state in the multi-component CDA recover many aspects of MJO representation, from its space-time structure and propagation (see Figure 1) to the governing relationships between precipitation and sea surface temperature on intra-seasonal scales. Standard qualitative and process-based diagnostics identified by the MJO Task Force (currently under the auspices of the Working Group on Numerical Experimentation) have been used to detect the MJO signals across a suite of coupled model experiments involving both multi-component and single-component DA experiments as well as a free run of the coupled CESM model (i.e., CMIP5 style without data assimilation). Short predictability experiments during the boreal winter are used to demonstrate that the decay rates of the MJO convective anomalies are slower in the multi-component CDA system, which allows it to retain the MJO dynamics for a longer period. We anticipate that the knowledge gained through this study will enhance our understanding of the MJO feedback mechanisms across the air-sea interface, especially regarding ocean impacts on the MJO as well as highlight the capability of coupled data assimilation systems for related tropical intraseasonal variability predictions.
A study of regional-scale aerosol assimilation using a Stretch-NICAM
NASA Astrophysics Data System (ADS)
Misawa, S.; Dai, T.; Schutgens, N.; Nakajima, T.
2013-12-01
Although aerosol is considered to be harmful to human health and it became a social issue, aerosol models and emission inventories include large uncertainties. In recent studies, data assimilation is applied to aerosol simulation to get more accurate aerosol field and emission inventory. Most of these studies, however, are carried out only on global scale, and there are only a few researches about regional scale aerosol assimilation. In this study, we have created and verified an aerosol assimilation system on regional scale, in hopes to reduce an error associated with the aerosol emission inventory. Our aerosol assimilation system has been developed using an atmospheric climate model, NICAM (Non-hydrostaric ICosahedral Atmospheric Model; Satoh et al., 2008) with a stretch grid system and coupled with an aerosol transport model, SPRINTARS (Takemura et al., 2000). Also, this assimilation system is based on local ensemble transform Kalman filter (LETKF). To validate this system, we used a simulated observational data by adding some artificial errors to the surface aerosol fields constructed by Stretch-NICAM-SPRINTARS. We also included a small perturbation in original emission inventory. This assimilation with modified observational data and emission inventory was performed in Kanto-plane region around Tokyo, Japan, and the result indicates the system reducing a relative error of aerosol concentration by 20%. Furthermore, we examined a sensitivity of the aerosol assimilation system by varying the number of total ensemble (5, 10 and 15 ensembles) and local patch (domain) size (radius of 50km, 100km and 200km), both of which are the tuning parameters in LETKF. The result of the assimilation with different ensemble number 5, 10 and 15 shows that the larger the number of ensemble is, the smaller the relative error become. This is consistent with ensemble Kalman filter theory and imply that this assimilation system works properly. Also we found that assimilation system does not work well in a case of 200km radius, while a domain of 50km radius is less efficient than when domain of 100km radius is used.Therefore, we expect that the optimized size lies somewhere between 50km to 200km. We will show a real analysis of real data from suspended particle matter (SPM) network in the Kanto-plane region.
A parsimonious land data assimilation system for the SMAP/GPM satellite era
USDA-ARS?s Scientific Manuscript database
Land data assimilation systems typically require complex parameterizations in order to: define required observation operators, quantify observing/forecasting errors and calibrate a land surface assimilation model. These parameters are commonly defined in an arbitrary manner and, if poorly specified,...
NASA Astrophysics Data System (ADS)
Loizu, Javier; Massari, Christian; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel
2016-04-01
Assimilation of Surface Soil Moisture (SSM) observations obtained from remote sensing techniques have been shown to improve streamflow prediction at different time scales of hydrological modeling. Different sensors and methods have been tested for their application in SSM estimation, especially in the microwave region of the electromagnetic spectrum. The available observation devices include passive microwave sensors such as the Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard the Aqua satellite and the Soil Moisture and Ocean Salinity (SMOS) mission. On the other hand, active microwave systems include Scatterometers (SCAT) onboard the European Remote Sensing satellites (ERS-1/2) and the Advanced Scatterometer (ASCAT) onboard MetOp-A satellite. Data assimilation (DA) include different techniques that have been applied in hydrology and other fields for decades. These techniques include, among others, Kalman Filtering (KF), Variational Assimilation or Particle Filtering. From the initial KF method, different techniques were developed to suit its application to different systems. The Ensemble Kalman Filter (EnKF), extensively applied in hydrological modeling improvement, shows its capability to deal with nonlinear model dynamics without linearizing model equations, as its main advantage. The objective of this study was to investigate whether data assimilation of SSM ASCAT observations, through the EnKF method, could improve streamflow simulation of mediterranean catchments with TOPLATS hydrological complex model. The DA technique was programmed in FORTRAN, and applied to hourly simulations of TOPLATS catchment model. TOPLATS (TOPMODEL-based Land-Atmosphere Transfer Scheme) was applied on its lumped version for two mediterranean catchments of similar size, located in northern Spain (Arga, 741 km2) and central Italy (Nestore, 720 km2). The model performs a separated computation of energy and water balances. In those balances, the soil is divided into two layers, the upper Surface Zone (SZ), and the deeper Transmission Zone (TZ). In this study, the SZ depth was fixed to 5 cm, for adequate assimilation of observed data. Available data was distributed as follows: first, the model was calibrated for the 2001-2007 period; then the 2007-2010 period was used for satellite data rescaling purposes. Finally, data assimilation was applied during the validation (2010-2013) period. Application of the EnKF required the following steps: 1) rescaling of satellite data, 2) transformation of rescaled data into Soil Water Index (SWI) through a moving average filter, where a T = 9 calibrated value was applied, 3) generation of a 50 member ensemble through perturbation of inputs (rainfall and temperature) and three selected parameters, 4) validation of the ensemble through the compliance of two criteria based on ensemble's spread, mean square error and skill and, 5) Kalman Gain calculation. In this work, comparison of three satellite data rescaling techniques: 1) cumulative distribution Function (CDF) matching, 2) variance matching and 3) linear least square regression was also performed. Results obtained in this study showed slight improvements of hourly Nash-Sutcliffe Efficiency (NSE) in both catchments, with the different rescaling methods evaluated. Larger improvements were found in terms of seasonal simulated volume error reduction.
Information flow in an atmospheric model and data assimilation
NASA Astrophysics Data System (ADS)
Yoon, Young-noh
2011-12-01
Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background state estimate with new observations, and the cycle repeats. In an ensemble Kalman filter, the probability distribution of the state estimate is represented by an ensemble of sample states, and the covariance matrix is calculated using the ensemble of sample states. We perform numerical experiments on toy atmospheric models introduced by Lorenz in 2005 to study the information flow in an atmospheric model in conjunction with ensemble Kalman filtering for data assimilation. This dissertation consists of two parts. The first part of this dissertation is about the propagation of information and the use of localization in ensemble Kalman filtering. If we can perform data assimilation locally by considering the observations and the state variables only near each grid point, then we can reduce the number of ensemble members necessary to cover the probability distribution of the state estimate, reducing the computational cost for the data assimilation and the model integration. Several localized versions of the ensemble Kalman filter have been proposed. Although tests applying such schemes have proven them to be extremely promising, a full basic understanding of the rationale and limitations of localization is currently lacking. We address these issues and elucidate the role played by chaotic wave dynamics in the propagation of information and the resulting impact on forecasts. The second part of this dissertation is about ensemble regional data assimilation using joint states. Assuming that we have a global model and a regional model of higher accuracy defined in a subregion inside the global region, we propose a data assimilation scheme that produces the analyses for the global and the regional model simultaneously, considering forecast information from both models. We show that our new data assimilation scheme produces better results both in the subregion and the global region than the data assimilation scheme that produces the analyses for the global and the regional model separately.
NASA Astrophysics Data System (ADS)
Rundle, J.; Rundle, P.; Donnellan, A.; Li, P.
2003-12-01
We consider the problem of the complex dynamics of earthquake fault systems, and whether numerical simulations can be used to define an ensemble forecasting technology similar to that used in weather and climate research. To effectively carry out such a program, we need 1) a topological realistic model to simulate the fault system; 2) data sets to constrain the model parameters through a systematic program of data assimilation; 3) a computational technology making use of modern paradigms of high performance and parallel computing systems; and 4) software to visualize and analyze the results. In particular, we focus attention of a new version of our code Virtual California (version 2001) in which we model all of the major strike slip faults extending throughout California, from the Mexico-California border to the Mendocino Triple Junction. We use the historic data set of earthquakes larger than magnitude M > 6 to define the frictional properties of all 654 fault segments (degrees of freedom) in the model. Previous versions of Virtual California had used only 215 fault segments to model the strike slip faults in southern California. To compute the dynamics and the associated surface deformation, we use message passing as implemented in the MPICH standard distribution on a small Beowulf cluster consisting of 10 cpus. We are also planning to run the code on significantly larger machines so that we can begin to examine much finer spatial scales of resolution, and to assess scaling properties of the code. We present results of simulations both as static images and as mpeg movies, so that the dynamical aspects of the computation can be assessed by the viewer. We also compute a variety of statistics from the simulations, including magnitude-frequency relations, and compare these with data from real fault systems.
NASA Astrophysics Data System (ADS)
Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun
2017-07-01
The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.
Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.
2016-07-01
The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.
NASA Astrophysics Data System (ADS)
Bonavita, M.; Torrisi, L.
2005-03-01
A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and Climatology of the Italian Air Force (CNMCA) in order to improve its operational numerical weather prediction capabilities and provide more accurate guidance to operational forecasters. The system, which is undergoing testing before operational use, is based on an “observation space” version of the 3D-VAR method for the objective analysis component, and on the High Resolution Regional Model (HRM) of the Deutscher Wetterdienst (DWD) for the prognostic component. Notable features of the system include a completely parallel (MPI+OMP) implementation of the solution of analysis equations by a preconditioned conjugate gradient descent method; correlation functions in spherical geometry with thermal wind constraint between mass and wind field; derivation of the objective analysis parameters from a statistical analysis of the innovation increments.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Alpert, Pinhas
2016-01-01
In the late 1990's, prior to the launch of the Terra satellite, atmospheric general circulation models (GCMs) did not include aerosol processes because aerosols were not properly monitored on a global scale and their spatial distributions were not known well enough for their incorporation in operational GCMs. At the time of the first GEOS Reanalysis (Schubert et al. 1993), long time series of analysis increments (the corrections to the atmospheric state by all available meteorological observations) became readily available, enabling detailed analysis of the GEOS-1 errors on a global scale. Such analysis revealed that temperature biases were particularly pronounced in the Tropical Atlantic region, with patterns depicting a remarkable similarity to dust plumes emanating from the African continent as evidenced by TOMS aerosol index maps. Yoram Kaufman was instrumental encouraging us to pursue this issue further, resulting in the study reported in Alpert et al. (1998) where we attempted to assess aerosol forcing by studying the errors of a the GEOS-1 GCM without aerosol physics within a data assimilation system. Based on this analysis, Alpert et al. (1998) put forward that dust aerosols are an important source of inaccuracies in numerical weather-prediction models in the Tropical Atlantic region, although a direct verification of this hypothesis was not possible back then. Nearly 20 years later, numerical prediction models have increased in resolution and complexity of physical parameterizations, including the representation of aerosols and their interactions with the circulation. Moreover, with the advent of NASA's EOS program and subsequent satellites, atmospheric aerosols are now monitored globally on a routine basis, and their assimilation in global models are becoming well established. In this talk we will reexamine the Alpert et al. (1998) hypothesis using the most recent version of the GEOS-5 Data Assimilation System with assimilation of aerosols. We will explicitly calculate the impact of aerosols on the temperature analysis increments in the tropical Atlantic and assess the extent to which inclusion of atmospheric aerosols have reduced these increments.
NASA Astrophysics Data System (ADS)
Weir, B.; Chatterjee, A.; Ott, L. E.; Pawson, S.
2017-12-01
This talk presents an overview of results from the GEOS-Carb reanalysis of retrievals of average-column carbon dioxide (XCO2) from the Orbiting Carbon Observatory 2 (OCO-2) and Greenhouse Gases Observing Satellite (GOSAT) satellite missions. The reanalysis is a Level 3 (L3) product: a collection of 3D fields of carbon dioxide (CO2) mixing ratios every 6 hours beginning in April 2009 going until the present on a grid with a 0.5 degree horizontal resolution and 72 vertical levels from the surface to 0.01 hPa. Using an assimilation methodology based on the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), the L3 fields are weighted averages of the two satellite retrievals and predictions from the GEOS general circulation model driven by assimilated meteorology from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). In places and times where there are a dense number of soundings, the observations dominate the predicted mixing ratios, while the model is used to fill in locations with fewer soundings, e.g., high latitudes and the Amazon. Blending the satellite observations with model predictions has at least two notable benefits. First, it provides a bridge for evaluating the satellite retrievals and their uncertainties against a heterogeneous collection of observations including those from surface sites, towers, aircraft, and soundings from the Total Carbon Column Observing Network (TCCON). Extensive evaluations of the L3 reanalysis clearly demonstrate both the strength and the deficiency of the satellite retrievals. Second, it is possible to estimate variables from the reanalysis without introducing bias due to spatiotemporal variability in sounding coverage. For example, the assimilated product provides robust estimates of the monthly CO2 global growth rate. These monthly growth rate estimates show significant differences from estimates based on in situ observations, which have sparse coverage, and those based on model surface fluxes, which imperfectly represent key processes. This presentation discusses the implications of this finding as well as ongoing strategies to extract more information from the satellite retrievals in future L3 reanalyses.
Akinpelu, Enoch A; Adetunji, Adewole T; Ntwampe, Seteno K O; Nchu, Felix; Mekuto, Lukhanyo
2017-10-01
Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK ® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.
Status and Plans for Reanalysis at NASA/GMAO
NASA Technical Reports Server (NTRS)
Gelaro, Ron
2017-01-01
Reanalysis plays a critical role in GMAOs goal to enhance NASA's program of Earth observations, providing vital data sets for climate research and the development of future missions. As the breadth of NASAs observations expands to include multiple components of the Earth system, so does the need to assimilate observations from currently uncoupled components of the system in a more physically consistent manner. GMAOs most recent reanalysis of the satellite era, MERRA-2, has completed the period 1980-present, and is now running as a continuing global climate analysis with two- to three-week latency. MERRA-2 assimilates meteorological and aerosol observations as a weakly coupled assimilation system as a first step toward GMAOs longer term goal of developing an integrated Earth system analysis (IESA) capability that will couple assimilation systems for the atmosphere, ocean, land and chemistry. The GMAO strategy is to progress incrementally toward an IESA through an evolving combination of coupled systems and offline component reanalyses driven by, for example, MERRA-2 atmospheric forcing. Most recently, the GMAO has implemented a weakly coupled assimilation scheme for analyzing ocean skin temperature within the existing atmospheric analysis. The scheme uses background fields from a near-surface ocean diurnal layer model to assimilate surface-sensitive radiances plus in-situ observations along with all other observations in the atmospheric assimilation system. In addition, MERRA-2-driven simulations of the ocean (plus sea ice) and atmospheric chemistry (for the EOS period) are currently underway, as is the development of a coupled atmosphere-ocean assimilation system. This talk will describe the status of these ongoing efforts and the planned steps toward an IESA capability for climate research.
NASA Astrophysics Data System (ADS)
Barbu, A. L.; Calvet, J.-C.; Lafont, S.
2012-04-01
The development of a Land Data Assimilation System (LDAS) dedicated to carbon and water cycles is considered as a key aspect for monitoring activities of terrestrial carbon fluxes. It allows the assimilation of biophysical products in order to reduce the bias between the model simulations and the observations and have a positive impact on carbon and water fluxes. This work shows the benefits of data assimilation of Earth observations for the monitoring of vegetation status and carbon fluxes, in the framework of the GEOLAND2 project, co-funded by the European Commission within the GMES initiative in FP7. In this study, the SURFEX modelling platform developed at Meteo-France is used for describing the continental vegetation state, surface fluxes and soil moisture. It consists of the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The vegetation biomass and Leaf Area Index (LAI) evolve dynamically in response to weather and climate conditions. The ECOCLIMAP database provides detailed information about the land cover at a resolution of 1 km. Over the France domain, the most present ecosystem types are grasslands (32%), C3 crop lands (24%), deciduous forest (20%), bare soil (11%), and C4 crop lands (8%).The model also includes a representation of the soil moisture stress with two different types of drought responses for herbaceous vegetation and forests. A version of the Extended Kalman Filter (EKF) scheme is developed for the joint assimilation of satellite-derived surface soil moisture from ASCAT-25 km product, namely Soil Wetness Index (SWI-01) developed by TU-Wien, and remote sensing LAI product provided by GEOLAND2. The GEOLAND2 LAI product is derived from CYCLOPES V3.1 and MODIS collection 5 data. It is more consistent with an effective LAI for low LAI and close to the actual LAI for high values. The assimilation experiment was conducted across France at a spatial resolution of 8 km. The study period ranges from July 2007 to December 2010. In the model simulation, the start of the growing season tends to occur later than in the observations. Similarly, the senescence phase is delayed. The assimilation is able to reduce this bias. The lack of detailed knowledge of the farming practices and other shortcomings of the model are compensated by the assimilation of the remotely sensed LAI. The analyzed seasonal LAI cycle across large cropland regions (north-eastern France) is closer to the observations. A coherent impact of LAI and soil moisture updates on the carbon fluxes is noticed. Increased LAI values in the growing season due to data assimilation corrections trigger an increased photosynthetic activity. Similarly, lower LAI values corresponding to the senescence phase cause a decrease in the carbon dioxide uptake when compared to the original model simulations.
NASA Astrophysics Data System (ADS)
Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia
2015-07-01
To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.
NASA Astrophysics Data System (ADS)
Baker, N. L.; Tsu, J.; Swadley, S. D.
2017-12-01
We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of analyses and forecasts with in-situ observations and analyses from other NWP centers (e.g. ECMWF and GFS). [i] NAVy Global Environmental Model [ii] COAMPS® is a registered trademark of the Naval Research Laboratory for the Navy's Coupled Ocean Atmosphere Mesoscale Prediction System. [iii] NRL Atmospheric Variational Data Assimilation System
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Danilov, Sergey; Schröter, Jens; Nerger, Lars; Maßmann, Silvia; Janssen, Frank
2014-05-01
In order to improve the hydrography forecast of the North and Baltic Seas, the operational circulation model of the German Federal Maritime and Hydrographic Agency (BSH) has been augmented by a data assimilation (DA) system. The DA system has been developed based on the Singular Evolution Interpolated Kalman (SEIK) filter algorithm (Pham, 1998) coded within the Parallel Data Assimilation Framework (Nerger et al., 2004, Nerger and Hiller, 2012). Previously the only data assimilated were sea surface temperature (SST) measurements obtained with the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA's polar orbiting satellites. While the quality of the forecast has been significantly improved by assimilating the satellite data (Losa et al., 2012, Losa et al., 2014), assimilation of in situ observational temperature (T) and salinity (S) profiles has allowed for further improvement. Assimilating MARNET time series and CTD and Scanfish measurements, however, required a careful calibration of the DA system with respect to local analysis. The study addresses the problem of the local SEIK analysis accounting for the data within a certain radius. The localisation radius is considered spatially variable and dependent on the system local dynamics. As such, we define the radius of the data influence based on the energy ratio of the baroclinic and barotropic flows. D. T. Pham, J. Verron, L. Gourdeau, 1998. Singular evolutive Kalman filters for data assimilation in oceanography, C. R. Acad. Sci. Paris, Earth and Planetary Sciences, 326, 255-260. L. Nerger, W. Hiller, J. Schröter, 2004. PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, In: Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of high performance computing in meteorology: proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. Singapore: World Scientific, Reading, UK, 63-83. L. Nerger, W. Hiller, 2012. Software for Ensemble-based Data Assimilation Systems —Implementation Strategies and Scalability, Computers and Geosciences, 55, 110-118. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2012. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data. Journal of Marine Systems, 105-108, 152-162. S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2014. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Part.2 Sensitivity of the forecast's skill to the prior model error statistics. Journal of Marine Systems, 129, 259-270.
Coupled Data Assimilation in Navy ESPC
NASA Astrophysics Data System (ADS)
Barron, C. N.; Spence, P. L.; Frolov, S.; Rowley, C. D.; Bishop, C. H.; Wei, M.; Ruston, B.; Smedstad, O. M.
2017-12-01
Data assimilation under global coupled Earth System Prediction Capability (ESPC) presents significantly greater challenges than data assimilation in forecast models of a single earth system like the ocean and atmosphere. In forecasts of a single component, data assimilation has broad flexibility in adjusting boundary conditions to reduce forecast errors; coupled ESPC requires consistent simultaneous adjustment of multiple components within the earth system: air, ocean, ice, and others. Data assimilation uses error covariances to express how to consistently adjust model conditions in response to differences between forecasts and observations; in coupled ESPC, these covariances must extend from air to ice to ocean such that changes within one fluid are appropriately balanced with corresponding adjustments in the other components. We show several algorithmic solutions that allow us to resolve these challenges. Specifically, we introduce the interface solver method that augments existing stand-alone systems for ocean and atmosphere by allowing them to be influenced by relevant measurements from the coupled fluid. Plans are outlined for implementing coupled data assimilation within ESPC for the Navy's global coupled model. Preliminary results show the impact of assimilating SST-sensitive radiances in the atmospheric model and first results of hybrid DA in a 1/12 degree model of the global ocean.
Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James;
2009-01-01
Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.
An Overview of the National Weather Service National Water Model
NASA Astrophysics Data System (ADS)
Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.
2016-12-01
The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.
NASA Astrophysics Data System (ADS)
Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre
2016-04-01
In this paper, four assimilation schemes, including an intermittent assimilation scheme (INT) and three incremental assimilation schemes (IAU 0, IAU 50 and IAU 100), are compared in the same assimilation experiments with a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. The three IAU schemes differ from each other in the position of the increment update window that has the same size as the assimilation window. 0, 50 and 100 correspond to the degree of superposition of the increment update window on the current assimilation window. Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments The relevance of each assimilation scheme is evaluated through analyses on thermohaline variables and the current velocities. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semi-independent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system.
Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena
2013-01-01
AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.
Modeling Global Atmospheric CO2 Fluxes and Transport Using NASA MERRA Reanalysis Data
NASA Astrophysics Data System (ADS)
Liu, Y.; Kawa, S. R.; Collatz, G. J.
2010-12-01
We present our first results of CO2 surface biosphere fluxes and global atmospheric CO2 transport using NASA’s new MERRA reanalysis data. MERRA is the Modern Era Retrospective-Analysis For Research And Applications based on the Goddard Global Modeling and Assimilation Office GEOS-5 data assimilation system. After some application testing and analysis, we have generated biospheric CO2 fluxes at 3-hourly temporal resolution from an updated version of the CASA carbon cycle model using the 1x1.25-degree reanalysis data. The experiment covers a period of 9 years from 2000 -2008. The affects of US midwest crop (largely corn and soy) carbon uptake and removal by harvest are explicitly included in this version of CASA. Across the agricultural regions of the Midwest US, USDA crop yield data are used to scale vegetation fluxes producing a strong sink in the growing season and a comparatively weaker source from respiration after harvest. Comparisons of the new fluxes to previous ones generated using GEOS-4 data are provided. The Parameterized Chemistry/Transport Model (PCTM) is then used with the analyzed meteorology in offline CO2 transport. In the simulation of CO2 transport, we have a higher vertical resolution from MERRA (the lowest 56 of 72 levels are used in our simulation). A preliminary analysis of the CO2 simulation results is carried out, including diurnal, seasonal and latitudinal variability. We make comparisons of our simulation to continuous CO2 analyzer sites, especially those in agricultural regions. The results show that the model captures reasonably well the observed synoptic variability due to transport changes and biospheric fluxes.
NASA Astrophysics Data System (ADS)
Rustemeier, E.; Ziese, M.; Meyer-Christoffer, A.; Finger, P.; Schneider, U.; Becker, A.
2015-12-01
Reliable data is essential for robust climate analysis. The ERA-20C reanalysis was developed during the projects ERA-CLIM and ERA-CLIM2. These projects focus on multi-decadal reanalyses of the global climate system. To ensure data quality and provide end users with information about uncertainties in these products, the 4th work package of ERA_CLIM2 deals with the quality assessment of the products including quality control and error estimation.In doing so, the monthly totals of the ERA-20C reanalysis are compared to two corresponding Global Precipitation Climatology Centre (GPCC) products; the Full Data Reanalysis Version 7 and the new HOMogenized PRecipitation Analysis of European in-situ data (HOMPRA Europe).ERA-20C reanalysis was produced based on ECMWFs IFS version Cy38r1 with a spatial resolution of about 125 km. It covers the time period 1900 to 2010. Only surface observations are assimilated namely marine winds and pressure. This allows the comparison with independent, not assimilated data. The GPCC Full Data Reanalysis Version 7 comprises monthly land-surface precipitation from approximately 75,000 rain-gauges covering the time period 1901-2013. For this paper, the version with 1° resolution is utilized. For trend analysis, a monthly European subset of the ERA-20C reanalysis is investigated spanning the years 1951-2005. The European subset will be compared to a new homogenized GPCC data set HOMPRA Europe. The latter is based on a collective of 5373 homogenized monthly rain gauge time series, carefully chosen from the GPCC archive of precipitation data.For the spatial and temporal evaluation of ERA-20C, global scores on monthly, seasonal and annual time scales are calculated. These include contingency table scores, correlation, along with spatial scores such as the fractional skill score. Unsurprisingly regions with strongest deviations are those of data scarcity, mountainous regions with their luv and lee effects, and monsoon regions. They all exhibit strong biases throughout their series, and severe shifts in the means. The new HOMPRA Europe data set is useful in particular for trend analysis. Therefore it is compared to a monthly European subset of the ERA-20C reanalysis for the same period, i.e. the years 1951-2005, to study the ERA-20C capability in reproducing observed trends across Europe.
Application Of Multi-grid Method On China Seas' Temperature Forecast
NASA Astrophysics Data System (ADS)
Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.
2006-12-01
Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.
NASA Astrophysics Data System (ADS)
Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong
2018-04-01
In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.
USDA-ARS?s Scientific Manuscript database
Land data assimilations are typically based on highly uncertain assumptions regarding the statistical structure of observation and modeling errors. Left uncorrected, poor assumptions can degrade the quality of analysis products generated by land data assimilation systems. Recently, Crow and van de...
Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki
2014-12-01
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methodological Developments in Geophysical Assimilation Modeling
NASA Astrophysics Data System (ADS)
Christakos, George
2005-06-01
This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to investigate critical issues related to knowledge reliability, such as uncertainty due to model structure error (conceptual uncertainty).
Exploring New Pathways in Precipitation Assimilation
NASA Technical Reports Server (NTRS)
Hou, Arthur; Zhang, Sara Q.
2004-01-01
Precipitation assimilation poses a special challenge in that the forward model for rain in a global forecast system is based on parameterized physics, which can have large systematic errors that must be rectified to use precipitation data effectively within a standard statistical analysis framework. We examine some key issues in precipitation assimilation and describe several exploratory studies in assimilating rainfall and latent heating information in NASA's global data assimilation systems using the forecast model as a weak constraint. We present results from two research activities. The first is the assimilation of surface rainfall data using a time-continuous variational assimilation based on a column model of the full moist physics. The second is the assimilation of convective and stratiform latent heating retrievals from microwave sensors using a variational technique with physical parameters in the moist physics schemes as a control variable. We will show the impact of assimilating these data on analyses and forecasts. Among the lessons learned are (1) that the time-continuous application of moisture/temperature tendency corrections to mitigate model deficiencies offers an effective strategy for assimilating precipitation information, and (2) that the model prognostic variables must be allowed to directly respond to an improved rain and latent heating field within an analysis cycle to reap the full benefit of assimilating precipitation information. of microwave radiances versus retrieval information in raining areas, and initial efforts in developing ensemble techniques such as Kalman filter/smoother for precipitation assimilation. Looking to the future, we discuss new research directions including the assimilation
Supporting Operational Data Assimilation Capabilities to the Research Community
NASA Astrophysics Data System (ADS)
Shao, H.; Hu, M.; Stark, D. R.; Zhou, C.; Beck, J.; Ge, G.
2017-12-01
The Developmental Testbed Center (DTC), in partnership with the National Centers for Environmental Prediction (NCEP) and other operational and research institutions, provides operational data assimilation capabilities to the research community and helps transition research advances to operations. The primary data assimilation system supported currently by the DTC is the Gridpoint Statistical Interpolation (GSI) system and the National Oceanic and Atmospheric Administration (NOAA) Ensemble Kalman Filter (EnKF) system. GSI is a variational based system being used for daily operations at NOAA, NCEP, the National Aeronautics and Space Administration, and other operational agencies. Recently, GSI has evolved into a four-dimensional EnVar system. Since 2009, the DTC has been releasing the GSI code to the research community annually and providing user support. In addition to GSI, the DTC, in 2015, began supporting the ensemble based EnKF data assimilation system. EnKF shares the observation operator with GSI and therefore, just as GSI, can assimilate both conventional and non-conventional data (e.g., satellite radiance). Currently, EnKF is being implemented as part of the GSI based hybrid EnVar system for NCEP Global Forecast System operations. This paper will summarize the current code management and support framework for these two systems. Following that is a description of available community services and facilities. Also presented is the pathway for researchers to contribute their development to the daily operations of these data assimilation systems.
Drought Prediction for Socio-Cultural Stability Project
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa; Eylander, John B.; Koster, Randall; Narapusetty, Balachandrudu; Kumar, Sujay; Rodell, Matt; Bolten, John; Mocko, David; Walker, Gregory; Arsenault, Kristi;
2014-01-01
The primary objective of this project is to answer the question: "Can existing, linked infrastructures be used to predict the onset of drought months in advance?" Based on our work, the answer to this question is "yes" with the qualifiers that skill depends on both lead-time and location, and especially with the associated teleconnections (e.g., ENSO, Indian Ocean Dipole) active in a given region season. As part of this work, we successfully developed a prototype drought early warning system based on existing/mature NASA Earth science components including the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5) forecasting model, the Land Information System (LIS) land data assimilation software framework, the Catchment Land Surface Model (CLSM), remotely sensed terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) and remotely sensed soil moisture products from the Aqua/Advanced Microwave Scanning Radiometer - EOS (AMSR-E). We focused on a single drought year - 2011 - during which major agricultural droughts occurred with devastating impacts in the Texas-Mexico region of North America (TEXMEX) and the Horn of Africa (HOA). Our results demonstrate that GEOS-5 precipitation forecasts show skill globally at 1-month lead, and can show up to 3 months skill regionally in the TEXMEX and HOA areas. Our results also demonstrate that the CLSM soil moisture percentiles are a goof indicator of drought, as compared to the North American Drought Monitor of TEXMEX and a combination of Famine Early Warning Systems Network (FEWS NET) data and Moderate Resolution Imaging Spectrometer (MODIS)'s Normalizing Difference Vegetation Index (NDVI) anomalies over HOA. The data assimilation experiments produced mixed results. GRACE terrestrial water storage (TWS) assimilation was found to significantly improve soil moisture and evapotransportation, as well as drought monitoring via soil moisture percentiles, while AMSR-E soil moisture assimilation produced marginal benefits. We carried out 1-3 month lead-time forecast experiments using GEOS-5 forecasts as input to LIS/CLSM. Based on these forecast experiments, we find that the expected skill in GEOS-5 forecasts from 1-3 months is present in the soil moisture percentiles used to indicate drought. In the case of the HOA drought, the failure of the long rains in April appears in the February 1, March 1 and April 1 initialized forecasts, suggesting that for this case, drought forecasting would have provided some advance warning about the drought conditions observed in 2011. Three key recommendations for follow-up work include: (1) carry out a comprehensive analysis of droughts observed over the entire period of record for GEOS-5 forecasts; (2) continue to analyze the GEOS-5 forecasts in HOA stratifying by anomalies in long and short rains; and (3) continue to include GRACE TWS, Soil Moisture/Ocean Salinity (SMOS) and the upcoming NASA Soil Moisture Active/Passive (SMAP) soil moisture products in a routine activity building on this prototype to further quantify the benefits for drought assessment and prediction.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena; Rosenberg, Robert
2012-01-01
AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. These observations, covering the period September 2002 until the present, have been analyzed using the AIRS Science Team Version-5 retrieval algorithm. AIRS is a high spectral resolution infrared grating spectrometer with spect,ral coverage from 650 per centimeter extending to 2660 per centimeter, with low noise and a spectral resolving power of 2400. A brief overview of the AIRS Version-5 retrieval procedure will be presented, including the AIRS channels used in different steps in the retrieval process. Many researchers have used these products to make significant advances in both climate and weather applications. Recent significant results of these experiments will be presented, including results showing that 1) assimilation of AIRS Quality Controlled temperature profiles into a General Circulation Model (GCM) significantly improves the ability to predict storm tracks of intense precipitation events; and 2) anomaly time-series of Outgoing Longwave Radiation (OLR) computed using AIRS sounding products closely match those determined from the CERES instrument, and furthermore explain that the phenomenon that global and especially tropical mean OLR have been decreasing since September 2002 is a result of El Nino/La Nina oscillations during this period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xitian; Yang, Zong-Liang; Xia, Youlong
2014-12-27
This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relativemore » to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC.« less
NASA Technical Reports Server (NTRS)
Goodman, Brian M.; Diak, George R.; Mills, Graham A.
1986-01-01
A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.
Application of an Ensemble Smoother to Precipitation Assimilation
NASA Technical Reports Server (NTRS)
Zhang, Sara; Zupanski, Dusanka; Hou, Arthur; Zupanski, Milija
2008-01-01
Assimilation of precipitation in a global modeling system poses a special challenge in that the observation operators for precipitation processes are highly nonlinear. In the variational approach, substantial development work and model simplifications are required to include precipitation-related physical processes in the tangent linear model and its adjoint. An ensemble based data assimilation algorithm "Maximum Likelihood Ensemble Smoother (MLES)" has been developed to explore the ensemble representation of the precipitation observation operator with nonlinear convection and large-scale moist physics. An ensemble assimilation system based on the NASA GEOS-5 GCM has been constructed to assimilate satellite precipitation data within the MLES framework. The configuration of the smoother takes the time dimension into account for the relationship between state variables and observable rainfall. The full nonlinear forward model ensembles are used to represent components involving the observation operator and its transpose. Several assimilation experiments using satellite precipitation observations have been carried out to investigate the effectiveness of the ensemble representation of the nonlinear observation operator and the data impact of assimilating rain retrievals from the TMI and SSM/I sensors. Preliminary results show that this ensemble assimilation approach is capable of extracting information from nonlinear observations to improve the analysis and forecast if ensemble size is adequate, and a suitable localization scheme is applied. In addition to a dynamically consistent precipitation analysis, the assimilation system produces a statistical estimate of the analysis uncertainty.
ADAS Update and Maintainability
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2010-01-01
Since 2000, both the National Weather Service Melbourne (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LOIS) as part of their forecast and warning operations. The original LOIS was developed by the Applied Meteorology Unit (AMU) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (AD AS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features. Over the years, the LDIS has become problematic to maintain since it depends on AMU-developed shell scripts that were written for an earlier version of the ADAS software. The goals of this task were to update the NWS MLB/SMG LDIS with the latest version of ADAS, incorporate new sources of observational data, and upgrade and modify the AMU-developed shell scripts written to govern the system. In addition, the previously developed ADAS graphical user interface (GUI) was updated. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting (WRF) model used by both groups.
NASA Astrophysics Data System (ADS)
Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun
2017-09-01
The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.
Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.
NASA Technical Reports Server (NTRS)
Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio
2014-01-01
The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 (Goddard Earth Observing System Model - 5) Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.
DasPy – Open Source Multivariate Land Data Assimilation Framework with High Performance Computing
NASA Astrophysics Data System (ADS)
Han, Xujun; Li, Xin; Montzka, Carsten; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan
2015-04-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. Multivariate data assimilation refers to the simultaneous assimilation of observation data for multiple model state variables into a simulation model. Our main motivation was to develop an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with C++ and Fortran language. This system has been evaluated in several soil moisture, L-band brightness temperature and land surface temperature assimilation studies. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be represented by perturbed atmospheric forcings, perturbed soil and vegetation properties and model initial conditions. The CLM4.5 (Community Land Model) was integrated as the model operator. The CMEM (Community Microwave Emission Modelling Platform), COSMIC (COsmic-ray Soil Moisture Interaction Code) and the two source formulation were integrated as observation operators for assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy is parallelized using the hybrid MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) techniques. All the input and output data flow is organized efficiently using the commonly used NetCDF file format. Online 1D and 2D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
NASA Technical Reports Server (NTRS)
Doughty, D. C.; Thompson, A. M.; Schoeberl, M. R.; Stajner, I.; Wargan, K.; Hui, W. C. J.
2011-01-01
Two recently developed methods for quantifying tropospheric ozone abundances based on Aura data, the Trajectory-enhanced Tropospheric Ozone Residual (TTOR) and an assimilation of Aura data into Goddard Earth Observing System Version 4 (ASM), are compared to ozone measurements from ozonesonde data collected in April-May 2006 during the INTEX Ozonesonde Network Study 2006 (IONS-06) campaign. Both techniques use Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) observations. Statistics on column ozone amounts for both products are presented. In general, the assimilation compares better to sonde integrated ozone to 200 hPa (28.6% difference for TTOR versus 2.7% difference for ASM), and both products are biased low. To better characterize the performance of ASM, ozone profiles based on the assimilation are compared to those from ozonesondes. We noted slight negative biases in the lower troposphere, and slight positive biases in the upper troposphere/lower stratosphere (UT/ LS), where we observed the greatest variability. Case studies were used to further understand ASM performance. We examine one case from 17 April 2006 at Bratt's Lake, Saskatchewan, where geopotential height gradients appear to be related to an underestimation in the ASM in the UT/LS region. A second case, from 21 April 2006 at Trinidad Head, California, is a situation where the overprediction of ozone in the UT/LS region does not appear to be due to current dynamic conditions but seems to be related to uncertainty in the flow pattern and large differences in MLS observations upstream.
NASA Technical Reports Server (NTRS)
Lyster, Peter M.; Guo, J.; Clune, T.; Larson, J. W.; Atlas, Robert (Technical Monitor)
2001-01-01
The computational complexity of algorithms for Four Dimensional Data Assimilation (4DDA) at NASA's Data Assimilation Office (DAO) is discussed. In 4DDA, observations are assimilated with the output of a dynamical model to generate best-estimates of the states of the system. It is thus a mapping problem, whereby scattered observations are converted into regular accurate maps of wind, temperature, moisture and other variables. The DAO is developing and using 4DDA algorithms that provide these datasets, or analyses, in support of Earth System Science research. Two large-scale algorithms are discussed. The first approach, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space based analysis system, the Physical-space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems, but is used at NASA for climate research. Systems of this size typically run at between 1 and 20 gigaflop/s. The second approach, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have More than 10(exp 6) variables, therefore the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem can easily scale to petaflop/s proportions. We discuss the computational complexity of GEOS DAS and our implementation of the Kalman filter. We also discuss and quantify some of the technical issues and limitations in developing efficient, in terms of wall clock time, and scalable parallel implementations of the algorithms.
Tropopause sharpening by data assimilation
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, R.; Neef, L.; Matthes, K.
2016-08-01
Data assimilation was recently suggested to smooth out the sharp gradients that characterize the tropopause inversion layer (TIL) in systems that did not assimilate TIL-resolving observations. We investigate whether this effect is present in the ERA-Interim reanalysis and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast system (which assimilate high-resolution observations) by analyzing the 4D-Var increments and how the TIL is represented in their data assimilation systems. For comparison, we also diagnose the TIL from high-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission, degraded to the same vertical resolution as ERA-Interim and ECMWF operational analyses. Our results show that more recent reanalysis and forecast systems improve the representation of the TIL, updating the earlier hypothesis. However, the TIL in ERA-Interim and ECMWF operational analyses is still weaker and farther away from the tropopause than GPS radio occultation observations of the same vertical resolution.
Assimilation of spatially sparse in situ soil moisture networks into a continuous model domain
USDA-ARS?s Scientific Manuscript database
Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ...
Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhijin; Sha, Feng; Liu, Yangang
2016-02-02
This five-year award supports the project “Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements (FASTER)”. The goal of this project is to produce accurate, consistent and comprehensive data sets for initializing both single column models (SCMs) and cloud resolving models (CRMs) using data assimilation. A multi-scale three-dimensional variational data assimilation scheme (MS-3DVAR) has been implemented. This MS-3DVAR system is built on top of WRF/GSI. The Community Gridpoint Statistical Interpolation (GSI) system is an operational data assimilation system at the National Centers for Environmental Prediction (NCEP) and has been implemented in the Weather Research and Forecast (WRF) model.more » This MS-3DVAR is further enhanced by the incorporation of a land surface 3DVAR scheme and a comprehensive aerosol 3DVAR scheme. The data assimilation implementation focuses in the ARM SGP region. ARM measurements are assimilated along with other available satellite and radar data. Reanalyses are then generated for a few selected period of time. This comprehensive data assimilation system has also been employed for other ARM-related applications.« less
NASA Astrophysics Data System (ADS)
Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.
2012-12-01
Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.
NASA Astrophysics Data System (ADS)
Pinnington, Ewan; Casella, Eric; Dance, Sarah; Lawless, Amos; Morison, James; Nichols, Nancy; Wilkinson, Matthew; Quaife, Tristan
2016-04-01
Forest ecosystems play an important role in sequestering human emitted carbon-dioxide from the atmosphere and therefore greatly reduce the effect of anthropogenic induced climate change. For that reason understanding their response to climate change is of great importance. Efforts to implement variational data assimilation routines with functional ecology models and land surface models have been limited, with sequential and Markov chain Monte Carlo data assimilation methods being prevalent. When data assimilation has been used with models of carbon balance, background "prior" errors and observation errors have largely been treated as independent and uncorrelated. Correlations between background errors have long been known to be a key aspect of data assimilation in numerical weather prediction. More recently, it has been shown that accounting for correlated observation errors in the assimilation algorithm can considerably improve data assimilation results and forecasts. In this paper we implement a 4D-Var scheme with a simple model of forest carbon balance, for joint parameter and state estimation and assimilate daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux site in Hampshire, UK. We then investigate the effect of specifying correlations between parameter and state variables in background error statistics and the effect of specifying correlations in time between observation error statistics. The idea of including these correlations in time is new and has not been previously explored in carbon balance model data assimilation. In data assimilation, background and observation error statistics are often described by the background error covariance matrix and the observation error covariance matrix. We outline novel methods for creating correlated versions of these matrices, using a set of previously postulated dynamical constraints to include correlations in the background error statistics and a Gaussian correlation function to include time correlations in the observation error statistics. The methods used in this paper will allow the inclusion of time correlations between many different observation types in the assimilation algorithm, meaning that previously neglected information can be accounted for. In our experiments we compared the results using our new correlated background and observation error covariance matrices and those using diagonal covariance matrices. We found that using the new correlated matrices reduced the root mean square error in the 14 year forecast of daily NEE by 44 % decreasing from 4.22 g C m-2 day-1 to 2.38 g C m-2 day-1.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.
2000-01-01
In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.
NASA Astrophysics Data System (ADS)
Arellano, A. F., Jr.; Tang, W.
2017-12-01
Assimilating observational data of chemical constituents into a modeling system is a powerful approach in assessing changes in atmospheric composition and estimating associated emissions. However, the results of such chemical data assimilation (DA) experiments are largely subject to various key factors such as: a) a priori information, b) error specification and representation, and c) structural biases in the modeling system. Here we investigate the sensitivity of an ensemble-based data assimilation state and emission estimates to these key factors. We focus on investigating the assimilation performance of the Community Earth System Model (CESM)/CAM-Chem with the Data Assimilation Research Testbed (DART) in representing biomass burning plumes in the Amazonia during the 2008 fire season. We conduct the following ensemble DA MOPITT CO experiments: 1) use of monthly-average NCAR's FINN surface fire emissionss, 2) use of daily FINN surface fire emissions, 3) use of daily FINN emissions with climatological injection heights, and 4) use of perturbed FINN emission parameters to represent not only the uncertainties in combustion activity but also in combustion efficiency. We show key diagnostics of assimilation performance for these experiments and verify with available ground-based and aircraft-based measurements.
Multi-scale assimilation of remotely sensed snow observations for hydrologic estimation
NASA Astrophysics Data System (ADS)
Andreadis, K.; Lettenmaier, D.
2008-12-01
Data assimilation provides a framework for optimally merging model predictions and remote sensing observations of snow properties (snow cover extent, water equivalent, grain size, melt state), ideally overcoming limitations of both. A synthetic twin experiment is used to evaluate a data assimilation system that would ingest remotely sensed observations from passive microwave and visible wavelength sensors (brightness temperature and snow cover extent derived products, respectively) with the objective of estimating snow water equivalent. Two data assimilation techniques are used, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter (EnMKF). One of the challenges inherent in such a data assimilation system is the discrepancy in spatial scales between the different types of snow-related observations. The EnMKF represents the sample model error covariance with a tree that relates the system state variables at different locations and scales through a set of parent-child relationships. This provides an attractive framework to efficiently assimilate observations at different spatial scales. This study provides a first assessment of the feasibility of a system that would assimilate observations from multiple sensors (MODIS snow cover and AMSR-E brightness temperatures) and at different spatial scales for snow water equivalent estimation. The relative value of the different types of observations is examined. Additionally, the error characteristics of both model and observations are discussed.
NASA Technical Reports Server (NTRS)
Larson, Jay W.
1998-01-01
Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.
NASA Astrophysics Data System (ADS)
Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos
2014-05-01
In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.
Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system
NASA Astrophysics Data System (ADS)
Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.
2014-11-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS Package for Observation Processing (KPOP) system for data assimilation, preprocessing and quality control modules for bending angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending angle operator and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research (NCAR) Community Atmosphere Model-Spectral Element (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS-LETKF data assimilation system, which has been successfully implemented to a cubed-sphere model with fully unstructured quadrilateral meshes. As a result of data processing, the bending angle departure statistics between observation and background shows significant improvement. Also, the first experiment in assimilating GPS-RO bending angle resulting from KPOP within KIAPS-LETKF shows encouraging results.
A Unified Data Assimilation Strategy for Regional Coupled Atmosphere-Ocean Prediction Systems
NASA Astrophysics Data System (ADS)
Xie, Lian; Liu, Bin; Zhang, Fuqing; Weng, Yonghui
2014-05-01
Improving tropical cyclone (TC) forecasts is a top priority in weather forecasting. Assimilating various observational data to produce better initial conditions for numerical models using advanced data assimilation techniques has been shown to benefit TC intensity forecasts, whereas assimilating large-scale environmental circulation into regional models by spectral nudging or Scale-Selective Data Assimilation (SSDA) has been demonstrated to improve TC track forecasts. Meanwhile, taking into account various air-sea interaction processes by high-resolution coupled air-sea modelling systems has also been shown to improve TC intensity forecasts. Despite the advances in data assimilation and air-sea coupled models, large errors in TC intensity and track forecasting remain. For example, Hurricane Nate (2011) has brought considerable challenge for the TC operational forecasting community, with very large intensity forecast errors (27, 25, and 40 kts for 48, 72, and 96 h, respectively) for the official forecasts. Considering the slow-moving nature of Hurricane Nate, it is reasonable to hypothesize that air-sea interaction processes played a critical role in the intensity change of the storm, and accurate representation of the upper ocean dynamics and thermodynamics is necessary to quantitatively describe the air-sea interaction processes. Currently, data assimilation techniques are generally only applied to hurricane forecasting in stand-alone atmospheric or oceanic model. In fact, most of the regional hurricane forecasting models only included data assimilation techniques for improving the initial condition of the atmospheric model. In such a situation, the benefit of adjustments in one model (atmospheric or oceanic) by assimilating observational data can be compromised by errors from the other model. Thus, unified data assimilation techniques for coupled air-sea modelling systems, which not only simultaneously assimilate atmospheric and oceanic observations into the coupled air-sea modelling system, but also nudging the large-scale environmental flow in the regional model towards global model forecasts are of increasing necessity. In this presentation, we will outline a strategy for an integrated approach in air-sea coupled data assimilation and discuss its benefits and feasibility from incremental results for select historical hurricane cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Po-Lun; Gattiker, J. R.; Liu, Xiaohong
2013-06-27
A Gaussian process (GP) emulator is applied to quantify the contribution of local and remote emissions of black carbon (BC) on the BC concentrations in different regions using a Latin Hypercube sampling strategy for emission perturbations in the offline version of the Community Atmosphere Model Version 5.1 (CAM5) simulations. The source-receptor relationships are computed based on simulations constrained by a standard free-running CAM5 simulation and the ERA-Interim reanalysis product. The analysis demonstrates that the emulator is capable of retrieving the source-receptor relationships based on a small number of CAM5 simulations. Most regions are found susceptible to their local emissions. Themore » emulator also finds that the source-receptor relationships retrieved from the model-driven and the reanalysis-driven simulations are very similar, suggesting that the simulated circulation in CAM5 resembles the assimilated meteorology in ERA-Interim. The robustness of the results provides confidence for applying the emulator to detect dose-response signals in the climate system.« less
Variational data assimilation system "INM RAS - Black Sea"
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir
2013-04-01
Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
NASA Astrophysics Data System (ADS)
Schimel, J.; Xu, X.; Lawrence, C. R.
2013-12-01
Models are essential tools for linking microbial dynamics to their manifestations at large scales. Yet, developing mechanistically accurate models requires data that we often don't have and may not be able to get, such as the functional life-span of an extracellular enzyme. Yet there are approaches to condense complex microbial dynamics into 'workable' models. One example is in describing soil responses to moisture pulses. We developed a family of five separate models to capture microbial dynamics through dry/wet cycles. The simplest was a straight multi-pool, 1st-order decomposition model, with versions adding levels of microbial mechanism, culminating in one that included exoenzyme-breakdown of detritus. However, this identified the critical mechanism, not as exoenzymes, but as the production of a bioavailable C pool that accumulates in dry soil and is rapidly metabolized on rewetting. A final version of the model therefore stripped out explicit enzymes but retained separate polymer breakdown and substrate use; this model was the most robust. A second pervasive question in soil biology has been what controls the size of the microbial biomass across biomes? We approached this through a physiological model that regulated microbial C assimilation into biomass by two processes: initial assimilation followed by ongoing maintenance. Assimilation is a function of substrate quality, while maintenance is regulated by climate--notably the period of the year during which microbes are active. This model was tested against a global dataset of microbial biomass. It explains why, for example, deserts and tundra have relatively high proportions of their organic matter in microbial biomass, while the low substrate quality and long active periods common in temperate conifer forests lead to low biomass levels.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley T.; Chou, Shih-Hung; Jedlovec, Gary J.
2012-01-01
For over 6 years, AIRS radiances have been assimilated operationally into National (e.g. Environmental Modeling Center (EMC)) and International (e.g. European Centre for Medium-Range Weather Forecasts (ECMWF)), operational centers; assimilated in the North American Mesoscale (NAM) since 2008. Due partly to data latency and operational constraints, hyperspectral radiance assimilation has had less impact on the Gridpoint Statistical Interpolation (GSI) system used in the NAM and GFS. Objective of this project is to use AIRS retrieved profiles as a proxy for the AIRS radiances in situations where AIRS radiances are unable to be assimilated in the current operational system by evaluating location and magnitude of analysis increments.
NASA Technical Reports Server (NTRS)
Lin, Xin; Zhang, Sara Q.; Hou, Arthur Y.
2006-01-01
Global microwave rainfall retrievals from a 5-satellite constellation, including TMI from TRMM, SSWI from DMSP F13, F14 and F15, and AMSR-E from EOS-AQUA, are assimilated into the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) using a 1-D variational continuous assimilation (VCA) algorithm. The physical and dynamical impact of rainfall assimilation on GEOS analyses and forecasts is examined at various temporal and spatial scales. This study demonstrates that the 1-D VCA algorithm, which was originally developed and evaluated for rainfall assimilations over tropical oceans, can effectively assimilate satellite microwave rainfall retrievals and improve GEOS analyses over both the Tropics and the extratropics where the atmospheric processes are dominated by different large-scale dynamics and moist physics, and also over the land, where rainfall estimates from passive microwave radiometers are believed to be less accurate. Results show that rainfall assimilation renders the GEOS analysis physically and dynamically more consistent with the observed precipitation at the monthly-mean and 6-hour time scales. Over regions where the model precipitation tends to misbehave in distinctly different rainy regimes, the 1-D VCA algorithm, by compensating for errors in the model s moist time-tendency in a 6-h analysis window, is able to bring the rainfall analysis closer to the observed. The radiation and cloud fields also tend to be in better agreement with independent satellite observations in the rainfall-assimilation m especially over regions where rainfall analyses indicate large improvements. Assimilation experiments with and without rainfall data for a midlatitude frontal system clearly indicates that the GEOS analysis is improved through changes in the thermodynamic and dynamic fields that respond to the rainfall assimilation. The synoptic structures of temperature, moisture, winds, divergence, and vertical motion, as well as vorticity are more realistically captured across the front. Short-term forecasts using initial conditions assimilated with rainfall data also show slight improvements. 1
Maintaining a Local Data Integration System in Support of Weather Forecast Operations
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian
2010-01-01
Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division/Meteorological Assimilation Data Ingest System (MADIS), as well as the Kennedy Space Center ICape Canaveral Air Force Station wind tower network. The scripts provide NWS MLB and SMG with several options for setting a desirable runtime configuration of the LDIS to account for adjustments in grid spacing, domain location, choice of observational data sources, and selection of background model fields, among others. The utility of an improved LDIS will be demonstrated through postanalysis warm and cool season case studies that compare high-resolution model output with and without the ADAS analyses. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting model.
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.
2011-01-01
A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.
2010-09-30
oceans from radar , aircraft and satellite data; 2) Derive an accurate mesoscale environment of convective systems through the assimilation of satellite... radar , lidar and in-situ data; 3) Evaluate the quality of the global forecast system (e.g., Navy Operational Global Atmospheric Prediction System or...from Aqua and NASA Tropical Rainfall Measuring Mission (TRMM), 2) developing mesoscale data assimilation techniques to assimilate satellite, radar
NASA Technical Reports Server (NTRS)
Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K.; Keyser, D. A.; Mccumber, M. C.
1983-01-01
The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered.
NASA Technical Reports Server (NTRS)
Stajner, Ovanka; Riishojgaard, Lars Peter; Rood, Richard B.
2000-01-01
In a data assimilation system (DAS), model forecast atmospheric fields, observations and their respective statistics are combined in an attempt to produce the best estimate of these fields. Ozone observations from two instruments are assimilated in the Goddard Earth Observing System (GEOS) ozone DAS: the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument. The assimilated observations are complementary; TOMS provides a global daily coverage of total column ozone, without profile information, while SBUV measures ozone profiles and total column ozone at nadir only. The purpose of this paper is to examine the performance of the ozone assimilation system in the absence of observations from one of the instruments as it can happen in the event of a failure of an instrument or when there are problems with an instrument for a limited time. Our primary concern is for the performance of the GEOS ozone DAS when it is used in the operational mode to provide near real time analyzed ozone fields in support of instruments on the Terra satellite. In addition, we are planning to produce a longer term ozone record by assimilating historical data. We want to quantify the differences in the assimilated ozone fields that are caused by the changes in the TOMS or SBUV observing network. Our primary interest is in long term and large scale features visible in global statistics of analysis fields, such as differences in the zonal mean of assimilated ozone fields or comparisons with independent observations, While some drifts in assimilated fields occur immediately, after assimilating just one day of different observations, the others develop slowly over several months. Thus, we are also interested in the length of time, which is determined from time series, that is needed for significant changes to take place.
Assimilation of Radio Occultation Data From the Chinese Fengyun Meterological Satellite at GRAPES
NASA Astrophysics Data System (ADS)
LIU, Y.
2016-12-01
GNOS (GNSS Occultation Sounder) is a new radio occultation payload onboard the Chinese FY-3 series satellites, which probes the Earth's neutral atmosphere and the ionosphere. GNOS is capable of tracking the signals of both the Beidou (the Chinese navigation satellite system) and the GPS navigation satellite systems. The first FY-3C satellite with GNOS launch on 23 September 2013 successfully, and has more than 500 RO events daily, including approximately 400 GPS and 100 Beidou RO events. In this paper the data quality from FY3C GNOS, including GPS and Beidou radio accultation data, will be presented. The impact experiments of assimilating GNOS radio accultation refractivity profiles in GRAPES (Global and Regional Assimilation Prediction System) a new generation numerical model system of China Meteorological Administration, are also presented. Results show that the lowest probing height of 90% GNOS profile can reach 4KM away from the surface. The bias of GNOS refractivity profiles compared to reanalysis and radiosonde data is greater than those of COSMIC and GRAS, but after data quality control the standard deviation of GNOS refractivity is approximately 2%. The results of the GNOS assimilation experiments show that GNOS data can improve the analysis in the upper troposphere and lower stratosphere, particularly in the southern hemisphere and the ocean, which produce the neutral and positive impacts in GRAPES assimilation system. The combined impact of assimilating both GPS and Beidou GNOS radio occultation is greater than assimilating either instrument individually.
NASA Astrophysics Data System (ADS)
Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli
2018-05-01
Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.
NASA Technical Reports Server (NTRS)
Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.
2003-01-01
The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.
Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain
NASA Astrophysics Data System (ADS)
Gruber, A.; Crow, W. T.; Dorigo, W. A.
2018-02-01
Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.
Validation of a Wave Data Assimilation System Based on SWAN
NASA Astrophysics Data System (ADS)
Flampourisi, Stylianos; Veeramony, Jayaram; Orzech, Mark D.; Ngodock, Hans E.
2013-04-01
SWAN is one of the most broadly used models for wave predictions in the nearshore, with known and extensively studied limitations due to the physics and/or to the numerical implementation. In order to improve the performance of the model, a 4DVAR data assimilation system based on a tangent linear code and the corresponding adjoint from the numerical SWAN model has been developed at NRL(Orzech et. al., 2013), by implementing the methodology of Bennett 2002. The assimilation system takes into account the nonlinear triad and quadruplet interactions, depth-limited breaking, wind forcing, bottom friction and white-capping. Using conjugate gradient method, the assimilation system minimizes a quadratic penalty functional (which represents the overall error of the simulation) and generates the correction of the forward simulation in spatial, temporal and spectral domain. The weights are given to the output of the adjoint by calculating the covariance to an ensemble of forward simulations according to Evensen 2009. This presentation will focus on the extension of the system to a weak-constrainted data assimilation system and on the extensive validation of the system by using wave spectra for forcing, assimilation and validation, from FRF Duck, North Carolina, during August 2011. During this period, at the 17 m waverider buoy location, the wind speed was up to 35 m/s (due to Hurricane Irene) and the significant wave height varied from 0.5 m to 6 m and the peak period between 5 s and 18 s. In general, this study shows significant improvement of the integrated spectral properties, but the main benefit of assimilating the wave spectra (and not only their integrated properties) is that the accurate simulation of separated, in frequency and in direction, wave systems is possible even nearshore, where non-linear phenomena are dominant. The system is ready to be used for more precise reanalysis of the wave climate and climate variability, and determination of coastal hazards in regional or local scales, in case of available wave data. References: Orzech, M.D., J. Veeramony, and H.E. Ngodock, 2013: A variational assimilation system for nearshore wave modeling. J. Atm. & Oc. Tech., in press.
NASA Astrophysics Data System (ADS)
Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris
2017-04-01
Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the apparent benefit from using ensembles for cloudy radiance assimilation in an EnVar context.
Assimilation of glider and mooring data into a coastal ocean model
NASA Astrophysics Data System (ADS)
Jones, Emlyn M.; Oke, Peter R.; Rizwi, Farhan; Murray, Lawrence M.
We have applied an ensemble optimal interpolation (EnOI) data assimilation system to a high resolution coastal ocean model of south-east Tasmania, Australia. The region is characterised by a complex coastline with water masses influenced by riverine input and the interaction between two offshore current systems. Using a large static ensemble to estimate the systems background error covariance, data from a coastal observing network of fixed moorings and a Slocum glider are assimilated into the model at daily intervals. We demonstrate that the EnOI algorithm can successfully correct a biased high resolution coastal model. In areas with dense observations, the assimilation scheme reduces the RMS difference between the model and independent GHRSST observations by 90%, while the domain-wide RMS difference is reduced by a more modest 40%. Our findings show that errors introduced by surface forcing and boundary conditions can be identified and reduced by a relatively sparse observing array using an inexpensive ensemble-based data assimilation system.
An integrated GIS application system for soil moisture data assimilation
NASA Astrophysics Data System (ADS)
Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang
2014-11-01
The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.
Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system
NASA Astrophysics Data System (ADS)
Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.
2015-03-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS package for observation processing (KPOP) system for data assimilation, preprocessing, and quality control modules for bending-angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. The GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending-angle operator, and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS local ensemble transform Kalman filter (LETKF) data assimilation system, which has been successfully implemented to a cubed-sphere model with unstructured quadrilateral meshes. As a result of data processing, the bending-angle departure statistics between observation and background show significant improvement. Also, the first experiment in assimilating GPS-RO bending angle from KPOP within KIAPS-LETKF shows encouraging results.
Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5
NASA Astrophysics Data System (ADS)
Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D.
2015-12-01
This presentation will provide an overview of the most recent reanalysis activities performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). A pilot reanalysis of the 20th-century (ERA-20C) has recently been completed. Funded through the European FP7 collaborative project ERA-CLIM, ERA-20C is part of a suite of experiments that also includes a model-only integration (ERA-20CM) and a land-surface reanalysis (ERA-20CL). Its data assimilation system is constrained by only surface observations obtained from ISPD (3.2.6) and ICOADS (2.5.1). Surface boundary conditions are provided by the Hadley Centre (HadISST2.1.0.0) and radiative forcing follows CMIP5 recommended data sets. First-guess uncertainty estimates are based on a 10-member ensemble of Data Assimilations, ERA-20C ensemble, run prior to ERA-20C using ten SST and sea-ice realizations from the Hadley Centre. In November 2014, the European Commission entrusted ECMWF to run on its behalf the Copernicus Climate Change Service (C3S) aiming at producing quality-assured information about the past, current and future states of the climate at both European and global scales. Reanalysis will be one of the main components of the C3S portfolio and the first one to be produced is a global modern era reanalysis (ERA5) covering the period from 1979 onwards. Based on a recent version of the ECMWF data assimilation system, ERA5 will replace the widely used ERA-Interim dataset. This new production will benefit from a much improved model, and better characterized and exploited observations compared to its predecessor. The first part of the presentation will focus on the ERA-20C production, provide an overview of its main characteristics and discuss some of the key results from its assessment. The second part of the talk will give an overview of ERA5, and briefly discuss some of its challenges.
Lannelongue, Gustavo; Gonzalez-Benito, Javier; Gonzalez-Benito, Oscar; Gonzalez-Zapatero, Carmen
2015-01-01
This research addresses the relationship between an organisation's assimilation of its environmental management system (EMS), the experience it gains through it, and its environmental performance. Assimilation here refers to the degree to which the requirements of the management standard are integrated within a plant's daily operations. Basing ourselves on the heterogeneity of organisations, we argue that assimilation and experience will inform environmental performance. Furthermore, we posit that the relationship between assimilation and environmental performance depends on experience. The attempt to obtain greater assimilation in a shorter time leads an organisation to record a poorer environmental outcome, which we shall refer to as time compression diseconomies in environmental management. We provide empirical evidence based on 154 plants pertaining to firms in Spain subject to the European Union's CO2 Emissions Trading System. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ocean Data Assimilation in Support of Climate Applications: Status and Perspectives.
Stammer, D; Balmaseda, M; Heimbach, P; Köhl, A; Weaver, A
2016-01-01
Ocean data assimilation brings together observations with known dynamics encapsulated in a circulation model to describe the time-varying ocean circulation. Its applications are manifold, ranging from marine and ecosystem forecasting to climate prediction and studies of the carbon cycle. Here, we address only climate applications, which range from improving our understanding of ocean circulation to estimating initial or boundary conditions and model parameters for ocean and climate forecasts. Because of differences in underlying methodologies, data assimilation products must be used judiciously and selected according to the specific purpose, as not all related inferences would be equally reliable. Further advances are expected from improved models and methods for estimating and representing error information in data assimilation systems. Ultimately, data assimilation into coupled climate system components is needed to support ocean and climate services. However, maintaining the infrastructure and expertise for sustained data assimilation remains challenging.
Assimilation of GNSS radio occultation observations in GRAPES
NASA Astrophysics Data System (ADS)
Liu, Y.; Xue, J.
2014-07-01
This paper reviews the development of the global navigation satellite system (GNSS) radio occultation (RO) observations assimilation in the Global/Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration, including the choice of data to assimilate, the data quality control, the observation operator, the tuning of observation error, and the results of the observation impact experiments. The results indicate that RO data have a significantly positive effect on analysis and forecast at all ranges in GRAPES not only in the Southern Hemisphere where conventional observations are lacking but also in the Northern Hemisphere where data are rich. It is noted that a relatively simple assimilation and forecast system in which only the conventional and RO observation are assimilated still has analysis and forecast skill even after nine months integration, and the analysis difference between both hemispheres is gradually reduced with height when compared with NCEP (National Centers for Enviromental Prediction) analysis. Finally, as a result of the new onboard payload of the Chinese FengYun-3 (FY-3) satellites, the research status of the RO of FY-3 satellites is also presented.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Ştefănescu, R.; Sandu, A.; Navon, I. M.
2015-08-01
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush-Kuhn-Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov-Galerkin projections. For the first time POD, tensorial POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov-Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.
NASA Astrophysics Data System (ADS)
Flampouris, Stylianos; Penny, Steve; Alves, Henrique
2017-04-01
The National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) provides the operational wave forecast for the US National Weather Service (NWS). Given the continuous efforts to improve forecast, NCEP is developing an ensemble-based data assimilation system, based on the local ensemble transform Kalman filter (LETKF), the existing operational global wave ensemble system (GWES) and on satellite and in-situ observations. While the LETKF was designed for atmospheric applications (Hunt et al 2007), and has been adapted for several ocean models (e.g. Penny 2016), this is the first time applied for oceanic waves assimilation. This new wave assimilation system provides a global estimation of the surface sea state and its approximate uncertainty. It achieves this by analyzing the 21-member ensemble of the significant wave height provided by GWES every 6h. Observations from four altimeters and all the available in-situ measurements are used in this analysis. The analysis of the significant wave height is used for initializing the next forecasting cycle; the data assimilation system is currently being tested for operational use.
NASA Astrophysics Data System (ADS)
Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron
2016-04-01
The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that MEB version simulates more accurately the crop transpiration compared to the standard version. The RMSE and R² were about 0.79 mm and 0.67 for MEB and 1.37mm and 0.65 for standard version. An in-depth analysis of the results points out : (1) a deficiency of the standard version in simulating soil evaporation, in particular after an irrigation event, that directly impact the latent heat fluxes prediction because of two much energy reaching the soil and (2) a significant improvement of the surface temperature predictions with the double energy balance version; an interesting feature in the context of data assimilation; (3) a poor parameterization of the stomatal conductance in the A-gs photosynthetic module that is corrected thanks to a stochastic parameter identification approach. Results have direct implication for the prediction of evapotranspiration and its partition over irrigated crops in semi-arid areas of the South Mediterranean region.
NASA Astrophysics Data System (ADS)
Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Kumar, Sujay; Mocko, David; Wei, Helin
2016-01-01
This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15% for mean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.
NASA Technical Reports Server (NTRS)
Xia, Youlong; Peters-Lidard, Christa D.; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa; Ek, Michael B.; Kumar, Sujay V.; Mocko, David M.; Wei, Helin
2015-01-01
This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.
NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay
2015-01-01
Hyperspectral infrared sounder radiance data are assimilated into operational modeling systems however the process is computationally expensive and only approximately 1% of available data are assimilated due to data thinning as well as the fact that radiances are restricted to cloud-free fields of view. In contrast, the number of hyperspectral infrared profiles assimilated is much higher since the retrieved profiles can be assimilated in some partly cloudy scenes due to profile coupling other data, such as microwave or neural networks, as first guesses to the retrieval process. As the operational data assimilation community attempts to assimilate cloud-affected radiances, it is possible that the use of retrieved profiles might offer an alternative methodology that is less complex and more computationally efficient to solve this problem. The NASA Short-term Prediction Research and Transition (SPoRT) Center has assimilated hyperspectral infrared retrieved profiles into Weather Research and Forecasting Model (WRF) simulations using the Gridpoint Statistical Interpolation (GSI) System. Early research at SPoRT demonstrated improved initial conditions when assimilating Atmospheric Infrared Sounder (AIRS) thermodynamic profiles into WRF (using WRF-Var and assigning more appropriate error weighting to the profiles) to improve regional analysis and heavy precipitation forecasts. Successful early work has led to more recent research utilizing WRF and GSI for applications including the assimilation of AIRS profiles to improve WRF forecasts of atmospheric rivers and assimilation of AIRS, Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI) profiles to improve model representation of tropopause folds and associated non-convective wind events. Although more hyperspectral infrared retrieved profiles can be assimilated into model forecasts, one disadvantage is the retrieved profiles have traditionally been assigned the same error values as the rawinsonde observations when assimilated with GSI. Typically, satellitederived profile errors are larger and more difficult to quantify than traditional rawinsonde observations (especially in the boundary layer), so it is important to appropriately assign observation errors within GSI to eliminate potential spurious innovations and analysis increments that can sometimes arise when using retrieved profiles. The goal of this study is to describe modifications to the GSI source code to more appropriately assimilate hyperspectral infrared retrieved profiles and outline preliminary results that show the differences between a model simulation that assimilated the profiles as rawinsonde observations and one that assimilated the profiles in a module with the appropriate error values.
EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python
NASA Astrophysics Data System (ADS)
Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire
2017-04-01
We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.
Inner Radiation Belt Dynamics and Climatology
NASA Astrophysics Data System (ADS)
Guild, T. B.; O'Brien, P. P.; Looper, M. D.
2012-12-01
We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.
A new stomatal paradigm for earth system models? (Invited)
NASA Astrophysics Data System (ADS)
Bonan, G. B.; Williams, M. D.; Fisher, R. A.; Oleson, K. W.; Lombardozzi, D.
2013-12-01
The land component of climate, and now earth system, models has simulated stomatal conductance since the introduction in the mid-1980s of the so-called second generation models that explicitly represented plant canopies. These second generation models used the Jarvis-style stomatal conductance model, which empirically relates stomatal conductance to photosynthetically active radiation, temperature, vapor pressure deficit, CO2 concentration, and other factors. Subsequent models of stomatal conductance were developed from a more mechanistic understanding of stomatal physiology, particularly that stomata are regulated so as to maximize net CO2 assimilation (An) and minimize water loss during transpiration (E). This concept is embodied in the Ball-Berry stomatal conductance model, which relates stomatal conductance (gs) to net assimilation (An), scaled by the ratio of leaf surface relative humidity to leaf surface CO2 concentration, or the Leuning variant which replaces relative humidity with a vapor pressure deficit term. This coupled gs-An model has been widely used in climate and earth system models since the mid-1990s. An alternative approach models stomatal conductance by directly optimizing water use efficiency, defined as the ratio An/gs or An/E. Conceptual developments over the past several years have shown that the Ball-Berry style model can be derived from optimization theory. However, an explicit optimization model has not been tested in an earth system model. We compare the Ball-Berry model with an explicit optimization model, both implemented in a new plant canopy parameterization developed for the Community Land Model, the land component of the Community Earth System Model. The optimization model is from the Soil-Plant-Atmosphere (SPA) model, which integrates plant and soil hydraulics, carbon assimilation, and gas diffusion. The canopy parameterization is multi-layer and resolves profiles of radiation, temperature, vapor pressure, leaf water stress, stomatal conductance, and photosynthetic capacity within the canopy. Stomatal conductance for each layer is calculated so as to maximize carbon gain, within the limitations of plant water storage and soil-to-canopy water transport. An iterative procedure determines for every model timestep the maximum stomatal conductance for a canopy layer and the associated assimilation rate. We compare the Ball-Berry stomatal model and the SPA stomatal model within the multi-layer canopy parameterization. We use eddy covariance flux tower data for six sites (three deciduous broadleaf forest and three evergreen needleleaf forest) spanning a total of 51 site-years. The multi-layer canopy has improved simulation of gross primary production (GPP), evapotranspiration, and sensible heat flux compared with the most recent version of the Community Land Model (CLM4.5). The Ball-Berry and SPA stomatal models have prominent differences in simulated fluxes and compared with observations. This is most evident during drought.
A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation
NASA Technical Reports Server (NTRS)
Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.
2006-01-01
Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.
All-Sky Microwave Imager Data Assimilation at NASA GMAO
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Jin, Jianjun; El Akkraoui, Amal; McCarty, Will; Todling, Ricardo; Gu, Wei; Gelaro, Ron
2017-01-01
Efforts in all-sky satellite data assimilation at the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been focused on the development of GSI configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) and Global Change Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 (AMSR-2). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be relatively transparent to atmospheric gases and thin ice clouds, and highly sensitive to precipitation. Therefore, GMAOs all-sky data assimilation efforts are primarily focused on utilizing these data in precipitating regions. The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar configuration of the Goddard Earth Observing System (GEOS) data assimilation system, which will be included in the next formal update of GEOS. This article provides an overview of the development of all-sky radiance assimilation in GEOS, including some performance metrics. In addition, various projects underway at GMAO designed to enhance the all-sky implementation will be introduced.
Thermal coefficients of technology assimilation by natural systems
NASA Technical Reports Server (NTRS)
Mueller, R. F.
1971-01-01
Estimates of thermal coefficients of the rates of technology assimilation processes was made. Consideration of such processes as vegetation and soil recovery and pollution assimilation indicates that these processes proceed ten to several hundred times more slowly in earth's cold regions than in temperate regions. It was suggested that these differential assimilation rates are important data in planning for technological expansion in Arctic regions.
Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank
A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting
The NERC Data Assimilation Research Centre and Envisat
NASA Astrophysics Data System (ADS)
LAHOZ, W. A.
2001-12-01
The NERC Data Assimilation Research Centre (DARC), a Centre of Excellence in Earth Observation, has been recently set up in the UK. DARC is a distributed centre, with participation from the universities of Reading, Oxford, Cambridge and Edinburgh, and the Rutherford Appleton Laboratory. It has strong links with the UK Met Office, and with European data assimilation groups. One of the remits of DARC is the exploitation of research satellite data (e.g. from ESA's Envisat, due to be launched in November 2001). This presentation will describe the participation of DARC in the Envisat programme. This participation involves: (1) the calibration/validation of Envisat data using an NWP assimilation system, and (2) the production of 4-d quality-controlled datasets of temperature, ozone and water vapour from Envisat using an NWP assimilation system.
NASA Astrophysics Data System (ADS)
Calvet, Jean-Christophe; Carrer, Dominique; Roujean, Jean-Louis; Lafont, Sébastien
2013-04-01
The ISBA-A-gs land surface model is a component of the SURFEX modeling platform developed by Meteo-France, used for research and operational applications in meteorology, hydrology, and climate modeling. ISBA-A-gs simulates hourly water and CO2 fluxes together with soil moisture. An option of the model permits the simulation of the vegetation biomass and of the leaf area index (LAI). The simulated photosynthesis depends on atmospheric CO2 concentration, air temperature and humidity, soil moisture, radiant solar energy, the photosynthetic capacity of the leaves and on factors that condition the distribution of solar radiation over the leaves. In the original version of the model (Jacobs et al. (Agr. Forest Meteorol., 1996), Calvet et al. (Agr. Forest Meteorol., 1998)), the radiative transfer scheme within the canopy was implemented according to a self shading approach. The incident fluxes at the top of the canopy go through a multi-layer vegetation cover. Then, the attenuated flux in the PAR wavelength domain of each layer is used by the photosynthesis model to calculate the leaf net assimilation of CO2 (An). The leaf-level An values are then integrated at the canopy level. In this study, an upgraded version of the radiative transfer model is implemented. An assessment of the vegetation transmittance functions and of various canopy light-response curves is made. The fluxes produced by the new version of ISBA-A-gs are evaluated using data from a number of FLUXNET forest sites. The new model presents systematically better scores than the previous version. Moreover, ISBA-A-gs is now able to simulate prognostic values of the fraction of absorbed PAR (FAPAR). As FAPAR can be observed from space, this new capability permits the validation of the model simulations at a global scale, and the integration of measured FAPAR values in the model through data assimilation techniques.
Treatment of systematic errors in land data assimilation systems
NASA Astrophysics Data System (ADS)
Crow, W. T.; Yilmaz, M.
2012-12-01
Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of land surface states. Such differences are commonly resolved prior to data assimilation through implementation of a pre-processing rescaling step whereby observations are scaled (or non-linearly transformed) to somehow "match" comparable predictions made by an assimilation model. While the rationale for removing systematic differences in means (i.e., bias) between models and observations is well-established, relatively little theoretical guidance is currently available to determine the appropriate treatment of higher-order moments during rescaling. This talk presents a simple analytical argument to define an optimal linear-rescaling strategy for observations prior to their assimilation into a land surface model. While a technique based on triple collocation theory is shown to replicate this optimal strategy, commonly-applied rescaling techniques (e.g., so called "least-squares regression" and "variance matching" approaches) are shown to represent only sub-optimal approximations to it. Since the triple collocation approach is likely infeasible in many real-world circumstances, general advice for deciding between various feasible (yet sub-optimal) rescaling approaches will be presented with an emphasis of the implications of this work for the case of directly assimilating satellite radiances. While the bulk of the analysis will deal with linear rescaling techniques, its extension to nonlinear cases will also be discussed.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
NASA Technical Reports Server (NTRS)
Yang, R.; Houser, P.; Joiner, J.
1998-01-01
The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.
Screen-level data assimilation of observations and pseudo-observations in COSMO-I2
NASA Astrophysics Data System (ADS)
Milelli, Dr.; Turco, Dr.; Cane, Dr.; Oberto, Dr.; Pelosini, Dr.
2009-09-01
The COSMO model has been developed by the COnsortium for Small-scale MOdelling, an over-national consortium coordinating the cooperation of the national and regional weather services of Germany, Italy, Switzerland, Greece, Poland and Romania. Its operational version does not make use of the 2m temperature, since it has been shown to have potentially adverse effects on the stability of the planetary boundary layer. Moreover, in pre-operational tests, it has been showed to degrade the low-tropospheric thermal structure of the model. The 2m temperature is at the moment only used in the soil moisture analysis, where it has the potential to modify the surface fluxes and to improve the prediction of 2m temperature during the forecast time. Despite these facts, there is an option in the model for the inclusion of 2m temperature in the assimilation cycle. For this reason, considering the great number of non-GTS stations in the ARPA Piemonte ground network, it has been decided to try the assimilation of 2m temperature in the COSMO-I2 version of the model, which has a horizontal resolution of about 3 km more similar to the average resolution of the thermometers. Two different test periods have been considered, from 1 to 15 September 2008 (summer-like weather) and from 3 to 17 January 2009 (winter-like weather). Every day we have run two simulations up to +24h, starting at 00UTC and 12UTC in order to investigate also the dependence on the initial state of the PBL. The aim of the work is to investigate the assimilation of the non-GTS data in the first 12h of the simulations in order to create an operational very high-resolution analysis, but also to test the option of running in the future a very short-range forecast (+12h to +18h) starting from these analyses. The results, in terms of RMSE, Mean Error (ME) and diurnal cycle of some surface variables such as 2m temperature, 2m relative humidity and 10m wind intensity, and in terms of vertical profile of temperature, show in general a positive impact during the assimilation cycle and below 1000-1500 m respectively and a neutral impact elsewhere, because the effect of the nudging vanishes a few hours after the end of the assimilation. As a second step, we introduced the assimilation of the 2 m temperature forecasts given by the Multimodel SuperEnsemble technique for all the available stations of the ARPA Piemonte network into the model, as if they were observations (we call them pseudo-observations), from +12h to +24h. The Multimodel SuperEnsemble technique is a powerful post-processing method for the estimation of weather forecast parameters. Several model outputs are combined, using weights calculated during a so-called training period. This technique has already been tested and implemented in many works on limited-area models in order to obtain reliable forecasts in complex orography regions. Also in this case we observe a positive impact mainly on the surface variables, but the effect lasts up to +24h.
NASA Astrophysics Data System (ADS)
Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.
2014-12-01
The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to revise assumed aerosol optical properties for an improved representation of aerosol radiative forcing.
The Estimation Theory Framework of Data Assimilation
NASA Technical Reports Server (NTRS)
Cohn, S.; Atlas, Robert (Technical Monitor)
2002-01-01
Lecture 1. The Estimation Theory Framework of Data Assimilation: 1. The basic framework: dynamical and observation models; 2. Assumptions and approximations; 3. The filtering, smoothing, and prediction problems; 4. Discrete Kalman filter and smoother algorithms; and 5. Example: A retrospective data assimilation system
OpenDA Open Source Generic Data Assimilation Environment and its Application in Process Models
NASA Astrophysics Data System (ADS)
El Serafy, Ghada; Verlaan, Martin; Hummel, Stef; Weerts, Albrecht; Dhondia, Juzer
2010-05-01
Data Assimilation techniques are essential elements in state-of-the-art development of models and their optimization with data in the field of groundwater, surface water and soil systems. They are essential tools in calibration of complex modelling systems and improvement of model forecasts. The OpenDA is a new and generic open source data assimilation environment for application to a choice of physical process models, applied to case dependent domains. OpenDA was introduced recently when the developers of Costa, an open-source TU Delft project [http://www.costapse.org; Van Velzen and Verlaan; 2007] and those of the DATools from the former WL|Delft Hydraulics [El Serafy et al 2007; Weerts et al. 2009] decided to join forces. OpenDA makes use of a set of interfaces that describe the interaction between models, observations and data assimilation algorithms. It focuses on flexible applications in portable systems for modelling geophysical processes. It provides a generic interfacing protocol that allows combination of the implemented data assimilation techniques with, in principle, any time-stepping model duscribing a process(atmospheric processes, 3D circulation, 2D water level, sea surface temperature, soil systems, groundwater etc.). Presently, OpenDA features filtering techniques and calibration techniques. The presentation will give an overview of the OpenDA and the results of some of its practical applications. Application of data assimilation in portable operational forecasting systems—the DATools assimilation environment, El Serafy G.Y., H. Gerritsen, S. Hummel, A. H. Weerts, A.E. Mynett and M. Tanaka (2007), Journal of Ocean Dynamics, DOI 10.1007/s10236-007-0124-3, pp.485-499. COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling, Van Velzen and Verlaan (2007), Meteorologische Zeitschrift, Volume 16, Number 6, December 2007 , pp. 777-793(17). Application of generic data assimilation tools (DATools) for flood forecasting purposes, A.H. Weerts, G.Y.H. El Serafy, S. Hummel, J. Dhondia, and H. Gerritsen (2009), accepted by Geoscience & Computers.
A 15-year global biogeochemical reanalysis with ocean colour data assimilation
NASA Astrophysics Data System (ADS)
Ford, David; Barciela, Rosa
2013-04-01
A continuous global time-series of remotely sensed ocean colour observations is available from 1997 to the present day. However coverage is incomplete, and limited to the sea surface. Models are therefore required to provide full spatial coverage, and to investigate the relationships between physical and biological variables and the carbon cycle. Data assimilation can then be used to constrain models to fit the observations, thereby combining the advantages of both sources of information. As part of the European Space Agency's Climate Change Initiative (ESA-CCI), we assimilate chlorophyll concentration derived from ocean colour observations into a coupled physical-biogeochemical model. The data assimilation scheme (Hemmings et al., 2008, J. Mar. Res.; Ford et al., 2012, Ocean Sci.) uses the information from the observations to update all biological and carbon cycle state variables within the model. Global daily reanalyses have been produced, with and without assimilation of merged ocean colour data provided by GlobColour, for the period September 1997 to August 2012. The assimilation has been shown to significantly improve the model's representation of chlorophyll concentration, at the surface and at depth. Furthermore, there is evidence of improvement to the representation of pCO2, nutrients and zooplankton concentration compared to in situ observations. We use the results to quantify recent seasonal and inter-annual variability in variables including chlorophyll concentration, air-sea CO2 flux and alkalinity. In particular, we explore the impact of physical drivers such as the El Niño Southern Oscillation (ENSO) on the model's representation of chlorophyll and the carbon cycle, and the pros and cons of the model reanalyses compared to observation-based climatologies. Furthermore, we perform a comparison between the GlobColour product and an initial version of a new merged product being developed as part of the ESA-CCI. Equivalent year-long hindcasts are performed with assimilation of each data set, and compared to a control run. Differences in the products are discussed, along with their impact on model accuracy compared to in situ observations, and the representation of the carbon cycle in each hindcast.
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Pawson, Steven; Labow, Gordon; Frith, Stacey M.; Livesey, Nathaniel; Partyka, Gary
2017-01-01
The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), produced at NASAs Global Modeling and Assimilation Office (GMAO) is summarized. The reanalysis begins in 1980 with the use of retrieved partial-column ozone concentrations from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft. Beginning in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument (OMI) on NASAs EOS Aura satellite are assimilated. While this change in data streams does lead to a discontinuity in the assimilated ozone fields in MERRA-2, making it not useful for studies in decadal (secular) trends in ozone, this choice was made to prioritize demonstrating the value NASAs high-quality research data in the reanalysis context. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above. This is indicative of a realistic representation of the UTLS ozone variability in MERRA-2. After 2004, the upper tropospheric ozone in MERRA-2 shows a low bias compared to the sondes, but the covariance with independent observations is improved compared to earlier years. Case studies demonstrate the integrity of MERRA-2 analyses in representing important features such as tropopause folds.
NASA Astrophysics Data System (ADS)
Eibern, Hendrik; Schmidt, Hauke
1999-08-01
The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E
2014-01-01
Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.
2013-01-01
ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.
Satellite Data Assimilation within KIAPS-LETKF system
NASA Astrophysics Data System (ADS)
Jo, Y.; Lee, S., Sr.; Cho, K.
2016-12-01
Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing an ensemble data assimilation system using four-dimensional local ensemble transform kalman filter (LETKF; Hunt et al., 2007) within KIAPS Integrated Model (KIM), referred to as "KIAPS-LETKF". KIAPS-LETKF system was successfully evaluated with various Observing System Simulation Experiments (OSSEs) with NCAR Community Atmospheric Model - Spectral Element (Kang et al., 2013), which has fully unstructured quadrilateral meshes based on the cubed-sphere grid as the same grid system of KIM. Recently, assimilation of real observations has been conducted within the KIAPS-LETKF system with four-dimensional covariance functions over the 6-hr assimilation window. Then, conventional (e.g., sonde, aircraft, and surface) and satellite (e.g., AMSU-A, IASI, GPS-RO, and AMV) observations have been provided by the KIAPS Package for Observation Processing (KPOP). Wind speed prediction was found most beneficial due to ingestion of AMV and for the temperature prediction the improvement in assimilation is mostly due to ingestion of AMSU-A and IASI. However, some degradation in the simulation of the GPS-RO is presented in the upper stratosphere, even though GPS-RO leads positive impacts on the analysis and forecasts. We plan to test the bias correction method and several vertical localization strategies for radiance observations to improve analysis and forecast impacts.
NASA Astrophysics Data System (ADS)
Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.
2017-12-01
NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.
The auto-tuned land data assimilation system (ATLAS)
USDA-ARS?s Scientific Manuscript database
Land data assimilation systems are tasked with the merging remotely-sensed soil moisture retrievals with information derived from a soil water balance model driven (principally) by observed rainfall. The performance of such systems is frequently degraded by the imprecise specification of parameters ...
Assimilation of SMOS Retrieved Soil Moisture into the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary
2014-01-01
Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.
Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi
2014-01-01
Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ştefănescu, R., E-mail: rstefane@vt.edu; Sandu, A., E-mail: sandu@cs.vt.edu; Navon, I.M., E-mail: inavon@fsu.edu
2015-08-15
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush–Kuhn–Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov–Galerkin projections. For the first time POD, tensorialmore » POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov–Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.« less
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Yang, Wei-Yu; Todling, Ricardo; Navon, I. Michael
1997-01-01
A detailed description of the development of the tangent linear model (TLM) and its adjoint model of the Relaxed Arakawa-Schubert moisture parameterization package used in the NASA GEOS-1 C-Grid GCM (Version 5.2) is presented. The notational conventions used in the TLM and its adjoint codes are described in detail.
NASA Astrophysics Data System (ADS)
Leuenberger, D.; Rossa, A.
2007-12-01
Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.
Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing
NASA Astrophysics Data System (ADS)
Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim
2017-07-01
We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.
Development of WRF-ROI system by incorporating eigen-decomposition
NASA Astrophysics Data System (ADS)
Kim, S.; Noh, N.; Song, H.; Lim, G.
2011-12-01
This study presents the development of WRF-ROI system, which is the implementation of Retrospective Optimal Interpolation (ROI) to the Weather Research and Forecasting model (WRF). ROI is a new data assimilation algorithm introduced by Song et al. (2009) and Song and Lim (2009). The formulation of ROI is similar with that of Optimal Interpolation (OI), but ROI iteratively assimilates an observation set at a post analysis time into a prior analysis, possibly providing the high quality reanalysis data. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In previous study, ROI method is applied to Lorenz 40-variable model (Lorenz, 1996) to validate the algorithm and to investigate the capability. It is therefore required to apply this ROI method into a more realistic and complicated model framework such as WRF. In this research, the reduced-rank formulation of ROI is used instead of a reduced-resolution method. The computational costs can be reduced due to the eigen-decomposition of background error covariance in the reduced-rank method. When single profile of observations is assimilated in the WRF-ROI system by incorporating eigen-decomposition, the analysis error tends to be reduced if compared with the background error. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation.
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.
2010-12-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.
2010-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
NASA Astrophysics Data System (ADS)
Peña, M.; Saha, S.; Wu, X.; Wang, J.; Tripp, P.; Moorthi, S.; Bhattacharjee, P.
2016-12-01
The next version of the operational Climate Forecast System (version 3, CFSv3) will be a fully coupled six-components system with diverse applications to earth system modeling, including weather and climate predictions. This system will couple the earth's atmosphere, land, ocean, sea-ice, waves and aerosols for both data assimilation and modeling. It will also use the NOAA Environmental Modeling System (NEMS) software super structure to couple these components. The CFSv3 is part of the next Unified Global Coupled System (UGCS), which will unify the global prediction systems that are now operational at NCEP. The UGCS is being developed through the efforts of dedicated research and engineering teams and through coordination across many CPO/MAPP and NGGPS groups. During this development phase, the UGCS is being tested for seasonal purposes and undergoes frequent revisions. Each new revision is evaluated to quickly discover, isolate and solve problems that negatively impact its performance. In the UGCS-seasonal model, components (e.g., ocean, sea-ice, atmosphere, etc.) are coupled through a NEMS-based "mediator". In this numerical infrastructure, model diagnostics and forecast validation are carried out, both component by component, and as a whole. The next stage, model optimization, will require enhanced performance diagnostics tools to help prioritize areas of numerical improvements. After the technical development of the UGCS-seasonal is completed, it will become the first realization of the CFSv3. All future development of this system will be carried out by the climate team at NCEP, in scientific collaboration with the groups that developed the individual components, as well as the climate community. A unique challenge to evaluate this unified weather-climate system is the large number of variables, which evolve over a wide range of temporal and spatial scales. A small set of performance measures and scorecard displays are been created, and collaboration and software contributions from research and operational centers are being incorporated. A status of the CFSv3/UGCS-seasonal development and examples of its performance and measuring tools will be presented.
NASA Astrophysics Data System (ADS)
Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa
2018-01-01
We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.
Advances in Land Data Assimilation at the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Reichle, Rolf
2009-01-01
Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the SMAP L4_SM product. Terrestrial water storage observations from GRACE satellite system were also successfully assimilated into the NASA Catchment model and provided improved estimates of groundwater variability when compared to the model estimates alone. Moreover, satellite-based land surface temperature (LST) observations from the ISCCP archive were assimilated using a bias estimation module that was specifically designed for LST assimilation. As with soil moisture, LST assimilation provides modest yet statistically significant improvements when compared to the model or satellite observations alone. To achieve the improvement, however, the LST assimilation algorithm must be adapted to the specific formulation of LST in the land model. An improved method for the assimilation of snow cover observations was also developed. Finally, the coupling of LIS to the mesoscale Weather Research and Forecasting (WRF) model enabled investigations into how the sensitivity of land-atmosphere interactions to the specific choice of planetary boundary layer scheme and land surface model varies across surface moisture regimes, and how it can be quantified and evaluated against observations. The on-going development and integration of land assimilation modules into the Land Information System will enable the use of GSFC software with a variety of land models and make it accessible to the research community.
Benchmarking a soil moisture data assimilation system for agricultural drought monitoring
USDA-ARS?s Scientific Manuscript database
Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this ...
Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service
NASA Astrophysics Data System (ADS)
Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.
2017-12-01
The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.
NASA Technical Reports Server (NTRS)
Wargan, K.; Stajner, I.; Pawson, S.
2003-01-01
In a data assimilation system the forecast error covariance matrix governs the way in which the data information is spread throughout the model grid. Implementation of a correct method of assigning covariances is expected to have an impact on the analysis results. The simplest models assume that correlations are constant in time and isotropic or nearly isotropic. In such models the analysis depends on the dynamics only through assumed error standard deviations. In applications to atmospheric tracer data assimilation this may lead to inaccuracies, especially in regions with strong wind shears or high gradient of potential vorticity, as well as in areas where no data are available. In order to overcome this problem we have developed a flow-dependent covariance model that is based on short term evolution of error correlations. The presentation compares performance of a static and a flow-dependent model applied to a global three- dimensional ozone data assimilation system developed at NASA s Data Assimilation Office. We will present some results of validation against WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres and in the troposphere. We will also discuss statistical characteristics of both models; in particular we will argue that including evolution of error correlations leads to stronger internal consistency of a data assimilation ,
NASA Astrophysics Data System (ADS)
Girotto, M.; De Lannoy, G. J. M.; Reichle, R. H.; Rodell, M.
2015-12-01
The Gravity Recovery And Climate Experiment (GRACE) mission is unique because it provides highly accurate column integrated estimates of terrestrial water storage (TWS) variations. Major limitations of GRACE-based TWS observations are related to their monthly temporal and coarse spatial resolution (around 330 km at the equator), and to the vertical integration of the water storage components. These challenges can be addressed through data assimilation. To date, it is still not obvious how best to assimilate GRACE-TWS observations into a land surface model, in order to improve hydrological variables, and many details have yet to be worked out. This presentation discusses specific recent features of the assimilation of gridded GRACE-TWS data into the NASA Goddard Earth Observing System (GEOS-5) Catchment land surface model to improve soil moisture and shallow groundwater estimates at the continental scale. The major recent advancements introduced by the presented work with respect to earlier systems include: 1) the assimilation of gridded GRACE-TWS data product with scaling factors that are specifically derived for data assimilation purposes only; 2) the assimilation is performed through a 3D assimilation scheme, in which reasonable spatial and temporal error standard deviations and correlations are exploited; 3) the analysis step uses an optimized calculation and application of the analysis increments; 4) a poor-man's adaptive estimation of a spatially variable measurement error. This work shows that even if they are characterized by a coarse spatial and temporal resolution, the observed column integrated GRACE-TWS data have potential for improving our understanding of soil moisture and shallow groundwater variations.
NASA Technical Reports Server (NTRS)
Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson
2013-01-01
The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Zhang, J. L.; Reid, J. S.; Curtis, C. A.; Westphal, D. L.
2007-12-01
Quantitative models of the transport and evolution of atmospheric pollution have graduated from the laboratory to become a part of the operational activity of forecast centers. Scientists studying the composition and variability of the atmosphere put great efforts into developing methods for accurately specifying sources of pollution, including natural and anthropogenic biomass burning. These methods must be adapted for use in operational contexts, which impose additional strictures on input data and methods. First, only input data sources available in near real-time are suitable for use in operational applications. Second, operational applications must make use of redundant data sources whenever possible. This is a shift in philosophy: in a research context, the most accurate and complete data set will be used, whereas in an operational context, the system must be designed with maximum redundancy. The goal in an operational context is to produce, to the extent possible, consistent and timely output, given sometimes inconsistent inputs. The Naval Aerosol Analysis and Prediction System (NAAPS), a global operational aerosol analysis and forecast system, recently began incorporating assimilation of satellite-derived aerosol optical depth. Assimilation of satellite AOD retrievals has dramatically improved aerosol analyses and forecasts from this system. The use of aerosol data assimilation also changes the strategy for improving the smoke source function. The absolute magnitude of emissions events can be refined through feedback from the data assimilation system, both in real- time operations and in post-processing analysis of data assimilation results. In terms of the aerosol source functions, the largest gains in model performance are now to be gained by reducing data latency and minimizing missed detections. In this presentation, recent model development work on the Fire Locating and Monitoring of Burning Emissions (FLAMBE) system that provides smoke aerosol boundary conditions for NAAPS is described, including redundant integration of multiple satellite platforms and development of feedback loops between the data assimilation system and smoke source.
USDA-ARS?s Scientific Manuscript database
Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this ...
Benchmarking the performance of a land data assimilation system for agricultural drought monitoring
USDA-ARS?s Scientific Manuscript database
The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...
M-theory through the looking glass: Tachyon condensation in the E8 heterotic string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horava, Petr; Horava, Petr; Keeler, Cynthia A.
2007-09-20
We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing -- connecting the two E_8 boundaries by a throat -- are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E_8 gauge group and a singlet tachyon. We then use worldsheet methods to studymore » the tachyon condensation in the NSR formulation of this model, and show that it induces a worldsheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for worldsheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the worldsheet gravitino assimilates the goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R_\\xi gauges, and note the importance of logarithmic CFT in the context of tachyon condensation.« less
NASA Astrophysics Data System (ADS)
Wu, Ting-Chi
This dissertation research explores the influence of assimilating satellite-derived observations on mesoscale numerical analyses and forecasts of tropical cyclones (TC). The ultimate goal is to provide more accurate mesoscale analyses of TC and its surrounding environment for superior TC track and intensity forecasts. High spatial and temporal resolution satellite-derived observations are prepared for two TC cases, Typhoon Sinlaku and Hurricane Ike (both 2008). The Advanced Research version of the Weather and Research Forecasting Model (ARW-WRF) is employed and data is assimilated using the Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed. In the first part of this research, the influence of assimilating enhanced atmospheric motion vectors (AMVs) derived from geostationary satellites is examined by comparing three parallel WRF/EnKF experiments. The control experiment assimilates the same AMV dataset assimilated in NCEP operational analysis along with conventional observations from radiosondes, aircraft, and advisory TC position data. During Sinlaku and Ike, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) generates hourly AMVs along with Rapid-Scan (RS) AMVs when the satellite RS mode is activated. With an order of magnitude more AMV data assimilated, the assimilation of hourly CIMSS AMV dataset exhibit superior initial TC position, intensity and structure estimates to the control analyses and the subsequent short-range forecasts. When RS AMVs are processed and assimilated, the addition of RS AMVs offers additional modification to the TC and its environment and leads to Sinlaku's recurvature toward Japan, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. The second part of this research continues the work in the first part and further explores the influence of assimilating enhanced AMV datasets by conducting parallel data-denial WRF/EnKF experiments that assimilate AMVs subsetted horizontally by their distances to the TC center (interior and exterior) and vertically by their assigned heights (upper, middle, and lower layers). For both Sinlaku and Ike, it is found: 1) interior AMVs are important for accurate TC intensity, 2) excluding upper-layer AMVs generally results in larger track errors and ensemble spread, 3) exclusion of interior AMVs has the largest impact on the forecast of TC size than exclusively removing AMVs in particular tropospheric layers, 4) the largest ensemble spreads are found in track, intensity, and size forecasts when interior and upper-layer AMVs are not included, 5) withholding the middle-layer AMVs can improve the track forecasts. Findings from this study could influence future scenarios that involve the targeted acquisition and assimilation of high-density AMV observations in TC events. The last part of the research focuses on the assimilation of hyperspectral temperature and moisture soundings and microwave based vertically-integrated total precipitable water (TPW) products derived from polar-orbiting satellites. A comparison is made between the assimilation of soundings retrieved from the combined use of Advanced Microwave Scanning Radiometer and Atmospheric Infrared Sounder (AMSU-AIRS) and sounding products provided by CIMSS (CIMSS-AIRS). AMSU-AIRS soundings provide broad spatial coverage albeit coarse resolution, whilst CIMSS-AIRS is geared towards mesoscale applications and thus provide higher spatial resolution but restricted coverage due to the use of radiance in clear sky. The assimilation of bias-corrected CIMSS-AIRS soundings provides slightly more accurate TC structure than the control case. The assimilation of AMSU-AIRS improves the track forecasts but produces weaker and smaller storm. Preliminary results of assimilating TPW product derived from the Advanced Microwave Scanning Radiometer-EOS indicate improved TC structure over the control case. However, the short-range forecasts exhibit the largest TC track errors. In all, this study demonstrates the influence of assimilating high-resolution satellite data on mesoscale analyses and forecasts of TC track and structure. The results suggest the inclusion and assimilation of observations with high temporal resolution, broad spatial coverage, and greater proximity to TCs does indeed improve TC track and structure forecasts. Such findings are beneficial for future decisions on data collecting and retrievals that are essential for TC forecasts.
NASA Astrophysics Data System (ADS)
Wada, Akiyoshi; Kunii, Masaru
2017-05-01
For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM) coupled with a multilayer ocean model and the third-generation ocean wave model. The NHM-LETKF coupled data assimilation system was applied to Typhoon Sinlaku (2008) along with the original NHM-LETKF system to investigate the sensitivity of Sinlaku to SST assimilation with the Level 2 Pre-processed (L2P) standard product of satellite SST. SST calculated in the coupled-assimilation experiment with the coupled data assimilation system and the satellite SST (CPL) showed a better correlation with Optimally Interpolated SST than SST used in the control experiment with the original NHM-LETKF (CNTL) and SST calculated in the succession experiment with the coupled system without satellite SST (SUCC). The time series in the CPL experiment well captured the variation in the SST observed at the Kuroshio Extension Observation buoy site. In addition, TC-induced sea surface cooling was analyzed more realistically in the CPL experiment than that in the CNTL and SUCC experiments. However, the central pressure analyzed in each three experiments was overestimated compared with the Regional Specialized Meteorological Center Tokyo best-track central pressure, mainly due to the coarse horizontal resolution of 15 km. The 96 h TC simulations indicated that the CPL experiment provided more favorable initial and boundary conditions than the CNTL experiment to simulate TC tracks more accurately.
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Bosilovich, Michael G.; Akella, Santha; Lawrence, Coy; Cullather, Richard; Draper, Clara; Gelaro, Ronald; Kovach, Robin; Liu, Qing; Molod, Andrea;
2015-01-01
The years since the introduction of MERRA have seen numerous advances in the GEOS-5 Data Assimilation System as well as a substantial decrease in the number of observations that can be assimilated into the MERRA system. To allow continued data processing into the future, and to take advantage of several important innovations that could improve system performance, a decision was made to produce MERRA-2, an updated retrospective analysis of the full modern satellite era. One of the many advances in MERRA-2 is a constraint on the global dry mass balance; this allows the global changes in water by the analysis increment to be near zero, thereby minimizing abrupt global interannual variations due to changes in the observing system. In addition, MERRA-2 includes the assimilation of interactive aerosols into the system, a feature of the Earth system absent from previous reanalyses. Also, in an effort to improve land surface hydrology, observations-corrected precipitation forcing is used instead of model-generated precipitation. Overall, MERRA-2 takes advantage of numerous updates to the global modeling and data assimilation system. In this document, we summarize an initial evaluation of the climate in MERRA-2, from the surface to the stratosphere and from the tropics to the poles. Strengths and weaknesses of the MERRA-2 climate are accordingly emphasized.
SMOS brightness temperature assimilation into the Community Land Model
NASA Astrophysics Data System (ADS)
Rains, Dominik; Han, Xujun; Lievens, Hans; Montzka, Carsten; Verhoest, Niko E. C.
2017-11-01
SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010-2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.
Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations
NASA Technical Reports Server (NTRS)
Reichle, R. H.
2010-01-01
Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.
2015-09-14
three hours) and surface atmospheric forcing, such as wind stress , atmospheric pressure, and surface heat flux is provided by the 0.5⁰ NOGAPS...iTS A uthor/ COW S. Smti h ~~ R £ {;/-; ;;~-.::tt.-4’_ ~ Prevulusly <~flPl"<lH·d a’ 1 ~- 1::3 1 -0f,RI S..""C~O.l Head Dan c1n lr~~ ~v..:_~.t ~ )All...Global Environmental Model (NAVGEM). In most cases, atmospheric model wind stresses , radiation fluxes, and atmospheric pressure, temperature
Large-scale Rossby Normal Modes during Some Recent Northern Hemisphere Winters
2011-01-01
day wave has been observed ubiquitously in the troposphere (Madden, 1978) and in the middle atmosphere during winter (Forbes et al., 1995), as well as...assimilate version 2.2 limb retrievals of temperature, water vapor and ozone from the Microwave Limb Sounder (MLS) on NASA’s Aura satellite and...aspects of the wintertime meteorology have been documented: the tropospheric pre-conditioning of a SSW (Coy et al., 2009); the role of gravity wave
Low-Level Turbulence Forecasts From Fine-Scale Models
2014-02-01
aircraft which often fly above 6097 m for much of the flight. Sharman et al. (35) have developed the Graphical Turbulence Guidance ( GTG ), which is a...original GTG was used above 6097-m AGL and is for MOD or greater CAT. The Rapid Refresh Model, which is an hourly updated assimilation model operational...applications and tactical decision aids. The recent version of GTG (V2.5) forecasts turbulence as low as 3354 m. Silberberg (36) notes that the Aviation
Air Quality Forecasts Using the NASA GEOS Model
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua;
2018-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
NASA Astrophysics Data System (ADS)
Kalaroni, Sofia; Tsiaras, Kostas; Economou-Amilli, Athena; Petihakis, George; Politikos, Dimitrios; Triantafyllou, George
2013-04-01
Within the framework of the European project OPEC (Operational Ecology), a data assimilation system was implemented to describe chlorophyll-a concentrations of the North Aegean, as well the impact on the European anchovy (Engraulis encrasicolus) biomass distribution provided by a bioenergetics model, related to the density of three low trophic level functional groups of zooplankton (heterotrophic flagellates, microzooplankton and mesozooplankton). The three-dimensional hydrodynamic-biogeochemical model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter and its variant that uses a fixed correction base (SFEK). For the initialization, SEEK filter uses a reduced order error covariance matrix provided by the dominant Empirical Orthogonal Functions (EOF) of model. The assimilation experiments were performed for year 2003 using SeaWiFS chlorophyll-a data during which the physical model uses the atmospheric forcing obtained from the regional climate model HIRHAM5. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical parameters and the overall quality of the forecasts.
Improving Assimilated Global Data Sets using TMI Rainfall and Columnar Moisture Observations
NASA Technical Reports Server (NTRS)
Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.
1999-01-01
A global analysis that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data products contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. In this study, we show that assimilating precipitation and total precipitable water (TPW) retrievals derived from the TRMM Microwave Imager (TMI) improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the large-scale circulation produced by the Goddard Earth Observing System (GEOS) data assimilation system (DAS). In particular, assimilating TMI rain improves clouds and radiation in areas of active convection, as well as the latent heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW retrievals leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. The improved analysis also improves short-range forecasts in the tropics. Ensemble forecasts initialized with the GEOS analysis incorporating TMI rain rates and TPW yield smaller biases in tropical precipitation forecasts beyond 1 day and better 500 hPa geopotential height forecasts up to 5 days. Results of this study demonstrate the potential of using high-quality space-borne rainfall and moisture observations to improve the quality of assimilated global data for climate analysis and weather forecasting applications
NASA Astrophysics Data System (ADS)
Schaap, Martijn; Segers, Arjo; Curier, Lyana; Timmermans, Renske
2016-04-01
Consistent and long time series of remotely sensed trace gas levels may provide a useful tool to estimate surface emissions and emission trends. We use the OMI-NO2 product in conjunction with the LOTOS-EUROS CTM to estimate European emission trends through correction of the OMI-time series for meteorological variability as well as through assimilation using an ensemble kalman filter system (EnKF). The chemistry transport model captures a large fraction of the variability in NO2 columns at a synoptic timescale, although a seasonal signal in the bias between the modeled and retrieved column data remains. Prior to the assimilation, the OMI-NO2 data have been analyzed to establish the spatially variable temporal and spatial correlation lengths, required for the settings in the EnKF system. The assimilation run for 2005-2013 was performed using constant 2005 emissions to be able to quantify the emission change. The assimilation reduces the model-observation differences considerably. Significant negative trends of 2-3 % per year (as compared to 2005) were found in highly industrialized areas across Western Europe. The assimilation system also identifies the areas with major emission reductions in e.g. northern Spain as identified in earlier studies. Comparison of the trends derived from the assimilation and the data itself shows a high level of agreement, both the trends found in this way are smaller than those reported.
Next generation initiation techniques
NASA Technical Reports Server (NTRS)
Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans
1993-01-01
Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The third kind of next-generation technique involves strategies to initialize convective scale (non-hydrostatic) models.
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi
2014-01-01
Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.
Improving Estimates and Forecasts of Lake Carbon Pools and Fluxes Using Data Assimilation
NASA Astrophysics Data System (ADS)
Zwart, J. A.; Hararuk, O.; Prairie, Y.; Solomon, C.; Jones, S.
2017-12-01
Lakes are biogeochemical hotspots on the landscape, contributing significantly to the global carbon cycle despite their small areal coverage. Observations and models of lake carbon pools and fluxes are rarely explicitly combined through data assimilation despite significant use of this technique in other fields with great success. Data assimilation adds value to both observations and models by constraining models with observations of the system and by leveraging knowledge of the system formalized by the model to objectively fill information gaps. In this analysis, we highlight the utility of data assimilation in lake carbon cycling research by using the Ensemble Kalman Filter to combine simple lake carbon models with observations of lake carbon pools. We demonstrate the use of data assimilation to improve a model's representation of lake carbon dynamics, to reduce uncertainty in estimates of lake carbon pools and fluxes, and to improve the accuracy of carbon pool size estimates relative to estimates derived from observations alone. Data assimilation techniques should be embraced as valuable tools for lake biogeochemists interested in learning about ecosystem dynamics and forecasting ecosystem states and processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, M.K.; Xu, T.Y.
1993-11-01
The current major expansion in observational capability of the National Weather Service is principally in the volume of asynchronous data rather than synchronous observations at the standard synoptic times. Hence, the National Meteorological Center is considering a continuous data assimilation system to replace at some time the intermittent system now used by its regional and global operational models. We describe this system, based on the Newtonian relaxation technique, as developed for the eta model. Experiments are performed for the first intensive observing period of the Genesis of Atlantic Lows Experiment (GALE) in January 1986, when strong upper-level cyclogenesis occurred, withmore » a pronounced tropopause fold but only modest surface development. The GALE level IIIb dataset was used for initializing and updating the model. Issues addressed in the experiments include choice of update variable, number, and length of update segments; need for updating moisture and surface pressure information; nudging along boundaries; and noise control. Assimilation of data from a single level was also studied. Use of a preforecast assimilation cycle was found to eliminate the spinup problem almost entirely. Multiple, shorter assimilation segments produced better forecasts than a single, longer cycle. Updating the mass field was less effective than nudging the wind field but assimilating both was best. Assimilation of moisture data, surprisingly, affected the spinup adversely, but nudging the surface pressure information reduced the spurious pillow effect. Assimilation of single-level information was ineffective unless accompanied by increased vertical coupling, obtained from a control integration. 52 refs., 19 figs., 1 tab.« less
Assimilation of GPM GMI Rainfall Product with WRF GSI
NASA Technical Reports Server (NTRS)
Li, Xuanli; Mecikalski, John; Zavodsky, Bradley
2015-01-01
The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the influence on precipitation forecast will be presented at the conference.
Discharge data assimilation in a distributed hydrologic model for flood forecasting purposes
NASA Astrophysics Data System (ADS)
Ercolani, G.; Castelli, F.
2017-12-01
Flood early warning systems benefit from accurate river flow forecasts, and data assimilation may improve their reliability. However, the actual enhancement that can be obtained in the operational practice should be investigated in detail and quantified. In this work we assess the benefits that the simultaneous assimilation of discharge observations at multiple locations can bring to flow forecasting through a distributed hydrologic model. The distributed model, MOBIDIC, is part of the operational flood forecasting chain of Tuscany Region in Central Italy. The assimilation system adopts a mixed variational-Monte Carlo approach to update efficiently initial river flow, soil moisture, and a parameter related to runoff production. The evaluation of the system is based on numerous hindcast experiments of real events. The events are characterized by significant rainfall that resulted in both high and relatively low flow in the river network. The area of study is the main basin of Tuscany Region, i.e. Arno river basin, which extends over about 8300 km2 and whose mean annual precipitation is around 800 mm. Arno's mainstream, with its nearly 240 km length, passes through major Tuscan cities, as Florence and Pisa, that are vulnerable to floods (e.g. flood of November 1966). The assimilation tests follow the usage of the model in the forecasting chain, employing the operational resolution in both space and time (500 m and 15 minutes respectively) and releasing new flow forecasts every 6 hours. The assimilation strategy is evaluated in respect to open loop simulations, i.e. runs that do not exploit discharge observations through data assimilation. We compare hydrographs in their entirety, as well as classical performance indexes, as error on peak flow and Nash-Sutcliffe efficiency. The dependence of performances on lead time and location is assessed. Results indicate that the operational forecasting chain can benefit from the developed assimilation system, although with a significant variability due to the specific characteristics of any single event, and with downstream locations more sensitive to observations than upstream sites.
NASA Astrophysics Data System (ADS)
Han, X.; Li, X.; He, G.; Kumbhar, P.; Montzka, C.; Kollet, S.; Miyoshi, T.; Rosolem, R.; Zhang, Y.; Vereecken, H.; Franssen, H.-J. H.
2015-08-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. Multivariate data assimilation refers to the simultaneous assimilation of observation data from multiple model state variables into a simulation model. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. We developed an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with the C++ and Fortran programming languages. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be introduced by perturbed atmospheric forcing data, and represented by perturbed soil and vegetation parameters and model initial conditions. The Community Land Model (CLM) was integrated as the model operator. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. The Community Microwave Emission Modelling platform (CMEM), COsmic-ray Soil Moisture Interaction Code (COSMIC) and the Two-Source Formulation (TSF) were integrated as observation operators for the assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy has been evaluated in several assimilation studies of neutron count intensity (soil moisture), L-band brightness temperature and land surface temperature. DasPy is parallelized using the hybrid Message Passing Interface and Open Multi-Processing techniques. All the input and output data flows are organized efficiently using the commonly used NetCDF file format. Online 1-D and 2-D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments
NASA Astrophysics Data System (ADS)
van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.
2018-02-01
A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.
NASA Astrophysics Data System (ADS)
Mitchell, K. E.
2006-12-01
The Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) applies several different analyses of observed precipitation in both the data assimilation and validation components of NCEP's global and regional numerical weather and climate prediction/analysis systems (including in NCEP global and regional reanalysis). This invited talk will survey these data assimilation and validation applications and methodologies, as well as the temporal frequency, spatial domains, spatial resolution, data sources, data density and data quality control in the precipitation analyses that are applied. Some of the precipitation analyses applied by EMC are produced by NCEP's Climate Prediction Center (CPC), while others are produced by the River Forecast Centers (RFCs) of the National Weather Service (NWS), or by automated algorithms of the NWS WSR-88D Radar Product Generator (RPG). Depending on the specific type of application in data assimilation or model forecast validation, the temporal resolution of the precipitation analyses may be hourly, daily, or pentad (5-day) and the domain may be global, continental U.S. (CONUS), or Mexico. The data sources for precipitation include ground-based gauge observations, radar-based estimates, and satellite-based estimates. The precipitation analyses over the CONUS are analyses of either hourly, daily or monthly totals of precipitation, and they are of two distinct types: gauge-only or primarily radar-estimated. The gauge-only CONUS analysis of daily precipitation utilizes an orographic-adjustment technique (based on the well-known PRISM precipitation climatology of Oregon State University) developed by the NWS Office of Hydrologic Development (OHD). The primary NCEP global precipitation analysis is the pentad CPC Merged Analysis of Precipitation (CMAP), which blends both gauge observations and satellite estimates. The presentation will include a brief comparison between the CMAP analysis and other global precipitation analyses by other institutions. Other global precipitation analyses produced by other methodologies are also used by EMC in certain applications, such as CPC's well-known satellite-IR based technique known as "GPI", and satellite-microwave based estimates from NESDIS or NASA. Finally, the presentation will cover the three assimilation methods used by EMC to assimilate precipitation data, including 1) 3D-VAR variational assimilation in NCEP's Global Data Assimilation System (GDAS), 2) direct insertion of precipitation-inferred vertical latent heating profiles in NCEP's N. American Data Assimilation System (NDAS) and its N. American Regional Reanalysis (NARR) counterpart, and 3) direct use of observed precipitation to drive the Noah land model component of NCEP's Global and N. American Land Data Assimilation Systems (GLDAS and NLDAS). In the applications of precipitation analyses in data assimilation at NCEP, the analyses are temporally disaggregated to hourly or less using time-weights calculated from A) either radar-based estimates or an analysis of hourly gauge-observations for the CONUS-domain daily precipitation analyses, or B) global model forecasts of 6-hourly precipitation (followed by linear interpolation to hourly or less) for the global CMAP precipitation analysis.
Optimality in Data Assimilation
NASA Astrophysics Data System (ADS)
Nearing, Grey; Yatheendradas, Soni
2016-04-01
It costs a lot more to develop and launch an earth-observing satellite than it does to build a data assimilation system. As such, we propose that it is important to understand the efficiency of our assimilation algorithms at extracting information from remote sensing retrievals. To address this, we propose that it is necessary to adopt completely general definition of "optimality" that explicitly acknowledges all differences between the parametric constraints of our assimilation algorithm (e.g., Gaussianity, partial linearity, Markovian updates) and the true nature of the environmetnal system and observing system. In fact, it is not only possible, but incredibly straightforward, to measure the optimality (in this more general sense) of any data assimilation algorithm as applied to any intended model or natural system. We measure the information content of remote sensing data conditional on the fact that we are already running a model and then measure the actual information extracted by data assimilation. The ratio of the two is an efficiency metric, and optimality is defined as occurring when the data assimilation algorithm is perfectly efficient at extracting information from the retrievals. We measure the information content of the remote sensing data in a way that, unlike triple collocation, does not rely on any a priori presumed relationship (e.g., linear) between the retrieval and the ground truth, however, like triple-collocation, is insensitive to the spatial mismatch between point-based measurements and grid-scale retrievals. This theory and method is therefore suitable for use with both dense and sparse validation networks. Additionally, the method we propose is *constructive* in the sense that it provides guidance on how to improve data assimilation systems. All data assimilation strategies can be reduced to approximations of Bayes' law, and we measure the fractions of total information loss that are due to individual assumptions or approximations in the prior (i.e., the model uncertainty distribution), and in the likelihood (i.e., the observation operator and observation uncertainty distribution). In this way, we can directly identify the parts of a data assimilation algorithm that contribute most to assimilation error in a way that (unlike traditional DA performance metrics) considers nonlinearity in the model and observation and non-optimality in the fit between filter assumptions and the real system. To reiterate, the method we propose is theoretically rigorous but also dead-to-rights simple, and can be implemented in no more than a few hours by a competent programmer. We use this to show that careful applications of the Ensemble Kalman Filter use substantially less than half of the information contained in remote sensing soil moisture retrievals (LPRM, AMSR-E, SMOS, and SMOPS). We propose that this finding may explain some of the results from several recent large-scale experiments that show lower-than-expected value to assimilating soil moisture retrievals into land surface models forced by high-quality precipitation data. Our results have important implications for the SMAP mission because over half of the SMAP-affiliated "early adopters" plan to use the EnKF as their primary method for extracting information from SMAP retrievals.
A mesoscale hybrid data assimilation system based on the JMA nonhydrostatic model
NASA Astrophysics Data System (ADS)
Ito, K.; Kunii, M.; Kawabata, T. T.; Saito, K. K.; Duc, L. L.
2015-12-01
This work evaluates the potential of a hybrid ensemble Kalman filter and four-dimensional variational (4D-Var) data assimilation system for predicting severe weather events from a deterministic point of view. This hybrid system is an adjoint-based 4D-Var system using a background error covariance matrix constructed from the mixture of a so-called NMC method and perturbations in a local ensemble transform Kalman filter data assimilation system, both of which are based on the Japan Meteorological Agency nonhydrostatic model. To construct the background error covariance matrix, we investigated two types of schemes. One is a spatial localization scheme and the other is neighboring ensemble approach, which regards the result at a horizontally spatially shifted point in each ensemble member as that obtained from a different realization of ensemble simulation. An assimilation of a pseudo single-observation located to the north of a tropical cyclone (TC) yielded an analysis increment of wind and temperature physically consistent with what is expected for a mature TC in both hybrid systems, whereas an analysis increment in a 4D-Var system using a static background error covariance distorted a structure of the mature TC. Real data assimilation experiments applied to 4 TCs and 3 local heavy rainfall events showed that hybrid systems and EnKF provided better initial conditions than the NMC-based 4D-Var, both for predicting the intensity and track forecast of TCs and for the location and amount of local heavy rainfall events.
Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM
NASA Astrophysics Data System (ADS)
Luo, Hao; Zheng, Fei; Zhu, Jiang
2017-12-01
Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.
Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.
2010-01-01
Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.; Rodell, Matthew; Reichle, Rolf; Li, Bailing; Jasinski, Michael; Mocko, David; Getirana, Augusto; De Lannoy, Gabrielle;
2016-01-01
The objective of the North American Land Data Assimilation System (NLDAS) is to provide best available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.
Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation
NASA Technical Reports Server (NTRS)
Girotto, Manuela
2018-01-01
Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4)
NASA Technical Reports Server (NTRS)
Toure, Ally M.; Rodell, Matthew; Yang, Zong-Liang; Beaudoing, Hiroko; Kim, Edward; Zhang, Yongfei; Kwon, Yonghwan
2015-01-01
This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Research and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to January 2011 over the Northern Hemisphere poleward of 30 deg N. Simulated snow-cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Moderate Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow depth from the National Weather Service Cooperative Observer (COOP) program, and Snowpack Telemetry (SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of -1.54 x 10(exp 2) sq km. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow-no snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the average bias (RMSE) of snow depth and SWE being 0.044m (0.19 m) and -0.010m (0.04 m), respectively. CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve the CLM4 snow estimates and constitutes a benchmark against which improvement of the model through data assimilation can be measured.
Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary
2009-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.
Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles
NASA Technical Reports Server (NTRS)
Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.
2009-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.
NASA Astrophysics Data System (ADS)
Fei, Jianfang; Ding, Juli; Huang, Xiaogang; Cheng, Xiaoping; Hu, Xiaohua
2013-06-01
The Weather Research and Forecasting model version 3.2 (WRF v3.2) was used with the bogus data assimilation (BDA) scheme and sea spray parameterization (SSP), and experiments were conducted to assess the impacts of the BDA and SSP on prediction of the typhoon ducting process induced by Typhoon Mindule (2004). The global positioning system (GPS) dropsonde observations were used for comparison. The results show that typhoon ducts are likely to form in every direction around the typhoon center, with the main type of ducts being elevated duct. With the BDA scheme included in the model initialization, the model has a better performance in predicting the existence, distribution, and strength of typhoon ducts. This improvement is attributed to the positive effect of the BDA scheme on the typhoon's ambient boundary layer structure. Sea spray affects typhoon ducts mainly by changing the latent heat (LH) flux at the air-sea interface beyond 270 km from the typhoon center. The strength of the typhoon duct is enhanced when the boundary layer under this duct is cooled and moistened by the sea spray; otherwise, the typhoon duct is weakened. The sea spray induced changes in the air-sea sensible heat (SH) flux and LH flux are concentrated in the maximum wind speed area near the typhoon center, and the changes are significantly weakened with the increase of the radial range.
Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)
NASA Astrophysics Data System (ADS)
Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.
2013-12-01
Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.
Assimilation of Satellite Ozone Observations
NASA Technical Reports Server (NTRS)
Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.
2003-01-01
This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.
Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESM-CAM-chem and DART
NASA Astrophysics Data System (ADS)
Barré, Jérôme; Gaubert, Benjamin; Arellano, Avelino F. J.; Worden, Helen M.; Edwards, David P.; Deeter, Merritt N.; Anderson, Jeffrey L.; Raeder, Kevin; Collins, Nancy; Tilmes, Simone; Francis, Gene; Clerbaux, Cathy; Emmons, Louisa K.; Pfister, Gabriele G.; Coheur, Pierre-François; Hurtmans, Daniel
2015-10-01
We show the results and evaluation with independent measurements from assimilating both MOPITT (Measurements Of Pollution In The Troposphere) and IASI (Infrared Atmospheric Sounding Interferometer) retrieved profiles into the Community Earth System Model (CESM). We used the Data Assimilation Research Testbed ensemble Kalman filter technique, with the full atmospheric chemistry CESM component Community Atmospheric Model with Chemistry. We first discuss the methodology and evaluation of the current data assimilation system with coupled meteorology and chemistry data assimilation. The different capabilities of MOPITT and IASI retrievals are highlighted, with particular attention to instrument vertical sensitivity and coverage and how these impact the analyses. MOPITT and IASI CO retrievals mostly constrain the CO fields close to the main anthropogenic, biogenic, and biomass burning CO sources. In the case of IASI CO assimilation, we also observe constraints on CO far from the sources. During the simulation time period (June and July 2008), CO assimilation of both instruments strongly improves the atmospheric CO state as compared to independent observations, with the higher spatial coverage of IASI providing better results on the global scale. However, the enhanced sensitivity of multispectral MOPITT observations to near surface CO over the main source regions provides synergistic effects at regional scales.
Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Robertson, Franklin R.; Takacs, Lawrence; Molod, Andrea; Mocko, David
2017-01-01
Closing and balancing Earths global water cycle remains a challenge for the climate community. Observations are limited in duration, global coverage, and frequency, and not all water cycle terms are adequately observed. Reanalyses aim to fill the gaps through the assimilation of as many atmospheric water vapor observations as possible. Former generations of reanalyses have demonstrated a number of systematic problems that have limited their use in climate studies, especially regarding low-frequency trends. This study characterizes the NASA Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) water cycle relative to contemporary reanalyses and observations. MERRA-2 includes measures intended to minimize the spurious global variations related to in homogeneity in the observational record. The global balance and cycling of water from ocean to land is presented, with special attention given to the water vapor analysis increment and the effects of the changing observing system. While some systematic regional biases can be identified,MERRA-2 produces temporally consistent time series of total column water and transport of water from ocean to land. However, the interannual variability of ocean evaporation is affected by the changing surface-wind-observing system, and precipitation variability is closely related to the evaporation. The surface energy budget is also strongly influenced by the interannual variability of the ocean evaporation. Furthermore, evaluating the relationship of temperature and water vapor indicates that the variations of water vapor with temperature are weaker in satellite data reanalyses, not just MERRA-2, than determined by observations, atmospheric models, or reanalyses without water vapor assimilation.
NASA Astrophysics Data System (ADS)
Kumar, Sujay V.; Wang, Shugong; Mocko, David M.; Peters-Lidard, Christa D.; Xia, Youlong
2017-11-01
Multimodel ensembles are often used to produce ensemble mean estimates that tend to have increased simulation skill over any individual model output. If multimodel outputs are too similar, an individual LSM would add little additional information to the multimodel ensemble, whereas if the models are too dissimilar, it may be indicative of systematic errors in their formulations or configurations. The article presents a formal similarity assessment of the North American Land Data Assimilation System (NLDAS) multimodel ensemble outputs to assess their utility to the ensemble, using a confirmatory factor analysis. Outputs from four NLDAS Phase 2 models currently running in operations at NOAA/NCEP and four new/upgraded models that are under consideration for the next phase of NLDAS are employed in this study. The results show that the runoff estimates from the LSMs were most dissimilar whereas the models showed greater similarity for root zone soil moisture, snow water equivalent, and terrestrial water storage. Generally, the NLDAS operational models showed weaker association with the common factor of the ensemble and the newer versions of the LSMs showed stronger association with the common factor, with the model similarity increasing at longer time scales. Trade-offs between the similarity metrics and accuracy measures indicated that the NLDAS operational models demonstrate a larger span in the similarity-accuracy space compared to the new LSMs. The results of the article indicate that simultaneous consideration of model similarity and accuracy at the relevant time scales is necessary in the development of multimodel ensemble.
NASA Astrophysics Data System (ADS)
Nair, A. S.; Indu, J.
2017-12-01
Prediction of soil moisture dynamics is high priority research challenge because of the complex land-atmosphere interaction processes. Soil moisture (SM) plays a decisive role in governing water and energy balance of the terrestrial system. An accurate SM estimate is imperative for hydrological and weather prediction models. Though SM estimates are available from microwave remote sensing and land surface model (LSM) simulations, it is affected by uncertainties from several sources during estimation. Past studies have generally focused on land data assimilation (DA) for improving LSM predictions by assimilating soil moisture from single satellite sensor. This approach is limited by the large time gap between two consequent soil moisture observations due to satellite repeat cycle of more than three days at the equator. To overcome this, in the present study, we have performed DA using ensemble products from the soil moisture operational product system (SMOPS) blended soil moisture retrievals from different satellite sensors into Noah LSM. Before the assimilation period, the Noah LSM is initialized by cycling through seven multiple loops from 2008 to 2010 forcing with Global data assimilation system (GDAS) data over the Indian subcontinent. We assimilated SMOPS into Noah LSM for a period of two years from 2010 to 2011 using Ensemble Kalman Filter within NASA's land information system (LIS) framework. Results show that DA has improved Noah LSM prediction with a high correlation of 0.96 and low root mean square difference of 0.0303 m3/m3 (figure 1a). Further, this study has also investigated the notion of assimilating microwave brightness temperature (Tb) as a proxy for SM estimates owing to the close proximity of Tb and SM. Preliminary sensitivity analysis show a strong need for regional parameterization of radiative transfer models (RTMs) to improve Tb simulation. Towards this goal, we have optimized the forward RTM using swarm optimization technique for direct Tb assimilation. The results indicate an improvement in Tb simulations based on the multi polarization difference index approach with a correlation of 0.81 (figure 1b (e)) and bias of < 5 K with respect to the SMOS Tb.
NASA Astrophysics Data System (ADS)
Jones, Emlyn M.; Baird, Mark E.; Mongin, Mathieu; Parslow, John; Skerratt, Jenny; Lovell, Jenny; Margvelashvili, Nugzar; Matear, Richard J.; Wild-Allen, Karen; Robson, Barbara; Rizwi, Farhan; Oke, Peter; King, Edward; Schroeder, Thomas; Steven, Andy; Taylor, John
2016-12-01
Skillful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically derived relationships between IOPs and variables such as chlorophyll-a concentration (Chl a), total suspended solids (TSS) and coloured dissolved organic matter (CDOM) have been shown to have errors that can exceed 100 % of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due to the additional signal from bottom reflectance. Rather than assimilate quantities calculated using IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance (RSR). To assimilate the observed RSR, we use an in-water optical model to produce an equivalent simulated RSR and calculate the mismatch between the observed and simulated quantities to constrain the BGC model with a deterministic ensemble Kalman filter (DEnKF). The traditional assumption that simulated surface Chl a is equivalent to the remotely sensed OC3M estimate of Chl a resulted in a forecast error of approximately 75 %. We show this error can be halved by instead using simulated RSR to constrain the model via the assimilation system. When the analysis and forecast fields from the RSR-based assimilation system are compared with the non-assimilating model, a comparison against independent in situ observations of Chl a, TSS and dissolved inorganic nutrients (NO3, NH4 and DIP) showed that errors are reduced by up to 90 %. In all cases, the assimilation system improves the simulation compared to the non-assimilating model. Our approach allows for the incorporation of vast quantities of remote-sensing observations that have in the past been discarded due to shallow water and/or artefacts introduced by terrestrially derived TSS and CDOM or the lack of a calibrated regional IOP algorithm.
NASA Astrophysics Data System (ADS)
Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.
2013-12-01
The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.
Real-data tests of a single-Doppler radar assimilation system
NASA Astrophysics Data System (ADS)
Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.
1994-06-01
Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.
Improving Weather Forecasts Through Reduced Precision Data Assimilation
NASA Astrophysics Data System (ADS)
Hatfield, Samuel; Düben, Peter; Palmer, Tim
2017-04-01
We present a new approach for improving the efficiency of data assimilation, by trading numerical precision for computational speed. Future supercomputers will allow a greater choice of precision, so that models can use a level of precision that is commensurate with the model uncertainty. Previous studies have already indicated that the quality of climate and weather forecasts is not significantly degraded when using a precision less than double precision [1,2], but so far these studies have not considered data assimilation. Data assimilation is inherently uncertain due to the use of relatively long assimilation windows, noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, we can redistribute computational resources towards, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localisation, lowering precision could actually allow us to improve the accuracy of weather forecasts. We will present results on how lowering numerical precision affects the performance of an ensemble data assimilation system, consisting of the Lorenz '96 toy atmospheric model and the ensemble square root filter. We run the system at half precision (using an emulation tool), and compare the results with simulations at single and double precision. We estimate that half precision assimilation with a larger ensemble can reduce assimilation error by 30%, with respect to double precision assimilation with a smaller ensemble, for no extra computational cost. This results in around half a day extra of skillful weather forecasts, if the error-doubling characteristics of the Lorenz '96 model are mapped to those of the real atmosphere. Additionally, we investigate the sensitivity of these results to observational error and assimilation window length. Half precision hardware will become available very shortly, with the introduction of Nvidia's Pascal GPU architecture and the Intel Knights Mill coprocessor. We hope that the results presented here will encourage the uptake of this hardware. References [1] Peter D. Düben and T. N. Palmer, 2014: Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware, Mon. Weather Rev., 142, 3809-3829 [2] Peter D. Düben, Hugh McNamara and T. N. Palmer, 2014: The use of imprecise processing to improve accuracy in weather & climate prediction, J. Comput. Phys., 271, 2-18
NASA Technical Reports Server (NTRS)
Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.
2009-01-01
Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.
Role of Forcing Uncertainty and Background Model Error Characterization in Snow Data Assimilation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Dong, Jiarul; Peters-Lidard, Christa D.; Mocko, David; Gomez, Breogan
2017-01-01
Accurate specification of the model error covariances in data assimilation systems is a challenging issue. Ensemble land data assimilation methods rely on stochastic perturbations of input forcing and model prognostic fields for developing representations of input model error covariances. This article examines the limitations of using a single forcing dataset for specifying forcing uncertainty inputs for assimilating snow depth retrievals. Using an idealized data assimilation experiment, the article demonstrates that the use of hybrid forcing input strategies (either through the use of an ensemble of forcing products or through the added use of the forcing climatology) provide a better characterization of the background model error, which leads to improved data assimilation results, especially during the snow accumulation and melt-time periods. The use of hybrid forcing ensembles is then employed for assimilating snow depth retrievals from the AMSR2 (Advanced Microwave Scanning Radiometer 2) instrument over two domains in the continental USA with different snow evolution characteristics. Over a region near the Great Lakes, where the snow evolution tends to be ephemeral, the use of hybrid forcing ensembles provides significant improvements relative to the use of a single forcing dataset. Over the Colorado headwaters characterized by large snow accumulation, the impact of using the forcing ensemble is less prominent and is largely limited to the snow transition time periods. The results of the article demonstrate that improving the background model error through the use of a forcing ensemble enables the assimilation system to better incorporate the observational information.
NASA Astrophysics Data System (ADS)
Mitchell, C. N.; Rankov, N. R.; Bust, G. S.; Miller, E.; Gaussiran, T.; Calfas, R.; Doyle, J. D.; Teig, L. J.; Werth, J. L.; Dekine, I.
2017-07-01
Ionospheric data assimilation is a technique to evaluate the 3-D time varying distribution of electron density using a combination of a physics-based model and observations. A new ionospheric data assimilation method is introduced that has the capability to resolve traveling ionospheric disturbances (TIDs). TIDs are important because they cause strong delay and refraction to radio signals that are detrimental to the accuracy of high-frequency (HF) geolocation systems. The capability to accurately specify the ionosphere through data assimilation can correct systems for the error caused by the unknown ionospheric refraction. The new data assimilation method introduced here uses ionospheric models in combination with observations of HF signals from known transmitters. The assimilation methodology was tested by the ability to predict the incoming angles of HF signals from transmitters at a set of nonassimilated test locations. The technique is demonstrated and validated using observations collected during 2 days of a dedicated campaign of ionospheric measurements at White Sands Missile Range in New Mexico in January 2014. This is the first time that full HF ionospheric data assimilation using an ensemble run of a physics-based model of ionospheric TIDs has been demonstrated. The results show a significant improvement over HF angle-of-arrival prediction using an empirical model and also over the classic method of single-site location using an ionosonde close to the midpoint of the path. The assimilative approach is extendable to include other types of ionospheric measurements.
NASA Astrophysics Data System (ADS)
Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex
2017-09-01
We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.
NASA Technical Reports Server (NTRS)
Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin
2011-01-01
Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly impressive for temperature, but not as satisfactory for salt.
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron
2018-01-01
Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit (AMSU-A), Microwave Humidity Sounder (MHS), and GMI on GEOS-5 analyses and forecasts of various hurricanes.
Norris, Peter M; da Silva, Arlindo M
2016-07-01
A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.
NASA Technical Reports Server (NTRS)
Norris, Peter M.; Da Silva, Arlindo M.
2016-01-01
A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.
Norris, Peter M.; da Silva, Arlindo M.
2018-01-01
A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC. PMID:29618847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.; ...
2017-07-26
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less
NASA Astrophysics Data System (ADS)
Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.
2017-07-01
Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.
2014-12-01
R2MR concepts, especially stress management (and Cognitive Restructuring) skills. A secondary objective was to examine the effects of providing...meilleure assimilation et mise en pratique des concepts du cours RVPM, notamment les compétences de gestion du stress (et de restructuration cognitive...and poor mental health), 2) to teach recruits stress management skills they can use to reduce psychological distress and improve performance, and
Assimilation of MODIS and VIIRS AOD to improve aerosols forecasts with FV3-GOCART
NASA Astrophysics Data System (ADS)
Pagowski, M.
2017-12-01
In 2016 NOAA chose the FV3 dynamical core as a basis for its future global modeling system. We present an implementation of aerosol module in the FV3 model and its assimilation framework. The parameterization of aerosols is based on the GOCART scheme. The assimilation methodology relies on hybrid 3D-Var and EnKF methods. Aerosol observations include aerosol optical depth at 550 nm from VIIRS satellite. Results and evaluation of the system against independent observations and NASA's MERRA-2 is shown.
National Centers for Environmental Prediction
System as follows: Changes to the model components Changes to the data assimilation and tropical storm relocation components Changes to the post-processing Changes to output products 1) Changes to the Global the land-atmosphere system from decoupling. 2) Changes to the Global Data Assimilation System (GDAS
We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...
Spectral characteristics of background error covariance and multiscale data assimilation
Li, Zhijin; Cheng, Xiaoping; Gustafson, Jr., William I.; ...
2016-05-17
The steady increase of the spatial resolutions of numerical atmospheric and oceanic circulation models has occurred over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical and statistical properties vary. In particular, dynamic flow systems at small scales can be spatially localized and temporarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are numerically and theoretically examined. Ourmore » analysis shows that the background error correlation length scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the currently used data assimilation schemes from constraining spatial scales smaller than 150 km for streamfunctions and 50 km for water vapor mixing ratios. Moreover, our results highlight the need to fundamentally modify currently used data assimilation algorithms for assimilating high-resolution observations into the aforementioned fine resolution models. Lastly, within the framework of four-dimensional variational data assimilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.« less
NASA Astrophysics Data System (ADS)
Li, J.; Wang, P.; Han, H.; Schmit, T. J.
2014-12-01
JPSS and GOES-R observations play important role in numerical weather prediction (NWP). However, how to best represent the information from satellite observations and how to get value added information from these satellite data into regional NWP models, including both radiance and derived products, still need investigations. In order to enhance the applications of JPSS and GOES-R data in regional NWP for high impact weather forecasts, scientists from Cooperative Institute of Meteorological Satellite Studies (CIMSS) at University of Wisconsin-Madison have recently developed a near realtime regional Satellite Data Assimilation system for Tropical storm forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat). The system consists of the community Gridpoint Statistical Interpolation (GSI) assimilation system and the advanced Weather Research Forecast (WRF) model. In addition to assimilate GOES, AMSUA/AMSUB, HIRS, MHS, ATMS (Suomi-NPP), AIRS and IASI radiances, the SDAT is also able to assimilate satellite-derived products such as hyperspectral IR retrieved temperature and moisture profiles, total precipitable water (TPW), GOES Sounder (and future GOES-R) layer precipitable water (LPW) and GOES Imager atmospheric motion vector (AMV) products into the system. Real time forecasted GOES infrared (IR) images simulated from SDAT output have also been part of the SDAT system for applications and forecast evaluations. To set up the system parameters, a series of experiments have been carried out to test the impacts of different initialization schemes, including different background error matrix, different NCEP global model date sets, and different WRF model horizontal resolutions. Using SDAT as a research testbed, researches have been conducted for different satellite data impacts study, as well as different techniques for handling clouds in radiance assimilation. Since the fall of 2013, the SDAT system has been running in near real time. The results from historical cases and 2014 hurricane season cases will be compared with the operational GFS and HWRF, and presented at the meeting.
NASA Technical Reports Server (NTRS)
McCormack, J.; Hoppel, K.; Kuhl, D.; de Wit, R.; Stober, G.; Espy, P.; Baker, N.; Brown, P.; Fritts, D.; Jacobi, C.;
2016-01-01
We present a study of horizontal winds in the mesosphere and lower thermosphere (MLT) during the boreal winters of 2009-2010 and 2012-2013 produced with a new high-altitude numerical weather prediction (NWP) system. This system is based on a modified version of the Navy Global Environmental Model (NAVGEM) with an extended vertical domain up to approximately 116 km altitude coupled with a hybrid four-dimensional variational (4DVAR) data assimilation system that assimilates both standard operational meteorological observations in the troposphere and satellite-based observations of temperature, ozone and water vapor in the stratosphere and mesosphere. NAVGEM-based MLT analyzed winds are validated using independent meteor radar wind observations from nine different sites ranging from 69 deg N-67 deg S latitude. Time-averaged NAVGEM zonal and meridional wind profiles between 75 and 95 km altitude show good qualitative and quantitative agreement with corresponding meteor radar wind profiles. Wavelet analysis finds that the 3-hourly NAVGEM and 1-hourly radar winds both exhibit semi-diurnal, diurnal, and quasi-diurnal variations whose vertical profiles of amplitude and phase are also in good agreement. Wavelet analysis also reveals common time-frequency behavior in both NAVGEM and radar winds throughout the Northern extra tropics around the times of major stratospheric sudden warmings (SSWs) in January 2010 and January 2013, with a reduction in semi-diurnal amplitudes beginning around the time of a mesospheric wind reversal at 60 deg N that precedes the SSW, followed by an amplification of semi-diurnal amplitudes that peaks 10-14 days following the onset of the mesospheric wind reversal. The initial results presented in this study demonstrate that the wind analyses produced by the high altitude NAVGEM system accurately capture key features in the observed MLT winds during these two boreal winter periods.
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Krueger, Kirstin; Pawson, Steven; Minschwaner, Ken; Schwartz, Michael J.; Daffer, William H.; Livesey, Nathaniel J.; Mlynczak, Martin G.; Remsberg, Ellis E.; Russell, James M., III;
2008-01-01
Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by 30 km and warmed during development of a major "wave 1" SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.
Assimilation of SMOS Soil Moisture Retrievals in the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Case, Jonathan L.; Zavodsky, Brad
2014-01-01
Soil moisture is a crucial variable for weather prediction because of its influence on evaporation. It is of critical importance for drought and flood monitoring and prediction and for public health applications. The NASA Short-term Prediction Research and Transition Center (SPoRT) has implemented a new module in the NASA Land Information System (LIS) to assimilate observations from the ESA's Soil Moisture and Ocean Salinity (SMOS) satellite. SMOS Level 2 retrievals from the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) instrument are assimilated into the Noah LSM within LIS via an Ensemble Kalman Filter. The retrievals have a target volumetric accuracy of 4% at a resolution of 35-50 km. Parallel runs with and without SMOS assimilation are performed with precipitation forcing from intentionally degraded observations, and then validated against a model run using the best available precipitation data, as well as against selected station observations. The goal is to demonstrate how SMOS data assimilation can improve modeled soil states in the absence of dense rain gauge and radar networks.
Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley
2011-01-01
NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.
NASA Astrophysics Data System (ADS)
Winska, M.
2016-12-01
The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.
NASA Astrophysics Data System (ADS)
Wu, Mousong; Sholze, Marko
2017-04-01
We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.
NASA Astrophysics Data System (ADS)
Li, Zhijin; Chao, Yi; Farrara, John D.; McWilliams, James C.
2013-07-01
A set of data assimilation experiments, known as Observing System Experiments (OSEs) are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of two types: High Frequency (HF) radar surface velocities and vertical profiles of temperature/salinity (T/S) measured by ships, moorings, an Autonomous Underwater Vehicle and a glider. The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill.
Aerosol Data Assimilation at GMAO
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Buchard, Virginie
2017-01-01
This presentation presents an overview of the aerosol data assimilation work performed at GMAO. The GMAO Forward Processing system and the biomass burning emissions from QFED are first presented. Then, the current assimilation of Aerosol Optical Depth (AOD), performed by means of the analysis splitting method is briefly described, followed by some results on the quality control of observations using a Neural Network trained using AERONET AOD. Some applications are shown such as the Mount Pinatubo eruption in 1991 using the MERRA-2 aerosol dataset. Finally preliminary results on the EnKF implementation for aerosol assimilation are presented.
On a comparison of two schemes in sequential data assimilation
NASA Astrophysics Data System (ADS)
Grishina, Anastasiia A.; Penenko, Alexey V.
2017-11-01
This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.
Data assimilation of GNSS zenith total delays from a Nordic processing centre
NASA Astrophysics Data System (ADS)
Lindskog, Magnus; Ridal, Martin; Thorsteinsson, Sigurdur; Ning, Tong
2017-11-01
Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based receiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art kilometre-scale numerical weather prediction system. Different processing techniques have been implemented to derive the moisture-related GNSS information in the form of zenith total delays (ZTDs) and these are described and compared. In addition full-scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the ensuing forecast quality. The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been investigated. Results show benefits to forecast quality when using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.
NASA Astrophysics Data System (ADS)
Malanotte-Rizzoli, Paola; Young, Roberta E.
1995-12-01
The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain the model. However, in these assimilations the predicted velocity fields over the SYNOP arrays are greatly in error. The continuous assimilation of the localized SYNOP data sets with a strong weight is necessary to obtain local realistic evolutions. Then assimilation of velocity measurements alone recovers the density structure over the array area. However, the spatial coverage of the SYNOP measurements is too small to constrain the model on the global scale. Thus the blending of both types of datasets is necessary in the assimilation as they constrain different time and space scales. Our choice of "gentle" nudging weight for the global OTIS 3 and "strong" weight for the local SYNOP data provides for realistic simulations of the Gulf Stream system, both globally and locally, on the 3- to 4-month-long timescale, the one governed by the Gulf Stream jet internal dynamics.
The Global Modeling and Assimilation Office (GMAO) 4d-Var and its Adjoint-based Tools
NASA Technical Reports Server (NTRS)
Todling, Ricardo; Tremolet, Yannick
2008-01-01
The fifth generation of the Goddard Earth Observing System (GEOS-5) Data Assimilation System (DAS) is a 3d-var system that uses the Grid-point Statistical Interpolation (GSI) system developed in collaboration with NCEP, and a general circulation model developed at Goddard, that includes the finite-volume hydrodynamics of GEOS-4 wrapped in the Earth System Modeling Framework and physical packages tuned to provide a reliable hydrological cycle for the integration of the Modern Era Retrospective-analysis for Research and Applications (MERRA). This MERRA system is essentially complete and the next generation GEOS is under intense development. A prototype next generation system is now complete and has been producing preliminary results. This prototype system replaces the GSI-based Incremental Analysis Update procedure with a GSI-based 4d-var which uses the adjoint of the finite-volume hydrodynamics of GEOS-4 together with a vertical diffusing scheme for simplified physics. As part of this development we have kept the GEOS-5 IAU procedure as an option and have added the capability to experiment with a First Guess at the Appropriate Time (FGAT) procedure, thus allowing for at least three modes of running the data assimilation experiments. The prototype system is a large extension of GEOS-5 as it also includes various adjoint-based tools, namely, a forecast sensitivity tool, a singular vector tool, and an observation impact tool, that combines the model sensitivity tool with a GSI-based adjoint tool. These features bring the global data assimilation effort at Goddard up to date with technologies used in data assimilation systems at major meteorological centers elsewhere. Various aspects of the next generation GEOS will be discussed during the presentation at the Workshop, and preliminary results will illustrate the discussion.
NASA Astrophysics Data System (ADS)
Wuerth, S. M.; Fung, I. Y.; Anderson, J. L.; Raeder, K.
2016-12-01
A long-standing challenge in carbon cycle science is the inference of surface fluxes from atmospheric CO2 observations. Here we present initial results from our carbon-weather data assimilation system coupled to a mass-balance inversion . Our system combines the Community Atmosphere Model (CAM 5FV) with state-of-the-art ensemble data assimilation techniques from the Data Assimilation Research Testbed (DART), and assimilates OCO-2 XCO2 observations together with raw meteorological observations. The system uses a mass balance of the optimized atmospheric state to calculate CO2 sources and sinks throughout the globe. We present results from observing system simulation experiments (OSSE) aimed at comparing two different mass-balance approaches' abilities to detect under-reporting of national-scale CO2 emissions. In both experiments, we define a true state as the atmospheric state resulting from running CAM with a prognostic carbon cycle and CO2 emissions from CarbonTracker CT2015. Meteorological and OCO-2-like observations are harvested from this true state for assimilation. We create a hypothetical scenario in which fossil fuel CO2 emissions of a large emitter are scaled to half of their true values. Surface fluxes are then estimated using one of two approaches. The first approach computes, at every 6-hourly assimilation window, surface fluxes as the residual in the mass balance equation after divergence has been accounted for. The updated surface fluxes are then used as forcing in the ensuing CAM forecast. The second approach uses the initial false emissions for two weeks of model integration, then computes improved emissions by adding the time-averaged analysis increment in near-surface CO2 mixing ratio to the initial false emissions. The two weeks are re-run with these updated fluxes, and the process is then repeated for further refinement of fluxes. The advantages and disadvantages of the two approaches are discussed, and the system's ability to recover the true fluxes is assessed.
Usefulness of Wave Data Assimilation to the WAVE WATCH III Modeling System
NASA Astrophysics Data System (ADS)
Choi, J. K.; Dykes, J. D.; Yaremchuk, M.; Wittmann, P.
2017-12-01
In-situ and remote-sensed wave data are more abundant currently than in years past, with excellent accuracy at global scales. Forecast skill of the WAVE WATCH III model is improved by assimilation of these measurements and they are also useful for model validation and calibration. It has been known that the impact of assimilation in wind-sea conditions is not large, but spectra that result in large swell with long term propagation are identified and assimilated, the improved accuracy of the initial conditions improve the long-term forecasts. The Navy's assimilation method started with the simple Optimal Interpolation (OI) method. Operationally, Fleet Numerical Meteorology and Oceanography Center uses the sequential 2DVar scheme, but a new approach has been tested based on an adjoint-free method to variational assimilation in WAVE WATCH III. We will present the status of wave data assimilation into the WAVE WATCH III numerical model and upcoming development of this new adjoint-free variational approach.
Impact of data assimilation on ocean current forecasts in the Angola Basin
NASA Astrophysics Data System (ADS)
Phillipson, Luke; Toumi, Ralf
2017-06-01
The ocean current predictability in the data limited Angola Basin was investigated using the Regional Ocean Modelling System (ROMS) with four-dimensional variational data assimilation. Six experiments were undertaken comprising a baseline case of the assimilation of salinity/temperature profiles and satellite sea surface temperature, with the subsequent addition of altimetry, OSCAR (satellite-derived sea surface currents), drifters, altimetry and drifters combined, and OSCAR and drifters combined. The addition of drifters significantly improves Lagrangian predictability in comparison to the baseline case as well as the addition of either altimetry or OSCAR. OSCAR assimilation only improves Lagrangian predictability as much as altimetry assimilation. On average the assimilation of either altimetry or OSCAR with drifter velocities does not significantly improve Lagrangian predictability compared to the drifter assimilation alone, even degrading predictability in some cases. When the forecast current speed is large, it is more likely that the combination improves trajectory forecasts. Conversely, when the currents are weaker, it is more likely that the combination degrades the trajectory forecast.