NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu
This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.
Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu
This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.
Design and performance of heart assist or artificial heart control systems
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Gebben, V. D.
1978-01-01
The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Tadakuma, Susumu
This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
Preuk, Katharina; Stemmler, Eric; Schießl, Caroline; Jipp, Meike
2016-10-01
With Intelligent Transport Systems (e.g., traffic light assistance systems) assisted drivers are able to show driving behavior in anticipation of upcoming traffic situations. In the years to come, the penetration rate of such systems will be low. Therefore, the majority of vehicles will not be equipped with these systems. Unequipped vehicles' drivers may not expect the driving behavior of assisted drivers. However, drivers' predictions and expectations can play a significant role in their reaction times. Thus, safety issues could arise when unequipped vehicles' drivers encounter driving behavior of assisted drivers. This is why we tested how unequipped vehicles' drivers (N=60) interpreted and reacted to the driving behavior of an assisted driver. We used a multi-driver simulator with three drivers. The three drivers were driving in a line. The lead driver in the line was a confederate who was followed by two unequipped vehicles' drivers. We varied the equipment of the confederate with an Intelligent Transport System: The confederate was equipped either with or without a traffic light assistance system. The traffic light assistance system provided a start-up maneuver before a light turned green. Therefore, the assisted confederate seemed to show unusual deceleration behavior by coming to a halt at an unusual distance from the stop line at the red traffic light. The unusual distance was varied as we tested a moderate (4m distance from the stop line) and an extreme (10m distance from the stop line) parameterization of the system. Our results showed that the extreme parametrization resulted in shorter minimal time-to-collision of the unequipped vehicles' drivers. One rear-end crash was observed. These results provided initial evidence that safety issues can arise when unequipped vehicles' drivers encounter assisted driving behavior. We recommend that future research identifies counteractions to prevent these safety issues. Moreover, we recommend that system developers discuss the best parameterizations of their systems to ensure benefits but also the safety in encounters with unequipped vehicles' drivers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assisted entry mitigates text messaging-based driving detriment.
Sawyer, Benjamin D; Hancock, Peter A
2012-01-01
Previous research using cell phones indicates that manual manipulation is not a principal component of text messaging relating driving detriment. This paper suggests that manipulation of a phone in conjunction with the cognitive need to compose the message itself co-act to contribute to driving degradation. This being so, drivers sending text messages might experience reduced interference to the driving task if the text messaging itself were assisted through the predictive T9 system. We evaluated undergraduate drivers in a simulator who drove and texted using either Assisted Text entry, via Nokia's T9 system, or unassisted entry via the multitap interface. Results supported the superiority of the T9 system over the multitap system implying that specific assistive technologies can modulate the degradation of capacity which texting tragically induces.
NASA Astrophysics Data System (ADS)
Tanohata, Naoki; Seki, Hirokazu
This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.
Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Li, Li
2017-04-01
It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Bus driving assistance system for town area by using ATmega328P microcontroller
NASA Astrophysics Data System (ADS)
Zakaria, Mohamad Fauzi; Soon, Tan Jiah; Rohani, Munzilah Md
2017-09-01
Recently, several bus accidents happened because of bus driver's behavior. In fact, there is no dedicated tool for assisting them to drive safely. This project gives solutions to this by assisting the driver, according to the speed and acceleration of the bus. These data are collected by using a motion processing unit (MPU-6050) and a global positioning system (GPS) and then indicate the driving mode status on the LEDs. All data and status are recorded in a secure digital (SD) card for the authority or the bus company to analyze the driving behavior of a bus driver. This system has been successfully developed and tested in two different areas which includes the UTHM main campus and the road from Parit Raja to Batu Pahat.
Intersection assistance: a safe solution for older drivers?
Dotzauer, Mandy; Caljouw, Simone R; de Waard, Dick; Brouwer, Wiebo H
2013-10-01
Within the next few decades, the number of older drivers operating a vehicle will increase rapidly (Eurostat, 2011). As age increases so does physical vulnerability, age-related impairments, and the risk of being involved in a fatal crashes. Older drivers experience problems in driving situations that require divided attention and decision making under time pressure as reflected by their overrepresentation in at-fault crashes on intersections. Advanced Driver Assistance Systems (ADAS) especially designed to support older drivers crossing intersections might counteract these difficulties. In a longer-term driving simulator study, the effects of an intersection assistant on driving were evaluated. 18 older drivers (M=71.44 years) returned repeatedly completing a ride either with or without a support system in a driving simulator. In order to test the intersection assistance, eight intersections were depicted for further analyses. Results show that ADAS affects driving. Equipped with ADAS, drivers allocated more attention to the road center rather than the left and right, crossed intersections in shorter time, engaged in higher speeds, and crossed more often with a critical time-to-collision (TTC) value. The implications of results are discussed in terms of behavioral adaptation and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.
Designing a System for Computer-Assisted Instruction in Road Education: A First Evaluation.
ERIC Educational Resources Information Center
Garcia-Ros, Rafael; Montoro, Luis; Valero, Pedro; Bayarri, Salvador; Martinez, Tomas
1999-01-01
Describes SIVAS, a computer-based system for driver education based on visual simulation that was developed in Spain to support theoretical concepts about driving in driving schools. Explains how teachers can select pre-built scenarios related to driving lessons in order to make up a lecture. (Author/LRW)
A Preliminary Study on the Possibility of Using Ultrasound in Driver Assistance Systems
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Honda, Hirohiko
This paper presents a preliminary study on the possibility of using ultrasound in driver assistance systems. Subjects' lap time in a driving video game was measured as an index of their performance of driving operations under acoustic conditions with and without an ultrasound signal at 23kHz, 70dB. The results show that the performance characteristics of the subjects changed when the ultrasound signal was presented. Ultrasound signal tends to concentrate on handling the vehicle and decreasing an attention to check the over speed driving, as a second task. We prove the possibility to apply ultrasound signal to control operator's attention and behavior.
Advanced driver assistance systems: Using multimodal redundant warnings to enhance road safety.
Biondi, Francesco; Strayer, David L; Rossi, Riccardo; Gastaldi, Massimiliano; Mulatti, Claudio
2017-01-01
This study investigated whether multimodal redundant warnings presented by advanced assistance systems reduce brake response times. Warnings presented by assistance systems are designed to assist drivers by informing them that evasive driving maneuvers are needed in order to avoid a potential accident. If these warnings are poorly designed, they may distract drivers, slow their responses, and reduce road safety. In two experiments, participants drove a simulated vehicle equipped with a forward collision avoidance system. Auditory, vibrotactile, and multimodal warnings were presented when the time to collision was shorter than five seconds. The effects of these warnings were investigated with participants performing a concurrent cell phone conversation (Exp. 1) or driving in high-density traffic (Exp. 2). Braking times and subjective workload were measured. Multimodal redundant warnings elicited faster braking reaction times. These warnings were found to be effective even when talking on a cell phone (Exp. 1) or driving in dense traffic (Exp. 2). Multimodal warnings produced higher ratings of urgency, but ratings of frustration did not increase compared to other warnings. Findings obtained in these two experiments are important given that faster braking responses may reduce the potential for a collision. Copyright © 2016 Elsevier Ltd. All rights reserved.
Secoli, R; Zondervan, D; Reinkensmeyer, D
2012-01-01
For children with a severe disability, such as can arise from cerebral palsy, becoming independent in mobility is a critical goal. Currently, however, driver's training for powered wheelchair use is labor intensive, requiring hand-over-hand assistance from a skilled therapist to keep the trainee safe. This paper describes the design of a mixed reality environment for semi-autonomous training of wheelchair driving skills. In this system, the wheelchair is used as the gaming input device, and users train driving skills by maneuvering through floor-projected games created with a multi-projector system and a multi-camera tracking system. A force feedback joystick assists in steering and enhances safety.
EEG potentials predict upcoming emergency brakings during simulated driving
NASA Astrophysics Data System (ADS)
Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin
2011-10-01
Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.
EEG potentials predict upcoming emergency brakings during simulated driving.
Haufe, Stefan; Treder, Matthias S; Gugler, Manfred F; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin
2011-10-01
Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h(-1) driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.
DOT National Transportation Integrated Search
2018-01-31
Advanced Traveler Information Systems (ATIS) and in-vehicle information systems (IVIS) are becoming an integral part of the current driving experience. Although information through in-vehicle technologies provides assistance to drivers with diverse t...
Drivers' safety needs, behavioural adaptations and acceptance of new driving support systems.
Saad, Farida; Van Elslande, Pierre
2012-01-01
The aim of this paper is to discuss the contribution of two complementary approaches for designing and evaluating new driver support systems likely to improve the operation and safety of the road traffic system. The first approach is based on detailed analyses of traffic crashes so as to estimate drivers' needs for assistance and the situational constraints that safety functions should address to be efficient. The second approach is based on in depth-analyses of behavioral adaptations induced by the usage of new driver support systems in regular driving situations and on drivers' acceptance of the assistance provided by the systems.
Real-time stop sign detection and distance estimation using a single camera
NASA Astrophysics Data System (ADS)
Wang, Wenpeng; Su, Yuxuan; Cheng, Ming
2018-04-01
In modern world, the drastic development of driver assistance system has made driving a lot easier than before. In order to increase the safety onboard, a method was proposed to detect STOP sign and estimate distance using a single camera. In STOP sign detection, LBP-cascade classifier was applied to identify the sign in the image, and the principle of pinhole imaging was based for distance estimation. Road test was conducted using a detection system built with a CMOS camera and software developed by Python language with OpenCV library. Results shows that that the proposed system reach a detection accuracy of maximum of 97.6% at 10m, a minimum of 95.00% at 20m, and 5% max error in distance estimation. The results indicate that the system is effective and has the potential to be used in both autonomous driving and advanced driver assistance driving systems.
NASA Astrophysics Data System (ADS)
Raksincharoensak, Pongsathorn; Khaisongkram, Wathanyoo; Nagai, Masao; Shimosaka, Masamichi; Mori, Taketoshi; Sato, Tomomasa
2010-12-01
This paper describes the modelling of naturalistic driving behaviour in real-world traffic scenarios, based on driving data collected via an experimental automobile equipped with a continuous sensing drive recorder. This paper focuses on the longitudinal driving situations which are classified into five categories - car following, braking, free following, decelerating and stopping - and are referred to as driving states. Here, the model is assumed to be represented by a state flow diagram. Statistical machine learning of driver-vehicle-environment system model based on driving database is conducted by a discriminative modelling approach called boosting sequential labelling method.
Stress-oriented driver assistance system for electric vehicles.
Athanasiou, Georgia; Tsotoulidis, Savvas; Mitronikas, Epaminondas; Lymberopoulos, Dimitrios
2014-01-01
Stress is physiological and physical reaction that appears in highly demanding situations and affects human's perception and reaction capability. Occurrence of stress events within highly dynamic road environment could lead to life-threatening situation. With the perspective of safety and comfort driving provision to anxious drivers, in this paper a stress-oriented Driver Assistance System (DAS) is proposed. The DAS deployed on Electric Vehicle. This novel DAS customizes driving command signal in respect to road context, when stress is detected. The effectiveness of this novel DAS is verified by simulation in MATLAB/SIMULINK environment.
In vitro validation of a self-driving aortic-turbine venous-assist device for Fontan patients.
Pekkan, Kerem; Aka, Ibrahim Basar; Tutsak, Ece; Ermek, Erhan; Balim, Haldun; Lazoglu, Ismail; Turkoz, Riza
2018-03-11
Palliative repair of single ventricle defects involve a series of open-heart surgeries where a single-ventricle (Fontan) circulation is established. As the patient ages, this paradoxical circulation gradually fails, because of its high venous pressure levels. Reversal of the Fontan paradox requires an extra subpulmonic energy that can be provided through mechanical assist devices. The objective of this study was to evaluate the hemodynamic performance of a totally implantable integrated aortic-turbine venous-assist (iATVA) system, which does not need an external drive power and maintains low venous pressure chronically, for the Fontan circulation. Blade designs of the co-rotating turbine and pump impellers were developed and 3 prototypes were manufactured. After verifying the single-ventricle physiology at a pulsatile in vitro circuit, the hemodynamic performance of the iATVA system was measured for pediatric and adult physiology, varying the aortic steal percentage and circuit configurations. The iATVA system was also tested at clinical off-design scenarios. The prototype iATVA devices operate at approximately 800 revolutions per minute and extract up to 10% systemic blood from the aorta to use this hydrodynamic energy to drive a blood turbine, which in turn drives a mixed-flow venous pump passively. By transferring part of the available energy from the single-ventricle outlet to the venous side, the iATVA system is able to generate up to approximately 5 mm Hg venous recovery while supplying the entire caval flow. Our experiments show that a totally implantable iATVA system is feasible, which will eliminate the need for external power for Fontan mechanical venous assist and combat gradual postoperative venous remodeling and Fontan failure. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Pohlmann, André; Hameyer, Kay
2012-01-01
Ventricular Assist Devices (VADs) are mechanical blood pumps that support the human heart in order to maintain a sufficient perfusion of the human body and its organs. During VAD operation blood damage caused by hemolysis, thrombogenecity and denaturation has to be avoided. One key parameter causing the blood's denaturation is its temperature which must not exceed 42 °C. As a temperature rise can be directly linked to the losses occuring in the drive system, this paper introduces an efficiency prediction chain for Brushless DC (BLDC) drives which are applied in various VAD systems. The presented chain is applied to various core materials and operation ranges, providing a general overview on the loss dependencies.
Traffic signs recognition for driving assistance
NASA Astrophysics Data System (ADS)
Sai Sangram Reddy, Yatham; Karthik, Devareddy; Rana, Nikunj; Jasmine Pemeena Priyadarsini, M.; Rajini, G. K.; Naseera, Shaik
2017-11-01
In the current circumstances with the innovative headway, we must be able to provide assistance to the driving in recognising the traffic signs on the roads. At present time, many reviews are being directed moving in the direction of the usage of a keen Traffic Systems. One field of this exploration is driving support systems, and many reviews are being directed to create frameworks which distinguish and perceive street signs in front of the vehicle, and afterward utilize the data to advise the driver or to even control the vehicle by implementing this system on self-driving vehicles. In this paper we propose a method to detect the traffic sign board in a frame using HAAR cascading and then identifying the sign on it. The output may be either given out in voice or can be displayed as per the driver’s convenience. Each of the Traffic Sign is recognised using a database of images of symbols used to train the KNN classifier using open CV libraries.
Design of an immersive simulator for assisted power wheelchair driving.
Devigne, Louise; Babel, Marie; Nouviale, Florian; Narayanan, Vishnu K; Pasteau, Francois; Gallien, Philippe
2017-07-01
Driving a power wheelchair is a difficult and complex visual-cognitive task. As a result, some people with visual and/or cognitive disabilities cannot access the benefits of a power wheelchair because their impairments prevent them from driving safely. In order to improve their access to mobility, we have previously designed a semi-autonomous assistive wheelchair system which progressively corrects the trajectory as the user manually drives the wheelchair and smoothly avoids obstacles. Developing and testing such systems for wheelchair driving assistance requires a significant amount of material resources and clinician time. With Virtual Reality technology, prototypes can be developed and tested in a risk-free and highly flexible Virtual Environment before equipping and testing a physical prototype. Additionally, users can "virtually" test and train more easily during the development process. In this paper, we introduce a power wheelchair driving simulator allowing the user to navigate with a standard wheelchair in an immersive 3D Virtual Environment. The simulation framework is designed to be flexible so that we can use different control inputs. In order to validate the framework, we first performed tests on the simulator with able-bodied participants during which the user's Quality of Experience (QoE) was assessed through a set of questionnaires. Results show that the simulator is a promising tool for future works as it generates a good sense of presence and requires rather low cognitive effort from users.
EEG-based decoding of error-related brain activity in a real-world driving task
NASA Astrophysics Data System (ADS)
Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.
2015-12-01
Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.
Effectiveness and acceptance of the intelligent speeding prediction system (ISPS).
Zhao, Guozhen; Wu, Changxu
2013-03-01
The intelligent speeding prediction system (ISPS) is an in-vehicle speed assistance system developed to provide quantitative predictions of speeding. Although the ISPS's prediction of speeding has been validated, whether the ISPS can regulate a driver's speed behavior or whether a driver accepts the ISPS needs further investigation. Additionally, compared to the existing intelligent speed adaptation (ISA) system, whether the ISPS performs better in terms of reducing excessive speeds and improving driving safety needs more direct evidence. An experiment was conducted to assess and compare the effectiveness and acceptance of the ISPS and the ISA. We conducted a driving simulator study with 40 participants. System type served as a between-subjects variable with four levels: no speed assistance system, pre-warning system developed based on the ISPS, post-warning system ISA, and combined pre-warning and ISA system. Speeding criterion served as a within-subjects variable with two levels: lower (posted speed limit plus 1 mph) and higher (posted speed limit plus 5 mph) speed threshold. Several aspects of the participants' driving speed, speeding measures, lead vehicle response, and subjective measures were collected. Both pre-warning and combined systems led to greater minimum time-to-collision. The combined system resulted in slower driving speed, fewer speeding exceedances, shorter speeding duration, and smaller speeding magnitude. The results indicate that both pre-warning and combined systems have the potential to improve driving safety and performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja
2017-01-01
Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219
Eco Assist Techniques through Real-time Monitoring of BEV Energy Usage Efficiency
Kim, Younsun; Lee, Ingeol; Kang, Sungho
2015-01-01
Energy efficiency enhancement has become an increasingly important issue for battery electric vehicles. Even if it can be improved in many ways, the driver’s driving pattern strongly influences the battery energy consumption of a vehicle. In this paper, eco assist techniques to simply implement an energy-efficient driving assistant system are introduced, including eco guide, eco control and eco monitoring methods. The eco guide is provided to control the vehicle speed and accelerator pedal stroke, and eco control is suggested to limit the output power of the battery. For eco monitoring, the eco indicator and eco report are suggested to teach eco-friendly driving habits. The vehicle test, which is done in four ways, consists of federal test procedure (FTP)-75, new european driving cycle (NEDC), city and highway cycles, and visual feedback with audible warnings is provided to attract the driver’s voluntary participation. The vehicle test result shows that the energy usage efficiency can be increased up to 19.41%. PMID:26121611
2010-08-19
highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will
Large, David R; Clark, Leigh; Quandt, Annie; Burnett, Gary; Skrypchuk, Lee
2017-09-01
Given the proliferation of 'intelligent' and 'socially-aware' digital assistants embodying everyday mobile technology - and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices - it appears inevitable that next generation vehicles will be embodied by digital assistants and utilise spoken language as a method of interaction. From a design perspective, defining the language and interaction style that a digital driving assistant should adopt is contingent on the role that they play within the social fabric and context in which they are situated. We therefore conducted a qualitative, Wizard-of-Oz study to explore how drivers might interact linguistically with a natural language digital driving assistant. Twenty-five participants drove for 10 min in a medium-fidelity driving simulator while interacting with a state-of-the-art, high-functioning, conversational digital driving assistant. All exchanges were transcribed and analysed using recognised linguistic techniques, such as discourse and conversation analysis, normally reserved for interpersonal investigation. Language usage patterns demonstrate that interactions with the digital assistant were fundamentally social in nature, with participants affording the assistant equal social status and high-level cognitive processing capability. For example, participants were polite, actively controlled turn-taking during the conversation, and used back-channelling, fillers and hesitation, as they might in human communication. Furthermore, participants expected the digital assistant to understand and process complex requests mitigated with hedging words and expressions, and peppered with vague language and deictic references requiring shared contextual information and mutual understanding. Findings are presented in six themes which emerged during the analysis - formulating responses; turn-taking; back-channelling, fillers and hesitation; vague language; mitigating requests and politeness and praise. The results can be used to inform the design of future in-vehicle natural language systems, in particular to help manage the tension between designing for an engaging dialogue (important for technology acceptance) and designing for an effective dialogue (important to minimise distraction in a driving context). Copyright © 2017 Elsevier Ltd. All rights reserved.
Wireless control of powered wheelchairs with tongue motion using tongue drive assistive technology.
Huo, Xueliang; Wang, Jia; Ghovanloo, Maysam
2008-01-01
Tongue Drive system (TDS) is a tongue-operated unobtrusive wireless assistive technology, which can potentially provide people with severe disabilities with effective computer access and environment control. It translates users' intentions into control commands by detecting and classifying their voluntary tongue motion utilizing a small permanent magnet, secured on the tongue, and an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. We have developed customized interface circuitry and implemented four control strategies to drive a powered wheelchair (PWC) using an external TDS prototype. The system has been evaluated by five able-bodied human subjects. The results showed that all subjects could easily operate the PWC using their tongue movements, and different control strategies worked better depending on the users' familiarity with the TDS.
Banks, Victoria A; Stanton, Neville A; Harvey, Catherine
2014-01-01
Although task analysis of pedestrian detection can provide us with useful insights into how a driver may behave in emergency situations, the cognitive elements of driver decision-making are less well understood. To assist in the design of future Advanced Driver Assistance Systems, such as Autonomous Emergency Brake systems, it is essential that the cognitive elements of the driving task are better understood. This paper uses verbal protocol analysis in an exploratory fashion to uncover the thought processes underlying behavioural outcomes represented by hard data collected using the Southampton University Driving Simulator.
Virtual prototyping and testing of in-vehicle interfaces.
Bullinger, Hans-Jörg; Dangelmaier, Manfred
2003-01-15
Electronic innovations that are slowly but surely changing the very nature of driving need to be tested before being introduced to the market. To meet this need a system for integrated virtual prototyping and testing has been developed. Functional virtual prototypes of various traffic systems, such as driver assistance, driver information, and multimedia systems can now be easily tested in a driving simulator by a rapid prototyping approach. The system has been applied in recent R&D projects.
Computational fluid dynamics (CFD) in the design of a water-jet-drive system
NASA Technical Reports Server (NTRS)
Garcia, Roberto
1994-01-01
NASA/Marshall Space Flight Center (MSFC) has an ongoing effort to transfer to industry the technologies developed at MSFC for rocket propulsion systems. The Technology Utilization (TU) Office at MSFC promotes these efforts and accepts requests for assistance from industry. One such solicitation involves a request from North American Marine Jet, Inc. (NAMJ) for assistance in the design of a water-jet-drive system to fill a gap in NAMJ's product line. NAMJ provided MSFC with a baseline axial flow impeller design as well as the relevant working parameters (rpm, flow rate, etc.). This baseline design was analyzed using CFD, and significant deficiencies identified. Four additional analyses were performed involving MSFC changes to the geometric and operational parameters of the baseline case. Subsequently, the impeller was redesigned by NAMJ and analyzed by MSFC. This new configuration performs significantly better than the baseline design. Similar cooperative activities are planned for the design of the jet-drive inlet.
New ergonomic headset for Tongue-Drive System with wireless smartphone interface.
Park, Hangue; Kim, Jeonghee; Huo, Xueliang; Hwang, In-O; Ghovanloo, Maysam
2011-01-01
Tongue Drive System (TDS) is a wireless tongue-operated assistive technology (AT), developed for people with severe physical disabilities to control their environment using their tongue motion. We have developed a new ergonomic headset for the TDS with a user-friendly smartphone interface, through which users will be able to wirelessly control various devices, access computers, and drive wheelchairs. This headset design is expected to act as a flexible and multifunctional communication interface for the TDS and improve its usability, accessibility, aesthetics, and convenience for the end users.
NASA Astrophysics Data System (ADS)
Hata, Naoki; Seki, Hirokazu; Koyasu, Yuichi; Hori, Yoichi
Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of a power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. This paper proposes a novel control method to prevent power assisted wheelchair from overturning. The man-wheelchair system can be regarded as an inverse pendulum model when the front wheels are rising. The center-of-gravity (COG) angle of the model is the most important information directly-linked to overturn. Behavior of the system can be analyzed using phase plane as shown in this paper. The COG angle cannot be directly measured using a sensor, therefore, COG observer based on its velocity is proposed. On the basis of the analysis on phase plane, a novel control method with variable assistance ratio to prevent a dangerous overturn is proposed. The effectiveness of the proposed method is verified by the practical experiments on the flat ground and uphill slope.
Jerky driving--An indicator of accident proneness?
Bagdadi, Omar; Várhelyi, András
2011-07-01
This study uses continuously logged driving data from 166 private cars to derive the level of jerks caused by the drivers during everyday driving. The number of critical jerks found in the data is analysed and compared with the self-reported accident involvement of the drivers. The results show that the expected number of accidents for a driver increases with the number of critical jerks caused by the driver. Jerk analyses make it possible to identify safety critical driving behaviour or "accident prone" drivers. They also facilitate the development of safety measures such as active safety systems or advanced driver assistance systems, ADAS, which could be adapted for specific groups of drivers or specific risky driving behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Driving Behaviour Model of Electrical Wheelchair Users
Hamam, Y.; Djouani, K.; Daachi, B.; Steyn, N.
2016-01-01
In spite of the presence of powered wheelchairs, some of the users still experience steering challenges and manoeuvring difficulties that limit their capacity of navigating effectively. For such users, steering support and assistive systems may be very necessary. To appreciate the assistance, there is need that the assistive control is adaptable to the user's steering behaviour. This paper contributes to wheelchair steering improvement by modelling the steering behaviour of powered wheelchair users, for integration into the control system. More precisely, the modelling is based on the improved Directed Potential Field (DPF) method for trajectory planning. The method has facilitated the formulation of a simple behaviour model that is also linear in parameters. To obtain the steering data for parameter identification, seven individuals participated in driving the wheelchair in different virtual worlds on the augmented platform. The obtained data facilitated the estimation of user parameters, using the ordinary least square method, with satisfactory regression analysis results. PMID:27148362
Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.
2011-11-01
Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less
Heating and current drive on NSTX
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.
1997-04-01
Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.
Gillham, Michael; Pepper, Matthew; Kelly, Steve; Howells, Gareth
2017-01-01
Background : Many powered wheelchair users find their medical condition and their ability to drive the wheelchair will change over time. In order to maintain their independent mobility, the powered chair will require adjustment over time to suit the user's needs, thus regular input from healthcare professionals is required. These limited resources can result in the user having to wait weeks for appointments, resulting in the user losing independent mobility, consequently affecting their quality of life and that of their family and carers. In order to provide an adaptive assistive driving system, a range of features need to be identified which are suitable for initial system setup and can automatically provide data for re-calibration over the long term. Methods : A questionnaire was designed to collect information from powered wheelchair users with regard to their symptoms and how they changed over time. Another group of volunteer participants were asked to drive a test platform and complete a course which represented manoeuvring in a very confined space as quickly as possible. Two of those participants were also monitored over a longer period in their normal home daily environment. Features, thought to be suitable, were examined using pattern recognition classifiers to determine their suitability for identifying the changing user input over time. Results : The results are not designed to provide absolute insight into the individual user behaviour, as no ground truth of their ability has been determined, they do nevertheless demonstrate the utility of the measured features to provide evidence of the users' changing ability over time whilst driving a powered wheelchair. Conclusions : Determining the driving features and adjustable elements provides the initial step towards developing an adaptable assistive technology for the user when the ground truths of the individual and their machine have been learned by a smart pattern recognition system.
Gillham, Michael; Pepper, Matthew; Kelly, Steve; Howells, Gareth
2018-01-01
Background: Many powered wheelchair users find their medical condition and their ability to drive the wheelchair will change over time. In order to maintain their independent mobility, the powered chair will require adjustment over time to suit the user's needs, thus regular input from healthcare professionals is required. These limited resources can result in the user having to wait weeks for appointments, resulting in the user losing independent mobility, consequently affecting their quality of life and that of their family and carers. In order to provide an adaptive assistive driving system, a range of features need to be identified which are suitable for initial system setup and can automatically provide data for re-calibration over the long term. Methods: A questionnaire was designed to collect information from powered wheelchair users with regard to their symptoms and how they changed over time. Another group of volunteer participants were asked to drive a test platform and complete a course which represented manoeuvring in a very confined space as quickly as possible. Two of those participants were also monitored over a longer period in their normal home daily environment. Features, thought to be suitable, were examined using pattern recognition classifiers to determine their suitability for identifying the changing user input over time. Results: The results are not designed to provide absolute insight into the individual user behaviour, as no ground truth of their ability has been determined, they do nevertheless demonstrate the utility of the measured features to provide evidence of the users’ changing ability over time whilst driving a powered wheelchair. Conclusions: Determining the driving features and adjustable elements provides the initial step towards developing an adaptable assistive technology for the user when the ground truths of the individual and their machine have been learned by a smart pattern recognition system. PMID:29552641
Shakya, Yuniya; Johnson, Michelle J
2008-01-01
Robot assisted therapy is a new and promising area in stroke rehabilitation and has shown to be effective in reducing motor impairment, but is a costly solution for home rehabilitation. High medical costs could be reduced if we could improve rehabilitation exercise in unsupervised environments such as the home. Hence, there is an augmented need for a cost effective rehabilitation system that can be used outside the clinic. This paper presents the design concept for an autonomous robotic assistant that is low-cost and effective in engaging the users while assisting them with therapy in any under-supervised area. We investigated how the robot assistant can support TheraDrive, our low-cost therapy system. We present the design methods and a case study demonstrating the arm and video collection system.
Li, Yi; Chen, Yuren
2016-12-30
To make driving assistance system more humanized, this study focused on the prediction and assistance of drivers' perception-response time on mountain highway curves. Field tests were conducted to collect real-time driving data and driver vision information. A driver-vision lane model quantified curve elements in drivers' vision. A multinomial log-linear model was established to predict perception-response time with traffic/road environment information, driver-vision lane model, and mechanical status (last second). A corresponding assistance model showed a positive impact on drivers' perception-response times on mountain highway curves. Model results revealed that the driver-vision lane model and visual elements did have important influence on drivers' perception-response time. Compared with roadside passive road safety infrastructure, proper visual geometry design, timely visual guidance, and visual information integrality of a curve are significant factors for drivers' perception-response time.
Wang, Minjuan; Sun, Dong; Chen, Fang
2012-01-01
In recent years, there are many naturalistic driving projects have been conducted, such as the 100-Car Project (Naturalistic Driving study in United State), EuroFOT(European Large-Scale Field Operational Tests on Vehicle Systems), SeMi- FOT(Sweden Michigan Naturalistic Field Operational Test and etc. However, those valuable naturalistic driving data hasn't been applied into Human-machine Interaction (HMI) design for Advanced Driver Assistance Systems (ADAS), a good HMI design for ADAS requires a deep understanding of drive environment and the interactions between the driving car and other road users in different situations. The results demonstrated the benefits of using naturalistic driving films as a mean for enhancing focus group discussion for better understanding driver's needs and traffic environment constraints. It provided an efficient tool for designers to have inside knowledge about drive and the needs for information presentation; The recommendations for how to apply this method is discussed in the paper.
Automated Driving System Architecture to Ensure Safe Delegation of Driving Authority
NASA Astrophysics Data System (ADS)
YUN, Sunkil; NISHIMURA, Hidekazu
2016-09-01
In this paper, the architecture of an automated driving system (ADS) is proposed to ensure safe delegation of driving authority between the ADS and a driver. Limitations of the ADS functions may activate delegation of driving authority to a driver. However, it leads to severe consequences in emergency situations where a driver may be drowsy or distracted. To address these issues, first, the concept model for the ADS in the situation for delegation of driving authority is described taking the driver's behaviour and state into account. Second, the behaviour / state of a driver and functional flow / state of ADS and the interactions between them are modelled to understand the context where the ADS requests to delegate the driving authority to a driver. Finally, the proposed architecture of the ADS is verified under the simulations based on the emergency braking scenarios. In the verification process using simulation, we have derived the necessary condition for safe delegation of driving authority is that the ADS should assist s driver even after delegating driving authority to a driver who has not enough capability to regain control of the driving task.
EEG-Based Detection of Braking Intention Under Different Car Driving Conditions
Hernández, Luis G.; Mozos, Oscar Martinez; Ferrández, José M.; Antelis, Javier M.
2018-01-01
The anticipatory recognition of braking is essential to prevent traffic accidents. For instance, driving assistance systems can be useful to properly respond to emergency braking situations. Moreover, the response time to emergency braking situations can be affected and even increased by different driver's cognitive states caused by stress, fatigue, and extra workload. This work investigates the detection of emergency braking from driver's electroencephalographic (EEG) signals that precede the brake pedal actuation. Bioelectrical signals were recorded while participants were driving in a car simulator while avoiding potential collisions by performing emergency braking. In addition, participants were subjected to stress, workload, and fatigue. EEG signals were classified using support vector machines (SVM) and convolutional neural networks (CNN) in order to discriminate between braking intention and normal driving. Results showed significant recognition of emergency braking intention which was on average 71.1% for SVM and 71.8% CNN. In addition, the classification accuracy for the best participant was 80.1 and 88.1% for SVM and CNN, respectively. These results show the feasibility of incorporating recognizable driver's bioelectrical responses into advanced driver-assistance systems to carry out early detection of emergency braking situations which could be useful to reduce car accidents. PMID:29910722
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Indian Affairs.
A Senate committe hearing received testimony on the proposed "Native American Commercial Driving Training and Technical Assistance Act" (Senate Bill 1344). The Act cites the high unemployment and economic distress among Native Americans, the federal government's obligation to assist Indian tribes with economic development, the high…
Study of Wearable Knee Assistive Instruments for Walk Rehabilitation
NASA Astrophysics Data System (ADS)
Zhu, Yong; Nakamura, Masahiro; Ito, Noritaka; Fujimoto, Hiroshi; Horikuchi, Kenichi; Wakabayashi, Shojiro; Takahashi, Rei; Terada, Hidetsugu; Haro, Hirotaka
A wearable Knee Assistive Instrument for the walk rehabilitation was newly developed. Especially, this system aimed at supporting the rehabilitation for the post-TKA (Total Knee Arthroplasty) which is a popular surgery for aging people. This system consisted of an assisting mechanism for the knee joint, a hip joint support system and a foot pressure sensor system. The driving system of this robot consisted of a CPU board which generated the walking pattern, a Li-ion battery, DC motors with motor drivers, contact sensors to detect the state of foot and potentiometers to detect the hip joint angle. The control method was proposed to reproduce complex motion of knee joint as much as possible, and to increase hip or knee flexion angle. Especially, this method used the timing that heel left from the floor. This method included that the lower limb was raised to prevent a subject's fall. Also, the prototype of knee assisting system was tested. It was confirmed that the assisting system is useful.
Navarro, Jordan; Yousfi, Elsa; Deniel, Jonathan; Jallais, Christophe; Bueno, Mercedes; Fort, Alexandra
2016-12-01
In the past, lane departure warnings (LDWs) were demonstrated to improve driving behaviours during lane departures but little is known about the effects of unreliable warnings. This experiment focused on the influence of false warnings alone or in combination with missed warnings and warning onset on assistance effectiveness and acceptance. Two assistance unreliability levels (33 and 17%) and two warning onsets (partial and full lane departure) were manipulated in order to investigate interaction. Results showed that assistance, regardless unreliability levels and warning onsets, improved driving behaviours during lane departure episodes and outside of these episodes by favouring better lane-keeping performances. Full lane departure and highly unreliable warnings, however, reduced assistance efficiency. Drivers' assistance acceptance was better for the most reliable warnings and for the subsequent warnings. The data indicate that imperfect LDWs (false warnings or false and missed warnings) further improve driving behaviours compared to no assistance. Practitioner Summary: This study revealed that imperfect lane departure warnings are able to significantly improve driving performances and that warning onset is a key element for assistance effectiveness and acceptance. The conclusion may be of particular interest for lane departure warning designers.
Carryover effects of highly automated convoy driving on subsequent manual driving performance.
Skottke, Eva-Maria; Debus, Günter; Wang, Lei; Huestegge, Lynn
2014-11-01
In the present study, we tested to what extent highly automated convoy driving involving small spacing ("platooning") may affect time headway (THW) and standard deviation of lateral position (SDLP) during subsequent manual driving. Although many previous studies have reported beneficial effects of automated driving, some research has also highlighted potential drawbacks, such as increased speed and reduced THW during the activation of semiautomated driving systems. Here, we rather focused on the question of whether switching from automated to manual driving may produce unwanted carryover effects on safety-relevant driving performance. We utilized a pre-post simulator design to measure THW and SDLP after highly automated driving and compared the data with those for a control group (manual driving throughout). Our data revealed that THW was reduced and SDLP increased after leaving the automation mode. A closer inspection of the data suggested that specifically the effect on THW is likely due to sensory and/or cognitive adaptation processes. Behavioral adaptation effects need to be taken into account in future implementations of automated convoy systems. Potential application areas of this research comprise automated freight traffic (truck convoys) and the design of driver assistance systems in general. Potential countermeasures against following at short distance as behavioral adaptation should be considered.
Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving
Vanacker, Gerolf; Millán, José del R.; Lew, Eileen; Ferrez, Pierre W.; Moles, Ferran Galán; Philips, Johan; Van Brussel, Hendrik; Nuttin, Marnix
2007-01-01
Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair. PMID:18354739
Morales, Jesús; Mandow, Anthony; Martínez, Jorge L; Reina, Antonio J; García-Cerezo, Alfonso
2013-04-03
Driving vehicles with one or more passive trailers has difficulties in both forward and backward motion due to inter-unit collisions, jackknife, and lack of visibility. Consequently, advanced driver assistance systems (ADAS) for multi-trailer combinations can be beneficial to accident avoidance as well as to driver comfort. The ADAS proposed in this paper aims to prevent unsafe steering commands by means of a haptic handwheel. Furthermore, when driving in reverse, the steering-wheel and pedals can be used as if the vehicle was driven from the back of the last trailer with visual aid from a rear-view camera. This solution, which can be implemented in drive-by-wire vehicles with hitch angle sensors, profits from two methods previously developed by the authors: safe steering by applying a curvature limitation to the leading unit, and a virtual tractor concept for backward motion that includes the complex case of set-point propagation through on-axle hitches. The paper addresses system requirements and provides implementation details to tele-operate two different off- and on-axle combinations of a tracked mobile robot pulling and pushing two dissimilar trailers.
Daza, Iván G.; Bergasa, Luis M.; Bronte, Sebastián; Yebes, J. Javier; Almazán, Javier; Arroyo, Roberto
2014-01-01
This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study. PMID:24412904
Morales, Jesús; Mandow, Anthony; Martínez, Jorge L.; Reina, Antonio J.; García-Cerezo, Alfonso
2013-01-01
Driving vehicles with one or more passive trailers has difficulties in both forward and backward motion due to inter-unit collisions, jackknife, and lack of visibility. Consequently, advanced driver assistance systems (ADAS) for multi-trailer combinations can be beneficial to accident avoidance as well as to driver comfort. The ADAS proposed in this paper aims to prevent unsafe steering commands by means of a haptic handwheel. Furthermore, when driving in reverse, the steering-wheel and pedals can be used as if the vehicle was driven from the back of the last trailer with visual aid from a rear-view camera. This solution, which can be implemented in drive-by-wire vehicles with hitch angle sensors, profits from two methods previously developed by the authors: safe steering by applying a curvature limitation to the leading unit, and a virtual tractor concept for backward motion that includes the complex case of set-point propagation through on-axle hitches. The paper addresses system requirements and provides implementation details to tele-operate two different off- and on-axle combinations of a tracked mobile robot pulling and pushing two dissimilar trailers. PMID:23552102
NASA Astrophysics Data System (ADS)
Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao
This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).
Kauer, Michaela; Franz, Benjamin; Maier, Alexander; Bruder, Ralph
2015-01-01
Today, new driving paradigms are being introduced that aim to reduce the number of standalone driver assistance systems by combining these into one overarching system. This is done to reduce the demands on drivers but often leads to a higher degree of automation. Feasibility and driver behaviour are often the subject of studies, but this is contrasted by a lack of research into the influence of highly automated driving on the self-perception of drivers. This article begins to close this gap by investigating the influences of one highly automated driving concept--Conduct-by-Wire--on the self-perception of drivers via a combined driving simulator and interview study. The aim of this work is to identify changes in the role concept of drivers indicated by highly automated driving, to evaluate these changes from the drivers' point of view and to give suggestions of possible improvements to the design of highly automated vehicles.
Robotically assisted ureteroscopy for kidney exploration
NASA Astrophysics Data System (ADS)
Talari, Hadi F.; Monfaredi, Reza; Wilson, Emmanuel; Blum, Emily; Bayne, Christopher; Peters, Craig; Zhang, Anlin; Cleary, Kevin
2017-03-01
Ureteroscopy is a minimally invasive procedure for diagnosis and treatment of urinary tract pathology. Ergonomic and visualization challenges as well as radiation exposure are limitations to conventional ureteroscopy. Therefore, we have developed a robotic system to "power drive" a flexible ureteroscope with 3D tip tracking and pre-operative image overlay. The proposed system was evaluated using a kidney phantom registered to pre-operative MR images. Initial experiments show the potential of the device to provide additional assistance, precision, and guidance during urology procedures.
Unmanned Airlift: How Should We Proceed?
2002-04-01
Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements Advisor: Lt Col Vincent T. Jovene Maxwell Air Force Base...thank my research advisor, Lt Col Jim Jovene for his guidance and assistance. I also owe a special thanks to Mr. Bob Peak of the Southeast SATS Lab...National Aerospace System ( NAS ) are driving the advancement of automating technologies, and it shows how this drive toward automation is laying the
Driving with a partially autonomous forward collision warning system: how do drivers react?
Muhrer, Elke; Reinprecht, Klaus; Vollrath, Mark
2012-10-01
The effects of a forward collision warning (FCW) and braking system (FCW+) were examined in a driving simulator study analyzing driving and gaze behavior and the engagement in a secondary task. In-depth accident analyses indicate that a lack of appropriate expectations for possible critical situations and visual distraction may be the major causes of rear-end crashes. Studies with FCW systems have shown that a warning alone was not enough for a driver to be able to avoid the accident. Thus,an additional braking intervention by such systems could be necessary. In a driving simulator experiment, 30 drivers took part in a car-following scenario in an urban area. It was assumed that different lead car behaviors and environmental aspects would lead to different drivers' expectations of the future traffic situation. Driving with and without FCW+ was introduced as a between-subjects factor. Driving with FCW+ resulted in significantly fewer accidents in critical situations. This result was achieved by the system's earlier reaction time as compared with that of drivers. The analysis of the gaze behavior showed that driving with the system did not lead to a stronger involvement in secondary tasks. The study supports the hypotheses about the importance of missing expectations for the occurrence of accidents. These accidents can be prevented by an FCW+ that brakes autonomously. The results indicate that an autonomous braking intervention should be implemented in FCW systems to increase the effectiveness of these assistance systems.
Control system for an artificial heart
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr.
1970-01-01
Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.
Pariota, Luigi; Bifulco, Gennaro Nicola; Galante, Francesco; Montella, Alfonso; Brackstone, Mark
2016-04-01
This paper analyses driving behaviour in car-following conditions, based on extensive individual vehicle data collected during experimental field surveys carried out in Italy and the UK. The aim is to contribute to identify simple evidence to be exploited in the ongoing process of driving assistance and automation which, in turn, would reduce rear-end crashes. In particular, identification of differences and similarities in observed car-following behaviours for different samples of drivers could justify common tuning, at a European or worldwide level, of a technological solution aimed at active safety, or, in the event of differences, could suggest the most critical aspects to be taken into account for localisation or customisation of driving assistance solutions. Without intending to be exhaustive, this paper moves one step in this direction. Indeed, driving behaviour and human errors are considered to be among the main crash contributory factors, and a promising approach for safety improvement is the progressive introduction of increasing levels of driving automation in next-generation vehicles, according to the active/preventive safety approach. However, the more advanced the system, the more complex will be the integration in the vehicle, and the interaction with the driver may sometimes become unproductive, or risky, should the driver be removed from the driving control loop. Thus, implementation of these systems will require the interaction of human driving logics with automation logics and then an enhanced ability in modelling drivers' behaviour. This will allow both higher active-safety levels and higher user acceptance to be achieved, thus ensuring that the driver is always in the control loop, even if his/her role is limited to supervising the automatic logic. Currently, the driving mode most targeted by driving assistance systems is longitudinal driving. This is required in various driving conditions, among which car-following assumes key importance because of the huge number of rear-end crashes. The increased availability of lower-cost information and communication technologies (ICTs) has enhanced the possibility of collecting copious and reliable car-following individual vehicle data. In this work, data collected from three different experiments, two carried out in Italy and one in the UK, are analysed and compared. The experiments involved 146 drivers (105 Italian drivers and 41 UK drivers). Data were collected by two instrumented vehicles. Our analysis focused on inter-vehicular spacing in equilibrium car-following conditions. We observed that (i) the adopted equilibrium spacing can be fitted using lognormal distributions, (ii) the adopted equilibrium spacing increases with speed, and (iii) the dispersion between drivers increases with speed. In addition, according to different headway thresholds (up to 1 second) a significant number of potentially dangerous behaviours is observed. Three different car-following paradigms are also applied to each of the experiments, and modelling parameters are calibrated and compared to obtain indirect confirmation about the observed similarities and differences in driving behaviour. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research on safety evaluation model for in-vehicle secondary task driving.
Jin, Lisheng; Xian, Huacai; Niu, Qingning; Bie, Jing
2015-08-01
This paper presents a new method for evaluating in-vehicle secondary task driving safety. There are five in-vehicle distracter tasks: tuning the radio to a local station, touching the touch-screen telephone menu to a certain song, talking with laboratory assistant, answering a telephone via Bluetooth headset, and finding the navigation system from Ipad4 computer. Forty young drivers completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks are collected and analyzed. Based on the measures of driver eye movements which have significant difference between the baseline and secondary task driving conditions, the evaluation index system is built. The Analytic Network Process (ANP) theory is applied for determining the importance weight of the evaluation index in a fuzzy environment. On the basis of the importance weight of the evaluation index, Fuzzy Comprehensive Evaluation (FCE) method is utilized to evaluate the secondary task driving safety. Results show that driving with secondary tasks greatly distracts the driver's attention from road and the evaluation model built in this study could estimate driving safety effectively under different driving conditions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn; Han, Wei; Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn
We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglementmore » can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.« less
Technical Assistance to Developers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.
2012-07-17
This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols,more » and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.« less
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
Human grasp assist device and method of use
NASA Technical Reports Server (NTRS)
Linn, Douglas Martin (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor)
2012-01-01
A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.
Magnetic Launch Assist System-Artist's Concept
NASA Technical Reports Server (NTRS)
1999-01-01
This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Volvo and Infiniti drivers' experiences with select crash avoidance technologies.
Braitman, Keli A; McCartt, Anne T; Zuby, David S; Singer, Jeremiah
2010-06-01
Vehicle-based crash avoidance systems can potentially reduce crashes, but success depends on driver acceptance and understanding. This study gauged driver use, experience, and acceptance among early adopters of select technologies. Telephone interviews were conducted in early 2009 with 380 owners of Volvo vehicles equipped with forward collision warning with autobrake, lane departure warning, side-view assist, and/or active bi-xenon headlights and 485 owners of Infiniti vehicles with lane departure warning/prevention. Most owners kept systems turned on most of the time, especially forward collision warning with autobrake and side-view assist. The exception was lane departure prevention; many owners were unaware they had it, and the system must be activated each time the vehicle is started. Most owners reported being safer with the technologies and would want them again on their next vehicles. Perceived false or unnecessary warnings were fairly common, particularly with side-view assist. Some systems were annoying, especially lane departure warning. Many owners reported safer driving behaviors such as greater use of turn signals (lane departure warning), increased following distance (forward collision warning), and checking side mirrors more frequently (side-view assist), but some reported driving faster at night (active headlights). Despite some unnecessary or annoying warnings, most Volvo and Infiniti owners use crash avoidance systems most of the time. Among early adopters, the first requirement of effective warning systems (that owners use the technology) seems largely met. Systems requiring activation by drivers for each trip are used less often. Owner experience with the latest technologies from other automobile manufacturers should be studied, as well as for vehicles on which technologies are standard (versus optional) equipment. The effectiveness of technologies in preventing and mitigating crashes and injuries, and user acceptance of interfaces, should be examined as more vehicles with advanced technologies penetrate the fleet.
DOT National Transportation Integrated Search
2017-03-01
The past few years have witnessed a rapidly growing market in assistive driving technologies, designed to improve safety and operations by supporting driver performance. Often referred to as cooperative vehiclehighway automation (CVHA) systems, th...
Novel Driving Control of Power Assisted Wheelchair Based on Minimum Jerk Trajectory
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu
This paper describes a novel trajectory control scheme for power assisted wheelchair. Human input torque patterns are always intermittent in power assisted wheelchairs, therefore, the suitable trajectories must be generated also after the human decreases his/her input torque. This paper tries to solve this significant problem based on minimum jerk model minimizing the changing rate of acceleration. The proposed control system based on minimum jerk trajectory is expected to improve the ride quality, stability and safety. Some experiments show the effectiveness of the proposed method.
Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M
Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detectmore » the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.« less
Virtual sensor models for real-time applications
NASA Astrophysics Data System (ADS)
Hirsenkorn, Nils; Hanke, Timo; Rauch, Andreas; Dehlink, Bernhard; Rasshofer, Ralph; Biebl, Erwin
2016-09-01
Increased complexity and severity of future driver assistance systems demand extensive testing and validation. As supplement to road tests, driving simulations offer various benefits. For driver assistance functions the perception of the sensors is crucial. Therefore, sensors also have to be modeled. In this contribution, a statistical data-driven sensor-model, is described. The state-space based method is capable of modeling various types behavior. In this contribution, the modeling of the position estimation of an automotive radar system, including autocorrelations, is presented. For rendering real-time capability, an efficient implementation is presented.
Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen
2016-06-01
High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.
Keldysh meets Lindblad: Correlated Gain and Loss in Higher Order Perturbation Theory
NASA Astrophysics Data System (ADS)
Stace, Tom; Mueller, Clemens
Motivated by correlated decay processes driving gain, loss and lasing in driven artificial quantum systems, we develop a theoretical technique using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behaviour at the same order of perturbation theory. We then apply these results to analyse the phonon-assisted steady-state gain of a microwave field driving a double quantum-dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing- assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.
de Graaf, S E; Leppäkangas, J; Adamyan, A; Danilov, A V; Lindström, T; Fogelström, M; Bauch, T; Johansson, G; Kubatkin, S E
2013-09-27
We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.
Matrix evaluation of science objectives
NASA Technical Reports Server (NTRS)
Wessen, Randii R.
1994-01-01
The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.
NASA Astrophysics Data System (ADS)
Fujiwara, Yukihiro; Yoshii, Masakazu; Arai, Yasuhito; Adachi, Shuichi
Advanced safety vehicle(ASV)assists drivers’ manipulation to avoid trafic accidents. A variety of researches on automatic driving systems are necessary as an element of ASV. Among them, we focus on visual feedback approach in which the automatic driving system is realized by recognizing road trajectory using image information. The purpose of this paper is to examine the validity of this approach by experiments using a radio-controlled car. First, a practical image processing algorithm to recognize white lines on the road is proposed. Second, a model of the radio-controlled car is built by system identication experiments. Third, an automatic steering control system is designed based on H∞ control theory. Finally, the effectiveness of the designed control system is examined via traveling experiments.
Koustanaï, Arnaud; Cavallo, Viola; Delhomme, Patricia; Mas, Arnaud
2012-10-01
The study addressed the role of familiarization on a driving simulator with a forward collision warning (FCW) and investigated its impact on driver behavior. Drivers need a good understanding of how an FCW system functions to trust it and use it properly. Theoretical and empirical data suggest that exploring the capacities and limitations of the FCW during the learning period improves operating knowledge and leads to increased driver trust in the system and better driver-system interactions.The authors tested this hypothesis by comparing groups of drivers differing in FCW familiarity. During the familiarization phase, familiarized drivers were trained on the simulator using the FCW, unfamiliarized drivers simply read an FCW manual, and control drivers had no contact with the FCW. During the test, drivers drove the simulator and had to interact with traffic; both familiarized and unfamiliarized drivers used the FCW, whereas controls did not. Simulator familiarization improved driver understanding of FCW operation. Driver-system interactions were more effective: Familiarized drivers had no collisions, longer time headways, and better reactions in most situations. Familiarization increased trust in the FCW but did not raise system acceptance. Familiarization on the simulator had a positive effect on driver-system interactions and on trust in the system. The limitations of the familiarization method are discussed in relation to the driving simulator methodology. Practicing on a driving simulator with driving-assistance systems could facilitate their use during real driving.
Kim, Il-Hwan; Bong, Jae-Hwan; Park, Jooyoung; Park, Shinsuk
2017-01-01
Driver assistance systems have become a major safety feature of modern passenger vehicles. The advanced driver assistance system (ADAS) is one of the active safety systems to improve the vehicle control performance and, thus, the safety of the driver and the passengers. To use the ADAS for lane change control, rapid and correct detection of the driver’s intention is essential. This study proposes a novel preprocessing algorithm for the ADAS to improve the accuracy in classifying the driver’s intention for lane change by augmenting basic measurements from conventional on-board sensors. The information on the vehicle states and the road surface condition is augmented by using an artificial neural network (ANN) models, and the augmented information is fed to a support vector machine (SVM) to detect the driver’s intention with high accuracy. The feasibility of the developed algorithm was tested through driving simulator experiments. The results show that the classification accuracy for the driver’s intention can be improved by providing an SVM model with sufficient driving information augmented by using ANN models of vehicle dynamics. PMID:28604582
Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs.
Gajda, Iwona; Greenman, John; Melhuish, Chris; Ieropoulos, Ioannis
2015-08-01
To date, the development of microbially assisted synthesis in Bioelectrochemical Systems (BESs) has focused on mechanisms that consume energy in order to drive the electrosynthesis process. This work reports--for the first time--on novel ceramic MFC systems that generate electricity whilst simultaneously driving the electrosynthesis of useful chemical products. A novel, inexpensive and low maintenance MFC demonstrated electrical power production and implementation into a practical application. Terracotta based tubular MFCs were able to produce sufficient power to operate an LED continuously over a 7 day period with a concomitant 92% COD reduction. Whilst the MFCs were generating energy, an alkaline solution was produced on the cathode that was directly related to the amount of power generated. The alkaline catholyte was able to fix CO2 into carbonate/bicarbonate salts. This approach implies carbon capture and storage (CCS), effectively capturing CO2 through wet caustic 'scrubbing' on the cathode, which ultimately locks carbon dioxide. Copyright © 2015 Elsevier B.V. All rights reserved.
Wind-assist irrigation and electrical-power generation
NASA Astrophysics Data System (ADS)
Nelson, V.; Starcher, K.
1982-07-01
A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.
Forensic Carving of Network Packets and Associated Data Structures
2011-01-01
establishment of prior connection activity and services used; identification of other systems present on the system’s LAN or WLAN; geolocation of the...identification of other systems present on the system?s LAN or WLAN; geolocation of the host computer system; and cross-drive analysis. We show that network...Finally, our work in geolocation was assisted by geo- location databases created by companies such as Google (Google Mobile, 2011) and Skyhook
Driving behavior recognition using EEG data from a simulated car-following experiment.
Yang, Liu; Ma, Rui; Zhang, H Michael; Guan, Wei; Jiang, Shixiong
2018-07-01
Driving behavior recognition is the foundation of driver assistance systems, with potential applications in automated driving systems. Most prevailing studies have used subjective questionnaire data and objective driving data to classify driving behaviors, while few studies have used physiological signals such as electroencephalography (EEG) to gather data. To bridge this gap, this paper proposes a two-layer learning method for driving behavior recognition using EEG data. A simulated car-following driving experiment was designed and conducted to simultaneously collect data on the driving behaviors and EEG data of drivers. The proposed learning method consists of two layers. In Layer I, two-dimensional driving behavior features representing driving style and stability were selected and extracted from raw driving behavior data using K-means and support vector machine recursive feature elimination. Five groups of driving behaviors were classified based on these two-dimensional driving behavior features. In Layer II, the classification results from Layer I were utilized as inputs to generate a k-Nearest-Neighbor classifier identifying driving behavior groups using EEG data. Using independent component analysis, a fast Fourier transformation, and linear discriminant analysis sequentially, the raw EEG signals were processed to extract two core EEG features. Classifier performance was enhanced using the adaptive synthetic sampling approach. A leave-one-subject-out cross validation was conducted. The results showed that the average classification accuracy for all tested traffic states was 69.5% and the highest accuracy reached 83.5%, suggesting a significant correlation between EEG patterns and car-following behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Markvollrath; Schleicher, Susanne; Gelau, Christhard
2011-05-01
Although Cruise Control (CC) is available for most cars, no studies have been found which examine how this automation system influences driving behaviour. However, a relatively large number of studies have examined Adaptive Cruise Control (ACC) which compared to CC includes also a distance control. Besides positive effects with regard to a better compliance to speed limits, there are also indications of smaller distances to lead vehicles and slower responses in situations that require immediate braking. Similar effects can be expected for CC as this system takes over longitudinal control as well. To test this hypothesis, a simulator study was conducted at the German Aerospace Center (DLR). Twenty-two participants drove different routes (highway and motorway) under three different conditions (assisted by ACC, CC and manual driving without any system). Different driving scenarios were examined including a secondary task condition. On the one hand, both systems lead to lower maximum velocities and less speed limit violations. There was no indication that drivers shift more of their attention towards secondary tasks when driving with CC or ACC. However, there were delayed driver reactions in critical situations, e.g., in a narrow curve or a fog bank. These results give rise to some caution regarding the safety effects of these systems, especially if in the future their range of functionality (e.g., ACC Stop-and-Go) is further increased. Copyright © 2011 Elsevier Ltd. All rights reserved.
1999-01-01
This illustration is an artist’s concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth’s gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Automatic Calibration Method for Driver’s Head Orientation in Natural Driving Environment
Fu, Xianping; Guan, Xiao; Peli, Eli; Liu, Hongbo; Luo, Gang
2013-01-01
Gaze tracking is crucial for studying driver’s attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver’s corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving. PMID:24639620
Intelligent single switch wheelchair navigation.
Ka, Hyun W; Simpson, Richard; Chung, Younghyun
2012-11-01
We have developed an intelligent single switch scanning interface and wheelchair navigation assistance system, called intelligent single switch wheelchair navigation (ISSWN), to improve driving safety, comfort and efficiency for individuals who rely on single switch scanning as a control method. ISSWN combines a standard powered wheelchair with a laser rangefinder, a single switch scanning interface and a computer. It provides the user with context sensitive and task specific scanning options that reduce driving effort based on an interpretation of sensor data together with user input. Trials performed by 9 able-bodied participants showed that the system significantly improved driving safety and efficiency in a navigation task by significantly reducing the number of switch presses to 43.5% of traditional single switch wheelchair navigation (p < 0.001). All participants made a significant improvement (39.1%; p < 0.001) in completion time after only two trials.
A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor
Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo
2016-01-01
Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508
Aircraft Digital Input Controlled Hydraulic Actuation and Control System.
1981-03-01
the individual pistons in each motor which act against its rotating swash plate to drive...single piston during each of two equal rotations of the output shaft. In the high-displacement case, the swash plate is assumed to move through an angle...for their assistance in conducting laboratory tests of the digital electrohydraulic actuation system. Vii TABLE OF CONTENTS Section Page I
Ruscio, D; Bos, A J; Ciceri, M R
2017-06-01
The interaction with Advanced Driver Assistance Systems has several positive implications for road safety, but also some potential downsides such as mental workload and automation complacency. Malleable attentional resources allocation theory describes two possible processes that can generate workload in interaction with advanced assisting devices. The purpose of the present study is to determine if specific analysis of the different modalities of autonomic control of nervous system can be used to discriminate different potential workload processes generated during assisted-driving tasks and automation complacency situations. Thirty-five drivers were tested in a virtual scenario while using head-up advanced warning assistance system. Repeated MANOVA were used to examine changes in autonomic activity across a combination of different user interactions generated by the advanced assistance system: (1) expected take-over request without anticipatory warning; (2) expected take-over request with two-second anticipatory warning; (3) unexpected take-over request with misleading warning; (4) unexpected take-over request without warning. Results shows that analysis of autonomic modulations can discriminate two different resources allocation processes, related to different behavioral performances. The user's interaction that required divided attention under expected situations produced performance enhancement and reciprocally-coupled parasympathetic inhibition with sympathetic activity. At the same time, supervising interactions that generated automation complacency were described specifically by uncoupled sympathetic activation. Safety implications for automated assistance systems developments are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nursing care of the ambulatory patient with a mechanical assist device.
Reedy, J E; Ruzevich, S A; Noedel, N R; Vitale, L J; Merkle, E J
1990-01-01
Since 1986, 10 men and one woman were ambulatory while supported with mechanical assist devices as a bridge to heart transplantation. Four patients received a subclavian intraaortic balloon pump, two were supported with a Novacor left ventricular assist system, three patients received Pierce-Donachy ventricular assist devices, and one patient received a Jarvik 7 total artificial heart. One patient with an intraaortic balloon pump later received a left ventricular assist system because of hemodynamic deterioration despite the intraaortic balloon pump. Before device insertion all 11 patients were in cardiogenic shock despite inotropic and vasodilator support. The time of support ranged from 8 to 440 days (median, 24 days). In-house coverage by the circulatory support team was necessary only during the first 24 to 72 hours of support. When the patient's condition was stabilized, nursing staff monitored the devices with "on-call" availability of the circulatory support team. After implant of the device, all patients were able to perform activities of daily living. Once patients were able to walk in their hospital rooms, ambulation began in the hallways; frequency and distance were gradually increased. Four of the patients walked outside the hospital while tethered to the drive console. Daily physical therapy contributed to increased exercise tolerance. Protective isolation was used before and after transplantation to minimize the risk of infection. Sterile dressing changes (gown, gloves, mask) were applied to drive lines, cannula sites, and incisions. All invasive lines and catheters were removed as soon as the patient's clinical condition warranted, and noninvasive monitoring was used to decrease the chance of infection.(ABSTRACT TRUNCATED AT 250 WORDS)
Highly automated driving, secondary task performance, and driver state.
Merat, Natasha; Jamson, A Hamish; Lai, Frank C H; Carsten, Oliver
2012-10-01
A driving simulator study compared the effect of changes in workload on performance in manual and highly automated driving. Changes in driver state were also observed by examining variations in blink patterns. With the addition of a greater number of advanced driver assistance systems in vehicles, the driver's role is likely to alter in the future from an operator in manual driving to a supervisor of highly automated cars. Understanding the implications of such advancements on drivers and road safety is important. A total of 50 participants were recruited for this study and drove the simulator in both manual and highly automated mode. As well as comparing the effect of adjustments in driving-related workload on performance, the effect of a secondary Twenty Questions Task was also investigated. In the absence of the secondary task, drivers' response to critical incidents was similar in manual and highly automated driving conditions. The worst performance was observed when drivers were required to regain control of driving in the automated mode while distracted by the secondary task. Blink frequency patterns were more consistent for manual than automated driving but were generally suppressed during conditions of high workload. Highly automated driving did not have a deleterious effect on driver performance, when attention was not diverted to the distracting secondary task. As the number of systems implemented in cars increases, an understanding of the implications of such automation on drivers' situation awareness, workload, and ability to remain engaged with the driving task is important.
Desired clearance around a vehicle while parking or performing low speed maneuvers.
DOT National Transportation Integrated Search
2004-10-01
This experiment examined how close to objects (such as a wall or another vehicle) people would drive when parking. The findings will to be used as a basis for visual and/or auditory warnings provided by parking assistance systems. A total of 16 peopl...
Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket
NASA Technical Reports Server (NTRS)
1999-01-01
This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
1999-10-21
This artist’s concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Multi-channel automotive night vision system
NASA Astrophysics Data System (ADS)
Lu, Gang; Wang, Li-jun; Zhang, Yi
2013-09-01
A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.
Banks, Victoria A; Stanton, Neville A
2016-11-01
To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.
Using speech recognition to enhance the Tongue Drive System functionality in computer access.
Huo, Xueliang; Ghovanloo, Maysam
2011-01-01
Tongue Drive System (TDS) is a wireless tongue operated assistive technology (AT), which can enable people with severe physical disabilities to access computers and drive powered wheelchairs using their volitional tongue movements. TDS offers six discrete commands, simultaneously available to the users, for pointing and typing as a substitute for mouse and keyboard in computer access, respectively. To enhance the TDS performance in typing, we have added a microphone, an audio codec, and a wireless audio link to its readily available 3-axial magnetic sensor array, and combined it with a commercially available speech recognition software, the Dragon Naturally Speaking, which is regarded as one of the most efficient ways for text entry. Our preliminary evaluations indicate that the combined TDS and speech recognition technologies can provide end users with significantly higher performance than using each technology alone, particularly in completing tasks that require both pointing and text entry, such as web surfing.
Impact of Automation on Drivers' Performance in Agricultural Semi-Autonomous Vehicles.
Bashiri, B; Mann, D D
2015-04-01
Drivers' inadequate mental workload has been reported as one of the negative effects of driving assistant systems and in-vehicle automation. The increasing trend of automation in agricultural vehicles raises some concerns about drivers' mental workload in such vehicles. Thus, a human factors perspective is needed to identify the consequences of such automated systems. In this simulator study, the effects of vehicle steering task automation (VSTA) and implement control and monitoring task automation (ICMTA) were investigated using a tractor-air seeder system as a case study. Two performance parameters (reaction time and accuracy of actions) were measured to assess drivers' perceived mental workload. Experiments were conducted using the tractor driving simulator (TDS) located in the Agricultural Ergonomics Laboratory at the University of Manitoba. Study participants were university students with tractor driving experience. According to the results, reaction time and number of errors made by drivers both decreased as the automation level increased. Correlations were found among performance parameters and subjective mental workload reported by the drivers.
Magnetic Launch Assist System Demonstration
NASA Technical Reports Server (NTRS)
1999-01-01
This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Wireless Control of Smartphones with Tongue Motion Using Tongue Drive Assistive Technology
Kim, Jeonghee; Huo, Xueliang
2010-01-01
Tongue Drive System (TDS) is a noninvasive, wireless and wearable assistive technology that helps people with severe disabilities control their environments using their tongue motion. TDS translates specific tongue gestures to commands by detecting a small permanent magnetic tracer on the users’ tongue. We have linked the TDS to a smartphone (iPhone/iPod Touch) with a customized wireless module, added to the iPhone. We also migrated and ran the TDS sensor signal processing algorithm and graphical user interface on the iPhone in real time. The TDS-iPhone interface was evaluated by four able-bodied subjects for dialing 10-digit phone numbers using the standard telephone keypad and three methods of prompting the numbers: visual, auditory, and cognitive. Preliminary results showed that the interface worked quite reliably at a rate of 15.4 digits per minute, on average, with negligible errors. PMID:21096049
NASA Astrophysics Data System (ADS)
Pachauri, Rupendra Kumar; Chauhan, Yogesh K.
2017-02-01
This paper is a novel attempt to combine two important aspects of fuel cell (FC). First, it presents investigations on FC technology and its applications. A description of FC operating principles is followed by the comparative analysis of the present FC technologies together with the issues concerning various fuels. Second, this paper also proposes a model for the simulation and performances evaluation of a proton exchange membrane fuel cell (PEMFC) generation system. Furthermore, a MATLAB/Simulink-based dynamic model of PEMFC is developed and parameters of FC are so adjusted to emulate a commercially available PEMFC. The system results are obtained for the PEMFC-driven adjusted speed induction motor drive (ASIMD) system, normally used in electric vehicles and analysis is carried out for different operating conditions of FC and ASIMD system. The obtained results prove the validation of system concept and modelling.
Analysis of baroreflex sensitivity during undulation pump ventricular assist device support.
Liu, Hongjian; Shiraishi, Yasuyuki; Zhang, Xiumin; Song, Hojin; Saijo, Yoshifumi; Baba, Atsushi; Yambe, Tomoyuki; Abe, Yusuke; Imachi, Kou
2009-07-01
The aim of this study was to examine the baroreflex sensitivity (BRS), which involves the autonomic nervous system, in a goat with a chronically implanted undulation pump ventricular assist device (UPVAD). The UPVAD involved transforming the rotation of a brushless DC motor into an undulating motion by a disc attached via a special linking mechanism, and a jellyfish valve in the outflow cannula to prevent diastolic backflow. The pump was implanted into the thoracic cavity of a goat by a left thoracotomy, and the inflow and outflow cannulae were sutured to the apex of the left ventricle and to the descending aorta, respectively. The driving cable was wired percutaneously to an external controller. Electrocardiogram and hemodynamic waveforms were recorded at a sampling frequency of 1 kHz. BRS was determined when awake by the slope of the linear regression of R-R interval against mean arterial pressure changes, which were induced by the administration of methoxamine hydrochloride, both with continuous driving of the UPVAD as well as without assistance. BRS values during the UPVAD support and without assistance were 1.60 +/- 0.30 msec/mm Hg and 0.98 +/- 0.22 msec/mm Hg (n = 5, P < 0.05), respectively. BRS was significantly improved during left ventricular assistance. Therefore, UPVAD support might decrease sympathetic nerve activity and increase parasympathetic nerve activity to improve both microcirculation and organ function.
Orbital transfer vehicle oxygen turbopump technology. Volume 2: Nitrogen and ambient oxygen testing
NASA Technical Reports Server (NTRS)
Brannam, R. J.; Buckmann, P. S.; Chen, B. H.; Church, S. J.; Sabiers, R. L.
1990-01-01
The testing of a rocket engine oxygen turbopump using high pressure ambient temperature nitrogen and oxygen as the turbine drive gas in separate test series is discussed. The pumped fluid was liquid nitrogen or liquid oxygen. The turbopump (TPA) is designed to operate with 400 F oxygen turbine drive gas which will be demonstrated in a subsequent test series. Following bearing tests, the TPA was finish machined (impeller blading and inlet/outlet ports). Testing started on 15 February 1989 and was successfully concluded on 21 March 1989. Testing started using nitrogen to reduce the ignition hazard during initial TPA checkout. The Hydrostatic Bearing System requires a Bearing Pressurization System. Initial testing used a separate bearing supply to prevent a rubbing start. Two test series were successfully completed with the bearing assist supplied only by the pump second stage output which entailed a rubbing start until pump pressure builds up. The final test series used ambient oxygen drive and no external bearing assist. Total operating time was 2268 seconds. There were 14 starts without bearing assist and operating speeds up to 80,000 rpm were logged. Teardown examination showed some smearing of silverplated bearing surfaces but no exposure of the underlying monel material. There was no evidence of melting or oxidation due to the oxygen exposure. The articulating, self-centering hydrostatic bearing exhibited no bearing load or stability problems. The only anomaly was higher than predicted flow losses which were attributed to a faulty ring seal. The TPA will be refurbished prior to the 400 F oxygen test series but its condition is acceptable, as is, for continued operating. This was a highly successful test program.
Drivers’ Visual Characteristics when Merging onto or Exiting an Urban Expressway
Cheng, Ying; Gao, Li; Zhao, Yanan; Du, Feng
2016-01-01
The aim of this study is to examine drivers’ visual and driving behavior while merging onto or exiting an urban expressway with low and high traffic densities. The analysis was conducted according to three periods (approaching, merging or exiting, and accelerating or decelerating). A total of 10 subjects (8 males and 2 females) with ages ranging from 25 to 52 years old (M = 30.0 years old) participated in the study. The research was conducted in a natural driving situation, and the drivers’ eye movements were monitored and recorded using an eye tracking system. The results show that the influence of traffic density on the glance duration and scan duration is more significant when merging than when exiting. The results also demonstrate that the number of glances and the mean glance duration are mainly related to the driving task (e.g., the merging period). Therefore, drivers’ visual search strategies mainly depend on the current driving task. With regard to driving behavior, the variation tendencies of the duration and the velocity of each period are similar. These results support building an automated driving assistant system that can automatically identify gaps and accelerate or decelerate the car accordingly or provide suggestions to the driver to do so. PMID:27657888
Case-based reasoning emulation of persons for wheelchair navigation.
Peula, Jose Manuel; Urdiales, Cristina; Herrero, Ignacio; Fernandez-Carmona, Manuel; Sandoval, Francisco
2012-10-01
Testing is a key stage in system development, particularly in systems such as a wheelchair, in which the final user is typically a disabled person. These systems have stringent safety requirements, requiring major testing with many different individuals. The best would be to have the wheelchair tested by many different end users, as each disability affects driving skills in a different way. Unfortunately, from a practical point of view it is difficult to engage end users as beta testers. Hence, testing often relies on simulations. Naturally, these simulations need to be as realistic as possible to make the system robust and safe before real tests can be accomplished. This work presents a tool to automatically test wheelchairs through realistic emulation of different wheelchair users. Our approach is based on extracting meaningful data from real users driving a power wheelchair autonomously. This data is then used to train a case-based reasoning (CBR) system that captures the specifics of the driver via learning. The resulting case-base is then used to emulate the driving behavior of that specific person in more complex situations or when a new assistive algorithm needs to be tested. CBR returns user's motion commands appropriate for each specific situation to add the human component to shared control systems. The proposed system has been used to emulate several power wheelchair users presenting different disabilities. Data to create this emulation was obtained from previous wheelchair navigation experiments with 35 volunteer in-patients presenting different degrees of disability. CBR was trained with a limited number of scenarios for each volunteer. Results proved that: (i) emulated and real users returned similar paths in the same scenario (maximum and mean path deviations are equal to 23 and 10cm, respectively) and similar efficiency; (ii) we established the generality of our approach taking a new path not present in the training traces; (iii) the emulated user is more realistic - path and efficiency are less homogeneous and smooth - than potential field approaches; and (iv) the system adequately emulates in-patients - maximum and mean path deviations are equal to 19 and 8.3cm approximately and efficiencies are similar - with specific disabilities (apraxia and dementia) obtaining different behaviors during emulation for each of the in-patients, as expected. The proposed system adequately emulates the driving behavior of people with different disabilities in indoor scenarios. This approach is suitable to emulate real users' driving behaviors for early testing stages of assistive navigation systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Grasp Assist Device with Shared Tendon Actuator Assembly
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)
2015-01-01
A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.
NASA Astrophysics Data System (ADS)
Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng
2005-06-01
Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.
Porter, Michelle M
2013-05-01
There is emerging evidence that older driver training programs with on-road instruction are more effective than driver education programs that are conducted only in the classroom. Although most programs have provided this additional in-vehicle training with a driving instructor and a dual-braked vehicle, technology could assist in providing this feedback. It was hypothesized that participants who received video and global positioning system (GPS) feedback (Video group) in addition to classroom education would improve to a greater extent than those who received a classroom-based course alone (Education) or Control participants. Fifty-four participants (32 men and 22 women), 70-89 years old, randomized to one of the three groups, completed the study. All participants underwent pre- and postintervention driving tests, in their own vehicle, on a standardized route, that were recorded with video and GPS equipment. The Video group met with a driving instructor to receive feedback on their driving errors in their preintervention driving test. A blinded assessor scored all driving tests in random order. The Video group significantly reduced their driving errors by 25% (p < .05) following the intervention, whereas the other two groups did not change significantly. Fifty-two percent of participants from the Video group improved their global safety rating, whereas only 5.3% in the Control and 22.2% in the Education groups did. This study suggests that direct driving feedback using video and GPS technology could be an effective and novel means to provide older driver education.
Magnetic Launch Assist Vehicle-Artist's Concept
NASA Technical Reports Server (NTRS)
1999-01-01
This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Headlamps for light based driver assistance
NASA Astrophysics Data System (ADS)
Götz, M.; Kleinkes, M.
2008-04-01
Driving at night is dangerous. Although only 25% of all driving tasks are performed at night, nearly half of all fatal accidents happen in this time. In order to increase safety when driving under poor visibility conditions, automotive front lighting systems have undergone a strong development in the last fifteen years. One important milestone was the introduction of Xenon headlamps in 1992, which provide more and brighter light for road illumination than ever before. Since then the paradigm of simply providing more light has changed toward providing optimised light distributions, which support the driver's perception. A first step in this direction was the introduction of dynamic bend lighting and cornering light in 2003. In 2006 the first full AFS headlamp (Adaptive Front Lighting System) allowed an optimised adoption of the light distribution to the driving situation. These systems use information provided by vehicle sensors and an intelligent algorithm to guide light towards those areas where needed. Nowadays, even more information about the vehicle's environment is available. Image processing systems, for example, allow to detect other traffic participants, their speed and their driving directions. In future headlamp systems these data will be used to constantly regulate the reach of the light distribution thus allowing a maximal reach without providing glare. Moreover, technologies that allow to constantly use a high-beam light distribution are under development. These systems will illuminate the whole traffic area only excluding other traffic participants. LED light sources will play a significant role in these scenarios, since they allow to precisely illuminate certain areas of the road, while neighbouring parts will be left in dark.
Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.
Dai, Chenyun; Zheng, Yang; Hu, Xiaogang
2018-01-01
Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Hata, Naoki; Koyasu, Yuichi; Hori, Yoichi
Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. In this paper, control method to prevent power assisted wheelchair from overturning is proposed. It is found the front wheels rising is caused by magnitude and rapid increase of assisted torque. Therefore, feedforward control method to limit the assisted torque by tuning its magnitude or time constant is proposed. In order to emphasize safety and feeling of security, these methods make the front wheels no rise. The effectiveness of the proposed method is verified by the practical experiments and field test based performance evaluation using many trial subjects.
Measurement of blood flow from an assist ventricle by computation of pneumatic driving parameters.
Qian, K X
1992-03-01
The measurement of blood flow from an assist ventricle is important but sometimes difficult in artificial heart experiments. Along with the development of a pneumatic cylinder-piston driver coupled with a ventricular assist device, a simplified method for measuring pump flow was established. From driving parameters such as the piston (or cylinder) displacement and air pressure, the pump flow could be calculated by the use of the equation of state for an ideal gas. The results of this method are broadly in agreement with electromagnetic and Doppler measurements.
Use, perceptions, and benefits of automotive technologies among aging drivers.
Eby, David W; Molnar, Lisa J; Zhang, Liang; St Louis, Renée M; Zanier, Nicole; Kostyniuk, Lidia P; Stanciu, Sergiu
2016-12-01
Advanced in-vehicle technologies have been proposed as a potential way to keep older adults driving for as long as they can safely do so, by taking into account the common declines in functional abilities experienced by older adults. The purpose of this report was to synthesize the knowledge about older drivers and advanced in-vehicle technologies, focusing on three areas: use (how older drivers use these technologies), perception (what they think about the technologies), and outcomes (the safety and/or comfort benefits of the technologies). Twelve technologies were selected for review and grouped into three categories: crash avoidance systems (lane departure warning, curve speed warning, forward collision warning, blind spot warning, parking assistance); in-vehicle information systems (navigation assistance, intelligent speed adaptation); and other systems (adaptive cruise control, automatic crash notification, night vision enhancement, adaptive headlight, voice activated control). A comprehensive and systematic search was conducted for each technology to collect related publications. 271 articles were included into the final review. Research findings for each of the 12 technologies are synthesized in relation to how older adults use and think about the technologies as well as potential benefits. These results are presented separately for each technology. Can advanced in-vehicle technologies help extend the period over which an older adult can drive safely? This report answers this question with an optimistic "yes." Some of the technologies reviewed in this report have been shown to help older drivers avoid crashes, improve the ease and comfort of driving, and travel to places and at times that they might normally avoid.
An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
Cha, Hyo-Jeong; Yi, Byung-Ju; Won, Jong Yun
2017-01-01
Current vascular intervention inevitably exposes a large amount of X-ray to both an operator and a patient during the procedure. The purpose of this study is to propose a new catheter driving system which assists the operator in aspects of less X-ray exposure and convenient user interface. For this, an assembly-type 4-degree-of-freedom master-slave system was designed and tested to verify the efficiency. First, current vascular intervention procedures are analyzed to develop a new robotic procedure that enables us to use conventional vascular intervention devices such as catheter and guidewire which are commercially available in the market. Some parts of the slave robot which contact the devices were designed to be easily assembled and dissembled from the main body of the slave robot for sterilization. A master robot is compactly designed to conduct insertion and rotational motion and is able to switch from the guidewire driving mode to the catheter driving mode or vice versa. A phantom resembling the human arteries was developed, and the master-slave robotic system is tested using the phantom. The contact force of the guidewire tip according to the shape of the arteries is measured and reflected to the user through the master robot during the phantom experiment. This system can drastically reduce radiation exposure by replacing human effort by a robotic system for high radiation exposure procedures. Also, benefits of the proposed robot system are low cost by employing currently available devices and easy human interface.
Reimer, Bryan; Mehler, Bruce; Coughlin, Joseph F
2016-01-01
Drivers' reactions to a semi-autonomous technology for assisted parallel parking system were evaluated in a field experiment. A sample of 42 drivers balanced by gender and across three age groups (20-29, 40-49, 60-69) were given a comprehensive briefing, saw the technology demonstrated, practiced parallel parking 3 times each with and without the assistive technology, and then were assessed on an additional 3 parking events each with and without the technology. Anticipatory stress, as measured by heart rate, was significantly lower when drivers approached a parking space knowing that they would be using the assistive technology as opposed to manually parking. Self-reported stress levels following assisted parks were also lower. Thus, both subjective and objective data support the position that the assistive technology reduced stress levels in drivers who were given detailed training. It was observed that drivers decreased their use of turn signals when using the semi-autonomous technology, raising a caution concerning unintended lapses in safe driving behaviors that may occur when assistive technologies are used. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
1980-10-01
Element, 64709N Prototype Manpower/Personnel Systems (U), Project Z1302-PN Officer Career Models (U), funded by the Office of the Deputy Assistant... Models for Navy Officer Billets portion of the proposed NPS research effort to develop an integrated officer system planning model ; the purpose of this...attempting to model the Naval officer force structure as a system. This study considers the primary first order factors which drive the requirements
Simulation of hybrid propulsion system using LSRG and single cylinder engine
NASA Astrophysics Data System (ADS)
Han, C.; Ohyama, K.; Wang, W. Q.
2017-11-01
Nowadays, more and more people are beginning to use hybrid vehicles (HVs). The drive system of HVs needs to produce the electric energy with the electric generator and gearbox powered by an engine. Therefore, the structure becomes complex and the cost is high. To solve this issue, this research proposes a new drive system design that combines the engine and a linear switched reluctance generator (LSRG). When the engine is operating, the LSRG can simultaneously assist the engine’s mechanical output or can generate power to charge the battery. In this research, three research steps are executed. In the first step, the LSRG is designed according to the size of normal engine. Then, finite element analysis is used to get the data of flux linkage and calculate the inductance and translator force. Finally, Simulink models of control system are constructed to verify the performance of LSRG.
Kidd, David G; Cicchino, Jessica B; Reagan, Ian J; Kerfoot, Laura B
2017-05-29
Information about drivers' experiences with driver assistance technologies in real driving conditions is sparse. This study characterized driver interactions with forward collision warning, adaptive cruise control, active lane keeping, side-view assist, and lane departure warning systems following real-world use. Fifty-four Insurance Institute for Highway Safety employees participated and drove a 2016 Toyota Prius, 2016 Honda Civic, 2017 Audi Q7, or 2016 Infiniti QX60 for up to several weeks. Participants reported mileage and warnings from the technologies in an online daily-use survey. Participants reported their level of agreement with five statements regarding trust in an online post-use survey. Responses were averaged to create a composite measure of trust ranging from -2 (strongly disagree) to +2 (strongly agree) for each technology. Mixed-effect regression models were constructed to compare trust among technologies and separately among the study vehicles. Participants' free-response answers about what they liked least about each system were coded and examined. Participants reported driving 33,584 miles during 4 months of data collection. At least one forward collision warning was reported in 26% of the 354 daily reports. The proportion of daily reports indicating a forward collision warning was much larger for the Honda (70%) than for the Audi (18%), Infiniti (15%), and Toyota (10%). Trust was highest for side-view assist (0.98) and lowest for active lane keeping (0.20). Trust in side-view assist was significantly higher than trust in active lane keeping and lane departure warning (0.53). Trust in active lane keeping was significantly lower than trust in adaptive cruise control (0.67) and forward collision warning (0.71). Trust in adaptive cruise control was higher for the Audi (0.72) and Toyota (0.75) compared with the Honda (0.30), and significantly higher for the Infiniti (0.93). Trust in Infiniti's side-view assist (0.58) was significantly lower than trust in Audi (1.17) and Honda (1.23) systems. Coding of answers to free-response questions showed that more than 80% of complaints about Honda's adaptive cruise control were about the way it functioned and/or performed. Infiniti's side-view assist was the only one with complaints mentioning circumstances where it was used. Trust in forward collision warning, lane departure warning, and active lane keeping was not significantly different among vehicles. Driver trust varied among driver assistance technologies, and trust in adaptive cruise control and side-view assist differed among vehicles. Trust may affect real-world use of driver assistance technologies and limit the opportunity for the systems to provide their intended benefits.
Lopes, Ana C; Nunes, Urbano
2009-01-01
This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented.
A Review of Research on Driving Styles and Road Safety.
Sagberg, Fridulv; Selpi; Piccinini, Giulio Francesco Bianchi; Engström, Johan
2015-11-01
The aim of this study was to outline a conceptual framework for understanding driving style and, on this basis, review the state-of-the-art research on driving styles in relation to road safety. Previous research has indicated a relationship between the driving styles adopted by drivers and their crash involvement. However, a comprehensive literature review of driving style research is lacking. A systematic literature search was conducted, including empirical, theoretical, and methodological research, on driving styles related to road safety. A conceptual framework was proposed whereby driving styles are viewed in terms of driving habits established as a result of individual dispositions as well as social norms and cultural values. Moreover, a general scheme for categorizing and operationalizing driving styles was suggested. On this basis, existing literature on driving styles and indicators was reviewed. Links between driving styles and road safety were identified and individual and sociocultural factors influencing driving style were reviewed. Existing studies have addressed a wide variety of driving styles, and there is an acute need for a unifying conceptual framework in order to synthesize these results and make useful generalizations. There is a considerable potential for increasing road safety by means of behavior modification. Naturalistic driving observations represent particularly promising approaches to future research on driving styles. Knowledge about driving styles can be applied in programs for modifying driver behavior and in the context of usage-based insurance. It may also be used as a means for driver identification and for the development of driver assistance systems. © 2015, Human Factors and Ergonomics Society.
Using Speech Recognition to Enhance the Tongue Drive System Functionality in Computer Access
Huo, Xueliang; Ghovanloo, Maysam
2013-01-01
Tongue Drive System (TDS) is a wireless tongue operated assistive technology (AT), which can enable people with severe physical disabilities to access computers and drive powered wheelchairs using their volitional tongue movements. TDS offers six discrete commands, simultaneously available to the users, for pointing and typing as a substitute for mouse and keyboard in computer access, respectively. To enhance the TDS performance in typing, we have added a microphone, an audio codec, and a wireless audio link to its readily available 3-axial magnetic sensor array, and combined it with a commercially available speech recognition software, the Dragon Naturally Speaking, which is regarded as one of the most efficient ways for text entry. Our preliminary evaluations indicate that the combined TDS and speech recognition technologies can provide end users with significantly higher performance than using each technology alone, particularly in completing tasks that require both pointing and text entry, such as web surfing. PMID:22255801
Heaton, James T.; Knox, Christopher; Malo, Juan; Kobler, James B.; Hadlock, Tessa A.
2013-01-01
Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic “whisk assist” system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either pre-programmed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, twenty rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5–20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model. PMID:23475376
Paire-Ficout, Laurence; Lafont, Sylviane; Conte, Fanny; Coquillat, Amandine; Fabrigoule, Colette; Ankri, Joël; Blanc, Frédéric; Gabel, Cécilia; Novella, Jean-Luc; Morrone, Isabella; Mahmoudi, Rachid
2018-05-16
Because cognitive processes decline in the earliest stages of Alzheimer's disease (AD), the driving abilities are often affected. The naturalistic driving approach is relevant to study the driving habits and behaviors in normal or critical situations in a familiar environment of participants. This pilot study analyzed in-car video recordings of naturalistic driving in patients with early-stage AD and in healthy controls, with a special focus on tactical self-regulation behavior. Twenty patients with early-stage AD (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition [DSM-IV] criteria), and 21 healthy older adults were included in the study. Data collection equipment was installed in their personal vehicles. Two expert psychologists assessed driving performance using a specially designed Naturalistic Driving Assessment Scale (NaDAS), paying particular attention to tactical self-regulation behavior, and they recorded all critical safety events. Poorer driving performance was observed among AD drivers: their tactical self-regulation behavior was of lower quality. AD patients had also twice as many critical events as healthy drivers and three times more "unaware" critical events. This pilot study using a naturalistic approach to accurately show that AD drivers have poorer tactical self-regulation behavior than healthy older drivers. Future deployment of assistance systems in vehicles should specifically target tactical self-regulation components.
Parkinson's disease and driving ability
Singh, Rajiv; Pentland, Brian; Hunter, John; Provan, Frances
2007-01-01
Objectives To explore the driving problems associated with Parkinson's disease (PD) and to ascertain whether any clinical features or tests predict driver safety. Methods The driving ability of 154 individuals with PD referred to a driving assessment centre was determined by a combination of clinical tests, reaction times on a test rig and an in‐car driving test. Results The majority of cases (104, 66%) were able to continue driving although 46 individuals required an automatic transmission and 10 others needed car modifications. Ability to drive was predicted by the severity of physical disease, age, presence of other associated medical conditions, particularly dementia, duration of disease, brake reaction, time on a test rig and score on a driving test (all p<0.001). The level of drug treatment and the length of driving history were not correlated. Discriminant analysis revealed that the most important features in distinguishing safety to drive were severe physical disease (Hoehn and Yahr stage 3), reaction time, moderate disease associated with another medical condition and high score on car testing. Conclusions Most individuals with PD are safe to drive, although many benefit from car modifications or from using an automatic transmission. A combination of clinical tests and in‐car driving assessment will establish safety to drive, and a number of clinical correlates can be shown to predict the likely outcome and may assist in the decision process. This is the largest series of consecutive patients seen at a driving assessment centre reported to date, and the first to devise a scoring system for on‐road driving assessment. PMID:17178820
First Stage of a Highly Reliable Reusable Launch System
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Pickrel, Jonathan B.; Sayles, Emily L.; Wright, Michael; Marriott, Darin; Holland, Leo; Kuznetsov, Stephen
2009-01-01
Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average. A matching ramjet design was developed for use on the 300-Hz linear induction motor.
NASA Astrophysics Data System (ADS)
Jung, Sebin; Meng, Hong-Ying; Qin, Sheng-Feng
2017-09-01
As the overall population ages, driving-related accidents and injuries, associated with elderly drivers, have risen. Existing research about elderly drivers mainly focuses on factual data collection and analysis, indicating the elderly's growing fatal accident rates and their different behaviours compared to younger drivers. However, few research has focused on design-led practical solutions to mitigate the elderly's growing fatal accidents, by considering their usability and body conditions, afflicting the elderly, such as decreased vision, hearing, and reaction times. In this paper, first, current worldwide situations on growing fatal accident rates for elderly drivers is reviewed and the key impact factors are identified and discussed with regarding to usability and design trend in the automotive technology for elderly. Second, existing smart vehicle technology-based solutions to promote safe driving are explored and their pros and cons are discussed and analysed. Most of solutions are not created by people with driving difficulties, which are caused by health problems most commonly afflicting the elderly. Thirdly, diverse design-led research activities are taken, such as a survey, observation, and interviews to gain new understanding of what kinds of driving problems elderly drivers have and demonstrate how new system concepts could be developed for the elderly's benefits. Finally, it is found that the elderly's low vision and late reaction are main factors causing their driving difficulties. Based on this finding, usable vehicle system design ideas have been proposed, by utilising facial expression sensing technology as a solution. The proposed solutions would ensure reducing both the elderly's driving problems and high fatal accident rates and provide a more enjoyable driving environment for the elderly population.
Robust optical sensors for safety critical automotive applications
NASA Astrophysics Data System (ADS)
De Locht, Cliff; De Knibber, Sven; Maddalena, Sam
2008-02-01
Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.
Weiss, Eve; Fisher Thiel, Megan; Sultana, Nahida; Hannan, Chloe; Seacrist, Thomas
2018-02-28
From the advent of airbags to electronic stability control, technological advances introduced into automobile design have significantly reduced injury and death from motor vehicle crashes. These advances are especially pertinent among teen drivers, a population whose leading cause of death is motor vehicle crashes. Recently developed advanced driver assistance systems (ADAS) have the potential to compensate for skill deficits and reduce overall crash risk. Yet, ADAS is only effective if drivers are willing to use it. Limited research has been conducted on the suitability of ADAS for teen drivers. The goal of this study is to identify teen drivers' perceived need for ADAS, receptiveness to in-vehicle technology, and intervention preferences. The long-term goal is to understand public perceptions and barriers to ADAS use and to help determine how these systems must evolve to meet the needs of the riskiest driving populations. Three focus groups (N = 24) were conducted with licensed teen drivers aged 16-19 years and 2 focus groups with parents of teen drivers (N = 12). Discussion topics included views on how ADAS might influence driving skills and behaviors; trust in technology; and data privacy. Discussions were transcribed; the team used conventional content analysis and open coding methods to identify 12 coding domains and code transcripts with NVivo 10. Interrater reliability testing showed moderate to high kappa scores. Overall, participants recognized potential benefits of ADAS, including improved safety and crash reduction. Teens suggested that ADAS is still developing and therefore has potential to malfunction. Many teens reported a greater trust in their own driving ability over vehicle technology. They expressed that novice drivers should learn to drive on non-ADAS-equipped cars and that ADAS should be considered a supplemental aid. Many teens felt that overreliance on ADAS may increase distracted driving or risky behaviors among teens. Parents also expressed skepticism for the technology but felt that it would likely be a useful support for teen drivers after the initial learning phase. This study elicited important end-user viewpoints by exploring the intersection between advanced automobile safety technology and human perception for the particular use case of teen drivers. For example, despite evidence that teens are the highest risk driving population, teens trust their own driving skills and competence more than in-vehicle technology. This understanding will ultimately advance the safety of teen drivers by identifying barriers to effective ADAS use.
NASA Technical Reports Server (NTRS)
Sager, R. E.; Cox, D. W.
1983-01-01
Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.
CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR
Hawke, B.C.; Liederbach, F.J.; Lones, W.
1963-05-14
A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)
Simple gaze-contingent cues guide eye movements in a realistic driving simulator
NASA Astrophysics Data System (ADS)
Pomarjanschi, Laura; Dorr, Michael; Bex, Peter J.; Barth, Erhardt
2013-03-01
Looking at the right place at the right time is a critical component of driving skill. Therefore, gaze guidance has the potential to become a valuable driving assistance system. In previous work, we have already shown that complex gaze-contingent stimuli can guide attention and reduce the number of accidents in a simple driving simulator. We here set out to investigate whether cues that are simple enough to be implemented in a real car can also capture gaze during a more realistic driving task in a high-fidelity driving simulator. We used a state-of-the-art, wide-field-of-view driving simulator with an integrated eye tracker. Gaze-contingent warnings were implemented using two arrays of light-emitting diodes horizontally fitted below and above the simulated windshield. Thirteen volunteering subjects drove along predetermined routes in a simulated environment popu lated with autonomous traffic. Warnings were triggered during the approach to half of the intersections, cueing either towards the right or to the left. The remaining intersections were not cued, and served as controls. The analysis of the recorded gaze data revealed that the gaze-contingent cues did indeed have a gaze guiding effect, triggering a significant shift in gaze position towards the highlighted direction. This gaze shift was not accompanied by changes in driving behaviour, suggesting that the cues do not interfere with the driving task itself.
Valuation of active blind spot detection systems by younger and older adults.
Souders, Dustin J; Best, Ryan; Charness, Neil
2017-09-01
Due to their disproportional representation in fatal crashes, younger and older drivers both stand to benefit from in-vehicle safety technologies, yet little is known about how they value such technologies, or their willingness to adopt them. The current study investigated older (aged 65 and greater; N=49) and younger (ages 18-23; N=40) adults' valuation of a blind spot monitor and asked if self-reported visual difficulties while driving predicted the amount participants were willing to pay for a particular system (BMW's Active Blind Spot Detection System) that was demonstrated using a short video. Large and small anchor values ($250 and $500, respectively) were used as between subjects manipulations to examine the effects of initial valuation, and participants proceeded through a short staircase procedure that offered them either the free installation of the system on their current vehicle or a monetary prize ($25-$950) that changed in value according to which option they had selected in the previous step of the staircase procedure. Willingness to use other advanced driver assistance systems (lane-departure warning, automatic lane centering, emergency braking, adaptive cruise control, and self-parking systems) was also analyzed, additionally controlling for prior familiarity of those systems. Results showed that increased age was associated with a higher valuation for the Active Blind Spot Detection System in both the large and small anchor value conditions controlling for income, gender, and technology self-efficacy. Older adults valued blind spot detection about twice as much ($762) as younger adults ($383) in the large anchor condition, though both groups' values were in the range for the current cost of an aftermarket system. Similarly, age was the most robust positive predictor of willingness to adopt other driving technologies, along with system familiarity. Difficulties with driving-related visual factors also positively predicting acceptance levels for adaptive cruise control and emergency braking systems. Results are discussed in comparison to older adults' willingness to pay for other home-based assistive technologies aimed at improving well-being and independence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choi, Moon; Adams, Kathryn Betts; Mezuk, Briana
2017-01-01
The aging process is marked by a series of transitions that influence multiple domains of well-being. One important transition for older adults is the process of driving cessation. Numerous studies have examined risk factors for driving cessation among older adults to identify at-risk older drivers for road safety. Recent research has focused on the consequences of driving cessation in later life for health and well-being. However, these reports have been largely empirical and are not drawn from a defined conceptual framework. Establishing a theoretical model of ‘how driving cessation interacts with other processes and domains of aging’ will promote synthesis of seemingly disparate findings and also link the empirical research on cessation to the broader field of gerontology. This article describes a conceptual model for articulating and examining the components of the driving cessation process based on the stress-coping paradigm. This model situates driving cessation within the context of exogenous stressors, individual vulnerabilities and coping strategies, and environmental hazards and buffers over the lifespan. This model could assist in guiding intervention strategies aimed at reducing premature driving cessation in older drivers with ameliorable impairments while assisting at-risk older drivers to reduce or stop driving in a less stressful way. PMID:21702704
Beyene, Nahom M; Steinfeld, Aaron; Pearlman, Jon; Cooper, Rory A
2012-07-01
This study investigates travel tendencies among people with disabilities and senior citizens in New Delhi, India to reveal relationships between the desire for transportation independence, use of assistive technology for mobility, travel frequency, and satisfaction with available modes of transportation. Study volunteers received invitations to complete a one-time, three-part questionnaire. The survey included an assessment battery developed by the Quality of Life Technology Engineering Research Center, questions featured in the 2002 National Transportation Availability and Use Survey, and a variation on the PARTS/M and FABS/M questionnaires. 80 study participants completed the questionnaire, and were grouped according to driving status as No Driving Experience (NDE), Ceased Driving (CD), and Continue To Drive (CTD). Participants in the NDE group were less likely to use transportation more than twice daily. However, the CD group had the lowest perceived value for available transportation options, with transportation use comparable to the CTD group and an enduring desire to continue driving. Study findings suggest an inner drive for transportation independence. The rise of driving culture internationally presents driver rehabilitation services with challenges due to the need for vehicle modifications and driving assessment using manual transmission automobiles, scooters, and motorcycles.
Choi, Moon; Adams, Kathryn Betts; Mezuk, Briana
2012-01-01
The aging process is marked by a series of transitions that influence multiple domains of well-being. One important transition for older adults is the process of driving cessation. Numerous studies have examined risk factors for driving cessation among older adults to identify at-risk older drivers for road safety. Recent research has focused on the consequences of driving cessation in later life for health and well-being. However, these reports have been largely empirical and are not drawn from a defined conceptual framework. Establishing a theoretical model of 'how driving cessation interacts with other processes and domains of aging' will promote synthesis of seemingly disparate findings and also link the empirical research on cessation to the broader field of gerontology. This article describes a conceptual model for articulating and examining the components of the driving cessation process based on the stress-coping paradigm. This model situates driving cessation within the context of exogenous stressors, individual vulnerabilities and coping strategies, and environmental hazards and buffers over the lifespan. This model could assist in guiding intervention strategies aimed at reducing premature driving cessation in older drivers with ameliorable impairments while assisting at-risk older drivers to reduce or stop driving in a less stressful way.
Acousto-fluidic system assisting in-liquid self-assembly of microcomponents
NASA Astrophysics Data System (ADS)
Goldowsky, J.; Mastrangeli, M.; Jacot-Descombes, L.; Gullo, M. R.; Mermoud, G.; Brugger, J.; Martinoli, A.; Nelson, B. J.; Knapp, Helmut F.
2013-12-01
In this paper, we present the theoretical background, design, fabrication and characterization of a micromachined chamber assisting the fluidic self-assembly of micro-electro-mechanical systems in a bulk liquid. Exploiting bubble-induced acoustic microstreaming, several structurally-robust driving modes are excited inside the chamber. The modes promote the controlled aggregation and disaggregation of microcomponents relying on strong and reproducible fluid mixing effects achieved even at low Reynolds numbers. The functionality of the microfluidic chamber is demonstrated through the fast and repeatable geometrical pairing and subsequent unpairing of polymeric microcylinders. Relying only on drag and radiation forces and on the natural hydrophobicity of SU-8 in aqueous solutions, assembly yields of approximately 50% are achieved in no longer than ten seconds of agitation. The system can stochastically control the assembly process and significantly reduce the time-to-assembly of building blocks.
RoboGlove - A Robonaut Derived Multipurpose Assistive Device
NASA Technical Reports Server (NTRS)
Diftler, Myron; Ihrke, C. A.; Bridgwater, L. B.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.
2014-01-01
The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. The technology holds great promise for use with space suit gloves to reduce fatigue during space walks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove.
NASA Astrophysics Data System (ADS)
Golter, David; Oo, Thein; Amezcua, Maira; Wang, Hailin
Micro-electromechanical systems research is producing increasingly sophisticated tools for nanophononic applications. Such technology is well-suited for achieving chip-based, integrated acoustic control of solid-state quantum systems. We demonstrate such acoustic control in an important solid-state qubit, the diamond nitrogen-vacancy (NV) center. Using an interdigitated transducer to generate a surface acoustic wave (SAW) field in a bulk diamond, we observe phonon-assisted sidebands in the optical excitation spectrum of a single NV center. This exploits the strong strain sensitivity of the NV excited states. The mechanical frequencies far exceed the relevant optical linewidths, reaching the resolved-sideband regime. This enables us to use the SAW field for driving Rabi oscillations on the phonon-assisted optical transition. These results stimulate the further integration of SAW-based technologies with the NV center system.
Foot placement during error and pedal applications in naturalistic driving.
Wu, Yuqing; Boyle, Linda Ng; McGehee, Daniel; Roe, Cheryl A; Ebe, Kazutoshi; Foley, James
2017-02-01
Data from a naturalistic driving study was used to examine foot placement during routine foot pedal movements and possible pedal misapplications. The study included four weeks of observations from 30 drivers, where pedal responses were recorded and categorized. The foot movements associated with pedal misapplications and errors were the focus of the analyses. A random forest algorithm was used to predict the pedal application types based the video observations, foot placements, drivers' characteristics, drivers' cognitive function levels and anthropometric measurements. A repeated multinomial logit model was then used to estimate the likelihood of the foot placement given various driver characteristics and driving scenarios. The findings showed that prior foot location, the drivers' seat position, and the drive sequence were all associated with incorrect foot placement during an event. The study showed that there is a potential to develop a driver assistance system that can reduce the likelihood of a pedal error. Copyright © 2016 Elsevier Ltd. All rights reserved.
1999-01-01
This artist’s concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
AirCheckTexas Drive a Clean Machine program, which provides vehicle replacement assistance for qualified requirements, and how to apply in specific areas, see the AirCheckTexas Drive a Clean Machine website
Minimally invasive surgical video analysis: a powerful tool for surgical training and navigation.
Sánchez-González, P; Oropesa, I; Gómez, E J
2013-01-01
Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.
"Optimal" application of ventilatory assist in Cheyne-Stokes respiration: a simulation study.
Khoo, M C; Benser, M E
2005-01-01
Although a variety of ventilator therapies have been employed to treat Cheyne-Stokes respiration (CSR), these modalities do not completely eliminate CSR. As well, most current strategies require that ventilatory assist be provided continuously. We used a computer model of the respiratory control system to determine whether a ventilatory assist strategy could be found that would substantially reduce the severity of CSR while minimizing the application of positive airway pressure. We assessed the effects of different levels of ventilatory assist applied during breaths that fell below selected hypopneic thresholds. These could be applied during the descending, ascending, or both phases of the CSR cycle. We found that ventilatory augmentation equal to 30-40% of eupneic drive, applied whenever ventilation fell below 70% of the eupneic level during the ascending or descending-and-ascending phases of CSR led to the greatest regularization of breathing with minimal ventilator intervention. Application of ventilatory assist during the descending phase produced little effect.
Meal assistance robot with ultrasonic motor
NASA Astrophysics Data System (ADS)
Kodani, Yasuhiro; Tanaka, Kanya; Wakasa, Yuji; Akashi, Takuya; Oka, Masato
2007-12-01
In this paper, we have constructed a robot that help people with disabilities of upper extremities and advanced stage amyotrophic lateral sclerosis (ALS) patients to eat with their residual abilities. Especially, many of people suffering from advanced stage ALS of the use a pacemaker. And they need to avoid electromagnetic waves. Therefore we adopt ultra sonic motor that does not generate electromagnetic waves as driving sources. Additionally we approach the problem of the conventional meal assistance robot. Moreover, we introduce the interface with eye movement so that extremities can also use our system. User operates our robot not with hands or foot but with eye movement.
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...
2017-01-19
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhou, Baotong; Zhang, Changnian
2017-03-01
Vehicle-mounted panoramic system is important safety assistant equipment for driving. However, traditional systems only render fixed top-down perspective view of limited view field, which may have potential safety hazard. In this paper, a texture mapping algorithm for 3D vehicle-mounted panoramic system is introduced, and an implementation of the algorithm utilizing OpenGL ES library based on Android smart platform is presented. Initial experiment results show that the proposed algorithm can render a good 3D panorama, and has the ability to change view point freely.
Gaps and Pathways Project: driving pathways by diagnosis sheets.
Touchinsky, Susan; Chew, Felicia; Davis, Elin Schold
2014-04-01
This paper describes the development and use of information sheets for occupational therapy practitioners to use as guides for evaluation and intervention planning to address their client's driving and community mobility needs. Called Driving Pathways by Diagnosis Sheets, the information assists therapists with direction to connect impairment to driving risk and incorporate intervention to client goals and priorities related to driving and community mobility. An example of one of the sheets for the diagnosis of arthritis is highlighted and implications for use are discussed.
A Guide to Sentencing DUI Offenders
DOT National Transportation Integrated Search
1996-03-01
This sentencing guide is designed to assist judges and prosecutors in reducing recidivism among people convicted of drinking and driving offenses. Today's driving under the influence (DUI) arrestee is often a repeat offender and resistant to deterren...
NASA Astrophysics Data System (ADS)
Streiter, R.; Wanielik, G.
2013-07-01
The construction of highways and federal roadways is subject to many restrictions and designing rules. The focus is on safety, comfort and smooth driving. Unfortunately, the planning information for roadways and their real constitution, course and their number of lanes and lane widths is often unsure or not available. Due to digital map databases of roads raised much interest during the last years and became one major cornerstone of innovative Advanced Driving Assistance Systems (ADASs), the demand for accurate and detailed road information increases considerably. Within this project a measurement system for collecting high accurate road data was developed. This paper gives an overview about the sensor configuration within the measurement vehicle, introduces the implemented algorithms and shows some applications implemented in the post processing platform. The aim is to recover the origin parametric description of the roadway and the performance of the measurement system is being evaluated against several original road construction information.
A Real-Time Augmented Reality System to See-Through Cars.
Rameau, Francois; Ha, Hyowon; Joo, Kyungdon; Choi, Jinsoo; Park, Kibaek; Kweon, In So
2016-11-01
One of the most hazardous driving scenario is the overtaking of a slower vehicle, indeed, in this case the front vehicle (being overtaken) can occlude an important part of the field of view of the rear vehicle's driver. This lack of visibility is the most probable cause of accidents in this context. Recent research works tend to prove that augmented reality applied to assisted driving can significantly reduce the risk of accidents. In this paper, we present a real-time marker-less system to see through cars. For this purpose, two cars are equipped with cameras and an appropriate wireless communication system. The stereo vision system mounted on the front car allows to create a sparse 3D map of the environment where the rear car can be localized. Using this inter-car pose estimation, a synthetic image is generated to overcome the occlusion and to create a seamless see-through effect which preserves the structure of the scene.
Magnetic Launch Assist Experimental Track
NASA Technical Reports Server (NTRS)
1999-01-01
In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Magnetic Launch Assist Demonstration Test
NASA Technical Reports Server (NTRS)
2001-01-01
This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
A Novel and Intelligent Home Monitoring System for Care Support of Elders with Cognitive Impairment.
Lazarou, Ioulietta; Karakostas, Anastasios; Stavropoulos, Thanos G; Tsompanidis, Theodoros; Meditskos, Georgios; Kompatsiaris, Ioannis; Tsolaki, Magda
2016-10-18
Assistive technology, in the form of a smart home environment, is employed to support people with dementia. To propose a system for continuous and objective remote monitoring of problematic daily living activity areas and design personalized interventions based on system feedback and clinical observations for improving cognitive function and health-related quality of life. The assistive technology of the proposed system, including wearable, sleep, object motion, presence, and utility usage sensors, was methodically deployed at four different home installations of people with cognitive impairment. Detection of sleep patterns, physical activity, and activities of daily living, based on the collected sensor data and analytics, was available at all times through comprehensive data visualization solutions. Combined with clinical observation, targeted psychosocial interventions were introduced to enhance the participants' quality of life and improve their cognitive functions and daily functionality. Meanwhile, participants and their caregivers were able to visualize a reduced set of information tailored to their needs. Overall, paired-sample t-test analysis of monitored qualities revealed improvement for all participants in neuropsychological assessment. Moreover, improvement was detected from the beginning to the end of the trial, in physical condition and in the domains of sleep. Detecting abnormalities via the system, for example in sleep quality, such as REM sleep, has proved to be critical to assess current status, drive interventions, and evaluate improvements in a reliable manner. It has been proved that the proposed system is suitable to support clinicians to reliably drive and evaluate clinical interventions toward quality of life improvement of people with cognitive impairment.
DOT National Transportation Integrated Search
1982-09-01
This project provides information about norms and attitudes related to alcohol use and driving. This booklet was developed to assist highway safety program officials in assimulating recent research findings on primary prevention into their DWI commun...
A novel mechatronic tool for computer-assisted arthroscopy.
Dario, P; Carrozza, M C; Marcacci, M; D'Attanasio, S; Magnami, B; Tonet, O; Megali, G
2000-03-01
This paper describes a novel mechatronic tool for arthroscopy, which is at the same time a smart tool for traditional arthroscopy and the main component of a system for computer-assisted arthroscopy. The mechatronic arthroscope has a cable-actuated servomotor-driven multi-joint mechanical structure, is equipped with a position sensor measuring the orientation of the tip and with a force sensor detecting possible contact with delicate tissues in the knee, and incorporates an embedded microcontroller for sensor signal processing, motor driving and interfacing with the surgeon and/or the system control unit. When used manually, the mechatronic arthroscope enhances the surgeon's capabilities by enabling him/her to easily control tip motion and to prevent undesired contacts. When the tool is integrated in a complete system for computer-assisted arthroscopy, the trajectory of the arthroscope is reconstructed in real time by an optical tracking system using infrared emitters located in the handle, providing advantages in terms of improved intervention accuracy. The computer-assisted arthroscopy system comprises an image processing module for segmentation and three-dimensional reconstruction of preoperative computer tomography or magnetic resonance images, a registration module for measuring the position of the knee joint, tracking the trajectory of the operating tools, and matching preoperative and intra-operative images, and a human-machine interface that displays the enhanced reality scenario and data from the mechatronic arthroscope in a friendly and intuitive manner. By integrating preoperative and intra-operative images and information provided by the mechatronic arthroscope, the system allows virtual navigation in the knee joint during the planning phase and computer guidance by augmented reality during the intervention. This paper describes in detail the characteristics of the mechatronic arthroscope and of the system for computer-assisted arthroscopy and discusses experimental results obtained with a preliminary version of the tool and of the system.
System to continuously produce carbon fiber via microwave assisted plasma processing
White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN
2010-11-02
A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.
Computer-generated scenes depicting the HST capture and EVA repair mission
1993-11-12
Computer generated scenes depicting the Hubble Space Telescope capture and a sequence of planned events on the planned extravehicular activity (EVA). Scenes include the Remote Manipulator System (RMS) arm assisting two astronauts changing out the Wide Field/Planetary Camera (WF/PC) (48699); RMS arm assisting in the temporary mating of the orbiting telescope to the flight support system in Endeavour's cargo bay (48700); Endeavour's RMS arm assisting in the "capture" of the orbiting telescope (48701); Two astronauts changing out the telescope's coprocessor (48702); RMS arm assistign two astronauts replacing one of the telescope's electronic control units (48703); RMS assisting two astronauts replacing the fuse plugs on the telescope's Power Distribution Unit (PDU) (48704); The telescope's High Resolution Spectrograph (HRS) kit is depicted in this scene (48705); Two astronauts during the removal of the high speed photometer and the installation of the COSTAR instrument (48706); Two astronauts, standing on the RMS, during installation of one of the Magnetic Sensing System (MSS) (48707); High angle view of the orbiting Space Shuttle Endeavour with its cargo bay doors open, revealing the bay's pre-capture configuration. Seen are, from the left, the Solar Array Carrier, the ORU Carrier and the flight support system (48708); Two astronauts performing the replacement of HST's Rate Sensor Units (RSU) (48709); The RMS arm assisting two astronauts with the replacement of the telescope's solar array panels (48710); Two astronauts replacing the telescope's Solar Array Drive Electronics (SADE) (48711).
Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models
2015-04-01
features/index.htm. Accessed: 2014-09-30. [3] Google self driving car . http://en.wikipedia.org/wiki/ Google driverless car . Accessed: 2014-10-11. [4...and outside the car , GPS, and speed information, with lane and driving maneuver annotations. II. RELATED WORK Assistive features for vehicles . Recent...made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver
Magnetic Launch Assist System Demonstration Test
NASA Technical Reports Server (NTRS)
2001-01-01
Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Solís-Marcos, Ignacio; Ahlström, Christer; Kircher, Katja
2018-05-01
To investigate the influence of prior experience with Level 2 automation on additional task performance during manual and Level 2 partially automated driving. Level 2 automation is now on the market, but its effects on driver behavior remain unclear. Based on previous studies, we could expect an increase in drivers' engagement in secondary tasks during Level 2 automated driving, but it is yet unknown how drivers will integrate all the ongoing demands in such situations. Twenty-one drivers (12 without, 9 with Level 2 automation experience) drove on a highway manually and with Level 2 automation (exemplified by Volvo Pilot Assist generation 2; PA2) while performing an additional task. In half of the conditions, the task could be interrupted (self-paced), and in the other half, it could not (system-paced). Drivers' visual attention, additional task performance, and other compensatory strategies were analyzed. Driving with PA2 led to decreased scores in the additional task and more visual attention to the dashboard. In the self-paced condition, all drivers looked more to the task and perceived a lower mental demand. The drivers experienced with PA2 used the system and the task more than the novice group and performed more overtakings. The additional task interfered more with Level 2 automation than with manual driving. The drivers, particularly the automation novice drivers, used some compensatory strategies. Automation designers need to consider these potential effects in the development of future automated systems.
A Hybrid Neuromechanical Ambulatory Assist System
2016-08-01
provide real- time closed-loop control using brace mounted sensors to deliver the stimulation needed to stand up and walk while coordinating exoskeletal...target PC during real- time implementation. The muscle stimulator unit delivered the NES to target paralyzed muscles to drive limb motion. The activity...manual adjustment of thresholds used in the GED and stimulation pattern lengths (Figure 26b). The time for a right or left step could be decreased
Generic Dynamic Environment Perception Using Smart Mobile Devices.
Danescu, Radu; Itu, Razvan; Petrovai, Andra
2016-10-17
The driving environment is complex and dynamic, and the attention of the driver is continuously challenged, therefore computer based assistance achieved by processing image and sensor data may increase traffic safety. While active sensors and stereovision have the advantage of obtaining 3D data directly, monocular vision is easy to set up, and can benefit from the increasing computational power of smart mobile devices, and from the fact that almost all of them come with an embedded camera. Several driving assistance application are available for mobile devices, but they are mostly targeted for simple scenarios and a limited range of obstacle shapes and poses. This paper presents a technique for generic, shape independent real-time obstacle detection for mobile devices, based on a dynamic, free form 3D representation of the environment: the particle based occupancy grid. Images acquired in real time from the smart mobile device's camera are processed by removing the perspective effect and segmenting the resulted bird-eye view image to identify candidate obstacle areas, which are then used to update the occupancy grid. The occupancy grid tracked cells are grouped into obstacles depicted as cuboids having position, size, orientation and speed. The easy to set up system is able to reliably detect most obstacles in urban traffic, and its measurement accuracy is comparable to a stereovision system.
The Climate Adaptation Frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Benjamin L
2013-01-01
Climate adaptation has emerged as a mainstream risk management strategy for assisting in maintaining socio-ecological systems within the boundaries of a safe operating space. Yet, there are limits to the ability of systems to adapt. Here, we introduce the concept of an adaptation frontier , which is defined as a socio-ecological system s transitional adaptive operating space between safe and unsafe domains. A number of driving forces are responsible for determining the sustainability of systems on the frontier. These include path dependence, adaptation/development deficits, values conflicts and discounting of future loss and damage. The cumulative implications of these driving forcesmore » are highly uncertain. Nevertheless, the fact that a broad range of systems already persist at the edge of their frontiers suggests a high likelihood that some limits will eventually be exceeded. The resulting system transformation is likely to manifest as anticipatory modification of management objectives or loss and damage. These outcomes vary significantly with respect to their ethical implications. Successful navigation of the adaptation frontier will necessitate new paradigms of risk governance to elicit knowledge that encourages reflexive reevaluation of societal values that enable or constrain sustainability.« less
Intelligent vehicle safety control strategy in various driving situations
NASA Astrophysics Data System (ADS)
Moon, Seungwuk; Cho, Wanki; Yi, Kyongsu
2010-12-01
This paper describes a safety control strategy for intelligent vehicles with the objective of optimally coordinating the throttle, brake, and active front steering actuator inputs to obtain both lateral stability and longitudinal safety. The control system consists of a supervisor, control algorithms, and a coordinator. From the measurement and estimation signals, the supervisor determines the active control modes among normal driving, longitudinal safety, lateral stability, and integrated safety control mode. The control algorithms consist of longitudinal and lateral stability controllers. The longitudinal controller is designed to improve the driver's comfort during normal, safe-driving situations, and to avoid rear-end collision in vehicle-following situations. The lateral stability controller is designed to obtain the required manoeuvrability and to limit the vehicle body's side-slip angle. To obtain both longitudinal safety and lateral stability control in various driving situations, the coordinator optimally determines the throttle, brake, and active front steering inputs based on the current status of the subject vehicle. Closed-loop simulations with the driver-vehicle-controller system are conducted to investigate the performance of the proposed control strategy. From these simulation results, it is shown that the proposed control algorithm assists the driver in combined severe braking/large steering manoeuvring so that the driver can maintain good manoeuvrability and prevent the vehicle from crashing in vehicle-following situations.
Melman, T; de Winter, J C F; Abbink, D A
2017-01-01
An important issue in road traffic safety is that drivers show adverse behavioral adaptation (BA) to driver assistance systems. Haptic steering guidance is an upcoming assistance system which facilitates lane-keeping performance while keeping drivers in the loop, and which may be particularly prone to BA. Thus far, experiments on haptic steering guidance have measured driver performance while the vehicle speed was kept constant. The aim of the present driving simulator study was to examine whether haptic steering guidance causes BA in the form of speeding, and to evaluate two types of haptic steering guidance designed not to suffer from BA. Twenty-four participants drove a 1.8m wide car for 13.9km on a curved road, with cones demarcating a single 2.2m narrow lane. Participants completed four conditions in a counterbalanced design: no guidance (Manual), continuous haptic guidance (Cont), continuous guidance that linearly reduced feedback gains from full guidance at 125km/h towards manual control at 130km/h and above (ContRF), and haptic guidance provided only when the predicted lateral position was outside a lateral bandwidth (Band). Participants were familiarized with each condition prior to the experimental runs and were instructed to drive as they normally would while minimizing the number of cone hits. Compared to Manual, the Cont condition yielded a significantly higher driving speed (on average by 7km/h), whereas ContRF and Band did not. All three guidance conditions yielded better lane-keeping performance than Manual, whereas Cont and ContRF yielded lower self-reported workload than Manual. In conclusion, continuous steering guidance entices drivers to increase their speed, thereby diminishing its potential safety benefits. It is possible to prevent BA while retaining safety benefits by making a design adjustment either in lateral (Band) or in longitudinal (ContRF) direction. Copyright © 2016. Published by Elsevier Ltd.
Dionisio, Valdeci C; Brown, David A
2016-06-16
Collaborative robots are used in rehabilitation and are designed to interact with the client so as to provide the ability to assist walking therapeutically. One such device is the KineAssist which was designed to interact, either in a self-driven mode (SDM) or in an assist mode (AM), with neurologically-impaired individuals while they are walking on a treadmill surface. To understand the level of transparency (i.e., interference with movement due to the mechanical interface) between human and robot, and to estimate and account for changes in the kinetics and kinematics of the gait pattern, we tested the KineAssist under conditions of self-drive and horizontal push assistance. The aims of this study were to compare the joint kinematics, forces and moments during walking at a fixed constant treadmill belt speed and constrained walking cadence, with and without the robotic device (OUT) and to compare the biomechanics of assistive and self-drive modes in the device. Twenty non-neurologically impaired adults participated in this study. We evaluated biomechanical parameters of walking at a fixed constant treadmill belt speed (1.0 m/s), with and without the robotic device in assistive mode. We also tested the self-drive condition, which enables the user to drive the speed and direction of a treadmill belt. Hip, knee and ankle angular displacements, ground reaction forces, hip, knee and ankle moments, and center of mass displacement were compared "in" vs "out" of the device. A repeated measures ANOVA test was applied with the three level factor of condition (OUT, AM, and SDM), and each participant was used as its own comparison. When comparing "in" and "out" of the device, we did not observe any interruptions and/or reversals of direction of the basic gait pattern trajectory, but there was increased ankle and hip angular excursions, vertical ground reaction force and hip moments and reduced center of mass displacement during the "in device" condition. Comparing assistive vs self-drive mode in device, participants had greater flexed posture and accentuated hip moments and propulsive force, but reduced braking force. Although the magnitudes and/or range of certain gait pattern components were altered by the device, we did not observe any interruption from the mechanical interface upon the advancement of the trajectories nor reversals in direction of movement which suggests that the KineAssist permits relative transparency (i.e.. lack of interference of movement by the device mechanism) to the individual's gait pattern. However, there are interactive forces to take into account, which appear to be overcome by kinematic and kinetic adjustments.
Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod
The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.
The impact of transportation support on driving cessation among community-dwelling older adults.
Choi, Moon; Adams, Kathryn Betts; Kahana, Eva
2012-05-01
This study longitudinally examines the impact of transportation support on driving cessation among community-dwelling older adults residing in retirement communities. Data came from 3 waves of the Florida Retirement Study (1990-1992), a population-based cohort study. Analysis was limited to participants who drove at baseline and were reinterviewed in 1992 (N = 636). Transportation support from a spouse, family members, friends/neighbors, agencies/organizations (e.g., church), or hired assistants was included. Discrete-time multivariate hazard models were estimated to examine the impact of transportation support on driving cessation while controlling for demographic and health characteristics. Participants were more likely to stop driving if they had received at least some transportation support from friends/neighbors (Hazard Ratio = 2.49, p = .001) as compared with those with little or no support. Transportation support from organizations/agencies or hired assistants was also significantly associated with the likelihood of driving cessation, but only a small number of participants reported to have received such support. Receiving some or more transportation support from a spouse or family members did not have a statistically significant relationship with driving cessation. The findings suggest that available nonkin transportation support, particularly support from peer friends, plays an important role in driving cessation for older adults living in retirement communities.
The Impact of Transportation Support on Driving Cessation Among Community-Dwelling Older Adults
Adams, Kathryn Betts; Kahana, Eva
2012-01-01
Objectives. This study longitudinally examines the impact of transportation support on driving cessation among community-dwelling older adults residing in retirement communities. Method. Data came from 3 waves of the Florida Retirement Study (1990–1992), a population-based cohort study. Analysis was limited to participants who drove at baseline and were reinterviewed in 1992 (N = 636). Transportation support from a spouse, family members, friends/neighbors, agencies/organizations (e.g., church), or hired assistants was included. Discrete-time multivariate hazard models were estimated to examine the impact of transportation support on driving cessation while controlling for demographic and health characteristics. Results. Participants were more likely to stop driving if they had received at least some transportation support from friends/neighbors (Hazard Ratio = 2.49, p = .001) as compared with those with little or no support. Transportation support from organizations/agencies or hired assistants was also significantly associated with the likelihood of driving cessation, but only a small number of participants reported to have received such support. Receiving some or more transportation support from a spouse or family members did not have a statistically significant relationship with driving cessation. Discussion. The findings suggest that available nonkin transportation support, particularly support from peer friends, plays an important role in driving cessation for older adults living in retirement communities. PMID:22454388
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
...-2981. Delaware-Maryland USDA Rural Development State Office, 1221 College Park Drive, Suite 200, Dover..., 771 Corporate Drive, Suite 200, Lexington, KY 40503, (859) 224-7300/TDD (859) 224-7422. Louisiana USDA... Midlantic Drive, 5th Floor North, Suite 500, Mt. Laurel, NJ 08054-1522, (856) 787-7700/TDD (856) 787-7784...
The Tongue Enables Computer and Wheelchair Control for People with Spinal Cord Injury
Kim, Jeonghee; Park, Hangue; Bruce, Joy; Sutton, Erica; Rowles, Diane; Pucci, Deborah; Holbrook, Jaimee; Minocha, Julia; Nardone, Beatrice; West, Dennis; Laumann, Anne; Roth, Eliot; Jones, Mike; Veledar, Emir; Ghovanloo, Maysam
2015-01-01
The Tongue Drive System (TDS) is a wireless and wearable assistive technology, designed to allow individuals with severe motor impairments such as tetraplegia to access their environment using voluntary tongue motion. Previous TDS trials used a magnetic tracer temporarily attached to the top surface of the tongue with tissue adhesive. We investigated TDS efficacy for controlling a computer and driving a powered wheelchair in two groups of able-bodied subjects and a group of volunteers with spinal cord injury (SCI) at C6 or above. All participants received a magnetic tongue barbell and used the TDS for five to six consecutive sessions. The performance of the group was compared for TDS versus keypad and TDS versus a sip-and-puff device (SnP) using accepted measures of speed and accuracy. All performance measures improved over the course of the trial. The gap between keypad and TDS performance narrowed for able-bodied subjects. Despite participants with SCI already having familiarity with the SnP, their performance measures were up to three times better with the TDS than with the SnP and continued to improve. TDS flexibility and the inherent characteristics of the human tongue enabled individuals with high-level motor impairments to access computers and drive wheelchairs at speeds that were faster than traditional assistive technologies but with comparable accuracy. PMID:24285485
6. Interior, rear offices: operations assistant office looking north toward ...
6. Interior, rear offices: operations assistant office looking north toward security operations officer's office. - Ellsworth Air Force Base, Rushmore Air Force Station, Security Central Control Building, Quesada Drive, Blackhawk, Meade County, SD
ECG on the road: robust and unobtrusive estimation of heart rate.
Wartzek, Tobias; Eilebrecht, Benjamin; Lem, Jeroen; Lindner, Hans-Joachim; Leonhardt, Steffen; Walter, Marian
2011-11-01
Modern automobiles include an increasing number of assistance systems to increase the driver's safety. This feasibility study investigated unobtrusive capacitive ECG measurements in an automotive environment. Electrodes integrated into the driving seat allowed to measure a reliable ECG in 86% of the drivers; when only (light) cotton clothing was worn by the drivers, this value increased to 95%. Results show that an array of sensors is needed that can adapt to the different drivers and sitting positions. Measurements while driving show that traveling on the highway does not distort the signal any more than with the car engine turned OFF, whereas driving in city traffic results in a lowered detection rate due to the driver's heavier movements. To enable robust and reliable estimation of heart rate, an algorithm is presented (based on principal component analysis) to detect and discard time intervals with artifacts. This, then, allows a reliable estimation of heart rate of up to 61% in city traffic and up to 86% on the highway: as a percentage of the total driving period with at least four consecutive QRS complexes.
A cycle timer for testing electric vehicles
NASA Technical Reports Server (NTRS)
Soltis, R. F.
1978-01-01
A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.
A guide for statewide impaired-driving task forces.
DOT National Transportation Integrated Search
2009-09-01
The purpose of the guide is to assist State officials and other stakeholders who are interested in establishing an : Impaired-Driving Statewide Task Force or who are exploring ways to improve their current Task Force. The guide : addresses issues suc...
Extension Education Drives Economic Stimulus through Trade Adjustment Assistance for Farmers
ERIC Educational Resources Information Center
Neibergs, J. Shannon; Mahnken, Curtis; Moore, Danna L.; Kemper, Nathan P.; Nelson, John Glenn, III; Rainey, Ron; Hipple, Patricia
2015-01-01
Trade Adjustment Assistance for Farmers (TAAF) is a national multifaceted USDA program that provided technical and financial assistance to farmers and fishermen adversely affected by import competition. This article describes how Extension was successfully mobilized to deliver the TAAF program to 10,983 producers across the nation using innovative…
EVA 4 activity on Flight Day 7 to service the Hubble Space Telescope
1997-02-17
S82-E-5606 (17 Feb. 1997) --- Astronaut Gregory J. Harbaugh at work on Hubble Space Telescope (HST), with the assistance of astronaut Joseph R. Tanner (out of frame) on Remote Manipulator System (RMS). After replacing the HST's Solar Array Drive Electronics (SADE), Harbaugh and Tanner replaced the Magnetic Sensing System (MSS) protective lids with new, permanent covers; and they installed pre-cut insulation pieces to correct tears in the HST's protective covering caused by temperature changes in space. This view was taken with an Electronic Still Camera (ESC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T. Jr; Cunningham, A.R.; Iannelli, D.A.
Volume II is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. Engine/driveline changes are the second most important contribution to fuel economy (weight reduction being the first) and are of major importance towards meeting emission standards. Through extensive synthesis of vehicle specifications and other data, chronological presentations were developed to illustrate engines and transmissions in production, engine/transmission and model/engine combinations, and automatic vs. manual transmission availability.more » Also shown are the progression of engine/driveline changes from 1975 through 1978; the correlation of these changes with new vehicle introductions; the restrictions on available drive-train options due to emission requirements; and technological improvements including dieselization, fuel metering, lock-up torque converters, and front-wheel-drive.« less
a Novel Approach to Camera Calibration Method for Smart Phones Under Road Environment
NASA Astrophysics Data System (ADS)
Lee, Bijun; Zhou, Jian; Ye, Maosheng; Guo, Yuan
2016-06-01
Monocular vision-based lane departure warning system has been increasingly used in advanced driver assistance systems (ADAS). By the use of the lane mark detection and identification, we proposed an automatic and efficient camera calibration method for smart phones. At first, we can detect the lane marker feature in a perspective space and calculate edges of lane markers in image sequences. Second, because of the width of lane marker and road lane is fixed under the standard structural road environment, we can automatically build a transformation matrix between perspective space and 3D space and get a local map in vehicle coordinate system. In order to verify the validity of this method, we installed a smart phone in the `Tuzhi' self-driving car of Wuhan University and recorded more than 100km image data on the road in Wuhan. According to the result, we can calculate the positions of lane markers which are accurate enough for the self-driving car to run smoothly on the road.
NASA Astrophysics Data System (ADS)
Ercan, Ziya; Carvalho, Ashwin; Tseng, H. Eric; Gökaşan, Metin; Borrelli, Francesco
2018-05-01
Haptic shared control framework opens up new perspectives on the design and implementation of the driver steering assistance systems which provide torque feedback to the driver in order to improve safety. While designing such a system, it is important to account for the human-machine interactions since the driver feels the feedback torque through the hand wheel. The controller should consider the driver's impact on the steering dynamics to achieve a better performance in terms of driver's acceptance and comfort. In this paper we present a predictive control framework which uses a model of driver-in-the-loop steering dynamics to optimise the torque intervention with respect to the driver's neuromuscular response. We first validate the system in simulations to compare the performance of the controller in nominal and model mismatch cases. Then we implement the controller in a test vehicle and perform experiments with a human driver. The results show the effectiveness of the proposed system in avoiding hazardous situations under different driver behaviours.
RoboGlove-A Grasp Assist Device for Earth and Space
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ihrke, C. A.; Bridgwater, L. B.; Rogers, J. M.; Davis, D. R.; Linn, D. M.; Laske, E. A.; Ensley, K. G.; Lee, J. H.
2015-01-01
The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. Work is underway to integrate the RoboGlove system with a space suit glove to add strength or reduce fatigue during spacewalks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove in an assembly-line configuration and discusses work toward the space suit application.
Driver Training Simulator for Backing Up Commercial Vehicles with Trailers
NASA Astrophysics Data System (ADS)
Berg, Uwe; Wojke, Philipp; Zöbel, Dieter
Backing up tractors with trailers is a difficult task since the kinematic behavior of articulated vehicles is complex and hard to control. Especially unskilled drivers are overstrained with the complicated steering process. To learn and practice the steering behavior of articulated vehicles, we developed a 3D driving simulator. The simulator can handle different types of articulated vehicles like semi-trailers, one- and two-axle trailers, or gigaliners. The use of a driving simulator offers many advantages over the use of real vehicles. One of the main advantages is the possibility to learn the steering behavior of all vehicle types. Drivers can be given more and better driving instructions like collision warnings or steering hints. Furthermore, the driver training costs can be reduced. Moreover, mistakes of the student do not lead to real damages and costly repairs. The hardware of the simulator consists of a low cost commercial driving stand with original truck parts, a projection of the windshield and two flat panel monitors for the left and right exterior mirrors. Standard PC hardware is used for controlling the driving stand and for generating the realtime 3D environment. Each aspect of the simulation like realistic vehicle movements or generation of different views, is handled by a specific software module. This flexible system can be easily extended which offers the opportunity for other uses than just driver training. Therefore, we use the simulator for the development and test of driver assistance systems.
Toosizadeh, Nima; Bunting, Matthew; Howe, Carol; Mohler, Jane; Sprinkle, Jonathan; Najafi, Bijan
2014-01-01
Background Motorized mobility scooters (MMS) have become the most acceptable powered assistive device for those with impaired mobility, who have sufficient upper body strength and dexterity, and postural stability. Although several benefits have been attributed to MMS usage, there are likewise risks of use, including injuries and even deaths. Objective The aim of the current review was to summarize results from clinical studies regarding the enhancement of MMS driver safety with a primary focus on improving driving skills/performance using clinical approaches. We addressed three main objectives: 1) to identify and summarize any available evidence (strong, moderate, or weak evidence based on the quality of studies) regarding improved driving skills/performance following training/intervention; 2) to identify types of driving skills/performance that might be improved by training/intervention; and 3) to identify the use of technology in improving MMS performance or training procedure. Methods Articles were searched for in the following medical and engineering electronic databases: PubMed, Cochrane Library, Web of Science, ClinicalTrials.gov, PsycINFO, CINAHL, ERIC, EI Compendix, IEEE Explore, and REHABDATA. Inclusion criteria included: aging adults or those with ambulatory problems; intervention or targeted training; and clinical trial. Outcomes included: MMS skills/performance. Results Six articles met the inclusion criteria and are analyzed in this review. Four of the six articles contained training approaches for MMS drivers including skill trainings using real MMS inside and outside (i.e., in community) and in a 3D virtual environment. The other two studies contain infrastructural assessments (i.e., the minimum space required for safe maneuverability of MMS users) and additional mobility assistance tools to improve maneuverability and to enhance driving performance. Conclusions Results from the current review showed improved driving skills/performance by training, infrastructural assessments, and incorporating mobility assistance tools. MMS driving skills that can be improved through driver training include: weaving, negotiating with and avoiding pedestrian interference, simultaneous reading of signs and obstacle avoidance in path, level driving, forward and reverse driving, figure 8s, turning in place, crossing left slope, maneuvering down a 2-inch curb, and driving up and down inclines. However, several limitations exist in the available literature regarding evidence of improved driving skills/performance following training/intervention, such as small sample sizes, lack of control groups and statistical analysis. PMID:24481257
2001-03-01
This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Traffic jam driving with NMV avoidance
NASA Astrophysics Data System (ADS)
Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.
2012-08-01
In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.
Electronic differential control of 2WD electric vehicle considering steering stability
NASA Astrophysics Data System (ADS)
Hua, Yiding; Jiang, Haobin; Geng, Guoqing
2017-03-01
Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.
Stapleton, Tadhg; Connolly, Deirdre; O'Neill, Desmond
2012-02-01
The inclusion of a driving specific self-awareness measure may assist the clinical screening process to determine fitness to drive after stroke. This article reports on the use of the Adelaide Driving Self-Efficacy Scale (ADSES) and a proxy ADSES for completion by a significant other in assessment of fitness to drive post-stroke. A prospective study among a clinical sample of stroke patients was conducted incorporating an off-road occupational therapy assessment, an on-road assessment and a six-month follow-up. Self and proxy driver efficacy ratings were compared with each other at off-road assessment and at six-month follow-up, both ratings were compared with structured on-road ratings of driving performance. Forty-six stroke patients (37 men), mean age 63.5 years, were recruited to the study. Thirty-five participants successfully completed the on-road test. ADSES and proxy ratings were high and a ceiling effect was noted. Self and proxy ratings were significantly correlated with each other and both correlated with the on-road assessment ratings. The ADSES ratings were sensitive to the final driving outcome with scores of the restricted driving group significantly lower than the unrestricted group. Proxy ratings showed a decrease at six-month follow-up. The ADSES is an easy to administer tool that warrants further use in stroke rehabilitation. Scores on the ADSES differentiated between restricted and unrestricted driving recommendations post-stroke. These preliminary findings indicate its potential use as a proxy measure to assist in identifying patient who are not ready for formal driving assessment. © 2011 The Authors. Australian Occupational Therapy Journal © 2011 Occupational Therapy Australia.
2001-03-01
Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
1999-10-01
In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Oddsson, Lars I E; Radomski, Mary V; White, Matthew; Nilsson, Daniel
2009-01-01
Well-known difficulties of making patients adhere to assigned treatments have made engineers and clinicians look towards technology for possible solutions. Recent studies have found that cell phone-based text messaging can help drive positive changes in patients' disease management and preventive health behavior. Furthermore, work in the area of assistive robotics indicates benefits for patients although robotic solutions tend to become expensive. However, continued improvement in sensor, computer and wireless technologies combined with decreases in cost is paving the way for development of affordable robotic systems that can help improve patient care and potentially add value to the healthcare system. This paper provides a high-level design overview of SKOTEE, the Sister Kenny hOme ThErapy systEm, an inexpensive robotic platform system designed to provide adherence support for home exercise programs, taking medication, appointment reminders and clinician communication. SKOTEE will also offer companionship as well as entertainment and social networking opportunities to the patient in their home. A video of the system is presented at the conference.
DOT National Transportation Integrated Search
1989-11-01
The objective of this study was to determine the feasibility of developing programs for assisting parents in preventing driving after drinking among their children. This report contains results from a literature review conducted in order to identify ...
An introductory handbook for state task forces to combat drunk driving.
DOT National Transportation Integrated Search
1983-01-01
In June 1982 Governor Robb created a task force to identify and assess efforts under way in Virginia to address the problem of drunken driving and to make recommendations. This booklet was prepared to assist the task force in its deliberations.
New modes of assisted mechanical ventilation.
Suarez-Sipmann, F
2014-05-01
Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Johnson, Michelle J; Ramachandran, Brinda; Paranjape, Ruta P; Kosasih, Judith B
2006-01-01
Rising healthcare costs combined with an increase in the number of people living with disabilities due to stroke have created a need for affordable stroke therapy that can be administered in both home and clinical environments. Studies show that robot and computer-assisted devices are promising tools for rehabilitating persons with impairment and disabilities due to stroke. Studies also have shown that highly motivating therapy produces neuromotor relearning that aids the rehabilitative process. Combining these concepts, this paper discusses TheraDrive, a simple, but novel robotic system for more motivating stroke therapy. We conducted two feasibility studies. The paper discusses these studies. Findings demonstrate the ability of the system to grade therapy and the sensitivity of its metrics to the level of motor function in the impaired arm. In addition, findings confirm the ability of the system to administer fun therapy leading to improved motor performance on steering tasks. However, further work is needed to improve the system's ability to increase motor function in the impaired arm.
Habibovic, Azra; Tivesten, Emma; Uchida, Nobuyuki; Bärgman, Jonas; Ljung Aust, Mikael
2013-01-01
To develop relevant road safety countermeasures, it is necessary to first obtain an in-depth understanding of how and why safety-critical situations such as incidents, near-crashes, and crashes occur. Video-recordings from naturalistic driving studies provide detailed information on events and circumstances prior to such situations that is difficult to obtain from traditional crash investigations, at least when it comes to the observable driver behavior. This study analyzed causation in 90 video-recordings of car-to-pedestrian incidents captured by onboard cameras in a naturalistic driving study in Japan. The Driving Reliability and Error Analysis Method (DREAM) was modified and used to identify contributing factors and causation patterns in these incidents. Two main causation patterns were found. In intersections, drivers failed to recognize the presence of the conflict pedestrian due to visual obstructions and/or because their attention was allocated towards something other than the conflict pedestrian. In incidents away from intersections, this pattern reoccurred along with another pattern showing that pedestrians often behaved in unexpected ways. These patterns indicate that an interactive advanced driver assistance system (ADAS) able to redirect the driver's attention could have averted many of the intersection incidents, while autonomous systems may be needed away from intersections. Cooperative ADAS may be needed to address issues raised by visual obstructions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zeeb, Kathrin; Buchner, Axel; Schrauf, Michael
2015-05-01
In recent years the automation level of driver assistance systems has increased continuously. One of the major challenges for highly automated driving is to ensure a safe driver take-over of the vehicle guidance. This must be ensured especially when the driver is engaged in non-driving related secondary tasks. For this purpose it is essential to find indicators of the driver's readiness to take over and to gain more knowledge about the take-over process in general. A simulator study was conducted to explore how drivers' allocation of visual attention during highly automated driving influences a take-over action in response to an emergency situation. Therefore we recorded drivers' gaze behavior during automated driving while simultaneously engaging in a visually demanding secondary task, and measured their reaction times in a take-over situation. According to their gaze behavior the drivers were categorized into "high", "medium" and "low-risk". The gaze parameters were found to be suitable for predicting the readiness to take-over the vehicle, in such a way that high-risk drivers reacted late and more often inappropriately in the take-over situation. However, there was no difference among the driver groups in the time required by the drivers to establish motor readiness to intervene after the take-over request. An integrated model approach of driver behavior in emergency take-over situations during automated driving is presented. It is argued that primarily cognitive and not motor processes determine the take-over time. Given this, insights can be derived for further research and the development of automated systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Status of Electron Bernstein Wave (EBW) Research on NSTX and CDX-U
NASA Astrophysics Data System (ADS)
Taylor, G.; Efthimion, P. C.; Jones, B. M.; Wilson, J. R.; Wilgen, J. B.; Bell, G. L.; Bigelow, T. S.; Rasmussen, D. A.; Ram, A. K.; Bers, A.; Harvey, R. W.
2002-11-01
Recent studies of EBWs, via mode conversion (MC) to X-mode electromagnetic radiation on the CDX-U and NSTX spherical torus (ST) plasmas, support the use of EBWs to measure the Te profile and allow local heating and current drive in ST plasmas. An in-vessel antenna with a local adjustable limiter has successfully controlled the density scale length at the MC layer in CDX-U increasing the MC by an order of magnitude to ˜ 100%. A similar technique on NSTX has so far increased MC efficiency fivefold to ˜ 50%. Both results are in good agreement with theoretical predictions. Experiments focused on achieving >= 80% MC on NSTX are planned for the coming year. Ray tracing and Fokker-Planck modeling support the design of a ˜ 1 MW EBW heating and current drive system for NSTX that will assist plasma startup, locally heat electrons, drive non-inductive current and may suppress tearing modes or other MHD that limit high β operation.
Paulmurugan, R; Gambhir, S S
2003-04-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.
Paulmurugan, R.; Gambhir, S. S.
2014-01-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein–protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor α through NFκB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein–protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network. PMID:12705589
Road following for blindBike: an assistive bike navigation system for low vision persons
NASA Astrophysics Data System (ADS)
Grewe, Lynne; Overell, William
2017-05-01
Road Following is a critical component of blindBike, our assistive biking application for the visually impaired. This paper talks about the overall blindBike system and goals prominently featuring Road Following, which is the task of directing the user to follow the right side of the road. This work unlike what is commonly found for self-driving cars does not depend on lane line markings. 2D computer vision techniques are explored to solve the problem of Road Following. Statistical techniques including the use of Gaussian Mixture Models are employed. blindBike is developed as an Android Application and is running on a smartphone device. Other sensors including Gyroscope and GPS are utilized. Both Urban and suburban scenarios are tested and results are given. The success and challenges faced by blindBike's Road Following module are presented along with future avenues of work.
Driving into the future: how imaging technology is shaping the future of cars
NASA Astrophysics Data System (ADS)
Zhang, Buyue
2015-03-01
Fueled by the development of advanced driver assistance system (ADAS), autonomous vehicles, and the proliferation of cameras and sensors, automotive is becoming a rich new domain for innovations in imaging technology. This paper presents an overview of ADAS, the important imaging and computer vision problems to solve for automotive, and examples of how some of these problems are solved, through which we highlight the challenges and opportunities in the automotive imaging space.
Automated support for system's engineering and operations - The development of new paradigms
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Hall, Gardiner A.; Jaworski, Allan; Zoch, David
1992-01-01
Technological developments in spacecraft ground operations are reviewed. The technological, operations-oriented, managerial, and economic factors driving the evolution of the Mission Operations Control Center (MOCC), and its predecessor the Operational Control Center are examined. The functional components of the various MOCC subsystems are outlined. A brief overview is given of the concepts behind the The Knowledge-Based Software Engineering Environment, the Generic Spacecraft Analysis Assistant, and the Knowledge From Pictures tool.
Generic Dynamic Environment Perception Using Smart Mobile Devices
Danescu, Radu; Itu, Razvan; Petrovai, Andra
2016-01-01
The driving environment is complex and dynamic, and the attention of the driver is continuously challenged, therefore computer based assistance achieved by processing image and sensor data may increase traffic safety. While active sensors and stereovision have the advantage of obtaining 3D data directly, monocular vision is easy to set up, and can benefit from the increasing computational power of smart mobile devices, and from the fact that almost all of them come with an embedded camera. Several driving assistance application are available for mobile devices, but they are mostly targeted for simple scenarios and a limited range of obstacle shapes and poses. This paper presents a technique for generic, shape independent real-time obstacle detection for mobile devices, based on a dynamic, free form 3D representation of the environment: the particle based occupancy grid. Images acquired in real time from the smart mobile device’s camera are processed by removing the perspective effect and segmenting the resulted bird-eye view image to identify candidate obstacle areas, which are then used to update the occupancy grid. The occupancy grid tracked cells are grouped into obstacles depicted as cuboids having position, size, orientation and speed. The easy to set up system is able to reliably detect most obstacles in urban traffic, and its measurement accuracy is comparable to a stereovision system. PMID:27763501
Sharma, Vinod; Simpson, Richard; Lopresti, Edmund; Schmeler, Mark
2010-01-01
Some individuals with disabilities are denied powered mobility because they lack the visual, motor, and/or cognitive skills required to safely operate a power wheelchair. The Drive-Safe System (DSS) is an add-on, distributed, shared-control navigation assistance system for power wheelchairs intended to provide safe and independent mobility to such individuals. The DSS is a human-machine system in which the user is responsible for high-level control of the wheelchair, such as choosing the destination, path planning, and basic navigation actions, while the DSS overrides unsafe maneuvers through autonomous collision avoidance, wall following, and door crossing. In this project, the DSS was clinically evaluated in a controlled laboratory with blindfolded, nondisabled individuals. Further, these individuals' performance with the DSS was compared with standard cane use for navigation assistance by people with visual impairments. Results indicate that compared with a cane, the DSS significantly reduced the number of collisions. Users rated the DSS favorably even though they took longer to navigate the same obstacle course than they would have using a standard long cane. Participants experienced less physical demand, effort, and frustration when using the DSS as compared with a cane. These findings suggest that the DSS can be a viable powered mobility solution for wheelchair users with visual impairments.
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
Driver fatigue alarm based on eye detection and gaze estimation
NASA Astrophysics Data System (ADS)
Sun, Xinghua; Xu, Lu; Yang, Jingyu
2007-11-01
The driver assistant system has attracted much attention as an essential component of intelligent transportation systems. One task of driver assistant system is to prevent the drivers from fatigue. For the fatigue detection it is natural that the information about eyes should be utilized. The driver fatigue can be divided into two types, one is the sleep with eyes close and another is the sleep with eyes open. Considering that the fatigue detection is related with the prior knowledge and probabilistic statistics, the dynamic Bayesian network is used as the analysis tool to perform the reasoning of fatigue. Two kinds of experiments are performed to verify the system effectiveness, one is based on the video got from the laboratory and another is based on the video got from the real driving situation. Ten persons participate in the test and the experimental result is that, in the laboratory all the fatigue events can be detected, and in the practical vehicle the detection ratio is about 85%. Experiments show that in most of situations the proposed system works and the corresponding performance is satisfying.
An MRI-compatible hand sensory vibrotactile system.
Wang, Fa; Lakshminarayanan, Kishor; Slota, Gregory P; Seo, Na Jin; Webster, John G
2015-01-01
Recently, the application of vibrotactile noise to the wrist or back of the hand has been shown to enhance fingertip tactile sensory perception (Enders et al 2013), supporting the potential for an assistive device worn at the wrist, that generates minute vibrations to help the elderly or patients with sensory deficit. However, knowledge regarding the detailed physiological mechanism behind this sensory improvement in the central nervous system, especially in the human brain, is limited, hindering progress in development and use of such assistive devices. To enable investigation of the impact of vibrotactile noise on sensorimotor brain activity in humans, a magnetic resonance imaging (MRI)-compatible vibrotactile system was developed to provide vibrotactile noise during an MRI of the brain. The vibrotactile system utilizes a remote (outside the MR room) signal amplifier which provides a voltage from -40 to +40 V to drive a 12 mm diameter piezoelectric vibrator (inside the MR room). It is portable and is found to be MRI-compatible which enables its use for neurologic investigation with MRI. The system was also found to induce an improvement in fingertip tactile sensation, consistent with the previous study.
Takatani, S; Orime, Y; Tasai, K; Ohara, Y; Naito, K; Mizuguchi, K; Makinouchi, K; Damm, G; Glueck, J; Ling, J
1994-01-01
A multipurpose miniature electromechanical energy system has been developed to yield a compact, efficient, durable, and biocompatible total artificial heart (TAH) and ventricular assist device (VAD). Associated controller-driver electronics were recently miniaturized and converted into hybrid circuits. The hybrid controller consists of a microprocessor and controller, motor driver, Hall sensor, and commutation circuit hybrids. The sizing study demonstrated that all these components can be incorporated in the pumping unit of the TAH and VAD, particularly in the centerpiece of the TAH and the motor housing of the VAD. Both TAH and VAD pumping units will start when their power line is connected to either the internal power pack or the external battery unit. As a redundant driving and diagnostic port, an emergency port was newly added and will be placed in subcutaneous location. In case of system failure, the skin will be cut down, and an external motor drive or a pneumatic driver will be connected to this port to run the TAH. This will minimize the circulatory arrest time. Overall efficiency of the TAH without the transcutaneous energy transmission system was 14-18% to deliver pump outputs of 4-9 L/min against the right and left afterload pressures of 25 and 100 mm Hg. The internal power requirement ranged from 6 to 13 W. The rechargeable batteries such as NiCd or NiMH with 1 AH capacity can run the TAH for 30-45 min. The external power requirement, when TETS efficiency of 75% was assumed, ranged from 8 to 18 W. The accelerated endurance test in the 42 degrees C saline bath demonstrated stable performance over 4 months. Long-term endurance and chronic animal studies will continue toward a system with 5 years durability by the year 2000.
Huang, Helai; Peng, Yunying; Wang, Jie; Luo, Qizhang; Li, Xiang
2018-02-01
Traffic safety of freeways has attracted major concerns, especially for a mountainous freeway affected by adverse terrain conditions, constrained roadway geometry and complicated driving environments. On the basis of a comprehensive dataset collected from a mountainous freeway with a length of 61km but gathering 12 tunnels, this study seeks to examining the interactive effect of mountainous freeway alignment, driving behaviors, vehicle characteristics and environmental factors on crash severity. A classification and regression tree (CART) model is employed as it can deal with high-order interactions between explanatory variables. Results show that the driving behavior is the most important determinant for injury severity of mountainous freeway crashes, followed by the crash time, grade, curve radius and vehicle type. These variables, interacted with the factors of season and crash location, may largely account for the likelihood of high risk events which may result in severe crashes. Events associated with a notably higher probability of severe crashes include coach drivers involved in improper lane changing and other improper actions, drivers involved in speeding during afternoon or evening, drivers involved in speeding along large curve and straight segment during morning, noon or night, and drivers involved in fatigue while passing along the downgrade. Safety interventions to prevent severe crashes at the mountainous freeway include hierarchical supervision in terms of hazardous driving events, enhanced enforcement for speeding and fatigue driving, deployment of advanced driving assistance systems for fatigue driving warning, and cumulative driving time monitoring for long-distance-travel freight vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.
2017-02-01
We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.
DOT National Transportation Integrated Search
1989-11-01
The objective of this project was to determine the feasibility of developing programs to assist parents in preventing driving after drinking among their children. The project began with a literature review to learn what information about developing p...
DWI [Driving While Intoxicated] Law Enforcement Training Project: Student Manual.
ERIC Educational Resources Information Center
Carnahan, James E.; And Others
The student manual has been prepared to serve as a workbook to assist the student officer in successfully completing the Driving While Intoxicated (DWI) Law Enforcement Training Course. It is organized under 16 subject headings (orientation, alcohol and highway safety, preparation for alcohol enforcement task, detection of the drinking…
Magnetic Thin Films for Perpendicular Magnetic Recording Systems
NASA Astrophysics Data System (ADS)
Sugiyama, Atsushi; Hachisu, Takuma; Osaka, Tetsuya
In the advanced information society of today, information storage technology, which helps to store a mass of electronic data and offers high-speed random access to the data, is indispensable. Against this background, hard disk drives (HDD), which are magnetic recording devices, have gained in importance because of their advantages in capacity, speed, reliability, and production cost. These days, the uses of HDD extend not only to personal computers and network servers but also to consumer electronics products such as personal video recorders, portable music players, car navigation systems, video games, video cameras, and personal digital assistances.
Tabletop Experimental Track for Magnetic Launch Assist
NASA Technical Reports Server (NTRS)
2000-01-01
Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Banks, Victoria A; Stanton, Neville A
2015-01-01
Automated assistance in driving emergencies aims to improve the safety of our roads by avoiding or mitigating the effects of accidents. However, the behavioural implications of such systems remain unknown. This paper introduces the driver decision-making in emergencies (DDMiEs) framework to investigate how the level and type of automation may affect driver decision-making and subsequent responses to critical braking events using network analysis to interrogate retrospective verbalisations. Four DDMiE models were constructed to represent different levels of automation within the driving task and its effects on driver decision-making. Findings suggest that whilst automation does not alter the decision-making pathway (e.g. the processes between hazard detection and response remain similar), it does appear to significantly weaken the links between information-processing nodes. This reflects an unintended yet emergent property within the task network that could mean that we may not be improving safety in the way we expect. This paper contrasts models of driver decision-making in emergencies at varying levels of automation using the Southampton University Driving Simulator. Network analysis of retrospective verbalisations indicates that increasing the level of automation in driving emergencies weakens the link between information-processing nodes essential for effective decision-making.
Kim, Il-Hwa; Kim, Jeong-Woo; Haufe, Stefan; Lee, Seong-Whan
2015-02-01
We developed a simulated driving environment for studying neural correlates of emergency braking in diversified driving situations. We further investigated to what extent these neural correlates can be used to detect a participant's braking intention prior to the behavioral response. We measured electroencephalographic (EEG) and electromyographic signals during simulated driving. Fifteen participants drove a virtual vehicle and were exposed to several kinds of traffic situations in a simulator system, while EEG signals were measured. After that, we extracted characteristic features to categorize whether the driver intended to brake or not. Our system shows excellent detection performance in a broad range of possible emergency situations. In particular, we were able to distinguish three different kinds of emergency situations (sudden stop of a preceding vehicle, sudden cutting-in of a vehicle from the side and unexpected appearance of a pedestrian) from non-emergency (soft) braking situations, as well as from situations in which no braking was required, but the sensory stimulation was similar to stimulations inducing an emergency situation (e.g., the sudden stop of a vehicle on a neighboring lane). We proposed a novel feature combination comprising movement-related potentials such as the readiness potential, event-related desynchronization features besides the event-related potentials (ERP) features used in a previous study. The performance of predicting braking intention based on our proposed feature combination was superior compared to using only ERP features. Our study suggests that emergency situations are characterized by specific neural patterns of sensory perception and processing, as well as motor preparation and execution, which can be utilized by neurotechnology based braking assistance systems.
Performance testing of collision-avoidance system for power wheelchairs.
Lopresti, Edmund F; Sharma, Vinod; Simpson, Richard C; Mostowy, L Casimir
2011-01-01
The Drive-Safe System (DSS) is a collision-avoidance system for power wheelchairs designed to support people with mobility impairments who also have visual, upper-limb, or cognitive impairments. The DSS uses a distributed approach to provide an add-on, shared-control, navigation-assistance solution. In this project, the DSS was tested for engineering goals such as sensor coverage, maximum safe speed, maximum detection distance, and power consumption while the wheelchair was stationary or driven by an investigator. Results indicate that the DSS provided uniform, reliable sensor coverage around the wheelchair; detected obstacles as small as 3.2 mm at distances of at least 1.6 m; and attained a maximum safe speed of 4.2 km/h. The DSS can drive reliably as close as 15.2 cm from a wall, traverse doorways as narrow as 81.3 cm without interrupting forward movement, and reduce wheelchair battery life by only 3%. These results have implications for a practical system to support safe, independent mobility for veterans who acquire multiple disabilities during Active Duty or later in life. These tests indicate that a system utilizing relatively low cost ultrasound, infrared, and force sensors can effectively detect obstacles in the vicinity of a wheelchair.
In vitro and in vivo testing of a totally implantable left ventricular assist system.
Jassawalla, J S; Daniel, M A; Chen, H; Lee, J; LaForge, D; Billich, J; Ramasamy, N; Miller, P J; Oyer, P E; Portner, P M
1988-01-01
The totally implantable Novacor LVAS is being tested under NIH auspices to demonstrate safety and efficacy before clinical trials. Twelve complete systems (submerged in saline at 37 degrees C) are being tested, with an NIH goal of demonstrating 80% reliability for 2 year operation with a 60% confidence level. The systems, which are continuously monitored, are diurnally cycled between two output levels by automatically varying preload and afterload. Currently, 14.3 years of failure-free operation have been accumulated, with a mean duration of 14 months. Using an exponential failure distribution model, the mean time to failure (MTTF) is greater than 8.8 years, corresponding to a demonstrated reliability (for a 2 year mission time) of 80% (80% confidence level). Recent ovine experiments with VAS subsystems include a 767 day volume compensator implant, a 279 day pump/drive unit implant and a 1,448 day BST implant. The last 12 chronic pump/drive unit experiments had a mean duration of 153 days (excluding early postoperative complications). This compares favorably with the NIH goals for complete systems (5 month mean duration). Complete system experiments are currently underway.
Downey, John E; Weiss, Jeffrey M; Muelling, Katharina; Venkatraman, Arun; Valois, Jean-Sebastien; Hebert, Martial; Bagnell, J Andrew; Schwartz, Andrew B; Collinger, Jennifer L
2016-03-18
Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users. NCT01364480 and NCT01894802 .
2008-10-01
Healthcare Systems Will Be Those That Work With Data/Info In New Ways • Artificial Intelligence Will Come to the Fore o Effectively Acquire...Education • Artificial Intelligence Will Assist in o History and Physical Examination o Imaging Selection via algorithms o Test Selection via algorithms...medical language into a simulation model based upon artificial intelligence , and • the content verification and validation of the cognitive
Katz, Reuven
2015-01-01
The goal of the Agile Walker is to improve the outdoor mobility of healthy elderly people with some mobility limitations. It is a newly developed, all-terrain walker, equipped with an electric drive system and speed control that can assists elderly people to walk outdoors or to hike. The walker has a unique product design with an attractive look that will appeal to "active-agers" population. This paper describes product design requirements and the development process of the Agile Walker, its features and some preliminary testing results.
VERDEX: A virtual environment demonstrator for remote driving applications
NASA Technical Reports Server (NTRS)
Stone, Robert J.
1991-01-01
One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end effector integration, virtual force and tactile sensing (also the focus of a current ARRL contract, initially employing a 14-pneumatic bladder glove attachment), and sensor-driven world modeling for total virtual environment generation and operator-assistance in remote scene interrogation.
Computer-assisted coding and clinical documentation: first things first.
Tully, Melinda; Carmichael, Angela
2012-10-01
Computer-assisted coding tools have the potential to drive improvements in seven areas: Transparency of coding. Productivity (generally by 20 to 25 percent for inpatient claims). Accuracy (by improving specificity of documentation). Cost containment (by reducing overtime expenses, audit fees, and denials). Compliance. Efficiency. Consistency.
An intelligent multi-media human-computer dialogue system
NASA Technical Reports Server (NTRS)
Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.
1988-01-01
Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.
Computer vision for driver assistance systems
NASA Astrophysics Data System (ADS)
Handmann, Uwe; Kalinke, Thomas; Tzomakas, Christos; Werner, Martin; von Seelen, Werner
1998-07-01
Systems for automated image analysis are useful for a variety of tasks and their importance is still increasing due to technological advances and an increase of social acceptance. Especially in the field of driver assistance systems the progress in science has reached a level of high performance. Fully or partly autonomously guided vehicles, particularly for road-based traffic, pose high demands on the development of reliable algorithms due to the conditions imposed by natural environments. At the Institut fur Neuroinformatik, methods for analyzing driving relevant scenes by computer vision are developed in cooperation with several partners from the automobile industry. We introduce a system which extracts the important information from an image taken by a CCD camera installed at the rear view mirror in a car. The approach consists of a sequential and a parallel sensor and information processing. Three main tasks namely the initial segmentation (object detection), the object tracking and the object classification are realized by integration in the sequential branch and by fusion in the parallel branch. The main gain of this approach is given by the integrative coupling of different algorithms providing partly redundant information.
Drive Cycle Analysis Tool - DriveCAT | NREL
tool was created by NREL's fleet test and evaluation team, which conducts in-service performance their needs. Learn more about NREL's fleet test and evaluation research. Contact Us Let us know if you have any questions about the data, need assistance, or would like to contribute test cycles. We also
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... James M. Sparks, Manager, Billings Field Office, 5001 Southgate Drive, Billings, Montana 59101-4669... CONTACT: Craig Drake, Assistant Manager, Billings Field Office, 5001 Southgate Drive, Billings, Montana... Application MTM 97988. DATES: The public hearing will be held in the BLM Montana State Office's main...
Defensive Driving Course. Student Workbook and Defensive Driver's Manual.
ERIC Educational Resources Information Center
National Safety Council, Chicago, IL.
This combination workbook and study guide for driver education courses is divided into three sections. Section One consists of eight parts including suggestions on avoiding various collisions and other driving maneuvers. The second section consists of an outline for assisting the student in taking notes on instruction. The third section is a…
Driving in French for American Tourists.
ERIC Educational Resources Information Center
Grosse, Philip
This booklet is intended to assist the English-speaking tourist driving in a French-speaking country to communicate with service station attendants and to read road signs. The booklet is divided into three sections: (1) an English-French listing of parts of the car and useful expressions; (2) common European road signs; and (3) a French-English…
Safe Driving and Road Signs. Fordson Bilingual Demonstration Project.
ERIC Educational Resources Information Center
Stanyar, Angela
This vocational instructional module on safe driving and road signs is one of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the student preparing for driver's education to recognize,…
Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori
2007-07-01
We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.
Desmond, Deirdre; Layton, Natasha; Bentley, Jacob; Boot, Fleur Heleen; Borg, Johan; Dhungana, Bishnu Maya; Gallagher, Pamela; Gitlow, Lynn; Gowran, Rosemary Joan; Groce, Nora; Mavrou, Katerina; Mackeogh, Trish; McDonald, Rachael; Pettersson, Cecilia; Scherer, Marcia
2018-05-17
Assistive technology (AT) is a powerful enabler of participation. The World Health Organization's Global Collaboration on Assistive Technology (GATE) programme is actively working towards access to assistive technology for all. Developed through collaborative work as a part of the Global Research, Innovation and Education on Assistive Technology (GREAT) Summit, this position paper provides a "state of the science" view of AT users, conceptualized as "People" within the set of GATE strategic "P"s. People are at the core of policy, products, personnel and provision. AT is an interface between the person and the life they would like to lead. People's preferences, perspectives and goals are fundamental to defining and determining the success of AT. Maximizing the impact of AT in enabling participation requires an individualized and holistic understanding of the value and meaning of AT for the individual, taking a universal model perspective, focusing on the person, in context, and then considering the condition and/or the technology. This paper aims to situate and emphasize people at the centre of AT systems: we highlight personal meanings and perspectives on AT use and consider the role of advocacy, empowerment and co-design in developing and driving AT processes.
Older Driver and Passenger Collaboration for Wayfinding in Unfamiliar Areas
ERIC Educational Resources Information Center
Bryden, Kelly Jane; Charlton, Judith; Oxley, Jennifer; Lowndes, Georgia
2014-01-01
Passenger collaboration offers a potential compensatory strategy to assist older drivers who have difficulty driving in unfamiliar areas (wayfinding). This article describes a survey of 194 healthy, community-dwelling older drivers and their regular passengers to investigate how passengers assist drivers, and to identify the characteristics of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruff, T.M.
1992-01-01
A prototype mucking machine designed to operate in narrow vein stopes was developed by Foster-Miller, Inc., Waltham, MA, under contract with the U.S. Bureau of Mines. The machine, called a compact loader/trammer, or minimucker, was designed to replace slusher muckers in narrow-vein underground mines. The minimucker is a six-wheel-drive, skid-steered, load-haul-dump machine that loads muck at the front with a novel slide-bucket system and ejects it out the rear so that the machine does not have to be turned around. To correct deficiencies of the tether remote control system, a computer-based, radio remote control was retrofitted to the minimucker. Initialmore » tests indicated a need to assist the operator in guiding the machine in narrow stopes and an automatic guidance system that used ultrasonic ranging sensors and a wall-following algorithm was installed. Additional tests in a simulated test stope showed that these changes improved the operation of the minimucker. The design and functions of the minimucker and its computer-based, remote control system are reviewed, and an ultrasonic, sensor-based guidance system is described.« less
Driving with indirect viewing sensors: understanding the visual perception issues
NASA Astrophysics Data System (ADS)
O'Kane, Barbara L.
1996-05-01
Visual perception is one of the most important elements of driving in that it enables the driver to understand and react appropriately to the situation along the path of the vehicle. The visual perception of the driver is enabled to the greatest extent while driving during the day. Noticeable decrements in visual acuity, range of vision, depth of field and color perception occur at night and under certain weather conditions. Indirect viewing sensors, utilizing various technologies and spectral bands, may assist the driver's normal mode of driving. Critical applications in the military as well as other official activities may require driving at night without headlights. In these latter cases, it is critical that the device, being the only source of scene information, provide the required scene cues needed for driving on, and often-times, off road. One can speculate about the scene information that a driver needs, such as road edges, terrain orientation, people and object detection in or near the path of the vehicle, and so on. But the perceptual qualities of the scene that give rise to these perceptions are little known and thus not quantified for evaluation of indirect viewing devices. This paper discusses driving with headlights and compares the scene content with that provided by a thermal system in the 8 - 12 micrometers micron spectral band, which may be used for driving at some time. The benefits and advantages of each are discussed as well as their limitations in providing information useful for the driver who must make rapid and critical decisions based upon the scene content available. General recommendations are made for potential avenues of development to overcome some of these limitations.
Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno
2016-01-01
The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface. PMID:27150446
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno
2016-05-01
The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface.
Kim, Jeonghee; Huo, Xueliang; Minocha, Julia; Holbrook, Jaimee; Laumann, Anne; Ghovanloo, Maysam
2013-01-01
Tongue drive system (TDS) is a new wireless assistive technology (AT) for the mobility impaired population. It provides users with the ability to drive powered wheelchairs (PWC) and access computers using their unconstrained tongue motion. Migration of the TDS processing unit and user interface platform from a bulky personal computer to a smartphone (iPhone) has significantly facilitated its usage by turning it into a true wireless and wearable AT. After implementation of the necessary interfacing hardware and software to allow the smartphone to act as a bridge between the TDS and PWC, the wheelchair navigation performance and associated learning was evaluated in nine able-bodied subjects in five sessions over a 5-week period. Subjects wore magnetic tongue studs over the duration of the study and drove the PWC in an obstacle course with their tongue using three different navigation strategies; namely unlatched, latched, and semiproportional. Qualitative aspects of using the TDS–iPhone–PWC interface were also evaluated via a five-point Likert scale questionnaire. Subjects showed more than 20% improvement in the overall completion time between the first and second sessions, and maintained a modest improvement of ~9% per session over the following three sessions. PMID:22531737
Development of a compact wearable pneumatic drive unit for a ventricular assist device.
Homma, Akihiko; Taenaka, Yoshiyuki; Tatsumi, Eisuke; Akagawa, Eiki; Lee, Hwansung; Nishinaka, Tomohiro; Takewa, Yoshiaki; Mizuno, Toshihide; Tsukiya, Tomonori; Kakuta, Yukihide; Katagiri, Nobumasa; Shimosaki, Isao; Hamada, Shigeru; Mukaibayashi, Hiroshi; Iwaoka, Wataru
2008-01-01
The purpose of this study was to develop a compact wearable pneumatic drive unit for a ventricular assist device (VAD). This newly developed drive unit, 20 x 8.5 x 20 cm in size and weighing approximately 1.8 kg, consists of a brushless DC motor, noncircular gears, a crankshaft, a cylinder-piston, and air pressure regulation valves. The driving air pressure is generated by the reciprocating motion of the piston and is controlled by the air pressure regulation valves. The systolic ratio is determined by the noncircular gears, and so is fixed for a given configuration. As a result of an overflow-type mock circulation test, a drive unit with a 44% systolic ratio connected to a Toyobo VAD blood pump with a 70-ml stroke volume achieved a pump output of more than 7 l/min at 100 bpm against a 120 mmHg afterload. Long-term animal tests were also performed using drive units with systolic ratios of 45% and 53% in two Holstein calves weighing 62 kg and 74 kg; the tests were terminated on days 30 and 39, respectively, without any malfunction. The mean aortic pressure, bypass flow, and power consumption for the first calf were maintained at 90 x 13 mmHg, 3.9 x 0.9 l/min, and 12 x 1 W, and those for the second calf were maintained at 88 x 13 mmHg, 5.0 x 0.5 l/min, and 16 x 2 W, respectively. These results indicate that the newly developed drive unit may be used as a wearable pneumatic drive unit for the Toyobo VAD blood pump.
Analysis of Risk Compensation Behavior on Night Vision Enhancement System
NASA Astrophysics Data System (ADS)
Hiraoka, Toshihiro; Masui, Junya; Nishikawa, Seimei
Advanced driver assistance systems (ADAS) such as a forward obstacle collision warning system (FOCWS) and a night vision enhancement system (NVES) aim to decrease driver's mental workload and enhance vehicle safety by provision of useful information to support driver's perception process and judgment process. On the other hand, the risk homeostasis theory (RHT) cautions that an enhanced safety and a reduced risk would cause a risk compensation behavior such as increasing the vehicle velocity. Therefore, the present paper performed the driving simulator experiments to discuss dependence on the NVES and emergence of the risk compensation behavior. Moreover, we verified the side-effects of spontaneous behavioral adaptation derived from the presentation of the fuel-consumption meter on the risk compensation behavior.
Twenty-First Century Space Propulsion Study
1990-10-01
17 Antigravity ................................................. 19 SPACE PROPULSION POLICY ASSISTANCE ACTIVITIES...were dropped. Most of the purported "reactionless space drives" and " antigravity " machines that the PI was asked to evaluate fall into that category. A...spent on subjects (reactionless drives, antigravity , space warps, etc.) that would normally be forbidden topics in a government contract. Since the PI has
Alcohol Highway-Traffic Safety Workshop for Law Enforcement Officers.
ERIC Educational Resources Information Center
Walker, William; And Others
The manual, designed for one- and-one-half-day workshops with 20 to 40 law enforcement professionals who handle driving while intoxicated (DWI) cases, is directed toward recognizing the special role of the police officer as decision-maker in cases involving drunk or impaired driving. It is one of five workshop manuals developed to assist State and…
Robust and fast pedestrian detection method for far-infrared automotive driving assistance systems
NASA Astrophysics Data System (ADS)
Liu, Qiong; Zhuang, Jiajun; Ma, Jun
2013-09-01
Despite considerable effort has been contributed to night-time pedestrian detection for automotive driving assistance systems recent years, robust and real-time pedestrian detection is by no means a trivial task and is still underway due to the moving cameras, uncontrolled outdoor environments, wide range of possible pedestrian presentations and the stringent performance criteria for automotive applications. This paper presents an alternative night-time pedestrian detection method using monocular far-infrared (FIR) camera, which includes two modules (regions of interest (ROIs) generation and pedestrian recognition) in a cascade fashion. Pixel-gradient oriented vertical projection is first proposed to estimate the vertical image stripes that might contain pedestrians, and then local thresholding image segmentation is adopted to generate ROIs more accurately within the estimated vertical stripes. A novel descriptor called PEWHOG (pyramid entropy weighted histograms of oriented gradients) is proposed to represent FIR pedestrians in recognition module. Specifically, PEWHOG is used to capture both the local object shape described by the entropy weighted distribution of oriented gradient histograms and its pyramid spatial layout. Then PEWHOG is fed to a three-branch structured classifier using support vector machines (SVM) with histogram intersection kernel (HIK). An off-line training procedure combining both the bootstrapping and early-stopping strategy is introduced to generate a more robust classifier by exploiting hard negative samples iteratively. Finally, multi-frame validation is utilized to suppress some transient false positives. Experimental results on FIR video sequences from various scenarios demonstrate that the presented method is effective and promising.
Baylor Gyro Pump: a completely seal-less centrifugal pump aiming for long-term circulatory support.
Ohara, Y; Sakuma, I; Makinouchi, K; Damm, G; Glueck, J; Mizuguchi, K; Naito, K; Tasai, K; Orime, Y; Takatani, S
1993-07-01
A seal-less centrifugal pump aiming for long-term circulatory support has been developed. In this model, shaft seals that cause thrombus formation and blood leakage were eliminated. A brushless direct current motor was incorporated as a driving unit, and pivot bearings were used to support the impeller. With reference to its motor-driven system, this pump was named the M-Gyro Pump. The first model (M1) yielded an index of hemolysis of 0.005 g/100 L using bovine blood and demonstrated satisfactory performance as a right heart assist for 2 days (4 L/min, 60 mm Hg, 1,800 rpm). The second model (M2) has been developed for left heart assist by employing a stronger motor. The pump capacity was improved to 6 L/min against 240 mm Hg at 1,800 rpm, but significant heat generation was observed. By optimization of motor efficiency, the M2 model can be improved to meet the requirements of a pump for left heart assist.
Supporting infobuttons with terminological knowledge.
Cimino, J. J.; Elhanan, G.; Zeng, Q.
1997-01-01
We have developed several prototype applications which integrate clinical systems with on-line information resources by using patient data to drive queries in response to user information needs. We refer to these collectively as infobuttons because they are evoked with a minimum of keyboard entry. We make use of knowledge in our terminology, the Medical Entities Dictionary (MED) to assist with the selection of appropriate queries and resources, as well as the translation of patient data to forms recognized by the resources. This paper describes the kinds of knowledge in the MED, including literal attributes, hierarchical links and other semantic links, and how this knowledge is used in system integration. PMID:9357682
Supporting infobuttons with terminological knowledge.
Cimino, J J; Elhanan, G; Zeng, Q
1997-01-01
We have developed several prototype applications which integrate clinical systems with on-line information resources by using patient data to drive queries in response to user information needs. We refer to these collectively as infobuttons because they are evoked with a minimum of keyboard entry. We make use of knowledge in our terminology, the Medical Entities Dictionary (MED) to assist with the selection of appropriate queries and resources, as well as the translation of patient data to forms recognized by the resources. This paper describes the kinds of knowledge in the MED, including literal attributes, hierarchical links and other semantic links, and how this knowledge is used in system integration.
Advancements for continuous miners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiscor, S.
2007-06-15
Design changes and new technology make the modern continuous miner more user friendly. Two of the major manufacturers, Joy Mining Machinery and DBT, both based near Pittsburgh, PA, USA, have recently acquired other OEMs to offer a greater product line. Joy's biggest development in terms of improving cutting time is the FACEBOSS Control System which has an operator assistance element and Joy Surface Reporting Software (JSRP). Joy's WetHead continuous miners have excellent performance. DBT is researching ways to make the machines more reliable with new drive systems. It has also been experimenting with water sprays to improve dust suppression. 4more » photos.« less
Tivesten, Emma; Dozza, Marco
2015-06-01
Visual-manual (VM) phone tasks (i.e., texting, dialing, reading) are associated with an increased crash/near-crash risk. This study investigated how the driving context influences drivers' decisions to engage in VM phone tasks in naturalistic driving. Video-recordings of 1,432 car trips were viewed to identify VM phone tasks and passenger presence. Video, vehicle signals, and map data were used to classify driving context (i.e., curvature, other vehicles) before and during the VM phone tasks (N=374). Vehicle signals (i.e., speed, yaw rate, forward radar) were available for all driving. VM phone tasks were more likely to be initiated while standing still, and less likely while driving at high speeds, or when a passenger was present. Lead vehicle presence did not influence how likely it was that a VM phone task was initiated, but the drivers adjusted their task timing to situations when the lead vehicle was increasing speed, resulting in increasing time headway. The drivers adjusted task timing until after making sharp turns and lane change maneuvers. In contrast to previous driving simulator studies, there was no evidence of drivers reducing speed as a consequence of VM phone task engagement. The results show that experienced drivers use information about current and upcoming driving context to decide when to engage in VM phone tasks. However, drivers may fail to sufficiently increase safety margins to allow time to respond to possible unpredictable events (e.g., lead vehicle braking). Advanced driver assistance systems should facilitate and possibly boost drivers' self-regulating behavior. For instance, they might recognize when appropriate adaptive behavior is missing and advise or alert accordingly. The results from this study could also inspire training programs for novice drivers, or locally classify roads in terms of the risk associated with secondary task engagement while driving. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2009-04-01
A geometrical and phasor representation technique is presented to illustrate the modulation of the lightwave carrier to generate quadrature amplitude modulated (QAM) signals. The modulation of the amplitude and phase of the lightwave carrier is implemented using only one dual-drive Mach-Zehnder interferometric modulator (MZIM) with the assistance of phasor techniques. Any multilevel modulation scheme can be generated, but we illustrate specifically, the multilevel amplitude and differential phase shift keying (MADPSK) signals. The driving voltage levels are estimated for driving the traveling wave electrodes of the modulator. Phasor diagrams are extensively used to demonstrate the effectiveness of modulation schemes. MATLAB Simulink models are formed to generate the multilevel modulation formats, transmission, and detection in optically amplified fiber communication systems. Transmission performance is obtained for the multilevel optical signals and proven to be equivalent or better than those of binary level with equivalent bit rate. Further, the resilience to nonlinear effects is much higher for MADPSK of 50% and 33% pulse width as compared to non-return-to-zero (NRZ) pulse shaping.
High-pressure portable pneumatic drive unit.
Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y
1989-12-01
The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
NASA Astrophysics Data System (ADS)
Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock
2017-11-01
Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.
Chronic ovine evaluation of a totally implantable electrical left ventricular assist system.
Ramasamy, N; Chen, H; Miller, P J; Jassawalla, J S; Greene, B A; Ocampo, A; Siegel, L C; Oyer, P E; Portner, P M
1989-01-01
The totally implantable Novacor left ventricular assist system (LVAS) comprises a pump/drive unit (VAD), electronic control and power subsystem (ECP), variable volume compensator (VVC), and belt skin transformer (BST). The system is now undergoing chronic in vivo evaluation. Cumulative animal testing of VAD, VVC, and BST subsystems are 12.1, 4.9, and 43 years, respectively. The longest implants were 279 days for the VAD, 767 days for the VVC, and 1,148 days for the BST. A chronic implant of the total system was electively terminated at 260 days. The LVAS was powered via the BST. Continuously monitored hemodynamic and pump parameters have demonstrated normal hemodynamics and LVAS operation. Periodic VVC determinations suggest a 0.8 ml/day diffusive gas loss. Tether-free operation has been demonstrated with an Ag-Zn battery backpack. The animal was healthy and free of infection as indicated by routine hematologic, biochemical and serum enzyme determinations. Hemolysis is minimal (plasma free hemoglobin less than 5 mg%). Pump output ranged from 7 to 8 L/min. Severe valve calcification was the reason for elective termination at 260 days. This preclinical in vivo experience, and in vitro reliability studies, demonstrate efficacy of the total system.
Assistive Device Use in Visually Impaired Older Adults: Role of Control Beliefs
ERIC Educational Resources Information Center
Becker, Stefanie; Wahl, Hans-Werner; Schilling, Oliver; Burmedi, David
2005-01-01
Purpose: We investigate whether psychological control, conceptually framed within the life-span theory of control by Heckhausen and Schulz, drives assistive device use in visually impaired elders. In particular, we expect the two primary control modes differentiated in the life-span theory of control (i.e., selective primary and compensatory…
NASA Astrophysics Data System (ADS)
Kim, Il-Hwa; Kim, Jeong-Woo; Haufe, Stefan; Lee, Seong-Whan
2015-02-01
Objective. We developed a simulated driving environment for studying neural correlates of emergency braking in diversified driving situations. We further investigated to what extent these neural correlates can be used to detect a participant's braking intention prior to the behavioral response. Approach. We measured electroencephalographic (EEG) and electromyographic signals during simulated driving. Fifteen participants drove a virtual vehicle and were exposed to several kinds of traffic situations in a simulator system, while EEG signals were measured. After that, we extracted characteristic features to categorize whether the driver intended to brake or not. Main results. Our system shows excellent detection performance in a broad range of possible emergency situations. In particular, we were able to distinguish three different kinds of emergency situations (sudden stop of a preceding vehicle, sudden cutting-in of a vehicle from the side and unexpected appearance of a pedestrian) from non-emergency (soft) braking situations, as well as from situations in which no braking was required, but the sensory stimulation was similar to stimulations inducing an emergency situation (e.g., the sudden stop of a vehicle on a neighboring lane). Significance. We proposed a novel feature combination comprising movement-related potentials such as the readiness potential, event-related desynchronization features besides the event-related potentials (ERP) features used in a previous study. The performance of predicting braking intention based on our proposed feature combination was superior compared to using only ERP features. Our study suggests that emergency situations are characterized by specific neural patterns of sensory perception and processing, as well as motor preparation and execution, which can be utilized by neurotechnology based braking assistance systems.
2000-01-01
Marshall Space Flight Center’s (MSFC’s) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth’s gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier’s position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Modeling of Driver Steering Operations in Lateral Wind Disturbances toward Driver Assistance System
NASA Astrophysics Data System (ADS)
Kurata, Yoshinori; Wada, Takahiro; Kamiji, Norimasa; Doi, Shun'ichi
Disturbances decrease vehicle stability and increase driver's mental and physical workload. Especially unexpected disturbances such as lateral winds have severe effect on vehicle stability and driver's workload. This study aims at building a driver model of steering operations in lateral wind toward developing effective driver assistance system. First, the relationship between the driver's lateral motion and its reactive quick steering behavior is investigated using driving simulator with lateral 1dof motion. In the experiments, four different wind patterns are displayed by the simulator. As the results, strong correlation was found between the driver's head lateral jerk by the lateral disturbance and the angular acceleration of the steering wheel. Then, we build a mathematical model of driver's steering model from lateral disturbance input to steering torque of the reactive quick feed-forward steering based on the experimental results. Finally, validity of the proposed model is shown by comparing the steering torque of experimental results and that of simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Burton, E.; Duran, A.
Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digitalmore » elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.« less
Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.
Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping
2017-08-01
Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.
Vision-Based Steering Control, Speed Assistance and Localization for Inner-City Vehicles
Olivares-Mendez, Miguel Angel; Sanchez-Lopez, Jose Luis; Jimenez, Felipe; Campoy, Pascual; Sajadi-Alamdari, Seyed Amin; Voos, Holger
2016-01-01
Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption. PMID:26978365
Vision-Based Steering Control, Speed Assistance and Localization for Inner-City Vehicles.
Olivares-Mendez, Miguel Angel; Sanchez-Lopez, Jose Luis; Jimenez, Felipe; Campoy, Pascual; Sajadi-Alamdari, Seyed Amin; Voos, Holger
2016-03-11
Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption.
Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.
Stawicki, Piotr; Gembler, Felix; Volosyak, Ivan
2016-01-01
Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system.
Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI
2016-01-01
Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system. PMID:27528864
Driver usage and understanding of adaptive cruise control.
Larsson, Annika F L
2012-05-01
Automation, in terms of systems such as adaptive/active cruise control (ACC) or collision warning systems, is increasingly becoming a part of everyday driving. These systems are not perfect though, and the driver has to be prepared to reclaim control in situations very similar to those the system easily handles by itself. This paper uses a questionnaire answered by 130 ACC users to discuss future research needs in the area of driver assistance systems. Results show that the longer drivers use their systems, the more aware of its limitations they become. Moreover, the drivers report that ACC forces them to take control intermittently. According to theory, this might actually be better than a more perfect system, as it provides preparation for unexpected situations requiring the driver to reclaim control. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Chen, Zhijun; Wu, Chaozhong; Zhong, Ming; Lyu, Nengchao; Huang, Zhen
2015-08-01
Drowsy/distracted driving has become one of the leading causes of traffic crash. Only certain particular drowsy/distracted driving behaviors have been studied by previous studies, which are mainly based on dedicated sensor devices such as bio and visual sensors. The objective of this study is to extract the common features for identifying drowsy/distracted driving through a set of common vehicle motion parameters. An intelligent vehicle was used to collect vehicle motion parameters. Fifty licensed drivers (37 males and 13 females, M=32.5 years, SD=6.2) were recruited to carry out road experiments in Wuhan, China and collecting vehicle motion data under four driving scenarios including talking, watching roadside, drinking and under the influence of drowsiness. For the first scenario, the drivers were exposed to a set of questions and asked to repeat a few sentences that had been proved valid in inducing driving distraction. Watching roadside, drinking and driving under drowsiness were assessed by an observer and self-reporting from the drivers. The common features of vehicle motions under four types of drowsy/distracted driving were analyzed using descriptive statistics and then Wilcoxon rank sum test. The results indicated that there was a significant difference of lateral acceleration rates and yaw rate acceleration between "normal driving" and drowsy/distracted driving. Study results also shown that, under drowsy/distracted driving, the lateral acceleration rates and yaw rate acceleration were significantly larger from the normal driving. The lateral acceleration rates were shown to suddenly increase or decrease by more than 2.0m/s(3) and the yaw rate acceleration by more than 2.5°/s(2). The standard deviation of acceleration rate (SDA) and standard deviation of yaw rate acceleration (SDY) were identified to as the common features of vehicle motion for distinguishing the drowsy/distracted driving from the normal driving. In order to identify a time window for effectively extracting the two common features, a double-window method was used and the optimized "Parent Window" and "Child Window" were found to be 55s and 6s, respectively. The study results can be used to develop a driving assistant system, which can warn drivers when any one of the four types of drowsy/distracted driving is detected. Copyright © 2015. Published by Elsevier Ltd.
[Exoskeleton robot system based on real-time gait analysis for walking assist].
Xie, Zheng; Wang, Mingjiang; Huang, Wulong; Yong, Shanshan; Wang, Xin'an
2017-04-01
This paper presents a wearable exoskeleton robot system to realize walking assist function, which oriented toward the patients or the elderly with the mild impairment of leg movement function, due to illness or natural aging. It reduces the loads of hip, knee, ankle and leg muscles during walking by way of weight support. In consideration of the characteristics of the psychological demands and the disease, unlike the weight loss system in the fixed or followed rehabilitation robot, the structure of the proposed exoskeleton robot is artistic, lightweight and portable. The exoskeleton system analyzes the user's gait real-timely by the plantar pressure sensors to divide gait phases, and present different control strategies for each gait phase. The pressure sensors in the seat of the exoskeleton system provide real-time monitoring of the support efforts. And the drive control uses proportion-integral-derivative (PID) control technology for torque control. The total weight of the robot system is about 12.5 kg. The average of the auxiliary support is about 10 kg during standing, and it is about 3 kg during walking. The system showed, in the experiments, a certain effect of weight support, and reduction of the pressure on the lower limbs to walk and stand.
Training Toddlers Seated on Mobile Robots to Steer Using Force-Feedback Joystick.
Agrawal, S K; Xi Chen; Ragonesi, C; Galloway, J C
2012-01-01
The broader goal of our research is to train infants with special needs to safely and purposefully drive a mobile robot to explore the environment. The hypothesis is that these impaired infants will benefit from mobility in their early years and attain childhood milestones, similar to their healthy peers. In this paper, we present an algorithm and training method using a force-feedback joystick with an "assist-as-needed" paradigm for driving training. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. We show results with a group study on typically developing toddlers that such a haptic guidance algorithm is superior to training with a conventional joystick. We also provide a case study on two special needs children, under three years old, who learn to make sharp turns during driving, when trained over a five-day period with the force-feedback joystick using the algorithm.
A linear stepping endovascular intervention robot with variable stiffness and force sensing.
He, Chengbin; Wang, Shuxin; Zuo, Siyang
2018-05-01
Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abagnale, Carmelina, E-mail: c.abagnale@unina.it; Cardone, Massimo, E-mail: massimo.cardone@unina.it; Iodice, Paolo, E-mail: paolo.iodice@unina.it
2015-07-15
This paper describes the methodologies to appraise the power requests and environmental analysis of an electrically assisted bicycle under real driving conditions, also containing regulations and technical-science-related aspects. For this purpose, in this study, the on-road test program of an electrically assisted bicycle was executed in the urban area of Naples on different test tracks, so a general assessment about its driving behavior under several driving conditions was performed. The power requirements in different typical riding situations were estimated by a procedure based on the experimental kinematic parameters that characterize the driving dynamics collected during the real-life applications. An environmentalmore » analysis was also performed, with a methodology that takes into account the environmental assessment of a moped by measuring the experimental moped exhaust emissions of the regulated pollutants. Starting from the results acquired during the different test samples, besides, an assessment of the electric traction offered by this pedelec on the driving comfort was evaluated for different riding situations. - Highlights: • The power requirements of a pedelec in typical riding conditions were identified. • The estimated electricity consumption for battery recharging was defined. • An environmental valuation of the tested pedelec and of a moped was performed. • Emissions that could be saved utilizing a pedelec instead of a moped were derived.« less
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Analysis of trust in autonomy for convoy operations
NASA Astrophysics Data System (ADS)
Gremillion, Gregory M.; Metcalfe, Jason S.; Marathe, Amar R.; Paul, Victor J.; Christensen, James; Drnec, Kim; Haynes, Benjamin; Atwater, Corey
2016-05-01
With growing use of automation in civilian and military contexts that engage cooperatively with humans, the operator's level of trust in the automated system is a major factor in determining the efficacy of the human-autonomy teams. Suboptimal levels of human trust in autonomy (TiA) can be detrimental to joint team performance. This mis-calibrated trust can manifest in several ways, such as distrust and complete disuse of the autonomy or complacency, which results in an unsupervised autonomous system. This work investigates human behaviors that may reflect TiA in the context of an automated driving task, with the goal of improving team performance. Subjects performed a simulated leaderfollower driving task with an automated driving assistant. The subjects had could choose to engage an automated lane keeping and active cruise control system of varying performance levels. Analysis of the experimental data was performed to identify contextual features of the simulation environment that correlated to instances of automation engagement and disengagement. Furthermore, behaviors that potentially indicate inappropriate TiA levels were identified in the subject trials using estimates of momentary risk and agent performance, as functions of these contextual features. Inter-subject and intra-subject trends in automation usage and performance were also identified. This analysis indicated that for poorer performing automation, TiA decreases with time, while higher performing automation induces less drift toward diminishing usage, and in some cases increases in TiA. Subject use of automation was also found to be largely influenced by course features.
76 FR 2709 - Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... for Worker Adjustment Assistance TA-W-72,873 RBS Citizens, N.A., Business Services, Including On-Site... Through NextGen Information Services, Inc., 1 Citizens Drive, Riverside, Rhode Island TA-W-72,873c RBS... Cabot Rd., Medford, Massachusetts TA-W-72,873G RBS Citizens, N.A., Business Services, Including On-Site...
NASA Astrophysics Data System (ADS)
Concettoni, Enrico; Griffin, Michael
2009-08-01
Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.
Teen driving in rural North Dakota: a qualitative look at parental perceptions.
Gill, Simerpal K; Shults, Ruth A; Cope, Jennifer Rittenhouse; Cunningham, Timothy J; Freelon, Brandi
2013-05-01
Motor vehicle crashes are the leading cause of death among teens in the United States. Graduated driver licensing (GDL) programs allow new drivers to gain driving experience while protecting them from high-risk situations. North Dakota was one of the last states to implement GDL, and the current program does not meet all of the best practice recommendations. This study used qualitative techniques to explore parents' perceptions of the role teen driving plays in the daily lives of rural North Dakota families, their understanding of the risks faced by their novice teen drivers, and their support for GDL. A total of 28 interviews with parents of teens aged 13-16 years were conducted in four separate rural areas of the state. During the face-to-face interviews, parents described their teens' daily lives as busy, filled with school, sports, and other activities that often required traveling considerable distances. Participation in school-sponsored sports and other school-related activities was highly valued. There was nearly unanimous support for licensing teens at age 14½, as was permitted by law at the time of the interviews. Parents expressed that they were comfortable supervising their teen's practice driving, and few reported using resources to assist them in this role. Although few parents expressed concerns over nighttime driving, most parents supported a nighttime driving restriction with exemptions for school, work or sports-related activities. Despite many parents expressing concern over distracted driving, there was less consistent support among parents for passenger restrictions, especially if there would be no exemptions for family members or school activities. These findings can assist in planning policies and programs to reduce crashes among novice, teen drivers, while taking into account the unique perspectives and lifestyles of families living in rural North Dakota. Published by Elsevier Ltd.
Teen driving in rural North Dakota: A qualitative look at parental perceptions☆
Gill, Simerpal K.; Shults, Ruth A.; Cope, Jennifer Rittenhouse; Cunningham, Timothy J.; Freelon, Brandi
2017-01-01
Motor vehicle crashes are the leading cause of death among teens in the United States. Graduated driver licensing (GDL) programs allow new drivers to gain driving experience while protecting them from high-risk situations. North Dakota was one of the last states to implement GDL, and the current program does not meet all of the best practice recommendations. This study used qualitative techniques to explore parents’ perceptions of the role teen driving plays in the daily lives of rural North Dakota families, their understanding of the risks faced by their novice teen drivers, and their support for GDL. A total of 28 interviews with parents of teens aged 13–16 years were conducted in four separate rural areas of the state. During the face-to-face interviews, parents described their teens’ daily lives as busy, filled with school, sports, and other activities that often required traveling considerable distances. Participation in school-sponsored sports and other school-related activities was highly valued. There was nearly unanimous support for licensing teens at age 14½, as was permitted by law at the time of the interviews. Parents expressed that they were comfortable supervising their teen’s practice driving, and few reported using resources to assist them in this role. Although few parents expressed concerns over nighttime driving, most parents supported a nighttime driving restriction with exemptions for school, work or sports-related activities. Despite many parents expressing concern over distracted driving, there was less consistent support among parents for passenger restrictions, especially if there would be no exemptions for family members or school activities. These findings can assist in planning policies and programs to reduce crashes among novice, teen drivers, while taking into account the unique perspectives and lifestyles of families living in rural North Dakota. PMID:23499983
NASA Astrophysics Data System (ADS)
Choi, Jae Hyung; Kuk, Jung Gap; Kim, Young Il; Cho, Nam Ik
2012-01-01
This paper proposes an algorithm for the detection of pillars or posts in the video captured by a single camera implemented on the fore side of a room mirror in a car. The main purpose of this algorithm is to complement the weakness of current ultrasonic parking assist system, which does not well find the exact position of pillars or does not recognize narrow posts. The proposed algorithm is consisted of three steps: straight line detection, line tracking, and the estimation of 3D position of pillars. In the first step, the strong lines are found by the Hough transform. Second step is the combination of detection and tracking, and the third is the calculation of 3D position of the line by the analysis of trajectory of relative positions and the parameters of camera. Experiments on synthetic and real images show that the proposed method successfully locates and tracks the position of pillars, which helps the ultrasonic system to correctly locate the edges of pillars. It is believed that the proposed algorithm can also be employed as a basic element for vision based autonomous driving system.
Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam
2014-03-03
Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Riyahi, Pouria
This thesis is part of current research at Center for Intelligence Systems Research (CISR) at The George Washington University for developing new in-vehicle warning systems via Brain-Computer Interfaces (BCIs). The purpose of conducting this research is to contribute to the current gap between BCI and in-vehicle safety studies. It is based on the premise that accurate and timely monitoring of human (driver) brain's signal to external stimuli could significantly aide in detection of driver's intentions and development of effective warning systems. The thesis starts with introducing the concept of BCI and its development history while it provides a literature review on the nature of brain signals. The current advancement and increasing demand for commercial and non-medical BCI products are described. In addition, the recent research attempts in transportation safety to study drivers' behavior or responses through brain signals are reviewed. The safety studies, which are focused on employing a reliable and practical BCI system as an in-vehicle assistive device, are also introduced. A major focus of this thesis research has been on the evaluation and development of the signal processing algorithms which can effectively filter and process brain signals when the human subject is subjected to Visual LED (Light Emitting Diodes) stimuli at different frequencies. The stimulated brain generates a voltage potential, referred to as Steady-State Visual Evoked Potential (SSVEP). Therefore, a newly modified analysis algorithm for detecting the brain visual signals is proposed. These algorithms are designed to reach a satisfactory accuracy rate without preliminary trainings, hence focusing on eliminating the need for lengthy training of human subjects. Another important concern is the ability of the algorithms to find correlation of brain signals with external visual stimuli in real-time. The developed analysis models are based on algorithms which are capable of generating results for real-time processing of BCI devices. All of these methods are evaluated through two sets of recorded brain signals which were recorded by g.TEC CO. as an external source and recorded brain signals during our car driving simulator experiments. The final discussion is about how the presence of an SSVEP based warning system could affect drivers' performances which is defined by their reaction distance and Time to Collision (TTC). Three different scenarios with and without warning LEDs were planned to measure the subjects' normal driving behavior and their performance while they use a warning system during their driving task. Finally, warning scenarios are divided into short and long warning periods without and with informing the subjects, respectively. The long warning period scenario attempts to determine the level of drivers' distraction or vigilance during driving. The good outcome of warning scenarios can bridge between vehicle safety studies and online BCI system design research. The preliminary results show some promise of the developed methods for in-vehicle safety systems. However, for any decisive conclusion that considers using a BCI system as a helpful in-vehicle assistive device requires far deeper scrutinizing.
Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving
NASA Astrophysics Data System (ADS)
Feng, Zhi-Bo; Lu, Xiao-Jing; Li, M.; Yan, Run-Ying; Zhou, Yun-Qing
2017-12-01
We propose a theoretical scheme to speed up adiabatic population transfer in a Josephson artificial qutrit by transitionless quantum driving. At a magic working point, an effective three-level subsystem can be chosen to constitute our qutrit. With Stokes and pump driving, adiabatic population transfer can be achieved in the qutrit by means of stimulated Raman adiabatic passage. Assisted by a counter-diabatic driving, the adiabatic population transfer can be sped up drastically with accessible parameters. Moreover, the accelerated operation is flexibly reversible and highly robust against decoherence effects. Thanks to these distinctive advantages, the present protocol could offer a promising avenue for optimal coherent operations in Josephson quantum circuits.
Belz, Steven M; Robinson, Gary S; Casali, John G
2004-01-01
This on-road field investigation employed, for the first time, a completely automated trigger-based data collection system capable of evaluating driver performance in an extended-duration real-world commercial motor vehicle environment. The study examined the use of self-assessment of fatigue (Karolinska Sleepiness Scale) and temporal separation (minimum time to collision, minimum headway, and mean headway) as indicators of driver fatigue. Without exception, the correlation analyses for both the self-rating of alertness and temporal separation yielded models low in associative ability; neither metric was found to be a valid indicator of driver fatigue. In addition, based upon the data collected for this research, preliminary evidence suggests that driver fatigue onset within a real-world driving environment does not appear to follow the standard progression of events associated with the onset of fatigue within a simulated driving environment. Application of this research includes the development of an on-board driver performance/fatigue monitoring system that could potentially assist drivers in identifying the onset of fatigue.
An innovative nonintrusive driver assistance system for vital signal monitoring.
Sun, Ye; Yu, Xiong Bill
2014-11-01
This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary parameters such as heart rate and HR variability are good indicators of health state as well as driver fatigue. A conventional biopotential measurement system requires the electrodes to be in contact with human body. This not only interferes with the driver operation, but also is not feasible for long-term monitoring purpose. The driver assistance system in this paper can remotely detect the biopotential signals with no physical contact with human skin. With delicate sensor and electronic design, ECG, EEG, and eye blinking can be measured. Experiments were conducted on a high fidelity driving simulator to validate the system performance. The system was found to be able to detect the ECG/EEG signals through cloth or hair with no contact with skin. Eye blinking activities can also be detected at a distance of 10 cm. Digital signal processing algorithms were developed to decimate the signal noise and extract the physiological features. The extracted features from the vital signals were further analyzed to assess the potential criterion for alertness and drowsiness determination.
An objective assessment of safety to drive in an upper limb cast.
Stevenson, H L; Peterson, N; Talbot, C; Dalal, S; Watts, A C; Trail, I A
2013-03-01
Patients managed with upper limb cast immobilization often seek advice about driving. There is very little published data to assist in decision making, and advice given varies between healthcare professionals. There are no specific guidelines available from the UK Drivers and Vehicles Licensing Agency, police, or insurance companies. Evidence-based guidelines would enable clinicians to standardize the advice given to patients. Six individuals (three male, three female; mean age 36 years, range 27-43 years) were assessed by a mobility occupational therapist and driving standards agency examiner while completing a formal driving test in six different types of upper limb casts (above-elbow, below-elbow neutral, and below-elbow cast incorporating the thumb [Bennett's cast]) on both left and right sides. Of the 36 tests, participants passed 31 tests, suggesting that most people were able to safely drive with upper limb cast immobilization. However, driving in a left above-elbow cast was considered unsafe.
NASA Astrophysics Data System (ADS)
Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi
Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.
Dexterity-Enhanced Telerobotic Microsurgery
NASA Technical Reports Server (NTRS)
Charles, Steve; Das, Hari; Ohm, Timothy; Boswell, Curtis; Rodriguez, Guillermo; Steele, Robert; Istrate, Dan
1997-01-01
The work reported in this paper is the result, of a collaboration between researchers at the Jet Propulsion Laboratory and Steve Charles, MD, a vitreo-retinal surgeon. The Robot Assisted MicroSurgery (RAMS) telerobotic workstation developed at JPL is a prototype of a system that will be completely under the manual control of a surgeon. The system has a slave robot that will hold surgical instruments. The slave robot motions replicate in six degrees of freedom those of tile. surgeon's hand measured using a master input device with a surgical instrument, shaped handle. The surgeon commands motions for the instrument by moving the handle in the desired trajectories. The trajectories are measured, filtered, and scaled down then used to drive the slave robot.
Driving in Early-Stage Alzheimer's Disease: An Integrative Review of the Literature.
Davis, Rebecca L; Ohman, Jennifer M
2017-03-01
One of the most difficult decisions for individuals with Alzheimer's disease (AD) is when to stop driving. Because driving is a fundamental activity linked to socialization, independent functioning, and well-being, making the decision to stop driving is not easy. Cognitive decline in older adults can lead to getting lost while driving, difficulty detecting and avoiding hazards, as well as increased errors while driving due to compromised judgment and difficulty in making decisions. The purpose of the current literature review was to synthesize evidence regarding how individuals with early-stage AD, their families, and providers make determinations about driving safety, interventions to increase driving safety, and methods to assist cessation and coping for individuals with early-stage AD. The evidence shows that changes in driving ability start early and progress throughout the trajectory of AD. Some individuals with mild cognitive impairment or early-stage AD may be safe to drive for a period of time. Support groups aimed at helping with the transition have been shown to be helpful for individuals who stop driving. Research and practice must support interventions to help individuals maintain safety while driving, as well as cope with driving cessation. [Res Gerontol Nurs. 2017; 10(2):86-100.]. Copyright 2016, SLACK Incorporated.
Self-report measures of distractibility as correlates of simulated driving performance.
Kass, Steven J; Beede, Kristen E; Vodanovich, Stephen J
2010-05-01
The present study investigated the relationship between self-reported measures pertaining to attention difficulties and simulated driving performance while distracted. Thirty-six licensed drivers participated in a simulator driving task while engaged in a cell phone conversation. The participants completed questionnaires assessing their tendency toward boredom, cognitive failures, and behaviors associated with attention deficit and hyperactivity. Scores on these measures were significantly correlated with various driving outcomes (e.g., speed, lane maintenance, reaction time). Significant relationships were also found between one aspect of boredom proneness (i.e., inability to generate interest or concentrate) and self-reports of past driving behavior (moving violations). The current study may aid in the understanding of how individual differences in driver distractibility may contribute to unsafe driving behaviors and accident involvement. Additionally, such measures may assist in the identification of individuals at risk for committing driving errors due to being easily distracted. The benefits and limitations of conducting and interpreting simulation research are discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Effect of single-dose Ginkgo biloba and Panax ginseng on driving performance.
LaSala, Gregory S; McKeever, Rita G; Patel, Urvi; Okaneku, Jolene; Vearrier, David; Greenberg, Michael I
2015-02-01
Panax ginseng and Gingko biloba are commonly used herbal supplements in the United States that have been reported to increase alertness and cognitive function. The objective of this study was to investigate the effects of these specific herbals on driving performance. 30 volunteers were tested using the STISIM3® Driving Simulator (Systems Technology Inc., Hawthorne, CA, USA) in this double-blind, placebo-controlled study. The subjects were randomized into 3 groups of 10 subjects per group. After 10-min of simulated driving, subjects received either ginseng (1200 mg), Gingko (240 mg), or placebo administered orally. The test herbals and placebo were randomized and administered by a research assistant outside of the study to maintain blinding. One hour following administration of the herbals or placebo, the subjects completed an additional 10-min of simulated driving. Standard driving parameters were studied including reaction time, standard deviation of lateral positioning, and divided attention. Data collected for the divided attention parameter included time to response and number of correct responses. The data was analyzed with repeated-measures analysis of variance (ANOVA) and Kruskal-Wallis test using SPSS 22 (IBM, Armonk, NY, USA). There was no difference in reaction time or standard deviation of lateral positioning for both the ginseng and Ginkgo arms. For the divided attention parameter, the response time in the Ginkgo arm decreased from 2.9 to 2.5 s. The ginseng arm also decreased from 3.2 to 2.4 s. None of these values were statistically significant when between group differences were analyzed. The data suggests there was no statistically significant difference between ginseng, Ginkgo or placebo on driving performance. We postulate this is due to the relatively small numbers in our study. Further study with a larger sample size may be needed in order to elucidate more fully the effects of Ginkgo and ginseng on driving ability.
Torkington, Amanda May; Larkins, Sarah; Gupta, Tarun Sen
2011-06-01
To explore how fly-in fly-out (FIFO) and drive-in drive-out (DIDO) mining affects the psychosocial well-being of miners resident in a rural north Queensland town as well as the sources of support miners identify and use in managing these effects. A descriptive qualitative study, using semistructured interviews. Charters Towers, a rural town in north Queensland, and a remote north-western Queensland mine. Eleven people, resident in or near Charters Towers, currently or formerly employed in FIFO or DIDO mining. Self-reported effects on psychosocial well-being and sources of support. Participants reported positive and negative psychosocial impacts across domains including family life, relationships, social life, work satisfaction, mood, sleep and financial situation. Concerns about the impact on participants' partners were described. Awareness of onsite support, such as Employee Assistance Programs, varied. Other supports included administration staff and nurses or medics. Trusted friends or colleagues at the mine site were considered a preferred means of support. Some, but not most, had experienced coworkers discussing problems with them. A reluctance to seek support was described, with a number of barriers identified. Those having problems might not recognise their own stress and thus not seek support. This study identifies numerous psychosocial impacts on FIFO/DIDO miners and their partners, and provides insights into preferences regarding support. Employee Assistance Programs cannot be relied upon as the sole means of support. Further studies exploring the impact upon and supports for FIFO/DIDO workers and their partners will assist in better understanding these issues. © 2011 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.
Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation
Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie
2016-01-01
Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844
The impact of driving cessation on older Kuwaiti adults: implications to occupational therapy.
Al-Hassani, Samar B; Alotaibi, Naser M
2014-07-01
Older adults consider driving as a fundamental part of their identity and independence. In most western countries, driving cessation has been recognized as a major issue affecting their health and well-being. This study aimed to compare older Kuwaiti adults who were active drivers and those who had ceased driving, and to explore the impact of driving cessation on the psychological well-being and lifestyle of older ex-drivers. Participants included 114 community-dwelling older adults aged 55 years and older. A questionnaire based on the driving rehabilitation literature was administered along with the Geriatric Depression Scale (GDS). Results indicated that active drivers did not place greater importance on driving and spend more time in leisure pursuits. The overarching feelings following driving cessation were loss of control over one's life and an increased sense of dependency. Driving cessation also contributed to a reduced ability to perform family duties, and it was associated with giving up previously performed leisure activities. Our findings indicate that driving cessation adversely affects older adults' independence and role performance. Older ex-drivers may require assistance and intervention to facilitate their psychological well-being and community participation.
The dangers of rumination on the road: Predictors of risky driving.
Suhr, Kyle A; Dula, Chris S
2017-02-01
Past studies found many different types of factors can influence dangerous driving behaviors. Driver inattention, such as driving under the influence or using a cell phone while driving, was found to contribute to risky driving behaviors. Rumination is a cognitive process that may also contribute to risky driving behaviors due to its influence on attention and limited executive processes. The present study explores the potential role of rumination in dangerous driving behavior endorsement. It was hypothesized that trait rumination would be significantly related to dangerous driving behaviors and that this relationship would be conditional to the sex of the participant. Six-hundred and fifty-three Southeastern university students were recruited to participate and asked to complete multiple questionnaires measuring anger rumination, thought content, driving anger, and dangerous driving behaviors. It was demonstrated that self-reported risky driving behaviors significantly predicted dangerous driving behavior endorsement on the Dula Dangerous Driving Index. Trait rumination scores were found to predict self-reported dangerous driving, aggressive driving, and risky driving behaviors as well as trait driving anger scores. However, no conditional effects based on the sex of the participant were found. It appeared males and females were equally likely to report dangerous driving behaviors, driving anger thoughts, and trait anger rumination. Findings from the current study may assist in understanding how cognitive processes influence different driving behaviors and help develop methods to re-direct attention to safe driving behaviors, and conversely away from ruminative thoughts that increase the likelihood of dangerous driving. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using Performance Tools to Support Experiments in HPC Resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, III, Thomas J; Boehm, Swen; Engelmann, Christian
2014-01-01
The high performance computing (HPC) community is working to address fault tolerance and resilience concerns for current and future large scale computing platforms. This is driving enhancements in the programming environ- ments, specifically research on enhancing message passing libraries to support fault tolerant computing capabilities. The community has also recognized that tools for resilience experimentation are greatly lacking. However, we argue that there are several parallels between performance tools and resilience tools . As such, we believe the rich set of HPC performance-focused tools can be extended (repurposed) to benefit the resilience community. In this paper, we describe the initialmore » motivation to leverage standard HPC per- formance analysis techniques to aid in developing diagnostic tools to assist fault tolerance experiments for HPC applications. These diagnosis procedures help to provide context for the system when the errors (failures) occurred. We describe our initial work in leveraging an MPI performance trace tool to assist in provid- ing global context during fault injection experiments. Such tools will assist the HPC resilience community as they extend existing and new application codes to support fault tolerances.« less
Electrophysiology-based detection of emergency braking intention in real-world driving.
Haufe, Stefan; Kim, Jeong-Woo; Kim, Il-Hwa; Sonnleitner, Andreas; Schrauf, Michael; Curio, Gabriel; Blankertz, Benjamin
2014-10-01
The fact that all human action is preceded by brain processes partially observable through neuroimaging devices such as electroencephalography (EEG) is currently being explored in a number of applications. A recent study by Haufe et al (2011 J. Neural Eng. 8 056001) demonstrates the possibility of performing fast detection of forced emergency brakings during driving based on EEG and electromyography, and discusses the use of such neurotechnology for braking assistance systems. Since the study was conducted in a driving simulator, its significance regarding real-world applicability needs to be assessed. Here, we replicate that experimental paradigm in a real car on a non-public test track. Our results resemble those of the simulator study, both qualitatively (in terms of the neurophysiological phenomena observed and utilized) and quantitatively (in terms of the predictive improvement achievable using electrophysiology in addition to behavioral measures). Moreover, our findings are robust with respect to a temporary secondary auditory task mimicking verbal input from a fellow passenger. Our study serves as a real-world verification of the feasibility of electrophysiology-based detection of emergency braking intention as proposed in Haufe et al (2011 J. Neural Eng. 8 056001).
Electrophysiology-based detection of emergency braking intention in real-world driving
NASA Astrophysics Data System (ADS)
Haufe, Stefan; Kim, Jeong-Woo; Kim, Il-Hwa; Sonnleitner, Andreas; Schrauf, Michael; Curio, Gabriel; Blankertz, Benjamin
2014-10-01
Objective. The fact that all human action is preceded by brain processes partially observable through neuroimaging devices such as electroencephalography (EEG) is currently being explored in a number of applications. A recent study by Haufe et al (2011 J. Neural Eng. 8 056001) demonstrates the possibility of performing fast detection of forced emergency brakings during driving based on EEG and electromyography, and discusses the use of such neurotechnology for braking assistance systems. Since the study was conducted in a driving simulator, its significance regarding real-world applicability needs to be assessed. Approach. Here, we replicate that experimental paradigm in a real car on a non-public test track. Main results. Our results resemble those of the simulator study, both qualitatively (in terms of the neurophysiological phenomena observed and utilized) and quantitatively (in terms of the predictive improvement achievable using electrophysiology in addition to behavioral measures). Moreover, our findings are robust with respect to a temporary secondary auditory task mimicking verbal input from a fellow passenger. Significance. Our study serves as a real-world verification of the feasibility of electrophysiology-based detection of emergency braking intention as proposed in Haufe et al (2011 J. Neural Eng. 8 056001).
Saffarian, M; Happee, R; Winter, J C F de
2012-01-01
Drivers in fog tend to maintain short headways, but the reasons behind this phenomenon are not well understood. This study evaluated the effect of headway on lateral control and feeling of risk in both foggy and clear conditions. Twenty-seven participants completed four sessions in a driving simulator: clear automated (CA), clear manual (CM), fog automated (FA) and fog manual (FM). In CM and FM, the drivers used the steering wheel, throttle and brake pedals. In CA and FA, a controller regulated the distance to the lead car, and the driver only had to steer. Drivers indicated how much risk they felt on a touchscreen. Consistent with our hypothesis, feeling of risk and steering activity were elevated when the lead car was not visible. These results might explain why drivers adopt short headways in fog. Practitioner Summary: Fog poses a serious road safety hazard. Our driving-simulator study provides the first experimental evidence to explain the role of risk-feeling and lateral control in headway reduction. These results are valuable for devising effective driver assistance and support systems.
Kinematic evaluation of mobile robotic platforms for overground gait neurorehabilitation
NASA Astrophysics Data System (ADS)
Alias, N. Akmal; Huq, M. Saiful; Ibrahim, B. S. K. K.; Omar, Rosli
2017-09-01
Gait assistive devices offer a great solution to the walking re-education which reduce patients theoretical limit by aiding the anatomical joints to be in line with the rehabilitation session. Overground gait training, which is differs significantly from body-weight supported treadmill training in many aspects, essentially consists of a mobile robotic base to support the subject securely (usually with overhead harness) while its motion and orientation is controlled seamlessly to facilitate subjects free movement. In this study, efforts have been made for evaluation of both holonomic and nonholonomic drives, the outcome of which may constitute the primarily results to the effective approach in designing a robotic platform for the mobile rehabilitation robot. The sets of kinematic equations are derived using typical geometries of two different drives. The results indicate that omnidirectional mecanum wheel platform is capable for more sophisticated discipline. Although the differential drive platform happens to be more simple and easy to construct, but it is less desirable as it has limited number of motions applicable to the system. The omnidirectional robot consisting of mecanum wheels, which is classified as holonomic is potentially the best solution in terms of its capability to move in arbitrary direction without concerning the changing of wheel's direction.
A Step Towards EEG-based Brain Computer Interface for Autism Intervention*
Fan, Jing; Wade, Joshua W.; Bian, Dayi; Key, Alexandra P.; Warren, Zachary E.; Mion, Lorraine C.; Sarkar, Nilanjan
2017-01-01
Autism Spectrum Disorder (ASD) is a prevalent and costly neurodevelopmental disorder. Individuals with ASD often have deficits in social communication skills as well as adaptive behavior skills related to daily activities. We have recently designed a novel virtual reality (VR) based driving simulator for driving skill training for individuals with ASD. In this paper, we explored the feasibility of detecting engagement level, emotional states, and mental workload during VR-based driving using EEG as a first step towards a potential EEG-based Brain Computer Interface (BCI) for assisting autism intervention. We used spectral features of EEG signals from a 14-channel EEG neuroheadset, together with therapist ratings of behavioral engagement, enjoyment, frustration, boredom, and difficulty to train a group of classification models. Seven classification methods were applied and compared including Bayes network, naïve Bayes, Support Vector Machine (SVM), multilayer perceptron, K-nearest neighbors (KNN), random forest, and J48. The classification results were promising, with over 80% accuracy in classifying engagement and mental workload, and over 75% accuracy in classifying emotional states. Such results may lead to an adaptive closed-loop VR-based skill training system for use in autism intervention. PMID:26737113
Kawano, Naoko; Makino, Taeko; Suzuki, Yusuke; Umegaki, Hiroyuki
2009-09-01
In the present study our goal was to explore the impact of driving cessation on daily transportation utility in older people with cognitive decline. A total of 101 older persons participated in our survey of responding of a questionnaire about driving and other methods for traveling, administered at the memory clinic of the geriatric outpatient unit of Nagoya University Hospital. Of this total, 48 (47.5%) still had driving licenses, 16 (15.8%) had licenses that had expired, and 37 (36.6%) had no driving experience. The majority of license holders (77.1%) were active drivers, and we found that license holders tend to utilize public transport loss than older people without driving experience. Furthermore, among those who had ceased driving, there was a contrast in daily transportation utility between those with dementia and those without dementia, with the former accessing public transport less frequently. When clinicians advise drivers with dementia to cease driving, these patients need special attention to assist them in providing alternative ways of transportation.
Driving Safety and Fitness to Drive in Sleep Disorders.
Tippin, Jon; Dyken, Mark Eric
2017-08-01
Driving an automobile while sleepy increases the risk of crash-related injury and death. Neurologists see patients with sleepiness due to obstructive sleep apnea, narcolepsy, and a wide variety of neurologic disorders. When addressing fitness to drive, the physician must weigh patient and societal health risks and regional legal mandates. The Driver Fitness Medical Guidelines published by the National Highway Traffic Safety Administration (NHTSA) and the American Association of Motor Vehicle Administrators (AAMVA) provide assistance to clinicians. Drivers with obstructive sleep apnea may continue to drive if they have no excessive daytime sleepiness and their apnea-hypopnea index is less than 20 per hour. Those with excessive daytime sleepiness or an apnea-hypopnea index of 20 per hour or more may not drive until their condition is effectively treated. Drivers with sleep disorders amenable to pharmaceutical treatment (eg, narcolepsy) may resume driving as long as the therapy has eliminated excessive daytime sleepiness. Following these guidelines, documenting compliance to recommended therapy, and using the Epworth Sleepiness Scale to assess subjective sleepiness can be helpful in determining patients' fitness to drive.
Theophilou, Georgios; Paraskevaidi, Maria; Lima, Kássio M G; Kyrgiou, Maria; Martin-Hirsch, Pierre L; Martin, Francis L
2015-05-01
The complex processes driving cancer have so far impeded the discovery of dichotomous biomarkers associated with its initiation and progression. Reductionist approaches utilizing 'omics' technologies have met some success in identifying molecular alterations associated with carcinogenesis. Systems biology is an emerging science that combines high-throughput investigation techniques to define the dynamic interplay between regulatory biological systems in response to internal and external cues. Vibrational spectroscopy has the potential to play an integral role within systems biology research approaches. It is capable of examining global models of carcinogenesis by scrutinizing chemical bond alterations within molecules. The application of infrared or Raman spectroscopic approaches coupled with computational analysis under the systems biology umbrella can assist the transition of biomarker research from the molecular level to the system level. The comprehensive representation of carcinogenesis as a multilevel biological process will inevitably revolutionize cancer-related healthcare by personalizing risk prediction and prevention.
Kobayashi, S; Owada, N; Yambe, T; Nitta, S; Fukuju, T; Hongoh, T; Hashimoto, H
1999-08-01
A vibrating flow pump (VFP) can generate high frequency oscillated blood flow within 10-30 Hz by the oscillation of its central tube. A totally implantable artificial heart using a VFP is being developed as a unique type of blood pump. In this study, left ventricular (LV) assist circulation was performed using a VFP. The total vascular resistance and driving frequency of the VFP were estimated from their relationship. The effect of oscillation on the vascular system was studied by the frequency analysis method and vascular impedance. Adult goats were anesthetized by halothane using an inhaler and a left fourth thoracotomy was performed. The inflow cannula was inserted into the left ventricle, and the outflow cannula was sutured to the descending aorta. The VFP and a centrifugal pump were set in parallel for alternation and comparison. The driving frequency of the VFP was changed and included 15, 20, 25, and 30 Hz. The hemodynamic parameters were continuously recorded during experiments by a digital audio tape (DAT) data recorder. The internal pressure of the left ventricular cavity and aortic pressure were monitored by the pressure manometers continuously. One hundred percent LV assistance was judged by the separation of LV and aortic pressure. The total vascular resistance was decreased by the start of operation of each pump. The decrease during flow using the VFP was not as large as that using a centrifugal pump (CP). The arterial input impedance during oscillated blood flow by the VFP showed a slow curve appearance. It was similar to the frequency characteristics curve of natural heart beats within the lower frequencies. The study of arterial impedance may be important for the estimation of the reflection of the pulsatile wave from the arterial branch, among other things.
Young, K L; Koppel, S; Charlton, J L
2017-09-01
Older adults are the fastest growing segment of the driving population. While there is a strong emphasis for older people to maintain their mobility, the safety of older drivers is a serious community concern. Frailty and declines in a range of age-related sensory, cognitive, and physical impairments can place older drivers at an increased risk of crash-related injuries and death. A number of studies have indicated that in-vehicle technologies such as Advanced Driver Assistance Systems (ADAS) and In-Vehicle Information Systems (IVIS) may provide assistance to older drivers. However, these technologies will only benefit older drivers if their design is congruent with the complex needs and diverse abilities of this driving cohort. The design of ADAS and IVIS is largely informed by automotive Human Machine Interface (HMI) guidelines. However, it is unclear to what extent the declining sensory, cognitive and physical capabilities of older drivers are addressed in the current guidelines. This paper provides a review of key current design guidelines for IVIS and ADAS with respect to the extent they address age-related changes in functional capacities. The review revealed that most of the HMI guidelines do not address design issues related to older driver impairments. In fact, in many guidelines driver age and sensory cognitive and physical impairments are not mentioned at all and where reference is made, it is typically very broad. Prescriptive advice on how to actually design a system so that it addresses the needs and limitations of older drivers is not provided. In order for older drivers to reap the full benefits that in-vehicle technology can afford, it is critical that further work establish how older driver limitations and capabilities can be supported by the system design process, including their inclusion into HMI design guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grand challenges in space synthetic biology
Montague, Michael G.; Cumbers, John; Hogan, John A.
2015-01-01
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337
IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING.
Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee
2015-10-01
Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly.
IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING
Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee
2015-01-01
Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly. PMID:26783512
Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
Zhu, Yanhe; Zhang, Guoan; Zhang, Chao; Liu, Gangfeng; Zhao, Jie
2015-01-01
This paper introduces novel modern equipment-a lower extremity exoskeleton, which can implement the mutual complement and the interaction between human intelligence and the robot's mechanical strength. In order to provide a reference for the exoskeleton structure and the drive unit, the human biomechanics were modeled and analyzed by LifeModeler and Adams software to derive each joint kinematic parameter. The control was designed to implement the zero-force interaction between human and exoskeleton. Furthermore, simulations were performed to verify the control and assist effect. In conclusion, the system scheme of lower extremity exoskeleton is demonstrated to be feasible.
Intramedullary nailing: evolutions of femoral intramedullary nailing: first to fourth generations.
Russell, Thomas A
2011-12-01
Intramedullary femoral nailing is the gold standard for femoral shaft fixation but only in the past 27 years. This rapid replacement of closed traction and cast techniques in North America was a controversial and contentious evolution in surgery. As we enter the fourth generation of implant design, capabilities, and surgical technique, it is important to understand the driving forces for this technology. These forces included changes in radiographic imaging capabilities, biomaterial design and computer-assisted manufacturing, and the recognition of the importance of mobilization of the trauma patient to avoid systemic complications and optimize functional recovery.
The Drive to Strive: An Assistant Principal Reflects on a Career Built on Constant Learning
ERIC Educational Resources Information Center
Osabutey-Aguedje, Tameka
2015-01-01
At different stages of her career, the author has experienced, supported, and facilitated professional learning efforts. As an assistant principal, she finds that she has learned something of value at each stage. In this article, as the author reflects on her career, she realizes that it is important to learn and grow rather than just try to…
Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young
2016-01-01
The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20–49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors. PMID:27533112
Kim, Yejin; Jeong, Jo-Eun; Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young
2016-01-01
The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.
Frankle, Christen M.
2004-04-20
There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.
Local Foods, Local Places Summary Reports
These reports summarize community projects done with Local Foods, Local Places assistance, including farmers markets, cooperatives, community gardens, and other food-related enterprises that can boost local economies and drive revitalization.
A multidimensional intergenerational model of young males' driving styles.
Gil, Shani; Taubman-Ben-Ari, Orit; Toledo, Tomer
2016-12-01
This study examines the associations between fathers' driving styles, the family's general and driving-related atmosphere, and the young drivers' motivations, on one hand, and young males' driving styles, on the other. The 242 father and son pairs that participated in the study independently completed several self-report questionnaires at different points in time within the first year after licensure of the young drivers. A structural equation model (SEM) was developed, in which the contribution of fathers' driving style and their sons' perceptions of the general family relations, the family climate for road safety (FCRS), and costs and benefits of driving, to the driving styles of the young male drivers was examined. The SEM estimation results show direct as well as indirect significant effects between the various dimensions. The FCRS factors of non-commitment and messages, and the cost of thrill, were found to be the strongest mediators between the fathers' driving style and the family cohesion, on one hand, and the driving style of the young driver, on the other. These results may be useful in pointing out directions for the development of interventions that could assist in reducing the involvement of youngsters in risky driving and car crashes, and encourage safe and considerate driving. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controlling chaos-assisted directed transport via quantum resonance.
Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua
2016-06-01
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Controlling chaos-assisted directed transport via quantum resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jintao; Zou, Mingliang; Luo, Yunrong
2016-06-15
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Evaluation of a telerobotic system to assist surgeons in microsurgery
NASA Technical Reports Server (NTRS)
Das, H.; Zak, H.; Johnson, J.; Crouch, J.; Frambach, D.
1999-01-01
A tool was developed that assists surgeons in manipulating surgical instruments more precisely than is possible manually. The tool is a telemanipulator that scales down the surgeon's hand motion and filters tremor in the motion. The signals measured from the surgeon's hand are transformed and used to drive a six-degrees-of-freedom robot to position the surgical instrument mounted on its tip. A pilot study comparing the performance of the telemanipulator system against manual instrument positioning was conducted at the University of Southern California School of Medicine. The results show that a telerobotic tool can improve the performance of a microsurgeon by increasing the precision with which he can position surgical instruments, but this is achieved at the cost of increased time in performing the task. We believe that this technology will extend the capabilities of microsurgeons and allow more surgeons to perform highly skilled procedures currently performed only by the best surgeons. It will also enable performance of new surgical procedures that are beyond the capabilities of even the most skilled surgeons. Copyright 1999 Wiley-Liss, Inc.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2011-06-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2013-01-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557
The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future.
Plog, Benjamin A; Nedergaard, Maiken
2018-01-24
The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudolymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters the brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here, we review the role of the glymphatic pathway in CNS physiology, the factors known to regulate glymphatic flow, and the pathologic processes in which a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, are also discussed.
NASA Astrophysics Data System (ADS)
Lacroix, Benoit
The aim of this thesis is to demonstrate experimentally the operation of a hydraulic hybrid system specifically dedicated to the application of refuse trucks in addition to proposing solutions to improve its control strategy. The developed hybrid system recovers the vehicle's kinetic energy during braking. A variable displacement hydraulic motor then uses the energy stored in a hydraulic accumulator to assist the internal combustion engine (ICE) at suitable times. The particular aspect of this system is that assistance to the ICE can occur when it operates at idle and drives the auxiliary hydraulic equipment of the refuse truck. Essentially, the control strategy initially developed maximizes the recovery of braking energy and uses that energy to minimize the solicitation of the ICE at idle. The experimental results obtained with two prototypes tested in real operating conditions show that the hybrid system can recover a significant portion of braking energy. In addition, the results show that it is possible to reduce the load on the ICE during idle with the application of an assisting torque. However, the advantage of assisting the ICE in specific areas of the operating range is slim since the ICE's gross efficiency varies only slightly depending on conditions of operation. This is confirmed by the optimization of the control logic using deterministic dynamic programming. Indeed, by managing the pressure in the accumulator to maximize the amount of energy recovered during braking and by dosing the assistance to the ICE in an ideal fashion, the optimal control only managed to improve fuel savings by 6% in comparison to the original control. Therefore, since the efforts that would be required to emulate the ideal behavior in real time are significant for a relatively small and uncertain gain, the initial control logic is considered near optimal. Finally, this thesis proposes an improved version of the torque assisting hybrid system that could shut down the ICE when the vehicle is stopped while maintaining functional the auxiliary hydraulic equipment. An optimization of the control logic indicates that proper management of the pressure in the accumulator would allow turning off the ICE most of the time at stop and thus, would increase the fuel savings by over 40% compared to the original system. The simulation of a basic control strategy shows that such pressure management may be feasible in real time and that the potential gain in fuel savings is achievable. Keywords: hybrid system, hydraulic, control, refuse truck.
Orbital transfer vehicle oxygen turbopump technology. Volume 3: Hot oxygen testing
NASA Technical Reports Server (NTRS)
Urke, Robert L.
1992-01-01
This report covers the work done in preparation for a liquid oxygen rocket engine turbopump test utilizing high pressure hot oxygen gas for the turbine drive. The turbopump (TPA) is designed to operate with 400 F oxygen turbine drive gas. The goal of this test program was to demonstrate the successful operation of the TPA under simulated engine conditions including the hot oxygen turbine drive. This testing follows a highly successful series of tests pumping liquid oxygen with gaseous nitrogen as the turbine drive gas. That testing included starting of the TPA with no assist to the hydrostatic bearing. The bearing start entailed a rubbing start until the pump generated enough pressure to support the bearing. The articulating, self-centering hydrostatic bearing exhibited no bearing load or stability problems. The TPA was refurbished for the hot gas drive tests and facility work was begun, but unfortunately funding cuts prohibited the actual testing.
Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.
Wiggermann, Neal
2017-01-01
Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p < 0.05) lower for all tasks, and below psychophysical limits. Powered drive reduced peak forces between 38% (maneuvering into elevator) and 94% (descending ramp). Powered drive also reduced stopping distance by 55%. When maneuvering, the integral of hand force was 34% lower with powered drive, but average forces during straight-line pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martín-Collado, D; Díaz, C; Mäki-Tanila, A; Colinet, F; Duclos, D; Hiemstra, S J; Gandini, G
2013-06-01
SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis is a tool widely used to help in decision making in complex systems. It suits to exploring the issues and measures related to the conservation and development of local breeds, as it allows the integration of many driving factors influencing breed dynamics. We developed a quantified SWOT method as a decision-making tool for identification and ranking of conservation and development strategies of local breeds, and applied it to a set of 13 cattle breeds of six European countries. The method has four steps: definition of the system, identification and grouping of the driving factors, quantification of the importance of driving factors and identification and prioritization of the strategies. The factors were determined following a multi-stakeholder approach and grouped with a three-level structure. Animal genetic resources expert groups ranked the factors, and a quantification process was implemented to identify and prioritize strategies. The proposed SWOT methodology allows analyzing the dynamics of local cattle breeds in a structured and systematic way. It is a flexible tool developed to assist different stakeholders in defining the strategies and actions. The quantification process allows the comparison of the driving factors and the prioritization of the strategies for the conservation and development of local cattle breeds. We identified 99 factors across the breeds. Although the situation is very heterogeneous, the future of these breeds may be promising. The most important strengths and weaknesses were related to production systems and farmers. The most important opportunities were found in marketing new products, whereas the most relevant threats were found in selling the current products. The across-breed strategies utility decreased as they gained specificity. Therefore, the strategies at European level should focus on general aspects and be flexible enough to be adapted to the country and breed specificities.
Computer-assisted photogrammetric mapping systems for geologic studies-A progress report
Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.
1981-01-01
Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.
Ruscio, Daniele; Ciceri, Maria Rita; Biassoni, Federica
2015-04-01
Brake Reaction Time (BRT) is an important parameter for road safety. Previous research has shown that drivers' expectations can impact RT when facing hazardous situations, but driving with advanced driver assistance systems, can change the way BRT are considered. The interaction with a collision warning system can help faster more efficient responses, but at the same time can require a monitoring task and evaluation process that may lead to automation complacency. The aims of the present study are to test in a real-life setting whether automation compliancy can be generated by a collision warning system and what component of expectancy can impact the different tasks involved in an assisted BRT process. More specifically four component of expectancy were investigated: presence/absence of anticipatory information, previous direct experience, reliability of the device, and predictability of the hazard determined by repeated use of the warning system. Results supply indication on perception time and mental elaboration of the collision warning system alerts. In particular reliable warning quickened the decision making process, misleading warnings generated automation complacency slowing visual search for hazard detection, lack of directed experienced slowed the overall response while unexpected failure of the device lead to inattentional blindness and potential pseudo-accidents with surprise obstacle intrusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Towards an intelligent wheelchair system for users with cerebral palsy.
Montesano, Luis; Díaz, Marta; Bhaskar, Sonu; Minguez, Javier
2010-04-01
This paper describes and evaluates an intelligent wheelchair, adapted for users with cognitive disabilities and mobility impairment. The study focuses on patients with cerebral palsy, one of the most common disorders affecting muscle control and coordination, thereby impairing movement. The wheelchair concept is an assistive device that allows the user to select arbitrary local destinations through a tactile screen interface. The device incorporates an automatic navigation system that drives the vehicle, avoiding obstacles even in unknown and dynamic scenarios. It provides the user with a high degree of autonomy, independent from a particular environment, i.e., not restricted to predefined conditions. To evaluate the rehabilitation device, a study was carried out with four subjects with cognitive impairments, between 11 and 16 years of age. They were first trained so as to get acquainted with the tactile interface and then were recruited to drive the wheelchair. Based on the experience with the subjects, an extensive evaluation of the intelligent wheelchair was provided from two perspectives: 1) based on the technical performance of the entire system and its components and 2) based on the behavior of the user (execution analysis, activity analysis, and competence analysis). The results indicated that the intelligent wheelchair effectively provided mobility and autonomy to the target population.
2015 Military Investigation and Justice Experience Survey (MIJES). Overview Report
2016-03-16
FMG) b Defense Manpower Data Center (DMDC) a SRA International, Inc., A CSRA Company Defense Manpower Data Center 4800 Mark Center Drive, Suite... Manpower Data Center (DMDC) is indebted to numerous people for their assistance with the 2015 Military Investigation and Justice Experience Survey (2015...Statistical Analysis Macros to calculate the results presented in this report. Ms. Sue Reinhold provided assistance with programming and merging contact
Techer, Franck; Jallais, Christophe; Corson, Yves; Moreau, Fabien; Ndiaye, Daniel; Piechnick, Bruno; Fort, Alexandra
2017-01-01
Driver internal state, including emotion, can have negative impacts on road safety. Studies have shown that an anger state can provoke aggressive behavior and impair driving performance. Apart from driving, anger can also influence attentional processing and increase the benefits taken from auditory alerts. However, to our knowledge, no prior event-related potentials study assesses this impact on attention during simulated driving. Therefore, the aim of this study was to investigate the impact of anger on attentional processing and its consequences on driving performance. For this purpose, 33 participants completed a simulated driving scenario once in an anger state and once during a control session. Results indicated that anger impacted driving performance and attention, provoking an increase in lateral variations while reducing the amplitude of the visual N1 peak. The observed effects were discussed as a result of high arousal and mind-wandering associated with anger. This kind of physiological data may be used to monitor a driver's internal state and provide specific assistance corresponding to their current needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Driver fitness medical guidelines.
DOT National Transportation Integrated Search
2009-09-01
This guide provides guidance to assist licensing agencies in making decisions about an individuals fitness for driving. This is the first attempt to produce a consolidated document covering medical conditions included in the task agreement between...
Bansal, Neha; Reynolds, Luke X.; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B.; McCulloch, Iain; Rebois, Dylan G.; Kirchartz, Thomas; Hill, Michael S.; Molloy, Kieran C.; Nelson, Jenny; Haque, Saif A.
2013-01-01
The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. PMID:23524906
Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.
Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela
2014-06-01
The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Isolated step-down DC -DC converter for electric vehicles
NASA Astrophysics Data System (ADS)
Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.
2018-02-01
Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.
NASA Astrophysics Data System (ADS)
Winslow, D. L.; Carter, K. R.; Chatterjee, R.; Huang, H.; Phillips, P. E.; Rowan, W. L.; Kuang, G. L.; Li, J. G.; Luo, J. R.; Wan, B. N.; Wan, Y. X.; Xie, J. K.
1998-11-01
A team from the Fusion Research Center at the University of Texas at Austin visited the HT-7 Tokamak at the Institute of Plasma Physics at the Chinese Academy of Sciences in Hefei, Anhui, China to study the effects of lower hybrid current drive (LHCD) in the HT-7 plasma. HT-7(HT-7 Group, Fusion Energy 1996 Vol. 1, 685 (1997).) is a medium-sized (R = 1.22 m) tokamak with superconducting toroidal field coils and long--pulse capabilities utilizing LHCD to assist ohmic current drive. Core and edge diagnostics supported by a stand-alone data acquisition system were installed for the spring 1998 campaign. The diagnostics included an ECE radiometer which allows determination of both electron temperature profiles and fluctuation levels in the core plasma and an H_α array detector for measurement of turbulence in regions not easily accessible to probes. In addition, a reciprocating Langmuir probe system was developed for use on HT-7 and should be available for the next campaign. The effects of LHCD upon fluctuation levels in the plasma will be discussed.
NASA Astrophysics Data System (ADS)
Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang
2018-01-01
Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.
An International Comparative Study on Driving Regulations on People with Dementia.
Kim, You Joung; An, Hoyoung; Kim, Binna; Park, Young Shin; Kim, Ki Woong
2017-01-01
Over 40% of people with dementia drive, with a two to five times greater accident risk than controls. This has fueled public concerns about the risk of traffic accidents by drivers with dementia (DWD). We compared driving regulations on seniors and DWD between ten European and Asia-Pacific countries to identify key implications for national strategies. Moderate to severe dementia was a reason for driver's license revocation in all countries. However, regulations on mild dementia varied considerably, with most basing their decisions on severity, rather than simply the presence of dementia. Most used validated assessments, but responsibility for triggering the administrative process fell on drivers in some countries and on physicians in others. Administrations should consider the following when developing driving policies: 1) ideal regulations on DWD should ensure that restrictions are implemented only when needed; 2) fitness to drive should be assessed using validated instruments; 3) the use of processes that automatically initiate driving competency examinations following a diagnosis of dementia should be explored; and 4) restrictions should be delicately tailored to a range of driving competence levels, and assistive incentives compensating for lost driving privileges should be provided.
Butters, Jennifer; Mann, Robert E; Wickens, Christine M; Boase, Paul
2012-12-01
Driving safety, impaired driving, and legislation to address these concerns remain important issues. It is imperative countermeasures be targeted toward the most appropriate groups. This paper explores the potential relationship between gender and driving attitudes toward safety issues and impaired-driving countermeasures. The data are from the 2007 Impaired Driving Survey commissioned by Transport Canada and Mothers Against Drunk Driving (MADD) Canada. The survey is a, stratified by region, telephone survey of 1,514 Canadian drivers 18years of age and older with a valid driver's license who had driven within the past 30days. The findings illustrate a consistent impact of gender on these issues. Other variables were also identified as relevant factors although less consistently. Current findings suggest that strategies for building support for interventions, or for changing risk perception/concern for risky driving behaviors should be tailored by gender to maximize the potential for behavior change. This information may assist program and policy developers through the identification of more or less receptive target groups. Future research directions are also presented. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.
Control task substitution in semiautomated driving: does it matter what aspects are automated?
Carsten, Oliver; Lai, Frank C H; Barnard, Yvonne; Jamson, A Hamish; Merat, Natasha
2012-10-01
The study was designed to show how driver attention to the road scene and engagement of a choice of secondary tasks are affected by the level of automation provided to assist or take over the basic task of vehicle control. It was also designed to investigate the difference between support in longitudinal control and support in lateral control. There is comparatively little literature on the implications of automation for drivers' engagement in the driving task and for their willingness to engage in non-driving-related activities. A study was carried out on a high-level driving simulator in which drivers experienced three levels of automation: manual driving, semiautomated driving with either longitudinal or lateral control provided, and highly automated driving with both longitudinal and lateral control provided. Drivers were free to pay attention to the roadway and traffic or to engage in a range of entertainment and grooming tasks. Engagement in the nondriving tasks increased from manual to semiautomated driving and increased further with highly automated driving. There were substantial differences in attention to the road and traffic between the two types of semiautomated driving. The literature on automation and the various task analyses of driving do not currently help to explain the effects that were found. Lateral support and longitudinal support may be the same in terms of levels of automation but appear to be regarded rather differently by drivers.
Rudman, Deborah Laliberte; Friedland, Judith; Chipman, Mary; Sciortino, Paola
2006-01-01
Although decisions related to driving are vital to well-being in later life, little is known about how aging drivers who do not experience a medical condition that requires driving cessation regulate their driving. This exploratory, qualitative study used focus groups with 79 such community-dwelling individuals to examine driving self-regulation from the perspective of pre-senior (aged 55-64) drivers, senior (aged 65 years or over) drivers, and senior ex-drivers. Themes resulting from inductive analysis addressed the importance of driving, mechanisms of self-monitoring and self-regulation, people who influenced decision making, and opinions regarding licensing regulations. A preliminary model of the process of self-regulation that highlights intrapersonal, interpersonal, and environmental influences on why, how, and when aging drivers adapt or cease driving is presented. The model identifies areas for future research to enhance understanding of this process, including the effectiveness of self-regulation. Findings suggest that increased public awareness of issues related to driving and aging could assist aging drivers, their families, and their family physicians in optimizing driving safety for this population. Since a near accident or accident was seen as the only factor that would lead many informants to stop driving and few informants planned for driving cessation, there is a need for interventions that help aging drivers make the transition to ex-driver in a timely and personally acceptable way.
Bergen, Gwen; West, Bethany A; Luo, Feijun; Bird, Donna C; Freund, Katherine; Fortinsky, Richard H; Staplin, Loren
2017-06-01
Motor-vehicle crashes were the second leading cause of injury death for adults aged 65-84years in 2014. Some older drivers choose to self-regulate their driving to maintain mobility while reducing driving risk, yet the process remains poorly understood. Data from 729 older adults (aged ≥60years) who joined an older adult ride service program between April 1, 2010 and November 8, 2013 were analyzed to define and describe classes of driving self-regulation. Latent class analysis was employed to characterize older adult driving self-regulation classes using driving frequency and avoidance of seven driving situations. Logistic regression was used to explore associations between characteristics affecting mobility and self-regulation class. Three classes were identified (low, medium, and high self-regulation). High self-regulating participants reported the highest proportion of always avoiding seven risky driving situations and the lowest driving frequency followed by medium and low self-regulators. Those who were female, aged 80years or older, visually impaired, assistive device users, and those with special health needs were more likely to be high self-regulating compared with low self-regulating. Avoidance of certain driving situations and weekly driving frequency are valid indicators for describing driving self-regulation classes in older adults. Understanding the unique characteristics and mobility limitations of each class can guide optimal transportation strategies for older adults. Published by Elsevier Ltd.
High-Risk Driving Behaviors among Adolescent Binge-Drinkers
Marcotte, Thomas D.; Bekman, Nicole M.; Meyer, Rachel A.; Brown, Sandra A.
2013-01-01
Background Binge drinking is common among adolescents. Alcohol use, and binge-drinking in particular, has been associated with neurocognitive deficits as well as risk-taking behaviors, which may contribute to negative driving outcomes among adolescents even while sober. Objectives To examine differences in self-reported driving behaviors between adolescent binge-drinkers and a matched sample of controls, including (a) compliance with graduated licensing laws, (b) high risk driving behaviors, and (c) driving outcomes (crashes, traffic tickets). Methods The present study examined driving behaviors and outcomes in adolescent recent binge drinkers (n=21) and demographically and driving history matched controls (n=17), ages 16-18. Results Binge drinkers more frequently violated graduated licensing laws (e.g., driving late at night), and engaged in more “high risk” driving behaviors, such as speeding and using a cell-phone while driving. Binge drinkers had more traffic tickets, crashes and “near crashes” than the control group. In a multivariate analysis, binge drinker status and speeding were the most robust predictors of a crash. Conclusion Binge drinking teens consistently engage in more dangerous driving behaviors and experience more frequent crashes and traffic tickets. They are also less compliant with preventative restrictions placed on youth while they are learning critical safe driving skills. Scientific Significance These findings highlight a need to examine the contribution of underlying traits (such as sensation seeking) and binge-related cognitive changes to these high-risk driving behaviors, which may assist researchers in establishing alternative prevention and policy efforts targeting this population. PMID:22324748
A System for Traffic Violation Detection
Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio
2014-01-01
This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations. PMID:25421737
A system for traffic violation detection.
Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio
2014-11-24
This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations.
Road marking features extraction using the VIAPIX® system
NASA Astrophysics Data System (ADS)
Kaddah, W.; Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.; Gutierrez, C.
2016-07-01
Precise extraction of road marking features is a critical task for autonomous urban driving, augmented driver assistance, and robotics technologies. In this study, we consider an autonomous system allowing us lane detection for marked urban roads and analysis of their features. The task is to relate the georeferencing of road markings from images obtained using the VIAPIX® system. Based on inverse perspective mapping and color segmentation to detect all white objects existing on this road, the present algorithm enables us to examine these images automatically and rapidly and also to get information on road marks, their surface conditions, and their georeferencing. This algorithm allows detecting all road markings and identifying some of them by making use of a phase-only correlation filter (POF). We illustrate this algorithm and its robustness by applying it to a variety of relevant scenarios.
Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving
Elfring, Jos; Appeldoorn, Rein; van den Dries, Sjoerd; Kwakkernaat, Maurice
2016-01-01
The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle’s surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture. PMID:27727171
The glymphatic system in CNS health and disease: past, present and future
Plog, Benjamin A.; Nedergaard, Maiken
2018-01-01
The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here we review the role of the glymphatic pathway in CNS physiology, factors known to regulate glymphatic flow, and pathologic processes where a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, will also be discussed. PMID:29195051
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankle, Christen M.
2000-10-19
There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assistedmore » person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.« less
Family and friends concerned about an older driver
DOT National Transportation Integrated Search
2001-08-01
To provide families, friends, healthcare providers, law enforcement personnel, and community and social services with information to assist older adults whose capabilities make them potentially unsafe to drive, a series of research tasks were conduct...
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.
EVA Metro Sedan electric-propulsion system: test and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimers, E.
1979-09-01
The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on themore » dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.« less
Demeter, Sandor J
2016-12-21
Health care providers (HCP) and clinical scientists (CS) are generally most comfortable using evidence-based rational decision-making models. They become very frustrated when policymakers make decisions that, on the surface, seem irrational and unreasonable. However, such decisions usually make sense when analysed properly. The goal of this paper to provide a basic theoretical understanding of major policy models, to illustrate which models are most prevalent in publicly funded health care systems, and to propose a policy analysis framework to better understand the elements that drive policy decision-making. The proposed policy framework will also assist HCP and CS achieve greater success with their own proposals.
Radar Sensing for Intelligent Vehicles in Urban Environments
Reina, Giulio; Johnson, David; Underwood, James
2015-01-01
Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations. PMID:26102493
Radar Sensing for Intelligent Vehicles in Urban Environments.
Reina, Giulio; Johnson, David; Underwood, James
2015-06-19
Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations.
Choi, Namkee G.; DiNitto, Diana M.
2016-01-01
Purpose of the Study: To examine alternative means of mobility that nondriving older adults rely on and their impact on well-being. Design and Methods: Data from the 2011 (T1, N = 6,680) and 2012 (T2, N = 5,413) interview waves of the National Health and Aging Trends Study were used to examine sample characteristics by driving status, use of alternative mobility resources, and perceived transportation-related barriers among ex-drivers and nondrivers, and their association with depressive symptoms. Results: A majority of nondrivers relied on their informal support system and/or paid assistance to drive them to places. About half reported walking/using a wheelchair or scooter. A significant proportion of never drivers also used public transportation and van/shuttle services, whereas a smaller proportion of ex-drivers used them. Nondrivers who walked for transport had lower depressive symptoms than those who did not walk at either T1 or T2, and perception of transportation barriers to visiting friends/family was associated with higher depressive symptoms at T1 only. Implications: Older adults’ mobility needs should be met through increasing walkability, public and paratransit transportation, supplemental senior transportation, and increasing informal caregivers-transportation providers’ ability to aid older adults. PMID:25601389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C
2012-01-01
Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storagemore » device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.« less
NASA Astrophysics Data System (ADS)
Ohn-Bar, Eshed; Martin, Sujitha; Trivedi, Mohan Manubhai
2013-10-01
We focus on vision-based hand activity analysis in the vehicular domain. The study is motivated by the overarching goal of understanding driver behavior, in particular as it relates to attentiveness and risk. First, the unique advantages and challenges for a nonintrusive, vision-based solution are reviewed. Next, two approaches for hand activity analysis, one relying on static (appearance only) cues and another on dynamic (motion) cues, are compared. The motion-cue-based hand detection uses temporally accumulated edges in order to maintain the most reliable and relevant motion information. The accumulated image is fitted with ellipses in order to produce the location of the hands. The method is used to identify three hand activity classes: (1) two hands on the wheel, (2) hand on the instrument panel, (3) hand on the gear shift. The static-cue-based method extracts features in each frame in order to learn a hand presence model for each of the three regions. A second-stage classifier (linear support vector machine) produces the final activity classification. Experimental evaluation with different users and environmental variations under real-world driving shows the promise of applying the proposed systems for both postanalysis of captured driving data as well as for real-time driver assistance.
Overview of ECRH experimental results
NASA Astrophysics Data System (ADS)
Lloyd, Brian
1998-08-01
A review of the present status of electron cyclotron heating and current drive experiments in toroidal fusion devices is presented. In addition to basic heating and current drive studies the review also addresses advances in wave physics and the application of electron cyclotron waves for instability control, transport studies, pre-ionization/start-up assist, etc. A comprehensive overview is given with particular emphasis on recent advances since the major review of Erckmann and Gasparino (1994) ( 36 1869), including results from the latest generation of high-power, high-frequency experiments.
Inducing self-selected human engagement in robotic locomotion training.
Collins, Steven H; Jackson, Rachel W
2013-06-01
Stroke leads to severe mobility impairments for millions of individuals each year. Functional outcomes can be improved through manual treadmill therapy, but high costs limit patient exposure and, thereby, outcomes. Robotic gait training could increase the viable duration and frequency of training sessions, but robotic approaches employed thus far have been less effective than manual therapy. These shortcomings may relate to subconscious energy-minimizing drives, which might cause patients to engage less actively in therapy when provided with corrective robotic assistance. We have devised a new method for gait rehabilitation that harnesses, rather than fights, least-effort tendencies. Therapeutic goals, such as increased use of the paretic limb, are made easier than the patient's nominal gait through selective assistance from a robotic platform. We performed a pilot test on a healthy subject (N = 1) in which altered self-selected stride length was induced using a tethered robotic ankle-foot orthosis. The subject first walked on a treadmill while wearing the orthosis with and without assistance at unaltered and voluntarily altered stride length. Voluntarily increasing stride length by 5% increased metabolic energy cost by 4%. Robotic assistance decreased energy cost at both unaltered and voluntarily increased stride lengths, by 6% and 8% respectively. We then performed a test in which the robotic system continually monitored stride length and provided more assistance if the subject's stride length approached a target increase. This adaptive assistance protocol caused the subject to slowly adjust their gait patterns towards the target, leading to a 4% increase in stride length. Metabolic energy consumption was simultaneously reduced by 5%. These results suggest that selective-assistance protocols based on targets relevant to rehabilitation might lead patients to self-select desirable gait patterns during robotic gait training sessions, possibly facilitating better adherence and outcomes.
Novel compact panomorph lens based vision system for monitoring around a vehicle
NASA Astrophysics Data System (ADS)
Thibault, Simon
2008-04-01
Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.
Kaplan, Sigal; Prato, Carlo Giacomo
2012-01-01
The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing a forgiving infrastructure within a sustainable safety systems, and rethinking in-vehicle collision warning systems. Future research should address the effectiveness of crash avoidance maneuvers and joint modeling of maneuver selection and crash severity.
THE OLDER ADULT DRIVER WITH COGNITIVE IMPAIRMENT
Carr, David B.; Ott, Brian R.
2010-01-01
Although automobiles remain the transportation of choice for older adults, late life cognitive impairment and dementia often impair the ability to drive safely. There is, however, no commonly utilized method of assessing dementia severity in relation to driving, no consensus on the assessment of older drivers with cognitive impairment, and no gold standard for determining driving fitness. Yet, clinicians are called upon by patients, their families, other health professionals, and often the Department of Motor Vehicles (DMV) to assess their patients' fitness-to-drive and to make recommendations about driving privileges. Using the case of Mr W, we describe the challenges of driving with cognitive impairment for both the patient and caregiver, summarize the literature on dementia and driving, discuss evidenced-based assessment of fitness-to-drive, and address important ethical and legal issues. We describe the role of physician assessment, referral to neuropsychology, functional screens, dementia severity tools, driving evaluation clinics, and DMV referrals that may assist with evaluation. Finally, we discuss mobility counseling (eg, exploration of transportation alternatives) since health professionals need to address this important issue for older adults who lose the ability to drive. The application of a comprehensive, interdisciplinary approach to the older driver with cognitive impairment will have the best opportunity to enhance our patients' social connectedness and quality of life, while meeting their psychological and medical needs and maintaining personal and public safety. PMID:20424254
The older adult driver with cognitive impairment: "It's a very frustrating life".
Carr, David B; Ott, Brian R
2010-04-28
Although automobiles remain the transportation of choice for many older adults, late-life cognitive impairment and dementia often impair the ability to drive safely. However, there is no commonly used method of assessing dementia severity in relation to driving, no consensus on the assessment of older drivers with cognitive impairment, and no gold standard for determining driving fitness. Yet clinicians are called on by patients, their families, other health professionals, and often their state's Department of Motor Vehicles to assess their patients' fitness to drive and to make recommendations about driving privileges. This article describes the challenges of driving with cognitive impairment for both the patient and caregiver, summarizes the literature on dementia and driving, discusses evidence-based assessment of fitness to drive, and addresses important ethical and legal issues. It also describes the role of physician assessment, referral for neuropsychological testing, screening for functional ability, tools to assess dementia severity, driving evaluation clinics, and Department of Motor Vehicles referrals that may assist with evaluation. Lastly, it discusses mobility counseling (eg, exploration of transportation alternatives), because health professionals need to address this important issue for older adults who lose the ability to drive. The application of a comprehensive, interdisciplinary approach to the older driver with cognitive impairment will have the best opportunity to enhance patients' social connectedness and quality of life while meeting their psychological and medical needs and maintaining personal and public safety.
Autonomous assistance navigation for robotic wheelchairs in confined spaces.
Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F
2010-01-01
In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work.
Probabilistic vs linear blending approaches to shared control for wheelchair driving.
Ezeh, Chinemelu; Trautman, Pete; Devigne, Louise; Bureau, Valentin; Babel, Marie; Carlson, Tom
2017-07-01
Some people with severe mobility impairments are unable to operate powered wheelchairs reliably and effectively, using commercially available interfaces. This has sparked a body of research into "smart wheelchairs", which assist users to drive safely and create opportunities for them to use alternative interfaces. Various "shared control" techniques have been proposed to provide an appropriate level of assistance that is satisfactory and acceptable to the user. Most shared control techniques employ a traditional strategy called linear blending (LB), where the user's commands and wheelchair's autonomous commands are combined in some proportion. In this paper, however, we implement a more generalised form of shared control called probabilistic shared control (PSC). This probabilistic formulation improves the accuracy of modelling the interaction between the user and the wheelchair by taking into account uncertainty in the interaction. In this paper, we demonstrate the practical success of PSC over LB in terms of safety, particularly for novice users.
NASA Astrophysics Data System (ADS)
Cordle, Michael; Rea, Chris; Jury, Jason; Rausch, Tim; Hardie, Cal; Gage, Edward; Victora, R. H.
2018-05-01
This study aims to investigate the impact that factors such as skew, radius, and transition curvature have on areal density capability in heat-assisted magnetic recording hard disk drives. We explore a "ballistic seek" approach for capturing in-situ scan line images of the magnetization footprint on the recording media, and extract parametric results of recording characteristics such as transition curvature. We take full advantage of the significantly improved cycle time to apply a statistical treatment to relatively large samples of experimental curvature data to evaluate measurement capability. Quantitative analysis of factors that impact transition curvature reveals an asymmetry in the curvature profile that is strongly correlated to skew angle. Another less obvious skew-related effect is an overall decrease in curvature as skew angle increases. Using conventional perpendicular magnetic recording as the reference case, we characterize areal density capability as a function of recording position.
Towards a Mars base - Critical steps for life support on the moon and beyond
NASA Technical Reports Server (NTRS)
Rummel, John D.
1992-01-01
In providing crew life support for future exploration missions, overall exploration objectives will drive the life support solutions selected. Crew size, mission tasking, and exploration strategy will determine the performance required from life support systems. Human performance requirements, for example, may be offset by the availability of robotic assistance. Once established, exploration requirements for life support will be weighed against the financial and technical risks of developing new technologies and systems. Other considerations will include the demands that a particular life support strategy will make on planetary surface site selection, and the availability of precursor mission data to support EVA and in situ resource recovery planning. As space exploration progresses, the diversity of life support solutions that are implemented is bound to increase.
One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
NASA Astrophysics Data System (ADS)
Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li
2017-07-01
We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.
NASA Astrophysics Data System (ADS)
Müller, Clemens; Stace, Thomas M.
2017-01-01
Motivated by correlated decay processes producing gain, loss, and lasing in driven semiconductor quantum dots [Phys. Rev. Lett. 113, 036801 (2014), 10.1103/PhysRevLett.113.036801; Science 347, 285 (2015), 10.1126/science.aaa2501; Phys. Rev. Lett. 114, 196802 (2015), 10.1103/PhysRevLett.114.196802], we develop a theoretical technique by using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second-order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behavior at the same order of perturbation theory. We then apply these results to analyze the phonon-assisted steady-state gain of a microwave field driving a double quantum dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing-assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.
Design of inductive sensors for tongue control system for computers and assistive devices.
Lontis, Eugen R; Struijk, Lotte N S A
2010-07-01
The paper introduces a novel design of air-core inductive sensors in printed circuit board (PCB) technology for a tongue control system. The tongue control system provides a quadriplegic person with a keyboard and a joystick type of mouse for interaction with a computer or for control of an assistive device. Activation of inductive sensors was performed with a cylindrical, soft ferromagnetic material (activation unit). Comparative analysis of inductive sensors in PCB technology with existing hand-made inductive sensors was performed with respect to inductance, resistance, and sensitivity to activation when the activation unit was placed in the center of the sensor. Optimisation of the activation unit was performed in a finite element model. PCBs with air-core inductive sensors were manufactured in a 10 layers, 100 microm and 120 microm line width technology. These sensors provided quality signals that could drive the electronics of the hand-made sensors. Furthermore, changing the geometry of the sensors allowed generation of variable signals correlated with the 2D movement of the activation unit at the sensors' surface. PCB technology for inductive sensors allows flexibility in design, automation of production and ease of possible integration with supplying electronics. The basic switch function of the inductive sensor can be extended to two-dimensional movement detection for pointing devices.
Lacherez, Philippe; Wood, Joanne M; Anstey, Kaarin J; Lord, Stephen R
2014-02-01
To establish whether sensorimotor function and balance are associated with on-road driving performance in older adults. The performance of 270 community-living adults aged 70-88 years recruited via the electoral roll was measured on a battery of peripheral sensation, strength, flexibility, reaction time, and balance tests and on a standardized measure of on-road driving performance. Forty-seven participants (17.4%) were classified as unsafe based on their driving assessment. Unsafe driving was associated with reduced peripheral sensation, lower limb weakness, reduced neck range of motion, slow reaction time, and poor balance in univariate analyses. Multivariate logistic regression analysis identified poor vibration sensitivity, reduced quadriceps strength, and increased sway on a foam surface with eyes closed as significant and independent risk factors for unsafe driving. These variables classified participants into safe and unsafe drivers with a sensitivity of 74% and specificity of 70%. A number of sensorimotor and balance measures were associated with driver safety and the multivariate model comprising measures of sensation, strength, and balance was highly predictive of unsafe driving in this sample. These findings highlight important determinants of driver safety and may assist in developing efficacious driver safety strategies for older drivers.
Improving CAR Navigation with a Vision-Based System
NASA Astrophysics Data System (ADS)
Kim, H.; Choi, K.; Lee, I.
2015-08-01
The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.
Improving Car Navigation with a Vision-Based System
NASA Astrophysics Data System (ADS)
Kim, H.; Choi, K.; Lee, I.
2015-08-01
The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.
2012-08-31
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Defense Inspector General,4800 Mark Center Drive,Alexandria,VA,22350-1500 8... PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S...Empowerment (MOVE) Act What We Did To determine if voting assistance programs carried out under the Uniformed and Overseas Absentee Voting Act
Asiamah, G; Mock, C; Blantari, J
2002-01-01
Objectives: The knowledge and attitudes of commercial drivers in Ghana as regards alcohol impaired driving were investigated. This was done in order to provide information that could subsequently be used to develop antidrunk driving social marketing messages built upon the intrinsic values and motivation of these drivers. Methods: Focus group discussions were held with 43 bus and minibus drivers in the capital city, Accra. A structured discussion guide was used to capture information related to values, risk perceptions, leisure time activities, and attitudes on alcohol impaired driving. Results: The majority of drivers expressed an understanding that drunk driving was a significant risk factor for crashes. There was a significant under-appreciation of the extent of the problem, however. Most believed that it was only rare, extremely intoxicated drivers who were the problem. The drivers also had a minimal understanding of the concept of blood alcohol concentration and related legal limits. Despite these factors, there was widespread support for increased enforcement of existing antidrunk driving laws. Conclusions: In Ghana, commercial drivers understand the basic danger of drunk driving and are motivated to assist in antidrunk driving measures. There are misconceptions and deficits in knowledge that need to be addressed in subsequent educational campaigns. PMID:11928975
Assessing drivers' response during automated driver support system failures with non-driving tasks.
Shen, Sijun; Neyens, David M
2017-06-01
With the increase in automated driver support systems, drivers are shifting from operating their vehicles to supervising their automation. As a result, it is important to understand how drivers interact with these automated systems and evaluate their effect on driver responses to safety critical events. This study aimed to identify how drivers responded when experiencing a safety critical event in automated vehicles while also engaged in non-driving tasks. In total 48 participants were included in this driving simulator study with two levels of automated driving: (a) driving with no automation and (b) driving with adaptive cruise control (ACC) and lane keeping (LK) systems engaged; and also two levels of a non-driving task (a) watching a movie or (b) no non-driving task. In addition to driving performance measures, non-driving task performance and the mean glance duration for the non-driving task were compared between the two levels of automated driving. Drivers using the automated systems responded worse than those manually driving in terms of reaction time, lane departure duration, and maximum steering wheel angle to an induced lane departure event. These results also found that non-driving tasks further impaired driver responses to a safety critical event in the automated system condition. In the automated driving condition, driver responses to the safety critical events were slower, especially when engaged in a non-driving task. Traditional driver performance variables may not necessarily effectively and accurately evaluate driver responses to events when supervising autonomous vehicle systems. Thus, it is important to develop and use appropriate variables to quantify drivers' performance under these conditions. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.
Technological innovation in video-assisted thoracic surgery.
Özyurtkan, Mehmet Oğuzhan; Kaba, Erkan; Toker, Alper
2017-01-01
The popularity of video-assisted thoracic surgery (VATS) which increased worldwide due to the recent innovations in thoracic surgical technics, equipment, electronic devices that carry light and vision and high definition monitors. Uniportal VATS (UVATS) is disseminated widely, creating a drive to develop new techniques and instruments, including new graspers and special staplers with more angulation capacities. During the history of VATS, the classical 10 mm 0° or 30° rigid rod lens system, has been replaced by new thoracoscopes providing a variable angle technology and allowing 0° and 120° range of vision. Besides, the tip of these novel thoracoscopes can be positioned away from the operating side minimize fencing with other thoracoscopic instruments. The curved-tip stapler technology, and better designed endostaplers helped better dissection, precision of control, more secure staple lines. UVATS also contributed to the development of embryonic natural orifice transluminal endoscopic surgery. Three-dimensional VATS systems facilitated faster and more accurate grasping, suturing, and dissection of the tissues by restoring natural 3D vision and the perception of depth. Another innovation in VATS is the energy-based coagulative and tissue fusion technology which may be an alternative to endostaplers.
Improving Motor and Drive System Performance – A Sourcebook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well asmore » resources for additional information, tools, software, videos, and training opportunities.« less
Naughton, Matthew T; Lorenzi-Filho, Geraldo
2009-01-01
Sleep plays a large role in patients with heart failure. In normal subjects, sleep is usually in a supine position with reduced sympathetic drive, elevated vagal tone and as such a relatively lower cardiac output and minute ventilation, allowing for recuperation. Patients with heart failure may not experience the same degree of autonomic activity change and the supine position may place a large strain on the pulmonary system. More than half of all heart failure patients have one of two types of sleep apnea: either obstructive or central sleep apnea. Some patients have both types. Obstructive sleep apnea is likely to be a cause of heart failure due to large negative intrathoracic pressures, apnea related hypoxemia and hypercapnia, terminated by an arousal and surge in systemic blood pressure associated with endothelial damage and resultant premature atherosclerosis. Reversal of obstructive sleep apnea improves blood pressure, systolic contraction and autonomic dysfunction however mortality studies are lacking. Central sleep apnea with Cheyne Stokes pattern of respiration (CSA-CSR) occurs as a result of increased central controller (brainstem driving ventilation) and plant (ventilation driving CO2) gain in the setting of a delayed feed back (i.e., low cardiac output). It is thought this type of apnea is a result of moderately to severely impaired cardiac function and is possibly indicative of high mortality. Treatment of CSA-CSR is best undertaken by treating the underlying cardiac condition which may include with medications, pacemakers, transplantation or continuous positive airway pressure (CPAP). In such patients CPAP exerts unique effects to assist cardiac function and reduce pulmonary edema. Whether CPAP improves survival in this heart failure population remains to be determined.
Ebw Assisted Plasma Current Startup in Mast
NASA Astrophysics Data System (ADS)
Shevchenko, Vladimir; Saveliev, Alexander
2009-04-01
EBW current drive assisted plasma current start-up has been demonstrated for the first time in a tokamak. It was shown that plasma currents up to 17 kA can be generated non-inductively by 100 kW of RF power injected. With optimized vertical field ramps, plasma currents up to 33 kA have been achieved without the use of solenoid flux. With limited solenoid assist (0.2 V × 20 ms, less than 0.5% of total solenoid flux), plasma currents up to 55 kA have been generated and sustained further non-inductively. Experimentally obtained plasma currents are consistent with Fokker-Planck modelling.
Robotic thoracic surgery: technical considerations and learning curve for pulmonary resection.
Veronesi, Giulia
2014-05-01
Retrospective series indicate that robot-assisted approaches to lung cancer resection offer comparable radicality and safety to video-assisted thoracic surgery or open surgery. More intuitive movements, greater flexibility, and high-definition three-dimensional vision overcome limitations of video-assisted thoracic surgery and may encourage wider adoption of robotic surgery for lung cancer, particularly as more early stage cases are diagnosed by screening. High capital and running costs, limited instrument availability, and long operating times are important disadvantages. Entry of competitor companies should drive down costs. Studies are required to assess quality of life, morbidity, oncologic radicality, and cost effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
van Boeyen, Roger W. (Inventor); Reeh, Jonathan A. (Inventor); Kesmez, Mehmet (Inventor); Heselmeyer, Eric A. (Inventor); Parkey, Jeffrey S. (Inventor)
2016-01-01
An electrochemically actuated pump and an electrochemical actuator for use with a pump. The pump includes one of various stroke volume multiplier configurations with the pressure of a pumping fluid assisting actuation of a driving fluid bellows. The electrochemical actuator has at least one electrode fluidically coupled to the driving fluid chamber of the first pump housing and at least one electrode fluidically coupled to the driving fluid chamber of the second pump housing. Accordingly, the electrochemical actuator selectively pressurizes hydrogen gas within a driving fluid chamber. The actuator may include a membrane electrode assembly including an ion exchange membrane with first and second catalyzed electrodes in contact with opposing sides of the membrane, and first and second hydrogen gas chambers in fluid communication with the first and second electrodes, respectively. A controller may reverse the polarity of a voltage source electrically coupled to the current collectors.
Baedorf Kassis, Elias; Loring, Stephen H; Talmor, Daniel
2016-08-01
The driving pressure of the respiratory system has been shown to strongly correlate with mortality in a recent large retrospective ARDSnet study. Respiratory system driving pressure [plateau pressure-positive end-expiratory pressure (PEEP)] does not account for variable chest wall compliance. Esophageal manometry can be utilized to determine transpulmonary driving pressure. We have examined the relationships between respiratory system and transpulmonary driving pressure, pulmonary mechanics and 28-day mortality. Fifty-six patients from a previous study were analyzed to compare PEEP titration to maintain positive transpulmonary end-expiratory pressure to a control protocol. Respiratory system and transpulmonary driving pressures and pulmonary mechanics were examined at baseline, 5 min and 24 h. Analysis of variance and linear regression were used to compare 28 day survivors versus non-survivors and the intervention group versus the control group, respectively. At baseline and 5 min there was no difference in respiratory system or transpulmonary driving pressure. By 24 h, survivors had lower respiratory system and transpulmonary driving pressures. Similarly, by 24 h the intervention group had lower transpulmonary driving pressure. This decrease was explained by improved elastance and increased PEEP. The results suggest that utilizing PEEP titration to target positive transpulmonary pressure via esophageal manometry causes both improved elastance and driving pressures. Treatment strategies leading to decreased respiratory system and transpulmonary driving pressure at 24 h may be associated with improved 28 day mortality. Studies to clarify the role of respiratory system and transpulmonary driving pressures as a prognosticator and bedside ventilator target are warranted.
Mietkiewicz, Marie-Claude; Ostrowski, Madeleine
2015-09-01
For many old people, driving takes an important place in the daily living activities and contributes to carry on their autonomy and self-esteem. However, many studies showed a link between car accidents and Alzheimer's disease, even in the early stages of dementia, and people caring for these patients inevitably ask the question: "Is my patient with Alzheimer's disease still able to drive his car?" Guides devoted to caregivers can play an important role to improve the knowledge of Alzheimer's disease and to afford advices for patients managing. To assess how these guides handle the question of patients driving, we made a survey of the 46 French caregiver guides (re)published between 1988 and 2013. The question of driving is raised with more or less details in 31 guides. All state that driving should be discontinued but that the consequences of this decision on the patient autonomy should be taken into account. A few guides provide clues to assess driving competence for the patients, and many propose advices to support the implementation of the driving discontinuity decision, such as to discuss with the patient to persuade him to stop driving, to ask for assistance by the family physician, to hide the car's keys or to disconnect its battery... In France, physicians are not allowed to prohibit driving or to report dangerous driving to authorities. Ultimately, the caregivers remain faced with the ethical dilemma to choose between safety and the patient's autonomy preservation. Therefore the responsibility for the patient to persist or give up driving only falls to them.
The Visual Representation and Acquisition of Driving Knowledge for Autonomous Vehicle
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxia; Jiang, Qing; Li, Ping; Song, LiangTu; Wang, Rujing; Yu, Biao; Mei, Tao
2017-09-01
In this paper, the driving knowledge base of autonomous vehicle is designed. Based on the driving knowledge modeling system, the driving knowledge of autonomous vehicle is visually acquired, managed, stored, and maintenanced, which has vital significance for creating the development platform of intelligent decision-making systems of automatic driving expert systems for autonomous vehicle.
Merging spatially variant physical process models under an optimized systems dynamics framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cain, William O.; Lowry, Thomas Stephen; Pierce, Suzanne A.
The complexity of water resource issues, its interconnectedness to other systems, and the involvement of competing stakeholders often overwhelm decision-makers and inhibit the creation of clear management strategies. While a range of modeling tools and procedures exist to address these problems, they tend to be case specific and generally emphasize either a quantitative and overly analytic approach or present a qualitative dialogue-based approach lacking the ability to fully explore consequences of different policy decisions. The integration of these two approaches is needed to drive toward final decisions and engender effective outcomes. Given these limitations, the Computer Assisted Dispute Resolution systemmore » (CADRe) was developed to aid in stakeholder inclusive resource planning. This modeling and negotiation system uniquely addresses resource concerns by developing a spatially varying system dynamics model as well as innovative global optimization search techniques to maximize outcomes from participatory dialogues. Ultimately, the core system architecture of CADRe also serves as the cornerstone upon which key scientific innovation and challenges can be addressed.« less
NASA Astrophysics Data System (ADS)
Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan
2017-06-01
The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.
Using Lighting And Visual Information To Alter Driver Behavior
DOT National Transportation Integrated Search
2012-08-01
Inappropriate traffic speeds are a major cause of traffic fatalities. Since driving is a task with a substantial contribution : from vision, the use of lighting and visual information such as signage could assist in providing appropriate cues to : en...
Using lighting and visual information to alter driver behavior.
DOT National Transportation Integrated Search
2012-08-01
Inappropriate traffic speeds are a major cause of traffic fatalities. Since driving is a task with a substantial contribution : from vision, the use of lighting and visual information such as signage could assist in providing appropriate cues to : en...
SafeTrip 21 initiative : networked traveler foresighted driving field experiment, final report.
DOT National Transportation Integrated Search
2011-04-01
The Networked Traveler Project was originally conceived to leverage the explosive rise of smartphones as a : communications gateway to bring real-time traveler assistance concepts from the ITS community to the American : people. The Networked Travele...
Solar Technical Assistance Team 2012 Webinars | State, Local, and Tribal
sessions are available: What a Successful Solar Market Can Do for You Solar Economics for Policymakers Market? Policy Environments That Draw Manufacturers and Create Jobs Regulatory Strategies for Driving the Distributed Solar Market
Validation of the standardized field sobriety test battery at BACs below 0.10 percent
DOT National Transportation Integrated Search
1998-08-01
This study evaluated the accuracy of the National Highway Traffic Safety Administration's (NHTSA's) Standardized Field Sobriety Test (SFST) battery to assist officers in making arrest decisions for Driving While Intoxicated (DWI) at blood alcohol con...
Rotor and bearing system for a turbomachine
Lubell, Daniel; Weissert, Dennis
2006-09-26
A rotor and bearing system for a turbomachine. The turbomachine includes a drive shaft, an impeller positioned on the drive shaft, and a turbine positioned on the drive shaft proximate to the impeller. The bearing system comprises one gas journal bearing supporting the drive shaft between the impeller and the turbine. The area between the impeller and the turbine is an area of increased heat along the drive shaft in comparison to other locations along the drive shaft. The section of the drive shaft positioned between impeller and the turbine is also a section of the drive shaft that experiences increased stressed and load in the turbomachine. The inventive bearing machine system positions only one radial bearing in this area of increased stress and load.
Design and simulation of the direct drive servo system
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Liu, Zhao; Song, Libin; Yi, Qiang; Chen, Ken; Zhang, Zhenchao
2010-07-01
As direct drive technology is finding their way into telescope drive designs for its many advantages, it would push to more reliable and cheaper solutions for future telescope complex motion system. However, the telescope drive system based on the direct drive technology is one high integrated electromechanical system, which one complex electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The telescope is one ultra-exact, ultra-speed, high precision and huge inertial instrument, which the direct torque motor adopted by the telescope drive system is different from traditional motor. This paper explores the design process and some simulation results are discussed.
14 CFR 27.923 - Rotor drive system and control mechanism tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... purpose of this paragraph, an affected power input includes all parts of the rotor drive system which can... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor drive system and control mechanism... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27...
14 CFR 27.923 - Rotor drive system and control mechanism tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... purpose of this paragraph, an affected power input includes all parts of the rotor drive system which can... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor drive system and control mechanism... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27...
DOT National Transportation Integrated Search
1998-04-01
The effect on driving performance of using a speed, steering, and gap control system (SSGCS) and a collision warning system (CWS) was assessed in an experiment conducted in the Iowa Driving Simulator. Driving performance data were obtained from 52 dr...
14 CFR 27.923 - Rotor drive system and control mechanism tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section... affect test results may be conducted. (b) Each rotor drive system and control mechanism must be tested...
14 CFR 27.923 - Rotor drive system and control mechanism tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor drive system and control mechanism....923 Rotor drive system and control mechanism tests. (a) Each part tested as prescribed in this section... affect test results may be conducted. (b) Each rotor drive system and control mechanism must be tested...
Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database
Satoh, Yutaka; Aoki, Yoshimitsu; Oikawa, Shoko; Matsui, Yasuhiro
2018-01-01
The paper presents an emerging issue of fine-grained pedestrian action recognition that induces an advanced pre-crush safety to estimate a pedestrian intention in advance. The fine-grained pedestrian actions include visually slight differences (e.g., walking straight and crossing), which are difficult to distinguish from each other. It is believed that the fine-grained action recognition induces a pedestrian intention estimation for a helpful advanced driver-assistance systems (ADAS). The following difficulties have been studied to achieve a fine-grained and accurate pedestrian action recognition: (i) In order to analyze the fine-grained motion of a pedestrian appearance in the vehicle-mounted drive recorder, a method to describe subtle change of motion characteristics occurring in a short time is necessary; (ii) even when the background moves greatly due to the driving of the vehicle, it is necessary to detect changes in subtle motion of the pedestrian; (iii) the collection of large-scale fine-grained actions is very difficult, and therefore a relatively small database should be focused. We find out how to learn an effective recognition model with only a small-scale database. Here, we have thoroughly evaluated several types of configurations to explore an effective approach in fine-grained pedestrian action recognition without a large-scale database. Moreover, two different datasets have been collected in order to raise the issue. Finally, our proposal attained 91.01% on National Traffic Science and Environment Laboratory database (NTSEL) and 53.23% on the near-miss driving recorder database (NDRDB). The paper has improved +8.28% and +6.53% from baseline two-stream fusion convnets. PMID:29461473
Improving Night Time Driving Safety Using Vision-Based Classification Techniques.
Chien, Jong-Chih; Chen, Yong-Sheng; Lee, Jiann-Der
2017-09-24
The risks involved in nighttime driving include drowsy drivers and dangerous vehicles. Prominent among the more dangerous vehicles around at night are the larger vehicles which are usually moving faster at night on a highway. In addition, the risk level of driving around larger vehicles rises significantly when the driver's attention becomes distracted, even for a short period of time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two components work separately for the single purpose of alerting the driver in dangerous situations. The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful state to receive and process warnings; this is the driver drowsiness detection component. The driver drowsiness detection component uses infrared images of the driver to analyze his eyes' movements using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver's eyes show distraction and are closed for a longer than usual duration. Experimental results show that this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable to previous results using more sophisticated methods. The purpose of the second component is to alert the driver when the driver's vehicle is moving around larger vehicles at dusk or night time. The large vehicle detection component accepts images from a regular video driving recorder as input. A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features classifier, is proposed to avoid false negatives. In both components, we propose an improved version of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments were performed to test the effects of the MSR and each classifier, and the results are presented in experimental results section of this paper.
Improving Night Time Driving Safety Using Vision-Based Classification Techniques
Chien, Jong-Chih; Chen, Yong-Sheng; Lee, Jiann-Der
2017-01-01
The risks involved in nighttime driving include drowsy drivers and dangerous vehicles. Prominent among the more dangerous vehicles around at night are the larger vehicles which are usually moving faster at night on a highway. In addition, the risk level of driving around larger vehicles rises significantly when the driver’s attention becomes distracted, even for a short period of time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two components work separately for the single purpose of alerting the driver in dangerous situations. The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful state to receive and process warnings; this is the driver drowsiness detection component. The driver drowsiness detection component uses infrared images of the driver to analyze his eyes’ movements using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver’s eyes show distraction and are closed for a longer than usual duration. Experimental results show that this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable to previous results using more sophisticated methods. The purpose of the second component is to alert the driver when the driver’s vehicle is moving around larger vehicles at dusk or night time. The large vehicle detection component accepts images from a regular video driving recorder as input. A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features classifier, is proposed to avoid false negatives. In both components, we propose an improved version of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments were performed to test the effects of the MSR and each classifier, and the results are presented in experimental results section of this paper. PMID:28946643
Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope.
Yang, Bo; Wang, Shourong; Li, Hongsheng; Zhou, Bailing
2009-01-01
A new closed-loop drive scheme which decouples the phase and the gain of the closed-loop driving system was designed in a Silicon Micro-Gyroscope (SMG). We deduce the system model of closed-loop driving and use stochastic averaging to obtain an approximate "slow" system that clarifies the effect of thermal noise. The effects of mechanical-thermal noise on the driving performance of the SMG, including the noise spectral density of the driving amplitude and frequency, are derived. By calculating and comparing the noise amplitude due to thermal noise both in the opened-loop driving and in the closed-loop driving, we find that the closed-loop driving does not reduce the RMS noise amplitude. We observe that the RMS noise frequency can be reduced by increasing the quality factor and the drive amplitude in the closed-loop driving system. The experiment and simulation validate the feasibility of closed-loop driving and confirm the validity of the averaged equation and its stablility criterion. The experiment and simulation results indicate the electrical noise of closed-loop driving circuitry is bigger than the mechanical-thermal noise and as the driving mass decreases, the mechanical-thermal noise may get bigger than the electrical noise of the closed-loop driving circuitry.
Ockwell, David; Lovett, Jon C
2005-04-01
Using Cape York Peninsula, Queensland, Australia as a case study, this paper combines field sampling of woody vegetation with cost-benefit analysis to compare the social optimality of fire-assisted pastoralism with sustainable forestry. Carbon sequestration is estimated to be significantly higher in the absence of fire. Integration of carbon sequestration benefits for mitigating future costs of climate change into cost-benefit analysis demonstrates that sustainable forestry is a more socially optimal land use than fire-assisted pastoralism. Missing markets for carbon, however, imply that fire-assisted pastoralism will continue to be pursued in the absence of policy intervention. Creation of markets for carbon represents a policy solution that has the potential to drive land use away from fire-assisted pastoralism towards sustainable forestry and environmental conservation.
Evaluation of an intelligent wheelchair system for older adults with cognitive impairments
2013-01-01
Background Older adults are the most prevalent wheelchair users in Canada. Yet, cognitive impairments may prevent an older adult from being allowed to use a powered wheelchair due to safety and usability concerns. To address this issue, an add-on Intelligent Wheelchair System (IWS) was developed to help older adults with cognitive impairments drive a powered wheelchair safely and effectively. When attached to a powered wheelchair, the IWS adds a vision-based anti-collision feature that prevents the wheelchair from hitting obstacles and a navigation assistance feature that plays audio prompts to help users manoeuvre around obstacles. Methods A two stage evaluation was conducted to test the efficacy of the IWS. Stage One: Environment of Use – the IWS’s anti-collision and navigation features were evaluated against objects found in a long-term care facility. Six different collision scenarios (wall, walker, cane, no object, moving and stationary person) and three different navigation scenarios (object on left, object on right, and no object) were performed. Signal detection theory was used to categorize the response of the system in each scenario. Stage Two: User Trials – single-subject research design was used to evaluate the impact of the IWS on older adults with cognitive impairment. Participants were asked to drive a powered wheelchair through a structured obstacle course in two phases: 1) with the IWS and 2) without the IWS. Measurements of safety and usability were taken and compared between the two phases. Visual analysis and phase averages were used to analyze the single-subject data. Results Stage One: The IWS performed correctly for all environmental anti-collision and navigation scenarios. Stage Two: Two participants completed the trials. The IWS was able to limit the number of collisions that occurred with a powered wheelchair and lower the perceived workload for driving a powered wheelchair. However, the objective performance (time to complete course) of users navigating their environment did not improve with the IWS. Conclusions This study shows the efficacy of the IWS in performing with a potential environment of use, and benefiting members of its desired user population to increase safety and lower perceived demands of powered wheelchair driving. PMID:23924489
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less
Evaluating selection and efficacy of pressure-relieving equipment.
Chaloner, Donna; Stevens, Jenny
2003-06-01
The drive towards evidence-based practice has highlighted the lack of randomized controlled trials that compare interventions such as pressure-relieving medical devices. This may influence practitioners, particularly purchasing practitioners, to consider other types of evidence when appraising literature to determine clinical practice and support recommendations and local guidelines. This article will illustrate the development of an audit tool used to evaluate nurses' knowledge and skills in patient assessment, selection and installation of appropriate pressure-relieving equipment. The tool also assists in assessing clinical effectiveness and user satisfaction of equipment. This article focuses on a small audit of the Karomed Ltd Transair 1500 (also known as the 3-Comm) mattress replacement system.
Advanced automotive diesel engine system study
NASA Technical Reports Server (NTRS)
1983-01-01
A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.
DOT National Transportation Integrated Search
2017-12-01
Visions of self-driving vehicles abound in popular science and entertainment. Many programs are at work to make a reality catch of this imagination. Vehicle automation has progressed rapidly in recent years, from simple driver assistance technologies...
Drinking-driving attitudes: a survey of Fairfax County.
DOT National Transportation Integrated Search
1973-01-01
The objective of this study was to gather and tabulate baseline data on selected attitudes and opinions held by the public of Fairfax County, Virginia. The study was designed to assist the program of the Alcohol Safety Action Project, currently in op...
The detection of DWI at BACs below 0.10
DOT National Transportation Integrated Search
1997-09-01
The objective of the research described in this report has been to develop training materials to assist law enforcement officers in the accurate detection of motorists who are driving while impaired (DWI) at the 0.08 BAC level. The project was compos...
Liu, Shu-Yen; Sheu, J K; Lin, Yu-Chuan; Chen, Yu-Tong; Tu, S J; Lee, M L; Lai, W C
2013-11-04
Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.
Executive Function Capacities, Negative Driving Behavior and Crashes in Young Drivers
Winston, Flaura K.
2017-01-01
Motor vehicle crashes remain a leading cause of injury and death in adolescents, with teen drivers three times more likely to be in a fatal crash when compared to adults. One potential contributing risk factor is the ongoing development of executive functioning with maturation of the frontal lobe through adolescence and into early adulthood. Atypical development resulting in poor or impaired executive functioning (as in Attention-Deficit/Hyperactivity Disorder) has been associated with risky driving and crash outcomes. However, executive function broadly encompasses a number of capacities and domains (e.g., working memory, inhibition, set-shifting). In this review, we examine the role of various executive function sub-processes in adolescent driver behavior and crash rates. We summarize the state of methods for measuring executive control and driving outcomes and highlight the great heterogeneity in tools with seemingly contradictory findings. Lastly, we offer some suggestions for improved methods and practical ways to compensate for the effects of poor executive function (such as in-vehicle assisted driving devices). Given the key role that executive function plays in safe driving, this review points to an urgent need for systematic research to inform development of more effective training and interventions for safe driving among adolescents. PMID:29143762
Choi, Namkee G; DiNitto, Diana M
2016-06-01
To examine alternative means of mobility that nondriving older adults rely on and their impact on well-being. Data from the 2011 (T1, N = 6,680) and 2012 (T2, N = 5,413) interview waves of the National Health and Aging Trends Study were used to examine sample characteristics by driving status, use of alternative mobility resources, and perceived transportation-related barriers among ex-drivers and nondrivers, and their association with depressive symptoms. A majority of nondrivers relied on their informal support system and/or paid assistance to drive them to places. About half reported walking/using a wheelchair or scooter. A significant proportion of never drivers also used public transportation and van/shuttle services, whereas a smaller proportion of ex-drivers used them. Nondrivers who walked for transport had lower depressive symptoms than those who did not walk at either T1 or T2, and perception of transportation barriers to visiting friends/family was associated with higher depressive symptoms at T1 only. Older adults' mobility needs should be met through increasing walkability, public and paratransit transportation, supplemental senior transportation, and increasing informal caregivers-transportation providers' ability to aid older adults. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mingyu; WolfeIV, Edward; Craig, Timothy
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs tomore » achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.« less
Mobility and safety issues in drivers with dementia.
Carr, David B; O'Neill, Desmond
2015-10-01
Although automobiles remain the mobility method of choice for older adults, late-life cognitive impairment and progressive dementia will eventually impair the ability to meet transport needs of many. There is, however, no commonly utilized method of assessing dementia severity in relation to driving, no consensus on the specific types of assessments that should be applied to older drivers with cognitive impairment, and no gold standard for determining driving fitness or approaching loss of mobility and subsequent counseling. Yet, clinicians are often called upon by patients, their families, health professionals, and driver licensing authorities to assess their patients' fitness-to-drive and to make recommendations about driving privileges. We summarize the literature on dementia and driving, discuss evidenced-based assessments of fitness-to-drive, and outline the important ethical and legal concerns. We address the role of physician assessment, referral to neuropsychology, functional screens, dementia severity tools, driving evaluation clinics, and driver licensing authority referrals that may assist clinicians with an evaluation. Finally, we discuss mobility counseling (e.g. exploration of transportation alternatives) since health professionals need to address this important issue for older adults who lose the ability to drive. The application of a comprehensive, interdisciplinary approach to the older driver with cognitive impairment will have the best opportunity to enhance our patients' social connectedness and quality of life, while meeting their psychological and medical needs and maintaining personal and public safety.
NASA Astrophysics Data System (ADS)
Shimura, Akitoshi; Aizono, Takeiki; Hiraiwa, Masashi; Sugano, Shigeki
A QoS management technique based on an autonomous decentralized mobility system, which is an autonomous decentralized system enhanced to provide mobile stations with information about urgent roadway situations, is proposed in this paper. This technique enables urgent messages to be flexibly and quickly transmitted to mobile stations by multiple decentralized base stations using dedicated short range communication. It also supports the easy addition of additional base stations. Each station autonomously creates information-delivery communities based on the urgency of the messages it receives through the roadside network and the distances between the senders and receivers. Each station dynamically determines the urgency of messages according to the message content and the speed of the mobile stations. Evaluation of this technique applied to the Smart Gateway system, which provides driving-assistance services to mobile stations through dedicated short-range communication, demonstrated its effectiveness and that it is suitable for actual systems.
Crowdsourcing-Assisted Radio Environment Database for V2V Communication.
Katagiri, Keita; Sato, Koya; Fujii, Takeo
2018-04-12
In order to realize reliable Vehicle-to-Vehicle (V2V) communication systems for autonomous driving, the recognition of radio propagation becomes an important technology. However, in the current wireless distributed network systems, it is difficult to accurately estimate the radio propagation characteristics because of the locality of the radio propagation caused by surrounding buildings and geographical features. In this paper, we propose a measurement-based radio environment database for improving the accuracy of the radio environment estimation in the V2V communication systems. The database first gathers measurement datasets of the received signal strength indicator (RSSI) related to the transmission/reception locations from V2V systems. By using the datasets, the average received power maps linked with transmitter and receiver locations are generated. We have performed measurement campaigns of V2V communications in the real environment to observe RSSI for the database construction. Our results show that the proposed method has higher accuracy of the radio propagation estimation than the conventional path loss model-based estimation.
Strategic analytics: towards fully embedding evidence in healthcare decision-making.
Garay, Jason; Cartagena, Rosario; Esensoy, Ali Vahit; Handa, Kiren; Kane, Eli; Kaw, Neal; Sadat, Somayeh
2015-01-01
Cancer Care Ontario (CCO) has implemented multiple information technology solutions and collected health-system data to support its programs. There is now an opportunity to leverage these data and perform advanced end-to-end analytics that inform decisions around improving health-system performance. In 2014, CCO engaged in an extensive assessment of its current data capacity and capability, with the intent to drive increased use of data for evidence-based decision-making. The breadth and volume of data at CCO uniquely places the organization to contribute to not only system-wide operational reporting, but more advanced modelling of current and future state system management and planning. In 2012, CCO established a strategic analytics practice to assist the agency's programs contextualize and inform key business decisions and to provide support through innovative predictive analytics solutions. This paper describes the organizational structure, services and supporting operations that have enabled progress to date, and discusses the next steps towards the vision of embedding evidence fully into healthcare decision-making. Copyright © 2014 Longwoods Publishing.
Slip-based terrain estimation with a skid-steer vehicle
NASA Astrophysics Data System (ADS)
Reina, Giulio; Galati, Rocco
2016-10-01
In this paper, a novel approach for online terrain characterisation is presented using a skid-steer vehicle. In the context of this research, terrain characterisation refers to the estimation of physical parameters that affects the terrain ability to support vehicular motion. These parameters are inferred from the modelling of the kinematic and dynamic behaviour of a skid-steer vehicle that reveals the underlying relationships governing the vehicle-terrain interaction. The concept of slip track is introduced as a measure of the slippage experienced by the vehicle during turning motion. The proposed terrain estimation system includes common onboard sensors, that is, wheel encoders, electrical current sensors and yaw rate gyroscope. Using these components, the system can characterise terrain online during normal vehicle operations. Experimental results obtained from different surfaces are presented to validate the system in the field showing its effectiveness and potential benefits to implement adaptive driving assistance systems or to automatically update the parameters of onboard control and planning algorithms.
Crowdsourcing-Assisted Radio Environment Database for V2V Communication †
Katagiri, Keita; Fujii, Takeo
2018-01-01
In order to realize reliable Vehicle-to-Vehicle (V2V) communication systems for autonomous driving, the recognition of radio propagation becomes an important technology. However, in the current wireless distributed network systems, it is difficult to accurately estimate the radio propagation characteristics because of the locality of the radio propagation caused by surrounding buildings and geographical features. In this paper, we propose a measurement-based radio environment database for improving the accuracy of the radio environment estimation in the V2V communication systems. The database first gathers measurement datasets of the received signal strength indicator (RSSI) related to the transmission/reception locations from V2V systems. By using the datasets, the average received power maps linked with transmitter and receiver locations are generated. We have performed measurement campaigns of V2V communications in the real environment to observe RSSI for the database construction. Our results show that the proposed method has higher accuracy of the radio propagation estimation than the conventional path loss model-based estimation. PMID:29649174
Compound synchronization of four memristor chaotic oscillator systems and secure communication.
Sun, Junwei; Shen, Yi; Yin, Quan; Xu, Chengjie
2013-03-01
In this paper, a novel kind of compound synchronization among four chaotic systems is investigated, where the drive systems have been conceptually divided into two categories: scaling drive systems and base drive systems. Firstly, a sufficient condition is obtained to ensure compound synchronization among four memristor chaotic oscillator systems based on the adaptive technique. Secondly, a secure communication scheme via adaptive compound synchronization of four memristor chaotic oscillator systems is presented. The corresponding theoretical proofs and numerical simulations are given to demonstrate the validity and feasibility of the proposed control technique. The unpredictability of scaling drive systems can additionally enhance the security of communication. The transmitted signals can be split into several parts loaded in the drive systems to improve the reliability of communication.
The Strategic Development of the Trinidad and Tobago Defence Force
2009-06-12
and ecommerce . In combination, these driving forces of change led to an explosion in world trade, an exponential increase in business...the troops into rural communities and assisted villagers in community structural improvements and socialized with them. This was designed to win
DOT National Transportation Integrated Search
2015-11-01
The guide is a basic reference to assist State Highway Safety Offices in selecting effective, evidence- based : countermeasures for traffic safety problem areas. These areas include: : - Alcohol-and Drug-Impaired Driving; : - Seat Belts and Child Res...
DOT National Transportation Integrated Search
2013-04-01
The guide is a basic reference to assist State Highway Safety Offices (SHSOs) in selecting effective, evidence-based countermeasures for traffic safety problem areas. These areas include: : - Alcohol-Impaired and Drugged Driving; : - Seat Belts and C...
Zhang, Zhen; Liu, Fang; He, Caian; Yu, Yueli; Wang, Min
2017-12-01
Application of an aqueous two-phase system (ATPS) coupled with ultrasonic technology for the extraction of phloridzin from Malus micromalus Makino was evaluated and optimized by response surface methodology (RSM). The ethanol/ammonium sulfate ATPS was selected for detailed investigation, including the phase diagram, effect of phase composition and extract conditions on the partition of phloridzin, and the recycling of ammonium sulfate. In addition, the evaluation of extraction efficiency and the identification of phloridzin were investigated. The optimal partition coefficient (6.55) and recovery (92.86%) of phloridzin were obtained in a system composed of 35% ethanol (w/w) and 16% (NH 4 ) 2 SO 4 (w/w), 51:1 liquid-to-solid ratio, and extraction temperature of 36 °C. Comparing with the traditional solvent extraction with respective 35% and 80% ethanol, ultrasonic-assisted aqueous two-phase extraction (UAATPE) strategy had significant advantages with lower ethanol consumption, less impurity of sugar and protein, and higher extracting efficiency of phloridzin. Our result indicated that UAATPE was a valuable method for the extraction and preliminary purification of phloridzin from the fruit of Malus micromalus Makino, which has great potential in the deep processing of Malus micromalus Makino industry to increase these fruits' additional value and drive the local economic development. © 2017 Institute of Food Technologists®.
Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle
NASA Astrophysics Data System (ADS)
Zhang, Han; Zhao, Wanzhong
2018-02-01
To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.
29 CFR 825.600 - Special rules for school employees, definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to other kinds of educational institutions, such as colleges and universities, trade schools, and..., driving instructors, and special education assistants such as signers for the hearing impaired. It does... their principal job actual teaching or instructing, nor does it include auxiliary personnel such as...
29 CFR 825.600 - Special rules for school employees, definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... apply to other kinds of educational institutions, such as colleges and universities, trade schools, and..., driving instructors, and special education assistants such as signers for the hearing impaired. It does... their principal job actual teaching or instructing, nor does it include auxiliary personnel such as...
The APPA Journey and RMA Fourteeners Club
ERIC Educational Resources Information Center
Morris, John P.
2012-01-01
The APPA journey represents a continuum through one's career in educational facilities management. Early in one's career, APPA can assist with professional development such as the Facilities Drive-In Workshop, the Supervisor's Toolkit, the APPA Institute for Facilities Management, and the APPA Leadership Academy. APPA provides for both…
Trends in Developmental Education.
ERIC Educational Resources Information Center
Arendale, David
This paper contains an overview of policy decisions being made at the state and national levels about learning assistance activities in higher education and developmental education. The principles driving those decisions are also outlined. Some policymakers want to fine the high schools from which under prepared students have graduated; others…
Generalized speed and cost rate in transitionless quantum driving
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu; You, Wen-Long; Dong, Yu-Li; Zhang, Chengjie; Yang, W. L.
2018-03-01
Transitionless quantum driving, also known as counterdiabatic driving, is a unique shortcut technique to adiabaticity, enabling a fast-forward evolution to the same target quantum states as those in the adiabatic case. However, as nothing is free, the fast evolution is obtained at the cost of stronger driving fields. Here, given the system initially gets prepared in equilibrium states, we construct relations between the dynamical evolution speed and the cost rate of transitionless quantum driving in two scenarios: one that preserves the transitionless evolution for a single energy eigenstate (individual driving), and the other that maintains all energy eigenstates evolving transitionlessly (collective driving). Remarkably, we find that individual driving may cost as much as collective driving, in contrast to the common belief that individual driving is more economical than collective driving in multilevel systems. We then present a potentially practical proposal to demonstrate the above phenomena in a three-level Landau-Zener model using the electronic spin system of a single nitrogen-vacancy center in diamond.
An efficient supersonic wind tunnel drive system for Mach 2.5 flows
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.
1991-01-01
A novel efficient drive system has been developed which provides for the continuous operation of a pitot Mach 2.5 wind tunnel at compression ratios down to 0.625:1. The drive system does not require an overpressure to start, and no hysteresis has been observed. The general design of the proof-of-concept wind tunnel using the new drive system and its modifications are described.
Bueno, Mercedes; Fort, Alexandra; Francois, Mathilde; Ndiaye, Daniel; Deleurence, Philippe; Fabrigoule, Colette
2013-04-29
Forward Collision Warning Systems (FCWS) are expected to assist drivers; however, it is not completely clear whether these systems are of benefit to distracted drivers as much as they are to undistracted drivers. This study aims at investigating further the analysis of the effectiveness of a surrogate FCWS according to the attentional state of participants. In this experiment electrophysiological and behavioural data were recording while participants were required to drive in a simple car simulator and to react to the braking of the lead vehicle which could be announced by a warning system. The effectiveness of this warning system was evaluated when drivers were distracted or not by a secondary cognitive task. In a previous study, the warning signal was not completely effective likely due to the presence of another predictor of the forthcoming braking which competes with the warning. By eliminating this secondary predictor in the present study, the results confirmed the negative effect of the secondary task and revealed the expected effectiveness of the warning system at behavioural and electrophysiological levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool
NASA Astrophysics Data System (ADS)
Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng
2018-03-01
Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.
Drunk driving warning system (DDWS). Volume 1, System concept and description
DOT National Transportation Integrated Search
1983-11-01
The Drunk Driving Warning System (DDWS) is a vehicle-mounted device for testing driver impairment and activating alarms. The driver must pass a steering competency test in order to drive the car in a normal manner. The emergency flasher system operat...
CONTEMPORARY SITUATIONS AND PROBLEMS OF ROAD/BRIDGE MAINTENANCE TECHNICAL COOPERATION PROJECTS
NASA Astrophysics Data System (ADS)
Nishimiya, Noriaki; Sanui, Kazumasa; Mizota, Yuzo
It is widely acknowledged that roads are the most important transport infrastructure in developing countries. Unlike railroads requiring organizations and systems to operate, individuals can drive on roads. Almost all donors have assisted developing countr ies for new road constructions and rehabilitations. Report of insufficient maintenance in the developing countries, however, has been notable. As a result of the maintenance problems, deterioration of roads is pr ogressing with speed more than expected. It causes the traffic safety problems and an obstacle of economic development. JICA and other donors recognize that this situation can not be overlooked and reci pient countries are increasing their expectation of obtaining assistance on road/bridge maintenance. JICA has implemented over 10 technical cooper ation projects for road/b ridge maintenance in developing countries. JICA conducted a study to review those projects comprehensively. That study aims at obtaining problems, lessons learned and discussion material for policy making and method improvement for future similar pr ojects. This report introduces the outline of the study including additional analysis and recommendations by the authors.
Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch
NASA Astrophysics Data System (ADS)
Han, Young-Min; Choi, Seung-Bok
2014-10-01
This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated.
Eye Tracking and Head Movement Detection: A State-of-Art Survey
2013-01-01
Eye-gaze detection and tracking have been an active research field in the past years as it adds convenience to a variety of applications. It is considered a significant untraditional method of human computer interaction. Head movement detection has also received researchers' attention and interest as it has been found to be a simple and effective interaction method. Both technologies are considered the easiest alternative interface methods. They serve a wide range of severely disabled people who are left with minimal motor abilities. For both eye tracking and head movement detection, several different approaches have been proposed and used to implement different algorithms for these technologies. Despite the amount of research done on both technologies, researchers are still trying to find robust methods to use effectively in various applications. This paper presents a state-of-art survey for eye tracking and head movement detection methods proposed in the literature. Examples of different fields of applications for both technologies, such as human-computer interaction, driving assistance systems, and assistive technologies are also investigated. PMID:27170851
Huang, Yizhe; Sun, Daniel Jian; Tang, Juanyu
2018-04-03
The 3 objectives of this study are to (1) identify the driving style characteristics of taxi drivers in Shanghai and New York City (NYC) using taxi Global Positioning System (GPS) data and make a comparative analysis; (2) explore the influence of different driving style characteristics on the frequency of speeding (who and how?) and (3) explore the influence of driving style characteristics, road attributes, and environmental factors on the speeding rate (when, where, and how?) Methods: This study proposes a driver-road-environment identification (DREI) method to investigate the determinant factors of taxi speeding violations. Driving style characteristics, together with road and environment variables, were obtained based on the GPS data and auxiliary spatiotemporal data in Shanghai and NYC. The daily working hours of taxi drivers in Shanghai (18.6 h) was far more than in NYC (8.5 h). The average occupancy speed of taxi drivers in Shanghai (21.3 km/h) was similar to that of NYC (20.3 km/h). Speeders in both cities had shorter working hours and longer daily driving distance than other taxi drivers, though their daily income was similar. Speeding drivers routinely took long-distance trips (>10 km) and preferred relatively faster routes. Length of segments (1.0-1.5 km) and good traffic condition were associated with high speeding rates, whereas central business district area and secondary road were associated with low speeding rates. Moreover, many speeding violations were identified between 4:00 a.m. and 7:00 a.m. in both Shanghai and NYC and the worst period was between 5:00 a.m. and 6:00 a.m. in both cities. Characteristics of drivers, road attributes, and environment variables should be considered together when studying driver speeding behavior. Findings of this study may assist in stipulating relevant laws and regulations such as stricter offense monitoring in the early morning, long segment supervision, shift rule regulation, and working hour restriction to mitigate the risk of potential crashes.
32 CFR 634.46 - Point system procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System... traffic points or the suspension or revocation of driving privileges on the person's driving record... or driving privileges suspended or revoked when the report of action taken indicates that neither...
32 CFR 634.46 - Point system procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System... traffic points or the suspension or revocation of driving privileges on the person's driving record... or driving privileges suspended or revoked when the report of action taken indicates that neither...
32 CFR 634.46 - Point system procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System... traffic points or the suspension or revocation of driving privileges on the person's driving record... or driving privileges suspended or revoked when the report of action taken indicates that neither...
The application of multilayer elastic beam in MEMS safe and arming system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guozhong, E-mail: liguozhong-bit@bit.edu.cn; Shi, Gengchen; Sui, Li
In this paper, a new approach for a multilayer elastic beam to provide a driving force and driving distance for a MEMS safe and arming system is presented. In particular this is applied where a monolayer elastic beam cannot provide adequate driving force and driving distance at the same time in limited space. Compared with thicker elastic beams, the bilayer elastic beam can provide twice the driving force of a monolayer beam to guarantee the MEMS safe and arming systems work reliably without decreasing the driving distance. In this paper, the theoretical analysis, numerical simulation and experimental verification of themore » multilayer elastic beam is presented. The numerical simulation and experimental results show that the bilayer elastic provides 1.8–2 times the driving force of a monolayer, and a method that improves driving force without reducing the driving distance.« less
Training toddlers seated on mobile robots to drive indoors amidst obstacles.
Chen, Xi; Ragonesi, Christina; Galloway, James C; Agrawal, Sunil K
2011-06-01
Mobility is a causal factor in development. Children with mobility impairments may rely upon power mobility for independence and thus require advanced driving skills to function independently. Our previous studies show that while infants can learn to drive directly to a goal using conventional joysticks in several months of training, they are unable in this timeframe to acquire the advanced skill to avoid obstacles while driving. Without adequate driving training, children are unable to explore the environment safely, the consequences of which may in turn increase their risk for developmental delay. The goal of this research therefore is to train children seated on mobile robots to purposefully and safely drive indoors. In this paper, we present results where ten typically-developing toddlers are trained to drive a robot within an obstacle course. We also report a case study with a toddler with spina-bifida who cannot independently walk. Using algorithms based on artificial potential fields to avoid obstacles, we create force field on the joystick that trains the children to navigate while avoiding obstacles. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. Our results suggest that the use of a force-feedback joystick may yield faster learning than the use of a conventional joystick.
Verberne, Frank M F; Ham, Jaap; Midden, Cees J H
2012-10-01
We examine whether trust in smart systems is generated analogously to trust in humans and whether the automation level of smart systems affects trustworthiness and acceptability of those systems. Trust is an important factor when considering acceptability of automation technology. As shared goals lead to social trust, and intelligent machines tend to be treated like humans, the authors expected that shared driving goals would also lead to increased trustworthiness and acceptability of adaptive cruise control (ACC) systems. In an experiment, participants (N = 57) were presented with descriptions of three ACCs with different automation levels that were described as systems that either shared their driving goals or did not. Trustworthiness and acceptability of all the ACCs were measured. ACCs sharing the driving goals of the user were more trustworthy and acceptable than were ACCs not sharing the driving goals of the user. Furthermore, ACCs that took over driving tasks while providing information were more trustworthy and acceptable than were ACCs that took over driving tasks without providing information. Trustworthiness mediated the effects of both driving goals and automation level on acceptability of ACCs. As when trusting other humans, trusting smart systems depends on those systems sharing the user's goals. Furthermore, based on their description, smart systems that take over tasks are judged more trustworthy and acceptable when they also provide information. For optimal acceptability of smart systems, goals of the user should be shared by the smart systems, and smart systems should provide information to their user.
From advanced driver assistance to autonomous driving: perspectives for photonics sensors
NASA Astrophysics Data System (ADS)
Cochard, Jacques; Bouyé, Clémentine
2016-03-01
Optics components entered in the automotive vehicle one century ago with headlamps and since then move towards even more sophisticated designs in lighting functions. Photonics sensors are just entering now in this market through driver assistance, in complement of incumbent ultrasonic and radar technologies. Gain of market shares is expected for this components with autonomous driving, that was few years ago a nice dream and whose early results exceed surprisingly expectations of roadmaps and historic OEM have quickly joined the course launched by Google Company 5 years ago. Technological components, among them CMOS camera followed by Laser Scanners, cost-effective flash LIDAR are already experimenting their first miles in real condition and new consumers in South Asia plebiscite this new way to drive cars .The issue is still for photonics companies to move from well suited technological solution to mass-production components with corresponding cost reduction. MEMS components that follow the same curve 15 years ago (with market entries in airbags, tire pressure monitoring systems…) experimented the hard pressure on price for wide market adoption. Besides price, which is a CFO issue, photonic technologies will keep in place if they can both reassure OEM CEO and let CTO and designers dream. Reassurance will be through higher level of standardization and reliability of these components whereas dream will be linked to innovative sensing application, e.g spectroscopy.
"Ohio 4-H CARTEENS": Peer Intervention Safety Program.
ERIC Educational Resources Information Center
Cropper, Rebecca J.
1999-01-01
Ohio 4-H's CARTEENS seeks to reduce juvenile traffic violations in a program designed and presented by teen peer educators with guidance and technical assistance from the state highway patrol. Teens examined court data to determine content, which includes defensive driving, rural road safety, and dealing with peer pressure. (SK)
Postpartum Obesity: The Root Problem of Childhood Obesity?
ERIC Educational Resources Information Center
Keen, Valencia Browning; Potts, Claudia Sealey
2011-01-01
Remedying childhood obesity cannot take place without first identifying relevant issues commonly influencing gatekeepers of food for children as well as the role modeling for encouraging or discouraging daily activities. Children cannot drive to the store, form grocery lists or complete menu management tasks without adult assistance. Excessive…
DOT National Transportation Integrated Search
2013-04-01
Text messaging is no longer limited to manual-entry. There are several mobile applications that aim to assist the driver in sending and receiving text messages by incorporating a voice-to-text component. To date, there has been no published research ...
Learning about Environmental Print through Picture Books.
ERIC Educational Resources Information Center
Kuby, Patricia; And Others
1996-01-01
Describes picture books that contain environmental print (print found in the natural environment of a child, such as logos, billboards, and road signs) and how they can be used in the classroom. Includes "ABC Drive!" by Naomi Howland (1994), "The Signmaker's Assistant" by Tedd Arnold (1992), and four others. Also provides a…
Standards for Teachers of Students with Physical and Health Disabilities
ERIC Educational Resources Information Center
Baldwin, Joni L.
2007-01-01
The Council for Exceptional Children (CEC) has been involved in the development of standards for teachers of students with exceptional learning needs since 1922. These standards drive the curriculum of institutions of higher education and state licensing requirements. The Division for Physical and Health Disabilities assisted in developing…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
...: 4055 Faber Place Drive, Suite 201, N. Charleston, SC 29405. FOR FURTHER INFORMATION CONTACT: John Carmichael, SEDAR Program Manager; phone (843) 571-4366; email: [email protected] or Andrea Grabman, SEDAR Administrative Assistant; phone (843) 571-4366; email: [email protected] . SUPPLEMENTARY...
NASA Astrophysics Data System (ADS)
Yavuz, Hande; Bai, Jinbo
2018-06-01
This paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, ω =0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites.
NASA Astrophysics Data System (ADS)
Yavuz, Hande; Bai, Jinbo
2017-09-01
This paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, ω =0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites.
Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path
Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki
2017-01-01
Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622
Panoramic stereo sphere vision
NASA Astrophysics Data System (ADS)
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Microbubble-assisted optofluidic control using a photothermal waveguide
NASA Astrophysics Data System (ADS)
Cheng, YuPeng; Yang, JianXin; Li, ZongBao; Zhu, DeBin; Cai, Xiang; Hu, Xiaowen; Huang, Wen; Xing, XiaoBo
2017-10-01
A convenient and easily controllable microfluidic system was proposed based on a photothermal device. Here, graphene oxide was assembled on an optical waveguide, which could serve as a miniature heat source to generate a microbubble and to control dynamic behaviors of flow by adjusting optical power at the micrometer scale. Micro/nanoparticles were used to demonstrate the trace of fluid flow around the microbubble, which displayed the ability of the flow to capture, transmit, and rotate particles in thermal convection. Correspondingly, three-dimensional theoretical simulation combining thermodynamics with hydrodynamics analyzed the distribution of the velocity field induced by the microbubble for collection and driving of particles. Furthermore, the photothermal waveguide would be developed into a microbubble-based device in the manipulation or transmission of micro/nanoparticles.
A pelvic motion driven electrical stimulator for drop-foot treatment.
Chen, Shih-Wei; Chen, Shih-Ching; Chen, Chiun-Fan; Lai, Jin-Shin; Kuo, Te-Son
2009-01-01
Foot switches operating with force sensitive resistors placed in the shoe sole were considered as an effective way for driving FES assisted walking systems in gait restoration. However, the reliability and durability of the foot switches run down after a certain number of steps. As an alternative for foot switches, a simple, portable, and easy to handle motion driven electrical stimulator (ES) is provided for drop foot treatment. The device is equipped with a single tri-axis accelerometer worn on the pelvis, a commercial dual channel electrical stimulator, and a controller unit. By monitoring the pelvic rotation and acceleration during a walking cycle, the events including heel strike and toe off of each step is thereby predicted by a post-processing neural network model.
Visible and infrared investigations of planet-crossing asteroids and outer solar system objects
NASA Technical Reports Server (NTRS)
Tholen, David J.
1991-01-01
The project is supporting lightcurve photometry, colorimetry, thermal radiometry, and astrometry of selected asteroids. Targets include the planet-crossing population, particularly Earth approachers, which are believed to be the immediate source of terrestrial meteorites, future spacecraft targets, and those objects in the outer belt, primarily the Hilda and Trojan populations, that are dynamically isolated from the main asteroid belt. Goals include the determination of population statistics for the planet-crossing objects, the characterization of spacecraft targets to assist in encounter planning and subsequent interpretation of the data, a comparison of the collisional evolution of dynamically isolated Hilda and Trojan populations with the main belt, and the determination of the mechanism driving the activity of the distant object 2060 Chiron.
Connecting the providers in your healthcare community: one step at a time.
Nelson, Rosemarie
2005-01-01
The practice of medicine is a business of communications. Communications can be facilitated by technology. Healthcare providers organized in medical practices, hospitals, and nursing homes have tremendous needs to effectively communicate within their organizations and between their organizations. The focus on electronic medical records comes not only from the need to communicate but also from a desire to reduce administrative costs and to improve services and quality of care to patients. Frustration with the inadequacies of a paper chart-filing system drives providers in all delivery venues toward technology at an increasing rate. Implementation barriers to technology adoption in medical practices can be overcome by incremental approaches and knowledge-transfer assistance from affiliated community healthcare partners such as hospitals.
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu
This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.
Assessment of wheelchair driving performance in a virtual reality-based simulator
Mahajan, Harshal P.; Dicianno, Brad E.; Cooper, Rory A.; Ding, Dan
2013-01-01
Objective To develop a virtual reality (VR)-based simulator that can assist clinicians in performing standardized wheelchair driving assessments. Design A completely within-subjects repeated measures design. Methods Participants drove their wheelchairs along a virtual driving circuit modeled after the Power Mobility Road Test (PMRT) and in a hallway with decreasing width. The virtual simulator was displayed on computer screen and VR screens and participants interacted with it using a set of instrumented rollers and a wheelchair joystick. Driving performances of participants were estimated and compared using quantitative metrics from the simulator. Qualitative ratings from two experienced clinicians were used to estimate intra- and inter-rater reliability. Results Ten regular wheelchair users (seven men, three women; mean age ± SD, 39.5 ± 15.39 years) participated. The virtual PMRT scores from the two clinicians show high inter-rater reliability (78–90%) and high intra-rater reliability (71–90%) for all test conditions. More research is required to explore user preferences and effectiveness of the two control methods (rollers and mathematical model) and the display screens. Conclusions The virtual driving simulator seems to be a promising tool for wheelchair driving assessment that clinicians can use to supplement their real-world evaluations. PMID:23820148
Merkle, Frank; Boettcher, Wolfgang; Stiller, Brigitte; Hetzer, Roland
2003-06-01
Mechanical cardiac assistance for neonates, infants, children and adolescents may be accomplished with pulsatile ventricular assist devices (VAD) instead of extracorporeal membrane oxygenation or centrifugal pumps. The Berlin Heart VAD consists of extracorporeal, pneumatically driven blood pumps for pulsatile univentricular or biventricular assistance for patients of all age groups. The blood pumps are heparin-coated. The stationary driving unit (IKUS) has the required enhanced compressor performance for pediatric pump sizes. The Berlin Heart VAD was used in a total number of 424 patients from 1987 to November 2001 at our institution. In 45 pediatric patients aged 2 days-17 years the Berlin Heart VAD was applied for long-term support (1-111 days, mean 20 days). There were three patient groups: Group I: "Bridge to transplantation" with various forms of cardiomyopathy (N = 21) or chronic stages of congenital heart disease (N = 9); Group II: "Rescue" in intractable heart failure after corrective surgery for congenital disease (N = 7) or in early graft failure after heart transplantation (N = 1); and Group III: "Acute myocarditis" (N = 7) as either bridge to transplantation or bridge to recovery. Seventeen patients were transplanted after support periods of between 4 and 111 days with 12 long-term survivors, having now survived for up to 10 years. Five patients (Groups I and III) were weaned from the system with four long-term survivors. In Group II only one patient survived after successful transplantation. Prolonged circulatory support with the Berlin Heart VAD is an effective method for bridging until cardiac recovery or transplantation in the pediatric age group. Extubation, mobilization, and enteral nutrition are possible. For long-term use, the Berlin Heart VAD offers advantages over centrifugal pumps and ECMO in respect to patient mobility and safety.
Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii
Buchman, Anna; Marshall, John M.; Ostrovski, Dennis; Yang, Ting; Akbari, Omar S.
2018-01-01
Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii. We demonstrate that this drive system, based on an engineered maternal “toxin” coupled with a linked embryonic “antidote,” is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest. PMID:29666236
Differential-Drive Mobile Robot Control Design based-on Linear Feedback Control Law
NASA Astrophysics Data System (ADS)
Nurmaini, Siti; Dewi, Kemala; Tutuko, Bambang
2017-04-01
This paper deals with the problem of how to control differential driven mobile robot with simple control law. When mobile robot moves from one position to another to achieve a position destination, it always produce some errors. Therefore, a mobile robot requires a certain control law to drive the robot’s movement to the position destination with a smallest possible error. In this paper, in order to reduce position error, a linear feedback control is proposed with pole placement approach to regulate the polynoms desired. The presented work leads to an improved understanding of differential-drive mobile robot (DDMR)-based kinematics equation, which will assist to design of suitable controllers for DDMR movement. The result show by using the linier feedback control method with pole placement approach the position error is reduced and fast convergence is achieved.
Modeling and Positioning of a PZT Precision Drive System.
Liu, Che; Guo, Yanling
2017-11-08
The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.
Modeling and Positioning of a PZT Precision Drive System
Liu, Che; Guo, Yanling
2017-01-01
The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied. PMID:29117140
NASA Astrophysics Data System (ADS)
Wang, Song-Bai; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-07-01
A scheme is proposed to implement quantum state engineering (QSE) in a four-state system via counterdiabatic driving. In the scheme, single- and multi-mode driving methods are used respectively to drive the system to a target state at a predefined time. It is found that a fast QSE can be realized by utilizing simply designed pulses. In addition, a beneficial discussion on the energy consumption between the single- and multi-mode driving protocols shows that the multi-mode driving method seems to have a wider range of applications than the single-mode driving method with respect to different parameters. Finally, the scheme is also helpful for implementing the generalization QSE in high-dimensional systems via the concept of a dressed state. Therefore, the scheme can be implemented with the present experimental technology, which is useful in quantum information processing.
On-road vehicle detection: a review.
Sun, Zehang; Bebis, George; Miller, Ronald
2006-05-01
Developing on-board automotive driver assistance systems aiming to alert drivers about driving environments, and possible collision with other vehicles has attracted a lot of attention lately. In these systems, robust and reliable vehicle detection is a critical step. This paper presents a review of recent vision-based on-road vehicle detection systems. Our focus is on systems where the camera is mounted on the vehicle rather than being fixed such as in traffic/driveway monitoring systems. First, we discuss the problem of on-road vehicle detection using optical sensors followed by a brief review of intelligent vehicle research worldwide. Then, we discuss active and passive sensors to set the stage for vision-based vehicle detection. Methods aiming to quickly hypothesize the location of vehicles in an image as well as to verify the hypothesized locations are reviewed next. Integrating detection with tracking is also reviewed to illustrate the benefits of exploiting temporal continuity for vehicle detection. Finally, we present a critical overview of the methods discussed, we assess their potential for future deployment, and we present directions for future research.
Intelligent on-board system for driving assistance
NASA Astrophysics Data System (ADS)
Rombaut, Michele; Le Fort-Piat, N.
1995-09-01
We present in this paper, an electronic copilot embedded in a real car. The system objective is to help the driver by sending alarms or warnings in order to avoid dangerous situtations. An onboard perception system based on CCD cameras and proprioceptive sensors is used ot provide information concerning the environment and the internal state of the vehicle. From this set of information, the copilot is able to analyze the situation and to generate adequate warnings to the driver according to the circumstances. The definition and the development of such a system deal with multisensor data fusion and supervision strategies. The framework of this work was the European Prometheus Pro-Art program. The electronic copilot has been integrated in a prototype vehicle called Prolab2. This French demonstrator integrates the works of nine research laboratories and two car companies: PSA and RENAULT. After a brief presentation of the global demonstrator, we present the two principal parts developed in our laboratory corresponding to the high level modules of the system: the dynamic data manager and the situation supervision.
Cockpit weather graphics using mobile satellite communications
NASA Astrophysics Data System (ADS)
Seth, Shashi
Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.
Cockpit weather graphics using mobile satellite communications
NASA Technical Reports Server (NTRS)
Seth, Shashi
1993-01-01
Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.
Analysis of Raman lasing without inversion
NASA Astrophysics Data System (ADS)
Sheldon, Paul Martin
1999-12-01
Properties of lasing without inversion were studied analytically and numerically using Maple computer assisted algebra software. Gain for probe electromagnetic field without population inversion in detuned three level atomic schemes has been found. Matter density matrix dynamics and coherence is explored using Pauli matrices in 2-level systems and Gell-Mann matrices in 3-level systems. It is shown that extreme inversion produces no coherence and hence no lasing. Unitary transformation from the strict field-matter Hamiltonian to an effective two-photon Raman Hamiltonian for multilevel systems has been derived. Feynman diagrams inherent in the derivation show interesting physics. An additional picture change was achieved and showed cw gain possible. Properties of a Raman-like laser based on injection of 3- level coherently driven Λ-type atoms whose Hamiltonian contains the Raman Hamiltonian and microwave coupling the two bottom states have been studied in the limits of small and big photon numbers in the drive field. Another picture change removed the microwave coupler to all orders and simplified analysis. New possibilities of inversionless generation were found.
Architectural constructs of Ampex DST
NASA Technical Reports Server (NTRS)
Johnson, Clay
1993-01-01
The DST 800 automated library is a high performance, automated tape storage system, developed by AMPEX, providing mass storage to host systems. Physical Volume Manager (PVM) is a volume server which supports either a DST 800, DST 600 stand alone tape drive, or a combination of DST 800 and DST 600 subsystems. The objective of the PVM is to provide the foundation support to allow automated and operator assisted access to the DST cartridges with continuous operation. A second objective is to create a data base about the media, its location, and its usage so that the quality and utilization of the media on which specific data is recorded and the performance of the storage system may be managed. The DST tape drive architecture and media provides several unique functions that enhance the ability to achieve high media space utilization and fast access. Access times are enhanced through the implementation of multiple areas (called system zones) on the media where the media may be unloaded. This reduces positioning time in loading and unloading the cartridge. Access times are also reduced through high speed positioning in excess of 800 megabytes per second. A DST cartridge can be partitioned into fixed size units which can be reclaimed for rewriting without invalidating other recorded data on the tape cartridge. Most tape management systems achieve space reclamation by deleting an entire tape volume, then allowing users to request a 'scratch tape' or 'nonspecific' volume when they wish to record data to tape. Physical cartridge sizes of 25, 75, or 165 gigabytes will make this existing process inefficient or unusable. The DST cartridge partitioning capability provides an efficient mechanism for addressing the tape space utilization problem.
Creating pedestrian crash scenarios in a driving simulator environment.
Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W
2015-01-01
In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research. Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).
Improved Speed Control System for the 87,000 HP Wind Tunnel Drive
NASA Technical Reports Server (NTRS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Improved speed control system for the 87,000 HP wind tunnel drive
NASA Astrophysics Data System (ADS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Batu Pahat Driving Cycle for Light Duty Gasoline Engine
NASA Astrophysics Data System (ADS)
Zainul Abidin, Zainul Ameerul Ikhsan B.; Faisal Hushim, Mohd; Ahmad, Osman Bin
2017-08-01
Driving cycle is a series of data points that represents the vehicle speed versus time. Transient driving cycles involve many changes such as frequent speed changes during typical on-road driving condition [2]. Model driving cycles involve protracted periods at constant speeds. The Batu Pahat Driving Cycle (BPDC) developed to represent the driving pattern of people in a district of Batu Pahat. Based on this driving cycle, it will be a reference to other researchers to study about the gases emission release and fuel consumption by the vehicle on the dynamometer or automotive simulation based on this driving cycle. Existing driving cycles used such as the New European Driving Cycle (NEDC), the Federal Test Procedure (FTP-72/75, and Japan 10-15 Mode Cycle is not appropriate for Batu Pahat district because of different road conditions, driving habits and environmental of developed driving cycle countries are not same [2][14]. Batu Pahat drive cycle was developed for low-capacity gasoline engine under 150 cc and operating on urban roads, rural roads and road around Universiti Tun Hussein Onn. The importance of these driving cycle as the reference for other research to measure and do automotive simulation regarding fuel consumption and gas emission release from the motorcycle for these three type of driving cycle area. Another use for driving cycles is in vehicle simulations [3]. More specifically, they are used in propulsion system simulations to predict the performance of internal combustion engines, transmissions, electric drive systems, batteries, fuel cell systems, and similar components [18]. Data collection methods used in this study is the use of Global Positioning System (GPS). The results obtained are not similar to each other due to differences in congestion on data taken. From the driving cycle graph obtained, such as the average velocity, maximum velocity, the duration and Positive Acceleration Kinetic Energy (PKE) can be determined. In addition, the best driving cycle sample can be determined from the sum of error calculated. The least sum of error means the best driving cycle
32 CFR 634.46 - Point system procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System § 634.46 Point system procedures. (a) Reports of moving traffic violations recorded on DD Form 1408 or... traffic points or the suspension or revocation of driving privileges on the person's driving record...
32 CFR 634.46 - Point system procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Records and the Traffic Point System § 634.46 Point system procedures. (a) Reports of moving traffic violations recorded on DD Form 1408 or... traffic points or the suspension or revocation of driving privileges on the person's driving record...
NASA Technical Reports Server (NTRS)
Sydnor, George H.; Bhatia, Ram; Krattiger, Hansueli; Mylius, Justus; Schafer, D.
2012-01-01
In September 1995, a project was initiated to replace the existing drive line at NASA's most unique transonic wind tunnel, the National Transonic Facility (NTF), with a single 101 MW synchronous motor driven by a Load Commutated Inverter (LCI). This Adjustable Speed Drive (ASD) system also included a custom four-winding transformer, harmonic filter, exciter, switch gear, control system, and feeder cable. The complete system requirements and design details have previously been presented and published [1], as well as the commissioning and acceptance test results [2]. The NTF was returned to service in December 1997 with the new drive system powering the fan. Today, this installation still represents the world s largest horizontal single motor/drive combination. This paper describes some significant events that occurred with the drive system during the first 15 years of service. These noteworthy issues are analyzed and root causes presented. Improvements that have substantially increased the long term viability of the system are given.
Improving homogeneity by dynamic speed limit systems.
van Nes, Nicole; Brandenburg, Stefan; Twisk, Divera
2010-05-01
Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12 road sections in a driving simulator. The speed limit system (static-dynamic), the sophistication of the dynamic speed limit system (basic roadside, advanced roadside, and advanced in-car) and the situational condition (dangerous-non-dangerous) were varied. The homogeneity of driving speed, the rated credibility of the posted speed limit and the acceptance of the different dynamic speed limit systems were assessed. The results show that the homogeneity of individual speeds, defined as the variation in driving speed for an individual subject along a particular road section, was higher with the dynamic speed limit system than with the static speed limit system. The more sophisticated dynamic speed limit system tested within this study led to higher homogeneity than the less sophisticated systems. The acceptance of the dynamic speed limit systems used in this study was positive, they were perceived as quite useful and rather satisfactory. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Huang, Chi; Wang, Jie; Lv, Xiaobo; Liu, Liu; Liang, Ling; Hu, Wei; Luo, Changliang; Wang, Fubing; Yuan, Quan
2018-05-21
The "coffee ring effect" is a natural phenomenon where sessile drops leave ring-shaped structures on solid surfaces upon drying. It drives non-uniform deposition of suspended compounds on substrates, which adversely affects many processes, including surface-assisted biosensing and molecular self-assembly. In this study, we describe how the coffee ring effect can be eliminated by controlling the amphipathicity of the suspended compounds, for example DNA modified with hydrophobic dye. Specifically, nuclease digestion of the hydrophilic DNA end converts the dye-labeled molecule into an amphipathic molecule (one with comparably weighted hydrophobic and hydrophilic ends) and reverses the coffee ring effect and results in uniform disc-shaped feature deposition of the dye. The amphipathic product decreases the surface tension of the sessile drops and induces Marangoni flow, which drives the uniform distribution of the amphipathic dye-labeled product in the drops. As proof-of-concept, this strategy was used in a novel enzymatic amplification method for biosensing to eliminate the coffee ring effect on a nitrocellulose membrane and increase assay reliability and sensitivity. Importantly, the reported strategy for eliminating the coffee ring effect can be extended to other sessile drop systems for potentially improving assay reliability, and sensitivity.
Resolving the role of femtosecond heated electrons in ultrafast spin dynamics.
Mendil, J; Nieves, P; Chubykalo-Fesenko, O; Walowski, J; Santos, T; Pisana, S; Münzenberg, M
2014-02-05
Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.
Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility
Huo, Xueliang; Ghovanloo, Maysam
2015-01-01
Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility. PMID:19362901
Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.
Huo, Xueliang; Ghovanloo, Maysam
2009-06-01
Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.
Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention
Zhang, Lian; Wade, Joshua; Bian, Dayi; Fan, Jing; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan
2016-01-01
Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental disorder with enormous individual and social cost. In this paper, a novel virtual reality (VR)-based driving system was introduced to teach driving skills to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, and peripheral physiology data in addition to driving performance data. The objective of this paper is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be individualized for optimal skill learning. Individualization of ASD intervention is an important criterion due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the data collected were used for systematic feature extraction and classification of cognitive loads based on five well-known machine learning methods. Subsequently, three information fusion schemes—feature level fusion, decision level fusion and hybrid level fusion—were explored. Results indicate that multimodal information fusion can be used to measure cognitive load with high accuracy. Such a mechanism is essential since it will allow individualization of driving skill training based on cognitive load, which will facilitate acceptance of this driving system for clinical use and eventual commercialization. PMID:28966730
Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention.
Zhang, Lian; Wade, Joshua; Bian, Dayi; Fan, Jing; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan
2017-01-01
Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental disorder with enormous individual and social cost. In this paper, a novel virtual reality (VR)-based driving system was introduced to teach driving skills to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, and peripheral physiology data in addition to driving performance data. The objective of this paper is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be individualized for optimal skill learning. Individualization of ASD intervention is an important criterion due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the data collected were used for systematic feature extraction and classification of cognitive loads based on five well-known machine learning methods. Subsequently, three information fusion schemes-feature level fusion, decision level fusion and hybrid level fusion-were explored. Results indicate that multimodal information fusion can be used to measure cognitive load with high accuracy. Such a mechanism is essential since it will allow individualization of driving skill training based on cognitive load, which will facilitate acceptance of this driving system for clinical use and eventual commercialization.
AC propulsion system for an electric vehicle, phase 2
NASA Astrophysics Data System (ADS)
Slicker, J. M.
1983-06-01
A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.
Displacement and force coupling control design for automotive active front steering system
NASA Astrophysics Data System (ADS)
Zhao, Wanzhong; Zhang, Han; Li, Yijun
2018-06-01
A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.
AC propulsion system for an electric vehicle, phase 2
NASA Technical Reports Server (NTRS)
Slicker, J. M.
1983-01-01
A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.
Strain-assisted optomechanical coupling of polariton condensate spin to a micromechanical resonator
NASA Astrophysics Data System (ADS)
Be'er, O.; Ohadi, H.; del Valle-Inclan Redondo, Y.; Ramsay, A. J.; Tsintzos, S. I.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.
2017-12-01
We report spin and intensity coupling of an exciton-polariton condensate to the mechanical vibrations of a circular membrane microcavity. We optically drive the microcavity resonator at the lowest mechanical resonance frequency while creating an optically trapped spin-polarized polariton condensate in different locations on the microcavity and observe spin and intensity oscillations of the condensate at the vibration frequency of the resonator. Spin oscillations are induced by vibrational strain driving, whilst the modulation of the optical trap due to the displacement of the membrane causes intensity oscillations in the condensate emission. Our results demonstrate spin-phonon coupling in a macroscopically coherent condensate.
On the construction of a skill-based wheelchair navigation profile.
Urdiales, Cristina; Pérez, Eduardo Javier; Peinado, Gloria; Fdez-Carmona, Manuel; Peula, Jose M; Annicchiarico, Roberta; Sandoval, Francisco; Caltagirone, Carlo
2013-11-01
Assisted wheelchair navigation is of key importance for persons with severe disabilities. The problem has been solved in different ways, usually based on the shared control paradigm. This paradigm consists of giving the user more or less control on a need basis. Naturally, these approaches require personalization: each wheelchair user has different skills and needs and it is hard to know a priori from diagnosis how much assistance must be provided. Furthermore, since there is no such thing as an average user, sometimes it is difficult to quantify the benefits of these systems. This paper proposes a new method to extract a prototype user profile using real traces based on more than 70 volunteers presenting different physical and cognitive skills. These traces are clustered to determine the average behavior that can be expected from a wheelchair user in order to cope with significant situations. Processed traces provide a prototype user model for comparison purposes, plus a simple method to obtain without supervision a skill-based navigation profile for any user while he/she is driving. This profile is useful for benchmarking but also to determine the situations in which a given user might require more assistance after evaluating how well he/she compares to the benchmark. Profile-based shared control has been successfully tested by 18 volunteers affected by left or right brain stroke at Fondazione Santa Lucia, in Rome, Italy.
Using Critical Thinking Styles of Opinion Leaders to Drive Extension Communication
ERIC Educational Resources Information Center
Putnam, Brianne B.; Lamm, Alexa J.; Lundy, Lisa K.
2017-01-01
In order to address the complex challenges facing the agricultural and natural resource industry, extension educators must collaborate with opinion leaders. Extension educators can use the assistance of opinion leaders in program design and implementation in order to best meet the needs of stakeholders and the public. Collaboration between…
"Assessment Drives Learning": Do Assessments Promote High-Level Cognitive Processing?
ERIC Educational Resources Information Center
Bezuidenhout, M. J.; Alt, H.
2011-01-01
Students tend to learn in the way they know, or think, they will be assessed. Therefore, to ensure deep, meaningful learning, assessments must be geared to promote cognitive processing that requires complex, contextualised thinking to construct meaning and create knowledge. Bloom's taxonomy of cognitive levels is used worldwide to assist in…